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Abstract: Neurodegenerative diseases (NDs) including Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis, and Huntington’s disease are incurable and affect millions of people
worldwide. The development of treatments for this unmet clinical need is a major global research
challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands
that could be screened in biological assays, reducing the cost, time, and effort required to develop
new drugs. In this review, we provide an introduction to CADD and examine the progress in
applying CADD and other molecular docking studies to NDs. We provide an updated overview of
potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages
of these tools.

Keywords: neurodegeneration; drug discovery; CADD; dementia; brain diseases; CNS disorders;
Alzheimer’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; Huntington’s disease

1. Introduction

Neurodegenerative diseases (NDs) are incurable and debilitating conditions that
result in progressive degeneration and/or death of nerve cells in the central nervous
system (CNS) [1–3]. Dementia rates are alarmingly on the rise worldwide. There are over
50 million people worldwide living with dementia in 2020, with nearly 60% living in low-
and middle-income countries [4]. This number will almost double every 20 years, reaching
82 million in 2030 and 152 million in 2050 [4]. The number of people with dementia in the
UK is predicted to be around 1.14 million by 2025 and 2.1 million by 2051, an increase of
40% over the next 5 years and 157% over the next 31 years [5].

The UK Prime Minister’s Challenge on Dementia was launched in 2015 to identify
strategies to tackle dementia by 2025 [6]. Current therapies for NDs treat symptoms,
not the underlying pathological changes. There is a clear and unmet clinical need to
develop new therapies based on understanding the molecular pathologies. One of the most
promising approaches is to develop novel therapeutics using computer-aided drug design
(CADD) [7,8].

In this review, we provide an introduction to CADD and different approaches involved
in this technique. We provide a list of over 200 pieces of CADD software using a citation-
based scoring system (Supplementary Table S1), with the 30 most commonly used software
products listed in Table 1. We examine the progress in applying CADD and other molecular
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docking studies to NDs, provide an updated overview of potential therapeutic targets for
various NDs, and discuss some of the advantages and disadvantages of these tools.

Table 1. The 30 most highly-scored pieces of software for CADD. Software was ranked according to the equation Si =
log(106.Ci/Ctotal) where Si is the score for tool i, Ci is the number of citations to tool i, and Ctotal is the number of citations to
all tools considered. Number of citations was obtained using Google Scholar, last accessed on 14 April 2021.

No. Software

No. of
Citations to
Published

Studies

Score Features Accessibility Website

1 HADDOCK 26,490 4.7323

Docks protein−protein
based on biochemical

or biophysical
information

Free
https:

//wenmr.science.
uu.nl/haddock2.4/

2

AutoDock
Autodock 1

Autodock 2.4
Autodock 3
Autodock 4

Autodock 4.2
Autodock Vina
AutoDockFR

AutoDockTools

22,422 4.6599 Automated docking
tools Free http://autodock.

scripps.edu/

3 Glide Glide 1.8
Glide 2 Glide 2.5 22,091 4.6535

Rapid, accurate
docking and scoring

approach
Subscription

https://www.
schrodinger.com/

glide

4 FlexX 19,987 4.6100

Predicts the geometry
of the protein–ligand

complex and estimates
the binding affinity

Free
https:

//www.biosolveit.
de/FlexX/

5 LigandFit 19,890 4.6079

Presents a shape-based
approach for docking
ligands into the active

site of the protein

Subscription

https://www.
phenix-online.org/

documentation/
reference/ligandfit.

html

6 AmberTools 14,572 4.4728 A suite of biomolecular
simulation programs Subscription https:

//ambermd.org/

7 ENCoM 13,145 4.4280

A coarse-grained
normal mode analysis

method utilized for
different residues in

proteins or nucleotides
in RNA

Free
http://biophys.

umontreal.ca/nrg/
resources.html

8 PROCHECK-
NMR 10,783 4.3420

Checks the
stereochemical quality
of a protein structure

solved by NMR

Free

https://www.ebi.ac.
uk/thornton-srv/

software/
PROCHECK/

9 MCDOCK 10,603 4.3347

Allows for a full
flexibility of ligands in

the docking
calculations

Free DOI:
10.1021/jm990129n

10 ICM ICM 2.8
ICM-Dock 10,271 4.3209

A new method for
protein modelling and
design applications to
docking and structure

prediction

Subscription
http:

//www.molsoft.
com/docking.html

https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
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https://www.schrodinger.com/glide
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https://www.phenix-online.org/documentation/reference/ligandfit.html
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https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
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Table 1. Cont.

No. Software

No. of
Citations to
Published

Studies

Score Features Accessibility Website

11

Dock Dock2
Dock3 Dock4
Dock5 Dock6
Dock7 Dock8

Dock9

8181 4.2221 Based on a geometric
matching algorithm Free http://dock.

compbio.ucsf.edu/

12 SOFT Docking 7474 4.1828

Predicts the sites of
interaction between

two cognate molecules
based on their 3D

structures

Subscription
https://doi.org/10
.1016/0022-2836(91

)90859-5

13 FDS 7188 4.1659 Cluster analysis based
on distance similarities Free

http:
//www.scfbio-iitd.
res.in/dock/fds.jsp

14 DockVision 6950 4.1512
Increases capability to

generate laudable
results

Free

http:
//dockvision.sness.

net/overview/
overview.html

15 PRODOCK 6442 4.1183

Renders the
programming easier
and the definition of
molecular flexibility

more straightforward

Subscription

https://doi.org/10
.1002/(SICI)1096-9

87X(199903)20:
4\T1\textless{}412::

AID-JCC3\T1
\textgreater{}3.0

.CO;2-N

16

YASARA
YASARA
Dynamics

YASARA Model
YASARA NMR

Module
YASARA
Structure

YASARA View
YASARA Virtual

Reality
Workstation

YASARA/WHAT
IF Twinset

5870 4.0779
A molecular-graphics,

-modelling, and
-simulation program

Free http://www.yasara.
org/products.htm

17 KBDOCK 5820 4.0742

A program that
proposes structural

templates for protein
docking

Free http:
//kbdock.loria.fr/

18 TreeDock 5796 4.0724

A docking tool that is
able to explore all

clash-free orientations
at very fine resolution
in a reasonable time

Subscription https://doi.org/10
.1021/ja011240x

19 LePro 5639 4.0605

Generates a docking
input file for LeDock
with refined protein

atoms within 0.4 nm of
any atom of the ligand

Free
http://www.lephar.

com/download.
htm

http://dock.compbio.ucsf.edu/
http://dock.compbio.ucsf.edu/
https://doi.org/10.1016/0022-2836(91)90859-5
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Table 1. Cont.

No. Software

No. of
Citations to
Published

Studies

Score Features Accessibility Website

20 DockoMatic 5594 4.0570

A software that docks
secondary ligands,

used to assist inverse
virtual screening

Free
https:

//doi.org/10.1186/
1756-0500-3-289

21

SYBYL_ChemScore
SYBYL_D-Score
SYBYL_F-Score
SYBYL_G-Score

5486 4.0485
A conformational

sampling and scoring
function

Subscription https://doi.org/10
.1021/jm0203783

22 ZDOCK
ZDOCKpro 5415 4.0429

A new scoring function
for the initial stage of

unbound docking
Subscription http://zdock.

umassmed.edu/

23 AADS 5087 4.0157

An automated active
site identification,

docking, and scoring
protocol

Free
http://www.scfbio-

iitd.res.in/dock/
ActiveSite_new.jsp

24 Surflex Dock 4896 3.9991

An automatic and
flexible molecular

docking algorithm for
rapid in silico

drug-screening
applications

Subscription
https:

//doi.org/10.1007/
s10822-007-9114-2

25
PyMOL PyMOL

1.4.1 PyMOL
2.1.1 PyMOL 2.4

4805 3.9910

An open-source,
user-sponsored,

molecular visualization
system

Subscription http:
//www.pymol.org

26 FlipDock 4614 3.9733

Allows the automated
docking of flexible

ligand molecules into
active sites of flexible

receptor molecules

Free http://flipdock.
scripps.edu/

27 SymmDock 4545 3.9668
A flexible induced-fit

backbone refinement in
molecular docking

Free

http:
//bioinfo3d.cs.tau.

ac.il/FiberDock/
php.php

28 ClusPro 4360 3.9487
A widely used tool for

protein–protein
docking

Free http://nrc.bu.edu/
cluster

29 Surflex 4180 3.9304 A robust screening tool Subscription
https://pubmed.
ncbi.nlm.nih.gov/

12570372/

30 ConsDock 4001 3.9114

A pose within 2 Ao

RMSD of the X-ray
structure can be

performed with this
software

Subscription https://doi.org/10
.1002/prot.10119

2. Computer-Aided Drug Design

“Computer-aided drug design” (CADD) refers to the application of computational
modelling approaches to drug discovery. Drug discovery is an expensive and time-
consuming process with the average approved drug requiring 10 to 15 years to develop

https://doi.org/10.1186/1756-0500-3-289
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https://doi.org/10.1007/s10822-007-9114-2
https://doi.org/10.1007/s10822-007-9114-2
https://doi.org/10.1007/s10822-007-9114-2
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with an estimated cost of 0.8–2 billion USD [9]. Many licensed drugs, such as captopril, dor-
zolamide, oseltamivir, aliskiren, and nolatrexed, were all optimized using CADD [10], and
a large number of publications describe the successful design and discovery of leads/drugs
using CADD [11–13]. The major steps involved in CADD are summarized in Figure 1A and
discussed in the following sections. The main goal of CADD is to reduce these timescales
and costs without affecting quality (Figure 1B) [14]. Importantly, CADD can be used in
most stages of drug development: from target identification to target validation, from lead
discovery to optimization, and in preclinical studies. It is therefore estimated that CADD
could reduce the cost of drug development by up to 50% [15,16].
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2.1. Drug Target Selection

Drug target selection is the first step of structure-based drug design. This involves
identifying and determining the structures of the relevant proteins [17]. Understanding
and characterization of the molecular biology of the targeted disease are therefore necessary
before the initiation of any active compound search process.

2.2. Determination of the Protein Structure

An in-depth understanding of biological processes is still often hampered by a lack of
detailed knowledge of protein structures [18]. The determination of the structure of the
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target protein is a prerequisite for CADD [19]. Structural elucidation of the target protein
can be performed by experimental tools including, but not limited to, nuclear magnetic
resonance (NMR) spectroscopy, Cryo-EM, and X-ray crystallography [20,21].

2.3. Homology Modelling

Despite the current revolution in structural studies, in particular the recent develop-
ments in cryo-EM, the detailed structures of a large number of proteins, and especially
membrane proteins (which are over-represented amongst drug targets), have not been de-
termined [18,22]. Homology modelling is an approach to estimate the structure of a target
protein based on structural data from proteins with sequence homology to the target [23].

For instance, a homology model of human catechol-O-methyltransferase (COMT) was
constructed utilizing the X-ray crystal structure of rat COMT to design anti-PD drugs by
performing ligand docking, resulting in the discovery of nine putative inhibitors. Another
example involves a cysteine protease from Xanthomonas campestris (an aerobic, Gram-
negative rod-shaped bacterium known to cause black rot in crucifers by darkening the
vascular tissues). The active site of this enzyme is homologous to human cathepsin B
enzyme (hCB), the activity of which contributes to the reduction of the amyloid peptide by
proteolytic cleavage of Aβ1-42, offering a protective role against AD [24].

2.4. Identification of Binding Sites

When the three-dimensional structure of the target protein is determined, the next
step is the identification of potential binding sites for small molecules. This process can be
conducted using various algorithms for computing and identifying binding pockets [25–27].

2.5. Molecular Dynamics Simulation

Molecular dynamics (MD) simulations are a theoretical tool to discover the configu-
rations and dynamic behaviours of molecules, providing atomic-level insight into drug
mechanisms of action [13]. MD may also help to reveal the aggregation pathway of
neurotoxic protein aggregates and thus aid in the design of new inhibitors [28].

2.6. Molecular Docking Studies

Molecular docking is a computational procedure that predicts the lowest energy
binding conformations of one molecule to a second (usually a small drug-like molecule
to a protein). Accordingly, molecular docking procedures, along with their different
scoring systems, are frequently utilized to predict the binding modes and affinities between
chemical compounds and drug binding sites on biological macromolecules [29,30].

2.7. Virtual Screening

Virtual screening (VS) is the process of screening small molecule libraries in silico to
identify chemical structures that may bind to a drug target [31–33].

2.8. Quantitative Structure—Activity Relationship Study

Quantitative structure—activity relationship (QSAR) methods are conducted to corre-
late a biological response (e.g., enzyme activity, cell viability, etc.) to the chemical properties
of a set of molecules [34–36].

2.9. Pharmacophore Modelling

Pharmacophore modelling deals with finding the optimal shapes and charge distri-
butions for binding of a small molecule to a biological macromolecule. Pharmacophore
modelling is commonly implemented to rapidly specify potential lead compounds [37,38].

3. Neurodegenerative Diseases

NDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), and Huntington’s disease (HD) [39]. These diseases are diverse in their
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pathophysiology and effective treatments are urgently needed, but they will only be
achieved with an in-depth understanding of the causes and mechanisms of each disease.
These diseases and potential drug targets for each are discussed briefly below. Current
molecular targets for these diseases, along with examples of drugs discovered in CADD
projects, are summarised in Table 2. The molecular mechanisms of neurodegeneration and
potential drug targets in these diseases are summarised in Figure 2.

Table 2. NDs with specified molecular targets and selected examples of drugs that have been identified with the aid of in
silico drug design. The assay format used to validate each drug is indicated and drugs that progressed to clinical trials are
highlighted in bold.

NDs Molecular Docking Targets Molecule Software Assay Type

Alzheimer’s disease

Acetylcholinesterase,
Beta-secretase enzymes,
Muscarinic and nicotinic ACh
receptors,
N-methyl-D-aspartate
receptor, Tau proteins

1-benzy-l1,2,3,4-tetrahydro-
b-carboline),

3-substituted-1H-indoles,
6-triazolyl amidine

derivatives [40]

ICM cell-based assay [40]

Chloropyridonepezil [41] Autodock Vina In vitro blood–brain barrier
model [42]

Flavone, 5-hydroxyflavone,
7-hydroxyflavone, chrysin,

apigenin, kaempferol, fisetin,
and quercetin [43]

AutoDock Mice and rats models [44,45]

Ifenprodil [46] Schrödinger Suite
Primary cultures from

chicken embryo forebrain
(E10) [46]

Memantine [47,48] Glide Human clinical trial [49]

Morin [50] Glide In APPswe/PS1dE9 mice [51]

Pyridopyrimidine derivatives
[52] Auto grid and auto dock In vitro enzyme inhibitory

model [53]

Pyridonepezil [54] Autodock Vina In vitro blood–brain barrier
model [42]

Piperazine derivatives [55] PASS software Tested on AChE in vitro by
using Ellman’s method [56]

Rutin [57] AutoDock and Autodock
Vina

Doxorubicin (DOX)-treated
neuroblastoma cells (IMR32)

and doxorubic-induced
cognitive dysfunction in

Wistar rats [58]

Parkinson’s disease

Dopamine receptors,
expression and mitochondrial
localization, Mutant LRRK2,
Mutated, PINK1, PARK2, DJ1
SNCA Motif

LRRK2 kinase inhibitors
(9-methyl-N-phenylpurine-

2,8-diamine,
N-phenylquinazolin-4-amine,
and 1,3-dihydroindol-2-one)

[59]

MOE Both in vitro and in vivo
studies were established [60]

Amyotrophic lateral sclerosis

Mutant SODI, SODI
oligomerization, CASP-3,
CASP-8, TDP-43, p38 MAPK
Nav1.6 sodium channel

Angiogenin [61] AmberTools20 HeLa cells (Nuclear
translocation assay) [61])

Hesperidin and THSG [62]) (Molecular Dynamics (MD)
Simulation

High affinity to
mutant SOD1 [62]

Riluzole [63] PROCHECK program FDA-approved drug
for ALS [64]

Huntington’s disease

FIP-2 Specificity protein,
1HTT Interacting proteins
Mutant HTT, Infant Testing
Nuclear receptor corepressor,
Postsynaptic density-95

T1–11 (synthesized in a high
yield by the substitution

reaction) [65]
AutoDockTools PC12 cells [65]
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Figure 2. Overview of molecular mechanisms and drug targets (red text) in Alzheimer’s, Parkinson’s, ALS, and Hunting-
ton’s diseases. Figure made using Biorender.com. 

3.1. Alzheimer’s Disease (AD) 
AD is a chronic, progressive, and persistent neurodegenerative disease whose main 

symptoms are reduced motor and cognitive function and accelerated memory loss, result-
ing from the progressive loss of neurons and synapses in the cerebral cortex, ultimately 
leading to death [66]. 

The estimated number of people aged 65 years or older in the USA with AD in 2010 
was 4.7 million and this number is predicted to reach 13.8 million by 2050 [67]. In 2013, 
the number of people in the UK with dementia was estimated at 815,827, of which 62% 
had AD [68]. Approximately 70% of the UK care home population suffers from dementia 
and more than 42,000 people below 65 years also have dementia [69]. 

AD is characterised by the presence of amyloid plaques, composed primarily of aggre-
gated amyloid-β (Aβ) peptides proteolytically derived from the amyloid precursor protein 
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3.1. Alzheimer’s Disease (AD)

AD is a chronic, progressive, and persistent neurodegenerative disease whose main
symptoms are reduced motor and cognitive function and accelerated memory loss, result-
ing from the progressive loss of neurons and synapses in the cerebral cortex, ultimately
leading to death [66].

The estimated number of people aged 65 years or older in the USA with AD in 2010
was 4.7 million and this number is predicted to reach 13.8 million by 2050 [67]. In 2013, the
number of people in the UK with dementia was estimated at 815,827, of which 62% had
AD [68]. Approximately 70% of the UK care home population suffers from dementia and
more than 42,000 people below 65 years also have dementia [69].

AD is characterised by the presence of amyloid plaques, composed primarily of aggre-
gated amyloid-β (Aβ) peptides proteolytically derived from the amyloid precursor protein
(APP), and neurofibrillary tangles (NFTs) that are intracellular protein aggregates com-
posed primarily of phosphorylated tau protein. Although amyloid deposits are thought
to develop before NFTs, amyloid burden is poorly correlated with disease progression,
whereas NFT burden is more strongly correlated [70]. The exact mechanisms by which
NFTs and Aβ plaques lead to neurodegeneration are still poorly understood. Several
genetic contributors to AD have been identified, including variants of presenilin 1 (PSEN1)
and presenilin 2 (PSEN2), components of the γ-secretase complex that cleaves an APP
intermediate to its amyloidogenic forms, as well as variants of APP itself. The strongest
genetic risk factor not directly involved in amyloid formation is the APOE gene, encoding
an apolipoprotein that is responsible for CNS cholesterol transport. Weaker genetic risk
factors include a variety of genes involved in cholesterol metabolism, endocytosis, and
neuroinflammation [71,72]. Recent work on the glymphatic waste clearance system sug-
gests that reduced glymphatic function is correlated with Aβ and tau accumulation [73].
Bulk flow through the glymphatic system is elevated during sleep and mediated by the
water channel protein AQP4, which is also implicated in various CNS pathologies [74–76].
Despite there being no single drug that has been approved to successfully target AQP4 [77],
new studies suggest that modulators of sleep or AQP4 (by targeting the trafficking mecha-
nism or membrane abundance rather than pore-blocking) could be novel targets for early
intervention in AD and other protein-misfolding diseases [78,79].

Biorender.com


Int. J. Mol. Sci. 2021, 22, 4688 9 of 22

3.1.1. Macromolecular Targets in AD
Acetylcholinesterase

Acetylcholinesterase inhibitors (AChEIs) have been considered as potential drugs
to treat AD and other dementias for many years, due to the degeneration and loss of
cholinergic neurons associated with AD symptoms. Indeed, three of the four currently ap-
proved drugs for AD are AChEIs (donepezil, galantamine, and rivastigmine). Accordingly,
acetylcholinesterase is routinely targeted in docking studies [80]. For example, utilizing
molecular docking, the binding of compounds found in Salvia miltiorrhiza (red sage) extract,
e.g., miltirone and salvianolic acid A, to acetylcholinesterase [81], and the binding of cinerin
C (a molecule extracted from Prosopis cineraria pods) to acetylcholinesterase [82] have
been reported.

Beta-Secretase and Gamma-Secretase Enzymes

Aβ formation is catalysed by β-secretase (BACE) and γ-secretase (GS) enzymes and,
thus, inhibiting these enzymes could prevent Aβ plaque formation and prevent AD [83].
Molecular docking has been utilized to score putative inhibitors of GS, and the high-
est scoring compound was used to identify chemically similar compounds for pharma-
cophore mapping [84].

Caspases

Caspases are important mediators of apoptosis in neurons (and indeed in most
cell types); their inhibition might therefore be helpful in preventing neurodegeneration-
associated neuronal death in ALS, AD, PD, and HD [85–88].

Several studies employed in silico drug design and molecular docking to target
caspases to treat NDs. For example, ten non-cytotoxic nitrones were assessed for their
capability to arrest apoptosis and reduce the levels of active caspase-3 and oxidative stress
in the HT22 neuronal cell line. Molecular docking suggested that these nitrones bound to a
site near the catalytic region of caspase-3. This suggested that medicinal chemistry using
these nitrones as a starting point could be considered to begin the development of novel
ND therapies [89].

Acetylcholine (ACh) Receptors

Many studies conducted both in vitro and in vivo have demonstrated that reduced
cholinergic activity is a direct cause of memory loss in AD patients [90]. Consequently, one
of the potential targets in AD is the nicotinic acetylcholine receptor (nAChR). Compounds
discovered using multitarget CADD studies based on nicotinic receptors were found to
improve memory, cognition, and spatial capabilities in animal models [91,92].

N-Methyl-D-Aspartate Receptor

N-methyl-D-aspartate (NMDA) receptors transduce glutamate and glycine signals
that play crucial roles in CNS development and the synaptic plasticity that is essential for
memory and learning processes [93]. However, overexposure to glutamate can result in
neurotransmission disturbances correlated with the NMDA receptor, which are treatable
with NDMA antagonists [94,95]. The identification of conantokins, MK-801 and memantine
(memantine was approved by the FDA for AD in 2004), as NMDA receptor inhibitors led
to the investigation of these structures using CADD to identify new NMDA receptor
inhibitors. New compounds discovered in this way could be utilized as potential AD
therapeutics [47,94,96,97].

ROCK-I and NOX2 Enzymes

One of the possible approaches to treat neuroinflammation is the inhibition of both
NADPH oxidase 2 (NOX2) and Rho kinase 1 (ROCK-I). This might be an effective way
to treat some progressive neurological diseases, including AD [98]. NOX2 is the catalytic
subunit of a multi-protein complex that can be activated in host defence phagocytic pro-
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cesses (e.g., in microglia) to govern the generation of superoxide from oxygen. ROCK-I is a
significant mediator of cell migration, proliferation, and adhesion. In disease states, NOX2
integration into the NADPH oxidase complex is activated by ROCK-I via Ras associated
C3 botulinum toxin substrate (Rac). Consequently, microglial cells with high ROCK-I
and NOX2 lead to progressive neuronal damage in the early development of neurological
disease [99]. In one study, CADD was utilized to discover new molecules with the ability to
inhibit both ROCK-I and NOX2, with 18 compounds identified from a library of 5 × 105. Of
these 18 molecules, 7 had an inhibitory effect against both enzymes in cell-based assays [98].

3.2. Parkinson’s Disease (PD)

PD is the second most common neurodegenerative disorder with symptoms including
tremors, muscle rigidity, and postural imbalance [100–102]. PD affected around 145,000 peo-
ple in the UK in 2019 [103–105]. In the USA, the estimated number of annual PD diagnoses
is 60,000 and approximately one million are affected with PD in 2020 [106,107]. PD is
characterised by preferential and progressive loss of dopaminergic neurons starting in the
substantia nigra pars compacta, and the presence of intracellular aggregates, known as
Lewy bodies, composed primarily of the protein α-synuclein. Exactly how (or even if)
Lewy bodies exert neurotoxic effects is poorly understood.

3.2.1. Macromolecular Targets in PD
COMT (Catechol-O-Methyltransferase) Inhibitors

COMT metabolises catechols by methylation. As dopamine is one of the catechols that
is reduced in the CNS during PD, COMT is considered a drug target for the management
of PD. Nitrocatechol-type inhibitors (e.g., tolcapone and entacapone), bisubstrate inhibitors
(e.g., thiopyridine, purine, N-methyladenine, and 6-methylpurine), and other molecules
(e.g., 4-phenyl-7,8-dihydroxycoumarin) were reported as potential COMT inhibitors from
structure-based drug design studies [108].

Dopamine Agonists

Pergolide, pramipexole, ropinirole, bromocriptine, and piribedil are currently the
most commonly prescribed dopamine-receptor agonists. They are generally combined
with levodopa plus dopa decarboxylase inhibitors (DDIs), especially in patients with motor
dysfunctions. They can be efficient as a monotherapy during early PD (they can delay
the need for the introduction of levodopa plus DDIs in newly diagnosed patients) or in
combination with levodopa plus DDIs for dyskinesia and motor fluctuations [109].

There are five subtypes of dopamine receptors, D1–5 and each one has a different
function. Different patients may respond differently to different dopamine receptor ago-
nists. Hence, clinicians often change the therapeutic choice from one dopamine receptor
agonist to another in order to achieve better control of PD symptoms and avoid specific
side-effects [110]. D1, D2, and D3 receptors primarily control locomotor activity. Moreover,
D1 and D2 receptors (and to a lesser extent D3) are essential in memory and learning
mechanisms, mainly in the prefrontal cortex [111]. D2 receptors have a crucial function in
psychotic behaviours since almost all effective antipsychotic drugs antagonize D2 receptors.
The D3 receptor is primarily expressed in the limbic area of the brain [112]. D4 receptors
are associated with relapse to stimulant use and selective D4 inhibitors/antagonists might
be potential therapies for drug-relapse.

Outside the CNS, dopamine is also implicated in cardiovascular and renal functions,
mainly through D1 and D2 receptors. Heterodimerization of dopamine receptors in various
biological systems further complicates the role of dopaminergic interactions in PD [113];
therefore, designing more specific effective drugs using molecular docking might be a
viable strategy to achieve drugs with fewer adverse effects in PD patients.
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Gene Variants

Variants in a variety of genes have been reported to be associated with PD, includ-
ing SNCA (encoding α-synuclein), ADH1C, DJ-1, EIF4G1, FBXO7, GBA/GBAP1, GIGYF2,
HTRA2, LRRK2 [114], MAPT, PARK2, PARK7 [115], PRKN, PINK1, PLA2G6, UCHL1, and
VPS35 [116]. For example, several mutations to LRRK2, encoding the leucine-rich repeat
kinase 2 (LRRK2), are associated with PD and it has been reported as a significant factor for
drug resistance [117,118]. A panel of 160 kinase inhibitors was examined for their activity
against LRRK2 in vitro employing a peptide substrate kinase assay and neuronal SH-SY5Y
cells overexpressing LRRK2 [59]. In silico docking studies utilizing the LRRK2 kinase
structure and some selected compounds found a correlation between docking scores for
the LRRK2 ATP binding site and both in vitro and cellular compound activity [59].

Glutamate Antagonists

Glutamate receptors can be classified into two major classes: ionotropic (iGluRs) and
metabotropic receptors (mGluRs). Glutamate antagonists have well-established neuro-
protective effects through slowing the rate of dopaminergic neuron loss in the substantia
nigra [119]. A number of glutamate antagonists improve motor function in PD animal
models through acting on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)
and NMDA subtypes of ionotropic glutamate receptors. Nonetheless, systemic adminis-
tration is associated with serious side-effects such as sedation and ataxia, especially for
NMDA antagonists [120]. This has substantially affected their widespread use; therefore,
developing selective antagonists against specific receptor isoforms that are preferentially
expressed in the critical parts of the pathophysiological circuitry might be an interesting
therapeutic approach in the future.

MAO-B

Monoamine oxidase inhibitors (MAOI) were one of the earliest drugs to be tried in PD
and can be used with or without levodopa. Non-selective MAOI (such as tranylcypromine)
have limited use in treating PD-associated depression due to their numerous side effects,
while reversible and selective MAO-A inhibitors are more recommended. Selective and
irreversible MAO-B inhibitors such as selegiline and rasagiline are recommended for the
control of motor fluctuations and akinesia.

Selegiline is a selective, irreversible MAO-B inhibitor that has been widely used for
PD treatment. It has been shown to delay the need for levodopa during early stages of
PD and managing the end-of-dose akinesia in fully developed PD patients. A number of
further irreversible and reversible MAO-B inhibitors have been developed.

Safinamide is a relatively new selective reversible MAO-B inhibitor with ion channel
activity that does not cause a cheese-reaction, unlike other MAO-B inhibitors [121]. This
drug enhances motor function in early PD [122].

3.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a lethal condition that is characterised by progressive muscular paralysis and
wasting, reflecting degeneration of neurons controlling voluntary muscles, including both
the upper motor neurons in the motor cortex and lower motor neurons in the brainstem
and spinal cord [123].

Around 5000 people in the USA are diagnosed with ALS each year. Cumulatively,
there are more than 30,000 and 5000 people affected with ALS in the USA and UK, respec-
tively [124–126].

The pathogenesis of ALS is relatively poorly understood. Only two drugs are ap-
proved for ALS: one of these is a glutamate antagonist (riluzole) and the other (edaravone)
works by an unknown mechanism.
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3.3.1. Macromolecular Targets in ALS

SOD1

Superoxide dismutase (SOD1) is an antioxidant enzyme involved in the detoxification
of superoxide radicals. The SOD1 enzyme requires bound zinc and copper ions to maintain
intra-molecular disulphide bonds [127]. Variation in zinc and copper ion binding to SOD1
leads to misfolded enzymes and can initiate aggregation and facilitate the protein instability
associated with ALS.

In one study, 32,791 molecules were virtually screened by establishing an in silico
assay system to screen for inhibitors of the aberrant interaction between mutant SOD1 and
tubulin, with the aim of identifying lead compounds for ALS [128].

Molecular docking studies have been used to develop inhibitors of dimer destabiliza-
tion and aggregation of the human SOD1 G85R mutant. CADD studies have predicted
a number of inhibitors such as linear tripeptides [129], the tubulin binding site of G85R
SOD1 [128], resveratrol [130], natural polyphenols of curcumin [131], kaempferol, and
kaempferide [132] as potential lead compounds for treating ALS.

MAPK

Many processes within the cell, such as mitogenesis, apoptosis, oncogenesis, and
differentiation, are associated with the mitogen activated protein kinases (MAPKs) [133].
MAPKs are activated by upstream kinases called MAPK kinases (termed MAPKK, MEK,
or MKK) and an MAPK kinase kinase (termed MAPKKK, MEKK, or MKKK) [134], and are
linked to the inhibition of proinflammatory cytokines [135]. An in silico and in vitro study
of a MAPKK inhibitor (silibinin) used molecular docking to address the interactions of
silibinin with p38 MAPK, which is an important kinase associated with glial cell activation
and neuroinflammation [136].

Casein Kinase 1 (CK-1) Inhibitors

The protein kinase CK-1 was reported to directly phosphorylate Tyrosyl-DNA phos-
phodiesterase (TDP3). The latter is a DNA repair enzyme and is considered a promising
target for antitumor and neurodegenerative therapy [137], and up-regulation of CK-1 is
correlated with ALS [138]. Accordingly, CK-1δ inhibitors crossing the blood–brain barrier
(BBB), such as riluzole and others, may be a novel approach to treat ALS [139–141].

Nav1.6 Sodium Channel

One of the most abundant sodium channels in the human brain is the voltage-gated
sodium channel Nav1.6 [142,143]. Nav1.6 is a potential drug target for ALS as the block-
age of these channels may enhance the survival of motor neurons in excitotoxic con-
ditions [144–146]. In silico analyses demonstrated the interaction of riluzole with the
Nav1.6 channel. Riluzole, an antiglutamatergic drug [147], exerts its antiglutamatergic
effect partly by inactivation of Nav1.6 [63]. This suggests that riluzole reduces excitotoxi-
city via indirect interference with glutamate-mediated transmission [63]. The latter was
proposed to participate in the loss of motor neurons resulting from a reduced glutamate
uptake capacity of astrocytes in ALS [63,148].

3.4. Huntington’s Disease

HD is a genetic, incurable, and fatal neurodegenerative condition characterized by
progressive degeneration of neurons, starting specifically with medium spiny neurons
(MSNs) in the striatum, and leading to inevitable deterioration of the mental and physical
abilities of those affected [149,150].

In the UK, the number of people diagnosed with HD is around 6000 people, whereas
the number is around 30,000 in the USA [151–154].

HD is a monogenic disease caused by expansion of a CAG trinucleotide repeat in the
HTT gene, leading to expansion of a polyglutamine tract in the Huntingtin protein, which
is expressed ubiquitously throughout the brain. Mutant Huntingtin is prone to aggregation,
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but how this causes selective degeneration of striatal MSNs is poorly understood. Currently,
no disease-modifying therapies or cures are available.

Reducing levels of mutant HTT is, understandably, a major therapeutic goal in HD.
A recent study showed that intrathecal administration of the antisense oligonucleotide
(ASO) IONIS-HTTRx (Tominersen) to HD patients resulted in a dose-dependent reduction
of mutant HTT in the cerebrospinal fluid (CSF) [155]. Tominersen was rapidly moved to a
Phase III trial. However, a press release by Roche in March 2021 announced the decision to
discontinue dosing of Tominersen in manifest HD in the Phase III trial.

Despite the unfortunate news, these studies suggest that ASOs administration is a
viable therapeutic strategy to reduce levels of toxic proteins in NDs. How and to what
extent ASOs reach different parts of the central nervous system is not fully understood yet.

3.4.1. Macromolecular Targets in HD
4-Aminobutyrate Aminotransferase

4-Aminobutyrate aminotransferase (ABAT) (PDB ID: 1OHY) is responsible for the
degradation of gamma-aminobutyric acid (GABA), a major inhibitory mediator for synaptic
transmission in the mammalian CNS [156]. Reduction in GABAergic transmission is
the result of many genetic disorders and chronic neurological diseases, including HD,
AD, PD, and epilepsy. Unfortunately, GABA is unable to cross the BBB, preventing the
direct use of exogenous GABA [157]. Enhancing the levels of GABA by decreasing its
degradation by ABAT is an alternative strategy. In one study, the structures of thirty-
two molecules from thirty-one medicinal plants were obtained from a chemical database
and were chosen with the aid of previous literature reports. These 32 natural molecules
were examined in a molecular docking study in which the researchers concluded that
the top-ranked compounds may be suitable candidates for in vitro and in vivo studies of
ABAT inhibition [158]. Moreover, GABA derivatives have been tested for ABAT binding
in silico [156].

4. A Roadmap for Implementing CADD in ND Drug Design

Even with the number of successful implementations of CADD in modern drug
discovery, it has its limitations. Molecules designed in silico utilizing computational and
theoretical chemistry sometimes do not work in real biological systems [159,160]. In general,
poor pharmacokinetics and/or pharmacodynamics result in only 40% of drug candidates
passing phase I clinical trials [161]. Moreover, each computational technique depends
on pre-determined algorithms that have their own limitations. CADD results must be
validated in real biological systems, as many molecules that appear to bind in silico do
not show the desired activity in vitro. Another limitation of CADD is that all tools for
designing and discovery of new drugs are based on algorithms that, by necessity, simplify
the underlying physics and chemistry and, therefore, have a variety of limitations that
necessitate the continuous updating of these algorithms to enhance the accuracy and thus
the provision of new drugs [162–168]. Furthermore, the shortage of experimental data
regarding predicted absorption, distribution, metabolism, excretion, and toxicity results
has led to several published failures [169–173].

To overcome the limitations and improve the accuracy of CADD it is necessary to
update and develop software and associated algorithms, validate with experimental data,
use reliable databases (e.g., PDB), and use algorithms that give docking scores that accu-
rately predict in vitro binding with comprehensive and fully retrospective coverage of the
published literature [174–176]. For example, by September 2020, the Cambridge Structural
Dataset (CSD) acquired more than 1.8 million entries, which may help with future develop-
ments in small molecule structural modelling [177]. Consequently, the above-mentioned
tools could help with future design of pharmacophores that possess the desired biological
activity [178–180].

One of the main reasons for implementing in silico drug design is to predict the
ligand–target binding in terms of binding site and binding strength. To predict potential



Int. J. Mol. Sci. 2021, 22, 4688 14 of 22

ligands to treat NDs, novel target proteins must be identified and studied, and the resulting
docking studies should be validated in vitro and eventually in the clinic [181–183].

In the meantime, there is no effective treatment to cure NDs, although many treat-
ments are available that offer minor improvement of symptoms [2]. The development of
effective treatments is further hindered by the BBB that excludes many molecules from the
CNS parenchyma [184–186]. Accordingly, clinical effectiveness of a potential drug is not
guaranteed even with positive data in silico, in vitro, and in vivo [187–190].

New experimental approaches including genome-wide association studies
(GWAS) [188,191,192], CRISPR-Cas9 technology [193–195], high throughput screening
(HTS) [196], organ-on-chip technologies [197,198], functional MRI (fMRI) techniques [199,200],
and positron emission tomography (PET) [201] may lead to new drug targets for NDs, which
can feed into future CADD projects.

Being incurable, the NDs are major challenges to healthcare providers and research
scientists. The accelerating increase in the numbers of affected people adds more impetus
to tackle NDs. Developing a better understanding of NDs and the underlying molecular
pathophysiology will provide more opportunities to develop novel treatments in the near
future. This may be achieved with the incorporation of computational tools. CADD can
have a major impact on drug discovery by saving both time and money and reducing the
risk of following up with the development of non-viable leads.
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