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Abstract

Title: A system-theoretic approach to global and local regulation in neuron morphologies
Author: Saeed M. Aljaberi

Synaptic plasticity is a crucial neuronal mechanism for learning and memory. It allows
synapses to change their strength over time. This dissertation focuses on a particular form of
synaptic plasticity called synaptic scaling, a homeostatic mechanism that preserves relative
synaptic strengths in an activity-dependent manner. Synaptic scaling is fundamental for
neuronal stability, regulating other plasticity mechanisms like Hebbian plasticity or long-term
potentiation (LTP).

The aims of this dissertation are to explore the implications of synaptic scaling (and other
forms of plasticity, such as structural plasticity) on the overall behavior of neurons. This is
done using system-theoretic tools and feedback control. We first formulate a biophysical
closed loop model of synaptic scaling. We then study how synaptic scaling affect neurons’
behavior in both abstract and reconstructed morphologies. This study reveals important
tradeoffs between robustness, convergence rate, and accuracy of scaling.

We first look at synaptic scaling as a “global control action” whose main role is to
guarantee a steady level of neural activity. We then consider activity-dependent degradation
as a “local control action” whose role is to assist the neuron in fine-tuning different desirable
spatial concentration profiles. We show that, in extreme scenarios, it can promote a level of
competition between synapses that has a destabilizing effect on the overall behavior.

At the methodological level, we use compartmental modeling and we focus on the in-
teraction between feedback and transport, in linear and nonlinear settings. Using classical
system-theoretic tools like Bode and Nyquist analysis and singular perturbation arguments,
and more recent tools like contraction and dominance theory, we derive parameter ranges
under which synaptic scaling is stable and well-behaved (slow regulation), stable and oscilla-
tory (aggressive regulation), and unstable (pathological regulation). We also study the system
robustness against static and dynamics uncertainties.

Finally, to understand how different plasticity mechanisms simultaneously affect the
neuron behavior, we study synaptic scaling in the presence of activity-dependent growth



vi

(mimicking a structural plasticity mechanism). This is a third layer of control action shaping
the neuron morphology. We find that activity-dependent growth improves the neuron’s
performance when synaptic scaling is insufficient.
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Chapter 1

Introduction

"Every object that biology studies is a
system of systems."

Francois Jacob, The Logic of Living
Systems

The chapter gives a succinct overview of homeostatic synaptic plasticity and scaling. We

show why homeostatic plasticity is needed, how it is implemented, and briefly describe

the underlying molecular mechanisms. We identify the current gap in the existing

literature and how this dissertation, from a control theoretic perspective, fills that gap

given the current status of the literature.

1.1 Regulation in biological systems

Regulation gives biological entities their capacity to sustain and cope with endogenous and
exogenous perturbations. From cells to organisms, the prevalence of regulatory processes
in biology conforms Claude Bernard’s quote “all vital mechanisms, however varied, have
but one objective, that of maintaining the unity of life functions in the internal medium”.
He believed that, to survive, living systems need to maintain their internal milieu [17, 16].
Regulation in biology, or homeostasis as Cannon named it [29], is unique in that it is
autonomous, or operates within an organism itself. Homeostatic mechanisms are responsible
for keeping certain properties, such as body temperature, near a physiologic set-point despite
being in a thermodynamically open state and in a continuous undergo of non-equilibrium
conditions.
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To understand how homeostatic mechanisms generally occur in biology, we need to
look at a biological entity from the perspective of its (abstract) components and relationship
[86]. From this perspective, a biological phenomenon emerges from the interconnection
of several physiological processes where each entity performs a specific function. Those
entities communicate among themselves through signals. At the cellular level, those signals
are transmitted by changes in the concentration of substrates or products. At the organism
level, this can be done through hormones. The system, or the biological organization, senses
the deviations from a set-point and counteract these perturbations by modulating its sub-
dynamics to stay around the desired steady-state. This is often implemented in a negative
feedback manner. Examples of such include the regulation of gene expression in the lac
operon [82], movement control in the chemotaxis [49], and glucose levels control in the
blood stream.

The aforementioned examples emphasize the fact that, in typical biological systems,
deviations from a set point are undesirable and pathological. However, homeostasis of
neural firing rates is a unique and an intricate process. The complexity stems from the fact
that variability in neural activity is crucial to process and transmit information. Therefore,
a typical homeostatic mechanism would strip away the variability that neurons need to
function. Alternatively, a neuron homeostatically regulates the average neuronal activity
over a slower timescale than that of the firing rate. By doing so, the variability in the firing
rates are maintained in a range, rather than a fixed set point. This dissertation will deal with
homeostasis of average neuronal activity, or firing rates in single neurons.

Before describing in details how such a homeostatic process takes place, we will cover a
few facts about neuronal systems. In the next section, we give a brief overview of neurons,
from their anatomy to how they communicate and transmit signals. Finally, we focus on
the cellular manifestation of the process of learning and memory formation, which is their
remarkable plasticity property.

1.2 Regulation of neuronal activity

1.2.1 Neurons and synapses

Our brains are highly complex and sophisticated machines that are responsible for arguably
the most important aspects of our lives, from forming memories and behavior, to learning a
new hobby and making decisions. The building block of brains are networks that are formed
by neurons. Neurons constitute the computational units of the brain that process information
by receiving, integrating, and transmitting electrochemical signals. This is manifested
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by a continuous interaction among roughly 109 neurons, comprising approximately 1014

neuron-to-neuron connections. Neurons can be easily distinguished from other cells, due
to their complex morphologies. Figure 1.1 shows a variety of neurons from different brain
areas. Despite their extreme difference in shape, neurons can be anatomically described as a
composition of three primary parts: cell body (soma), axon, and dendrites. The dendrites
extend from the soma and they are responsible for receiving inputs from other cells, through
their axons. Dendrites are the tree-like structures that award neurons their unique intricate
geometries, which distinguish them from other cells.

Fig. 1.1 Richness in neuron morphologies demonstrated Ramon y Cajal’s drawings.

If we can reduce the brain into a collection of interacting biophysical neural networks,
then synapses represent the atoms of this picture. A synapse1 is a connection which is
established by the close contact of an axon of a neuron, called a presynaptic neuron, and a
dendrite of another, called a postsynaptic neuron. Synapses bear and transmit signals between
cells in an electrochemical fashion. An action potential, or a spike, in the presynaptic terminal
causes the vesicles carrying neurotransmitters to attach to the membrane and release those
neurotransmitters in the vicinity, or the synaptic cleft. Then the free neurotransmitters diffuse
and bind on certain receptors that are attached to the membrane of the postsynaptic cell. If
the neurotransmitter is excitatory, then ions will flow into the cell making it more likely to

1In this dissertation, we are interested in chemical synapses rather than electrical synapses. In chemical
synapses, the information flow is directional and always moves from the presynaptic to postsynaptic neuron.
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fire, i.e. send an action potential. Conversely, if the neurotransmitter is inhibitory, then ions
will flow out of the cell making it less likely to fire. The process is summarized in Figure 1.2.

presynaptic

postsynaptic

V

t

V

t

Fig. 1.2 Synaptic transmission (adapted from [67]): an action potential in the presynaptic
neuron triggers neurotransmitters release in the synaptic cleft. Those neurotransmitters attach
to the receptors on the postsynaptic neuron causing them to open, and ions start to flow in.
This causes the postsynaptic neuron to depolarize until it reaches a threshold.

1.2.2 Synaptic plasticity

Synapses are endowed with an utterly important property that has attracted an immense
amount of research from neuroscientists; they are plastic, i.e. dynamic. This property enables
our brain to retain and form new memories, and process information. This is known as synap-
tic plasticity. It refers to the mechanism that modifies the efficacy of synaptic transmission
and connection strengths in response to changes in the brain’s function due to experience. In
other words, synaptic plasticity is an activity-dependent phenomenon. In addition, synaptic
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plasticity plays an important role in early neuronal circuitry development. Therefore, under-
standing this phenomenon will reveal insights into the causes of neuropsychiatric disorders.
Ultimately this will lead to unveiling the neural basis surrounding numerous aspects of
healthy and pathological neuronal functions.

Synaptic plasticity encompasses a number of mechanisms that are inherently different,
and those differences are manifested at a number of levels. These mechanisms differ
temporally, which led to their categorization into short-term and long-term mechanisms.
Short-term plasticity mechanisms last from milliseconds to minutes, and they are thought to
be responsible for short-lasting forms of memory, short-term adaptations to sensory inputs,
and transient changes in behavioral states. Short-term plasticity primarily depends on short
bursts that cause an elevation in calcium levels in the presynaptic terminal that subsequently
vary the probability of neurotransmitter release by promoting exocytosis-endocytosis of
synaptic vesicles. The coordination of the two processes is crucial for synaptic function. It
is short-term plasticity that warrants synapses their filtering characteristics and information
processing capabilities. For instance, a synapse with low initial probability release would
respond to high-frequency action potential bursts and not with low-frequency bursts, thereby
acting as high-pass filters, and vice versa [1].

On the other hand, long-term plasticity mechanisms last from hours to days. They are
intimately linked to long-lasting changes in the spatio-temporal patterns in neural circuits,
which amounts to the electro-physiological manifestation of information storage. Under this
category of plasticity comes metaplasticity, which can be (crudely) understood as "plasticity
of plasticity". It does not affect synapse efficacy directly, but rather acts on a higher-level
[2], with possible functional roles [32]. One example is the shifts in long-term potentiation
(LTP) and long-term depression (LTD) thresholds as a result of past activity, as observed in
the hippocampus [80, 159]. Figure 1.3 shows how different short- and long-term plasticity
mechanisms are related to different forms of memory.

1.2.3 Hebbian plasticity: the need for homeostasis

There happens to be a different classification of plasticity mechanisms that we refer to. We
will organize those mechanisms in two groups: Hebbian and homeostatic. In control-theoretic
terminology, these are analogous to positive and negative feedback, respectively. This is due
to their long-term influence on the neuron’s stability, as we will see next.

The most studied forms of Hebbian plasticity mechanisms are LTP and LTD. The first
property of this class of plasticity is that they are input-specific, i.e. they take place locally
as a result of correlated firing between pre and postsynaptic neurons, or more famously,
“Cells that fire together, wire together” [74]. The positive feedback nature reflects the fact
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Fig. 1.3 Synaptic plasticity and memory retention: different plasticity mechanisms constitute
the physiological bases for various types of memory. Taken from [146].

that strengthened synapses gets excessively stronger, and weakened synapses gets weaker.
If this cycles continues, then it leads to runaway (unstable) dynamics. The physiological
manifestation of this is hyperexcitability for LTP, and quiescence for LTD.

Thus, a number of compensatory and regulatory mechanisms have been theorized to add
a stabilizing effect to mitigate the undesired instability associated with Hebbian plasticity. A
homeostatic, compensatory mechanism is needed to keep the overall neuron activity within a
functional range, which is achieved by implementing a negative feedback mechanism. This
is schematically summarized in Figure 1.4.

Homeostatic plasticity can be employed in two different ways, intrinsically and synap-
tically [149]. An intrinsic mode of homeostatic plasticity involves varying the distribution
of voltage-gated ion channels, thereby shifting the relationship between synaptic input and
firing rate [54, 40, 150]. A synaptic homeostatic mechanism, on the other hand, involves the
adjustment of synaptic strengths in indivisual synapses with the goal to maintain stability by
averaging the neuronal firing rates [151–153]. The bidirectional change in synaptic strength
can happen either by controlling the presynaptic neurotransmitter release, or postsynaptic
neurotransmitter receptors. In this dissertation we will focus on postsynaptic homeostatic
plasticity.
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Correlated presynaptic and 
postsynaptic activity

Synaptic 
potentiation

Runaway
dynamics

Correlated presynaptic and 
postsynaptic activity

Synaptic 
potentiation

Runaway
dynamics

Homeostatic
plasticity

Stable

Fig. 1.4 Synaptic scaling maintains stability: A persistent activity leads to runaway dynamics
without synaptic scaling (left), while on the other hand, the presence of homeostatic scaling
keeps the network stable by maintaining the average activity in a dynamic range, which
is achieved by up- or down-regulating the concentration of synaptic molecules (bottom).
Bottom figure taken from [54].
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1.2.4 Homeostatic synaptic scaling

Synaptic scaling [151, 153] is the most studied form of postsynaptic homeostatic plasticity
mechanisms. It globally scales up or down all the synapses in response to variations in the
overall set-point [153]. This is achieved by adjusting the strength of individual synapses in
response to prolonged changes in parts of the network. In comparison to Hebbian plasticity,
LTP and LTD for instance, synaptic scaling operates at slower timescales [32]. Synaptic
scaling exists in two forms. The first one, called subtractive, occurs when the synapses are
adjusted by the same amount. The second one, called multiplicative, occurs when synapses
are adjusted proportionally to their strength.

The pivotal role of synaptic scaling as a stabilizing mechanisms is noticeable when
considering LTP and LTD as the only activity-dependent mechanism present in the network.
As we saw before, without synaptic scaling or other homeostatic mechanism present, a neural
network is destined to either epileptogenic excitation or complete quiescence. One crucial
characteristic of synaptic scaling is that it takes place at the neuron level, unlike LTP and
LTD [32]. This gives synaptic scaling a global influence. This is schematically portrayed in
Figure 1.5.

1.2.5 Molecular mechanism

What are the biological mechanisms that underly synaptic scaling? In other words, how is
this phenomena implemented physiologically? Experimental studies revealed that glutamate
receptors, and in particular the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor (AMPAR) type, play an important role [152, 100, 120]. A plethora of in
vivo and in vitro studies reported a bidirectional activity-dependent change of functional AM-
PAR concentration. For example, studies of the visual cortex showed experience-dependent
scaling of glutamergic synaptic response, where AMPA receptors increased during depri-
vation of light, and decreased during light exposure [39, 61]. Another set of experimental
studies showed that activity-dependent manipulations also affected both AMPA and NMDA
receptors [123, 153, 160].

Synaptic scaling is a cell-autonomous process, where a neuron’s senses perturbations to
its activity. This is modulated by variations in the depolarization and somatic calcium influx
which in turn triggers a signaling pathway that changes the accumulation of AMPA receptors
in the synapse [81] (Figure 1.6a). However, the complete picture and the identification of
molecules involved in the scaling of AMPA receptors remains unclear [149, 124, 54]. An
example of other experimentally recognized scaling molecules are neurotrophin brain-derived
neurotrophic factor (BDNF), the immediate early gene Arc, the cytokine TNFα , and the
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time

[Ca2+]

Neuron 
activity

Fig. 1.5 Synaptic scaling is a global phenomena: after potentiation, synaptic scaling down-
regulates the rest of the network in order to compensate for the increase in activity. The
green line enclosing the neuron represents the synaptic strength of synapses, The bold line
represents an increase in synaptic strength, and the dashed line represents a decrease in
synaptic strength.

associated molecular mechanism and signaling pathways are numerous (Figure 1.6b). More
comprehensive accounts of this subject can be found in [149, 124, 54] and references therein.

1.2.6 Intracellular Transport

It comes as no surprise that the regulation of neuronal activity involves a myriad of physiolog-
ical processes that vary both in their spatiotemporal scale and mechanism. Either in a cell or
a network of cells, the change in efficacy of synapses depends on the movements of a number
of molecules such as mRNA, ion channels, and receptors. Therefore, the neurons depend
on a functional transportation apparatus to successively regulate their neuronal activity in a
healthy manner. In fact, neurological disorders have been associated with impaired transport
mechanisms, such as Alzheimer’s disease and other dementias [38]. Thus, a healthy neuron
requires a functional trafficking system that is able to transport different molecular cargo to
their demand sites [3].

Different vesicles and proteins vary in size, and also their transport mechanism. Intracel-
lular transport can be performed passively, or actively. Diffusion is an example of passive
transport as it depends on the concentration gradient, i.e. molecules move from higher to
lower concentration regions. This form of transport takes place in the cell cytoplasm or across
the cell membrane. In neurons, and more specifically in the context of plasticity, diffusion
is too slow to deliver the proteins in time. Active transport, however, is significantly faster
for long distances than diffusion and is believed to be responsible for axonal and dendritic
transport.
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(a) Regulation of synaptic strength. (b) Molecular mechanisms underlying plasticity.

Fig. 1.6 Synaptic scaling is a biological complex process that depends on alteration in network
activity: AMPA receptors (and potentially other scaling factors) trafficking is responsible for
the variations in synaptic strength (left, taken from [151]). The molecular mechanisms of
homeostatic plasticity involves a number physiological complex processes (right, taken from
[124]).

Contrary to passive transport, active transport is significantly faster and metabolically
active, i.e. it requires cellular energy in the form of ATP. It is mediated by special cytoskeletal
structures called microtubule and actin filaments, shown in Figure 1.7. Actin serves as a
track for myosin, a family of motor-protein. Actin filaments exist in high concentration
near synapses and they play an important role during synaptic function and plasticity. For
instance, interfering with myosin II in the postsynaptic site caused morphological changes to
the AMPA receptor submit Glu A1 [131], and loss of myosin VI was found to be correlated
to reductions in synapse numbers [119]. Importantly, myosin is heavily involved in the
postsynaptic trafficking and regulation of AMPA receptor [119, 113, 165]. A more detailed
overview of the different myosin families with their respective roles in synaptic morphology
and function can be found in this review [93].

While actin filaments are responsible for the short-distanced trafficking, i.e. from the
intracellular dendritic space to the spine neck or head, microtubules are responsible for
the bulk transport. Microtubules have plus-ends and minus-ends, and this provides the
directionality to the main motor-protein families: dynein and kinesin. Dynein is a minus-end
directed motor and kinesin is a plus-end directed motor. This will have nontrivial implications
that will differentiate axonal from dendritic transport.
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Fig. 1.7 Cytoskeletal organization of the neuron: microtubules are almost uniformly oriented
in axons, and mixed on dendrites. Actin filaments are rich near synapses (taken from [88]).

Beside their geometry, axons differ from dendrites in their microtubulal organization, too.
In axons, microtubules are uniformly oriented with plus-ends directed away from the soma.
In axons, kinesins and dyneins thus generally move in different directions (anterograde and
retrograde, respectively). Kinesins are largely responsible for transporting cargo to the periph-
ery, whereas dyneins carry cargo toward the soma for recycling [110, 71]. Dendrites differ
in that microtubules have mixed orientation. In dendrites, all motor protein families carry
cargo toward or away from the soma. Two distinct hypotheses have been proposed regarding
directed transport in dendrites. One hypothesis suggests that motors act cooperatively, where
the motor-cargo complex responds to stimuli for forward movement, backward movement,
attachment, and detachment [110, 71]. The second hypothesis, called the tug-of-war model
of bidirectional transport describes both active kinesins and dyneins, and the cargo moves
in the direction of the dominant motor type. Net movement thus depends on the number of
kinesins and dyneins motors attached to the cargo, and quantitative predictions are based on
observations of single motor proteins [22]. Both hypotheses predict that the motor-cargo
complex experiences bidirectional, stochastic movement [22, 23].

In this dissertation, we will study this active mode transport, but under two different
models. In chapters 3-6, we deal with a simple linear model of transport, where we will
assign fixed forwards and backward rates. In chapters 7-8, we adapt a nonlinear form of
active transport where these rates are state-dependent to reflect more biologically complex
phenomena and capture the effects of finite capacities.
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1.3 Aims

We have briefly described the anatomy of neurons, how they interact, and the importance
of activity regulation. From that short overview, we can make the following observations
regarding the regulation of neuronal activity in neurons:

1. Neurons exist in numerous and complex geometries (Figure 1.1).

2. The composition of the different molecular processes that make up neuronal activity
regulation in neurons and their interconnection are nontrivial (Figure 1.6).

3. Any long-term change necessary requires, in an activity-dependent manner, a continu-
ous interplay between biosynthesis, transport, and degradation of molecules.

Considering regulation as a requirement that neurons need to fulfill, their morphologies will
play a critical role in such a task. Specifically, the transport of molecular cargo over dendritic
trees imposes significant constraints on the success of regulation. A number of papers
have tackled this from a theoretical and computational viewpoint [161, 148, 21, 45], and
revealed a number of interesting observations, from speed-accuracy tradeoffs to competition
among synapses. Nevertheless, the work disregards the nature of feedback in synaptic
scaling that we anticipate to be of crucial importance and has the capability to alter some of
these observations. Using feedback and integral control has proven successful in achieving
homeostasis in neuronal systems [117, 28, 96, 136, 63, 25], and biological systems in general.
In Table 1.1, we list papers that serve as the starting point of this dissertation.

The central theme of this dissertation is to understand the role and effects of morphology,
and therefore transport, on the problem of homeostasis of average neuronal activity. To
answer this, we split this central theme into the following objectives:

1. Understanding the effect of real morphologies on synaptic scaling. Since long-term
plasticity mechanisms, including synaptic scaling, require a permanent change of
proteins concentration in the synapse, it is only feasible by regulating gene expression.
This cycle entails the production, transportation, demand and maintenance of postsy-
naptic molecules. This poses severe logistical constraints on performance given the
complex geometry of dendrites.

2. Understanding the effect of nonlinearities and timescale. Dendrites are filled with
microtubules and other cytoskeletal structures that keep bombarding trafficked cargo
due to the confined space. This requires a nonlinear version of an active transport model
to account for crowding and saturation effects. Moreover, what are the consequences of
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variations in gene expression rates, i.e. transcription-translation timescales, on synaptic
scaling?

3. Understanding the effect of other activity-dependent phenomena. Synapses are complex
as they run various types of plasticity form simultaneously where each one has its
own mechanism, which might pose a challenge to experimental studies and force
an undesired oversimplified view [99]. Therefore, to unveil some of the structural
properties of synaptic scaling, we study homeostatic synaptic scaling in the presence
of other activity-dependent physiological processes, such as degradation and growth.

Table 1.1 Relevant literature

Papers Summary
Intracellular transport of cargo:
[148, 161, 23, 46, 167]

[148]: a simple open-loop neuron model that focuses
on endocytosis-excocytosis of receptors into and out of
synaptic slots. The model exhibits a multiplicative from
of scaling.

[161]: a mathematical implementation of the sushi-belt
model [44] that studied transport on real dendritic mor-
phologies. The study reveals a speed-accuracy tradeoff
imposed by logistic of linear transport. Fine-tuning of
attachment-detachment rates was the mean to spatially
vary demand signals.

[23, 46]: a drift-diffusion PDE model of AMPA recep-
tor transport over 1−dimensional lines. The solution
produces an exponentially decreasing concentration of
receptor away from the soma.

[167]: an ODE version model of totally asymmetric
exclusion process from statistical physics [125]. The
model was used to study mRNA translation.

Use of negative-feedback to
achieve regulation: [117, 28, 96,
136, 63, 25]

Use of integrators to regulate ion channels distribution.
In these papers, homeostasis was implemented as a
negative-feedback mechanism.
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1.4 Dissertation outline and associated publications

This dissertation establishes a step towards understanding the burgeoning research area
of homeostatic plasticity and regulation in neurons, but rather from a control and system-
theoretic perspective. We believe this should provide a different perspective to complement
existing theoretical and experimental work done on the subject. Firstly, we develop a
class of biological mathematical models from first principles. Then, we present a theorem
that establishes the conditions under which this class of models is stable. Finally, we
study, analyze, and discuss the emergent behaviors and properties that arise by modifying
biochemical parameters to mirror different physiologically-relevant settings.

The dissertation is structured in the following way:

• Chapter 2: this chapter summarizes the mathematical background needed for the
dissertation. We start by justifying the modeling formalism adapted in the dissertation.
This chapter largely depends on feedback systems and control. It begins with classical
control notions such as transfer functions and Nyquist stability criterion. Then it moves
to the recently developed theory of dominance, which is a nonlinear analysis tool that
studies systems differentially. The chapter concludes with singular perturbation theory
as a technique to study slow-fast systems.

• Chapters 3-5: these chapters represent the first contribution of the dissertation. We
formulate a biophysical closed loop synaptic scaling model based on the regulation
of AMPA receptor synthesis, transport, and insertion, called the CLSS. We derive
conditions under which the system is exponentially stable. Next, we define relevant
performance measures to investigate the effect of arbitrary and biological dendritic
trees. The main conclusion is that there is an inevitable tradeoff imposed by the network
topology that restricts the performance of the neuron. We define three performance
attributes: convergence rate, system robustness, and scaling accuracy. The main
message is that a neuron cannot improve one attribute without worsening one or the
other two.

These chapters are the offspring of a fruitful collaboration with my Ph.D. colleague
Adriano Bellotti. The collaboration led to the following research materials:

1. Abstract in the 29th Annual Computational Neuroscience Meeting CNS∗2020
[14].

2. A preprint for publication to eLife, in preparation.
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• Chapters 6: from this chapter onwards, we replace parts in the CLSS model in order
to steer the attention to particular biological processes. This chapter analyzes the effect
of activity-dependent degradation on synaptic scaling. The main focus on this chapter
is to understand the global-local interplay of different regulation mechanisms. Synaptic
scaling is a centralized or global phenomenon that senses the average functional cargo
concentration in the network while on the other hand, activity-dependent degradation
is a distributed (i.e. takes places locally in individual compartments). The interesting
interplay exhibits both a competitive (destabilizing) and cooperative (stabilizing) effect
depending on the system parameters.

This chapter is largely based on a publication to the 24th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2020, peer reviewed) [4].

• Chapter 7: in this chapter, we study the effect of nonlinear trafficking on homeostasis,
along with variations in the timescale cargo synthesis. Using dominance theory, we
break down the regulation regimes into three distinct regimes: nominal, stable and
oscillatory, and pathological. Moreover, we derive parameter ranges that respect each
regime, and assess the model robustness against static and dynamic uncertainties. We
show that the features of the CLSS model are generally preserved.

This chapter is largely based on a publication to the 58th IEEE Conference on Decision
and Control (CDC 2019, peer reviewed) [5].

• Chapters 8: we study two forms of plasticity simultaneously. In addition to synaptic
scaling, we model structural plasticity as activity-dependent growth. Synaptic scaling
in the presence of activity-dependent growth improves the neuron’s performance
significantly, in comparison to a neuron with synaptic scaling alone. This is primarily
due to the slow timescale nature of growth processes, which allows it to exhibit a
low-filtering characteristic.

This chapter is largely based on a publication to the 2021 European Control Conference
(ECC 2021, peer reviewed) [6].

• Chapters 9: this chapter concludes the dissertation. It summarizes the results pre-
sented in the previous chapters, and outlines potential extensions and future research
directions.

Figure 1.8 shows the hierarchal structure of the dissertation. Chapter 2 equips the reader
with the necessary mathematical tools to navigate and access the later chapters.
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Ch.2: Methods

Ch.3: formulation 
of the model

Ch.4: defining 
tradeoffs

Ch.5: real 
morphology effects

Ch.6: effects of 
activity-dependent 

degradation

Ch.7: nonlinear 
transport & 

synthesis timescale 
variation 

Ch.8: effects of 
activity-dependent 

growth

Fig. 1.8 Dissertation roadmap: the main contributions were written and grouped in self-
contained, stand-alone chapters or group of chapters. Chapters 4-5 are grouped together,
while other chapters deliver independent messages.



Chapter 2

Methods: system theory and feedback
control

"But in my opinion, all things in nature
occur mathematically."

Rene Decartes

We first justify using deterministic ordinary differential equation as the modeling ap-

proach of this dissertation. Next, we introduce the mathematical machinery that will use

to study the problem of activity regulation in neurons. This primarily depends on system

theory and feedback control. Starting from classical tools such as transfer functions to

the novel tools of p-dominance. We conclude with singular perturbation techniques as a

mean to study systems with multiple timescales. Along the exposition, we allude to how

these different tools will be used.

2.1 Modeling: deterministic compartmental systems

We will be using mathematical models in place of actual neurons, and exploit those models to
facilitate intuitions, mimic certain conditions, or test predictions. The set of rules that govern
the model, thereby reflecting processes in the real world, are expressed mathematically. To
use mathematical models of neurons, we first need to state a few assumptions regarding the
modeling formalism and setting.

We use ordinary differential equations (ODEs) to describe the instantaneous change in
species concentration. Furthermore, we do this in a deterministic setting. These two choices
define the mathematical formalism or stance that we take in this dissertation, and this is
justified by embracing the following assumptions:
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1. Continuum hypothesis: this assumption allows us to treat and measure concentrations
of molecules as a continuous quantity, rather than a discrete one. This assumption is
justified if molecules number is sufficiently large. If not, a stochastic framework is
required.

2. Well-mixed assumption: this simply means that the spatial distribution of biological
molecules is homogeneous, or uniform. Otherwise, the use of partial differential
equations (PDEs) is required to relax this assumption.

There are multiple sources of stochasticity in biological processes. One is the constant
buffeting of molecules that gives rise to noise and randomness. Another is the uncertainties
associated with the experimental data acquisition. To take into account stochasticity in
biological models, we will often study robustness to static and dynamics uncertainties using
tools from control theory, that were developed in a deterministic ODE setting. In this
context, a system is robust if it is able to preserve its function/property in spite of worst case
perturbations

We will be using compartmental models as a framework to study the transport of biologi-
cal molecules. Compartmental models proved to be successful in studying transportation
problems in congestion control, epistemology, and ecology [83, 70, 20, 13, 34, 33, 106]. In
compartmental systems, mass balance is used to capture the transport of material between
individual compartments. For instance, let x(t) := [x1(t) . . .xn(t)]T ∈ Rn be a compartmental
system 1. Then we can schematically model the exchange of mass between xi and x j as
shown in Figure 2.1.

xi xj
vij

vji

ωj

Fig. 2.1 An example of a compartmental system: two compartments showing exchange of
mass. Compartment x j is subject to dissipation.

The exchange of mass between compartments can be linear (ẋ = Ax) or nonlinear (ẋ =
f (x)). Specifically, vi j and v ji can be constants where they describe a fixed transport rate.
Conversely, they can be nonlinear and state-dependent in a way the captures more realistic
or biologically plausible situations, such as congestion or finite capacities. Throughout this

1from now on, we drop the dependence in time, i.e. we write x for x(t).
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dissertation, we will implement both scenarios. In both modes, however, the compartmental
system is cooperative [137], i.e. A and ∂ f

∂x are positive/Metzler matrices [52]. Systems of that
form always converge to an equilibrium, if trajectories are bounded (other behaviors may be
present in the system, like oscillations and chaotic attractor, but those are unstable).

In the limit as n → ∞, compartmental systems become diffusion/drift-diffusion partial
differential equations. Using ||H||∞ control, and with the proper scaling, we can track at what
level of resolution the compartmental system at hand captures the same qualitative behavior
as its PDE counterpart. By doing so, we minimize the limitation or gap that arises from the
second assumption.

2.2 Classical control theory

2.2.1 From autonomous ODEs to transfer functions

In order to be able to answer the questions laid out in the introduction, we need to dissect the
vector x into inputs, states, and outputs. We do so to properly assign biological processes
and study them with respect to their functional role. For example, we will often consider
biomolecule synthesis as an input, and functional synaptic molecules as the observed species.
Therefore, we consider the following representation of dynamical systems:

ẋ = f (x,u) (2.1)

y = h(x).

Throughout this dissertation, we will use the following terminology: u as input, x as a
state, and y as an output. The first part of equation (2.1), f (x,u), describes the evolution
of the state x over time, while the second part, h(x), describes the observed or measured
signal. The first step is to obtain a linear state-space representation of (2.1). To express
nonlinear functions in this form, we take the Taylor series expansion around an operating
point, typically the equilibrium. Let (x∗,u∗) be the equilibrium, i.e. f (x∗,u∗) = 0. Then we
take the Taylor expansion around (x∗,u∗) and truncate the expression after the first term to
obtain the following first order approximation

ẋ := f (x∗,u∗)+
(

∂ f
∂x

)∣∣∣∣
(x=x∗,u=u∗)

(x− x∗)+
(

∂ f
∂u

)∣∣∣∣
(x=x∗,u=u∗)

(u−u∗)

y :=h(x∗)+
(

∂h
∂x

)∣∣∣∣
(x=x∗,u=u∗)

(x− x∗).
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Since f (x∗,u∗) = 0, the above expression becomes:

˙̄x =Ax̄+Bū (2.2)

ȳ =Cx̄

where we made the following coordinate change:

x̄ := (x− x∗), ū := (u−u∗), ȳ := (y− y∗) = y−h(x∗)

and the following substitutions:

A :=
(

∂ f
∂x

)∣∣∣∣
(x=x∗,u=u∗)

, B :=
(

∂ f
∂u

)∣∣∣∣
(x=x∗,u=u∗)

, C :=
(

∂h
∂x

)∣∣∣∣
(x=x∗,u=u∗)

.

The linearization is justified by Grobman-Hartman Theorem, which states that the local
behavior of a nonlinear dynamical system near the equilibrium is captured by its linearization
around that point [30]. It is important to note that this is a local result and does not necessarily
give insight about the global behavior of the nonlinear system far away from its equilibrium.
In the next section, we will see how to evade this limitation to study global and non-
equilibrium behaviors.

Equations (2.2) are referred to as a state-space representation. Lastly, the transfer function
in the Laplace domain is obtained by taking the ratio of the Laplace transforms of input and
output signals

G(s) =
Y (s)
U(s)

=C(sI −A)−1B. (2.3)

where s is a complex variable, thus G is a complex function. The transfer function as
expressed here shows the input-output relationship of the system in the complex plane.
Transformation back and forth between time and s domain is common. Notably, although
there exists multiple state-space representations, the transfer function is unique. In Chapter 5,
we will use this fact to link Rall’s equivalent cylinders and reduced-order models to transfer
functions.

2.2.2 Nyquist plot and stability margins

In general a process will consist of multiple transfer functions representing different dynam-
ical models and how the signals of each transfer function are related. Figure 2.2a shows
a generic block diagram of a controller and a plant, showing a reference signal R(s), error
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Return ratio: L(s) = K(s)G(s)

G(s)
➖

K(s)
E(s) Y(s)

Controller Plant 

R(s)
+

(a) Block diagram.

L(s) plane unit circle

imaginary axis

real axis

Nyquist curve
+

ωpc

PMsm

ωgc

instability 
at (-1,0j)

1
|GM|

(b) A generic Nyquist plot.

Fig. 2.2 A block diagram showing a controller and a plant in closed loop (left). Nyquist plot
and a geometric definition of stability margins (right).

signal E(s), and an output signal Y (s). The goal of feedback is to achieve regulation; in other
words, we want the plant output to follow the reference signal, which will drive the error
to zero. Feedback guarantees the performance in the presence of parameter uncertainties,
disturbances, and unmodeled dynamics.

The return ratio is a transfer function that encompasses all the terms around the loop.
For example, the return ratio of the block diagram in Figure 2.2a is L(s) = K(s)G(s). This
is also the open-loop transfer function. This important object is crucial in determining the
stability and robustness of the closed loop system. We will achieve this via the Nyquist
stability criterion.

Before stating the Nyquist stability criterion, we need to obtain the Nyquist curve. This is
done in the frequency domain by parameterizing the return ratio into into real (Re(L( jω)))
and imaginary (Im(L( jω))) parts plotted on the x- and y-axes, respectively. The result is
a Nyquist plot, where a generic one is depicted in Figure 2.2b. Then the stability criterion
informally states that if L(s) is asymptotically stable and the Nyquist plot does not encircle
(−1+0 j), then, the closed loop transfer function L(s)

1+L(s) is asymptotically stable as well. This
is stated formally below

Theorem 1 Let L(s) be an asymptotically stable system, the feedback system is asymptoti-
cally stable if and only if the Nyquist diagram does not encircle the (−1,0 j) point.

This is especially powerful since we are able to infer the stability of the closed loop system
from information about the open loop one. Moreover, the proximity to the point (−1+
0 j) will be the fundamental feature in defining margins of stability. This is also relevant
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when discussing notions related to performance, such as robustness. This will be one of
performance attributes that we will consider.

The gain margin (GM) is the reciprocal of the gain at a phase frequency of −180 degrees.
The phase margin (PM) is the difference in phase between the system phase and 180 degrees
computed at the point of unity gain. These margins are computed using the following
equations:

GM = 20log
1

|L( jωcp)|
(in dB) (2.4)

PM = 180+ arg{L( jωcg)} (in degrees)

where ωcg is the gain crossover frequency, and ωcp is phase crossover frequency. ωcg is the
frequency at which the magnitude of L(s) is unity, while ωcp is the frequency at which the
phase angle of L(s) is −180. Stability margins geometrically correspond to the distance
between the trace of a transfer function on a Nyquist plot from the point (−1+ 0 j), as
shown in Figure 2.2b. The stability margin sm is another robustness measure. It measures
the shortest distance of Nyquist plot from the (−1,0 j). It is computed from the sensitivity
function, which is obtained from the loop gain L(s) as:

S(s) =
1

1+L(s)
(2.5)

then sm, or the shortest distance between Nyquist plot and (−1+0 j) point, is computed from
the following relation

sm =
1

Ms
(2.6)

where Ms = sup
ω

|S( jω)|.

Equation 2.5 provides a single number to measure robustness, unlike the previous case where
we needed to keep track of both the gain and phase margins.

Nyquist analysis provides a simple graphical test for stability and robustness of systems.
This mitigates a lot of the difficulties caused by the complexity of interconnections between
the subdynamics, and their high dimensionality. We will see that these tools will allow us
to asses the robustness of a Purkinjie cell, which has a state vector of order 103, and with
dynamics happening over multiple timescales, with a simple 2-d curve. Frequency-domain
tools are primarily used in chapters 3-5.
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2.3 Beyond stability: p-dominance analysis

2.3.1 Non-equilibrium behaviors in biology

The biology is rich of systems that are not monostable. For example, a plethora of biological
systems can operate in two stable modes, depending on their response to particular inputs.
The lac operon and toggle switch are examples of systems that exhibit such a motif. Sustained
oscillations are another motif in biology where species do not rest at a steady-state concentra-
tion, such as repressilator. This is also the case in neuronal systems. Conductance-based
models are biophysical models that describe the excitability of cells, a highly nonlinear
phenomenon. The model can be in equilibrium or a limit cycle, depending on the injected
current.

Hence there is a pressing need for an apparatus that has the capacity to analyze systems
beyond monostability. To this end, we use differential analysis in order to leverage the
existing tools from linear theory. The linearization, which is often used to perform local
analysis of nonlinear systems, is used in differential analysis to answer non-local questions
about the system behavior.

2.3.2 Differential analysis and p-dominant systems

In what follows, we give a brief summary of the novel tools of dominance theory. The
interested reader is referred to [58] for a thorough presentation of the theory.

A p-dominant linear system with rate λ ≥ 0 has exactly p slow/dominant modes, whose
decay rate is slower than −λ , and n− p fast decaying modes, where n is the system dimen-
sion. The trajectories of the system rapidly converge to a p-dimensional invariant subspace
capturing the steady-state of the system. In state space representation ẋ = Ax, A ∈ Rn×n,
linear p-dominance with rate λ is certified by the Lyapunov inequality AT P+PA+2λ I < 0
constrained to symmetric matrices P with inertia (p,0,n− p), that is, p negative eigenvalues
and n− p positive eigenvalues. p-dominance can be extended to nonlinear systems of the
form ẋ = f (x) using the system linearization δ̇x = ∂ f (x)δx along arbitrary trajectories [58]
(∂ f (x) is the Jacobian of f ).

Definition 1 A nonlinear system ẋ = f (x) is p-dominant with rate λ ≥ 0 if there exists a
symmetric matrix P with inertia (p,0,n− p) and a positive constant ε such that

∂ f (x)T P+P∂ f (x)+2λP ≤−εI (2.7)

for all x ∈ Rn. y
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(2.7) provides a tractable condition for p-dominance through convex relaxation, as shown in
[58, Section VI.B] and [18, Chapter 4]. It enforces a uniform splitting among the eigenvalues
of ∂ f (x) into p slow eigenvalues to the right of −λ and n− p fast eigenvalues to the left.
Our interest in the property stems from the fact that p-dominance strongly constrains the
system asymptotic behavior, as clarified by the following proposition from [58, Corollary 1]

Proposition 1 Every bounded trajectory of a p-dominant system ẋ = f (x), x ∈ Rn, asymp-
totically converges to

- a unique fixed point if p = 0;
- a fixed point if p = 1;
- a simple attractor if p = 2, that is, a fixed point, a set of fixed points and connecting

arcs, or a limit cycle. y

[58, Theorem 2] shows that the asymptotic behavior of a p-dominant system is captured by a
p-dimensional dynamics, which thus guarantees simple attractors for p ≤ 2. We observe that
a system can be p1-dominant and p2-dominant, p1 ≤ p2, for different rates λ1 ≤ λ2. In using
the theory, wee are typically interested in finding the smallest degree of dominance, which
corresponds to the simplest asymptotic behavior.

2.3.3 p-gain and small gain interconnections

Differential dissipativity [58], [109] extends dominance theory to open systems. We refer the
reader to these publications for details. We will use the following notion of p-gain.

Definition 2 An open system ẋ = f (x)+Bu, y =Cx, with input u, output y, and state x, has
p-gain γ with rate λ ≥ 0 if there exists a symmetric matrix P with inertia (p,0,n− p) and a
positive constant ε such that[

∂ f (x)T P+P∂ f (x)+2λP+CTC− εI PB
BT P −γ2I

]
≤ 0 (2.8)

for all x ∈ Rn. y

A straightforward specialization of [58, Theorem 4], see also [121], provides a differential
version of the small gain theorem, which allows us to use the p-gain of a system to charac-
terize its robustness in presence of model uncertainties, as in classical robust control theory
[41, 170, 155].

Proposition 2 For i ∈ {1,2}, let Σi be systems with input ui, output yi, and pi-gain γi with
rate λi = λ ≥ 0. If γ1γ2 < 1 then the closed loop system given by y1 = u2 and y2 = u1 is
(p1 + p2)-dominant. y
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Proposition 2 opens the way to the study of robust attractors that are not fixed points.
This is particularly relevant in system biology. In what follows we will take advantage of the
tractability of (2.7) combined with Proposition 1 to characterize the steady state behavior
of dendritic traffic regulation. Then, we will use the notion of p-gain in combination with
Proposition 2 to study its robustness.

The p-dominance framework will prove very useful to study the regulation problem in
more detail. Specifically, unlike the stereotypical stable vs unstable classifications, we will
separate the regulation phenomena into three distinct regimes: nominal, aggressive, and
unstable. Furthermore, dominance theory also provides another mean to study robustness,
beyond monostability, using state-space representations. We use dominance theory in Chapter
7.

2.4 Timescale separation and singular perturbation

An important technique that is used throughout this dissertation is the use of timescale
separation. Systems in nature, and more dominantly in biology, occur in multiple time or
length scales. Timescale separation is an important tool that helps elucidate the complexity
of the phenomena of interest and gives insights about the underlying structure. One way to
do this mathematically is by “freezing” the slow dynamics or setting the fast dynamics to
steady-state, which is done by setting a small parameter to zero. A slow-fast system can have
the following form

ẋ = f (t,x,z,ε) (2.9)

ε ż = g(t,x,z,ε)

where 0 < ε ≪ 1. In equation (2.9) x is the slow variable and z is the fast one. In setting
ε = 0, one can derive a dependence of the fast variable z on the slow variable x, z = h(t,x)
which is called the boundary-layer system. In other words, h(t,x) is a solution to the
slow manifold g(t,x,z,0) = 0. Motion on this manifold evolves according to the equation
f (x,h(x, t), t,0)) = 0, which is called the reduced system.

We use [90, Theorem 11.4] to prove exponential stability of the equilibrium of proposed
models. The theorem is stated below.

Theorem 2 Consider the singularly perturbed system (2.9). Assume the following assump-
tions are satisfied for all (t,x,ε) ∈ [0,∞)×Br × [0,ε]

• f (t,0,0,ε) = 0 and g(t,0,0,ε) = 0.
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• The equation 0 = g(t,x,z,0) has an isolated root z = h(t,x) such that h(t,0) = 0.

• The functions f ,g,h and their partial derivatives up to the second order are bounded for
z−h(t,x) ∈ Bρ .

• The origin of the reduced system ẋ = f (t,x,h(t,x),0) is exponentially stable.

• The origin of the boundary-layer system dy
dτ

= g(t,x,y+ h(t,x),0) is exponentially stable,
uniformly in (t,x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (2.9) is exponentially stable.

Theorem 2 will be used throughout this dissertation to prove exponential stability of
the equilibrium of different closed loop systems. Typically these theorems will provide
bounds on parameters, such as time constants, that guarantee stable behavior. In Table 2.1,
we summarize the mathematical tools introduced in this chapter, and where we will employ
them.

Table 2.1 Methods summary

Mathematical tool Chapter Notes
Linear compartmental systems 3-6 Model of AMPA trafficking

Nonlinear compartmental systems 7-8 Model nonfunctional cargo transport
Nyquist stability criterion 3−5 Analysis of the synaptic scaling model

p-dominance 7 Analysis of the regulation of with nonlinear transport
Singular perturbation techniques 3-8 Used to prove exponential stability of multiple

mathematical models



Chapter 3

The closed loop synaptic scaling model

"Somehow the unstable stuff of which we
are composed has learned the trick of
maintaining stability."

Walter Cannon, The Wisdom of the Body

In this chapter we formulate a biophysically-motivated mathematical model of synaptic

scaling from first principles. In particular, we model the synthesis, transport, insertion,

and regulation of AMPA receptors in the presence of a homeostatic scaling mechanism.

3.1 Model overview

We begin with an abstract visualization of a neuron (soma and its dendritic tree), and we
will describe the main biophysical processes of interest (Figure 3.1a): AMPAR transport and
insertion, local and global feedback, and cargo production. We will refer to the model as the
closed loop synaptic scaling model, and CLSS for short.

Active transport is the assumed mode of trafficking for AMPARs. They are trafficked
on microtubules throughout the dendrites (Figure 3.1b). Internal, inactive AMPARs m are
transported with forward rate v f and backward rate vb. Active, external AMPARs on the
surface are denoted g. AMPARs activation (m → g) occurs within synaptic sites on the
plasma membrane. The capacity of a synaptic site is denoted by c, which represents the
number of available slots for AMPARs. We impose an abrupt change in c to emulate long
term potentiation or depression (LTP or LTD). This is consistent with the physiologic increase
in structural proteins that support AMPARs on the plasma membrane during potentiation
[105, 114].
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(a) Components of the CLSS model.
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Fig. 3.1 A schematic description of the components of the CLSS model: in (a), we show
where the different processes take place, (b) shows dendritic transport of AMPA receptors, (c)
shows the activation and inactivation of AMPARs, and (d) the feedback signal is computed.

Cargo insertion is illustrated in Figure 3.1c. Cargo is activated (mi → gi) with activation
rate si and inactivated (gi → mi) with rate s−i in each ith compartment (a compartment
represent a small section of the dendritic tree, as discussed in the next section). Homeostatic
local feedback occurs in each synapse, where local g regulates si based on [Ca2+]target. Local
gain kL is the sensitivity of the local controllers to perturbations in local g, and si increases
or decreases in accordance with variations in gi. AMPARs transport with global and local
feedback are incorporated into a compartmental model of a discretized dendritic arbor, which
will explained thoroughly over the next sections.

Combined to forms of potentiation (such as LTP and LTD), a neuron maintains its level
of excitability through global regulation mechanism, which occurs in the soma (Figure
3.1d). The mean of all active AMPARs 1

n ∑gi produces an average membrane potential V ,
representing a change in neural firing rate. This modulates the concentration of internal
[Ca2+], which in turn regulates biosynthesis and release u of new receptors into circulation.
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The global gain kG is the sensitivity of the global regulator to perturbations in [Ca2+] based
on some set point [Ca2+]target. The effect of this homeostatic mechanism is that if neuron
activity is too low, more AMPARs are produced; if activity is too high, AMPAR production
is slowed. We will show that global regulation is sufficient for normalization of synaptic
strengths [151, 148]. In the following section, we formulate the CLSS model mathematically
starting from first principles and stating the relevant assumptions when necessary.

The mathematical description of the CLSS model begins with a discussion of the two
species in the system: m and g. g is the effective form of AMPA receptors (AMPARs), active
and located in their functional sites. g affects neuron properties ( like intrinsic excitability,
synapse strength, etc.). m is the precursor to g. m can take the form of pro-protein, pre-pro-
protein, protein endocytosed in vesicles, or other internalized pool of the protein. We refer
to m and g as "cargo", to emphasize the fact that they are transported within the dendrite,
although in different forms.

3.1.1 Dendritic trafficking of AMPA receptors

We discussed in the introduction the different modes of trafficking that occur in the cell,
namely active and passive transport. Modeling this phenomena as an active transport process,
we assign to m forward trafficking rate v f and backward trafficking rate vb. Forwards
trafficking rate v f will denote movement away from the soma, while backward trafficking vb

will denote movement towards the soma. We dissect and compartmentalize the neuron into
separate segments, as portrayed in Figure 3.2. The dendritic tree is divided in small sections,
each associated with an index i. mi and gi will denote the concentrations of cargo in the ith

section. Therefore, trafficking between adjacent compartments can schematically depicted as

mi
v f
vb m j

.
In this way, the neuron is composed n compartments. The number of compartments

reflects the resolution of system. ṁi, is thus affected, among other factors, by the "transport"
term:

f (mi) = v f mi−1 − (v f + vb)mi + vbmi+1 (3.1)

We assume that transport among synapse compartments occurs for the cargo precursor m only.
In this study, we set all the forward trafficking rates to be uniform, as well as the backward
rates. The linear model in Equation (3.1) is adopted for simplicity. In a more detailed model,
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one could vary trafficking rates after each branching point to account for dendritic diameter
changes. Moreover, one can transcend this linear model by adopting a nonlinear version of
transport that captures finite capacities and crowding effects. This is done in Chapters 7-8.

g1

m1

c1 ci

mi

gngi

mn

cn

Fig. 3.2 Linear compartmental model of transport: the dendritic tree is discretized into
smaller compartments of equal size, and mass balance between compartments is used to
capture the trafficking of material.

3.1.2 Activation and inactivation of AMPA receptors

Experimental studies reveal inactive pools of AMPAR receptors located internally or anchored
to nanodomains. These inactive AMPARs are available to cycle to and from post-synaptic
sites [78]. We therefore implement a reversible reaction between m and g:

mi
si

s−i gi

where si and s−i are the transfer rates from mi to gi, and gi to mi, accordingly. The subscript i
indexes the spatial compartment of the species. Dendritic compartments are discretized into
n compartments. gi are located in the postsynaptic terminals of dendritic spines.

A dendritic spine consists of a neck that connects the dendritic shaft to a spine head
containing ion channels, receptors, and other proteins. Spines are heterogeneous throughout
a dendritic tree, with variable size, volume, and number of receptor slots. We assume that
spines are significantly smaller than the dendritic shafts. Therefore, gi have finite capacity
which limits gi concentration. Spine size and number of receptor slots are plastic, which
impacts synaptic activity and strength [72]. We capture this property of spines, synapses,
and postsynaptic densities in a single term for capacity ci. Taking inspiration from [148], we
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model the interaction between mi and gi as follows:

ṁi = u+ f (mi)− simi(ci −gi)+ s−igi −ω
m
i mi (3.2)

ġi = simi(ci −gi)− s−igi −ω
g
i gi

Parameters ωm
i and ω

g
i represent degradation rates for mi and gi, respectively. f (mI)

summarizes the transport that occur among the m species, discussed previously, and u is
AMPARs biosynthesis. The nonlinear term mi(c−gi) can be interpreted as a saturation that
arise from modeling the transition from mi to gi as a mean-field approximation of a Partially
Asymmetric Exclusion Process (PASEP) [125]. This allows us to model the finite capacity
of a spine/synapse, to simulate perturbations in synaptic expression and plasticity, all while
maintaining the driving force of mass action.

The previous processes can be written more compactly in the a matrix form

ṁ = (Lm −Ωm)m−S(g)m+Ag+Bu (3.3)

ġ =−Ωgg+S(g)g−Ag,

where Lm ∈ Rnxn describes the trafficking of mi’s, Ωm = diag{ω i
m} (Ωm ∈ Rnxn) captures

the degradation of mi’s, S(g) = diag{si(t)(ci −gi))} (S(g) ∈ Rnxn) is the activation matrix,
A = diag{s−i} (A ∈ Rnxn) is the inactivation matrix, and B = [1;0; . . . ;0]T , and B ∈ Rnx1. It
is worth noting that Lm bears the information of network structure.

3.2 A system-theoretic view on synaptic scaling

3.2.1 AMPA receptor synthesis as global control

In line with experimental data and existing models [115–117], we assume that channel
mRNA synthesis, which occurs only in the first compartment, is dependent on calcium
concentration, [Ca2+]. Existing models posit that biochemical pathways modulate mRNA
synthesis according to the deviation of calcium concentration from an effective set-point,
[Ca2+]target. The form of process that transforms the error signal, eG = [Ca2+]target − [Ca2+]

, into the control signal/variable u in Equation (3.2) is the subject of ongoing research. In
particular, the question of whether perfect set point tracking is achieved is of great interest.
Here we adopt a basic model for this complex process, based on a leaky integral controller:
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u̇ = kGeG −ωuu (3.4)

eG = [Ca2+]− [Ca2+]target

where kG is the feedback gain that captures the controller sensitivity to deviation in the error
term eG, ωu > 0 sets the degradation. In the limit of ωu → 0, (3.4) becomes a pure integrator.

We assume that the calcium influx occurs on a substantially faster timescale than cargo
production and transport [144]. We also assume that the calcium influx varies due to voltage-
dependent channels and may be related to the (quasi-steady state) membrane potential via
the saturating monotonic relationship:

[Ca2+] =
α

1+ expV/β
. (3.5)

The parameters α and β capture calcium buffering and the voltage sensitivity of calcium
channels [116]. Finally, to model the effect of channel protein concentration on the membrane
potential, V , we consider the standard single compartment membrane equation

CV̇ = gleak(Eleak −V )+gavg(Eg −V ),

where C is membrane capacitance, gleak is a fixed, leak conductance, and the Eleak and Eg

terms are equilibrium potentials for each type of ionic conductance, and gavg is the averaged
sum of gi in the neuron. By using a single compartment membrane equation we are assuming
that the neuron is equipotential (V is independent of compartment index). This is justified by
the timescale separation between the fast voltage fluctuations and the mRNA synthesis and
trafficking mechanisms. We therefore set the membrane potential to its quasi-steady state

V :=Vss =
gavgEg +gleakEleak

gleak +gavg
, gavg =

1T g
n

=
Σgi

n
. (3.6)

This simple model of conductance averages the fast, computationally-expensive dynamics
for electrical signal transmission in a neurite. Rather than simulating excitatory postsynaptic
potential (EPSP) input and initiation/propagation of dendritic spikes, membrane potential in
the soma is computed as an average of electrical activity over a timescale closer to that of
AMPAR production and trafficking. In this scheme, the global feedback and regulation are
dependent on the average amount of AMPARs throughout the neurite: gavg. We assume that
these dynamics converge quickly compared to cargo production and transport and occur at a
similar timescale to [Ca2+] influx in Equation (3.2).
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The regulation mechanism modelled in Equation (3.4) drives the production of cargo
with the goal of attenuating the mismatch between the desired calcium target and the actual
average calcium. Ideally, perfect regulation is achieved when [Ca2+] = [Ca2+]target. For this
to be feasible, we make the following assumption.

Assumption 1 The parameters of (3.5)-(3.6) satisfy

Eg +β ln
α

[Ca2+]target
̸= 0 and gleak ̸= 0 .

The quantities in Equations (3.5) and (3.6) are combined and integrated in (3.4) to achieve
regulation. For readability, we will refer to their aggregate contribution by using the non-
decreasing function h : g → [Ca2+] to be the composition of the static maps (3.5)-(3.6):

[Ca2+] = h(gavg). (3.7)

Figure 3.3 shows the monotonicity of (3.7).

g
avg

[C
a

2+
]

Fig. 3.3 Monotonicity of the feedback signal h(gavg).

Before proceeding to the next part of the model, we will clarify some of the modeling
choices and assumptions that are related to (3.5)-(3.6). Firstly, in the above model we used
intracellular calcium concentration as the homeostatic signal of the closed loop system, and
this was experimentally identified [150, 147, 115] and further used in other computational
studies [166]. It is worth highlighting here that this setting exemplifies known instances in
neuronal systems where the signal that is being explicitly regulated is not necessarily the
observed phenomenon (e.g. spiking) [118]. In other words, and on a more fundamental level,
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we are using calcium concentration as an error signal that correlates to the fast changes in
excitatory input.

Secondly, we used a leaky-integrator model as opposed to a Hodgkin–Huxley model, i.e.
a one that incorporates voltage-dependent conductances. At the first sight, the latter model
appears to be more suitable and interesting to study homeostatic regulation. Nevertheless,
it was shown that the qualitative behavior of a simple leak model matched those obtained
for a conductance-based model [116]. Therefore, we expect the presented model above
to be informative, and can indeed reveal a number of relevant physiological properties of
homeostatic regulation. Moreover, we expect the behavior to not drastically vary when a
conductance-based model is inserted in place of the leaky-integrator one, specially near
equilibrium [116].

3.2.2 Adaptive AMPA receptor activation as local control

As we discussed before, both short- and long-term synaptic plasticity in neurons have been
associated with information processing and memory formation [94]. At the molecular
level, the presynaptic probability of neurotransmitter release for individual synapses is
dynamic [19]. Postsynaptic terminals undergo long-term plasticity, in which AMPARs
are inserted or removed from post-synaptic sites. These neural tasks are enabled by the
filtering characteristics of synapses, in which synapses with varying release probabilities act
as low-pass or high-pass filters. This property can be changed according to the presynaptic
action potential. Long-lasting changes allow neurons to form spatiotemporal patterns as a
result of activity-dependent changes. In our model, such changes are achieved by fine-tuning
individual gi while also maintaining overall neuron activity level around [Ca+2]target. By
fine-tuning gi, a neuron can vary synaptic strengths while maintaining average neural activity.

We model these post-synaptic changes by enforcing a change in synpatic capacity ci.
This results into a fluctuation of active AMPAR gi with LTP and LDP events [104, 103].
Local activity-dependent regulation also modifies intraspinal AMPAR trafficking rates, such
as interactions with the scaffolding protein Stargazin [134]. Further, experiments reveal
activity-dependent regulation of AMPAR in and out of the dendritic spines. For instance,
phosphorylation or phosphorylation-induced changes in synapses can activate AMPARs [79].
In our model, we lump these complex mechanisms and interactions into synaptic capacity ci

and rates si and s−i.
We augment the dendritic trafficking model with local activity-dependent regulation.

Local regulation is faster than the other model dynamics (cargo production and transport).
This captures the local biological processes that take place at the synapse level. In contrast
to the broad averaging of the global feedback, local feedback tunes individual gi’s. This
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allows for regulation at high spatial resolution, such as homeostatic plasticity of individual
compartments or branches. We assume that individual synapses measure a local error signal
eL that compares local activity gi to the global target activity level [Ca2+]target to modify local
AMPAR activation si. Mathematically,

ε ṡi = kLeL −ωL(si − s̄i) (3.8)

eL = [Ca2+]target −H(gi)

H(gi) =
smaxgh

i

gh
i + kh

A

where ε is a time constant that reflects the fast dynamics of ṡi (typically ε ≪ 1), kL is the
sensitivity of the local controller, ωL is the degradation/dissipation rate of si, and s̄i is the
uncontrolled/basal value of si. In the local regulation scheme (3.8), H(gi) takes the form of a
Hill equation, where smax defines the upper limit, kA is the apparent dissociation constant,
and h is the Hill coefficient that describes the degree of cooperativity. H(gi) captures the
structural and conformational changes that AMPARs undergo to transform into an active
state [10, 169, 35].

Equation (3.8) shows that gi affects si in a negative feedback manner. Whenever kL > 0,
this scheme will have an opposing effect on gi. This adds a stabilizing effect on the steady-
state value of gi, which opposes runaway dynamics of unconstrained Hebbian plasticity.

In Figure 3.4, we emphasize the system-theoretic view by showing a conceptual block
diagram that portrays synaptic scaling as a controller at the global level (Figure 3.4a),
and adaptive-activation is portrayed as a local control action (Figure 3.4b). The red lines
distinguish the path of the feedback signal.
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synthesis
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(a) Global view (Scaling).

vf vf

vb vb
mi 

…

gi

s-i
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si

(b) Local view (activation of AMPARs).

Fig. 3.4 A system-perspective on regulation: showing the two different layers of control,
the global one (homeostatic synaptic scaling), and local one (adaptive activation of AMPA
receptors).
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3.3 Stability of the synaptic scaling model

Now that we have formulated the model, we state the stability result which guarantees
homeostasis under certain conditions.

Theorem 3 Under Assumption 1, there exists a k̄G > 0, and ε̄ > 0 such that, for every
0 < kG ≤ k̄G and 0 < ε ≤ ε̄ , the closed loop system (3.3)-(3.8) has a globally exponentially
stable equilibrium.

How is homeostasis implied from Theorem 3? Firstly, the exponential stability of the
equilibrium point of (3.3)-(3.8) indicates that the equilibrium point is unique. This means all
physiologically initial conditions will converge to this unique equilibrium. At steady-state,
Equation (3.4) guarantees that [Ca2+]≈ [Ca2+]target, and hence achieving homeostasis. More
importantly, by changing the model parameters while keeping [Ca2+]target fixed, homeostasis
is maintained but now for a different steady-state concentration profile of g. This means that
the neuron can spatially change individual synaptic efficacies, while maintaining the average
activity level around its set-point; we attribute this feature of the model to homeostatic
synaptic scaling. This feature, as we will see in the next section, is profoundly linked to
feedback.

The conditions of Theorem 3 reveal an inherent limitation of the closed loop system. As
far as the gain is less than k̄G, stable regulation is achieved. However, once this condition is
violated, stability is not necessarily preserved. This is due to the subdynamics of transport
of the CLSS model. The constraint is caused by the interplay of synthesis, transport, and
degradation of AMPARs. Hence, an upper bound on gain kG is required to limit how rapid
AMPAR production can be, due to a limit on how fast they can be transported and degraded.
This means that the overall system suffers from a severe limitation on how fast it can deliver
AMPARs to demand sites. In fact, this is not the only limitation as we will see in the next
chapter where we introduce three performance measures that we will use to study the effects
of morphology on the regulation problem.

Similarly, ε̄ establishes a limit on how slow AMPARs activation can be. In other
words, activation of AMPARs needs to be sufficiently fast in order for proper regulation
to occur. If the activation dynamics (3.8) is slow, then m will accumulate in the system
before properly being utilized in synaptic sites in the form of g. Next, once g is at the level
where [Ca2+] ≈ [Ca2+]target, production of m slows down causing a shortage of m which
subsequently deprive synaptic sites of g. This, in turn, increases the mismatch (higher eG).
In principle, the same asynchrony happens as in the case of high kG.

Theorem 3 affirms that two regulatory mechanisms (local and global) can coexist and
support homeostasis. However, the exact contribution of each mechanism, and whether it is a
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cooperative or competitive effect remains unclear. Through simulations, we uncover this in
the next chapter.

3.4 Chapter summary and concluding remarks

This chapter can be summarized in the following key points:

1. We have presented a model of neuronal activity regulation which comprehends trans-
port, activation, averaged voltage and calcium dynamics, and local and global regula-
tion mechanisms.

2. Theorem 3 shows that the closed loop system is stable if the global gain is limited to a
defined interval. This makes clear that the action of the global controller is somehow
limited and high gain feedback leads to potential instabilities. This discussion will be
extended in the next chapter.

Table 3.1 Parameter Values

(3.5)-(3.6) (3.1), (3.2), (3.4) (3.8)
gleak = 0.25 µS v f = 1 µms−1, vb = 0.5 µms−1 s̄i = 1 s−1

Eleak =−50 mV ω
g
i = ωm

i = 0.1 s−1 ωL = 1 s−1

Eg = 20 mV ωu = 1×10−5 s−1 smax = 2
α = β = 1 s−i = 0.5 s−1 kL = h = 1

[Ca2+]target = 0.5 µM c = 1, kG = 0.3 ε = 0.1

To have a glimpse over the content of the next chapter, we conclude this chapter with the
following simulation. To examine the transient and steady-state behavior of CLSS system,
we simulate a 10−compartmental cascading neuron model with parameter values from Table
3.11 As laid out before, we model permanent structural changes due to LTP events through
changes in ci. Figure 3.5 shows the timecourse of gi’s where an LTP event took place halfway
through the simulation in the synapses with the red traces. The simulation portrays the
performance measure we partially alluded to earlier. Firstly, consistent with LTP events
recorded in experiments, the efficacy of synapses that were subject to such events increased.
This was accompanied by a global decrease in the efficacy of unpotentiated ones. However,

1The parameters in Table 3.1 are well within reported numbers in the literature, both in computational
and experimental studies. For example, the electrophysiological parameters in the left column match those
in [117, 115, 116] and references therein. The trafficking and synthesis parameters in the middle column are
within the used and reported parameters ranges [148, 22, 161, 122]. The adaptive activation parameters in the
right column where chosen to produce values of si close to those used in [148, 23].
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the ratio of increase (and decrease) of individual synapses in inhomogeneous. Secondly,
the transient response is oscillatory and this can be undesired as this is an energy-expensive
process, and it is reasonable to assume that a biological system, like a neuron, ideally needs
to minimize energy expenditure. Lastly, the time it takes the neuron to deliver AMPARs to
where they are needed is of crucial importance, too. In the next chapter, we define, quantify,
and study these aspects of the regulation problem to reveal an inevitable tradeoff imposed by
neuron geometry.

time (arbitrary units)
0

0.5

1

1.5

2

g

oscillations

settling time

efficacy 

Fig. 3.5 Simulation of a 10−compartmental system: time response of gi where an LTP event
occurs in red compartments halfway through the simulation. Black (unponentiated) synapses
are globally scaled down as a result of scaling.
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3.5 Proof of theorem 3

Part 1 and Part 2 below satisfy the conditions of Theorem 11.4 in [90]. By doing so, we can
conclude the exponential stability of the equilibrium point of the closed loop system. This is
done by analyzing two subsystems, namely the boundary layer and reduced subsystems.

Part 1: stability of the boundary layer system

We first obtain the solution of ṡi = 0, which is si =
kL([Ca+2]target−H(gi))

ωL
+ s̄i. Then we introduce

the new variable zi = si − (
kL([Ca+2]target−H(gi))

ωL
+ s̄i). Taking the time-derivative of both sides

holds:

żi =
d
dt

[
si −

(
kL([Ca+2]target −H(gi))

ωL
+ s̄i

)]
= ṡi −

d
dt

[
kL([Ca+2]target −H(gi))

ωL
+ s̄i

]
=−ωL

ε
zi −

d
dt

[
kL([Ca+2]target −H(gi))

ωL
+ s̄i

]
By introducing τ = t

ε
, the boundary layer system is obtained in the limit of ε → 0

dzi

dτ
=−ωLzi. (3.9)

Since ωL > 0, the equilibrium of the boundary-layer system is exponentially stable.

Part 2: Stability of the reduced-order system

We proceed by making the following substitution or coordinate change. Let η := [m,g]T ,
then equation (3.3) can be re-written as

η̇ = f (η)+u

u̇ = kGeG −ωu (3.10)

where f (η) captures the transport dynamics of m, degradation of m and g, and activation and
inactivation between m and g (m � g), and transport between the g’s (lateral diffusion) if
modeled. All the entries of f (η) are constants except the ones that describe the interaction
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between m and g. The differential system reads:

δ η̇ =
∂ f (η)

∂η
δη +δu

δ u̇ =−kG∂ψ(cT
η)cT

δη −ωuδu (3.11)

Since f (η) describes how the matter/molecules is being transported, exchanged, and de-
graded , the Jacobian ∂ f (η)

∂η
enjoys a number of structural properties that will utilized later on

in the proof (in other words and loosely speaking, f (η) is the Laplacian matrix of network).
Firstly, ∂ f (η)

∂η
represents a positive system. This means that the off-diagonal entries are

always positive, and the diagonal are always strictly negative. Another feature is that the
some of column is always ωm

i or ω
g
i , which has a strong bound on the dominant or Perron-

Frobenius eigenvalue at each linearization, i.e. λp f =−min{|ω i
m|, |ω i

g|}. Considering the
uncontrolled dynamics only, i.e. η̇ = f (η), the prolonged system is δ η̇ = ∂ f

∂η
(η)δη . This

can be written equivalently as δ η̇ = − ∂g
∂η

(η)δη , where η ∈ R2n, ∂g
∂η

(η) = − ∂ f
∂η

(η), and
∂g
∂η

(η)+ ∂g
∂η

(η)T ≥ −λp f I > 0. Therefore, for the Lyapunov function V = 1
2δηT δη the

time derivative reads:

V̇ =−δη
T (

∂g
∂η

(η)T +
∂g
∂η

(η))δη ≤ λp f δη
T

δη < 0.

(3.12)

The above property is preserved even after obtaining the reduced-order system, that is
∂̄g
∂η

(η)+ ∂̄g
∂η

(η)T ≤−λp f I < 0, where ∂̄g
∂η

is obtained after replacing si(t)’s with s∗i . Next,
we consider the Lyapunov function V =

ρη

2 δηT δη+ 1
2δuT δu. ρη is a positive parameter that

will be constructed later to satisfy certain relations necessary for stability. The time-derivative
of the V

V̇ = ρηδη
T (

¯∂ f (η)

∂η

T

+
¯∂ f (η)

∂η
)δη +ρηδη

T
δu

− kG∂ψ(cT
η)cT

δηδu−ωuδuT
δu

≤ ρηλp f δη
T

δη +ρηδη
T

δu− kG∂ψ(cT
η)cT

δηδu−ωuδuT
δu

≤−ρη |λp f ||δη |2 +ρη |δη ||δu|+ kG|∂ψ(cT
η)cT ||δη ||δu|−ωu|δu|2
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or

V̇ ≤

[
|δη |
|δu|

]T [
−λ1 0

λ2 −λ3

]
︸ ︷︷ ︸

−Q

[
|δη |
|δu|

]

where

λ1 = ρη |λp f |
λ2 = ρη + kG|∂ψ(cT

η)cT |
λ3 = ωu.

The problem now reduces to proving that Q > 0. Firstly, we write the equivalent symmetric
problem Q+QT

2 > 0, that is,[
ρη |λp f | −1

2(ρη + kG|∂ψ(cT η)cT |)
−1

2(ρη + kG|∂ψ(cT η)cT |) ωu

]
> 0

Next, by Sylvester’s criterion, the above matrix is positive-definite provided that its leading
principal minors are positive. For the first minor is

ρη |λp f |> 0 ⇐⇒ ρη > 0 (3.13)

For the second minor we get

ωu|λp f |ρη − 1
4
(ρη + kG|∂ψ(cT

η)cT |)2 > 0

which can be written in the following way

ωu|λp f |ρη − 1
4

ρ
2
η >

1
2

kG|∂ψ(cT
η)cT |ρη +

1
4

k2
G|∂ψ(cT

η)cT |2. (3.14)

The above inequality can by met by making the RHS terms arbitrarily small by setting
0 < kG ≪ 1. On the other hand, the LHS can be positive if the following condition is met:

4ωu|λp f |> ρη . (3.15)
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Therefore, we conclude that the reduced-order system satisfies V̇ ≤−λ̄V for some λ̄ > 0, by
selecting ρη ,kG > 0 that satisfy

1. ρη < 4ωu|λp f |.

2. kG is sufficiently small.

exponential stability of the reduced system. The exponential decay of the differential Lya-
punov function guarantees incremental exponential stability of the reduced system, [57,
Theorem 1]. This implies exponential stability of the equilibrium of the reduced system.

Remarks: The above proof can account for

• Arbitrary topologies: this means that a stability conditions shall apply also for real
dendritic morphologies, which are the topic of focus of chapter 5.

• Lateral diffusion: although lateral diffusion was not implemented (this resembles
trafficking among the g species), it does alter the stability condition since the (lin-
earized) dominant eigenvalue will not be effected. The biological influence, however,
is discussed in the following chapter.

• Nonlinear trafficking rates: a linear trafficking model was adapted for AMPA re-
ceptor. In chapters 7 and 9, we consider more complicated models of transport, such
as vi j = v f (c j −m j) where ci now models compartment j capacity, that incorporate
saturation and crowding effects.



Chapter 4

Analysis of the closed loop synaptic
scaling model

"Any man could, if he were so inclined,
be the sculptor of his own brain."

Santiago Ramon y Cajal, Advice for a
Young Investigator

We define three relevant performance measures to investigate the physiological effects

of particular variations in CLSS model parameters. We show that there is an inevitable

tradeoff among these performance measures.

4.1 Defining performances

We start by defining three performance measures that will be used to elucidate how activity-
dependent (local and global) mechanisms alter the behavior of the system. The three
measures are: robustness, convergence rate, and accuracy of synaptic scaling. Here, we will
use robustness to capture and quantify the stability of the system. This property will assess
the system’s ability to handle uncertainties. Convergence rate captures how fast the system
reaches its steady-state. Accuracy captures how well the synaptic strength, i.e. its efficacy,
responds to potentiation.

4.1.1 Robustness of the scaling model

Robustness pertains to the stability of the model and to its preservation under potential
system perturbations (parameters variations, dynamic uncertainties, disturbances). At the
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formal level, the stability margin introduced in Chapter 2 provides an exact quantification of
robustness. The stability margin measures the distance of the Nyquist curve from the point
−1. Why is this a measure of robustness? Using the Nyquist criterion, this tells us how much
we can perturb the system before losing stability in closed loop. In fact, the perturbation of
the system induces a deformation on its Nyquist curves. Therefore, a larger distance from
the point −1 means that a larger perturbation is needed to destabilize the closed loop. In this
sense, a system with a large stability margin is "far away" from instability and can cope with
larger perturbations.

L(s) plane
unit circle
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1
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(a) A Nyquist plot showing the stability margins.
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(b) Movement of dominant eigenvalues.

Fig. 4.1 Frequency-domain geometric definition of different margins (left) and root-locus of
the linearized system showing regions of stable, oscillatory, and unstable regulation.

4.1.2 Convergence rate

This attribute is related to how fast the system reaches its steady state. For linear systems,
this is determined by the real part of the right-most eigenvalue. Since the CLSS model is
nonlinear, we will use the eigenvalues of the linearized system at equilibrium. These captures
the convergence properties of the system trajectories in a neighborhood of the equilibrium.
This reads

λ̄ = Re
(

min
i∈n

{λi ∈ Λ}
)

(4.1)

where Λ is the set of eigenvalues of the linearized closed loop synaptic scaling model around
its fixed point. Figure 4.1b shows how the eigenvalues of the linearization moves as a function
of the gain kG of the global feedback mechanism.
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For small gain of the negative feedback the two rightmost eigenvalues of the linearization
moves towards each other, as shown by the blue and red branches in Figure 4.1b. From a
behavior point of view, this means that the closed loop becomes faster, that is, trajectories are
faster to converge to steady state. With a further increase of the gain kG, the two eigenvalues
coalesce and bifurcate becoming complex conjugate. From the behavior point of view, the
system trajectories converges to steady state but with small oscillations. The system has
reached the limits of performances above which the behavior deteriorates. In fact, a further
increase of the feedback gain leads to a loss of stability, when the two eigenvalues cross the
imaginary axis. The system becomes unstable.

These feature of the root locus are structural, that is, they can be reproduced for any
parameter selection. This shows the limitation of the global feedback mechanisms in improv-
ing performance. At technical level, the gain at which the system loses stability, that is, the
gain at which the eigenvalues cross the imaginary axis corresponds to the gain at which the
Nyquist locus in Figure 4.1a touches the point −1.

4.1.3 Accuracy of scaling and potentiation

Accuracy captures the preservation of relative strength between synapses. This is a funda-
mental feature for synaptic scaling. To quantify such a feature, we introduce expressions
that monitor synapses strengths before and after potentiation and depression. First, prior to
LTP/LTD, the steady states of all non-potentiated synapses gss

i are recorded and averaged as
follows:

µ
ss = mean(gss

unpot).

µss is the mean active cargo content of all non-potentiated synapses. We normalize all gss
i by

the mean µss. We then compute the steady state mean following LTP/LTD: µ̂ss, indicated
by .̂ We compare the quantity gss

i /µss between the pre- and post-LTP states. A synapse
that scales perfectly will preserve the relative strength with respect to other (unponetiated)
synapses, mathematically this is expressed as:

gss
i

µss =
ĝi

ss

µ̂ss and qi =
ĝi

ss/µ̂ss

gss
i /µss −1 = 0 (4.2)

where qi measures scaling deviation for each individual synapse (Figure 4.2). qi < 0 indicates
excess scaling during LTP or incomplete scaling during LTD. While qi > 0 corresponds to
incomplete scaling during LTP or excess scaling during LTD. We can use the qi’s to compute
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Fig. 4.2 A 4−compartmental neuron model undergoing LTP(left) and LTD(right).
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mean absolute percent error Q from perfect scaling:

Q = mean(|qi|)×100% (4.3)

Larger Q indicates a greater deviation from perfect scaling, i.e. more inaccurate synaptic
scaling.

4.2 Navigating the tradeoffs

Now we show that improving any of the three performance attributes above results in
worsening one or the other two. We do this by varying the following free parameters

• The global controller sensitivity kG

• The local controller sensitivity kL

• The detachment/inactivation rate s−i

4.2.1 kG mediates between robustness and convergence rate

The sensitivity of the global controller kG to changes in average calcium mediates the system
robustness and convergence rate of synaptic scaling. Figure 4.4 (left) shows [Ca2+] responses
for different kG values. As kG increases, [Ca2+] reaches faster its steady state. Above a
certain threshold, dampened oscillations appear. These decaying oscillations shows that the
feedback mechanism has reached its performance limit. A further increase on kG leads to
oscillations.

kG can be also correlated to the system stability margin, that is, to its robustness. To quan-
tify robustness, we evaluate feedback regulation in a simplified model—a single compartment
with two states m and g for inactive and active cargo, respectively. A third state u represents
cargo production. Strength of global control is mediated by gain kG. This three-dimensional
system is described by the following equations:

ṁ =u− s1m(c−g)+ s−1g−ωmm

ġ =s1m(c−g)− s−1g−ωgg.

u̇ =kG([Ca2+]target − [Ca2+])−ωuu

[Ca2+] =h(gavg).
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The connections between the linearized subsystems are summarized in the block diagram
in Figure 4.3(right) and briefly described here. The model has a preset [Ca2+]target that is
summed with [Ca2+] to produce an error signal, eG. The block Gu outputs cargo production u,
block Gm transports cargo throughout the dendrites, and block Gg activates cargo by insertion
into dendritic spines. Active cargo g then feeds back to modify [Ca2+].

As mentioned before, the Nyquist criterion predicts the stability of the closed loop system
from studying the open loop system. Using the linearization of the three dimensional system
above, this means that we can study the product L = ∂hGgGmGu to predict the behavior
in closed loop. In particular, the stability margin measures the distance from instability.
Increasing the gain kG reduces this distance, as shown in Figure 4.4(right). This illustrates
the role of the gain kG in modulating between convergence rate and robustness.

Why does the stability margin, i.e. the distance from instability, provide a good measure
of robustness? The idea is that the eigenvalues of the closed loop system are given by the
root of the polynomial

1+L

and these roots will have negative real part only if the Nyquist locus of L passes to the left
of the point -1. Instability occurs when the Nyquist locus of L passes through the point −1.
When this happens, we have

1+L( jω) = 0

which means that jω is a root of the polynomial, that is, an eigenvalue of the closed
loop system. As a result, the closed loop system is marginally stable and an infinitesimal
perturbation makes the system unstable. The previous analysis imposes the first constraint
or tradeoff: there is a hard limit to how quickly a neuron can produce and transport cargo
before it becomes unstable.

Robustness against static and dynamic uncertainties

Biological organisms and the cells within them are highly complex with significant variabili-
ties. These include the variance in microscopic parameters, genetic mutations, environmental
changes, structural/morphological differences, perturbations in neural excitability, etc. Uncer-
tainties are therefore ubiquitous in biological systems. Experimental studies have shown that
biological systems show a degree of robustness against a number of uncertainties [92, 53].
Hence, robustness is an intrinsic property of biological systems. For the CLSS model, we
demonstrate its robustness against perturbations. We show that it tolerates two distinct types
of uncertainties or perturbations.
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Fig. 4.3 First step is to linearize the constituent dynamics of the CLSS model and construct
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• Robustness to parametric variations: the first type of robustness is the robustness
to parametric variations—also called static uncertainties. Here, the system achieves
homeostasis despite variations in the model parameters. For example, trafficking rates
v f and vb depend on the number and type of protein motors attached to the cargo,
which vary the effective velocity of the motor-cargo complex. Further, a number
of experimental studies showed that AMPA receptor degradation ωm is an activity-
dependent process and thus a variable parameter [47]1. Synaptic potentiation and
a synapse’s geometrical/structural properties ci also vary with presynaptic input or
LTP/LTD. We show that the system shown in Figure 4.5a is robust for generous
parameter ranges by ensuring that the family of transfer functions never encircles the
(−1, j0) point. The parameter ranges are Although the steady state varies in each case,

Table 4.1 Parameter Ranges

parameter minimum maximum
v f [µms−1] 0.5 2
vb [µms−1] 0 1
ωm [s−1] 0.002 0.2

ci 1 5
d [µms−1] 0.1 1

n (length) [µm] 3 15

the system adapts and homeostasis is achieved. The model can withstand a substantial
amount of parameter variation. Low wm corresponds to the least stable, most fragile
system, because degradation acts as leak or dissipation in the system, which prevents
accumulation of cargo. Increased dissipation makes the system more robust, allowing
for more aggressive synaptic scaling (higher kG).

• Robustness to unmodeled dynamics: a system can also be robust to dynamic uncer-
tainties, which guarantees that the model behavior is preserved against unmodeled
dynamics. Unmodeled dynamics are a result of the assumptions made during the model
formulation process. To assess this type of uncertainty, we use the system gain, H∞

norm, and the small gain theorem [41, 170, 11]. We will use the system’s robustness
to dynamic uncertainties to show that behavior is independent of system dimension.
This validates our analysis of toy neuron models as representative of more detailed,
higher dimension systems.

1We expand on this in Chapter 6.
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To assess the system’s robustness to dynamic uncertainties, we will focus on the
transport dynamics that describes AMPAR trafficking. To this end, we construct the
mismatch system ∆, which is computed using the difference between a nominal and a
detailed (higher dimensional) system. The nominal system Σ3 is a 3-compartmental
system, while ΣN is a system of of dimension N with N ∈ {3, . . . ,100}. As N increases,
ΣN captures the transport dynamics with high resolution. Then, we define the mismatch
system as

∆ := Σ3 −ΣN ,

where Σ3 is described by

ṁ1 = u− v f m1 + vbm2

ṁ2 = v f m1 − (v f + vb)m2 + vbm3

ṁ3 = v f m2 − vbm3

and ΣN is described by

ṁ1 = u− v̄ f m1 + v̄bm2

ṁi = v̄ f mi−1 − (v̄ f + v̄b)mi + v̄bmi+1

ṁN = v̄ f mN−1 − v̄bmN .

In the dynamics of ΣN , v̄ f and v̄b are the scaled forward and backward trafficking rates,
respectively, and their scaling follows the rule introduced in (7.9). Lastly, we compute
the H∞ norm of the system. The H∞ norm measures the distance between the peak
gains of the two systems Σ3 and ΣN , which represents the worst case amplification over
the range of frequencies. This plot, depicted in Figure 4.5b (discretization), saturates
at 1.02, which guarantees unchanged behavior if the 3-dimensional model is replaced
with a more detailed, higher dimensional one with up to 100 compartments.

The same principle of robustness to dynamic uncertainties can guarantee that the
overall behavior is preserved when the system is interconnected with another system.
For example, we can show that the system is robust and maintains the same behavior if
the species m is replaced with a more detailed description considering a more detailed
synthesis step that involves another species, such as Arc mRNA. In other words, this
process demonstrates that lumping parameters does not drastically affect the observed
phenomena. This is also applicable in showing system robustness when considering
cytoplasmic diffusion, which will be discussed later. We return to this matter at the
end of this chapter.
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Fig. 4.5 Robustness of the CLSS model against static and dynamic uncertainties.

4.2.2 s−i mediates between accuracy of scaling and convergence rate

We assess how well a neurite can potentiate its synapses at varying locations in the dendritic
tree. To this end, we compare potentiated synapses to equivalent unpotentiated compartments
on identical branches (Figure 4.6). We potentiate single synaptic compartments with varying
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strength and at varying distances from the soma. We calculate accuracy of synaptic potentia-
tion as percentage of full potentiation, which corresponds to how well a synapse meets its
demand for increased AMPARs.

cx cx g3 g5 gx gn�3 gn�1

g1 g2 m3 m5 xx . . . xx mn�3 mn�1

m1 m2 g4 g6 gx gn�2 gn

cx cx m4 m6 xx . . . xx mn�2 mn

s1 s-1 s2 s-2

s3 s-3 s5 s-5 sn�3 s-n�3 sn�1 s-n�1

s4 s-4 s6 s-6 sn�2 s-n�2 sn s-n

1

Fig. 4.6 Abstract neuron model with symmetric branches.

In Figure 4.8 we vary the pool size by varying s−i. For a small internal pool (small s−i)
a neuron only fulfills half the demand for increased AMPARs in distal synapses. Reserve
AMPAR count dwindles with distance from the AMPAR source, and the demand of synaptic
potentiation is not achieved. Neurites with increasing internal pool (large s−i) size more
readily fulfill demand during LTP, thus improving accuracy of potentiation. This can be
shown analytically by studying the transport equation from (3.3) at steady-state. Let M = Σmi

be the pool size, then the first part of equation (3.3) can be rewritten as

Ṁ = u−Σsimi(ci −gi)+Σs−igi −ωmM

and the pool size at steady-state M∗ from the above expression as

M∗ =
u+S−Ḡ∗

ωm +Σpisi(ci −g∗i )

where we used the fact that at steady-state m∗
i = piM, pi < 1 for all i and Σpi = 1, and

substituted S− = Σs−i and Ḡ = Σgi. Thus, the above steady-state relation shows that in-
creasing s−i increases the pool size at steady-state, subsequently improving the accuracy of
scaling. By increasing s−i, synaptic AMPARs (gi) are more likely to end in the dendritic pool
which means that they will undergoing more transport, thereby increasing their chances in
ending in distal sites (since v f > vb). This mitigates the disadvantages of location-dependent
distribution of receptors. The explanation is depicted in Figure 4.7. The simulations in Figure
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4.8 shows the steady-state profile of functional AMPARs of the neuron shown in Figure 4.6.
Indeed, increasing inactivation rate s−i normalizes the steady-state profile g. Despite the
change in the equilibrium as a result of varying s−i, feedback ensures that homeostasis is
achieved.

Increasing internal 
pool size 

Fig. 4.7 Increasing pool size by increasing s−i.

Nevertheless, there is a penalty of increasing the settling time, as shown in Figure 4.9.
Improved scaling comes at the expense of settling time. Although increasing s−i improves
the accuracy of scaling, it makes it longer to achieve homeostasis. This can be understood in
the same way it improves scaling. Increasing s−i increases the propensity of gi to end up in
the pool. At steady-state,

g∗ =
misici

mi + s−i +wg
i
.

Hence, synaptic AMPARs reduces with increasing s−i. This, in turn, results in a slower
regulation process due to insufficient gavg.

Impact of morphology on accuracy of scaling

Synaptic scaling allows a neuron to maintain the relative strengths of its synapses following
potentiation. We next explore how morphology impacts the accuracy of scaling, in addition
to varying variation in the internal pool size . During scaling, neurons undergo multiplicative
changes in synaptic strength such that the relative strengths of the synapses are preserved.
Stable, reliable changes at the molecular and cellular level correspond to stable, reliable
memories, which motivates quantifying accuracy of synaptic scaling. Our measure of
accuracy of synaptic scaling, introduced earlier, is the mean absolute percent error in scaling
ratio (which we term Q) following a scaling event (LTP or LTD).

To further unpack the impact of morphology, we compare Q for varying internal pool
sizes and potentiation ratios in distinct neuron morphologies. We examine linear and stellate
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Fig. 4.8 Steady state spatial profile of gi for different s−i and ci values.
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Fig. 4.9 Response of [Ca2+] for different s−i values. ci is fixed at 1.

architectures—the extreme cases of structural symmetry, depicted in Figure 4.10. In both,
m1 is the soma and site of AMPAR production and global regulation. Model parameters are
scaled such that AMPARs are transported at 1 µm/s and the linear and stellate models are
1000 µm in length and 250 µm in radius, respectively. In the symmetric, stellate model, each
compartment has proximate access to the soma with minimal transport of scaling signal and
AMPARs. In this geometry, all the synapses have equal and identical access to internal pool
of AMPARs. The symmetry of the structure forces a symmetry in the dynamics. This ensures
in cases when a subset of synapses are subjected to an LTP/LTD event, then the rest of the
synapses in the network are affected equally. In this way relative strengths are preserved, and
this constitutes the ideal situation where the effect of transport (and hence morphology) is
minimized.
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On the other hand, in the asymmetric, linear model, the effect of transport and resultant
phase lag increases, particularly for distal compartments. Unlike the symmetric case, each
synapse has access to a different internal pool size. Here, the effect of transport is accentuated:
closer synapses to the soma have access to larger internal pool. This means that proximal
synapses scale better than distal ones as the internal pool size decreases with distance
away from the soma. This results in significantly reduced scaling accuracy in asymmetric
morphologies (Figure 4.11).
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mn�1 m1 m4

m7 m6 m5

m1 m2 m3 m4 m5

m1 m2 mx . . . mx mn�1 mn
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1

Fig. 4.10 The morphologies, linear morphology (left) and a star one (right), represent the two
extreme cases. The line is the asymmetric case, where the star is symmetric one.

The two networks in Figure 4.10 represent two extreme cases where one minimizes
and the other maximizse the effect of transport. In both cases, scaling accuracy decreases
with increasing potentiation ratios. Higher demand for AMPARs results in scaling error.
Scaling accuracy also increases with larger internal pools. Nevertheless, the settling time
takes longer as s−i increases, deteriorating the convergence rate. This imposes the second
tradeoff: improving the scaling accuracy comes at the expense of how fast the neuron delivers
AMPARs to demand sites.

4.2.3 kL mediates between robustness and accuracy of scaling

The sensitivity of the local controller to changes in calcium concentration also alter the
behavior. We simulate a 10−compartmental system that experience potentiation in half of
its compartments, depicted in red in Figure 4.12. The simulations are done with a relatively
high global regulation sensitivity kG, apparent by the oscillatory transient response, shown in
Figure 4.12a.
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Fig. 4.11 The linear and star morphologies, shown in Figure 4.10 are simulated for varying
cn and s−i while quantifying mean absolute percent error Q. More accurate synaptic scaling
is achieved in symmetric morphologies.

The absence of local control results in synaptic scaling with moderate accuracy and
oscillations. The red synapses strengthen, as expected during LTP. The unpotentiated, black
compartments are scaled down, which is notable because the synaptic capacity of these
compartments was not changed. Figure 4.12a validates that synaptic scaling works with
global control alone. Note that the relative weights of the synapses are preserved with
moderate accuracy. Further, the difference between potentiated (red) and unpotentiated
(black) synapses is prominent.

If we introduce local regulation at low gain (Figure 4.12b), the oscillations are improved
at the cost of accuracy. The difference between potentiated and unpotentiated synapses begins
to diminish. If we increase the local gain (Figure 4.12c), the oscillations are eliminated and
the system is fully stable now. However, synaptic scaling is no longer accurate, and red
synapses hardly increase compared to the black ones. The degree to which local regulation
can improve stability is limited by a reduction in accuracy of synaptic scaling. This suggests
the third tradeoff: the sensitivity of the local regulation mechanism mediates between the
robustness of the system and accuracy of synaptic scaling.
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Fig. 4.12 Increasing the sensitivity of the local regulation mechanism improves the robustness
of the system at the cost of scaling accuracy.

4.3 Overall performance tradeoffs

We have discussed the tradeoffs involved in balancing the system’s robustness, convergence
rate, and accuracy of synaptic scaling. We have shown how to quantify these attributes.
Using these measures, we provide a summary of these tradeoffs, as shown in Figure 4.13.

We simulate a simplified 4−compartmental model with distributed LTP, and performed
the following

1. The stability margin reflects robustness, the convergence rate reflects the settling time,
and the reciprocal of mean absolute percent error (Q−1) reflects accuracy.

2. We sweep through parameter kG to vary global regulation that modulates the robustness-
convergence rate tradeoff. We then sweep through parameter kL to vary local regulation
that modulates the robustness-accuracy tradeoff. Lastly, we sweep through parameter
s−i to vary internal pool size that modulates the convergence rate-accuracy tradeoff.

3. The axes for each tradeoff are adjusted to cover the stable regulation region, character-
ized by real eigenvalues of the first order linearization. Beyond the limits of these axes,
the system is unstable and has oscillations.

Each tradeoff is hyperbolic in shape, suggesting a negative correlation. From a system-
theoretic perspective this means that no attribute can be improved without worsening at least
one of the other attributes. Furthermore, no modification to the system can simultaneously
improve all attributes.
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4.4 Chapter summary and concluding remarks

This chapter can be summarized in the following key points:

1. The sensitivity of the global regulation kG mediates between the system robustness and
convergence rate.

2. The internal pool size, which is intimately linked to si, mediates between the conver-
gence rate and accuracy of scaling.

3. The sensitivity of the local regulation kL mediates between the accuracy of scaling and
system robustness.

4. The CLSS model is robust against static and dynamic uncertainties, with maximum
fragility arising from variation in the degradation rates.

5. The trafficking of AMPARs significantly constrains the performance of the neuron.

The objective of the closed loop model is the maintenance of average neuronal activity, or
homeostasis. This is achieved via the negative feedback regulation of active AMPA receptors,
or gi. The aforementioned description interprets species m and g as pre-protein and protein,
which are inactive and active in synapses, respectively. Nevertheless, the model at hand has
the capacity to be interpreted as number biological molecules and processes. For example, m
and g can model other ionotropic glutamate receptor, such as NMDA receptors.

In general m can be interpreted as ion channel precursor that is only produced in the soma,
and transformed into functional ion channels in designated compartments gi. Channels are
synthesized at the cell body then trafficked (chapters 3−5). An alternative interpretation of
the model is that m represents mRNA and its transport within the neuron. Then, channels g
are synthesized locally. This interpretation is explored and adopted in chapters 6-8. There is
mixed biological evidence for whether the trafficked precursor is mRNA or protein. However,
this does not affect our model at our chosen level of abstraction.

As mentioned in the introduction, a number of molecules could be involved in the scaling
process and there might be other key players, beside AMPARs. Experimental studies have
suggested that Arc protein is the global scaling signal dissipated throughout the dendrites
in response to changes in neural firing rate [142, 141, 151, 31]. In our modeling we lump
the transport of the scaling signal with AMPAR trafficking. Our modeling assumption is
reasonable since AMPARs and Arc are trafficked at similar rates [158]. To further evaluate
this assumption, we also perform simulations with Arc protein as a separate communication
channel to validate that lumping of the scaling signal with AMPAR trafficking produces
similar results.
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Fig. 4.13 The tradeoffs are summarized in a toy model by rigorously quantifying each
attribute: The stability-efficiency tradeoff is mediated by tweaking kG, the stability-accuracy
tradeoff is mediated by tweaking kL, the efficiency-accuracy tradeoff is mediated by tweaking
s−i.

In a variant of the model, we assume that Arc protein is a separate communication channel
for global signaling (Figure 4.14). This introduces Arc protein as another species a. In this
system, the global controller regulates production of both m and a with some bias m : a. This
modified system has the following dynamics:

ṁi =δu+ f (mi)− kimiai −ωmmi

ȧi =(1−δ )u+ f (ai)− kimiai −ωaai

˙[ma]i =kimiai − si[ma]i(ci −g)+ s−ig−ω[ma][ma]i

ġ =si[ma]i(ci −g)− s−ig−ωgg.
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Fig. 4.14 Block diagram of closed loop model with additional species a for Arc. The global
regulator produces both inactive AMPARs m and Arc a with some production bias m : a.

where [ma] is a complex containing both m and a. The remaining model dynamics for this
variant are unchanged. The modified block diagram is shown in Figure 4.14. The tradeoffs
are preserved, as shown in Figure 4.15. This is reassuring since the CLSS model, although
fairly simple, can indeed capture the same qualitative characteristics of the same scaling
phenomena if modeled with more species and higher level of complexity.
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Up to this point, we have studied abstract neuron models with relatively simple topologies.
However, neurons distinct themselves from other cells in their highly complex dendritic trees
that vary in size and structure. Are the tradeoffs between the three performance attributes
preserved in real morphologies with realistic parameters?



Chapter 5

Real dendritic morphology effects on
synaptic scaling

"The brain is the last and grandest
biological frontier, the most complex
thing we have yet discovered in our
universe. It contains hundreds of
billions of cells interlinked through
trillions of connections. The brain
boggles the mind."

James D. Watson, Discovering the
Brain, National Academy Press, 1992

In this chapter we apply the CLSS model to dendritic trees of reconstructed neuron

morphologies. Using parameter values from experimental studies in the literature,

we show that the tradeoffs presented in the previous chapter still apply, and that the

performance of synaptic scaling is heavily constrained by morphology.

5.1 Robustness and morphologies

5.1.1 Simplified morphologies through transfer functions

Predicting the behavior of a large dimensional system can be nontrivial and computationally
expensive, especially with nonlinearities. Neuronal systems fall under this category, and
attempts to build reduced order models of neurons started with Rall’s in his equivalent cylinder
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300 μm 
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unpotentiated synapse
potentiated synapse

a. granule cell b. Purkinje cell c. symmetric L3 pyramidal cell

d. Martinotti cell e. asymmetric L3 pyramidal cell f. CA1 interneuron

Fig. 5.1 Neuron morphologies considered in this chapter. Green dots correspond to cell body
(soma), and red branches correspond to synapses that undergo potentiation. In this chapter,
we simulated these morphologies with parameter values in Table 5.1

[126], and other models [98]. These techniques rely on coordinate transformations and on
ignoring "disconnected" or "unseen" states (an example of this is the case of Householder
transformations [64]).

We take a different approach to address the issue of reduced order models. We start with
transfer functions. The use of transfer functions is justified by our interest in the input-output
behavior. Specifically, we are interested in how the global and local controllers shape the
calcium response to achieve regulation. This implies that, from an input-output perspective,
similar morphologies can have different behavior and, conversely, different morphologies
can have similar behavior. How can we use transfer functions to cope with morphological
complexities?

We start by showing how transfer functions can be used as a low-cost model for predicting
the behavior of the original complex system. As we have shown before, the return ratio L(s)
of the CLSS model is a transfer function that correspond to an open loop system. Using
the Martinotti cell as a guiding example, we compute its return ratio L(s) and plot a family
of Nyquist plots for varying gain kG, as shown in Figure 5.2a. From this information, how
accurate is the prediction if we were to compute the maximum allowable kG before losing
stability? Firstly, we take the furthest and closest curves to −1 (emphasized by blue and red
colors), and extract the corresponding kG values. Next, we use those kG values to simulate a
Martinotti cell. Indeed, the one closest to −1 is nearly unstable (Figure 5.2b), hence agreeing
with the prediction we made from the open loop system, which was a transfer function
L(s) that corresponded to an SISO system. This is extremely powerful since we avoided
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Table 5.1 Model parameters.

symbol value reference
Forward velocity v f 1 µm s−1 Ranges in [122, 91, 101]
Backward velocity vb 0.5 µm s−1 Ranges in [122, 91, 101]
AMPAR exocytosis si dynamic varies with local control
AMPAR endocytosis s−i 0.01−1 s−1 Lower bound recorded in [77, 78]
Synapse/spine size ci {0.5,1,2} Ranges recorded in [139]
AMPAR degradation ωm,g 4.81×10−6 s−1 [154, 135, 43]
Global set point [Ca+2]target 0.5 nM Normalized. arbitrary.
Leakage conductance gleak 0.5 pS Arbitrary
Buffering parameters α , β 1 Chosen to shape sensitivity of [Ca+2] to V
Equilibrium potential Eg 20 mV Arbitrary
Maximum rate Smax 10 s−1 Arbitrary
Hill coefficient h 1 Arbitrary
Dissociation constant kA 0.5 Arbitrary
Timescale separation constant ε 0.1 Has to be 0 < ε ≪ 1.

simulating the original high-dimensional system, by simply computing the Nyquist curves
for multiple kG values.

This was the case for a Martinotti cell, what about other cell morphologies? Can we
extract more information about the real morphology beside predicting how aggressively it can
produce AMPARs before losing stability? The answer is yes. To clarify this, we first need
to illustrate the effects of morphology on the input-output description. We start by plotting
two important quantities. The first one is the morphological variance in neurite length,
which is computed by measuring the distance from the soma to the dendritic tips (using the
TREES toolbox [37])-this represents the x-axis. This property captures the symmetry of the
morphology. The second property is the reduction in the number of states, and it is a ratio
that is computed as follows:

Percent reduction =
number of compartments−number of poles of the transfer function

number of compartments

which will represent the y-axis. For a line, the number of compartments is equal to the number
of poles. This means that the transfer function of a line embeds in it information about all
the compartments. Figure 5.3 shows how this property is correlated to variance which leads
to the following observation. From an input-output perspective, feedback for symmetric
morphologies causes states to collapse, specifically, identical or sister compartments. The
takeaway point is that the degree of symmetry dictates how much lumping of identical states
takes place in the process of obtaining the transfer function from the real morphology.
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Fig. 5.2 Using transfer functions to predict robustness of Martinotti Cell.
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Fig. 5.3 Morphological symmetry, captured by the branches variance, strongly effects the
number of poles of the transfer function.

An important characteristic can be extracted from transfer functions, which is based
on the fact that they are invariant under coordinate transformations. This means that every
morphology can be mapped, via coordinate transformation (for example by Householder
transformation [64]), to an equivalent morphology which has the shape of a line. We will
call it Gline. Equivalent here means that the original morphology and the "equivalent line"
will have the same transfer function. Indeed, they are equivalent from a feedback perspective,
that is, the closed loop of the original morphology can be replaced by the closed loop of its
equivalent line preserving the overall behavior.

To further illustrate this idea. Let’s assume that we have a morphology with m com-
partments and that its transfer function has n poles. Then we can deduce that its equivalent
line Gline will have n compartments. This provides an indication of the true complexity of a
morphology from the perspective of closed loop regulation.
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In summary, every morphology is associated with a transfer function and can be mapped
to an equivalent line. The features of this equivalent line give us an abstract measure of how
hard/simple it is to achieve stability/robustness/accuracy for that specific morphology. In fact,
this observation substantiates that the control mechanism reacts to the input-output behavior.
As we saw, the behavior of a complex network is not more difficult than a line. In other
words, morphologies behave simpler than we think and what dictates the behavior is the
parameters of the equivalent line. Those parameters, in turn, reflect the effect of morphology
on the regulation problem.

100 um

d1 d2x1 x2 xn-1 c – xn… d3 d4

100 um

100 um

coarsening layering 

order
reduction 

Fig. 5.4 From a real morphology to a reduced-order model.

5.1.2 Input-output description of morphology

Now we take the notion of the equivalent line a step further towards a reduced-order model.
If every morphology can be mapped to an equivalent line, it makes sense to search for a
simplified/reduced line model that captures, with few compartments, the rough behavior of
the system. Unlike equivalent lines, the reduced-order models considered here are equipped
with homogeneous parameters. Specifically, we study ball-stick models [5] and how accurate
they can capture the behavior of real morphologies.

In the ball-stick model, the complex morphology of the neuron is replaced by a line of
compartments with a single synapse placed at the tip, as shown in Figure 5.4(bottom), with
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parameters for diffusion d, capacity c, number of compartments n, and degradation ω . Real
neuron morphologies vary in size and symmetry, which are expected to impact parameters in
their ball-stick representation. For example, a longer neuron like a pyramidal cell would best
fit to a longer ball-stick than that of a granule cell.

The fitting to a ball-stick model begins with a raw neuron morphology (Figure 5.4-top).
The morphology can be coarsened to some fixed distance (100 µm) between nodes using
the TREES toolbox [37], shown in Figure 5.4. The layered depiction clarifies the logical
progression of cargo through branches. The coarsened model is simulated, and input u
and output gavg are recorded. Ball-stick parameters are estimated using Grey-Box Model
Estimation from the MATLAB system Identification Toolbox. Grey-Box Model Estimation
uses the structure of the nonlinear ball-stick model with fixed n for fitting to input and output
vectors.

System identification is performed to demonstrate that a ball-stick model alone can
capture the dynamics of a real neuron morphology. Figure 5.5 shows that the estimated
parameters are converging as n increases. Subsequently, the ball-stick fit improves. Further-
more, we perform another set of simulations where we fix the number of compartments at 4,
and map the different morphologies to study how much such a low-dimensional reduced-order
model can capture the dynamics of morphologies. We found that the 4−dimensional system
gives an accuracy of fitting the input-output behavior between 69-96% for the different
morphologies as shown in Table 5.2.

The main conclusions of this section are twofold. Firstly, due to the control mechanism
and by virtue of feedback, the input-output behavior of the regulation problem over a
morphology is analogous to that of a line, and what matters is the parameters on that line.
This is remarkable since the reduction of complexity is considerable, both for analysis and
computation. Secondly, this means that the observations and the trade-offs discussed in
previous chapters will hold for real morphologies. This will be discussed in detail in the next
section.

5.2 Neuron size and symmetry impact scaling performance

We have demonstrated how the neuron morphology is fundamentally captured by its transfer
function, equivalent line, and its ball-stick representation. Other scaling attributes, efficiency
and accuracy, are also affected by neuron morphology. In this section, we continue to
examine how real morphology shapes scaling performance, by looking at several dendritic
arbors, as shown in Figure 5.1, using parameter values that agree with those experimentally
reported in the literature (Table 5.1).
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Fig. 5.5 Parameters fitting and quality of fit.

5.2.1 Settling time and scaling accuracy in real morphologies

We first examine scaling performance across the spatial dimension. The progression of
AMPARs distribution over time is depicted in Figure 5.6(left). Granule cells have small
morphologies and settle within 1 hour (column a). Martinotti and Purkinje cells are larger
and fairly symmetric and settle within 5 hours (columns b and d, respectively). The CA1
interneuron and pyramidal cells require up to 15 hours for complete synaptic scaling (columns
c, e, and f respectively). Larger cells need more time to get AMPARs to all the compartments,
including the distal ones.

The scaling error for individual synaptic compartments (q, see Equation (4.2)) is depicted
over each morphology in Figure 5.6(right). Regions of poor accuracy have high AMPAR
demand or low cargo supply. This includes regions far from the AMPAR source (soma) and
adjacent to potentiated synapses, evident in the pyramidal cells (c and e). High densities
of bifurcations also increase scaling error, evident in the CA1 interneuron ( f ). Bottleneck
effects [161] might also play a role in limiting AMPAR supply (e and f ).

In Figure 5.7, kG was tuned such that each morphology has a similar stability margin
for a fair comparison of scaling efficiency and accuracy. All morphologies have a stability
margin in the range [0.2791,0.344]. Smaller neurons scale synapses with better performance.
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Table 5.2 Ball-stick model parameters fits for various neuron morphologies constrained to
n = 4

Estimated parameters Quality of fit
Cell type diffusion d capacity c degradation w % fit
CA1 interneuron 1.072 0.80 0.1062 93
granule cell 0.084 0.93 0.0002 82
L3 pyramidal, asymmetric 2.134 0.99 0.0781 78
L3 pyramidal, symmetric 0.100 1.11 0.0651 87
Martinotti cell 0.040 3.03 0.0593 96
Purkinje cell 0.029 14.52 0.0672 69
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AMPAR density (% change)
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Fig. 5.6 Synaptic scaling settles throughout each morphology at four time points (left) and
Scaling error at steady state following LTP reveals increased error in distal compartments
(right).

The settling times for all neurons vary significantly, with the granule cell reaching 98 %
steady-state in under 5.5 hours, while large neurons like the CA1 interneuron require 141
hours.

The observations in this section agrees with those made with toy neuron models in the
previous chapter: less branched and smaller morphologies perform significantly better. This
is specifically related to the line vs star study in Figure 4.10. Considering the line and star
topologies to be the two extreme cases of symmetry, morphologies lie in between these two
cases. However, effective length and the size of the morphology plays an important role.
Therefore, beside variance, which reflects the symmetry of the morphology, we study the
effects of mean/effective length on the neuron’s performance in the next section.



5.2 Neuron size and symmetry impact scaling performance 71

0 50 100 150 200 250 300
time to 98% steady state (hr)

0

10

20

30

40

S
ca

lin
g

 e
rr

o
r 

( 
%

,  
Q

  )

a
b

c
d

e

f

Fig. 5.7 Smaller, more symmetric morphologies have better scaling performance.
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Fig. 5.8 Comparing the scaling performance of the neurons’ different morphologies against
their mean length.

5.2.2 Morphology effect on the three attributes of performance

Here we consolidate measures of neuron morphology to predict scaling performance. For
each morphology, we average all soma-tip path lengths to estimate an effective neural mean
length. In Figure 5.8, metrics of scaling performance are plotted against mean length. In
general, cells with low mean lengths have improved scaling performance. Neurons with
the highest mean length (the CA1 interneuron and asymmetric L3 pyramidal cell) have
the slowest convergence rate, accuracy, and robustness. In connection with the toy neuron
models, shorter cells are more robust longer ones (Figure 4.5b); this pattern is preserved in
real morphologies.

The variance in soma-tip lengths also correlates with scaling attributes, as shown in
Figure 5.9. In connection with the toy neuron models, more symmetric cells scale much
better than asymmetric ones (Figure 4.11); this pattern is also preserved in real morphologies.
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Fig. 5.9 Comparing the scaling performance of the neurons’ different morphologies against
their variance.

Neurons with large and extended branching patterns are harder to regulate than shorter
and less branched ones. The explanation becomes intuitive when we use the ball-stick
approximation in place of morphologies. A shorter ball-stick model is always easier to
control and regulate, as morphology effects are minimized in this case. These observations
lead us to believe that the tradeoffs we obtained using toy neurons models 4.13 are indeed
still applicable in real morphologies.

5.2.3 Regeneration of the tradeoffs in a Martinotti cell

We lastly try to regenerate the 2−D tradeoffs, presented in Figure 4.13, but now for a real
neuron morphology. We perform such simulations for more simple (Martinotti) and complex
(pyramidal) neurons in Figure 5.10. We perform the simulations with varying kG, kL, and
s−i. In all three tradeoffs, the more complex (asymmetric) neuron—the pyramidal cell—has
worse scaling performance.

As expected, real morphologies replicate the tradeoffs observed in the previous chap-
ter. Indeed, neurons appear to have optimized their performance with respect to the three
attributes. Given the current model, the neuron cannot improve one attribute unless one or
the other two are worsen. The only apparent way performance can be improved is if neuron
undergo morphological or structural changes. This indeed is a physiologically possible
option that we explore in Chapter 8.

5.3 Chapter summary and concluding remarks

This chapter can be summarized in the following key points:
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Fig. 5.10 Martinotti and Pyramidal cells navigate the tradeoff between scaling attributes.

1. The performance of the regulation mechanism is determined by the input-output
behavior of the dendritic tree. Therefore, the reduction to approximate models where
the morphology is reduced to a line, like the simplified ball-stick model, is justifiable.

2. Specific features of the neuron morphology severely limit the performances. For
example, length and variance of the morphology enforce hard constraints on the overall
performance.

We have shown how different dendritic morphologies perform differently, by showing that
synaptic scaling in short and less branching networks is more robust, efficient, and accurate
than longer and elaborate ones. These observations were guided by the fact that, to the cell
body, the complex dendritic tree is equivalent to a simple line. Therefore, from the next
chapter onwards, we consider simple toy neuron models, such as lines and binary trees, at
the expense of more complex models. This will allow us to clarify other important properties
and tradeoffs at the cost of geometrical details on the morphology. Nonetheless, this sacrifice
is of a limited cost, as we have shown in this chapter.

We have established that scaling performance largely depends on neuron morphology. We
have also shown that high demand for AMPARs (increasing ci) results in imperfect synaptic
potentiation and scaling. Indeed, experiments and computational studies have demonstrated
that synapses compete among themselves for resources [132, 148]. Synaptic competition
results from the neuron’s homeostatic set point [Ca+2]target, which sets a constraint on the
number of allowable AMPARs ∑gi. ∑gi remains unchanged despite an increase in ci during
LTP, which results in imperfect scaling. As discussed earlier, this is explained by the fact that
proximal synapses scale better, since they have earlier access to a larger pool of AMPARs.

Up to this point, we have only considered transport of m, but not g. An example of
g transport is the lateral diffusion of AMPARs, or "cross-talk" between synapses [46].
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Incorporating such lateral diffusion changes the g dynamics 1 to

ġi = simi(ci −gi)− s−igi −ω
g
i gi +dgi−1 −2dgi +dgi+1. (5.1)

where d is a diffusion coefficient. Lateral diffusion appears to normalize the steady-state
distribution of g, and therefore improving accuracy. However, experimental measures of
diffusion rates between synapses—and therefore across dendritic spine necks—are signif-
icantly lower than active microtubule-based transport rates v f and vb [51]. This limits g
normalization, which suggests that the impact of lateral diffusion on scaling performance is
negligible, hence the tradeoffs are not heavily altered, and hence maintained.

Using transfer functions and Nyquist stability criterion, we analyzed the robustness of
the CLSS model, as shown in Figure 4.5b. In agreement with Hebbian-form of plasticity,
we saw that increasing ci indeed contributes to the reduction of the system’s robustness,
and therefore destabilizing it. This is reminisent of persistent LTP that ultimately leads to
excitotoxicity. However, if we consider toy neuron models similar to that in Figure 4.10(left),
then varying ci can have a different effect. By different we mean that potentiating a proximal
synapse versus a distal one does not exhibit the same influence- in the sense of robustness of
the model and its stability margins.

The discrepancy between proximal and distal LTP can be understood in the context of
phase lag. LTP of proximal synapses increases cargo demand close to the soma, which
is easily achieved with little time delay. LTP in the distal synapses imposes a demand
for cargo that is more difficult to globally regulate, given the increased phase lag. LTP in
proximal synapses shifts the mean distance of all cargo closer to the soma, which alleviates
the destabilizing effect. LTP in the distal synapses shifts the mean distance of all cargo
further, which increases phase lag and intensifies the destabilizing effect. This behavior
can be clarified using the aforementioned ball-stick model [5]. As mentioned before, the
ball-stick model is an abstract approximation of a dendritic tree in which all synapses are
lumped into a single compartment at the tip, and the length of the stick reflects the effective
length of the dendritic tree. In this setting, distal LTP results in a ball-stick approximation
with larger effective length than that of a proximal LTP.

In the following chapters, we take advantage of the results of section 5.1 and focus
on simple toy neuron models, mainly models of lines and binary trees. We will study
variations of the CLSS model to focus on specific aspects of the phenomena of homeostatic
regulation of average neuron activity. In the next chapter, for example, we study the effects
of activity-dependent degradation.

1This does not effect the proof of Theorem 3. See proof remarks.



Chapter 6

Synaptic scaling in the presence of
activity-dependent degradation: a
local-global tale

"Think globally, act locally"

Unknown

In this chapter we study the effects of activity-dependent regulation on synaptic scaling.

Specifically, we analyze the role of activity-dependent degradation ωm and its effects on

performance and stability.

6.1 Introduction and motivation

The CLSS model is most sensitive to variations in the degradation rate ωm, as evident
from the robustness study in Figure 4.5b. Intuitively, this is understood since degradation
"dissipates" mass from the system and prevents it from accumulating. We made a simplifying
assumption by setting degradation to occur at a constant rate. Here, we further explore the
implication of activity-dependent degradation on the performance of the neuron and scaling.

Neurotransmitter receptors and ion channels are dispersed throughout the dendrites of
postsynaptic neurons. They are transported from the cell body all the way to extremities
of the dendritic tree. They are next inserted into synaptic sites according to inputs, activity,
and location in the network. An important feature of synaptic plasticity is a persistent and
long-term change in the synapse undergoing activity. Such changes necessarily require an
activity-dependent protein turnover rate.
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Experimental data suggest two broad classes of activity-dependent feedback mechanisms
in neurons: global and local feedback. Global feedback regulates the synthesis of material
at the cell body, necessarily including all mRNA synthesis. Local feedback regulates the
synthesis and delivery of proteins in the vicinity of the site of use, throughout the dendritic
tree [55, 60, 56]. The role of both mechanisms in maintaining neuronal function is the subject
of intense experimental research and debate, and is believed to vary substantially across
biological contexts, including animal species, brain area and neuron type. Nonetheless, these
mechanisms serve two broad goals:

(i) maintaining average electrical activity at an (approximate) set point;

(ii) supporting heterogeneous distribution of receptors and ion channels across the dendritic
tree.

In the previous chapter, specifically in the CLSS model, (i) and (ii) were achieved by
(3.4) and (3.8), respectively. In Equation (3.4), cargo synthesis rate was set to be dependent
on the mismatch between the global set-point and average neuron activity; in this way,
cargo synthesis is regulated in order to achieve homeostasis, and global synaptic scaling
was the emergent phenomena. Equation (3.8) was a local adaptive activation mechanism
that regulated the insertion of active cargo into synaptic sites, with the goal of preventing
Hebbian-like instabilities. In this chapter we continue our study of local activity-dependent
mechanisms by exploring other biologically relevant processes, focusing on the role of
activity-dependent degradation.

6.2 A modified synaptic scaling model

To study activity-dependent degradation, we consider a variant of the CLSS model.
A simplified sketch of a neuron is shown in Figure 1. As we did in Chapter 3, we model

the neuron as an interconnection of n compartments. The first represents the soma (or cell
body), while the remaining compartments refer to sections of the dendritic tree. Using mi to
denote the concentration of material in compartment i, the variation in time of mi is described
by

ṁi =− (ωm
i +

n

∑
i=1,i̸= j

vi j)mi +
n

∑
j=1, j ̸=i

v jim j +biu

where vi j ≥ 0 is the trafficking rate or speed of material moving from compartment i to
compartment j, and ωm

i > 0 is the degeneration rate of mi. We assume vi j = 0 if and only if
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precursor species

functional species

Cell Body

nucleus

Dendrite

Fig. 6.1 Schematic of a neuron showing its structure and sites where processes of interest
occur, from the cell body to the extremities of the dendritic tree.

i is not connected to j. The input u represents mi synthesis or production. We assume that
material production occurs primarily in the cell body, where the required machinery exists,
including nucleic acids and ribosomes. Overall, the dynamics is represented by

ṁ =(L−Ωm)m+Bu (6.1)

where m ∈ Rn, L ∈ Rn×n, and Ωm = diag{ωm
i }. The off-diagonal elements of L satisfy

li j = v ji. The diagonal elements of L satisfy lii =−∑ j=1, j ̸=i vi j.
(6.1) is a drift-diffusion system modeling active intracellular transport, performed by

motor proteins [161, 5]. To allow the material to reach every point in the dendrite, we assume
that there is alway a path from the first compartment to any other compartment. We also
assume bidirectionality, that is, if if li j ̸= 0 then l ji ̸= 0.

Similar to the CLSS model in Chapters 3-5, species g is a functional cargo that modulates
the electrical activity of the neuron. In other words, m is produced in the soma, while a
reaction occurs mi → gi in synaptic sites. This reaction takes place according to the rule
ġi = simi−ω

g
i gi where si is the transformation factor from mi to gi and ω

g
i is the degradation

rate of gi. In matrix form,

ġ =Sm−Ωgg (6.2)

where g ∈ Rn, S = diag{si}, Ωg = diag{ω
g
i }, and S,Ωg ∈ Rn×n. In the CLSS model in

Chapters 3-5 m and g were AMPARs and the only difference was their location in the
dendritic network; mi was an inactive dendritic cargo, while gi was an active synaptic
cargo. Furthermore, the reaction (6.2) was bidirectional/reversible (s−i ̸= 0). In this chapter,
however, the interpretation of species m and g is slightly different, and more general in
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certain aspects. Firstly, m here is interpreted as precursor species and g is a functional species
that is obtained after m undergoes a number of reactions. An example of this situation
is when equation (6.2) models translation or protein synthesis. In this situation, m is a
mRNA-type cargo, where g is the protein or ion channel needed to modulate neurons activity.
Therefore, we replace the activation and inactivation rates from the previous chapters with a
transformation factor si.

The first-order dynamics (6.2) implies that the reaction mi → gi is not happening in-
stantaneously, but rather takes time. Furthermore, from equation (6.1), the new synaptic
molecule is not inserted back to the dendritic arbor, and hence is not transported. This
biological setting is maintained in the following chapters. Moreover, equation (6.2) adds
a theoretical simplification to the model, since the dynamical activation rate si(t)(ci − gi)

was replaced with z constant rate si. As we laid out in the introduction of this chapter,
the local control will be implemented in the degradation process, in a fashion that will be
revealed shortly. As a result, we will model LTP events differently; instead of instantaneously
changing the capacity/number of slots ci, we will do this through assigning local set-points
to compartments.

leaky-integrator
Transport
dynamics

+
[Ca2+]target eG u m

h(.) : g → [Ca2+]

[Ca2+]

-

static nonlinearity

insertion
Channel g

Membrane
Potential

Calcium
influx

V = Vss

∑

Fig. 6.2 Block diagram of the closed loop system (6.1)-(6.7).

The processes that describe the generation of the feedback signal from functional cargo g,
i.e. h(.) : g → [Ca2+], to the homeostatic cargo synthesis u is unchanged from the previous
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chapters. Nonetheless, we state the system of equations for readability.

Readout map: gavg =
1T g

n
=

Σgi

n
(6.3)

Membrane potential: V :=Vss =
gavgEg +gleakEleak

gleak +gavg
. (6.4)

Calcium signal: [Ca2+] =
α

1+ exp(−V/β )
(6.5)

Error: eG = [Ca2+]target − [Ca2+] (6.6)

Global controller: u̇ = kGeG −ωuu (6.7)

Equations (6.3)-(6.7) matched equations (3.4)-(3.6) in the CLSS model. In Figure 6.2,
we show the block diagram describing the interconnection between the different dynamics
and relations. Theorem 4 below is similar to Theorem 3 after implementing the modifications
we presented above. These modifications include replacing the adaptive activation and
inactivation terms with a single transformation factor, and implementing the local irreversible
reaction that transform trafficked mi into functional cargo gi.

Theorem 4 Under Assumption 1, for any selection of system parameters, there exists a
feedback gain k̄G > 0 such that the equilibrium of the closed loop model (6.1)-(6.7) is
globally exponentially stable for any 0 < kG ≤ k̄G.

6.3 Limitation of the homeostatic controller

In agreement with the CLSS model in the previous chapters, the closed loop system (6.1)-
(6.7) achieves stable regulation. The modified closed loop system exhibits the same tradeoff
between convergence rate and robustness; this is illustrated via simulations, based on topology
and parameters in Figure 6.3. For increasing values of kG, the simulations in Figure 6.4 reveal
that the system is well-behaved and achieves regulation for small values of kG. Convergence
improves for larger values of the feedback gain. Eventually, however, high values of feedback
gain lead to instability (oscillations).

This fundamental limitation can be explained in a similar way to the previous chapters.
It follows from the particular form of the Nyquist diagram of the linearized system, which
shows a Nyquist locus similar to the one in Figure 4.1a. As a result, the gain margin of the
system is finite, that is, above a certain gain the system becomes unstable. The relationship
between increasing kG and the emergence of oscillations is attributed to the interconnection
nature of the dynamics (6.1)-(6.7), as portrayed in Figure 6.2. The return ratio of the block
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vi j = 1 µms−1 if i < j vi j = 0.5 µms−1if i > j ωm
i = ω

g
i = 0.1 s−1 gleak = 0.25 µS

Eleak =−50 mV Eg = 20 mV α = 1 [Ca2+]target = 0.5 µM
β = 1 ωu = 0.0001 s−1 kG = varies si = 1 s−1

Fig. 6.3 Neuron topology and parameters.
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(c) kG = 0.3

Fig. 6.4 Response of closed loop system (6.1)-(6.7) applied to the neuron in Figure 6.3.
Increasing feedback gain kG destabilizes the system. Top panel shows [Ca2+] response, and
bottom panel shows gi response.

diagram has at least a relative degree 3, which has finite gain and phase margins. Increasing
kG gradually decreases those stability margins until the closed loop system is fully unstable.
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It is important to emphasize that the relative degree of return ratio is also related to the
structure of the readout (6.3) map. The average represents the best case scenario from a
performance perspective. Alternatively if the functional cargo gi were scattered throughout
the network in a nonuniform manner (for example, if we set the reaction mi → gi to occur
only in even compartments), then the resulting return ratio would have relative degree > 3,
and hence higher sensitivity to variations in kG.

The global controller guarantees stable average electrical activity of the neuron and
scaling is still a prominent feature of the model. In the following section we seek a local
control mechanism that achieves two objectives. Firstly, the local control mechanism should
improve the tradeoff between convergence rate and robustness, which is mediated by kG.
Secondly, it should shape the overall distribution of ion channels gi in the dendritic tree. The
first goal was alluded to in the robustness study in Section 4.2.1, as illustrated in Figure 4.5b.
The second goal is similar to local action in (3.8). The second objective, therefore, serves the
neuron’s need to support changes to the distribution of receptors and ion channels that are
imposed by other processes, while gradually normalizing activity to a target level [36, 151].

6.4 Distributed adaptation

Taking inspiration from [55, 60, 56], we propose a distributed adaptation mechanism to
enable fine tuning of ion-channel concentrations, based on adaptation of the degradation rates
ωm

i in feedback from the local concentrations gi. The adaptation penalizes the mismatch from
a desired target while maintaining (physiological) positive degradation rates. The mechanism
is defined by the following basic model

i ∈ I : εω̇
m
i =−γLω

m
i + kL(gi − ḡi)+φℓb(ωi, φ̄)

i ̸∈ I : ω
m
i = ω

m
i (0)

(6.8)

where I is an index set identifying the compartments with active adaptation, γL > 0, kL > 0,
and ε > 0 are generic filtering parameters; ḡi is the desired ion-concentration set point,
and φℓb(·, φ̄) is a decreasing barrier function, with domain (φ̄ ,∞), φ̄ > 0, whose role is to
guarantee that the adaptation of ωi never goes below the boundary φ̄ . φℓb(ωi, φ̄) should not
affect the dynamics away from the boundary φ̄ , as clarified by the next assumption.

Standing Assumption. For any given 0 < εφ̄ ≪ 1, we assume that the barrier function
φℓb(·, φ̄) satisfies φℓb(ωi, φ̄)≃ 0 and d

dωi
φℓb(ωi, φ̄)≃ 0 for all ωi ≥ φ̄ + εφ̄ .
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The time constant ε is typically small, to reflect the fact that the adaptation of ωm
i occurs

at a faster timescale than (6.1)-(6.7). Standard singular perturbation methods, and specifically
Theorem 2, lead to the following result.

Theorem 5 Under Assumption 1, for any given selection of system parameters, suppose that
there exist intervals 0 < kG ≤ k̄G and 0 < ε ≤ ε̄ for which the equilibrium (m∗,g∗,u∗,ω∗) of
the closed loop system (6.1)-(6.8) satisfy ω∗

i ≥ φ̄ + εφ̄ . Then, for kG and ε sufficiently small,
the closed loop equilibrium is exponentially stable.

Theorem 5 makes clear that the combination of global controller and distributed adap-
tation guarantees stability of the equilibrium of the system, which depends on the local
concentrations targets, ḡi, and on the calcium target, [Ca2+]target.

Remark 1 Degradation is hypothesized to be an activity-dependent phenomena [47], and
Equation (6.8) is one way to capture the dependence of precursor cargo degradation on
local active cargo concentration. Ideally, a reaction of this kind involves multiple processes
and signaling pathways, such as phosphorylation/dephosphorylation events; however, for
simplicity, we assume that degradation is directly proportional to active cargo concentration.
Alternatively, the dependence on gi can be replaced by a monotone relation that depends on
gi, like [Ca2+]i = f (gi). Doing so would not alter the conclusions of this chapter. Hence, we
adapt formulation (6.8) for simplicity.

Protein turnover depends on the balance between protein synthesis and degradation. In the
previous chapters, we investigated the effects of activity-dependent insertion/transformation
in equation (3.8). Conversely, in this chapter we explore the other possibility which is
to model degradation as an activity-dependent process. The ubiquitin proteasome system
(UPS) is a known degradation machinery in proteins [62], and in neurons. Moreover, it is
influenced by neuronal activity [48] (and references in [7]). For example, a disruption in
the ubiquitin-ligase enzymes (E3), a class of UPS pathways, mediated the concentrations of
Arc and AMPARs in synapses [69]. Furthermore, postsynaptic glutamate receptors can be
ubiquitinated as a way to decrease their concentration in the synapse [26]. In fact, regulated
protein degradation in neurons has been identified as a way to modulate synaptic growth,
development, transmission, and plasticity [75, 85, 42, 164, 111].

As a matter of illustration, we revisit the simulations in Figure 6.4, to show the effective-
ness of the adaptation mechanisms at fine tuning the distribution of ion-channels. Adaptation
is applied to compartments 3− 7, with local set points ḡi = 0.5. The response of these
compartments is shown by the red traces. Figure 6.5 shows how local set points are recovered
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for increasing values of the local gain kL. Moreover, the local adaptation has a stabilizing
effect on the closed loop dynamics, substantially reducing system oscillations for kG = 0.03.
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(a) kG = 0.03, kL = 1, γL = 1.
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(b) kG = 0.03, kL = 20, γL = 1.

Fig. 6.5 Response of the closed loop model (6.1)-(6.8) for ḡi = 0.5 and ε = 0.1.

The simulations in Figure 6.5 suggest that the two objectives are achieved, namely im-
proving the tradeoff between convergence rate and robustness, and supporting heterogeneous
concentration profiles of g. In this way, rapid changes in the efficacy of synapses that are
involved in potentiation can occur, while the overall average activity is maintained over
longer timescales.

The simulations in Figure 6.6 further illustrate the effectiveness of the local action to
cope with a perturbation on the rates s4 and s5 occurring at t = 300. After a brief transient,
the desired set-point is restored.
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Fig. 6.6 Perturbed response of the closed loop model (6.1)-(6.8) for kG = 0.03, kL = 20, and
γL = 1. At t = 300, s4 and s5 switch from 1 to 2. The system recovers.

6.5 Synaptic plasticity and competition

In Chapters 3-5, we modeled LTP/LTD events by modifying capacities ci. Here, we will
model such events by modifying the local set point ḡi. In both situations, these changes are
being introduced exogenously, resulting in a local increase or decrease in the concentration
of receptors at the membrane, where communication with other cells can occur.

In this setting, the global controller (6.7) is still responsible for synaptic scaling, which
sets the average number of receptors in the system. On the other hand, the local action sets
the local set-point in response to changes like LTP/LTD or Hebbian-like events. In what
follows, we show that there might be cases where a competition arises between the global
and local objectives.

Figures 6.7a-6.7b show the system response as [Ca+2]target is gradually decreased. De-
creasing [Ca+2]target corresponds to decreasing the total amount of receptors in the system,
hence making it difficult for the local action to succeed in achieving ḡi. When the local
action fails to achieve the local set-point, it achieves the closest possible steady state given
the limited total mass in the system. The tug-of-war between the global controller and local
action can ultimately lead to instability. This is illustrated by gradually increasing the local
set point while maintaining a fixed Calcium target, as shown in Figures 6.8a-6.8b.

The previous simulations imply the extent of the success of the local action in comple-
menting the global controller. Meeting the prescribed objectives depends on three important
factors: synapse location with respect to the soma, global set-point, and local set-point.
Enough receptors must be present in the neuron (kG large enough) for the local action to be
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(a) [Ca+2]target = 0.3
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(b) [Ca+2]target = 0.1

Fig. 6.7 Decreasing the global set point for kG = 0.03, kL = 20, γL = 1.

effective. This is illustrated in Figure 6.5. Indeed, low levels of receptors may force the local
action to further deteriorate the neuron’s performance, as illustrated in Figure 6.8.

6.6 Chapter summary and concluding remarks

The chapter can be summarized in the following key points:

1. The constraint on the feedback gain kG < k̄G follows from the the composition and
interconnection of subdynamics of the closed loop system (6.1)-(6.7). The return ratio
of the feedback loop L(s) always has a relative degree ≥ 3. This also explains why kG

modulates the tradeoff between convergence rate and robustness.
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(a) ḡi = 0.8
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(b) ḡi = 1.1

Fig. 6.8 Increasing the local set point for kG = 0.03, kL = 20, γL = 1.

2. Activity-dependent degradation has a bidirectional effect on regulation, depending on
synaptic location, the local set-point, and global set-point.

Both local actions in (3.8), and in (6.8) correspond to rapid changes in synaptic efficacies,
by setting ε ≪ 1. Increasing the local sensitivity kL in both mechanisms amplifies the effect
of the local action, thereby improving the response to local activity in individual synapses.
Conversely, in situations of very high local feedback sensitivity kL, the scheme in (6.8) had a
destabilizing effect (Figure 6.8). This was not the case in the CLSS model.

In the next chapter, we analyze the effects of another biological limitation, which is
the finite capacities of dendritic compartments. Up to this point, we assumed that receptor
transport occur linearly and that trafficking rates v f and vb are fixed. We will study the effects
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of relaxing this assumption on the regulation of average neuronal activity. Moreover, we also
investigate the effects of varying the timescale of cargo synthesis.

6.7 Proofs

We start with the proof of Theorem 5. The proof of Theorem 4 is similar, and can be derived
from the proof of Theorem 5.

6.7.1 Proof of Theorem 5

Part 1 and Part 2 below satisfy the conditions of Theorem 2 which allows to conclude
the exponential stability of the equilibrium of the closed loop system from the analysis of
two reduced subsystems, namely the boundary-layer system and the reduced system, both
specified below.

Part 1: exponential stability of the boundary-layer system
Define the function φ(gi,ωi) = kL(gi− ḡi)+φℓb(ωi, φ̄). The boundary layer system is ob-

tained by finding the (parameter dependent) equilibrium ω̄m
i (gi) of (6.8), which corresponds

to the solution to the equation ωm
i =

φ(gi,ω
m
i )

γL
and belongs to the domain ω̄m

i (gi)≥ φ̄ + εφ̄

Consider the new coordinate zi = ωm
i − φ(gi,ωi)

γL
for all i ∈ I. Then,

żi =ω̇
m
i − d

dt
φ(gi,ωi)

γL

=− γL

ε
zi −

1
γL

(
∂φ(gi,ωi)

∂ωi
ω̇i +

∂φ(gi,ωi)

∂gi
ġi

)
=− 1

ε

(
γL −

∂φ(gi,ωi)

∂ωi

)
zi −

1
γL

∂φ(gi,ωi)

∂gi
ġi.

(6.9)

By introducing τ = t
ε
, in the limit of ε = 0, we obtain the boundary layer system

dzi

dτ
=−

(
γL −

∂φ(gi,ωi)

∂ωi

)
zi , for i ∈ I .

which is an exponentially stable system in the neighborhood of the equilibrium ω̄m
i (gi)≥

φ̄ + εφ̄ for γL > ∂φ(gi,ωi)
∂ωi

≃ 0.
Part 2: exponential stability of the reduced-order system
The reduced order system is obtained from (6.1)-(6.7) by replacing the diagonal matrix

Ωm with the diagonal matrix Ω̄m(g) whose elements on the diagonal are given by ω̄m
i (gi)≥ φ̄ ,
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whenever i∈ I, and by ωm
i (0), otherwise. We use a contraction argument to prove exponential

stability of the reduced system equilibrium.
Part 2.a: widened reduced system and linearization. As a first step, consider the “widened”

reduced order system obtained by replacing Ω̄m(g) with Ω̄m(q) where q(·) : R→ Rn is any
differentiable signal. The set of trajectories of the widened reduced system contains the
original reduced system trajectories, corresponding to additional constrain q = g. As second
step, consider the linearized dynamics of the widened reduced order system

δ ṁ = (L− Ω̄m(q(t)))δm+Bδu

δ ġ = Sδm−Ωgδg

δ u̇ =−kG
∂h
∂g

(
1T g

n

)
1T

n
δg−ωuδu

where h corresponds to the function arising from the composition of (6.3)-(6.5). In what
follows we construct a differential Lyapunov function to show exponential contraction of the
system [57], which implies exponential stability.

Part 2.b: diagonal Lyapunov matrix P for the transport sub-dynamics. Consider the
system η̇ = (L−ρI)η where ρ > 0 is a generic real constant. Following Chapter 4 in [52],
this system is positive (off-diagonal elements are all non-negative) and irreducible (by the
connectedness assumption on the neuron topology and the fact that li j ̸= 0 iff l ji ̸= 0, for all
i ̸= j). Furthermore, each column of L sums to zero therefore each column of L−ρI sums to
−ρ . As a consequence, the system has a dominant eigenvalue in −ρ . All other eigenvalues
have smaller negative real part. Thus, by Theorem 15 in [52], for any ρ > 0 there exists a
positive definite and diagonal matrix P such that (L−ρI)T P+P(L−ρI) < 0. Take P to
be any positive diagonal solution to this inequality for ρ = 1

2 min
i/∈I

{φ̄ ,ωi(0)}, which ensures

ρ ≤ 1
2λmin(Ω̄m(q(t))), for all t.

Part 2.c: Lyapunov argument. Consider now the differential Lyapunov function

V =
ρm

2
δmT Pδm+

ρg

2
δgT

δg+
1
2

δuT
δu.
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We have

V̇ =1/2ρmδmT (LT P+PL)δm−ρmδmT PΩ̄m(q(t))δm

+ρmδmT Pδu+ρgδmT Sδg−ρgδgT
Ωgδg

− kG
∂h
∂g

(
1T g

n

)
1T

n
δgδu−ωuδuT

δu

=1/2ρmδmT ((L−ρI)T P+P(L−ρI))δm

−ρmδmT P(Ω̄m(q(t))−ρI)δm

+ρmδmT Pδu+ρgδmT Sδg−ρgδgT
Ωgδg

− kG
∂h
∂g

(
1T g

n

)
1T

n
δgδu−ωuδuT

δu .

Then, using (L−ρI)T P+P(L−ρI)< 0, can be bounded by the following inequality

V̇ ≤

|δm|
|δg|
|δu|


T −λ1 0 λ6

λ2 −λ3 0

0 λ4 −λ5


︸ ︷︷ ︸

−Q

|δm|
|δg|
|δu|



where

λ1 =
ρm

2
min
i/∈I

{φ̄ ,ωi(0)} ≤
ρm

2
λmin(Ω̄m(q(t))) ∀t

λ2 = ρg|S|
λ3 = ρgλmin(Ωg)

λ4 = kG|
∂h
∂g

(
1T g

n

)
1T

n
|

λ5 = ωu

λ6 = ρm|P|.

The problem now reduces to proving that Q > 0. Firstly, we write the equivalent symmet-
ric problem Q+QT

2 > 0, that is,
ρm
2 min

i/∈I
{φ̄ ,ωi(0)} −ρg

2 |S| −ρm
2 |P|

−ρg
2 |S| ρgλmin(Ωg) −kG
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(
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n |

−ρm
2 |P| −kG

2
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(
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n

)
1T

n

∣∣∣ ωu

> 0



90 Synaptic scaling in the presence of activity-dependent degradation: a local-global tale

Next, by Sylvester’s criterion, the above matrix is positive-definite provided that its leading
principal minors are positive. For the first minor is

ρm

2
min
i/∈I

{φ̄ ,ωi(0)}> 0 ⇐⇒ ρm > 0 (6.10)

For the second minor we get

1
2

ρmρgλmin(Ωg)min
i/∈I

{φ̄ ,ωi(0)}−
ρ2

g |S|2

4
> 0

⇐⇒ ρm >
|S|2

2λmin(Ωg)min
i/∈I

{φ̄ ,ωi(0)}
ρg (6.11)

For the third minor we get

ρm

2
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(

1
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(
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Rearranging

λmin(Ωg)

(
ωu

2
min
i/∈I
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which can written as
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+
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(6.15)
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In order for the above inequality to hold, we need sum of the terms (6.12) and (6.13) to
dominate that of (6.14) and (6.15) . As a first step, we observe that (6.14) and (6.15) can be
made arbitrarily small by setting 0 < kG ≪ 1. Thus, what remains to show is that the terms
of (6.12) and (6.13) are positive; this can be guaranteed by satisfying the following relations:

from (6.12) : ρm <
ωu min

i/∈I
{φ̄ ,ωi(0)}

|P|2
(6.16)

from (6.13): ρm >
|S|2

min
i/∈I

{φ̄ ,ωi(0)}λmin(Ωg)
ρg . (6.17)

Therefore, combining (6.10), (6.11), (6.16), and (6.17), we conclude that the widened
reduced systems satisies V̇ ≤−λ̄V for some λ̄ > 0, whenever ρm,ρg,kG > 0 satisfy

1.
ωu min

i/∈I
{φ̄ ,ωi(0)}

|P|2
> ρm >

|S|2

min
i/∈I

{φ̄ ,ωi(0)}λmin(Ωg)
ρg.

2. kG is sufficiently small.

Part 2.d: exponential stability of the reduced system. The exponential decay of the
differential Lyapunov function guarantees incremental exponential stability of the widened
reduced system, [57, Theorem 1]. This implies exponential stability of the equilibrium of the
reduced system.

6.7.2 Proof of Theorem 4

The proof of the theorem corresponds to the argument in Part 2 in the proof of Theorem 5.
There is just a minor difference in the use of the matrix Ωm, which contains fixed elements
ωm

i . In other words, the proof steps are identical except that part 2.a is no longer needed,
since the dependence on g is no longer present. Then, a differential Lyapunov function is
proposed, along with contraction argument, to prove exponential stability the equilibrium.





Chapter 7

From linear to nonlinear transport:
stable and pathological scaling

"The problem with linear theory is that
it is not nonlinear."

John A. Adam, Mathematics in Nature

In order to capture the effects of finite capacity of dendritic arbor and microtubules, we

model the active transport of inactive cargo m as a nonlinear phenomenon. We also

explore the biological ramifications of varying the timescale of somatic cargo production.

Using dominance theory presented in Section 2.3, we analyze the behavior of the model

qualitatively, and asses how robust the system is to static and dynamics uncertainties.

7.1 Introduction and motivation

In the previous chapters we studied various aspects of synaptic scaling. In Chapters 3-5 we
focused on the convergence rate, robustness, and accuracy of scaling. In Chapter 6 we paid
special attention to the role of activity-dependent degradation on its effects on performance.
The goal was to explore further how global-local regulation mechanisms shape the neuron’s
overall behavior. Here, we take a deeper look at the trafficking phenomena, by replacing it
with a more detailed transport system. Moreover, we explore the implication of varying the
timescale of cargo production on performance, and how it cooperates with the new trafficking
model.

We consider two modifications to the model presented in Chapter 6. The first modification
is related to the cargo transport mechanism, i.e. the m dynamics. In the previous chapters
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we modeled cargo transport as a linear phenomenon, that is, the forward and backward
trafficking rates were fixed. Here we relax this assumption by replacing the m dynamics
with a nonlinear active transport model. The second modification is related to the cargo
production dynamics. This is done to explore fast production regimes, needed to compensate
for delays that can arise from a nonlinear trafficking system.

7.2 Modifications to the closed loop model

7.2.1 Nonlinear compartmental model for dendritic trafficking

For expository purposes we refer to the abstract neuron shown in Figure 7.1, characterized by
a simple line of compartments. We model mRNA trafficking by revisiting how microscopic
active transport along microtubules affects concentration mi in each compartment. Inspired
by [127], we derived a mean-field approximation of the random process governed by a Simple
Exclusion Principle [140] taking into account crowding effects of cargo particles. This results
in the following nonlinear (n+1)−compartmental model, with finite capacity compartments,
describing dendritic trafficking

channel mRNA

channel protein Cell Body

nucleus
Dendrite u

g1g2gn

m0

m1mn

Fig. 7.1 An abstract visualization of neuron showing where different physiological processes
take place.

ṁ0 = u−m0(c−m1)− ωmm1 (7.1)

ṁ1 = m0(c−m1)− v f m1(c−m2)+ vbm2(c−m1)− ωmm1

ṁi = v f mi−1(c−mi)− vbmi(c−mi−1)+ vbmi+1(c−mi)

− v f mi(c−mi+1)−ωmmi

ṁn = v f mn−1(c−mn)− vbmn(c−mn−1)−ωmmn.
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In (7.1), m0 is the mRNA concentration in the soma and mi ∈ [0,c] for i ∈ 1,2, . . .n is
mRNA concentration in the ith compartment, bounded above by a capacity, c; v f , vb, w are
forward velocity, backward velocity, and mRNA degradation, respectively; u is a homeostatic
cargo synthesis rate, which will be formulated later. In comparison to the CLSS model, c in
(7.1) is a capacity parameter and resembles the ci’s in (3.2). However, in (7.1) those spatial
parameters are uniform. In both settings, the effect of finite space is captured in the same
way; in the CLSS model, the level of occupancy in synaptic sites is given by (ci −gi), while
the level of occupancy in dendritic compartments is given by (c−mi).

7.2.2 Cargo production dynamics with varying timescale

Here we consider a modified global controller that takes the error signal eG = [Ca2+]target −
[Ca2+] in the following fashion:

τuu̇ = kGeG −ωuu−ϑ(u) (7.2)

where ωu > 0 sets the degradation rate of u and ϑ(u) enforces positivity and bound-
edness of u. A typical ϑ(u) is plotted in Figure 7.2. Here, for simplicity, we take
ϑ(u) = a tan

(
π

cu

(
u− cu

2

))
, for 0 < a ≪ 1.

ϑ(u)

ucu

Fig. 7.2 A typical function ϑ(u).

The remaining parts of the models are not changed from the previous chapter. For
readability, we list them below.

Protein dynamics: τgġi = simi −ωggi (7.3)

Calcium signal: [Ca2+] =
α

1+ expV/β
(7.4)

Membrane potential: V =
gavgEg +gleakEleak

gleak +gavg
, gavg =

Σgi

n
. (7.5)
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In (7.1), we ignored finite space effects in m0. This is done for mathematical convenience
reasons to prove the stability of the closed loop system. Nevertheless, adopting a finite
capacity soma c0 does not alter the conclusions and behavior. In other words, if the cargo
synthesis rate is replaced with the following term

u(c0 −m0)

in (7.1) it does not drastically change the behavior. This was shown in [5]. Similarly, the
assumption is unchanged in the next chapter. The stability result below is a restatement of
Theorem 4 with nonlinear transport, and with varying global controller timescale.

Theorem 6 Under Assumption 1, there exists a minimal time constant τ̄u > 0 such that, for
every τu > τ̄u, and [Ca2+]target the closed loop system comprised of (7.1)-(7.5) has a globally
exponentially stable equilibrium.

The above theorem guarantees that the overall behavior is similar to the one of the models
discussed in previous chapters, in spite of the finite capacity of the dendritic compartments.
In other words, the nonlinearity in the form of saturation in the modified trafficking system
does not fundamentally changes the property of the system. The system’s input-output
characteristics remain qualitatively similar. We further elaborate this through parametric
analysis in the following sections.

7.3 Model behavior and nominal parameters

Table 7.1 Nominal Parameter Values

v f = 1 µms−1 vb = 0.5 µms−1 ωm = 0.1 s−1 gleak = 0.25 µS
Eleak =−50 mV Eg = 20 mV α = 1 a = 0.0001

β = 1 τg = 1 ωg = 0.1 s−1 τu =varies
[Ca2+]target = 0.5 µM c = 1 ωu = 1×10−5 s−1 n = 3

Using the nominal parameter values in Table 7.1, Figure 7.3a-7.3c summarize the behavior
of the model for different values of the integration constant τu ∈ {1000,100,10}. Stable
regulation is achieved for large integrator time constant τu (slow feedback). Performance
improves for smaller time constants (fast feedback). However, performance rapidly degrades
with the occurrence of pathological oscillations when the integral feedback becomes too
aggressive (τu = 10). A nonzero ωu will lead to imperfect tracking. The analysis in Section
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7.4 shows that these simulations capture the generic robust behavior of the closed loop
system.
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Fig. 7.3 a-c Response of [Ca2+] for different values of τu where the dendritic trafficking
model was simulated with the nominal parameter values in Table 7.1 and Initial condition
x0 = [0.05;0.05;0.05;0.05;0.05]T .d-f two right-most eigenvalues of the Jacobian of the
closed loop system. For Figure e the right-most eigenvalue does not cross the imaginary axis.
Spectra were obtained by sampling 0.05 ≤ xi ≤ 0.95, where the black and blue dots depict
the movement of the two right-most eigenvalues.

7.4 Nominal behavior and differential analysis

Denoting by ẋ = f (x) the closed loop dynamics, Figure 7.3d-7.3f show the position of the
eigenvalues of the Jacobian ∂ f (x) for different levels of control aggressiveness, through the
selection of values τu ∈ {1000,100,10} and x, for nominal parameter values in Table 7.1.
For readability, we show only the two right-most eigenvalues of the Jacobian. The others are
always to the left of −0.5. Figure 7.3d-7.3f can be roughly separated in two groups: stable
linearization - ∂ f (x) has stable eigenvalues; Hopf-bifurcation - ∂ f (x) has unstable complex
eigenvalues. These two groups explain the difference between stable regulation at steady
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state and the appearance of oscillations for small τu. For instance, for large τu = 1000 (slow
feedback) there are two real, stable eigenvalues, as shown in Figure 7.3d. This is compatible
with the behavior in Figure 7.3a. As the integrator dynamics becomes faster, τu = 100, the
two right most eigenvalues coalesce and bifurcate, Figure 7.3e. Convergence becomes faster,
as shown in Figure 7.3b but damped oscillations may appear. Finally, for aggressive feedback,
τu = 10, the complex unstable eigenvalues in Figure 7.3f justify the occurrence of sustained
oscillations in Figure 7.3c.

The connection between Jacobian eigenvalues and closed loop behavior can be made
rigorous through dominance analysis, by solving the linear matrix inequality (2.7) for
{mi,g} ∈ [0.05c,0.95c], and using rates λ0,λ1,λ2 in Figure 7.3d-7.3f; CVX [66] was used to
numerically solve (2.7) for each case of τu. The first observation is that the system is always
2−dominant with rate λ2 = 0.5. A common solution P can be found for τu ∈ [3,3000]. This
has a striking conclusion: the steady state of the closed loop system is compatible with planar
dynamics, captured by a simple attractor. This means that for τu ∈ [3,3000] the closed loop
system either converges to a fixed point or enters into sustained oscillations. This conclusion
can be refined:

• (τu = 1000) For slow feedback, λ1 = 0.05 separates the two real eigenvalues into
two subgroups as shown in Figure 7.3d. Feasibility of (2.7) shows that the system is
1-dominant with rate λ1 = 0.05, which guarantees convergence to a fixed point.

• (τu = 100) As the integrator dynamics become faster the two right most eigenval-
ues bifurcate and 1−dominance is lost (Figure 7.3e). However, the system is still
0−dominant locally with rate λ0 = 0. This guarantees local convergence to the fixed
point.

• (τu = 10) For aggressive integrator dynamics the system is 2−dominant with rate
λ2 = 0.5. It cannot be 1-dominant (complex right-most eigenvalues) and it cannot be
0-dominant (unstable eigenvalues). 2-dominance combined with the instability of the
fixed point guarantees that sustained oscillations are the only possible steady state
behavior.

Figure 7.3 demonstrates the convergence rate and robustness tradeoff from the previous
chapters. Previously, this tradeoff was mediated by the feedback gain kG. Here, the same
tradeoff is replicated but for variation in the feedback time constant τu. Combining Figure 7.3
to the observations from previous chapters, both the gain and the time constant of feedback
improve the settling time at the cost of emergence of oscillations. Both parameters have the
same effect on the performance of synaptic scaling.
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Using dominance theory, we are able to further extend the convergence rate and robustness
tradeoff. It actually reveals a regime where the settling time can improve with minimal or
no emergence of oscillations. This is represented by the 1−dominance region. Beyond this
region, decaying oscillations arise and become pronounced; this is the 0−dominance region.
The two combined regions are related to the convergence rate and robustness tradeoff, shown
in Figure 4.15. The plot can be decomposed into two parts. In the first, the regulation is
nominal with no emergence of oscillation (1−dominance). In the second part, regulation is
aggressive with damped oscillations (0−dominance). Beyond these two regimes, regulation
is no longer maintained and the behavior is pathological (2−dominance). In the following
section, we derive parameter ranges for each region.

7.5 Robustness to static and dynamic uncertainties

7.5.1 Parametric uncertainties

The analysis above shows how the feedback time constant τu affects regulation. We now
study robustness to other physiologically relevant parameters (such as velocities and length)
using dominance theory, looking at the three regimes τu ∈ {1000,100,10}. For τu = 1000 a
stable closed loop behavior is preserved for any uncertainty in Table 7.2 (left column). For
τu = 10, the robustness of the oscillatory regime is guaranteed for parameter ranges specified
in Table 7.2 (right column). A local robust analysis is also developed for τu = 100. This is a
fragile case for dominance analysis, which we address numerically by looking at specific
local regions.

Table 7.2 Parameter ranges for {1,2}-dominance

1−dom: τu=2000, λ =0.05 2−dom: τu=20, λ =0.5
v f [µms1] [0.2,1.5] [0.5,1.5]
vb [µms1] [0.3,1.2] [0.4,1.5]

τg [0.1,1.5] [0.5,1.5]

For τu = 1000, the controller guarantees robust 1-dominance with rate λ = 0.05 to uncer-
tainties in Table 7.2 (left column). Indeed, the matrix P1 in Table 7.3 is a solution to (2.7)
for all parametric uncertainties in Table 7.2 (left column). Robust stable regulation is thus
guaranteed for these uncertainties. Stable regulation is also preserved when the velocity con-
stants are replaced by nonlinear functions v f (mi−1,mi,mi+1) and vb(mi−1,mi,mi+1) whose
slopes v′f and v′b belong to the intervals defined in Table 7.2.
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Table 7.3 Solutions to (2.7) for uncertainties in Table 7.2.

1−dominance 2−dominance

P1 =


53.7188 45.0058 47.1634 0.4707 −476.4789
45.0058 58.9272 50.1640 −2.1185 −499.3479
47.1634 50.1640 59.7843 −5.7063 −495.9245
0.4707 −2.1185 −5.7063 7.2869 −1.5904

−476.4789 −499.3479 −495.9245 −1.5904 33.7697

 P2 =


7.4607 −29.7730 −59.3040 −1.5610 −22.0651

−29.7730 2.2651 −22.8007 −8.4190 7.8215
−59.3040 −22.8007 33.1752 −12.6506 50.0661
−1.5610 −8.4190 −12.6506 11.9041 25.8331
−22.0651 7.8215 50.0661 25.8331 −52.7973



For τu = 10, the closed loop system is robustly 2-dominant with rate λ = 0.5 to uncer-
tainties in Table 7.2 (right column). This is certified by the matrix P2 in Table 7.3 which is a
solution to (2.7) for all parametric uncertainties in Table 7.2 (right column). As discussed
in other sections, 2−dominance is not sufficient to claim robust oscillations. However, the
unique equilibrium of the system is always unstable for parameters in Table 7.2 (right column)
which, combined with 2-dominance, guarantees robust oscillations.

For τu = 100, the closed loop is moving from a stable to an oscillatory regime (complex
stable poles in the Jacobian). High sensitivity to parameter variations is thus expected. Table
7.4 shows the trade-off between parameter ranges and size of the region of 0−dominance.

Table 7.4 0−dominance: τu = 200, λ = 0.

25% around x∗ 20% around x∗ 15% around x∗

v f [µms1] [0.7,1.5] [0.6,1.7] [0.5,1.8]
vb [µms1] [0.4,1.3] [0.3,1.4] [0.2,1.5]

τg [0.5,1.2] [0.3,1.5] [0.15,1.65]

The robustness analysis done in Chapter 4 differs from the one presented here. In Figure
4.5b, the Nyquist criterion provided a graphical tool to study parametric variations, where
we varied one parameter at a time. Furthermore, let p be a parameter in our model, and let’s
assume that we are considering parameter range [pmin, pmax]. It is not possible to conclude
that the closed loop system will be stable for the parameter range by only testing the Nyquist
plot corresponding to the minimum and maximum parameter value, namely pmin and pmax.
This is due to the rational representation of transfer functions. Using dominance theory,
however, we saw how we were able to derive robustness results for multiple parameter ranges
at a time, by computing a single matrix P. This was done for 0−,1−, and 2-dominance.

7.5.2 A special case of robustness: growth

How does a neuron tune its transcription rate in the presence of growth? A bigger neuron
requires more biomolecules to be synthesized and their traveling distance is longer. With
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these variations, can a neuron withstand and maintain a stable nominal behavior? Growth can
be modeled in two ways: by increasing the number of compartments or by adapting capacity
and velocity parameters. We adopt the latter for simplicity.

We consider 1-dimensional growth, where L represents the neuron’s total length. The
identity c = L/n relates length L to compartment’s capacity c and to compartments number n.
Growth corresponds to larger L thus larger capacities. Forward and backward speeds are also
updated accordingly. Starting from the microscopic picture, suppose that each compartment
can fit c number of molecules as shown in Figure 7.4. The figure shows a large compartment
z j of capacitance c and its constituent unit compartments xi’s, each of capacity 1. Both
representations are of the same trafficking system, but with different discretizations. In fact,
both x and z capture m concentrations, but with different capacities. The rate of change of
molecules in compartment z j is given by

ż j = vxi−1(1− xi)− vxi+c−1(1− xi+c) (7.6)

where the internal exchange of molecules sum to zero. We focus on particles that enter and
leave z j, assuming that particles are homogeneously distributed and spatially indistinguish-
able (well-mixed) in each compartment z j, that is,

xi = xi+1 · · ·= xi+c−1 =
z j

c
. (7.7)

Substituting (7.7) into (7.6), we get

ż j = v
z j−1

c

(
1−

z j

c

)
− v

z j

c

(
1−

z j+1

c

)
=

v
c2 z j−1

(
c− z j

)
− v

c2 z j
(
c− z j+1

)
. (7.8)

Equation (7.8) shows that, by increasing L, the compartment size increases linearly and
the velocities scale with 1/c2 or equivalently 1/L2. In summary, growth is modeled by the
following parameter scaling in (7.1):

v f →
v f

c2 , vb →
vb

c2 , c =
L
n
. (7.9)

Within this modeling framework, the question of growth reduces to a question of robustness
to parameter variations. The first question is: given an integrator time constant τT , how much
can the neuron grow before loosing stability? We answer through 1−dominance, by deriving
intervals of length L that guarantee 1-dominance for a fixed time constant τu, as shown
in Figure 7.5a. As expected, stable regulation for longer neurons requires less aggressive
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Fig. 7.4 A schematic representation of equations (7.6)-(7.7).

feedback (larger τu). For any time constant τu, there is a threshold length after which 1-
dominance is lost. This regime is characterized by the emergence of damped oscillations,
which eventually degrade into sustained oscillations for longer lengths. In fact, Figure 7.5b
shows that 2-dominance of the closed loop is preserved for large variations (both on L or
τu) with limit cycles appearing when the time constant is sufficiently small or the length is
sufficiently large, that is, when the equilibrium of the system loses stability.

Figure 7.5a agrees with the conclusion we made by employing the CLSS model: it is
harder to regulate larger cells and networks. Since we showed that real morphologies can be
mapped into simple lines, shorter cells can tolerate more aggressive cargo synthesis, and not
suffer from the emergence of oscillations.
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Fig. 7.5 Trade-off between τu and L for 1− and 2−dominance.
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7.5.3 Unmodeled dynamics

Both growth and parametric variations have been modeled in previous sections as static
uncertainties. We now consider dynamic uncertainties typically arising from unmodeled
dynamics and modelling simplifications.We will model these uncertainties as (possibly
nonlinear) 0-dominant dynamic perturbations, ∆m, acting on the nominal closed loop as
shown in Figure 7.6. ∆m corresponds to additive perturbations, such as neglected transport
phenomena. uncertainties such as neglected fast dynamics in protein synthesis.

We assess the robustness of the closed loop using the notion of p-gain in Section 2.3 and
the small gain interconnection in Proposition 2, which guarantees that perturbations do not
affect the the dominance of the closed loop if the product of the nominal gain and of the
perturbation gain is less than one. Indeed, for the nominal parameters in Table 7.1, solving
(2.8), the nominal closed loop in Figure 7.6 has 1-gain γcl1 = 0.4549 from u1 to y1 with rate
λ1 = 0.05. 1-dominance of the closed loop, i.e. steady regulation, is thus preserved for any
perturbation ∆m whose 0-gain γm satisfies γm < 1/γcl1 with rate λ1.

[Ca2+]target +

T m

∆m

g

ϕ(.)

−
eG

[Ca2+]

y1 u1

+

Fig. 7.6 A schematic showing how the unmodeled dynamics affect the nominal closed loop
as dynamic perturbations.

As an example we study closed loop regulation when the 3-compartmental model of
transport Σ3 is replaced by a more detailed N-compartmental model ΣN , N > 3. For this case
∆m represents the mismatch dynamics ΣN −Σ3. For simplicity we restrict our analysis to
linear transport models, that is, we take Σ3 as in (7.1) but ignore compartment saturation. ΣN

is also a linear compartmental system. Figure 7.7 shows how the 0-gain γm (rate 0.05) of
∆m changes with the number of compartments. For the nominal parameters in Table 7.1, γm

peaks at 2.1575, which guarantees that the closed loop behavior remains unchanged if we
replace our 3-compartmental transport model with a more detailed transport model based on
3 ≤ N ≤ 100 compartments.

A similar analysis can be developed to account for unmodeled protein dynamics to
show that sufficiently fast reactions can be safely neglected. These examples show the
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Fig. 7.7 0-gain γm of ∆m = ΣN −Σ3 for 0 ≤ N −3 ≤ 100 and rate 0.05.

flexibility of the framework in systems biology for capturing heterogeneous families of
perturbations, mimicking classical robust control. We note that the approach is not limited
to linear perturbations and can be extended beyond fixed point analysis to study robust
oscillations via 2-dominance.

7.6 Chapter summary and concluding remarks

This chapter can be summarized in the following key points:

1. The modified closed loop system, with a nonlinear trafficking model, is robust. More-
over, the features and qualitative behavior of the CLSS remain preserved. The non-
linear saturations that capture finite compartment capacity do not drastically alter the
behavior.

2. Varying the timescale of the global controller τu has the same effect on performance as
varying kG in the CLSS model. In other words, τu modulates between the convergence
rate and robustness of the model.

3. Dominance theory allowed us to further examine the convergence rate and robustness
tradeoff, which was introduced in Chapter 4 using the CLSS model. The tradeoff
can be decomposed into two regimes. The first one, corresponding to 1−dominance,
nominal regulation with minimal or no oscillations. The second, corresponding to
0−dominance, is a more aggressive regulation regime and is substantially more energy-
intensive.
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From a system-theoretic perspective, adding a timescale τu to the global controller (7.2)
gave it a low-pass filtering characteristic. Decreasing τu gradually made this feature fade
away, as we showed in Figure 7.3a-7.3c. This means that there is a limit on how rapid cargo
production can be before losing stability.

A nonlinear trafficking system causes more delay to take place, due to the saturated
trafficking rates v f (c−mi). In the CLSS model, trafficking rates were constant, and hence,
always faster than their nonlinear counterpart (v f ≥ v f (c−mi)). We assumed that the neuron
is capable of varying the rate at which it produces cargo, to explore a potential physiological
mechanism to deal with severe delays and long distances. The study reveals that, indeed, a
neuron can withstand a substantial variation in the production of cargo.

By varying the time constant of the production dynamics, we modulate the timescale at
which synaptic scaling occurs. This was motivated by the fact that, in experiments, synaptic
scaling was recorded to take place over timescales of hours to days [61, 87, 97, 152, 68, 9, 81].
Such variations can be attributed to the experiment, or it can be due to the area or neuron
type [168]. For instance, plastic changes in cortical cells were observed to happen over days
[128, 129], unlike those in the hippocampus that change much more rapidly [112, 95]. Here,
we showed that the toy neuron model shown in Figure 7.1 is generously robust to variations
in τu. From a computational perspective, the huge recorded variation in the scaling timescale
is reasonable considering the variation in neuron morphology and size.

In the next chapter, we explore the effect of adopting another layer of regulation. This
layer is structural, and involves geometrical activity-dependent changes in the neuron.

7.7 Proof of Theorem 6

We prove the stability of the closed loop system (7.1)-(7.5) by singular perturbation argu-
ments, specifically invoking Theorem 2. To use this theorem, we prove the exponential
stability of the equilibrium of the so-called boundary layer, or fast system. This is constructed
from (7.1),(7.3). Furthermore we prove the exponential stability of the equilibrium of the
so-called reduced system, constructed from (7.2)-(7.5), by relaxing the fast system at steady
state. Part 1 and Part 2 below show that the fast system and the reduced system are both
exponentially contractive systems, which entail exponential stability of their respective equi-
libria. In particular, the fast system is contractive for any time constant τu > 0, provided that
τu is sufficiently large. Thus, stability of the closed loop follows from Theorem 2, under the
assumption of sufficient time-scale separation τu ≫ 1.
Part 1: contraction / stability of the fast system
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First we multiply equations (7.1)-(7.3) by ε = 1
τu

. We start by proving the stability of the
fast system (7.1),(7.3). The time derivative in the equations below refers to the scaled time
t̃ = t

τu
. In the fast timescale, the slow variable u is considered as constant. The linearized

dynamics of the time-scaled fast system (7.1),(7.3) reads

εδ ṁ =
∂ f
∂m

δm (7.10)

εδ ġ =
1
τg

Sδm− 1
τg

Ωgδg

where f (m,u) is the right-hand side of (7.1), S= diag{si}, Ωg = diag{ωg}, m= [m0, . . . ,mn]
T ,

g = [g1, . . . ,gn]
T and gavg =

1
n ∑

n
i gi =

1T g
n , where 1 is a vector of ones.

We need to show that (7.10) is a contracting system, which implies the existence of a
globally exponentially stable equilibrium when the contracting distance is a norm. We first
note that ∂ f

∂m
T
+ ∂ f

∂m ≤−2ωmI < 0. Take the differential Lyapunov function V = ρm
2 δmT δm+

1
2δgT δg, where the coefficient ρm > 0 will be defined later. Its time derivative reads

V̇ = V̇m +V̇g (7.11)

where

V̇m =
ρm

2

([
∂ f
∂m

δm
]T

δm+δmT
[

∂ f
∂m

δm
])

<−ρmωmδmT
δmδm ,

and

V̇g =
1
τg

SδmT
δg− 1

τg
ΩgδgT

δg.

Therefore, (7.11) satisfies

V̇ <−ρmωmδmT
δm+SδmT

δg−ΩgδgT
δg (7.12)

<−ρm|ωm||δm|2 + 1
τg
|S||δm||δg|− 1

τg
λmin(Ωg)|δg|2
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The right-hand side of (7.12) is bounded by[
|δm|
|δg|

]T [−ρm|ωm| 1
2τg

|S|
1

2τg
|S| − 1

τg
ρgλmin(Ωg)

]
︸ ︷︷ ︸

−Q

[
|δm|
|δg|

]
.

Next we show that Q> 0, using the Sylvester criterion. This guarantees contraction, therefore
global exponential stability of the fast system equilibrium. We start by finding conditions
under which the leading principal minors of[

ρm|ωm| − 1
2τg

|S|
− 1

2τg
|S| 1

τg
λmin(Ωg)

]
(7.13)

are positive. We will use the following facts: |ωm|= ωm, |S|= s, λmin(Ωg) = ωg.
The first principal minor must satisfy ρmωm > 0, which is true. The second principal

minor must satisfy

1
τg

ρmωmωg −
1

4τ2
g

s2 > 0. (7.14)

In order for the above inequality to hold, we need the left-hand side to be positive and larger
than the right hand side. So, (7.14) holds if we select

1. ρm > s2

4ωmωgτ2
g
.

2. τu > 0 is sufficiently large.

Under these conditions, V̇ ≤−λ̄V for some λ̄ > 0.
The exponential decay of the differential Lyapunov function guarantees global incremen-

tal exponential stability of the fast system [57, Theorem 1]. This implies global exponential
stability of the equilibrium of the fast system.
Part 2: contraction / stability of the reduced system

We study the stability of the reduced system given by (7.2) for e computed from the fast
system at steady state. Thus, as a first step, we study the monotonicity properties of the static
relationship between e and u, denoted by e = r(u).
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Define M :=
n
∑

i=1
mi and G :=

n
∑

i=1
gi. At steady state, ṁ0 = 0, Ṁ = 0, Ġ = 0, we have


0 = u−m0

(
L
n
− pM

)
−ωmm0

0 = m0

(
L
n
− pM

)
−ωmM

0 = sM−ωgG

(7.15)

where we have written m1 at steady state as m1 = pM with 0 < p < 1. For simplicity, we use
x to denote the vector x = [m0;M;G]T , and R(x,u) to denote the right-hand side of (7.15).

The monotonicity of the static relationship e = r(u) can be determined from the equation
R(x,u) = 0. For instance, ∂R

∂x δx+ ∂R
∂u δu = 0 , which gives

δx =−
[

∂R
∂x

]−1
∂R
∂u

δu . (7.16)

We observe that the inverse
[

∂R
∂x

]−1
must exists since the fast system is contractive. Further-

more, the error eG = [Ca+2]target −h(G/n) =: E(x). Thus, we get

δeG =
∂E
∂x

δx =−∂E
∂x

[
∂R
∂x

]−1
∂R
∂u︸ ︷︷ ︸

∂ r/∂u

δu . (7.17)

We observe that ∂E
∂x = [00 ∂E

∂x3
] and that ∂E

∂x3
< 0. Computing explicitly (7.17) we get

∂ r
∂u

=

∂E
∂x3

s(L−npM)

ωmωg(L−npM+nωm +npm0)
< 0, (7.18)

where the inequality follows from

npM =
L
c
× m1

M
×M =

m1

c
L < L .

Thus, from (7.18) , we get ∂ r
∂u < 0 for any u > 0.

From the argument above we conclude that eG = r(u) is strictly decreasing. This fea-
ture can be used to show contraction of the reduced system. The reduced system and its
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linearization read

u̇ = kGr(u)−ωuu+φℓb(u, φ̄)

δ u̇ = kG
∂ r
∂u︸︷︷︸
<0

δu−ωuδu+
∂

∂u
φℓb(u, φ̄)︸ ︷︷ ︸

≃0,by assumption

δu . (7.19)

(7.19) is a contractive dynamics, thus the equilibrium of the reduced system is globally
exponentially stable.





Chapter 8

Synaptic scaling in adaptive
morphologies: an intrinsic robustness

"Where attention goes, neural firing
flows, and neural connection grows."

Daniel J. Siegel, Aware: The Science
and Practice of Presence

In this chapter we consider another layer of regulation, in addition to synaptic scaling.

Here, we study activity-dependent growth, which is also of a homeostatic nature. We

explore the implications on performance when two homeostatic mechanisms coexist.

8.1 Introduction and motivation

In Section 7.5.2 we studied growth as a special case of robustness against static uncertainties.
The case study ignored the fact that growth in neurons is an activity-dependent physiological
process. Neurons undergo a number of structural changes, including growth, that occur
in response to various inputs and with the goal of maintaining activity around a set-point.
Structural plasticity encompasses morphological changes, such as outgrowth/shrinking of
dendrites or axons, dendritic branching, and formations/elimination of synapses [27]. Such
changes in the neuron’s structural properties happen in response to variations in the electrical
activity [107], similar to synaptic scaling. These changes are particularly prevalent during
development as neurites grow and as connections first form. Thus, alterations to this process
can profoundly and permanently affect the function of a mature network [59, 153].
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To understand the role of activity-dependent growth, we modify the model of Chapter 7,
namely Equations (7.1)-(7.5). We then take advantage of the "static" growth study (7.9) and
implement in the new model to capture dynamic changes that will occur to the compartments,
mimicking growth.

channel mRNA

channel protein Cell Body

nucleus
Dendrite u

g1g2gn

m0

m1mn
L

cn−1

Fig. 8.1 Recalling the abstract neuron model from Chapter 7, and emphasizing the neuron
length L and compartment size ci.

8.2 Modifications to the closed loop model

8.2.1 A scaled nonlinear compartmental model for dendritic traffick-
ing

We revisit the neuron model presented in the previous chapter, and emphasize the new
dynamical parameters: L and ci, shown in Figure 8.1. The first modification to the model is
applied to the trafficking system (7.1). The goal of this modification is to exclude growth
process effects on the trafficking rates. The model reads

ṁ0 = u−m0(c−m1)−ωmm0

ṁ1 = m0(c−m1)+
vb

c2 (c−m1)m2 −
v f

c2 (c−m2)m1

−ωmm1

ṁi =−
v f

c2 (c−mi+1)mi +
vb

c2 (c−mi)mi+1

+
v f

c2 (c−mi)mi−1 −
vb

c2 (c−mi−1)mi −ωmmi

ṁn =
v f

c2 (c−mn)mn−1 −
vb

c2 (c−mn−1)mn −ωmmn. (8.1)

As before, m0 represents the mRNA concentration in the soma, mi ∈ [0,c] represents mRNA
concentration in dendritic compartment i ≥ 1, v f and vb are the forward and backward trans-
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port rates, respectively, ωm is the mRNA degradation rate, u represents mRNA production,
and c represents the finite capacity of a single compartment, to model crowding.

8.2.2 Structural plasticity as growth dynamics

Structural plasticity involves multiple morphological changes that happen in response to
perturbations in electrphysiological activity [27]. Morphological changes include den-
dritic/axonal length variations (during development), synapse formation and elimination
(dendritic spines and axonal boutons), and branching. In our model, such variations are
captured by a single length parameter L, describing the average length of a dendritic arbor.

e>0

e<0

r(L)

r(L)

r(L)

Fig. 8.2 Guided by the mismatch e, as L increases (decreases), the neuron’s probability to
form new connections increases (decreases), which is done by spatially expanding (shrinking).
r(L) denotes the radius of connectivity, which is a function of L.

We model structural plasticity as a growth process that is directly coupled to the neurons’s
average activity, captured by calcium concentration [Ca+2]. The basic idea is that short
dendrites have fewer connections, thus a reduced electrical activity. Likewise, long dendrites
potentially make more connections, thus enjoying a stronger electrical activity. In this sense,
L can also be considered as an abstract indicator of the connectivity of the neuron. Then, a
feedback mechanism adjusts L to achieve homeostasis in a way that is not at all dissimilar
from synaptic scaling [157, 89, 145]: above set-point (e < 0), L must shrink to reduce the
number of synapses (pruning) / weakening existing connections, thus reducing the overall
electrical activity; conversely, below set point (e > 0), L must increase for the neuron to
reach out to other neurons / strengthening existing connections, ultimately increasing the
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level of electrical activity. This is schematically captured in Figure 8.2. Each neuron in the
network is represented by circular neuritic field [157], where the radius is changing in an
activity-dependent manner (in this case the radius r is a function of L). A connection and its
strength is reflected by the size of the overlapping area. In this way, the more connections
the cell receives, the stronger the average electrical activity will be, and vice versa.

We remark that our assumption about the relationship between the neuronal activity and
L is not about the intrinsic membrane properties but rather about the neuron connectivity.
The total excitatory input is assumed to scale with the size of the dendritic arbour. This is
a reasonable and standard assumption [157]. One might argue that inhibitory connections
develop in similar proportion, canceling out the increase in excitatory connectivity. In
a mature network this may be the case, however during development, as networks are
growing, excitatory connections form initially and inhibitory neurotransmitters undergo a
late developmental switch [15] from being initially excitatory to inhibitory after many of the
connections have formed.

Based on these physiological observations, we model the growth dynamics using the
nonlinear first order process

τL̇ = φ(eG)−ωLL , c =
L
n

(8.2)

where τ ≫ 0 is a slow time constant reflecting the slow dynamics of growth1, and ωL is the
degradation or disassembly rate of the molecules that are responsible for synthesis of the
new dendritic components, such as tubulin. The function φ , φ(0) = 0, is a monotonically
increasing function in the error eG (see Figure 8.3).

If we interpret L as a connectivity indicator, the slope φ ′ captures the density of the
surrounding neurons or richness of the network; a steeper φ means there are more potential
connections to be made or removed, for the same amount of growth. We emphasize that
growth in (8.2) eventually corresponds to a simple variation of capacity, which also affects
the forward and backward transport rates in (8.1).

The rest of model is identical to that of Chapter 7. For readability, we list the remaining
model components.

1 In biological neurons, growth rates are on the order of days or weeks [156, 133], while active motor-
assisted transport is of the order of hours [161]. For example, in C. elegans, it was found that they grow at an
average rate of 0.001µm/s, while active transport rates are O(1µm/s) [24, 143].
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e
G

 (e
G

=0) = 0

Fig. 8.3 An example of the monotone increasing function φ . The graph corresponds to (8.8).

Protein dynamics: ġi = smi −ωggi (8.3)

Readout map: gavg =
1
n

n

∑
i=1

gi (8.4)

Membrane potential: V =
gavgEg +gleakEleak

gleak +gavg
(8.5)

Calcium signal: [Ca+2] =
α

1+ exp(−V/β )
(8.6)

Cargo production: u̇ = kGeG −ωuu (8.7)

Error: eG = [Ca+2]target − [Ca+2].

Both the modified synaptic scaling system (8.1),(8.3)-(8.7) and growth dynamics (8.2)
aim to achieve the same objective: regulating the neuron’s average activity around an
(approximate) set-point. The difference is that synaptic scaling occur at a fast timescale and
it works by modulating (globally) the number of ion channels gi in the system. In contrast,
growth occurs at a slow timescale and it changes compartments’ capacities to modulate the
maximum allowable gi in each synapse. Figure 8.4 provides an illustration of the complete
closed loop comprising the two processes.
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m g

V[Ca+2]

[Ca+2]target
u

−
+ e

Lφ(.)

fast system

slow system

Fig. 8.4 A block diagram showing the complete closed loop of both synaptic scaling and
activity-dependent growth.

8.3 Homeostasis by fast synaptic scaling and slow growth
adaptation

For any fixed dendritic length L, synaptic scaling (8.1),(8.3)-(8.7) is a stable process if the
feedback gain kG is sufficiently small. In fact, as we have seen in previous chapters, the
aggressiveness of the control action is fundamentally limited by the presence of transport.
Growth adaptation is also a stable process, naturally occurring at a slower timescale than
synaptic scaling. Thus, by time-scale separation, the combination of synaptic scaling and
growth adaptation leads to a stable closed loop system (8.1)-(8.7), for a sufficiently slow
growth time constant τ .

Theorem 7 Under Assumption 1, there exists a maximal feedback gain k̄G > 0 and a minimal
time constant τ̄ > 0 such that, for every 0 ≤ kG < k̄G, τ > τ̄ , and [Ca2+]target the closed loop
(8.1)-(8.2) has a globally exponentially stable equilibrium.

Taking advantage of the theoretical result in Theorem 7, we study the system’s response
under different biologically relevant situations, to better understand the interplay between
synaptic scaling and growth dynamics. With this aim, we set φ(e) in (8.2) as in [157]

φ(eG) = 1− 2
1+ exp(eG/η)

, (8.8)

and we simulate the system for the parameters in Table 8.1.
The first observation is that growth adaptation guarantees homeostasis even if synaptic

scaling is insufficient. First of all, note that the averaged sum of ion-channel proteins is
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Table 8.1 Nominal Parameter Values

v f = 1 µms−1 vb = 0.5 µms−1 ωm = 0.1 s−1 n = 2
Eleak =−50 mV Eg = 20 mV ωL = 0.1 s−1 η = 0.1

β = 1 α = 1 ωg = 0.1 s−1 τ = 105

[Ca2+]target = 0.5 µM gleak = 0.25 µS ωu = 10−5 s−1

limited by

gavg =
1
n

n

∑
i=1

gi =
s

nωg

n

∑
i=1

mi ≤
s

nωg
nc =

s
ωg

c .

Thus, regulation is feasible

0 ≃ eG = [Ca+2]target − [Ca+2] = [Ca+2]target −h(gavg) ,

only if the desired steady state satisfies

[Ca+2]target ≤ h
(

s
ωg

c
)

. (8.9)

Inequality (8.9) fundamentally relates the calcium target / the desired level neural activity to
the morphological parameter c = L/n. It shows that, without growth adaptation, high levels
of neural activity ([Ca+2]target large) cannot be attained in closed loop because of the finite
capacity of cargo transport. However, taking advantage of growth adaptation, the neuron can
develop its morphology to reach the desired calcium target.

These two cases are illustrated through simulation, within a comparison between synaptic
scaling without growth adaptation (8.1),(8.3)-(8.7), and synaptic scaling with growth adapta-
tion (8.1)-(8.7). We recall that the stability of synaptic scaling without growth adaptation
(8.1)-(8.7) is guaranteed by Theorem 6. Results are summarized in Figure 8.5. Left and right
graphs shows the calcium [Ca+2] trajectory and the length L trajectory, respectively. Dashed
lines correspond to synaptic scaling without adaptation, while continuous lines correspond
to the growth adaptation case. Figure 8.5 shows the case in which [Ca+2]target = 0.5 is not
compatible with the the initial capacity c = L/n = 0.1/n in the sense of (8.9). The dashed
line shows that synaptic scaling without growth adaptation is stable but far from target.
This is not the case of synaptic scaling with growth adaptation, whose calcium trajectory
asymptotically converges to [Ca+2]target, taking advantage of the increased average length L,
thus of larger capacity c.

Considering L as a connectivity parameter, the biological interpretation is that the neuron
is below its target activity level and therefore attempts to increase its activity by forming new
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synapses to form new connections, or increasing spines’ sizes to amplify synaptic strength
of existing connections. Likewise, considering L as a morphological parameter, the neuron
increases the size of its spines to allow more ion channels to flow to the synapse, which also
increases the electrical activity.
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Fig. 8.5 Average activity and length for the synaptic scaling model (8.1),(8.3)-(8.7) (dashed)
and synaptic scaling model with growth dynamics (8.1)-(8.7) (solid). kG = 0.001 and
L0 = 0.1.

The second observation, derived from simulations, is that growth adaptation may com-
pensate for pathological oscillations, enabling more aggressive synaptic scaling. Aggressive
feedback gains kG may lead to pathological oscillations in synaptic scaling [5], as shown
in Figure 8.6a. However, these oscillations are dampened through growth adaptation, as
shown in Figure 8.6b, reaching the desired set-point. The intuition is that (8.2) is essentially
a low pass filter therefore it filters calcium oscillations, extracting the oscillations bias. The
overall growth adaptation is thus driven by this bias. When the bias is above the desired
calcium target, as in Figure 8.6, the average length will reduce, stabilizing the oscillations.
The biological interpretation is that synapses reduces their size, by reducing spine’s size
or reducing the number of slots on its membrane, when their average electrical activity is
irregular (oscillatory).

The above observations, along with the growth process (8.2), establish how structural
plasticity regulates neuron activity. Synaptic scaling, as seen in the previous chapters, directly
alters the concentration of functional cargo in synapses, hence effecting their densities. On the
other hand, structural plasticity, such as (8.2), influences the synapses’ properties, like their
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spine sizes, which then effect the concentration of functional cargo in synapses. Therefore,
structural plasticity mechanisms indirectly affect synaptic densities.
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(a) Synaptic scaling model (8.1)-(8.7)
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(b) Synaptic scaling model with growth dynamics (8.1)-(8.2)

Fig. 8.6 grow adaptation (8.2) increases the maximum allowable k̄u. Simulations were done
with kG = 0.01 and L0 = 0.25. For readability, the calcium trajectory in the left graph of
Figure 8.6a is represented on the reduced domain 0 ≤ t ≤ 1500.

The last observation is that inadequate timescale separation leads to fragility. Theorem 7
guarantees closed loop stability under the strong hypothesis of time scale separation between
synaptic scaling and growth adaptation. The simulations in Figure 8.7 shows that time scale
separation is actually needed for stability. As τ decreases the system stability becomes more
fragile. Reducing τ produces damped oscillations and a further reduction eventually leads to
sustained oscillations, for smaller values of τ .
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(a) τ = 104.
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(b) τ = 103.
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(c) τ = 102.

Fig. 8.7 Inadequate timescale separation introduces fragility.
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8.4 Chapter summary and concluding remarks

This chapter can be summarized in the following key points:

1. Synaptic scaling and activity-dependent growth can coexists where both mechanisms
promote homeostasis of neuron activity. This was shown in Theorem 7.

2. An activity-dependent growth process improves the performance, by enhancing efficacy
in individual synapses (Figure 8.5), and pushing the maximum allowable feedback
gain k̄G (Figure 8.6).

In this chapter we studied two distinct homeostatic mechanisms: synaptic scaling and
structural plasticity by formulating a model of nonlinear dendritic trafficking with growth
adaptation. We showed how the interplay between the fast transport and slow growth
dynamics provides the mean to improve the overall performance in two ways. The first way
was that growth adaptation guarantees homeostasis when synaptic scaling is insufficient. The
second way was that growth adaptation compensate for pathological oscillations, allowing
more robustness to tolerate aggressive synaptic scaling.

In connection to the CLSS model, activity-dependent growth can improve the neuron’s
performance. Specifically, a dynamic compartment size c(t) can potentially improve the
tradeoffs in Chapter 4 (Figure 4.13). The improvement is manifested through the increase
of the upper bound on the feedback gain k̄G. We recall that kG modulated between the
robustness of the system and its convergence rate. The observations in this chapter also
agrees with the observation made in Chapters 4-5,7 regarding the effect of neuron’s size on
performance: smaller neurons are more robust.

It is nontrivial to make a prediction on how the accuracy attribute of performance is
affected in the new model. The difficulty arises from the modifications applied to the
CLSS model; since, in the new model (8.1)-(8.7), information about the local activity is not
explicitly expressed.

The principles and machinery applied here can be used to study more complex aspects of
neurons’ morphological development. These developments include initiation and differen-
tiation, elongation, branching and shape formation [65]. Previous studies did not consider
the effect feedback and regulation [108, 163, 76]. We believe that the framework adapted
here could be adopted to study and verify a number of significant physiological observations
surrounding neuron development.
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8.5 Proof of theorem 7

We prove the stability of the closed loop system (8.1)-(8.7) by singular perturbation argu-
ments, specifically invoking Theorem 2. To use this theorem, we prove the exponential
stability of the equilibrium of the so-called boundary layer, or fast system. This is constructed
from (8.1),(8.3)-(8.7). Furthermore we prove the exponential stability of the equilibrium of
the so-called reduced system, constructed from (8.2), by relaxing the fast system at steady
state. Part 1 and Part 2 below show that the fast system and the reduced system are both expo-
nentially contractive systems, which entail exponential stability of their respective equilibria.
In particular, the fast system is contractive for any feedback gain 0 ≤ kG < k̄G, provided that
k̄G is sufficiently small. Thus, stability of the closed loop (8.1)-(8.7) follows from Theorem
2, under the assumption of sufficient time-scale separation τ ≫ 1.
Part 1: contraction / stability of the fast system

First we multiply equations (8.1)-(8.7) by ε = 1
τ
. We start by proving the stability of the

fast system (8.1),(8.3)-(8.7). The time derivative in the equations below refers to the scaled
time t̃ = t

τ
. In the fast timescale, the slow variable L is considered as constant. The linearized

dynamics of the time-scaled fast system (8.1),(8.3)-(8.7) reads

εδ ṁ =
∂ f
∂m

δm+Bδu (8.10)

εδ ġ = Sδm−Ωgδg

εδ u̇ =−kG
∂h
∂g

(
1T g

n

)
1T

n
δg−ωuδu.

where f (m,L) is the right-hand side of (8.1), S= diag{s}, Ωg = diag{ωg}, m= [m0, . . . ,mn]
T ,

g = [g1, . . . ,gn]
T and gavg =

1
n ∑

n
i gi =

1T g
n , where 1 is a vector of ones.

We need to show that (8.10) is a contracting system, which implies the existence of a
globally exponentially stable equilibrium when the contracting distance is a norm. We first
note that ∂ f

∂m
T
+ ∂ f

∂m ≤−2ωmI < 0. Take the differential Lyapunov function V = ρm
2 δmT δm+

ρg
2 δgT δg+ 1

2δuT δu. The coefficients ρm > 0 and ρg > 0 will be defined later. Its time
derivative reads

V̇ = V̇m +V̇g +V̇u (8.11)
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where

V̇m =
ρm

2

([
∂ f
∂m

δm+Bδu
]T

δm+δmT
[

∂ f
∂m

δm+Bδu
])

<−ρmωmδmT
δm+ρmBδuT

δm ,

V̇g = ρgSδmT
δg−ρgΩgδgT

δg,

and

V̇u =−kG
∂h
∂g

(
1T g

n

)
1T

n
δgδu−ωuδuT

δu.

Therefore, (8.11) satisfies

V̇ <−ρmωmδmT
δm+ρmBδuT

δm+ρgSδmT
δg (8.12)

−ρgΩgδgT
δg− kG

∂h
∂g

(
1T g

n

)
1T

n
δgδu−ωuδuT

δu

<−ρm|ωm||δm|2 +ρm|B||δu||δm|+ρg|S||δm||δg|

−ρgλmin(Ωg)|δg|2+kG

∣∣∣∣∂h
∂g

(
1Tg
n

)
1T

n

∣∣∣∣|δg||δu|−ωu|δu|2.

The right-hand side of (8.12) is bounded by

|δm|
|δg|
|δu|


T

−ρm|ωm| 1

2ρg|S| 1
2ρm|B|

1
2ρg|S| −ρgλmin(Ωg)

1
2kG

∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣
1
2ρm|B| 1

2kG

∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣ −ωu


︸ ︷︷ ︸

−Q

|δm|
|δg|
|δu|

 .

Next we show that Q> 0, using the Sylvester criterion. This guarantees contraction, therefore
global exponential stability of the fast system equilibrium We start by finding conditions
under which the leading principal minors of

ρm|ωm| −1
2ρg|S| −1

2ρm|B|
−1

2ρg|S| ρgλmin(Ωg) −1
2kG

∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣
−1

2ρm|B| −1
2kG

∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣ ωu

 (8.13)
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are positive. We will use the following facts: |ωm|= ωm, |S|= s, λmin(Ωg) = ωg, |B|= 1.
The first principal minor must satisfy ρmωm > 0, which is true. The second principal

minor must satisfy

ρmρgωmωg −
1
4

ρ
2
g s2 > 0. (8.14)

The last principal minor must satisfy

ρmρgωgωgωu −
1
4

ρgρmskG

∣∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣∣+
−1

4
ρ

2
mρgωg −

1
4

ρmωmk2
u

∣∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣∣2−1
4

ρ
2
g s2

ωu > 0

which can be re-arranged as

ρmρgωgωgωu −
1
4

ρ
2
g s2

ωu −
1
4

ρ
2
mρgωg

>
kGρm

4

∣∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣∣(ρgs+ωmkG

∣∣∣∣∂h
∂g

(
1T g

n

)
1T

n

∣∣∣∣) (8.15)

In order for the above inequality to hold, we need the left-hand side to be positive and larger
than the right hand side. So, (8.14) and (8.15) hold if we select

1. ρg <
2ρmωmωg

s2 .

2. ρm < 2ωuωm.

3. 0 ≤ kG < k̄G is sufficiently small.

Under these conditions, V̇ ≤−λ̄V for some λ̄ > 0.
The exponential decay of the differential Lyapunov function guarantees global incremen-

tal exponential stability of the fast system, [57, Theorem 1]. This implies global exponential
stability of the equilibrium of the fast system.

Part 2: contraction / stability of the reduced system
We study the stability of the reduced system given by (8.2) for e computed from the fast

system at steady state. Thus, as a first step, we study the monotonicity properties of the static
relationship between e and L, denoted by e = r(L).
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Define M :=
n
∑

i=1
mi and G :=

n
∑

i=1
gi. At steady state, ṁ0 = 0, Ṁ = 0, Ġ = 0, u̇ = 0, we

have 

0 = u−m0

(
L
n
− pM

)
−ωmm0

0 = m0

(
L
n
− pM

)
−ωmM

0 = sM−ωgG

0 = kGe−ωuu ,

(8.16)

where we have written m1 at steady state as m1 = pM with 0 < p < 1. For simplicity, we use
x to denote the vector x = [m0;M;G;u]T , and R(x,L) to denote the right-hand side of (8.16).

The monotonicity of the static relationship e = r(L) can be determined from the equation
R(x,L) = 0. For instance, ∂R

∂x δx+ ∂R
∂L δL = 0 , which gives

δx =−
[

∂R
∂x

]−1
∂R
∂L

δL . (8.17)

We observe that the inverse
[

∂R
∂x

]−1
must exists since the fast system is contractive. Further-

more, the error eG = [Ca+2]target −h(G/n) =: E(x). Thus, we get

δeG =
∂E
∂x

δx =−∂E
∂x

[
∂R
∂x

]−1
∂R
∂L︸ ︷︷ ︸

∂ r/∂L

δL . (8.18)

We observe that ∂E
∂x = [00 ∂E

∂x3
0] and that ∂E

∂x3
< 0 (as shown in Figure 8.3-left). Computing

explicitly (8.18) we get
∂ r
∂L

=
µ1

µ2µ4 +µ3
, (8.19)

where

µ1 = sωmωum0
∂E
∂x3

< 0

µ2 = ωmωgωu − kGs
∂E
∂x3

> 0

µ3 = nωmωgωu(ωm +m0 p)> 0

µ4 = L−npM > 0 .

(8.20)
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The latter inequality follows from

npM =
L
c
× m1

M
×M =

m1

c
L < L .

Thus, from (8.19) and (8.20), we get ∂ r
∂L < 0 for any L > 0.

From the argument above we conclude that eG = r(L) is strictly decreasing. This fea-
ture can be used to show contraction of the reduced system. The reduced system and its
linearization read

L̇ = φ(r(L))−ωLL

δ L̇ =
∂φ

∂e︸︷︷︸
>0

∂ r
∂L︸︷︷︸
<0

δL−ωLδL . (8.21)

(8.21) is a contractive dynamics, thus the equilibrium of the reduced system is globally
exponentially stable.



Chapter 9

Conclusions

9.1 Recap

The dissertation studied homeostatic control of average neuronal activity in single neurons,
where we focused on the effects of morphology. The main contributions can be summarized
in the following key points:

• Real neuronal morphology imposes an unavoidable tradeoff on performance. We have
seen how morphology imposes hard limits on the performance of homeostatic synaptic
scaling. This is caused by the fact that AMPA receptor trafficking constrains the closed
loop system. We have shown that, from an input-output perspective, the cell body
"senses" an equivalent line rather than a complex network. Those input-output features
inform and constrain the performance tradeoffs, from abstract, simple networks to real,
complex morphologies.

We started in Chapter 3 by developing a biophysical model that captured synthesis,
transport, activation/inactivation, and regulation of AMPA receptors. The closed loop
system’s main goal was to achieve homeostasis of the neuron’s average activity. In Sec-
tion 3.4, we showed that the CLSS model exhibits a homeostatic scaling characteristic
that is compatible with experimental recordings that studied Hebbian-like plasticity
mechanisms, such as LTP/LTD processes.

In Chapter 4 we inquired three fundamental attributes of neuron performance, namely
convergence rate, system’s robustness, and accuracy of scaling. We then showed that
these three attributes are modulated by the system parameters: kG, s−i, and kL, namely
the gain of the global feedback, the rate of the activation mechanism, and the gain of
the local feedback. Most importantly, we showed how these attributes are intrinsically
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connected to one another, in such a way that improving one performance attribute is
accompanied by a deteriorating effect on the other two, as shown in Figure 4.13.

In Chapter 5 we stepped away from toy neuron models to study the effects of real
morphologies on synaptic scaling. Studying different morphologies revealed that
shorter, less branched trees perform better with respect to convergence rate, system’s
robustness, and scaling accuracy. Just as in toy neuron models, the three attributes are
balanced such that improving one always worsens the others.

We have shown that a simple reduced-order model, like the ball-stick model captures
the input-output behavior of the real morphology with sufficient accuracy to make
accurate predictions on the neuron stability and other attributes. By capturing the
dynamics of a highly complex system in essentially a reduced set parameters, the
ball-stick model presents itself as a valuable analysis and prediction tool. This also
justifies the use of toy neuron models in Chapters 6-8, for studying more complex
neuronal processes.

• Activity-dependent degradation has a bidirectional effect on performance. In Section
4.2.1 we saw how variation in the degradation rates had the most pronounced effect
on the robustness of the CLSS model (Figure 4.5b). In Chapter 6 we took this further
by modeling degradation to be an activity-dependent process. We have shown that
an adaptive degradation process has both a stabilizing and a destabilizing effect. The
nature of this effect depends on the global set-point, local set-point, and synapse
location. The stabilizing effect is attributed to the increase of dissipation in the
trafficking system, which attenuates the phase-lag caused by the trafficking process.
The destabilizing effect arises from the competitions between distributed controllers,
and the global controller.

It is interesting to develop a comparison between the local action in the degradation
mechanism (6.8) and the local action in the activation mechanism (3.8) of the CLSS
model. A difference appears between the two mechanisms when we consider the
robustness and accuracy tradeoff mediated by kL, as shown in Figure 4.13. For the
activation mechanism (3.8), varying kL always mediates between the robustness of the
closed loop system and accuracy. Conversely, this is not necessarily the case for the
activation degradation mechanism (6.8) . This is due to the fact that (6.8) can impose
either a stabilizing or a destabilizing effect. Therefore, it is possible that increasing kL

might deteriorates both attributes.

Despite their difference with regards to their influence on the tradeoffs, the success of
both schemes on satisfying local demands depends on the compartment’s location with
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respect to the soma. The reservoir or receptors pool size is the limiting factor. Bigger
reservoir, and hence earlier spatial access to the dendritic pool, is advantageous. For
both mechanisms, the global set-point fixes the average concentration of functional
cargo. Then, for the activation mechanism (3.8), the local activity (mediated by ci in
the CLSS model) drives the compartment’s steady-state concentration of functional
cargo. On the other hand, for the degradation mechanism (6.8), the local set-point ḡi

drives the compartment’s steady-state concentration of functional cargo.

• Nonlinear trafficking and fast cargo synthesis do not drastically alter the behavior of
the CLSS model. We showed in Chapter 7 that replacing the linear transport with a
nonlinear one produces the same qualitative behavior as the CLSS model. However,
crowding effects and rapid cargo synthesis increases the sensitivity of the closed loop
system. This is evident by the emergence of oscillations, which ultimately led to
the failure of homeostasis in the form of pathological oscillations. Therefore, a fast
production of cargo, and hence an aggressive synaptic scaling process, can destabilize
the system.

In the CLSS model, replacing the trafficking of AMPARs with a nonlinear trafficking
model will exacerbate the tradeoffs. Firstly, a nonlinear trafficking rate v f (ci −mi) is
always slower than a linear rate v f , except when a compartment is empty. Therefore,
the transport mechanism is slower and hence less robust in terms of the stability
margins.

To overcome the limitation imposed by the nonlinear transport process, we explored
the effectiveness of varying the timescale of cargo production. This has revealed that a
slow cargo production is necessary for a robust regulation process. At the same time,
our analysis has revealed that the system can withstand a substantial variation in the
timescale, which conforms to the observations made in [168].

• Activity-dependent growth improves the neuron performance. In Chapter 8 we showed
that the slow timescale of the growth process resulted in a filtering characteristic that
allowed the neuron to withstand more aggressive synaptic scaling. It also mitigated
the nonlinearities’ effects that prevented the neuron from achieving its set-point by
expanding and increasing compartments’ sizes. The latter corresponds, physiologically,
to forming new spines to increase the strength of existing connections. The setting
resembled a situation where two distinct plasticity mechanisms coexisted to serve one
objective.

The activity-dependent growth in this chapter is connected to the parameter ci, pre-
sented in the CLSS model in Chapters 3-5, which captured the capacity of synapses.
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There, we used those (constant) parameters to model LTP or LTD events in arbitrary
synapses of the neuron. As a result, varying ci leads to varying the steady-state concen-
tration of active AMPARs, or g∗i (increasing ci leads to increasing g∗i , and vice versa).
In the closed loop model of Chapter 8, however, the synapses play an active role in
achieving homeostasis. Their strength varies in an activity-dependent manner as a
result of the dynamic nature of compartments, since ci = ci(t).

A structurally dynamic synaptic compartment ci(t) can significantly improve the
performance of the neuron with respect to the three performance attributes. Activity-
dependent growth increases the robustness of the system. As a result, if implemented in
the CLSS model, the system will be able to withstand more aggressive scaling (higher
kG). Firstly, this will decrease the settling time. Secondly, the stability margin will not
deteriorate as in the CLSS.

9.2 Experimental validation and predictions

We have performed an analytical and a computational study of regulation in single neurons
throughout this thesis, and we have established a number of results, observations, and
predictions. In this section, we propose a few experimental studies that can validate and
confirm some of the results presented in the previous chapters.

• The balance between adaptive activation of AMPARs and cargo synthesis. In Chapters
3-5, two of the three free parameters were kG and kL. Recall that kG is the feedback
gain associated with the replenishment of total cargo in the system, while kL is the
feedback gain associated with the activation of protein at synaptic synaptic sites. We
have used those two as “free parameters” to sweep through the tradeoffs. An intriguing
question is the following: to what extent does a particular cell depend on global and
local mechanisms, i.e. do all neurons (with their different morphologies) have the
same dependence on kG and kL? An intuitive prediction is that, in large and branched
cells, local action is more dominant than global control. As we have shown in Chapter
4, large cells cannot regulate predominantly with global control or instability arises.
Conversely, smaller cells depend more heavily on global control. This is based on
the observations we made about correlations between size and accuracy of synaptic
scaling.

This can be experimentally monitored and measured using a combination of experimen-
tal techniques, namely confocal microscopy and Total Internal Reflection Fluorescence
Microscopy (TIRFM). One can then measure changes in neurite surface fluorescence



9.2 Experimental validation and predictions 131

over time. Confocal microscopy is suitable for measuring long-distanced transport (e.g.
trafficking along the dendritic tree), which is associated predominantly to the global
controller, and hence indicative of the value of kG. On the other hand, local action is
associated with short-term transport (e.g. trafficking from the dendritic pool to the
synaptic sites), taking place place in synaptic neck. Therefore, TIRFM is a suitable
technique of recording for such a fine resolution process.

By measuring and monitoring the trafficking and volume rates obtained from these two
experimental recordings, and by comparing them across the different morphologies,
we would be able to have an idea on the effect of morphology on the balance between
local and global feedback. We might perform a comparative study between a large and
small neuron. For instance, as hypothesized, the small cell might exhibit a twofold
increase in global AMPA production and no change in local AMPA activation with
stimulation. A larger cell, which risks instability with high global regulation, might
have no change in global production and a twofold change in local AMPA activation.
Moreover, such a study would allow us to understand where approximately on the 2-D
tradeoff plots each cell would be located.

• Location-dependent effect of LTP. In Chapter 5, we made a prediction that was guided
by Nyquist stability criterion. The analysis suggests that the effect of LTP processes
on the robustness of closed loop system is location-dependent. Specifically, we expect
distal LTP to a elicit a stronger destabilizing effect than proximal LTP. This can be
experimentally validated by chemically inducing LTP events at synapses in different
proximal and distal locations across the dendritic tree. We then can tag ion channels
(e.g. AMPARs) with Green Fluorescent Protein (GFP) and track the perturbations
to the surface and internal pool of receptors. A larger change would correspond to a
stronger destabilizing effect. We can again use TIRFM and confocal microscopy to
quantify the changes in surface and internal AMPAR expression over time.

• Effects of varying the synthesis rate on neuron’s activity. We explored how variations
in the timescale of cargo production affected the closed loop system. To further explore
this in real neurons, we can use experimental methods including viral and chemical
transfections. By transfecting a plasmid, which is a small strand of DNA or RNA,
one can insert a gene for a protein product into a cell. By modifying the promoter
region of the gene, one can control how much/quickly the construct is created. We can
compare the effects of glutamate receptors (AMPA or NMDA) with weak and strong
promoters to assess how neuron activity changes with varying excitability. Further,
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we can perform NMDA receptor knockout to eliminate endogenous production of
receptors to study neuron activity with no NMDA receptors.

These experiments (transfections and gene knockouts), can be repeated and combined
with other excitatory and inhibitory receptors in the neuron. Then, we can measure the
trafficking rates of ion channels by tagging them with fluorescent probes. In this way,
we would be able to monitor the transport rates of cargo while we vary the synthesis
rates at the soma. Finally, the instability is expected to manifest itself in a periodic
response on the transport rates.

9.3 Future research directions

Throughout this dissertation, we have adopted the following (physiological) assumptions:

1. The effect of morphology on the (instantaneous) membrane potential is captured by a
single compartment model. Furthermore, we obtained a static relation of this quantity
by imposing a quasi-steady-state assumption on a leaky-integrator neuron model.

2. All the synapses have the same power of influence on the average activity. This is
captured by the averaged readout of the feedback signal.

Regarding the first assumption, and specifically for passive neurons, Rall derived equiva-
lent cylinders of dendritic trees using cable theory- a diffusive PDE equation used to study
the conservation of electrical charge [126]. What are the implications of coupling the cargo
trafficking network with another layer that captures the variations in membrane potential
across the network? The timescale nature of the changes in membrane potential allowed us to
make a quasi-steady-state assumption. However, this assumption is pertained to the temporal
variation of the membrane potential, but what about its spatial variations and effects?

The second assumption resonates with what is referred to as “synaptic democracy”
[73, 130], which mitigates the location-dependent impact of synapse on the postsynaptic
response. In support of this idea, there has been a number experimental studies that recorded
an increase in AMPA receptors in distal sites in CA1 pyramidal neurons [8, 102, 138].
However, it is hard to generalize the case to all neuron types, as it was recorded to be the
other way in other experimental studies [162]. This partly involves the trafficking mechanism
as we saw earlier, and also studied by others in an open loop setting in axons [23]. As a
follow up to our study of the performance tradeoffs in Chapters 3-5, the next logical step is
to investigate the effects of a weighted averaged readout of synaptic functional cargo on the
scaling performance of neurons.
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The nature of the proposed set of models, and the use of control theoretic tools, naturally
guide us towards the following set of questions:

• Transport bottlenecks: it was shown in [161] that low trafficking rates between two
neighboring compartments can have a deteriorating effect on the settling time and
cause severe delays to demand sites. This was done in a linear model. This same
effect can be modeled in a nonlinear model by setting the compartment’s capacity very
low compared to the rest of the compartments in the network. This was addressed in
an open loop setting in [12]. In the presence of different feedback loops, what is the
possible qualitative behavior, and how is the performance affected?

• Transcription bursts: transcription and translation are discrete phenomena. This affects
the modeling assumption that cargo synthesis is a continuous process. However, this
might not have major consequences on the observations and conclusions presented
here. The case that needs particular attention is when the concentrations are low, i.e.
where stochasticity effects are pronounced. In this case, mean-field approximations
are no longer valid and a different framework is therefore needed.

• Growth on real morphology: in chapter 8 we studied activity-dependent growth on a
simple 1−dimensional line. Beside varying a synapse size, structural changes encom-
pass elongation and retracting, dendritic arborization, morphogenesis and branching
[50, 84]. These features of growth require more sophisticated mathematical models
with different compartmental growth rates. A starting model could be similar to the
one presented in Chapter 6. In such a model, there will be a centralized controller
regulating average activity, and a set of distributed controllers modeling individual
compartmental growth.

• Multiple species: we assumed that scaling is primarily dependent on a single functional
cargo. We have shown that the qualitative behavior is not significantly altered if another
species is incorporated in the scaling process, such as arc mRNA. However, this was
done under the assumption that the synthesis machinery is the same and the production
was always split between the two species. A more biologically-relevant setting is the
one in which each species had an independent synthesis machinery. This significantly
complexify the model by changing the representation to a multi-input single-output
(MISO) system. This paves the way also to tackle other interesting questions. For
example, the coordination between AMPA and NMDA receptors in synaptic plasticity
can be studied.
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