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Abstract

Title: Computing the Cassels-Tate Pairing for Jacobian Varieties of Genus Two
Curves

Author: Jiali Yan

Let J be the Jacobian variety of a genus two curve defined over a number
field K. The main focus of this thesis is on computing the Cassels-Tate pairing
on the 2-Selmer group of J.

We start by studying the Cassels-Tate pairing when J admits a Richelot
isogeny ¢ : J — J. Suppose all points in J|[2] are defined over K. We compute

~ ~

the Cassels-Tate pairing ( , )or on Sel?(J) x Sel‘g(J ) following the Weil pairing
definition of the Cassels-Tate pairing.

We then study the pairing { , Yer on Sel?(J) x Sel?(J) following the ho-
mogeneous space definition of the Cassels-Tate pairing. For €, € Sel?(.J), we
compute (¢,m)cr both in the case where all points in J[2] are defined over K
and in the case where the twisted Kummer surface K, has a K-rational point.
In both cases, we give a computable formula for (e, n)c7r and a practical algo-
rithm for computation when K = Q.

In all cases, we calculate examples for which computing the Cassels-Tate
pairing improves the rank bound of J obtained by carrying out standard de-
scent calculations. We also give techniques to reduce the degree of the number
field needed in the algorithm for computation.
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Introduction

Let A be an abelian variety defined over a number field K. The Mordell-Weil
Theorem tells us that A(K), the set of K-rational points on A, is a finitely
generated abelian group. This implies that the rank of A(K), denoted by r(A),
is finite. However, computing r(A) can be difficult and in fact there is no
known algorithm to do this. Methods have been developed to compute upper
bounds on 7(A). One standard method, known as a descent calculation, follows
the proof of the Mordell-Weil Theorem and computes the Selmer groups of A.
The n-Selmer group of A, denoted by Sel”(A), consists of all the isomorphism
classes of the n-coverings of A that have points everywhere locally. Computing
Sel"(A) gives an upper bound on r(A) because r(A) can be bounded in terms
of |A(K)/nA(K)| for n > 2 and we have the following exact sequence

A(K)
~ WA(K)

— Sel"(A) — II(A)[n] — 0,

which involves III(A), the Tate-Shafarevich group of A. The Tate-Shafarevich
group is first introduced by Lang, Tate and Shafarevich in [LT58] [Sha59]|. This
group consists of all the isomorphism classes of principal homogeneous spaces
of A that have points everywhere locally and is conjectured to always be finite.
The study of III(A) is key in the understanding of the arithmetic of A. In
the problem of bounding the rank, the discovery of any nontrivial element in
III(A)[n] improves the upper bound on r(A).

One important feature of the Tate-Shafarevich group is the existence of the
Cassels-Tate pairing. In [Casb9| [Cas62|, Cassels proved that for an elliptic
curve E defined over a number field, there exists a pairing

HI(E) x TI(E) — Q/Z,

that is nondegenerate after quotienting out the maximal divisible subgroup of
II(E). He also proved that this pairing is alternating. If III(£) is finite, which
is conjectured to always be the case, then this implies that the order of III(F)
is a square. In [Tat62|, Tate generalized these results and showed that for an
abelian variety A, with A" denoting its dual, there is a pairing

II(A) x II(AY) — Q/Z,

that is nondegenerate after quotienting out the maximal divisible subgroups.
In the same paper, Tate also showed the alternating property in the case where
III(A) is mapped to III(AY) via a polarization induced by a K-rational divisor
on A. In [Fla90|, Flach proved that for principally polarized abelian varieties,
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the pairing is always antisymmetric. The pairing was believed to always be al-
ternating for principally polarized abelian varieties until Poonen and Stoll gave
explicit counterexamples and showed that the order of III(A) need not be a
square even in the case where A is Jacobian variety of a curve defined over Q

in [PS99].

This pairing is called the Cassels-Tate pairing and it natually lifts to a pair-
ing on Selmer groups. One application of this pairing is in improving the bound
on r(A) obtained by performing a standard descent calculation. More specifi-
cally, if III(A) is finite for a principally polarized abelian variety A, the kernel
of the Cassels-Tate pairing on Sel"(A) x Sel"(A) is equal to the image of the
natural map Sel” (A) — Sel”(A) induced from the map A[n?] % Aln], sce
Proposition 1.9.3 for details. This shows that carrying out an n-descent and
computing the Cassels-Tate pairing on Sel"(A) x Sel"(A) gives the same rank
bound as obtained from n2-descent where Sel” (4) needs to be computed.

There have been many results on computing the Cassels-Tate pairing in the
case of elliptic curves. For example, in addition to defining the pairing, Cas-
sels also described a method for computing the pairing on Sel*(E) x Sel®(E)
in [Cas98| by solving conics over the field of definition of a two-torsion point.
Donnelly [Don15| then decribed a method that only requires solving conics over
K and Fisher [Fis16] used the invariant theory of binary quartics to give a new
formula for the Cassels-Tate pairing on Sel*(E) x Sel?(E) without solving any
conics. In [vB] [vBF18], van Beek and Fisher computed the Cassels-Tate pair-
ing on the 3-isogeny Selmer group of an elliptic curve. For p = 3 or 5, Fisher
computed the Cassels-Tate pairing on the p-isogeny Selmer group of an elliptic
curve in a special case in [Fis03]. In [FN14], Fisher and Newton computed the
Cassels-Tate pairing on Sel*(E) x Sel®(E).

The natural problem is to generalize the different algorithms for computing
the Cassels-Tate pairing for elliptic curves to compute the pairing for abelian
varieties of higher dimension. Let J be the Jacobian variety of a genus two
curve C defined over a number field K. In this thesis, we will mainly be com-
puting the Cassels-Tate pairing on Sel?(.J) x Sel*(.J). The methods we give for
computing the pairing in theory work over any number field K but in practice,
we have only computed examples when K = Q.

In Chapter 1, we state some basic definitions and preliminary theory needed
for the other chapters. In [PS99], four definitions of the Cassels-Tate pairing
for an abelian variety were given and proved to be equivalent. In this thesis, we
will follow the Weil pairing definition and the homogeneous space definition of
the Cassels-Tate pairing.

In Chapter 2, we study the Cassels-Tate pairing on Jacobians of genus two
curves admitting a special type of isogenies called Richelot isogenies. Suppose
there exists a Richelot isogeny ¢ : J — J. Similar to the elliptic curve case,
we define a pairing on Sel?(.J) x Sel?(.J) which is shown to be compatible with
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the Cassels-Tate pairing on Sel?(.J) x Sel*(J) following the Weil pairing defi-
nition of the Cassels-Tate pairing. We then give an algorithm to compute the

o~ ~

Cassels-Tate pairing on Sel?(.J) x Sel?(J) where ¢ is the dual isogeny of ¢.
The algorithm is under the assumption that all two-torsion points on J are
defined over K. We end this chapter with a worked example. This example
demonstrates we can turn the descent by Richelot isogeny into a 2-descent via
computing the Cassels-Tate pairing.

In Chapter 3, we describe two different methods for computing the linear
isomorphism between the Kummer surface, which is the quotient of J by the
involution [—1], and the twisted Kummer surface, which is the quotient by the
induced involution of a 2-covering of J corresponding to a Selmer element. This
also gives the defining equation of the twisted Kummer surface. We give an al-
gorithm to trivialize a matrix algebra over QQ given the structure constants, with
the precise statement of the problem described in Problem 3.4.1. This is an im-
portant step in computing the twist map and is useful in the later algorithms
for computing the Cassels-Tate pairing.

In Chapter 4, we prove a new algorithm that explicitly computes the Cassels-
Tate pairing on Sel®(.J) x Sel?(.J), with the assumption that all the two-torsion
points on J are defined over K. This algorithm follows the homogeneous space
definition of the Cassels-Tate pairing. We demonstrate by a worked example
how this algorithm can potentially improve the rank bound of J obtained from
performing a 2-descent calculation. In fact, in the case where all points in J|[2]
are defined over K, computing the Cassels-Tate pairing on Sel*(J) x Sel®(J)
gives the same rank bound as obtained from carrying out a 4-descent which
requires computing Sel4(J ). We also prove a formula for the obstruction map
Ob : H'(Gg, J[2]) — Br(K) which generalizes the work of Clark and O’Neil in
the elliptic curve case.

In Chapter 5, we prove a new algorithm for explicitly computing the Cassels-
Tate pairing on Sel®(.J) x Sel*(.J), with no more conditions on the two-torsion
points of J but rather the condition that the twisted Kummer surfaces have
K-rational points. The method follows the homogeneous space definition of the
Cassels-Tate pairing and is a generalization of the results in [Fis16] in the elliptic
curve case. We also include a worked example that demonstrates the improve-
ment of the rank bound of J obtained from performing a 2-descent calculation.
However, this algorithm requires calculations in a large degree number field in
the most general case. Therefore it is more practical when the Galois group of
f(x) is relatively small where the genus two curve is defined by y* = f(z). For
this reason, new computing techniques are developed to improve the algorithm
and they are explained in the final chapter of the thesis.

In Chapter 6, we improve the algorithm in Chapter 5. The result of the
improvement is that we can now compute the Cassels-Tate pairing with the as-
sumption that the twisted Kummer surfaces have K-rational points in the most
general case with the precise condition given at the end of Section 6.2.1. We
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also end this chapter with a worked example where computing the Cassels-Tate
pairing improves the rank bound of J obtained from carrying out a 2-descent
calculation.



Chapter 1

Background and Preliminary
Results

In this chapter, we will state some useful definitions and preliminary results
needed for the later chapters.

1.1 Notation

This section gives some basic definitions and notation used throughout this the-
sis.

Unless stated otherwise, we are working over K, a perfect field with char-
acteristic not equal to 2,3, or 5. For any field K, we let K denote its algebraic
closure and let y, C K denote the n'” roots of unity in K. We let G denote
the absolute Galois group Gal(K/K) and let Gk denote Gal(L/K) for L a
Galois extension of K. All algebras in this thesis are assumed to be associative.
For a K-algebra A, y,(A) C A denotes the n'™ roots of unity in A. For a finite
dimensional K-algebra A, we let Ny/x : A — K denote the norm map and we
sometimes abbreviate N4,k to N when the context is clear. A local field in this
thesis is always isomorphic to a finite extension of the p-adic numbers Q, where
p is a prime number, unless stated otherwise.

Suppose A, B are two K-algebras or two varieties defined over K. Let L be
a field extension of K. Sometimes we write A over L to mean A®g L or Aj, and
A= Bover L tomean AR L = B®g L or A; = By, with the isomorphism
defined over L. For a variety A defined over K, we sometimes abbreviate A(K)
to A when the context is clear.

A general genus two curve C defined over K is a smooth projective curve
and it can be given in the following hyperelliptic form:

C:y® = f(x) = for + f52° + fux’ + fs2® + for® + fiz + fo,

where f; € K, fs # 0 and the discriminant A(f) # 0, which implies that f has
distinct roots in K.
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We define the Weierstrass points of C to be the points on C with the y-
coordinate being 0 and denote the points at infinity by oo™, 00™. The curve is
reducible to the form of 42 equal to a quintic in x if and only if the original sextic
f has a rational root. In the case where f is reduced to a quintic, we denote
the unique point at infinity by co. Note in this case, oo is also a Weierstrass
point. Alternatively, the Weierstrass points of a hyperelliptic curve are defined
to be the ramification locus of the degree two morphism from the curve to P*
where (z,y) — . We note the involution on C : (z,y) — (z, —y).

1.2 The Jacobian Variety and Its Kummer Sur-
face

This section states some definitions and properties of the Jacobian variety of a
genus two curve.

1.2.1 Picard group

We define the Picard group of a general genus two curve C, denoted by Pic(C),
to be the group of divisor classes of C, that is the group of divisors of C
modulo linear equivalence. Then Pic*(C) denotes the elements in Pic(C) of
degree d. 'The canonical divisor class of C, denoted by K¢, is the divisor
class [oo™ 4+ co~]. Via the natural isomorphism Pic*(C) — Pic’(C) sending
[P, + Py] — [P, + P, — 0ot — 007}, it is convenient to represent any element
of Pic’(C) by an unordered pair of points {Py, P,} on C as it corresponds to
[P, + P, — 0ot — 0o~] € Pic’(C). Using the Riemann-Roch Theorem, this rep-
resentation is unique if we identify all pairs in the form {(z,y), (x, —y)} along
with {co*, 007} to give the identity element in Pic’(C).

1.2.2 Jacobian variety

The Jacobian variety of a genus two curve C defined over K, denoted by J, is
an abelian variety of dimension 2 defined over K which can be identified with
Pic’(C). We denote the identity element of J by O;. From Section 1.2.1, we
know that a point P € J can be identified with an unordered pair of points
of C, {Py, P,}. This identification is unique unless P = O, in which case it
can be represented by any pair of points on C in the form {(z,y), (x,—y)} or
{oo*, 007 }. It is well known that that there exists a birational morphism from
Sym?C to J given by the identification above, where Sym?C denotes the quo-
tient of C x C by the equivalence relationship (Q1, @2) ~ (Q2,Q1).

In this thesis, we let 7p denote the translation by P on J, for any P € J.
We give the following remark to describe the two-torsion points on J.
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Remark 1.2.1. Suppose C is defined by y* = f(x) with the roots of f de-
noted by wy, ...,ws. The point P € J is a two-torsion point if P corresponds to
{Py, P} and Py, P, are Weierstrass points of C. It is known that |J[2]| = 16,
and we will normally denote J[2] by {O,, {(w;,0), (w;,0)} for i # j}. In the
case where the curve is reduced to the form where f is degree 5 with roots

Wi, .-y Ws, J[Q] = {OJa {(wi70)7 (wj70)} for 7& ja {(wi70)7 OO}}
The group law

We describe the group law on J generically as in [CF96, Chapter 1 Sec-
tion 2|. Let {(z1,y1), (z2,v2)}, {(u1,v1), (ug,v2)} represent two general points
P,@Q € J defined over K. There is a unique M (x) € K[z] of degree 3 such that
y = M (z) passes through the 4 points on C. The intersection of the cubic curve
with C, given by M(z)*> = f(x),Y = M(z), gives two other points on C also
defined over K which represent R € J. Then P + @ + R = O,. This defines
the group law on J.

1.2.3 Theta divisor

In this thesis, the theta divisor, denoted by O, is defined to be the divisor on J
that corresponds to the divisor { P} x C+C x { P} on C x C under the birational
morphism Sym?C — J, for some point P € C. We sometimes also denote it by
Op in order to show the choice of the point P. In this thesis, we always pick P
to be one of the Weierstrass points for ©, unless stated otherwise. We have the
following useful facts about the theta divisor for later chapters.

Remark 1.2.2. Not all the theta divisors are linearly equivalent. Via consider-
ing the divisor {(Q, P) : Q € ©p C J, P € C} on J xC, the theta divisors can be
checked to be algebraically equivalent. Let NS(J) denote the Neron-Severi group
of J, which is the group of divisors on J modulo algebraic equivalence. This
implies the equivalence class of any theta divisor is in H(G, NS(J)). More-
over, for Q) € J corresponding to { P, P»}, a pair of points on C, 750p, = ©_p,.
Hence, translation by points on J also preserves the algebraic equivalence class
of a theta divisor.

Remark 1.2.3. Since © corresponds to a Weierstrass point, it can be checked
that 20 ~ ©1 + ©~, where ©F denotes the divisor on J that corresponds to
the divisor {oo™} X C+C x {oo™} on C x C and similarly for ©~. In particular,
this implies that the divisor class of 2n© is defined over the base field K, for
any positive integer n.

1.2.4 Principal polarization

A polarized abelian variety is an abelian variety A equipped with an isogeny
A A— AV where AV = Pic’(A) is the dual abelian variety of A, such that A
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comes from an ample invertible sheaf on Az. If A is an isomorphism, then we
say (A, \) is a principally polarized abelian variety.

The Jacobian variety (J, A) is principally polarized via the theta divisor and
this polarization is independent of the choice of the theta divisor used:

Ao J — JV
P — [0-0] "

In this thesis, we always assume J is principally polarized via the theta di-
visor. For simplicity, we will sometimes denote (J, \) by J.

1.2.5 The Kummer and its desingularization

The Kummer surface, denoted by IC, is the quotient of J via the involution
[—1] : P — —P. The fixed points under the involution are the 16 points of
order 2 on J and these map to the 16 nodal singular points of I (the nodes).
We let S denote its desingularization, called the desingularized Kummer surface.

1.3 Explicit Embeddings and Defining Equations

This section describes the explicit embeddings of the Jacobian variety J of a
genus two curve C as well as its Kummer surface K and desingularized Kummer
surface §. The details of the material included in this section can be found in
[CF96, Chapters 2, 3.

1.3.1 The linear system of n©

In this thesis, for a divisor D on a smooth algebraic variety X, we let £(D)
denote H(X, Ox (D)), which is the vector space of global sections of the line
bundle associated to D. Sometimes we refer to it as the Riemann-Roch space of
D. The linear system of D, which is the set of effective divisors on X linearly
equivalent to D, is denoted by |D|.

General theory, as in [Mil08, Theorem 11.1] [Mum?70, page 150|, shows that
the linear system of n© of J has dimension n?, with |20| base point free and
|40| very ample. Hence, we know that |20]| induces a morphism defined over K
from J to P? and [40| induces an embedding defined over K from J to P*. Note
these morphisms are defined over K as explained in Remark 1.2.3. A function
g on J is even when it is invariant under the involution [—1] : P — —P and is
odd when go[—1] = —g. Out of the 16 basis elements of £(4©), 10 of them are
even while the other 6 are odd, as shown in the explicit formulae for a set of 16
basis elements given in Section 1.3.3.
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1.3.2 Embedding of K in P?

From Section 1.3.1, we know that dim £(20) = 4 and |20| induces a morphism
from J to P3. By Remark 1.2.3, we know 20 ~ O + ©~. Let {ki, ko, k3, ky}
denote the basis of £L(©T + ©7) with formulae given below. The image of this
morphism is precisely the Kummer surface K. We give the explicit formula for
this embedding:

Let a genus two curve be given by C : y* = f(z) = Z?:o f;x? with fg # 0.
Denote a generic point on the Jacobian J of C by {(z,y), (u,v)}. Then the
morphism from J to P? is given by

ki =1,ky = (x +u), ks = zu, ky = By,

where
Fo(z,u) — 2yv

(r —u)?
with Fo(z,u) = 2fo + fi(z +u) + 2fa(zu) + f3(x + u)(zu) + 2f4(zu)* + f5(z +
u)(zu)? + 2fe(xu)d.

Bo =

In fact, k1, ko, k3 are regular nonzero at O; and k4 has a double pole at O;.
This implies O; is mapped to (0: 0:0:1) € K C P3.

In this thesis, unless stated otherwise, J ﬂ K always denotes the mor-
phism P+ (ki (P) : ka(P) : k3(P) : ky(P)) with k; given above. We sometimes
also let k denote this morphism. It is known that the image of this morphism
in P? is given by the vanishing of the quartic

Gk, ko, ks, ky) = szi + G1ky + G,
where

Go :k% — 4k ks,

G = — 2(2foki + fikiks + 2f2k3ks + fskikoks + 2fskik3 + fskok3 + 2f6k3),

Go =(f7 — 4fof2)ki — 4fofakika — 21 fakiks — 4 fo fakTES
+4(fofs — frf) K koks + (f5 + 2f1fs — Afafs — Afofo)kiks — 4 fofskiks
+4(2fofs — fifs)kiksks + A(fife — fofs)kikaks — 23 fskiks — 4 fo fok
— Afy foksks — A fafekiks — Afsfokoks 4+ (f2 — 4faf6)ks.

Therefore, the Kummer surface K C P} is defined by G(k1, ks, k3, k4) = 0.
The following remark is used in the later chapters.

Remark 1.3.1. Suppose P € J[2]. We know 75(20) ~ 20 via the polariza-
tion. This implies that the translation by P on J induces a linear isomorphism
on K C P3.
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1.3.3 Embedding of J in P!

From Section 1.3.1, we know that 40| induces an embedding of J in P'°. Let
kij = kik;, for 1 <7 < j < 4. Since K is irreducible and defined by a poly-
nomial of degree 4, ki1, k12, ..., kgg are 10 linearly independent even elements in
L(207 +207). The six odd basis elements in £(20" + 207) are given by

i1, i1
=2 Y 1<i<4),
T —u
b _ 1 T, uw)y = T(u,z)v
> - 2fs (x —u)? ’
1
bg = — E(flbl + 2fobg 4 3f3bs + 4f1bs + 4 f5bs — fsksbs + fskoby — 2 feksby
6
+ 2 fokobs),
with

T(r,s) =4fy + fi(r + 38) + 2fas(r + 5) + f35°(3r + ) + dfyrs® + f55* (50 — )
+ 2fsrst(r + s).

In this thesis, unless stated otherwise, we always use ki1, k12, ..., ks, b1, ..., b,
as basis of £(207 +207), to embed J in P'®. The following theorem and re-
marks give more details on this embedding.

Theorem 1.3.2. (|Fly90, Therorem 1.2|, [Fly93, Therorem 1.2|) Let J be the
Jacobian variety of the genus two curve C defined by y* = fex%+ ...+ fix + fo.
The 72 quadratic forms over Z[fy, ..., fo| given in [Fly90, Appendix A| are a
set of defining equations for the projective variety given by the embedding of
J in P¥ induced by the basis of L(20T + 207) with explicit formulae given
in |[Fly90, Definition 1.1] or [Fly93, Definition 1.1|. The change of basis be-
tween this set of basis of L(20T +207) and ki1, k12, .., ka4, b1, ..., bg is given in
[F'TvLL12, Section 3.

Remark 1.3.3. Suppose we embed J via ki1, k12, ..., kg4, b1, ..., bg. By [F1y90,
Appendix A], as described in [FTvL12, Section 3|, the 72 defining equations
consist of 30 odd quadratics where each monomial is a product of an even coor-
dinate and an odd coordinate, 21 quadratics involving only the even coordinates
and 21 quadratics in the form of b;b; = @);;, where @);; is a quadratic in terms
of the 10 even coordinates.

Remark 1.3.4. Suppose P € J[2]|. Via the same argument as in Remark 1.3.1,
we get 7p is a linear isomorphism on J C P'. Moreover, we know 7hk;; is even
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and 75(b;) is odd. This implies that the matrix representation of the linear iso-
morphism 7p on J C P is block diagonal with a block of size 10 corresponding
the even coordinates and a block of size 6 corresponding to the odd coordinates.

We quote the following nice results that are needed in the later chapters of
the thesis.

Theorem 1.3.5. [Fly93, Theorem 3.2] Let J be the Jacobian variety of the
genus two curve C defined by y* = feax® + ...+ fix + fo. Let a,b € J C P¥ with
coordinates ki1, k1o, ..., kaa, by, ..., bg. Then there exists a 4 X 4 matrixz of bilinear
forms ¢;j(a,b) defined over Z[fy, ..., fs] which is projectively equal to the matrix
ki(a —b)k;(a+0b). The explicit formula for ¢;; is given in [Fly93, Appendix B|
with the relevant change of basis given in [FTvI.12, Section 3|.

Remark 1.3.6. The bilinear forms ¢;; defined in Theorem 1.3.5 have the fol-
lowing properties as given in [Fly93, Remark 3.3].

(i) ¢ij(a,b) = ¢i;(—a,—b). In particular, each bilinear form contains only
even-even terms and odd-odd terms.

(i) ¢ij(a,b) = ¢4;(b, a).

(iii) ¢ji(a,b) = ¢ij(a, —b). This implies that ¢;; may be induced from ¢;; by
leaving the even-even terms unchanged and negating the odd-odd terms.
Therefore ¢;; + ¢;; only contains even-even terms.

We deduce the following corollary from Theorem 1.3.5 and Remark 1.3.6
above.

Corollary 1.3.7. (|Fly93, Lemma 2.2|, [CF96, Theorem 3.4.1]) Let J be the
Jacobian variety of the genus two curve C defined by y* = fexb + ... + fix +
fo- Let a,b € J C P with coordinates ki, kia, ..., kua, b1, ..., bg. Let k(a) =
(ki(a),....,k4(a)) and k(b) = (ki(b),...,ks(b)). Then, there exist biquadratic
forms 1y defined over Zlfo, ..., fo] such that the 4 x 4 matriz ;;(k(a), k(b))
is projectively equal to k;(a+b)k;(a—0b)+k;(a—0b)k;(a+0b). In particular, each
Yi; is symmetric and we have an explicit formula for 1;;.

Proof. By Theorem 1.3.5, we have the 4 x 4 matrix of bilinear forms ¢;;(a, b) de-
fined over Z[fo, ..., fs] which is projectively equal to the matrix k;(a—b)k;(a+b).
By Remark 1.3.6(ii) and (iii), ¥4; = ¢;; + ¢j; are symmetric biquadratic forms
satisfying the lemma.
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1.3.4 Embedding of S in P°

In this section, we describe the explicit embedding of a nonsingular surface S in
IP5, that is canonically birationally equivalent to K and is a minimal desingular-
ization of it. More details can be found in [CF96, Chapter 16] and [FTvL12, Sec-
tion 4].

The surface S

Recall that our genus two curve C is defined by y* = f(z) = fex® + ... + fo,
with f; € K and fg # 0. Let (po : p1 : ... : ps) be a point in P°, and define
P(z) = Z?:o p;jz?. We know P(z)? is congruent to a polynomial of degree at
most 5:

5
foP(z)* = chxj mod f(x)
=0
where ¢; are quadratic forms in {py, ..., ps} with coeflicients in Z|fy, ..., fe].

The surface S embedded in P5 is defined to be the locus of (py : ... : p5) for
which P(z)? is congruent to a quadratic in z modulo f(z). Hence, it is defined
by the intersection of 3 quadric surfaces:

S:cs=c4=c3=0.

Relationship with J and K

We follow the discussion in [CF96, Chapter 16, Section 3|. Suppose a general
point P € J is represented by {(x1,v1), (x2,y2)}. There is a unique M(z) of
degree 3 such that y = M(x) meets C twice at (z1,1), (x2,y2). Then M (z)* —
f(x) = (x — z1)*(x — x2)*H(z) for some quadratic H(x). Note that H = 0,y =
—M (z) gives the point 2P € J via the group law on J described in Section
1.2.2. There is a unique polynomial Q(z) = Z?:o gj’ of degree at most 5 such
that

(- )@ — 22)Q = M(z)  mod f(z),

which implies that Q(x)? = H(x) mod f(z). We have (qo : ... : g5) is the corre-
sponding element to P on S.

Furthermore, the coefficients of Q(z) are symmetric in (x1,y1), (z2,y2) and
hence are in the function field of J. It can be checked that they are in fact odd
functions. This implies that multiplying @(x) by any odd function on J, for
example (y; — y2)/(x1 — x3), will make the coefficients even functions and so in
the function field of K. This gives a rational map I — S.

It can also be shown that the embedding of S in P% is isomorphic to the
projection of J C P® — P° onto the 6 odd coordinates:
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P (by(P) : ... : bg(P)).
More explicitly, define

6
g = ijxj_i, foriel,...,6,

j=i

and we quote the following proposition.

Proposition 1.3.8. [FTvL12, Proposition 4.11| Let C be a genus two curve
defined by y?> = f(z), with f(x) a degree 6 polynomial and L = K|x]/(f).
Let Py = (x1,11) and Py = (x9,y2) be points on C that are not Weierstrass
points and 1, # xy. Embed the Jacobian variety J in P with coordinates
ki1, k1o, ..., kag, b1, ..., bg as in Section 1.3.3 and denote the point { P, P} € J by
P. Define M(x) to be the unique cubic polynomial such that the curve y = M (x)
meets C twice at Py and P,. Setting Q(z) to be the polynomial of degree at most
5, satisfying
Q(z) = M(z)(x —x1) Yz —20) P € L,

we have that Q(z) = S0 bi(P)gi(x) up to scalar multiple.

Note: the coefficients of Q(x) give the point in 8 C P5 that corresponds to
PelJ.

It can be seen from the above proposition, that the map J C P'® — P® given
by the odd coordinates gives a rational map from J to S.

Remark 1.3.9. As explained in Remark 1.3.3, all quadratic polynomials in the
b; can be expressed as quadratics in the k;;, or as quartics in the k;. This induces
a rational map from I to S that is the inverse of the blow-up morphism & — .
This morphism can be described, as in [F'TvLL.12, Remark 3.8|, explicitly as

(bl NN b6) — (kl : kg : k3 : k4)
= (b1b3—b3 : biby—bybs : boby—b3 : fobi+ f1b1ba+ fobs+ fabobs+ fab3+ fsbsba+ fob]).

1.4 Galois Cohomology and the Brauer Group

In this section, we give some basic notations and background theory on Galois

cohomology and the Brauer group. Most material comes form [Ser79, Parts
Three and Four].
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1.4.1 Galois cohomology for abelian groups

For any group G and any G-module A, we denote the group of n'* cochains,
cocycles and coboundaries by C™"(G, A), Z"(G, A) and B"(G, A), respectively.
We denote the n'™ cohomology by H"(G, A) := Z"(G, A)/B"(G, A). For sim-
plicity, we denote the connecting homomorphism C*(G, A) — C*T(G, A) by d
for all 7+ € N. It most cases, G will be a Galois group in this thesis.

We have explicit formulae for the connecting homomorphisms. In particular,
d:C%G, A) — CY(G, A) is explicitly given by d(a)(g) = ga—aforg € G,a € A
representing an element in C°(G, A) and d : CY(G, A) — C*(G, A) is explicitly
defined by:

d(9)(91,92) = g10(g2) — ¢(9192) + ¢(91),

for 91,92 € G7¢ S Cl(G7 A)

Notation 1.4.1. Let A, B be Gx-modules. For a surjective G x-homomorphism

f A — B, we have the short exact sequence 0 — A[f] — A 5B 0of
Gr-modules. We let 6; ; : H(Gg,B) — H" (G, A[f]) denote the connect-
ing map in the long exact sequence induced by the short exact sequence. In
the case where K is a global field, we also let d; ; denote the connecting map
H'(Gg,, B) - H™ (Gk,, A[f]) for each place v of K for simplicity. Sometimes,
we abbreviate d; s to d; or even to J, when the context is clear.

Definition 1.4.2. Let ¢ : A — B be an isogeny between two principally polar-
ized abelian varieties defined over a number field K. Define the ¢-Selmer group
of A, denoted by Sel®(A4), to be ker (H'(Gk, Al¢]) — [[, H'(Gk,,A)), and
the Tate-Shafarevich group of A, denoted by III(A), to be ker (HI(GK, A) —
Hv HI(GKM A)) :

1.4.2 Galois cohomology for non-abelian groups

In this section, we discuss the Galois cohomology of non-abelian groups. Let G
be a group and A a group on which G acts on the left. In this case, H°(G, A)
is still defined as the group of elements in A fixed by G as in the abelian case.
We define cocycles to be maps s — as of G into A such that ay = a, - s(ay),
writing A multiplicatively. Similarly, we say as, bs are cohomologous if there ex-
ists a € A such that by = a™!-a,-s(a) for all s € G, which gives an equivalence
relation for the set of cocycles. Provided with the structure of a distinguished
element equal to the class of the unit cocycle a; = 1, we can still define the
quotient set H'(G,A). This coincides with the definition in the abelian case
except H'(G, A) is now a pointed set instead of a group. This is discussed in
full detail in [Ser79, Chapter VII Appendix|.

Moreover we quote the following two propositions on the induced long ex-
act sequences from the short exact sequences, that we will use later in this
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thesis. In particular, it can be checked that the connecting maps 41, - in the
propositions below are well-defined via the similar definition as the abelian case.

Proposition 1.4.3. [Ser79, Chapter VII Appendix, Proposition 1| Let 1 —

AL B C =1 bean evact sequence of non-abelian G-modules. Then the
sequence of pointed sets below is exact:

1 — H(G, A) — H°(G, B) = H(G,C) & HY(G, A) — HY(G, B) — H(G,C).

Proposition 1.4.4. [Ser79, Chapter VII Appendix, Proposition 2| In addition
to the hypothesis of 1.4.3, assume that A is in the center of B. Then the
sequence of pointed sets below is exact:

1 — H(G, A) — H°(G, B) -»H"(G,C) 2 H'(G, A)
— H'(G,B) — HY(G,C) 2 H%(G, A).

1.4.3 Brauer Group

In this section, we discuss the relationship between the Galois cohomology and
the Brauer group. We state some definitions and key properties here.

The Brauer group of a field K, denoted by Br(K), is the group of equivalence
classes of central simple K-algebras. Recall that a central simple K-algebra A
is a finite-dimensional K-algebra which is central meaning the centre of A is
K, and simple meaning that it has no nontrivial two-sided ideals. The set of
such algebras is closed under taking the tensor product. Two central simple
algebras A; and A, are called equivalent if A; ®x Mat, (K) is isomorphic to
Ay ® Mat,,(K) for some positive integers n and m. The group law in Br(K)
is induced by the tensor product.

Remark 1.4.5. We observe that matrix algebras are equivalent and in fact
they give the identity element in Br(K). To a central simple algebra A, we can
associate its opposite algebra AP, that is, A with the reversed order of mul-
tiplication. One checks that A ®x A is isomorphic to a matrix algebra and
this gives inverses of elements in Br(K). Thus the set of equivalence classes of
central simple algebras is indeed a group under the tensor product and we will
write + to denote the group operation in this thesis.
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Proposition 1.4.6. [Ser79, Chapter X Section 5 Proposition 7| Let K be a
field and A a finite-dimensional K-algebra. The following are equivalent.

(i) A has no non-trivial two-sided inverse and its center is K.
(ii) A is isomorphic to a matriz algebra over K.

(11i) A is isomorphic to a matriz algebra over some finite Galois extension of

K.

(iv) A is isomorphic to a matriz algebra over a division algebra with center K.

By Proposition 1.4.6, we know there are three other equivalent definitions
for central simple algebras. In particular, the definition (iv) above is a conse-
quence of Wedderburn’s Theorem, which we state next.

Theorem 1.4.7 (Wedderburn). Let A be a finite dimensional central simple
K-algebra. Then there is some finite-dimensional (as a K-vector space) divi-
sion algebra D D K and somen > 0 such that A = M, (D), and D,n are unique.

Remark 1.4.8. By Wedderburn’s Theorem, another way to define the equiva-
lence relationship of central simple algebras in the definition of Brauer group is
the following. We say two central simple algebras are equivalent if their division
algebras associated by Proposition 1.4.6(iv) are K-isomorphic. Moreover, when
two central simple algebras have the same dimension, equivalence reduces to
being K-isomorphic. This is discussed in [Ser79, Chapter X Section 5|.

Example 1.4.9. Quaternion Algebra: Let a,b € K*. The quaternion al-
gebra (a,b) is the unique K-algebra of dimension 4 with K-basis 1,4, j, k such
that

® °=q,
.« >=0,
o ij=—ji=k

Note that (a,b) only depends on a,b up to squares in K*. Also, quaternion
algebras represent elements of Br[2] as for any quaternion algebra A, A = A%.

Remark 1.4.10. By Remark 1.4.8, we know two quaternion algebras repre-
senting the same element in Br[2] are isomorphic. We will sometimes denote
the class of the quaternion algebra (a,b) by (a,b), which is an element in Br[2].
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From the results in [Ser79, Chapter XIV, Section 2 Proposition 4] and
[GS06, Corollary 2.5.5(1), Proposition 4.7.3], we have the following proposi-
tion which we will use later in the thesis.

Proposition 1.4.11. The followings are some properties of quaternion alge-
bras:

(1) (ab,c) = (a,c) + (b, c)
(ii) (a,bc) = (a,b) + (a,c)
(iii) (a,b) =0 if and only if b is a norm in the extension K(\/a)/K.

Remark 1.4.12. From Proposition 1.4.11(iii), we know that a quaternion al-
gebra (a, b) is trivial, which means that it is isomorphic to Mats(K), if and only
if az? + by? = 2?2 is solvable over K.

One important and well-known result on the Brauer group is the following
isomorphism. The proof is nontrivial and we refer to [Ser79, Chapter X Section
5 Proposition 9] and [GS06, Theorem 4.4.3| for a proof.

Proposition 1.4.13. We have the following isomorphism

Br(K) = H*(Gy, K*).

Remark 1.4.14. In this remark, we give a description of the above isomorphism
following the proof. Let CSA(n) denote the set of isomorphism classes of central
simple K-algebras that are isomorphic to Mat,, (K) over K. There is a canon-
ical bijection CSA(n) Iy H'(Gg,PGL,), sending A to (0 — M, € PGL,)
where ¢ : A® K = Mat,(K) and ¢(¢~1)° € Aut(Mat,) is conjugation by M,
via the Noether Skolem Theorem. Now for any central simple algebra A, it is
in CSA(n) for some n. The image of the class of A under the isomorphism in
Proposition 1.4.13 is precisely the image of f,(A) in H*(G g, K*) via the injec-
tive connecting map H'(G g, PGL,) — H?(G g, K*) induced by the short exact
sequence: 1 — K* — GL,, = PGL,, — 1.

Corollary 1.4.15. We have the following isomorphism

Br(K)[n] = H*(Gx, jin)-
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Proof. The result follows from Proposition 1.4.13 and Hilbert’s Theorem 90 via
the short exact sequence: 1 — p,, — K* =22 K* — 1.

]

Remark 1.4.16. Consider the natural pairing ¢ : ps X py — ps sending
((=1)2,(=1)®) to (—1). This gives a pairing

H1<GK7M2) X Hl(GKnu?) — H2<GK’/~L2> = BI‘(K)[2]
([o = ag], [T+ b;]) — [(o,7) = ¢(ag, br)]

By Hilbert’s Theorem 90, we can identify H'(Gg, ps) with K*/(K*)%. Under
this identification, the image of (a,b) € K*/(K*)?* x K*/(K*)? is precisely the
equivalence class of the quaternion algebra (a, b) by [Ser79, Chapter XIV, Sec-
tion 2, Proposition 5| and [GS06, Corollary 2.5.5(1), Proposition 4.7.3].

1.4.4 Invariant Map and Hilbert Symbol

In this section, we state some key properties of the invariant map of the Brauer
group and discuss its relationship with the Hilbert Symbol for quaternion alge-
bras.

Invariant map

e Local: Let K be a non-archimedean local field of characteristic 0. Local
class field theory provides a local invariant map, inv : Br(K) — Q/Z,
which is an isomorphism. In particular, inv : Br(K)[n| = Z/nZ. Note, in
the case n = 2, we sometimes replace (Z/27, +) with (uz, X).

e Global: Let K be a number field. We have the following exact sequence:

0= Br(K) = @ Br(k,) =% Q/Z — 0.

Hilbert symbol

In the case where K is a local field or K = R, the Hilbert symbol or the norm
residue symbol, denoted by (, )y : K* x K* — {1, —1}, is explicitly defined as
follows:

(a,b)g = 1 if and only if 2* = az? + by* has a nontrivial solution over K3.

From this definition, we can see that (a,b)y only depends on a,b up to
squares in K*. By the results in [Ser79, Chapter XIV, Section 2 Proposition 7
and Remark(3) after Proposition 4] and the fact that the local invariant map is
injective, we have the following proposition which is used in the later chapters
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of the thesis.

Proposition 1.4.17. The following are some properties of the Hilbert symbol.

(1) (ad’,b)y = (a,b)m - (a',0)n
(ZZ) (a, bb/)H = (CL, b)H . (CL, b/)H
(iit) (a,b)y =1 if and only if b is a norm in the extension of K(\/a)/K.

The Hilbert symbol has an explicit formula and it has been implemented
in MAGMA. Here, we describe the formula in the case where the local field
K = Q,, as in [Ser79, Chapter XIV, Section 4.

For K = Q, with p # 2, the formula for (a, )y is the following:

apa’®

Let a = p®a’,b = p°V, where o,V are units in Z,. Define ¢ := (—1) U

Then

(@b = (0= () (L)

where the Legendre symbol (%) = 2P=D/2 for any x € ;. Note that the Leg-
endre symbol naturally extends to Z.

For K = Qq, we have (2,2)y = 1 and the following formulae:

(—1)*™ if v is in Z3,
= (=1)“@e® if 4, v both in Z,

(2,u)
(u, )

where w(z) is the coset mod 2 of (2 —1)/8 for any x € Z} and €(x) is the coset
mod 2 of (x — 1)/2 for any z € Zj.

H
H

One useful lemma on the Hilbert symbol is the following.

Lemma 1.4.18. Let K be a local field. If a,b € K* both have valuation 0 and
K has odd residue characteristic, then

(a,b)H = 1.

Proof. By definition we know (a,b)y = 1 if and only if 22 = ax® + by? has a
nontrivial solution in K?3. Since a, b have valuation 0, 22 = ax? + by? defines a
smooth conic and the reduction of this conic over the residue field F,, where ¢
is some power of some prime p # 2, is a smooth curve of genus zero. Hence, by
the Hasse-Weil bound, the number of [F -points on the reduction of the conic is
precisely equal to ¢ + 1. By Hensel’s Lemma [HS00, Exercise C.9(c)|, we can
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always find a nontrivial solution of 2% = ax? + by? as required.

]

By the definition of the Hilbert symbol, the injectivity of the local invariant
map and Remark 1.4.12, we also have the following lemma relating the Hilbert
symbol and the invariant map in the case of a quaternion algebra.

Lemma 1.4.19. Consider a quaternion algebra (a,b) over a local field K. Let
(a,b) denote its equivalence class in Br(K),

inv((a, b)) = (a,b)u.

1.5 Principal Homogeneous Spaces and n-Coverings

In this section, we state some definitions concerning the twists of the Jacobian
variety J as well as some useful propositions needed later in the thesis. Similar
results in the elliptic curves are in [CFO708]. Note, unless stated otherwise,
a twist in this thesis means K /K twist, that is an isomorphic variety defined
over K with the isomorphism defined over K. We first state the following well-
known proposition for twists.

Proposition 1.5.1. [Ser97, Chapter III, Section 1, Proposition 5| Let X be
a quasi-projective variety defined over K. There is a natural bijection between
the set of isomorphism classes of the twists of X and H'(Gg, Aut( X)) that
sends a twist A to the class of cocycle o — ¢ o a(¢p™t), for a fized choice of
isomorphism ¢ : Ag — Xi.

1.5.1 Principal homogeneous space

A principal homogeneous space or a torsor for an abelian variety A defined over
a field K is a variety V' together with a morphism p: A XV — V', both defined
over K, that induces a simply transitive action of A(K) on V(K).

We say (Vi, 1) and (Va, o) are isomorphic over a field extension K of K
if there is an isomorphism ¢ : V; — V5 defined over K7 such that the following
diagram commutes.

A x V2w,

L

AX%LVQ
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We observe that (A, +) is a trivial principal homogeneous space for A and
we have the following lemma.

Lemma 1.5.2. Let A be an abelian variety defined over K. The only isomor-
phism ¢ : A — A as the trivial torsor is translation by some P € A .

Proof. Consider the following commutative diagram.

A x Ao

N

A x Ao A

We have Q+¢(id) = ¢(Q), for any ) € A. Here, id denotes the identity element
in A

O

For simplicity, we sometimes denote (V, u) by V' and we have the following
proposition whose proof we omit.

Proposition 1.5.3. [LT58, Proposition 4| Let A be an abelian variety defined
over K. There is a canonical bijection between H'(Gg, A) and the set of iso-
morphism classes of principal homogeneous spaces for A over K.

Remark 1.5.4.

(i) From the proof of the above proposition, we know that for a principal
homogeneous space V' of A with a morphism p: A x V' — V and a point
P € V(K), the map Q — u(Q, P) for all Q € A gives an isomorphism
of principal homogeneous spaces defined over K (P). Denote the inverse
of this isomorphism by ¢ : V' — A, then we have ¢ - (¢~1)° is a transla-
tion by a point P, € A and (0 — F,) gives the corresponding element
in H'(Gg, A). Note that different choices of the point P give the same

cocycle up to coboundaries.

(ii) Let V' be a principal homogeneous space of A with an isomorphism ¢ :
V' — A such that ¢(¢~')7 is translation by ¢, € J and (o +— ¢,) is a cocy-
cle representing €. Then for P € J, Tpo¢ : V — A is an isomorphism such
that it induces the cocycle representation of € that differs from (o — €,)
by a coboundary of (o — o(P) — P).

Remark 1.5.5. With this geometric interpretation, H'(Gg, A) is called the
Weil-Chatelet group. By |[LT58, Proposition 5|, we know the Weil-Chatelet
group is a torsion group, i.e. every element of it has finite order.
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Corollary 1.5.6. Let A be an abelian variety defined over K. V is a trivial
principal homogeneous space if and only if V has a K-rational point.

Proof. If V' is a trivial principal homogeneous space, that is, there exists an
isomorphism A = V over K, then the image of the identity element of A in
V' is defined over K. On the other hand, if there exists P € V(K), then by
Proposition 1.5.3 and Remark 1.5.4 (i), we know that the map @ — u(Q, P)
for all Q € A gives an isomorphism of principal homogeneous spaces A = V
defined over K(P) = K, where 1 : A x V — V is the action associated to V.

]

1.5.2 n-coverings

For an integer n > 2, an n-covering of an abelian variety A is a variety X
defined over K together with a morphism © : X — A defined over K, such
that there exists an isomorphism ¢ : Xz — Ag with 7 = [n] o ¢, shown in
the commutative diagram below. An isomorphism (X, ;) — (Xs, ) between
two n-coverings is an isomorphism h : X; — X5 defined over K with m; = my0h.

ANy

A—"5 A

We sometimes denote (X, 7) by X when the context is clear.

In the proposition below, we show that an n-covering of an abelian variety
A is a principal homogeneous space of A.

Proposition 1.5.7. Let A be an abelian variety defined over K and (X, m) be
an n-covering of A for some n. X s a principal homogeneous space of A with
the simply transitive action p: (P, Q) — ¢~ (P + ¢(Q)) for any P € A,Q € X
and isomorphism ¢ : X — A such that [n]o ¢ = .

Proof. Since (X, m) is an n-covering of A, there exists an isomorphism ¢ : X —
A defined over K such that [n] o ¢ = 7. Since ¢ is an isomorphism, we know
e (P,Q)— ¢~ (P + ¢(Q)) for any P € A, Q € X induces a simply transitive
action of A(K) on X (K).

It suffices to show that u is defined over K. Since m = [n] o ¢ is defined over
K, we know [n] = [n] o ¢(¢71)7 for all 0 € Gg. So fix 0 € G, we have a mor-
phism a, : A — A[n| that sends P to ¢(¢~1)?(P) — P. Since a, is continuous
and A[n] is a discrete set, we know «, is locally constant. The connectedness of
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A implies that o, is indeed a constant morphism. Hence, there exists P, € A[n]
such that ¢(¢~')7(P) = P + P,. Now to show u?(P,Q) = u(P,Q), it suffices
to show P+ ¢(Q) = ¢(¢™ )7 (P + ¢7(Q)). Since the right hand side is equal to
G(¢1)7 (P + ¢7¢7'¢(Q)) and ¢(¢7')7 = 7p,, we are done.

]

The following lemma and proposition show that the isomorphism classes of
n-coverings of A are parameterized by H'(Gg, A[n]). The case when n = 2
A = J is proved in [FTvL12, Lemmas 2.13, 2.14] and the result in the elliptic
curve case is in [CFOT08, Proposition 1.14]. For completeness, we include the
proof in the general case following the proof in [FTvL12]| .

Lemma 1.5.8. Let (X, 7) be an n-covering of an abelian variety A defined over
K. Suppose there are two isomorphisms defined over K, ¢,¢ : X — A, satis-
fying [n]o ¢ = [n] o' = w. Then there exists a unique point P € A[n] such that

¢/:TPO¢.

Proof. Consider the map 7 : Q — ¢'(Q) — ¢(Q). We have n(¢'(Q) — ¢(Q)) =
7(Q) — 7(Q) = 0, which implies that 7(Q) € A[n] for all Q@ € X. Since A[n] is
discrete and 7 is continuous, we get 7 is locally constant. The connectedness of
A implies that 7 is constant, as required.

By the lemma above, we make the following remark.

Remark 1.5.9. Fix (X, ) an n-covering of an abelian variety A of dimension
d. Since |A[n]| = n?*® by Lemma 1.7.2, Lemma 1.5.8 shows there are precisely
n?? different choices for the isomorphism ¢ : X — A such that [n] o ¢ = 7.

Proposition 1.5.10. Let (X, m) be an n-covering of an abelian variety A de-
fined over K and choose an isomorphism ¢ such that m = [n]o¢. Then for each
o € Gy, there is a unique point P € A[n](K) satisfying ¢ o 0(¢™1) = 7p. The
map o — P induces a well-defined cocycle class in H' (Gg, A[n]) that does not
depend on the choice of ¢. This yields a bijection between the set of isomor-
phism classes of n-coverings of A and the set H' (G, An]).

Proof. For 0 € Gk, m = [n] o ¢ implies m = [n] o 0(¢). Let ¢/ = o(¢) for some
o0 € Gk and apply Lemma 1.5.8, we get the unique existence of the point P. It
can be checked that for any choice of ¢, the induced map o — P is a cocycle. By
Lemma 1.5.8, we know different choices of ¢ give rise to the same cocycle class
in H'(Gk, A[n]). We also check that two isomorphic n-coverings indeed corre-
spond to the same element in H'(Gx, A[n]). Suppose the n-coverings (X, )
and (X, m2) both correspond to the same element in H'(Gg, A[n]) and we fix
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o1 X1 = A ¢y Xo — A such that [n] o ¢; = 7, [n] 0 ¢po = . Then by com-
posing ¢, with 7p for a suitable P € J[n], we may assume ¢, (¢, )7 = ¢o(¢5 )7
which implies X; and X, are isomorphic n-coverings as ¢1¢, ' is defined over
K. Finally any cocycle ¢ € Z'(Gg, A[n]) naturally corresponds to a cocycle in
ZY Gk, A). By Proposition 1.5.3, it corresponds to a principal homogeneous
space X with ¢ : X — A such that ¢(¢~')? equals c¢. This implies that [n] o ¢
is defined over K which makes (X, [n] o ¢) an n-covering mapping to c.

An example of the above correspondence is the following corollary.

Corollary 1.5.11. Let A be an abelian variety defined over K. Let P € A(K)
represent an element in A(K)/nA(K), denoted by [P]. Then the image of [P]
under the connecting map A(K)/nA(K) — H' (G, Aln]) corresponds to the
two-covering (A, [n] o T_q), where Q is any point of A such that nQ) = P.

Proof. The definition of the connecting map shows that [P] € A(K)/nA(K)
maps to the cocycle class represented by o +— (@) — @, where @ is a point of
A such that nQ) = P. Note that this image is independent of the choice of Q).

We know 7_¢g o 0(7-:(}2) = T5(Q)—@, and we are done by Proposition 1.5.10.
m

Remark 1.5.12. It is well-known for X the n-covering of an abelian variety A
corresponding to the cocycle class € € H'(Gx, A[n]), X contains a K-rational
point if and only if € is in the image of the connecting map A(K)/nA(K) —
H'(Gk, A[n]). This can be seen by the exact sequence 0 — A(K)/nA(K) —
HY Gk, Aln]) — H'(Gg,A) and Corollary 1.5.6. A proof of this in the case
n =2 and A = J can also be found in [F'TvL.12, Proposition 2.15].

1.6 Brauer-Severi Diagrams

In this section, we introduce the Brauer-Severi diagrams for the Jacobian vari-
ety J of a genus two curve. Recall that the divisor class of n© is defined over
K for any positive even integer n as in Remark 1.2.3.

For a fixed even integer n > 2, a Brauer-Severi diagram [X — S] is a
morphism defined over K from a principal homogeneous space X for J to a
variety S such that there exist an isomorphism of torsors ¢ and an isomorphism
of varieties v making the following diagram commute:

X — S

lqs llp (1.6.1)

|7’L@| 2_1
J —— P,
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and in particular, the variety S is a Brauer-Severi variety i.e. a variety that is
isomorphic to a projective space over K.

We call the Brauer-Severi diagram [J LN P”zfl], the base Brauer-Severi
diagram. Two Brauer-Severi diagrams [X; — S;] and [ Xy — S5] are isomorphic
if there exist an isomorphism of torsors f and an isomorphism of varieties g
making the following diagram commutes:

X — 5

L)

X2 E— Sz.

It can be shown that the isomorphism classes of Brauer-Severi diagrams are
parameterized by H'(Gg, J[n]). The elliptic curves case is done in [CFOT08,
Proposition 1.19], and here we state and prove the result for Jacobians of genus
two curves.

Proposition 1.6.1. There is a bijection between the set of isomorphism classes
of Brauer-Severi diagrams and the set H' (G, J[n]).

Proof. Let [X — S| be a Brauer-Severi diagram. Then there exist ¢, such
that (1.6.1) commutes where ¢ : X — J is an isomorphism of torsors. By
Proposition 1.5.3, we know that ¢(¢p~1)° = 7p, for some P, € J and (0 — F,)
is a cocycle in Z'(Gk, J). For a fixed o, we have

T [nO| ]Pm271
B(p~1)° fﬁw”)"

[nO] 2_q
J —— PV

which implies that (¢(¢~1)?)*(n©) ~ nO. Hence, P, € J[n] and (¢ — P,)
is a cocycle in Z'(Gg, J[n]). Suppose there also exist ¢, making (1.6.1)
commute. Then we have the following commutative diagram:

J x J—=J
e
J x X—X
ok
J x J—=J

Since ¢¢’'~! is an isomorphism as torsors, by Lemma 1.5.2 we get ¢¢'~! = 7p
for some P € J. In fact, we have P € J[n] as ¢¢'~! is an automorphism of
base Brauer-Severi diagram. This implies that the cocycles correspond to dif-
ferent choices of ¢ differ by a coboundary in B'(Gx, J[n]). We also check that
isomorphic Brauer-Severi diagrams indeed correspond to the same element in
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HY(Gg, J[n)).

Suppose [X; — 5], [Xa — S are two Brauer-Severi diagrams that map

to the same element in H'(Gg, J[n]). We have X, LN J,Xo 2 J isomor-
phisms as torsors. By composing ¢, with 7¢ for some @ € J[n], we can assume
$1(p7 )7 = ba(py )7 for all ¢ € G which implies [X; — Sy],[Xy — S, are
isomorphic over K. For surjectivity, let ¢ € Z'(Gg, J[n]) be a cocycle and
consider its image in Z'(Gx, J). By Proposition 1.5.3, there exist a torsor X
of J and an isomorphism as torsors ¢ : X — J such that (¢ — @(¢~1)7)
gives c. This implies ¢*(n©) ~ (¢7)*(nO) via the principal polarization and so
the divisor class of ¢*(n©) is defined over K. Hence, it induces a morphism

X — S over K which makes [X LaGIN S] a Brauer-Severi diagram as required.

O

The following proposition gives the relationship between n-coverings of J
and Brauer-Severi diagrams.

Proposition 1.6.2. Let (X, 7) be an n-covering of J, with ¢ o [n] = m. Then
the map |¢*(nO)| is defined over K and we have a Brauer-Severi diagram

(X LAUIN S].  In particular, if (X, 7) corresponds to a Selmer element via
the correspondence in Proposition 1.5.10, then we have that the Brauer-Severi
variety S is P71,

Proof. Since (X, ) is a n-covering of J, by Proposition 1.5.10, we have that for
each 0 € Gk, ¢ o (¢~1)7 = 7p for some P € J[n]. The principal polarization
gives 75(nO) ~ nO which implies that ¢*(n®) ~ (¢7)*(nO), hence the mor-
phism |¢*(n©)| is defined over K.

Now if (X, 7) corresponds to a Selmer element, then X everywhere locally
has a point by Remark 1.5.12, and hence S everywhere locally has a point. Since
Hasse principle holds for Brauer-Severi varieties by [CM96, Corollary 2.6|, we
know that S has a point over K and hence it is P’ ~! by [GS06, Therem 5.1.3].

]

We now make some observations and notation in the case where n = 2.

Remark 1.6.3. Let ¢ € Sel*(J), and let (J,7.) denote the 2-covering cor-
responding to €. There exists an isomorphism ¢, defined over K such that
2] 0 ¢ = 7 is a morphism defined over K. Then, by Proposition 1.6.2, we have
the following commutative diagram:

J, \72COl g ps
lqbe lwe (1.6.2)
J

ﬂ>ICCIP>3.
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We denote the image of J. under the morphism induced by |¢¥(20)| by K,
called the twisted Kummer surface corresponding to € and 1. is a linear iso-
morphism P? — P2 defined over K. This commutative diagram will become
essential in the later parts of the thesis.

Notation 1.6.4. Suppose (J,7,) is the 2-covering of J corresponding to € €
HY(Gg, J[2]). Via the involution [—1] : P + —P on J, we have an induced
involution on J, denoted by ¢, such that ¢, o tc = [—1] o ¢, where [2] 0 ¢ = 7.
Note, by Lemma 1.5.8, we know ¢, is independent of the choice of ¢.. Since

[2] 0 ¢ = 7, implies [2] 0 ¢7 = 7, for any o € G, we have ¢, is defined over K.

Moreover, the degree 2 morphism J, 10O, K. C P3?in (1.6.2) is precisely the

quotient by ¢, and an alternative definition of K, is the quotie nt of J. by ¢..
We sometimes call a function g on J, even if it is invariant under ¢, and odd if

gote=—g.

1.7 The Weil Pairing

We start by stating the theorem of the Weil pairing. This is taken from
[Mil08, Chapter 1 Section 13| (Cf. [Mum70, Section 20, page 184]).

Theorem 1.7.1. (The Weil Pairing) For a principally polarized abelian variety
(A, X\) defined over a field K, and an integer n not divisible by the characteristic
of K. Let AV denote its dual abelian variety. There exists a canonical pairing:

en t Aln] x AV[n] — K*,

that is bilinear, nondegenerate, and Galois equivariant.

Via the polarization A\, we get a pairing

ey Aln] x A[n] — K*,
where e)(a,b) = ey(a, \(b)). Moreover, €} is bilinear, anti-symmetric, nonde-
generate, and Galois equivariant.

Note that since e, ¢} are nondegenerate and bilinear, we know that the im-
age of e, and the image of e are in fact p,,(K*).

The Weil pairing e,, can be defined explicitly as follows. For simpicity, we
assume K is algebraically closed. Let a € A[n],a’ € AY[n] C Pic’(A). Suppose
a’ is represented by the divisor D on A. Then n% D is linearly equivalent to nD

T—=nx

which is linearly equivalent to 0, where ny : A ——— A. Therefore, there are
rationals functions f, g on A such that nD = (f) and n% D = (g). We have

div(f ona) = ny(div(f)) = ny(nD) = n(n’ D) = div(g").
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Hence, g"/(f ona) is a constant function ¢ on A. Moreover,
gz +a)" = cf(nz + na) = cf (n) = gla)"

which implies that g/(g o 7,) is a function on A whose n'® power is 1. This
implies that it is an n'® root of unity in the function field of A and can be
identified with an element in p,(K*) C K*. Define e,(a,a’) = g/(g o 7).

For a principally polarized abelian variety with a fixed polarization A\, we
sometimes denote e} by e, for simplicity. We quote the following well-known
result on the n-torsion group of an abelian variety A.

Lemma 1.7.2. [Mil08, Chapter 1 Remark 7.3] Let A be an abelian variety of

dimension d. We have A[n] = 124 which implies that |A[n]| = n??.

1.7.1 Properties of the Weil pairing

In this section, we state some properties of the Weil pairing that is needed in
the thesis. First, we have the following lemma that shows the compatibility of
the Weil pairing.

Lemma 1.7.3. [Mil08, Chapter 1 Lemma 13.1] Let (A, \) be a principally po-
larized abelian variety defined over a field K, and m,n be integers not divisible
by the characteristic of K. Then for all a € Almn] and o’ € AY[mn),

emn(a,a)™ = e,(ma, ma’).

Hence, via the polarization A, for all a,b € Almn),

el (a,b)™ = e)(ma, mb).

The following properties and notation related to the Weil pairing are used
in the later chapters.

Remark 1.7.4.

(i) Let U, : CY Gk, A[n]) x CYGk, A[n]) — C?*(Gk,K*) denote the cup
product pairing associated to e,. We know the cup product of two co-
cycles is a cocycle and the cup product is trivial if one of the arguments
is a coboundary. This implies that the cup product naturally extends to
a pairing H'(Gy, A[n]) x HY(Gg, Aln]) — H*(Gk, K*). We sometimes
also denote this induced pairing by U,, when the context is clear.
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(ii) By Lemma 1.7.3, we know that (a U, )™ = ma U, mb for all a,b €
CY(Gg, Almn)).

(iii) In the case where K is a number field, we let U,, denote the cup product
associated to e, over K and U, , denote the cup product associated to e,
over K, for each place v of K.

We quote the following lemma on Tate local duality which gives some prop-
erties of the cup product associated to e,,.

Lemma 1.7.5. [Sko, Lemma 2.7 and Complements(1)| Let A be a principally
polarized abelian variety defined over a local field K. Consider the subgroup
A(K)/nA(K) € HY(Gg, An)) via the connecting map 6, induced by A = A
as in Notation 1.4.1. We have that A(K)/nA(K) is orthogonal to itself with
respect to the cup product

U, : H(Gg, A[n]) x HY(Gg, Aln]) — H*(G, K*) = Br(K).

Moreover, A(K)/nA(K) is the exact annihilator of itself with respect to the pair-
ing that is the composition of the cup product U, above and the local invariant
map:

H' (G, Aln]) x H (G, Aln]) — Z/nZ

1.7.2 Galois action on J[2] and the Weil pairing

In this section, we discuss the Weil pairing on J[2] x J[2] when J is the Jacobian
variety of a genus two curve. We relate this with the action of the Galois group
Gk on J[2]. First, we have the explicit formula for the Weil pairing which is
used in the later computations.

Lemma 1.7.6. |[CF96, Chapter 3, Section 3| Let J be the Jacobian variety of
a genus two curve. Suppose { P, Py}and {Q1,Q2} represent P,Q € J[2] where
Py, Py, Q1, Qo are Weierstrass points, then

GQ(P, Q) = (—1)|{P1=P2}0{Q17Q2}\‘

Now recall that our genus two curve C is defined by 3*> = f(z) and f is a
polynomial of degree 6 defined over K with roots wy,...,ws. We let L; denote
the splitting field of f and let Gal(f) denote the Galois group of L;/K.
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0010
0001 . .

Let M = 100 ol The symplectic group is defined as
0100

Sp,(F2) = {A € Maty(Fy) : ATMA = M},
and it can be checked that [Sp,(F3)| = 720.

Since J[2] & (Z/27)* by Lemma 1.7.2, we can view it as Fy-vector space
of dimension 4. Recall Remark 1.2.1. In particular, we can pick a set of basis
Py, Py, Py, P, for J[2] such that the Weil pairing matrix under this basis is pre-
cisely represented by M. For example, we can let P, = {(wy,0), (wq,0)}, Py =
{(CL)3, 0), (w4, 0)}, Pg = {(wl, O), (w5, 0)}, P4 = {(CU3, 0), (MG, 0)} Note here we
identify (Fa, +) with (ug, x). Since the Weil pairing is Galois equivariant and
Galois acts trivially on {0, 1}, every element o € G induces a change of basis
on J[2], as a Fy-vector space, that preserves the Weil pairing. This gives a group
homomorphism G — Sp,(F2) and we have the following lemma.

Lemma 1.7.7.

(1) Spy(F2) = S.
(i1) Gx — Spy(F2) is surjective if and only if Gal(f) = S.

Proof. Let Q denote the set of six roots of f. We know Aut(Q2) = Sg. By
Lemma 1.7.6, we observe elements in Aut({2) naturally induce change of basis
matrices on J[2], viewed as a Fy-vector space, that preserve the Weil pairing.
This implies that they give elements in Sp,(IF3). We can check that this induced
map is an injective homomorphism. Then by size comparison, we know that
it is in fact an isomorphism which gives (i). Hence, we have the following
commutative diagram of group homomorphisms.

GK — Aut

\l

Spy FQ)

From the commutative diagram above, we know the map Gx — Sp,(F2)
is surjective if and only if G — Aut(2) is surjective which is equivalent to

Gal(f) = Se. Hence (ii) holds.
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1.8 Definition of the Cassels-Tate Pairing

In this section, we give two equivalent definitions of the Cassels-Tate pairing
(CTP) on a principally polarized abelian variety A defined over a number field
K. Generally, the Cassels-Tate pairing is defined and studied on the Tate-
Shafarevich group III(A). In this thesis, we will mainly be working on the
Cassels-Tate pairing on the Selmer groups where the definition naturally fol-
lows, see Remark 1.8.7(iv), and more details are discussed later in this section.
Most material comes from [PS99).

Theorem 1.8.1. Let (A, \) be a principally polarized abelian variety defined
over a number field K. There is an anti-symmetric bilinear pairing

I(A) x TI(A) — Q/Z,

that is nondegerate after quotienting out the mazimal divisible subgroup.

Remark 1.8.2. If A is an elliptic curve, Cassels [Cas62] proved that the pairing
is in fact alternating. If III(E) is finite, which is conjectured to always be the
case, then this implies that the order of III(E) is a square. In [F1a90], Flach
proved that for principally polarized abelian varieties, the pairing is always an-
tisymmetric. In [PS99|, Poonen and Stoll gave explicit examples to show the
pairing need not be alternating and the order of III(A) need not be a square
even in the case where A is Jacobian variety of a curve defined over Q.

We now have the following lemma for a special case when A is the Jacobian
variety J of a genus two curve C defined over K.

Lemma 1.8.3. IfC has a K -rational point, the Cassels-Tate pairing on II(J) x
III(J)is alternating.

Proof. Recall that J is principally polarized via a theta divisor © and the
divisor class of a theta divisor is in H°(Gg,NS(J)) as discussed in Remark
1.2.2. Consider the long exact sequence induced by the short exact sequence
0 — JY = Pic(J) — NS(J) — 0,

0— JY(K) — H°Gg,Pic(J)) = H*(Gk,NS(J)) = H' (Gg, J").

Since C has a K-rational point, the equivalence class of © in H°(Gx,NS(J))
has a lift in H°(Gx, Pic(J)) and hence is mapped to 0 in H'(Gg, J"). Then
the result in the lemma follows directly from [PS99, Corollary 7].

O

We note that, by Remark 1.5.5, it suffices to define the Cassels-Tate pairing
on III(A)[n] for every positive integer n.
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1.8.1 The Weil pairing definition of the CTP

Let (A, \) be a principally polarized abelian variety defined over a number field
K. We now define the Cassels-Tate pairing (a,a’)cr for a,a’ € TI(A)[n]. We
let b1/ € Sel"(A) C H'(Gx, Aln]) denote the lifts of a,a’ and are represented
by the cocycles t,t' € Z' (G, A[n)).

Let s € C'(Gg, A[n?]) be such that ns = t. This implies that the cocycle ds
takes value in A[n] as nds = dt = 0. Let U,, : C*(Gg, Aln]) x CY(Gg, Aln]) —
C3(G g, K*) denote the cup-product pairing associated to e,. Now dsU,, ' rep-
resents an element in H3(Gg, K*). Since K is a number field, we know that
H3(Gg, K*) = 0 as proved in [CF67, Chapter VII, Section 11.4]. Therefore,
there exists r € C?(Gg, K*) such that dr = —ds U, t'.

Now let v be a place of K. Since a, = 0, there exists Q, € A(K,) such
that d(nQ,) equals the image of t, in Z'(Gg,, A(K,)). Let ¢, = dQ,
ZYGg,,An*]). We get that ¢, — s, takes value in A[n] as n(c, — s,)
d(nQ,) —t, = 0.

I m

Let Uy, : CY(Gk,, Aln]) x C*(Gk,, Aln]) — C?(Gk,, K,") denote the cup-
product pairing associated to e,. Since ¢, and ¢t/ are both cocycles, d((c, —
8y) Upa ) = —ds, Uy, ', = dr,. Hence, ((c, — 8,) Upo t)) — 1, € C*(G,, K, ")
is a cocycle representing an element 1, € H*(Gg,, K,"). Via the invariant map
H*(Gg,, K,") = Br(K,) =% Q/Z, we define the Cassels-Tate pairing of a and

a’ as follows:
(a,d")or = Zinvv(m).

v

Sometimes, we refer to inv,(7,) above as the local Cassels-Tate pairing be-
tween a,a’ € II(A)[n], for a place v of K. We now state and prove the proposi-
tion below to show that the Weil pairing definition of the Cassels-Tate pairing
given above is well-defined. This is explained in [PS99] but here we prove it
directly and give more details.

Proposition 1.8.4. The Weil pairing definition of the Cassels-Tate pairing de-
fined above is independent of all the choices we make.

Proof. This proof follows the notation in the Weil pairing definition of the
Cassels-Tate pairing as above. Fix a,a’ € III(A)[n]. We will show that the
Weil pairing definition of (a,a’)cr is independent of the choices of b0 €
Sel"(A),t,t' € ZY Gk, Aln]),s € CHGg,An?)),r € C*(Gg,K*) and Q, €

A(K,) for each place v.

Step 1: In this step, we fix b, b’ € Sel"(A),t,t' € Z'(Gk, A[n]) and show the
independence of s € CY(Gg, A[n?]),r € C*(Gg, K*) and Q, € A(K,) for each
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place v.

We first fix the choices of s, Q, and suppose there exist r,7 € C?(Gy, K*)
such that dr = df = —ds U, t'. Then 7 = r + z for some z € Z*(Gg, K*) as
dr = 0. Let 0,77 € H*(Gk,, K,") be represented by ((c, — $,) Up o)) — 74, ((cp —
$y) U t) — 7y € C*(G,, K,") respectively. Then 7 — 7 is represented by the

cocycle —xz,. But by the exact sequence 0 — Br(K) — @, Br(X,) RRTLLIN

Q/Z — 0, we get > inv,(x,) = 0 as required.

Now we fix the choice of @, and suppose that there exist s, 5§ € C'(Gg, A[n?])
such that ns = ns = t. This implies that s = s + y for some y € C' (G, A[n]).
Since we have shown the definition is independent of the choice of r, we pick
any r,7 € C?(Gg, K*) such that dr = —ds U, t',df = —d5U, t' = dr —dy U, t'.
Let n,7 € H*(Gg,, K,”) be represented by ((c, — 5,) Uno ) — 74, ((co — $5) Un.o
t') — 7, € C*(Gg,, K,") respectively. Then 7) — 7 is represented by the cocycle
—YpUn ot =7y +1y = (—yU,t' —7+7),. Note that d(—yU, t' —7+7r) = 0. Using
the same argument as the previous case, we get Y inv,((—yU,t' —7+7),) =0
as required.

Then we show the independence of the choice of @), for each place v, fix-
ing s and 7. Suppose there exist Q,, Q, € A(K,) for some place v such that
d(nQ,) = d(nQ,) which is equal to the image of t, in Z'(G,, A(K,)). Hence
nQ, = nQ, + z, for some z, € A(K,) as dz, = 0. Let 2/ € A(K,) satisfy
Q, = Q, + zl and nz, = z,. Let ¢, = dQ,,¢, = dQ, in ZYGk,, Aln?]) and
n,7 € H*(Gk,, K,”) be represented by ((c, — 8,) Unuth) =70, (6o — 8p) Un ) —
r, € C?(Gg,, K,") respectively. Hence, ¢, = ¢, + dz), and 1, — 1, is represented
by the cocycle dz] U,,, t. Recall that z, € A(K,) which implies dz/ represents
0n(z,) € HY(GE,, A[n]). Also since ' represents a Selmer element, there exists

a T, € A(K,) such that t, represents 6,(T,) € H'(Gk,, A[n]). Recall 4, cor-

responds to A ﬂ A as in Notation 1.4.1. Hence, the cup product dz; U, , t,
represents the trivial cohomology element by Lemma 1.7.5, as required.

Step 2: In this step, we fix ¢/, " and show the independence of ¢ and b. Sup-
pose there exist t,f € Z'(Gy, A[n]) such that both their images in Z*(Gg, A)
represent a € H'(Gg,A). Let t = t + dw, for some w € A(K) such that
nw € A(K). Note that from the first part of the proof, we know the definition
is independent of the choices of s,7 and Q,. Pick any s € C'(Gg, A[n?]) such
that ns = t, let § = s + dw, for some w; € A(K) such that nw; = w. This
implies n§ = t + dw = t as required. So ds = d5 which means can pick 7 = r,
where 7,7 € C?(Gg, K*) satisfying dr = —ds U, t', di = —d3 U,, t' respectively.
Then for a place v of K, pick any Q, € A(K,) such that dnQ, = t,. Let
Qv = Qy + w1, SO dn@v = t, + dw, = t, as required. Let ¢, = dQ,, ¢, = d@v,
then ¢, — ¢, = dwy, = S, — 5,. Let 0,7 € H*(Gg,, K, ) be represented by
((co = 80) Unwth) =74, (6 — $) Unu t)) — 7 € C%(Gk,, K,”) respectively. Since
Cy— Sy = ¢y — Sy and 7 =1, we get 1, = 1,.
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Step 3: In this step, we fix ¢, b and show the independence of ¢’ and b'. Sup-
pose there exist ¢',t' € Z'(Gg, A[n]) such that both their images in Z'(Gg, A)
represent ' € H'(Gg, A). This implies that there exists R € A(K) such that
on(R) € HY(Gg, Aln]) is represented by u = ¢ — ' € Z'(G g, A[n]). This im-
plies that v = dR,; for some R; € A(K) such that nR, = R. Note that from
the first part of the proof, we know the definition is independent of the choices
of s,7 and Q,. Let r € C?(Gg, K*) be such that dr = —ds U, t' and define
F=r—sUpzu € C?(Gg, K*) where ' = dR for some R; € A(K) such that
nR} = Ry. This implies nu’ = u. Then by Remark 1.7.4(ii) and the bilinearity
of the Weil pairing, ds U,2 v’ = ds U, u. Also v’ = dR) implies that du’ = 0.
Hence, di = dr — ds U, u = —ds U, t' as required. Let 1,7 € H*(Gg,, K,") be
represented by ((¢, — 84) Upo ) — T, (o — 84) Un o t1) — 7y € C?*(G,, K, Te-
spectively. We get 7)—n is represented by the cocycle (¢, —$y) Uy oty +5,Up2 » ul,.
By Remark 1.7.4(ii) and the bilinearity of the Weil pairing, this cocycle is sim-
plified to be ¢, U,2, ul. Recall that dn@, is the image of ¢, € Z'(G,, A[n])
in Z'(Gk,,A), so n*(Q,) = Q. € A(K,). Hence ¢, Uy, u) = dQ, Uz, ),
where dQ), represents d,2(Q") and u represents d,2R,. Then by Lemma 1.7.5,
Cy Up2 , Uy, Tepresents the trivial cohomology element as required.

O

We will now give an alternative definition of the Weil pairing definition of
the Cassels-Tate pairing on III(A)[n] x III(A)[n] in a special case.

Proposition 1.8.5. Let b,b' € Sel'(A) be lifts for a,a’ € II(A)[n]. Sup-
pose there exists by € H' (G, A[n?]) such that nb; = b, induced by the map

Aln?| I, Aln]. The Weil pairing definition of {a,a’)or can be simplified.

More explicitly, let v be a place of K and P, € A(K,) such that 6,(P,) =

b, € HY(Gk,, A[n]), where b, corresponds to the map A "4 as in Nota-

tion 1.4.1. Then 6,2(P,) and by, in H'(Gg,, A[n?]) are both mapping to b,,

n2 .
where 0,2 corresponds to the map A Q A as in Notation 1.4.1. Hence, define

pv € HY(Gg,, Aln]) to be a lift of 6,2(P,) — b1,. See the commutative diagram
below.

A(K,) —— A(Ky) —— HY(Gk,, Aln])

:l ’I’Ll Llpv'_)5n2 (Pv)fbl,v

A(Kv) T) A(Kv) 5—2> H1<GKu7A[n2])

n

’nl Zl nl(;ng (Pv)i—)by blyqﬂ—)bv

A(K,) —— A(K,) =55 H(Gx,, Aln))

Define n, = py Uny U € HE(GKU,KU*). Note, here U,, : H'(Gk,, Aln]) x
HY(Gg,,Aln]) — H*(Gg,, K,") denotes the cup-product pairing associated to
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e, tn the cohomology level.

Then we let

(a,a’); = Z vy (1),

v

and we have {(a,a’); = (a,d)or.

Furthermore, {(a,a’); is independent of all the choices we make.
Proof. Since there exists by € H' (G, A[n?]) such that nb; = b, we know there
exists s € Z'(G g, A[n?]) representing b, such that ns =t € Z'(Gg, A[n]) rep-

resenting b. Then ds = 0, and hence we can pick » = 0 in the definition of
{a,a’)cr. We also let t' € Z'(G g, A[n]) denote a cocycle representing b'.

v)

)-
<
<

For each place v of K, we have 6,(P,) = b,. There exists Q, € A(K
such that n%(Q,) = P, and d(nQ,) equals the image of t, in Z'(Gk,, A(K,)
Let ¢, = dQ, € Z'(Gg,, A[n?]), then ¢, is a cocycle representing (5n2( )
H'(Gk,, A[n?]). We check that c, — s, takes value in A[n], and [c, — s,]
H'(Gg,, A[n]) is a lift of §,2(P,) — b1, € H(Gk,, A[n?]).

Hence, to prove the two pairings are the same, it suffices to show that for
11,29 € Z'(Gg,, Aln]) such that their images in H'(G,, A[n?]) represent the
same element, then z; U,, t, and x5 U, , t, represent the same element in
H*(Gg,, K,"). We know there exists w € A(K,)[n? such that dw = z; — 5. It
suffices to show that dw U, , t! represents the trivial element in H?(G,, K,").
Now using the similar argument as above but in a local field, there exists
P/ € A(K,) such that 6,(P!) = b,. Hence nd,2(P)) = b/, which implies that
there exists ¢, € Z'(Gk,, A[n?]) such that nc, and ¢! represent the same ele-
ment in H'(Gk,, A[n]). So it suffices to prove dw U, , nc, represents the trivial
element in H2(Gg,, K, ). By the bilinearity of U, , and Remark 1.7.4(ii), we
have dwU,, ,nc, = dwU,z, ¢, which is indeed a coboundary element as required.

Furthermore, since (, )or is independent of all the choices we make, (| );
is also independent of all the choices we make.

]

The lemma below shows that if all n-torsion points of the principally po-
larized abelian variety A are defined over K, then the condition of Proposition
1.8.5 is satisfied and hence the Weil pairing definition of the Cassels-Tate pair-
ing is simplified.

Lemma 1.8.6. Let (A, \) be a principally polarized abelian variety defined over
K of dimension d. Suppose that the n-torsion points of A are all defined over
K. The following statements hold:
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(i) The map H*(Gk, Aln]) ~> 1, H*(Gk,, A[n)) is injective.

(ii) For any b € Sel'(A), there exists by € H'(K, A[n?]) mapping to b. (Note
(i) holds as long as (i) holds.)

(iii) 1I(A) C nHY(Gg, A). (Note (iii) holds as long as (i) holds.)

Proof. Since the Weil pairing e,, is non-degenerate and Galois equivariant, the
fact that all points in A[n] are defined over K implies that u,(K*) C K.
By Lemma 1.7.2, we know |A[n]| = n?! and A[n] = p2¢. So, by Corollary
1.4.15, we have H*(Gg, A[n|) = (H*(Gk,i,))** = (Br(K)[n])?? and simi-
larly H?(Gg,, Aln]) = (Br(K,)[n])*. Hence, via the injection of Br(K) —
@, Br(K,), we have H*(Gg, Aln]) —> [, H*(Gk,, A[n]) is injective which
proves (i).

Now, consider the following commutative diagram of short exact sequences.

0 > Aln] » An?] —— A[n] —— 0
[
0 > Aln| > A A > 0

We then obtain the following commutating diagram of long exact sequences
along the rows by taking Galois cohomology.

Hl(GK,A[HQ]) — Hl(GK,A[TL]) EE— H2(GK,A[TL])

| b i

H' (G, A) — 2 HY(Gg, A) —— H*(Gy, Aln])

lres lres linj

[1, H'(Gk,, A) —— I, H'(Gk,, A) — II, H*(Gk,, An])

Since b € Sel"(A), its image ¢ € H'(Gf, A) is locally trivial. Hence, its image is
also trivial in [ [, H*(Gk,, A[n]). Via the injectivity of the map H?*(G g, A[n]) —
1, H*(Gk,, A[n]), we get that b — 0 € H?*(Gk, A[n]). Thus b has a lift
by € H(Gg, A[n?]). Hence (ii) holds. The same argument gives (iii).
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1.8.2 The homogeneous space definition of the CTP

Let (A,\) be an abelian variety defined over a number field K. Suppose
a and o' € II(A). Via the polarization A\, we get o’ — b where b = \(d) €
ITT(AY). Let X be the (locally trivial) principal homogeneous space defined over
K representing a. Then Pic’(X) is canonically isomorphic as a G g-module to
Pic’(Agz) = AY(K). Therefore, we have that b € III(AY) C H'(Gg, AY) now
represents an element in H'(G, Pic’(Xz)).

Now consider the exact sequence:
0 — K(X)*/K* = Div’(Xg) — Pic’(Xz) — 0.

We can then map b to an element ' € H?(Gy, K(X)*/K*) using the long exact
sequence associated to the short exact sequence above. Since H3(G g, K*) = 0,
V' has a lift f/ € H*(Gg, K(X)*) via the long exact sequence induced by the
following short exact sequence:

0— K*— K(X)" = K(X)"/K* = 0.

Next we show that f/ € H?*(Gkg,, K,(X)*) is the image of an element ¢, €
H*(Gg,,K,"). This is because b € ITI(AY) is locally trivial which implies its
image ' is locally trivial. Then the statement is true by the exactness of the
sequence.

We then can define

(a,0) = inv,(c,) € Q/Z.

v

So we have defined the Cassels-Tate pairing on III(A) x III(A) — Q/Z by

{a,d")or == (a, \(d)).

We sometimes refer to inv,(c,) above as the local Cassels-Tate pairing be-
tween a,a’ € III(A) for a place v of K and we make the following remarks that
are useful for the later chapters.

Remark 1.8.7.

(i) One can compute ¢, by evaluating f! at a point in X (k) provided that
one avoids the zeros and poles of f/. Note that X(K,) # 0 as X is a
locally trivial homogeneous space of A, see Corollary 1.5.6.

(ii) By [PS99, Propositions 32, 33, 34|, we know the homogeneous space defini-
tion of the Cassels-Tate pairing is equivalent to the Weil pairing definition
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of the pairing. Hence, by Proposition 1.8.4, the homogeneous space defini-
tion of the Cassels-Tate pairing is independent of all the choices we make.

(iii) By the equivalence of the two definitions, we know that the Cassels-Tate
pairing on II(A)[n] x II(A)[n] is well-defined and compatible. More
specifically, (a,a’)cr is the same whether we treat a,a’ € III(A)[n] or
ITI(A)[nm] for any positive integer m.

(iv) Via the map Sel"(A) — II(A)[n], the definition of the Cassels-Tate pair-
ing on II(A)[n] x II(A)[n] naturally lifts to a pairing on Sel"(A) x Sel™(A).

1.9 Cassels-Tate Pairing and Rank Bound

By the Mordell-Weil Theorem, the set of K-rational points of an abelian vari-
ety A defined over a number field K, denoted by A(K), is a finitely generated
abelian group. This implies that the rank of A(K), denoted by r, is finite.
Computing the rank is difficult but there are ways to compute upper bounds.
One standard method is descent calculation. In this section, we explain how
the Cassels-Tate pairing can potentially improve the rank bound of an abelian
variety obtained by a standard descent calculation. Also we assume K is a
number field in this section, unless stated otherwise.

1.9.1 Selmer group and rank bound

Let ¢ : A — B be an isogeny between two principally polarized abelian varieties
defined over K. Recall we defined the ¢-Selmer group of A and Tate-Shafarevich

group of A in Definition 1.4.2. The short exact sequence 0 — Alp] — A LN
B — 0 induces a long exact sequence of Galois cohomology which gives the
exactness of

0= B(K)/9(A(K)) & H' (G, Alg]) — H' (G A)lg] = 0.
and we have the following exact sequences of abelian groups:
0 — B(K)/p(A(K)) KN Sel?(A) — II1(A)[¢] — 0.

Now let <$ denote the dual isogeny of ¢. Similarly we have

0 = A(K)/3(B(K)) % Sel?(B) — I11(B)[d] — 0.
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Via the Mordell-Weil Theorem and the structure theorem, we deduce

A(K)
nA(K)

= ARl

Since |A(K)/nA(K)| < |Sel"(A)| by the above exact sequences, we get n” <
|Sel"(A)|/|A(K)[n]|. We now state and prove the following well-known result
which relates the Selmer group and the rank bound of an abelian variety more
generally.

Lemma 1.9.1. Let ¢ : A — B be an isogeny between two principally polarized
abelian varieties defined over K with ¢ being is dual and ¢ o ¢ = [n]. Let r
denote the rank of A. Then,

e ISeP(A)] x \Sel‘g(BZ] |
-~ A(K)[¢]] x |B(K)[4]]

In particular, if A = B and ¢ = [n],we have

(1.9.1)

L |Ser(4)
S AE) ]

Proof. We note that it suffices to prove (1.9.1). It can be checked that we have
the following exact sequence:

0 — A(K)[g] — A(K)[n] & B(K)[¢]

— B(K)/6(A(K)) % A(K)/nA(K) = A(K)/6(B(K)) = 0.

Since |B(K)/¢(A(K))| < [Sel?(A)| and |A(K)/3(B(K))| < ]Selg’(B)|, we have
(1.9.1) as required.

1.9.2 Application of the Cassels-Tate pairing

In this section, we discuss the application of the Cassels-Tate pairing in bound-
ing the rank of a principally polarized abelian variety A. Here, the Cassels-Tate
pairing is defined on Sel”(A) x Sel"(A), as explained in Remark 1.8.7(iv). We
first state a useful lemma followed by the proposition that explains the appli-
cation of the Cassels-Tate pairing in the rank bound.

Lemma 1.9.2. Let ¢ : A — B be an isogeny between two principally polarized
abelian varieties defined over K with ¢ being its dual and ¢ o ¢ = [n|. We
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have the following exact sequence from the short exact sequence of 0 — A[¢] —
Aln] & B[g] — 0:

0 — A[¢](K) — An)(K) S BIg](K) — Sel’(A) — Sel™(A) — Sel’(B).
Proof. 1t can be checked directly.

]

Proposition 1.9.3. Let A be a principally polarized abelian variety. Suppose
one of the following assumptions holds.

(i) TI(A) is finite;
(ii) For any b € Sel*(A), there exists by € H (G, A[n?]) mapping to b.

Then carrying out an n-descent and computing the Cassels-Tate pairing on
Sel*(A) x Sel'(A) gives the same rank bound as obtained from a n*-descent
where Sel”Q(A) needs to be computed.

More explicitly, the kernel of the Cassels-Tate pairing { , Yor on Sel'(A) X
Sel"(A) is equal to the image of the natural map o : Sel’12(A) — Sel"(A) induced
from A[n?] = Aln).

Proof. First, we apply Lemma 1.9.2 on the multiplication by n map on A and
we have the following exact sequence:

0 — Aln](K) — A[n?(K) — Aln](K) — Sel"(A) — Sel” (4) 2 Sel™(A).

We will show that the kernel of the Cassels-Tate pairing ( , )cr on Sel”(A) x
Sel”(A) is equal to the image of the natural map a : Sel” (A) — Sel”(A) induced
from A[n?] = A[n]. Then, via the above exact sequence, we know that carrying
out an n-descent and computing the Cassels-Tate pairing on Sel”(A) x Sel"(A),
together with computing A[n](K) and A[n2](K), gives the size of Sel” (A). This
implies that we would get the same rank bound as obtained from a n2-descent.

We note that Ima C ker( , )or. Indeed, suppose a = a(b) € Sel"(A)
where b € Sel””(A). Denote the image of a in II[n] C H' (G, A) by d’ and
the image of b in Ill[n?] C H'(Gg,A) by V. Then we have nb/ = o and
(d,c)er = (N, cyor = (V,nc)or = (U',0)cr = 0, for any ¢ € In].

To prove ker( , Yor C Imay, it suffices to prove (x): the kernel of the Cassels-
Tate pairing on III(A)[n] x III(A)[n] is precisely nIlI(A) N III(A)[n]. Indeed if
x € ker(, )er, then its image 2/ € III(A)[n] is in the kernel of the Cassels-Tate
pairing on ITI(A)[n] x III(A)[n|. Hence, by (x), there exists 3y’ € III(A)[n?] such
that ny’ = 2’ and ¢ has a lift y € Sel” (A). This implies that a(y) = = + z,
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where z has a lift 2’ € A(K)/nA(K). Then by treating 2’ € A(K)/n?A(K), we
have a(y — d,2(2")) = x as required.

Suppose condition (i) holds, that is ITI(A) is finite. The Cassels-Tate pairing
(, Jor on II(A) x III(A) is non-degenerate by Theorem 1.8.1. In this case,
we get an induced isomorphism & : II(A) = III(A)* = {homomorphism ¢ :
II(A) — K*}. The statement (*) holds if the set S := {z € I(A)|{x,y)cr =
0, for all y € III(A)[n]} is equal to nIII(A). We observe nllI(A) C S, so it suf-
fices to show |S| = [nIII(A)|. This is indeed true as S = Annyyap, (I(A)*) =
{¢ € LUI(A)* such that ¢ restricted to II(A)[n] is trivial} under ®, and hence
|S| = [II(A)|/|II(A)[n]| = |nII(A)| by the assumption of the finiteness of
III(A).

Now suppose condition (ii) holds. The proof of ker( , Yor C Ima is the
same as the proof in the elliptic curve case in [Fis03, Theorem 3| using Propo-
sition 1.7.5.

]

We now make the following remarks on the application of the Cassels-Tate
pairing in improving the rank bound of A obtained via standard descent calcu-
lations.

Remark 1.9.4.

(i) From the definition of the Cassels-Tate pairing, we know that if the ele-
ment in Sel"(A) has a lift in A(K)/nA(K), then it will be in the kernel
of the pairing. Hence, we can bound n" < |ker( , )or|/|A(K)[n]| in-
stead of n" < |Sel”(A)|/|A(K)[n]|. This already implies that computing
the Cassels-Tate pairing can potentially improve the rank bound obtained
via carrying out a standard descent calculation. Under assumption (i) or
(ii), Proposition 1.9.3 gives a more precise statement of this improvement.
In particular, assumption (i) is conjectured to be always true.

(ii) We note that the results of Proposition 1.9.3 also hold in the case where
H?(Gk, Aln)) == 1, H*(Gk, A[n]) is injective which includes the case
where all points in A[n] are defined over K by Lemma 1.8.6. This can be
argued by the following two ways. The assumption that III(A) is finite
(assumption(i)) is only used to prove the statement (x) in the proof of the
proposition above. From [Mil06, Chapter 1, Lemma 6.17|, we know that
the statement (*) holds under the assumption that III(A) C nH' (G, A).
Hence, by Lemma 1.8.6, the statement () automatically holds in the case
where H?(Gg, A[n]) —> ], H*(Gk, A[n]) is injective. Or we can argue
that, the injectivity of H?*(Gg, A[n]) — [[, H*(Gk, An]) implies as-
sumption(ii) by Lemma 1.8.6.
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1.10 More Results in Galois Cohomology

In this section, we state some more known results related to H' (G, J[2]) where
J is the Jacobian variety of a genus two curve defined by y? = f(x) with f a
polynomial of degree 6 defined over K. Most of the material in this section
and more details can be found in [FTvLL12) Section 2]. Also we assume K is a
number field in this section, unless stated otherwise.

1.10.1 Homomorphism from Sel?(.J) to L*/(L*)?K*

Let L = K[z]/(f). We will describe a map Sel?(J) — L*/(L*)2K* that we
will use in several later parts of the thesis. We first give some useful notation.
Let © denote the set of roots of f. Define L = L ® K. We get isomorphism
L = Map(Q, K) = K°® where the first natural isomorphism is Galois equivari-
ant and the second isomorphism is evaluation at the 6 roots in the fixed order
w1, ...,ws. Via the first isomorphism, L is isomorphic to the set of Galois equiv-
ariant maps from €2 to K, denoted by Map (€2, K). We will be using these iden-
tifications in the discussion. The norm map N sends o € L to H?:1 a(w;) € K.
It induces homomorphisms from py(L) and ps(L)/pa(K) to pa(K). For sim-
plicity, we denote both of them as N and refer to as norms. Consider the the
norm map fio(L) R pa(K). Define M C uy(L) to be the kernel of this norm

map N and we have the short exact sequence 0 — M — po(L) SN pa(K) — 0.
Let 6; € L send w; to —1 and send w; to 1 for i # j. It can be checked that
0;0; form a basis for M as a Fy-vector space. We also have a natural homo-
morphism [ : M — J[2] that sends §,;0; to {(w;,0), (w;,0)}. This is a sujective
homomorphism with kernel py =< Hle 0; > which gives a short exact sequence
0— pg = M — J2] - 0. Welet —1 € M denote the element []°_, §; for
simplicity.

It is known that u : pue(L) X pa(L) — po that sends (f, g) to (—1)" where
r=#{w; € Q|f(w;) = g(w;) = —1} is a perfect pairing. It can be checked that
p induces a well-defined natural perfect pairing M X po(L)/pa(K) — pip. It can
also be checked that this perfect pairing is compatible with the Weil pairing
ey @ J[2] x J[2] via the natural map M — J[2] defined above and the injection
o J[2] = pa(L)/u2(K) that sends {(w;, 0), (w;,0)} to 6;;.

We get the following commutative diagram of the short exact sequences
discussed above.
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1 1
p2(K) —— pa(K)
1 y M s uo(L) —— pp(K) —— 1
p2(L) p2(K) (1.10.1)
8 -
L —— J2J(K) —2 28 Ny (K) — 1

Via applying Hilbert’s Theorem 90, we deduce the Kummer isomorphism
HY(Gg,p2(K)) = K*/(K*)?. By a generalized version of Hilbert’s Theorem 90
[Ser79, Chapter X, Section 1 Exercise 2|, which says H' (G, M*) = 0 for M a
finite-dimensional unitary K-algebra, we have H*(Gg, L*) = 0 and the Kum-

mer isomorphism H'(Gy, us(L)) & L*/(L*)?

. Therefore we have the following

commutative diagram via taking the long exact sequneces of Galois cohomology.

~

l
(

(L) —— jip(K) —— HY(Gg, M) —— L*/(L*)? —N— K*/(K*)?

| - .

~

HO(Gre, 2y s pip(K) —— HY(G, J[2]) = HY(Gx,

Y

~

Br(K)[2] — = Br(K)[2]

where «, B, N, are induced from «, 3, N respectively.

! 5

L N * *
) K

|

(1.10.2)

We now quote some results whose proofs are in [FTvL12].

Proposition 1.10.1. [FTvL12, Proposition 2.2] Assume that K is a number
field or a local field. Then the composition of the map 6 : J(K)/2J(K) —
HY (G, J[2]) defined in Section 1.9.1 with the map ~ in the diagram above is

ZETO0.
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We denote the kernel of v by P'(Gg, J[2]). We know the image of 4 :
J(K)/2J(K) — H'(Gg, J[2]) is contained in Sel®(.J). As discussed in [FTvL12,
Remark 2.3|, it follows from Proposition 1.10.1, applied to all K,, and the
fact that the natural map Br(K) — [],Br(K,) is injective, that Sel*(J) C
PY Gy, J[2]).

From (1.10.2), the kernel of the homomorphism H'(Gx, pa(L)/p2(K)) —
Br(K)[2] is isomorphic to the image of L*/(L*)* in H' (G, pa(L)/pa(K)) which
is isomorphic to L*/(L*)?K*. This gives a homomorphism

k: PYGg, J[2]) = L*/(L*)?K*,

induced by a, whose restriction gives a homomorphism Sel*(J) — L*/(L*)?K*.

1.10.2 Fake Selmer
By Proposition 1.10.1, the following map is well-defined.

Definition 1.10.2. [FTvL12, Definition 2.4] The composition
kod:J(K)/2J(K) — L*/(L*)*K*

is called the Cassels map.

Remark 1.10.3. We have explicit formula for the Cassels map:

[{ (w1, v1), (ug, v2) }] = (2 — wi) (2 — ug),

in the case vjvy # 0, see [F'TvLL12, Proposition 2.5]. The formula in the spe-
cial cases can be found in [CF96, Chapter 6, Section 1]. In particular, when
(u;,v;) = (w,0) is a K-rational Weierstrass point, we replace the w-component
of (x —uw;) € L C L=KSby —f(w).

From (1.10.2), we have that ker a, equals the image of u»(K) in H' (G, J[2]).
This implies that ker v, has order 1 or 2. Since the image of py(K) is con-
tained in Im f,, it is contained in P'(Gk, J[2]) and hence kera, = kerk.
From [PS97, Lemma 9.1], we know —1 € pus(K) is mapped to the element
in H' (G, J|2]) that is represented by the cocycle (o — {(w,0)?, (w,0)}) for
some fixed Weierstrass point (w,0). This implies by [PS99, Corollary 4| that
ker o, is generated by the class of the principal homogeneous space Pic'(C).
[PS97, Lemma 11.2| gives a condition based on how f factors that tells whether
or not ker a, is trivial. In particular, in the case where f has a rational root,
then ker v, is trivial. Furthermore, when K is a local field, [PS99, Lemma 1|
shows that ker a, is always trivial. Hence, when K is a number field, we have
ker o, C Sel?(J) and ker v, measures the difference between Sel?(.J) and its im-
age under  in L*/(L*)?K*, which is known as the fake Selmer group, denoted
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by Selfcake(J).

Let T' denote the subgroup of L* x K* that consist of all elements (d,n)
such that N(§) = n? Define the homomorphism y : L* — T' that sends ¢
to (€%, N(¢)). We quote the following proposition and corollary with proofs in
[FTvL12].

Proposition 1.10.4. [F'TvLL12, Proposition 2.6] There is a unique isomorphism
v:T/Imyx — HY(Gg, M) that sends the class of (0,n) to the class of the cocy-
cle (o + a(¢)/¢), where ¢ € L is any element satisfying (> = 6 and N(¢) = n.
The composition of v with the map H' (G, M) — L*/(L*)? sends (§,n) to é.
The kernel ker a, = ker k is generated by the image of (1,—1) € I'/Im x under
the composition of v with the map B, : H (G, M) — H (Gx, J[2]).

Corollary 1.10.5. [FTvL12, Corollary 2.9] The composition of v : T'/Im x —
HY(Gg, M) with the map 8, : H'(Gx, M) — H (Gg, J[2]) induces an isomor-
phism T/(K*Tm ) — PY(Gx, J[2]). Note here we identify K* with its image
under the map x v+ (x,2%).

We make the following remark to give notations for Selmer elements corre-
sponding to the same fake Selmer element.

Remark 1.10.6. From the discussions above, we know that given a fake Selmer
element in L*/(L*)? K* represented by 6 € L*, the Selmer elements correspond-
ing to it under the identification of I'/(K*Im x) — P'(Gk, J[2]) in Corollary
1.10.5 are presented by (d,n) and (d, —n) where N(§) = n? by Proposition
1.10.4. From the previous discussion, we know that Sel*(J) = Self,..(J) in
the case where f has a root defined over K. It can be shown that if f has
a root defined over K, then (1,—1) € Imy which indeed implies that (9, n)
and (0, —n) represent the same Selmer element. Note that it is also compatible
with Proposition 1.10.4 since ker a, measures the difference between Sel(J)

and Selfcake(J ). In particular, in the case where f has a root defined over K, we
have P'(Gg, J[2]) = {6 € L*/(L*)*K* : N(¢) is a square}.

1.11 Explicit 2-Coverings of the Jacobian

In this section, we let J be the Jacobian variety of a genus two curve de-
fined by 3> = f(z) with f a degree 6 polynomial defined over a number
field K. Let € represent the set of 6 roots of f, denoted by wy,...,ws. Re-
call in Proposition 1.5.10, we showed the isomorphism classes of 2-coverings
of J are parameterized by H'(Gy, J[2]). Also, in Section 1.10.1, we defined
PY(Gg, J[2]) = ker(H'(Gg, J[2]) & Br(K)[2]) as in (1.10.2). In this section,
we state the following theorem on the explicit 2-coverings of J corresponding
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to elements in P (G, J[2]) C H'(Gg, J[2]). As discussed in Section 1.10.1, we
have Sel*(J) € PY(Gg, J[2]) as K is a number field. This theorem is essential
in the later chapters of the thesis. We note that this theorem in fact works over
any field of characteristic different from 2.

Theorem 1.11.1. [FTvL12, Proposition 7.2, Theorem 7.4, Appendix B|Let J
be the Jacobian variety of a genus two curve defined by y*> = f(x) where f is a
degree 6 polynomial and ¢ € P (G, J[2]). Embed J in P¥ wvia the coordinates
ki1, k2, ..., kaa, by, ..., bg. There exists J. C P® with Galois invariant coordinates
U, --vy Ug, V1, ..., Vg and a linear isomorphism ¢. such that J. is defined over K
and (Je, [2] o ¢¢) is a 2-covering of J whose isomorphism class corresponds to
the cocycle class €. Moreover, ¢. can be explicitly represented by the 16 x 16

}(%)1 ]2 } for some 10 x 10 matriz Ry and some 6 X 6 matriz R
2

given in the remark below.

matric R =

Remark 1.11.2. Since R is block diagonal, ug,...,ug are 10 even elements
and vy, ...,vg are 6 odd elements on J.. Here, the parity is corresponding to
the induced involution ¢, on J, as defined in Notation 1.6.4. We now give the
explicit fomulae for R in the above theorem following the proof in [FTvL12].
Suppose € € P (G, J[2]) is represented by (6,n) for § € L* with N(§) = n? as
in Corollary 1.10.5. Define ¢ € L such that (? = § and N(¢) = n. Let Iy, ..., 1o
be the 10 different subsets of ) of size 3. Let T} be the diagonal matrix whose
' diagonal entry is [] ., ((w) + [locay, ¢(w) for r = 1,...,10. Since K is
infinite, we can assume the entries of T} are nonzero by carefully picking (,d
and n representing €. Let T, be the diagonal matrix whose r** entry is (w,) for

1 1 ... 1
W1 Wy ... Wg .

r =1,...,6. Then define S = | . . . |. Let G be the matrix whose
wy Wy .. wg

rt row is

i(H H (¥ —w)™) - (L) Ma(Ly) - Aaa(L),

welr YeQ\I,

with the explicit formulae of \;; in [F'TvL12, Definition 6.11] which are defined
over L1, the splitting field of f. Then R; = G™'T1G and Ry = ST»S~'. We note
the explicit formula for ¢, is defined over Li(\/ar, ..., \/as) where a; = 6(w;). In
fact, the formula for ¢, given in Theorem 1.11.1 is a conjugation of the original
construction given in [FTvL.12, Proposition 7.2, Theorem 7.4| where the coordi-
nates for J, J. C P are given in [FTvL12, Definition 6.9, Definition 6.11] and
the matrix representing the twist is F(;l 791 . Note that this set of coordinates

2
in general are not Galois invariant.
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In this thesis, we will only be applying Theorem 1.11.1 in the case where
e € Sel’(J). Consider ¢ € Sel*(J). Theorem 1.11.1 gives an explicit formula
for ¢ : J. C P — J C P such that (J,[2] o ¢) the 2-covering of J corre-
sponding to €. In this thesis, we always embed J, in P*® via the Galois invariant
coordinates ug, ..., ug, V1, ..., Vg, unless stated otherwise.

Now suppose J, is embedded in P'® with any set of Galois invariant coor-
dinates, denoted by wuy, ..., ug, v]..., vy where uy, ..., ug are the even coordinates
and the v], ..., vy are the odd basis with respect to the involution ¢.. From The-
orem 1.11.1 and Remark 1.11.2, under the coordinates uy, ..., uq, v}..., v5 and
the standard coordinates for J C P, we get that ¢, is also represented by a
block diagonal matrix that consists of a block of size 10 corresponding to the
even coordinates and a block of size 6 corresponding to the odd coordinates.
By Remark 1.3.3, we know that there are 72 defining equations of .J. which
are explicitly computable. In particular, the 72 defining equations consist of 30
odd quadratics where each monomial is a product of an even coordinate and
an odd coordinate, 21 quadratics involving only the even coordinates and 21
quadratics in the form of vjvj = Qyj., where Q. is a quadratic in terms of the
10 even coordinates ug, ..., ug. Suppose the twisted Kummer surface K. as in
(1.6.2) has a K-rational point R, let )1, Q2 € J. be the two preimages of R, then
w,(Q1) = u(Q2) for any i. Suppose Q1 # @2, then v}(Q)1) # 0 for some i. Hence,
let a = Qi e(up(Qr), ..., ug(Q1)), we get a € K and K(Q1) = K(Q2) = K(V/a).
Note since we can compute the explicit defining equations of J., a is explicitly
computable given the defining equation of C, € and the coordinates of R. Simi-
larly, we can test if a local point on K (K,) has a lift on J.(K,) for any place v
of K.

Remark 1.11.3. In the case where (); = ()2, which makes R a singular point
on K., Q1,Qs are defined over K and we define a to be 1. So we always have
K(Q1) = K(Q2) = K(y/a) for a nonzero a € K.
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Chapter 2

The Cassels-Tate Pairing in the
Case of a Richelot Isogeny

In this chapter, we will be studying the Cassels-Tate pairing for Jacobians of
genus two curves that admit Richelot isogenies, which are a special type of iso-
genies defined in Section 2.1.1. We will end this chapter with a worked example
which shows that carrying out a descent by Richelot isogeny and computing
the Cassels-Tate pairing can achieve the same rank bound as obtained from a
2-descent calculation. In this chapter, unless otherwise stated, we assume K is
a number field.

2.1 Definition of the Pairing

In this section, we give the definition of a Richelot isogeny. We then adapt the
definition of the Cassels-Tate pairing in the case of a Richelot isogeny and show
the compatibility of this new definition with the Weil pairing definition of the
Cassels-Tate pairing given in Section 1.8.1.

2.1.1 Polarized isogeny and Richelot isogeny

We first give the definition of a polarized isogeny that is taken from [BD11, Def-
inition 2.5].

Let (A, \4), (B, Ag) be principally polarized abelian varieties of dimension
d. We say that an isogeny ¢ : A — B is a polarized (ny,na, ...,n,)-isogeny if
ker p(K) =2 Z/m 7 x Z/noZ % ... x Z/n,Z and ¢ o g o ¢ = nAy, where ¢ is the

T

dual isogeny of ¢ and n® = []/_, n;.

Richelot isogenies are the polarized (2,2)-isogenies between Jacobians of
genus 2 curves.

The following is discussed in [CF96, Chapter 9, Section 1]|. Any finite sub-
group on an abelian variety can be the kernel of an isogeny of abelian varieties.
However, not all subgroups of order 4 can be the kernel of a Richelot isogeny.
Consider (A, A4), a principally polarized abelian variety. Let ¢ : A — B be
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an isogeny with ker¢ C A[n]. It is shown in [Mil86, Proposition 16.8] and
[BD11, Lemma 2.4] that there exists a polarization Ag : B — BY such that
(E oApo@ =n)\y if and only if ker ¢ is isotropic with respect to the Weil pairing
en, which means e, is trivial when restricted to ker ¢ X ker ¢. The above argu-
ment when A = J and n = 2 describes Richelot isogenies. It can be checked
that the kernel of a Richelot isogeny is actually a maximal isotropic subgroup
of J[2] with respect to es.

Let C be a genus two curve defined by y* = f(x) whose Jacobian variety
J admits a Richelot isogeny. By the discussion above and Lemma 1.7.6, we
know the nontrivial elements in the kernel of the Richelot isogeny partition the
6 roots of f(x) into 3 disjoint pairs in the case where f is degree 6. It is pointed
out by Schaefer that there are interesting Richelot isogenies where the kernel
is defined over K as a whole but the elements are not. However, in this thesis,
we assume all points in the kernel are defined over K as it is also assumed in
[CF96, Chapter 9]. We have the following proposition from [CF96, Chapter 9
Section 2| and [Fly18, Section 3].

Proposition 2.1.1. Suppose the curve C is of the form

C:y? = [(2) = Gi(2)Ga(x)Gs(x),

where Gj(x) = gjpx® + gax + gjo, and each gj; € K. Then there is a Richelot
1sogeny ¢ from J, the Jacobian of C, to J, the Jacobian of the following genus

two curve: R
C: Ay = Ly(z)Lo(x) Ls(z),

where each Li(v) = G';(7)G(x)—G;(2)G) (), for [i, j, k] = [1,2,3],[2,3,1],[3,1,2],

and A = det(g;;) which we assume to be non-zero.

In addition, the kernel of ¢ consists of the identity Oy and the 3 divisors of
order 2 given by G; = 0. We have the similar result for the dual isogeny ¢.

Moreover, any genus two curve C that admits a Richelot isogeny with all the
elements of the kernel K-rational is of the form y* = f(x) = G1(z)G2(z)G3(x)
as above.

Remark 2.1.2. We exclude the case /A = 0 in the above proposition. In fact,
by [CF96, Chapter 14|, A = 0 implies that the Jacobian of C is the product of
elliptic curves. Also, it can be checked that the analogue of A for Cis 2A\2% so
no need to have further condition like A # 0 from C. Lastly, in the case where
G is linear, say G; = a(x — b), then we say {(b,0), 00} is the divisor given by
G; = 0 which gives an element in ker ¢.

We use the notation in Proposition 2.1.1 and denote the nontrivial elements
in the kernel of ¢ by P, corresponding to the divisors of order 2 given by
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G; = 0 as well as denote the nontrivial elements in the kernel of $ by P
From [CF96, Chapter 9, Section 2| and [TY09, Section 3.2|, we have the follow-
ing description of the Richelot isogeny ¢. Associated with a Weierstrass point
P = (w1,0) with Gy(wy) =0, ¢ : J — J is given explicitly as

{(IB,y), P} = {(Zlﬂtl)’ <227t2)}a

where 21, 25 satisfy

Gg(.I)LQ(Z) -+ G3(I)L3(Z) = 0;

and (z;,t;) satisfies

Denote the set of two points on C given by G; = 0 by S; for i = 1,2, 3. From
the explicit description above, we know that the preimages of P| under ¢ are
precisely {{Q1,Q2} € J[2] such that Q; € Sy, Q2 € S3}. Similarly we know the
preimages of Pj and Pj.

2.1.2 The Weil pairing for Richelot isogeny

Let (J, A1) and (J, Ay) be Jacobian varieties of genus two curves defined over a
field K with characteristic not equal to 2. Assume there is a Richelot isogeny
¢ : J — J with ¢ being its dual, i.e. ¢o b= [2]. Then we have the Weil pairing

es: J[¢] x J[@] — K*,

such that ey (P, Q) = ey s (P, Q') for any " € J[2] such that ¢(Q)') = . Note
that the image of ey is pa(K*) € K*. Recall ker ¢ is isotropic with respect to
es.s, as discussed in Section 2.1.1. This implies that ey ;(P, Q') = e2 ;(P, Q") if
#(Q') = ¢(Q") and hence e, is well-defined. This implies that e4(P;, P/) = 1
for any i = 1,2,3 and ey(F;, Pj) = —1 for any i # j by Lemma 1.7.6 and the
discussion at the end of Section 2.1.1. Note, in this chapter, we denote ey ; to
be the e; Weil pairing for the Jacobian variety J, and similarly we have €y 7

We make the following remarks on some useful notations and properties re-
lated to the Weil pairing that are needed later.

Remark 2.1.3.

(i) We let U, : CHGg, J[¢]) x CY Gk, J|d])) = C*(Gk,K*) be the cup-
product pairing associated to es. Similarly we have Uy ; and Uy 7. In
the case where K is a global field, we also have U ,,Us ;, and Uy 70
defined similarly as in Remark 1.7.4(iii). Similar to Remark 1.7.4(i), we
sometimes let U, denote the cup product H'(Gy, J[¢]) x H* (G, Jo]) —
H*(Gg, K*).
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(ii) Since eys(P,¢(Q)) = ez (P, Q) for any P € J[¢],Q € J[2], we have
a Uy ¢(b) = alUy ;b for any a € CY(Gk, J[¢]),b € CY(Gk, J[2]).

(iii) Given any P € J[2],Q € J[2], we know ey (P, $(Q)) = e, 7(6(P), Q) by
[Mil08, Proposition 13.2(a)], which implies that e,(P, Q) = ez(Q, P) for
any P € J[¢],Q € J[¢]. This further implies e, ;(P, Q) = ez(o(P), Q) for
P e J[2] and Q € J[¢]. Hence, we have a Uy ; ¢(b) = ¢(a) U, 7b for any
a € CY Gk, J[2]),b e CHGk, j[2]) We also have a Uz ;b = ¢(a) Uz b, for
any a < Cl(GK, J[2]), be Cl(GK, J[¢])

2.1.3 The Cassels-Tate pairing on Sel?(J)

Let (J, A1) and (j , A2) be Jacobian varieties of genus two curves defined over
a number field K such that there exists a Richelot isogeny ¢ : J — J with
¢ : J — J being its dual isogeny. We will now define a pairing (a,a’) for
a,a’ € Sel?(J) and show that this is compatible with the Weil pairing definition
of (, )or defined on II(J)[¢p] C III(J)[2] as in Section 1.8.1. We first note the
following lemma.

Lemma 2.1.4. Let (J,\) and (J, \s) be Jacobian varicties  of genus two curves

such that there exists a Richelot isogeny ¢ : J — J with qﬁ J = J being its
dual isogeny. We have the following:

(i) The map H*(Gk, J[¢]) ~> 1, H*(Gk,, J[¢]) is injective.
(ii) For any b € Sel’(J), there exists by € H' (G, J[2]) mapping to b.

Proof. Recall we assume all points in J[¢] are over K. The proof is almost iden-
tical to the proof of Lemma 1.8.6(i) and therefore omitted. The proof of (ii)
from (i) is again almost identical to the proof of Lemma 1.8.6(ii) and therefore
also omitted.

]

Remark 2.1.5. Note that from [Cas62, Lemma 5.1|, we have the injectivity of
H*(Gg, A) =TI, H*(Gk,, A) when A is a Gg-module that is isomorphic to
7.)27 x 7.)27 when considered only as a Z-module. Hence, without assuming
all points in J[¢] are defined over K, (i) still holds and so (ii) also holds in
Lemma 2.1.4.

The definition of the pairing (, )
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Let a,a’ € Sel’(J). From the lemma above, we know that there is always
a global lift a; € H'(Gg, J[2]) for a € Sel®(J) C H'(Gk, J][¢]) induced by the

map J[2] & J[¢)].

Similar to the diagram in Proposition 1.8.5, we have the commutative dia-
gram below.

J(K,) — J(K,) —— H'(Gx,.J[¢))

¢ ®
:l qbl Llpv'—)(;Q(Pfu)—alﬂ;

~ ~ ~

(Kv) T> J(KU> 5—2> Hl(GKwJ[Z])

&\l :l $l52(P/u)’—>(lu al,yray

J(K,) —5= J(K,) =5 H' (G, J[¢])

~

Let v be a place of K. Let P, € J(K,) be the lift of a, € H (G, , J[#]), then
62(P,) and ay, in H'(Gk,, J[2]) both map to a,. Hence, let p, € H (G, , J[}])
denote a lift of d3(P,) — a1, and define n, = p, U, a;, € H*(Gk,, K,"). Here
Uz, denotes the cup product H'(Gr,, Jo]) x H'(Gx,, J[¢]) — H*(G,, K*)

associated to es- We define

(a,a")y = Z inv,(n,).

v

We sometimes refer to inv,(n,) above as the local Cassels-Tate pairing be-
tween a,a’ € Sel®(.J) for a place v of K.

Proposition 2.1.6. Let (J, A1) and (j\, o) be Jacobian varieties of genus two

curves such that there exists a Richelot isogeny ¢ : J — J with (}5\: J—J being
its dual isogeny. For a,a’ € Sel’(J),

(a,d') = (¢(a),¥(a’))cr,

where { , ) is defined above and v : Sel’(J) — Sel’(J) is the restriction
of the natural map H' (G, J[¢]) — HY Gk, J[2]) induced from the inclusion
J[o] — J[2].

Proof. From Lemma 2.1.4, we know that there exists a; € H (G, J[2]) repre-
sented by s; € Z1(G, J[2]) such that ¢(s;) =t € Z (G, J[¢]) representing a.
Also let ¢ € ZY(Gx, J|¢]) represent o’ such that there exists s, € Z'(Gg, J[2))
with ¢(s}) = t'.

Let s € CY(Gg, J[4]) with ¢(s) = s;. Treating t in Z'(Gx, J[2]), we have
t representing v (a) and 2s = ¢(s;) = t. Similarly, treating ¢ in Z'(G, J[2]),
we have t' representing v (a’). Let Uy; : CY Gk, J[2]) x CY(Gk, J]2]) —
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C%*(Gg, K*) denote the cup-product pairing associated to e2,.7. Then ds Uy ;
= dsUyy ¢(s1) = @(ds) Uy 78| = dsi U, 787 by Remark 2.1.3(iii), where
Up 7 CHGk, J[2]) x CY(Gk,J[2]) — C%(Gg,K*) denotes the cup product
pairing associated to e, 7. This implies that ds U ; t' = 0 as s; is a cocycle.
Hence following the Weil pairing definition of (¢)(a), ¥ (a’))cr, we can pick r = 0.

~

Let v be a place of K. Let P, € J(K,) be a lift of a,. There exists
Q, € j(Kv) such that 2Q, = P, and dg/g(Qv) is equal to the image of ¢, in
ZY(Gg.,J). Now dQ,, as a cocycle in Z! (G, J[2]), represents d(P,). By Re-
mark 1.7.4(i), we need to compute (dQ, — s1,, +dv) Uz, t, for some v € J[2]

following the definition of (a,a’). Note here Us. denoted the cup product
CH G, J[9]) x CH(Gr,, J[¢]) = C*(Gk,, K*) associated to eg-

~

Now let R, € J(K,) such that 2R, = @Q,, we have that d(2$(Rv)) =
d(¢(Q,)) is equal to the image of ¢, in Z'(G,,J). Following the definition
of (¢(a),(a’))cr, we need to compute d(¢p(R,) — $,) Uz o th € C2(Gk,, K, ).

~

Hence, it suffices to show that (dQ, + dy — s1,,) Uz, 1, and d(o(R,) —

Sy)Us 7, T, represent the same element in H?(Gy,, K,"), where v is any element

~

in J[2] such that (dQ, +dy — s1,,) Uz, t,, is well-defined. By Remark 2.1.3(iii),
(dQy + dy — s1,) Ug,, 1, = (da(Rv) + df — s,) Uy gy t,, where 6 € J[4] such
that ¢(#) = v. Hence, it suffices to show that df U, ;, t, represents the trivial
element in H?(Gg,, K,”). But df Uy s, t) = df Us s, ¢(s1,,) = dy Uy 7, 81, by

~

Remark 2.1.3(iii). Recall v € J[2], hence we are done.

]

Remark 2.1.7. Proposition 2.1.6 shows that (, ) is compatible with (, )cr.
So we will refer to this as the Cassels-Tate pairing on Sel?(J) x Sel?(.J), also
denoted as (, )or. Note that this compatibility also shows that this definition
is independent of all the choices we make by Proposition 1.8.4.

2.2 Explicit Embeddings and Maps

In this section, we will give some explicit embeddings and maps. These will
become useful in the explicit computation for the Cassels-Tate pairing in the
case of Richelot isogenies. For the remaining of this chapter, we will be work-
ing with Jacobian variety J of a genus two curve defined over a number field
K where all points in J[2] are defined over K, for simplicity. Furthermore we
assume there exists a Richelot isogeny ¢ : J — J with its dual $ Note that
this implies all points in J[¢| are defined over K by Proposition 2.1.1.

Since we assume points in J[2] are all defined over K, we can reduce the
defining polynomial of the curve C, y* = f(x), such that f is degree 5. By
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Proposition 2.1.1, we always assume the following throughout the remaining of
this chapter.

Our genus two curve is of the form:

C:y’ = f(x) = Gi(2)Gy(z)G3(x),

where G1(z) = Mz — wq); Ga(x) = (& — we)( — w3); G3(x) = (2 — wy) (T — ws)
with \,w; € K and A\ # 0.

The Richelot isogeny ¢ from J, the Jacobian of C, to j, the Jacobian of the
following curve, as in Proposition 2.1.1.

C: Ay® = Li(x)Ly(x) Ls(x).

Recall, we denote the nontrivial elements in J[¢| by Pi, Py, Py where P; cor-
responds to the divisor given by G; = 0 and the nontrivial elements in J[¢| by
P|, P}, Pj where P! corresponds to the divisor given by L; = 0 as in Proposition
2.1.1.

2.2.1 Explicit embeddings

In this section, we describe some well-known embeddings that are useful in the
explicit computation.

Embbedings of H'(Gk, J[¢]) and H'(Gk, J[2])

Recall all points in J[2] and J| [5] are defined over K. From the exact se-
quence below

0 = J[] =% (12)* = iz — 0,

where Wy - P (€¢>(P7 Pl/)7€¢(P7 P2,)7 €¢(P, PSI)) and NV : (aa ba C) = abc? we then
get

H' (G, J[8]) *5 H' (G, (1)*) = (K* /(K" =5 HY(Gue, o) = K*/(K*)?,

where = denotes the Kummer isomorphism derived from Hilbert’s Theorem 90
and N, is induced by N. Note that the induced H*(Gxg, J[¢]) — H (Gg, (u2)?)

is injective as the map (uz)? X, [1o is surjective. Furthermore, the image of this
injection contains precisely all the elements with norm a square by the exactness
of the sequence above. We have a similar embedding for H(G, J[3]).

Also, from the exact sequence below

0— J[2] = (u2)” £>/v02—>07



26 Chapter 2. The Cassels-Tate Pairing in the Case of a Richelot Isogeny

where wy : P +— (ea(P,{(w1,0),00}), ..., e2(P, {(ws,0),00})) and N : (a, b, c,d, e) —
abcde, we then get

H' (G, J[2]) ™5 H' (G, (12)7) = (K" /(K*)?)° 25 HY (G, pa) = K*J(K*)?,

where = denotes the Kummer isomorphism derived from Hilbert’s Theorem 90
and N, is induced by N. Again the induced H'(Gg, J[2]) = H' (G, (u2)°) is
injective as the map (us)® X, 1o is surjective. Furthermore, the image of this
injection also contains precisely all the elements with norm a square from the
exact sequence above. In particular, we have

HY(Gx, J[2]) = (K*/(K")*)".

Embedding of J(K)/¢(J(K)) and J(K)/2J(K)

General results show that we have the injection, which is the composition

~

of the connecting map d, : J(K)/d(J(K)) — H' (G, J[¢]) and the embedding
described above H'(G, J[¢]) — (K*/(K*)?)3. This is discussed in [Fly18,
Section 3| [CF96, Chapter 10 Section 2|. More explicitly, we have

~

p s J(K)/o(J(K)) — K* (K7 ) K (K72 K J(K9)?
{(x1,91), (w2,92)} = (Li(@1)La(za), La(w1) La(za), La(w1) La(z2))

Similarly we have the injection:

W J(K)(T(K)  — K*/(K*)? x K*/(K*)? x K*/(K*)? .
{(x1,91), (z2,92)} = (Gi(21)G1(22), Ga(21)Ga(22), Gs(21)G3(22))

Note the following special cases. When z; is a root of G;, then G;(z;) should
be taken to be [];c(; 5 53 iy Gi(x;). We have a similar solution when z; is a root
of L;, which is replacing L;(x;) with AJ[jcq 03y Le(@;). When (z;,y;) = oo,
then G;(x;) is taken to be 1. In the case where one of L; is linear and (z;,y;) =
0o, then L;(z;) is taken to be 1.

On the other hand, we have a standard injection, which is the composi-
tion of the connecting map 8y : J(K)/2J(k) — H'(Gg, J[2]) and the embed-
ding described above H'(G, J[2]) — (K*/(K*)?)5. This can also be found in
[Fly18, Section 3] [CF96, Chapter 10 Section 2].

pro J(K)2J(K)  — (K /(K*)?)°
{(x1, 1), (z2,92)} V= ((z1 —wi)(T2 — wi), o, (71 — w5 ) (T2 — w5))
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Note the following special cases. When (z;,y;) = (w;,0), then z; —w; should be
taken to be AT;c; 545 5y (Wi —wi). When (z;,y;) = oo, then z; — w; is taken
to be A.

Observe that the image of the maps p® and Hﬁﬁ are both contained in the
kernel of (K*/(K*)?)? &, K*/(K*)?. Similarly, the image of u is contained in
the kernel of (K*/(K*))® & K*/(K*)2.

2.2.2 Explicit maps

Using the embeddings described in Section 2.2.1, we can now prove the three
propositions on explicit maps.

Proposition 2.2.1. Under the embeddings of H' (G, J[¢]) and H' (G, J[o))
n (K*/(K*)?)? as described in Section 2.2.1, we get that the cup product Uy
induced by ey 1s

H'(Gg, J[¢]) x H'(Gx, J[¢]) — Br(K)[2]

((alabla 01)7 (GQ,bQ, 02)) — (CLl,CLQ) + (bla b?) + (Cla62)7

where (, ) represents the quaternion algebra and here it also represents its
equivalence class in Br(K)[2| for simplicity.

Proof. Recall that the embedding J[¢] — (u2)? is given by sending P € J[¢]
to (es(P, P)), e¢(P Py),es(P, P})) and the embedding J[¢] — (u2)? is given by
sending Q) € J[qzﬁ] to (es(Pr, Q). es( P, Q), es(Ps,Q)).

It can be checked that we have the following commutative diagram:

~

T[6) —" (12)® % (n2)?

e

where f sends ((—1)%, (=1)%, (=1)°), (=), (=1)*, (=1)) to (—1)e@ W'+ with
a,b,c € {0,1}.

Therefore, by Remark 1.4.16, we get that the induced cup product is
HY(K, J[¢]) x H'(K, J(9)) = Br(K)[2

((alabla 61)7 ((IQ,bQ, 62)) — (CLl?aQ) + <b17 b2> + (01762)7

here ( , ) represents the the equivalence class of a quaternion algebra in

Br(K)[2].
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]

Proposition 2.2.2. Under the embedding of H (G, J[¢]) in (K*/(K*)*)* and
the embedding of H (G, J[2]) in (K*/(K*)?)5 as described in Section 2.2.1, the
map ¥ : HY(Gg, J[¢]) — H (Gx, J[2]) induced from the inclusion J[¢] — J|[2]

15 given by

(a,b,c) — (1,¢,¢,b,b).

Proof. Recall the embedding of H!'(G g, J[2]) in (K*/(K*)?)?, and the embed-
ding of H'(G g, J[¢]) in (K*/(K*)?)? are induced from the short exact sequences
with the following commutative diagram:

0 —— J[g] — (12)* — py —— 0
linc lT/J l
0 —— J[2] =2 (u2)® — 1y > 0.

Suppose P € J[¢] maps to («a, 3,7) via wg. Then ey(P, P]) = a,ey(P, Py) =
B, es(P, Py) = ~. By definition, es(P, #(Q)) = ea( P, Q) for any @ € J[2]. From
the explicit description of ¢ in Section 2.1.1, we know av = e3(P, {(w2,0), (w4, 0)}),
B = ea(P,{(w1,0),(w5,0)}) and v = ea(P, {00, (ws,0)}). Recall that J[¢| is
isotropic with respect to e;. This implies that we(P) = (1,7,7, 5, 5). Therefore,
we define ¢ («, 8,7) = (1,7, 7, 8, 8), which makes the above diagram commute.

Now consider ¥ : HY(Gg, J[¢]) — H'(Gk, J[2]) which, via the embedding
in Section 2.2.1, is the the natural restriction of H* (G, (u ) ) — HY Gk, (12)°)
induced by . It can be checked that ¥(a,b,c) = (1,¢,¢,b,b).

]

Proposition 2.2.3. Under the embedding of H (G, J[¢]) in (K*/(K*)%) and
the embedding of H' (G, J[2]) in (K*/(K*)?)? as described in Section 2.2.1, the

map ¥ : HY(Gg, J[2]) = H' (G, j[g?i\]) induced from J[2] LN j\(qg) is given by

(al,ag,ag,a4,a5) — (al,aQag,a4a5).

Proof. Consider the following commutative diagram of the exact sequences

0 —— J[2] — (M2) > e » 0

Jf . l

0 — Jlg] —= (Mz > 1y —— 0.
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Suppose P € J[2] maps to (a1, as, as, ay, as) via we. Then we know «; =
e2(P, {(w;, 0),00}). Recall eg(¢(P), i) = eo(P, F;) by Remark 2.1.3(iii). This
implies that ¢(P) maps to (a1, asas, ayas) via wg. Therefore, we can verify

A~ A

that the induced map ¥ : H' (G, J[2]) = H'(Gk, J[¢]) under the embeddings
in Section 2.2.1 is given by

(G1,a27a3,a4,a5) = (al,aQag,a4a5).

Remark 2.2.4. We observe that, under the assumption of this section, we have
the following short exact sequence:

A~

0 — HY Gk, J[¢]) = H Gk, J[2]) = H Gk, J[¢]) — 0.

The injectivity of the map H'(Gg, J[#]) — H'(Gg, J[2]) is due to the surjec-

tivity of J(K)[2] 2 j(K) [g/b\] Observe that the element in H'(Gp, j\[qg]) repre-
sented by (a, b, ¢) has a preimage in H'(Gx, J[2]) represented by (a, 1,b,1,c) by
Proposition 2.2.3. This implies that H' (G, J[2]) — H'(Gk, J|¢]) is surjective.

Remark 2.2.5. Let v be a place of K. We also have the explicit embeddings of
H'(Gg, J[#]) and H'(Gk, J[2]) described in Section 2.2.1 as well as the explicit
maps given in this section if we replace K with K, or K.

2.3 Prime Bound and Worked Example

Using the 3 propositions from Section 2.2.2, we can now explicitly compute the
Cassels-Tate pairing in the case of a Richelot isogeny. More explicitly, for a
Richelot isogeny between Jacobian varieties of genus two curves ¢ : J — J with

~ ~

¢ being its dual, we compute ( , Yor on Sel?(J) x Sel?(J) following the defini-
tion of the Cassels-Tate pairing described in Section 2.1.3. Recall we assume all
points in J[2] are defined over K. We first show that for all but finitely many
places, the local Cassels-Tate pairing is always trivial. Then we give a worked
example when K = Q.

2.3.1 Prime bound for Richelot isogeny

In this section, we show that for all but finitely many places, the local Cassels-
Tate pairing is always trivial. We first give the following definition.
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Definition 2.3.1. Let S be a finite subset of places of K containing all the
infinite places. Then for any isogeny ¢ : J — J, define:

_H%GK”H¢LS):ﬂ@r(H%GK”H¢D—+IIEFKLQMJWD>.

vgS
Note that Ggn C Gg, C Gk.

Since the defining equations of the Jacobian variety J are derived alge-
braically from the defining equation of the genus two curve C with explicit
formulae, the set of the places of bad reduction of J is contained in the set
of places of bad reduction of C. Unless stated otherwise, we define S to be
{places of bad reduction for C} U {places dividing deg(¢)} U {infinite places}.
We have the following well-known lemma, see [Mil06, Chapter I, Section 6],
and [Sch95, Section 3].

Lemma 2.3.2. For any isogeny ¢ on J, we have

SelP(J) ¢ HY(Gg, J[¢]; S).

Remark 2.3.3.

(i) By Remark 2.2.4 and Definition 2.3.1, under the assumption of this sec-
tion, we have the following exact sequence:

A~

0— HYGy, J[8];S) L HY(Gx, J[2;S) & H (G, J[d];S) — 0

with the formulae the same as the ones given in Propositions 2.2.2 and
2.2.3 under the embeddings. Observe that the element in H'(Gy, J[¢]; S)
represented by (a, b, ¢) has a preimage in H' (G, J[2]; S) represented by

(a,1,b,1,c) via fs.

(i) Define K(S,2) = {z € K*/(K*)? : ord,(z) is even for all v ¢ S}. We get
that ker ((K*/(K*)?) — [To¢s Ky /(Kym™)?) = K(S,2). This implies,
by Lemma 2.3.2, that any element in Sel?(.J) or Sel®(J) for some Rich-
elot isogeny ¢ has its image in K(.9,2)° or K(S,2)? under the embeddings.

Suppose a,a’ € Sel‘?’[j]. Following the definition of the Cassels-Tate pairing
and the notation in Section 2.1.3, (a,a’)cr is the infinite sum of inv,(n,), for
all places v of K. We note that inv,(n,) is actually trivial for places away from
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the set S. This is explained as follows using the commutative diagram below.
Here we fix a place v of K.

~

H'(Gx, J[¢]) —— H (G, J[2]) ——— HY (G, J|9))

l lal a1, la'—mv

A~ A

HY(Gx,, J[9]) —— H'(Gk,, J[2]) ——— H'(Gk,,J[¢])

lres lres X cﬁ

HY(Ggypr, J[¢]) —— HY(Ggypr, J[2]) H(Gg,,J) = J(K,).

Note that by Proposition 2.2.1 and Lemma 1.4.19, we know computing
inv(n,) requires computing the Hilbert symbol. By Lemma 1.4.18, we know
(z,y)g = 1 if the valuations of x, y are both 0 and K has odd residue charac-
teristic.

Under the embedding Sel®(J) — (K*/(K*)2)3, suppose a 5 (ay, as, a3), a’ —
(o), oy, o) with oy, € K(S,2) for all 7, by Remark 2.3.3(ii). Let a; €
H'(Gg, J[2]; S) be alift of a via the map f, in Remark 2.3.3(i). Suppose v & S.
We know there exists a representation of the image of a,, in (K}/(K})?)® such

that all its coordinates have valuation 0. Since J(K!') 20 (KJ'™) is surjec-
tive by [AS02, Lemma 3.4], we get the map H°(Ggnr,J) — H'(Ggnr, J[2])
is the zero map and hence the image of P, is trivial in H'(Ggnr, J[2]). This
implies [¢,] = 6&(P,) € HY(Gg,,J[2]) C (K;/(K})?)° has a representation
such that all its coordinates have valuation 0. This implies that [¢,] — a1, €
HY(Gk,,J[2]) C (K!/(K?)?)° has a representation such that all its coordi-
nates have valuation 0, denoted by (a,b,c,d,e). Then we lift ([¢,] — a1,) €
HY (G, J[2]) C (K;/(K;)?) to p, € H'Gr,, J9]) C (K;/(K;)*)? repre-
sented by (abd, d,b). Recall that n, = p, Ua, and so inv(n,) is indeed zero for
v ¢ S by Proposition 2.2.1 and Lemmas 1.4.18, 1.4.19.

2.3.2 Worked example

We will now explicitly compute the Cassels-Tate pairing for the following Rich-
elot isogeny where the pairing improves the rank bound obtained via descent
by Richelot isogeny. We will be using the same notations as in Section 2.1.3 to

compute ( , e on Sel’(J) x Sel(g((]) and our base field K is the field of the
rationals, Q.

Let us consider the following genus two curve which is obtained by taking
k =113 in [Fly18, Theorem 1]

C:y*=(z+2 -113)z(x — 6-113)(x + 113)(z — 7- 113),
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with G; = (r +2-113),Gy = x(z — 6-113),G3 = (x + 113)(z — 7- 113) and

2113 1 0
A = 0 —6-113 1| = —7-113%
—7-1132 —6-113 1

L = GYG3 — GGy = —14 - 113%*(z — 3 - 113),
Ly = G4Gy — G1G3 = (v + 5 - 113)(x — 113),

S0 we have a Richelot isogeny ¢ from the .J, the Jacobian variety of C, to
J, the Jacobian variety of the following curve.

C:y>=—2(x—3-113)(x+5-113)(x — 113)(z + 6 - 113)(x — 2 - 113)

It can be shown that:

Sel?(
Sel¢(J

~

< (2-113,—14-113,-7),(113,7,7 - 113), (113,113, 1), (2,2, 1), (1,7, 7) >
—< (113,—7-113,-7),(2- 113,7,14 - 113), (113, 1, 113) >

~— —

Now we will compute the Cassels-Tate pairing matrix on Sel?(.J) x Sel®(.J).
Since (2113, —14-113, —7), (113, 7, 7-113) are images of elements in J(K) /6(J(K)),
they are in the kernel of the Cassels-Tate pairing. So it is sufficient to look at the
pairing on < (113,113,1),(2,2,1), (1,7,7) > x < (113,113,1), (2,2,1), (1,7,7) >

Since the primes of bad reduction are {2,3,7,113}, we know these are the
only primes for which we need to consider by Section 2.3.1. We have the tables
below for the local computation that is potentially nontrivial :

Let a = (113,113,1) € Sel‘g(:f\) then, by the formula given in Proposition
2.2.3, it has a lift a; = (113,1,113,1,1) € H'(Gg, J[2]). Then for the local
calculation, we have the following table:

places v oo 2 3 7 113
P, id id {(0,0),(—113,0)} id {(0,0),(—2-113,0)}
5(P,) id id (-1,3,-3,—1,—1) id (113, 3113, 3,1, 1)
(., id id  (=1,1,-1,1,1) id (113, 1, 113, 1, 1)
5(P,) —ar, | id id  (1,3,3,—1,—1) id (1,3-113,3 113, 1, 1)
P id id (-3,-1,3 id (3-113, 1, 3-113)

Now let a = (2,2,1) € Sel¢( 7) then, by the formula given in Proposition
2.2.3, it has a lift a; = (2,1,2,1,1) € H' (G, J[2]). Then for the local calcula-
tion, we have the following table:
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places v o0 2 3 7 113
P, id  {(0,0),(—-2-113,0)} {(0,0),(—=113,0)} id id
02(Py) id (2,6,3,—1,—1) (-1,3,-3,-1,—-1) id id
a1 id (2,1,2,1,1) (-1,1,-1,1,1) id id
9o(Py) —ay, | id (1,6,6,—1,—1) (1,3,3,—1,-1) id id
Do id (—6,—1,6) (—3,-1,3) id id

~

Lastly let a = (1,7,7) € Sel‘g(J ) then, by the formula given in Proposition
2.2.3, it has a lift a; = (1,1,7,1,7) € H'(Gk, J[2]). Then for the local calcula-
tion, we have the following table:

Following the explicit algorithm for computing the Cassels-Tate pairing, we
get that the Cassels-Tate pairing between (113,113,1) and (2,2, 1) is the only
nontrivial one.

Therefore, we get the 5 x5 Cassels-Tate pairing matrix from the 5 generators
of Sel‘g(j ). More specifically, the ij
pairing between the " and the j** generators of Sel¢(J ), where the generators
are in the same order as listed in the Selmer group Sel¢( )

entry of the matrix is the Cassels-Tate

11 1 1 1
11 1 1 1
11 1 -11
11 -1 1 1
11 1 1 1

Remark 2.3.4. From the computation above, we have shown that the kernel of
the Cassels-Tate pairing has dimension 3. We make the following observations:

We bound the rank of J(Q) via bounding |.J(Q)/é(J(Q))| by | ker( , Yor| =

23 instead of |Sel¢’( )| = 2. This improves the rank bound of J(Q) from
4 to 2.

Via Lemma 1.9.2, we have the following exact sequence:

A~ T~

0 — J[P)(Q) — J[2](Q) = J[¢](Q) — Sel?(J) — Sel*(J) = Sel®(J).

places v 00 3 7 113
P, id  {(-2-113, ),(—113,0)} id {(-2-113,0),(—113,0)} id

9o (P,) id (1,2,-2,-2,2) id (1,1,7,7,1) id

ai id (1,1,-1,1,-1) id (1,1,7,1,7) id
d2(Py) —ay, | id (1,2,2,-2,-2) id (1, 1,1, 7,7) id
o id (—1,-2,2) id (7,7, 1) id
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It can be shown that Im « is contained inside ker( , )cr, the kernel of the

~ ~ ~

Cassels-Tate pairing on Sel?(.J) x Sel®(J). Indeed, if a € Sel®(J) is equal
to a(b), where b € Sel*(.J), then following the earlier notations, we can
let a; = b. Then we can pick P, € J(Q,) to be the lift of a;,. There-
fore, 05(P,) — a1, = 0 € H'(Gg,, J[2]) which implies, a € ker( , )or.
Hence, we can always bound |Sel®(J)| and this bound will be sharp when
Ima = ker( , )or, which is the case for the example that we just com-
puted as shown below.

We used MAGMA to compte the size of Sel?(.J), which is equal to 2°, and
we have the exact sequence:

0 — J[¢)(Q) = J[2(Q) = J[¢)(Q) — Sel?(J) — Sel*(J) % ker(, Yor — 0.

size = 22 size = 2% size = 2% size=2° size =28  size = 2°

So for this example, we have turned the descent by Richelot isogeny into
a 2-descent via computing the Cassels-Tate pairing.
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Chapter 3

Computing the Equation of the
Twisted Kummer

In the remaining chapters of this thesis, our main goal is to give algorithms for
explicitly computing the Cassels-Tate pairing on Sel®(.J) x Sel*(J) for a Jacobian
variety J of a genus two curve C. Before getting into the details of these algo-
rithms, this chapter is devoted to giving methods for explicitly computing the
twisted Kummer surface that is essential for the algorithms in the later chapters.

This chapter consists of 4 sections. The first section states and proves the
notation and algebraic results needed for the later sections. In the next two
sections, we describe two methods for explicitly computing the twisted Kum-
mer surface assuming there exists an algorithm that trivializes a matrix algebra
specified by its structure constants. Fixing a set of basis vy, ..., v, for the un-
derlying vector space of an algebra V' of dimension n, the structure constants
ciji, satisty vv; = ZZ:1 cijkvk- Then in the last section, we describe such al-
gorithm in detail. A lot of the results are generalized from the results in the
elliptic curve case. We give precise references for the corresponding results in
the elliptic curve case in each section. In this chapter, unless stated otherwise,
K is a number field and J denotes the Jacobian variety of a genus two curve
C defined by y? = f(z) with f a degree 6 polynomial whose coefficients are in K.

3.1 Central Extensions and Theta Groups

In this section, we give definitions and properties of central extensions and theta
groups. Most of the results in this section are generalizations of the results in
the elliptic curve case in [CFOT08].

3.1.1 Definitions

We give the following definitions. Similar definitions for elliptic curves are in
[CFO™08, Section 1].

Definition 3.1.1. A central extension of J[2] by G,, is an exact sequence of
group varieties
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0 G S A D J12] 0,

with G,, contained in the center of A.

An isomorphism of central extensions A; = A, is an isomorphism of group
varieties ¢ : A — Ay such that the following diagram commutes:

0 — G, > Ay > J[2] > 0
A
0 — G, > Ao > J[2] > 0

We usually refer to A as a central extension for simplicity. A commutative
extension of J[2] by G,, is a central extension when A is an abelian group. The
trivial extension, denoted by Ay, is induced by G,, x J[2]. We sometimes call
the image of G,, in A the scalars in A. For simplicity, we sometimes denote
a(a) by a for a € G, and denote (x) by z for x € A, when the context is clear.

Definition 3.1.2. A theta group © for J[2] is defined with an exact sequence
of group varieties

0 G %05 J[2 -0,

with G,, contained in the center of ® and commutator given by the Weil pairing
g, i.e. zyr~ly™t = alex(B(x), B(y))) for all x,y € O.

It is clear that a theta group is a central extension of J[2] by G,, and an
isomorphism of theta groups is an isomorphism of central extensions defined in
Definition 3.1.1.

. . . . S}
We now describe one special theta group 5. Consider the morphism .J ﬂ>

K C P3. The translation map 7p , for P € J[2], induces an linear isomorphism
on K C P? as in Remark 1.3.1. This induces a map x; : J[2] — PGL;. We
define ®; to be the inverse image of x;(/[2]) in GL, and we have the following
commutating diagram with exact rows.

0 y G,y —2 Oy B">J[2] s 0

For b

0 > G, > GLy —— PGL; —— 0

We observe that the first row makes ®j a central extension. The required
commutator making it a theta group follows from a property of the Weil pair-
ing, as discussed in [CF96, Chapter 3 Section 3].
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3.1.2 Relationship with H' (G, J[2])

In this section, we show that the isomorphism classes of commutative exten-
sions of J[2] by G,, and the isomorphism classes of theta groups for J[2] are
parameterized by H'(Gg, J[2]). The results in the elliptic curve case is in
[CFOT08, Section 1] and we generalize the same proofs.

Recall Ay is the trivial central extension 0 = G,,, <% G,, x J[2] LN 2] =0
and we have the following lemma.

Lemma 3.1.3.
(i) Let A be a commutative extension of J[2| by G,,. Then A is a twist of Ay.

(i1) Let A be a central extension of J[2] by G,,. Then Aut(A) = J[2].

Proof. Statement (i) follows from the fact that every commutative extension
of J[2] by G,, splits over K as K* is a divisible group. We observe that
any automorphism of A maps z € A to a(n(5(z)))x for some homomorphism
7 : J[2] = G,,. This implies Aut(A) = Hom(J[2],G,,). Hence, we have state-
ment (ii) by the nondegeneracy of the Weil paring es.

O

By a corollary of Proposition 1.5.1 [Ser97, Corollary after Chapter III Sec-
tion 1 Proposition 5|, there is a natural bijection between the isomorphism
classes of twists of the group variety G,, x J[2] and H' (G, Aut(G,, x J[2])).

Now consider Ay as G, x J[2] with the additional structure, the structure
of a central extension. We show that there is a natural bijection between the
isomorphism classes of twists of Ay and H'(Gg, Aut(Ag)). Combining with
Lemma 3.1.3, we have the following proposition.

Proposition 3.1.4. The isomorphism classes of commutative extensions of J[2]
by G,,, viewed as twists of Ao, are parameterized by H' (G, J[2]).

Moreover, suppose A is a twist of Ao with an isomorphism ¢ : A — Ag corre-
sponding to e € H (G, J[2]). Then ¢(¢1)° sends x € Ay to ag(ez(es, Bo(x)))
such that (o — €,) is a cocycle representing €.

Proof. By Lemma 3.1.3, it suffices to show that the isomorphism classes of twists
of Ay are parameterized by H!(G g, Aut(Ag)). In particular, suppose A is a twist
of Ay with an isomorphism ¢ : A — Aq corresponding to € € H'(Gg, Aut(Ay)).
Then we show (o +— ¢(¢71)?) is a cocycle representing €.



68 Chapter 3. Computing the Equation of the Twisted Kummer

For any twist of Ag, ¢ : A — Ay, we check o — ¢(¢~1)? is a cocycle
in Z'(Gg, Aut(Ag)). We observe that Aut(Ag) C Aut(G,, x J[2]). Let ¢ €
H'(Gg, Aut(Ay)) be represented by the cocycle (o + €,). To construct a twist
of Ag by €, we first take the twist A of G,, x J[2] by € as group varieties. Then
the isomorphism ¢ : A — G, x J[2] with ¢(¢~1)7 = ¢, transfers the structure
of central extension on G,, x J[2] onto A. More explicitly we have

0 O L NNy N J2] —— 0
T
0 —— G —225 Gy x J[2] -2 J[2] —— 0

Since ¢(¢p1)7 =€, € Aut(Ag), we get ¢ 'y and Sy¢ are Galois invariant
hence defined over K. The induced group structure on A induced by G,, x J[2]
via ¢ also makes G,, in the center of A and ¢ oy, By¢ group homomorphisms.
Therefore, we indeed get a twist of Ag by e.

Hence, we have a well-defined bijection between the isomorphism classes of
the twists of Ag and H'(G g, Aut(Ag)) following the routine argument as done
in the proofs of Proposition 1.5.10 and Proposition 1.6.1.

Similarly we have the following lemma and proposition on theta groups.
Lemma 3.1.5. FEvery theta group is a twist of Oy.

Proof. Let © be any theta group. Suppose Py, Py, P3, Py form a basis of J[2].
Since K* is divisible and its images in ©, @y are central, we can pick )\, € ©
and p; € Oy each of order 2 and a lift of P; respectively for each ¢. This induces
the isomorphism ® — ©jy defined over K satisfying \; — u; for each i.

O

Via Lemmas 3.1.3(ii), Lemma 3.1.5 and the twisting principle, we have the
next proposition.

Proposition 3.1.6. The isomorphism classes of theta groups, as twists of Oy,
are parameterized by H' (G, J[2]).

Moreover, suppose © is a twist of Oy with an isomorphism ¢ : @ — Oy cor-
responding to e € H (G, J[2]). Then ¢(¢1)° sendsz € © to ay(es(ey, B1(1)))x
with (o — €,) representing .
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Proof. The proof is almost identical to the proof of Proposition 3.1.4 and there-
fore omitted.

Construction of O,

We now construct a special set of theta groups and show the compatibility
of the theta groups and the 2-coverings of J in the case where they correspond
to elements in Sel*(J). Let ¢ € Sel*(J). Suppose J, is a 2-covering of J with
an isomorphism ¢, : J. — J such that ¢.(¢;')7 = 7, and (0 — ¢,) is a
cocyle representing €. We then have an induced commutative diagram (1.6.2),
as discussed in Remark 1.6.3. In particular, ¢, induces an linear isomorphism
Y : K € PP — K C P2 Then J[2] naturally has an action on K, C P3
induced by its natural action on K C P? conjugated by %.. This gives a map
Xe : J[2] — PGLy. Hence, similar to ®j, we define a theta group @, to be the
inverse image of x.(J/[2]) in GL4 via the following similar commutative diagram.

0 y G,y —— O, ﬂ€>J[2] s 0

oo [

0 > G, » GLy —— PGL; —— 0

Lemma 3.1.7. The theta group ©. constructed above is the twist of O3 by €.

Proof. We lift 1, to a matrix B € GL4. It can be checked that M — BMB™!
defines an isomorphism ¥ : @, — @j. Since B is induced by ¢, with ¢.(¢.1)7 =
7., we get B(B(B™')7) = ¢,. Therefore, ¥(¥~1)? is an automorphism of Gy
such that N — B(B™Y°NB°B~! = ey(e,, B(N))N. This implies that ©, in-
deed corresponds to € by Proposition 3.1.6.

O

Remark 3.1.8. By Proposition 3.1.6 and Lemma 3.1.7, we know different
choices of the isomorphism ¢, : J. — J such that (J, [2] o @) is the 2-covering
for J corresponding to ¢ and different choices of the induced v, give rise to
isomorphic theta groups.

3.1.3 Etale algebra

Definition 3.1.9. Let K be a field, a K-algebra L is étale if it is isomorphic
to a finite product of finite separable field extensions of K.
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In later discussions in this thesis, we will be studying the following K-
algebra:

Let R denote the set Mapg(J[2], K) := {¢ : J[2] — K such that (¢(P))’ =
o(P7),for all P € J[2|,0 € Gk}, namely the set of all Galois equivariant maps
from J[2] to K. We also define the algebra R = R®x K = Map(J[2], K) and let
R*, R* denote the unit groups of R, R respectively, which are Map (J[2], K*)
and Map(J[2], K*).

Proposition 3.1.10. Suppose A is a finite set with a action by Gk. Let L
denote Mapy (A, K), the set of Galois equivariant maps from A to K. Then L
is an étale algebra with dim L = |A|.

Proof. Suppose G acts transitively on a subset A; C A. Pick a € A;. Any
r € Mapy (A1, K) is determined by the image of a. Let S C Gk be the stabilizer
of a. We know r(a) € K* if r € Mapy (A, K). Hence Mapy (A4, K) = K°,
where K is a finite extension of K with degree of extension indexgGx. This
implies, by the Orbit-Stabilizer Theorem,

dim Mapg (A, K) = [K* : K] = indexsGx = |Ay].

Hence, by writing A as a disjoint union of Galois orbits, we have that L is
isomorphic to a product of finite field extensions of K, one for each G g-orbit
in A and dim L = |A|.

Applying Proposition 3.1.10 to the set J[2] gives the corollary below.

Corollary 3.1.11. R is an étale algebra and dim R = 16.

3.1.4 Invariants of central extensions

In this section, we define two invariants of a central extension. First, we give
definitions and notation for the following group homomorphisms. These group
homomorphisms in the case of elliptic curves are defined in [CFO™08, Section 3].

The Weil pairing ey : J[2] x J[2] — po determines an injection w : J[2] —
pa(R) C R* with T + (T, —). From the definition and the non-degeneracy of
the Weil pairing, we know that w(T") for T" € J[2] is actually a homomorphism
and all homomorphisms arise this way. We note that R ® R is the algebra of
Galois equivariant maps from J[2] x J[2] into K and R®gz R = (R® R) @K K
is the algebra of all such maps. Define 0 : R* — (R ®x R)* such that

a(Ty)a(Ty)

TG S Ak
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and we have an exact sequence:
0 J2 % R % (Reg R). (3.1.1)

By a generalized version of Hilbert’s theorem 90 [Ser79, Chapter X, Section 1
Exercise 2|, which says H'(Gg, M*) = 0 for M a finite-dimensional unitary
K-algebra, we have H'(G g, R*) = 0. Suppose € € H' (G, J[2]) is represented
by (¢ — €,). Let w, denote the natural map H'(Gg, J[2]) — HY(Gg, R*)
induced by w. Since H'(Gg, R*) = 0, we know w,(e) is a co-boundary, i.e.
w(ey) = o(7)/v for some v € R*. Then let @ = 4% and p = d7. Since they are
both Galois invariant, they are in R* and (R ® R)* respectively. Therefore we
can define the following maps.

wy : HY(Gg, J[2]) = R*/(R*)?,

€ — a(R*)?

wy : H' (G, J[2]) — (R® R)"/OR".
€ — pOR"

Lemma 3.1.12. wy, ws defined above are well defined group homomorphisms.

Proof. These two maps are well defined. If we change (0 +— €,) by a co-
boundary, say (o + o(T) — T), then ~ is multiplied by w(T). Since w(T)* =1
and O(w(T)) = 1, the values of o and p are unchanged. The only remaining
freedom is to multiple v by an element in R*, and it results in multiplying «
and p by elements in (R*)? and OR*. Tt can be checked that they are indeed
group homomorphisms.

]

Remark 3.1.13. We observe that ws is induced from the long exact sequence
associated to (3.1.1) and w; is in fact the composition of the following:

wy: HY (G, J[2]) = H'(Gk, pa(RY) = R*/(R")?,

where the second map is the Kummer isomorphism induced by the fact that
HY(Gg, R*) = 0.

The first and second invariants
Now consider a central extension A with the following exact sequence:

0—-G,, > A— J2] —0.
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By Hilbert’s Theorem 90, we know there always exists a Galois equivariant sec-
tion ¢ : J[2] — A. In general ¢ is not a group homomorphism and the different
choices of ¢ differ by elements in R*. We define the first and second invariants
of A as follows.

The first invariant is invy (A) = «(R*)?, where a € R* satisfies

AT)* = o(T),

for all T' € J[2].

The second invariant is inve(A) = pOR*, where p € (R ® R)* satisfies

(1) 9(T2) = p(T1, T2)p(T1 + T3),

for all 71,75 € J[2].

Remark 3.1.14. Notice that since the different choices of ¢ differ by elements
in R*, invy(A) and inve(A) depend only on A and not on the choice of section

.

Recall that Proposition 3.1.4 shows that the isomorphism classes of com-
mutative extensions of J[2] by G,,, as twists of Ay, are parameterized by
H'(Gg,J[2]). The lemma below shows the relationship between the group
homomorphisms w;,ws and the invariants of a commutative extension. The
proof is the same as the elliptic cure case, see [CFO™08, Lemma 3.3].

Lemma 3.1.15. Let A be the twist of Ay that corresponds to e € H' (G, J[2]).
Then
invy(A) = wy(€) and invy(A) = wsy(e).

Proof. Let ¢ : A — Ay denote the twist and ¢ : J[2] — Ay be the nat-
ural section for Ag. By Proposition 3.1.4, we know that ¥ (1) : =
ap(es(€q, Bo(x)))z with (o0 +— €,) representing e. Since w(e,) = o(v)/v for
some v € R*, it can be shown that

¢ J[2] = M T = (7)™ (d0(T))

is a Galois equivariant section for A. Hence, the results of the lemma follow
from definition of the invariants.

O

We also have the lemma below on the relationship between the invariants of
©; and those of any theta group ©. The proof is very similar to the proof of
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Lemma 3.1.15 and therefore omitted. The result in the elliptic curve case is in
[CFOT08, Lemma 3.10].

Lemma 3.1.16. Let © be the twist of O3 by ¢ € H (G, J[2]). Then

invy (©) = wy(€)inv (@) and invy(O) = wa(€)inwy(Oy).

3.2 The Naive Method

In this section, unless stated otherwise, we fix ¢ € Sel®(J) and (J,,7.) the
2-covering of J corresponding to €. We will describe a method for explicitly
computing a linear change of coordinates on P2, denoted by ., in the com-
mutative diagram of the base Brauer-Severi diagram [J — P3| and its twist
[J. — P3] that corresponds to €. Let K. denote the twisted Kummer surface
which is ¥ 71(K) C P3. So ¢, : K. C P? — K C P? and there exists an isomor-
phism ¢, : J. — J such that [2]o¢, = 7., with a commutative diagram (1.6.2) in
Lemma 1.6.3 corresponding to €. Note that this is equivalent to finding a linear
isomorphism v, : K. C P? — K C P3 such that (o — ¥ (171)7) gives a cocycle
for €. Indeed, for an isomorphism ¢, : J. — J such that (o — ¢ (¢-")7) gives

-1
the same cocycle as the one given by 1), we have J, Ve koe, K. C P? defined over

K as required since (¢ k¢ )7 = o (Y1) 0k o ¢?d 1t 0 ¢ = Y k. with
k:J ‘—29—‘> IC. For simplicity, we sometimes call such . as a linear isomorphism

K. C P3 = K C IP? corresponding to e.

3.2.1 Action of J[2]

In Remark 1.3.1, we showed that 7p gives a linear isomorphism on K C P3 for
any P € J[2]. Recall the theta group 0 — G,,, - O3 — J[2] — 0 defined in Sec-
tion 3.1.1 is precisely the subset of GL, consisting of elements representing the
action of some P € J[2] on K C P?. In particular, we have the following lemma.

Lemma 3.2.1.

(i) Let P~ Mp be a section for ®y — J[2|. Then {Mp, P € J[2]} forms a

basis of Maty(K) and the set of matrices in PGLy(K) that commute with
Mp in PGLy(K) for all P € J[2] is {[Mp], P € J[2]}.

(i1) There exists an explicit Galois equivariant section for @y — J[2]. The
formula for a Galois equivariant section for ®3 — J[2| can be found in
[CEF96, Chapter 3 Section 2| with Mo, = 1.
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Proof. Let P +— Mp be a section for @5 — J[2]. The non-degeneracy of the
Weil pairing gives the linear independence of Mp. Then they form a basis
of Maty(K) by a dimension count. Suppose there exists Ap € K* such that

> peypg ApMp commutes with Mg in PGLy(K) for all @ € J[2]. Then there
exists cg € K such that > pesp Ap(e2(P, Q) —cq)MoMp = 0 for any Q € J[2].
Since MgMp represents the action of P 4 Q) on K, it is a multiple of Mp. .
Hence, {MpMgq, P € J[2]} also forms a basis for Mat,(K) for any Q € J[2],
which means for Ap(e2(P, Q) —cg) = 0 for all P, € J[2]. Suppose there exists
more than one P € J[2] such that A\p # 0, we derive a contradiction to the

non-degeneracy of the Weil pairing. This completes the proof for (i).

O

From now on, we always let Mp € GLy(K) for P € J[2] equal to the one
given in Lemma 3.2.1(ii) with explicit formulae in [CF96, Chapter 3 Section 2],
which gives a Galois equivariant section for @5 — J[2].

Suppose we fix K, as a subvariety in P? and are given a linear isomorphism
P : Ko € PP — K C P? corresponding to . We now consider the automor-
phisms on K, C P? induced by the action of points in J[2], which are also
the conjugations of [Mp] by .. Recall the theta group ©, for J[2], defined in
Section 3.1.2, is precisely the subgroup of GL4(K) consisting of elements rep-
resenting the action of translation by some P € J[2] on K. C P? and is a twist
of ®; by € as shown in Lemma 3.1.7. Let P — M}, be a section for @, — J[2].
we know M}, represents the action of P on K, and it is equal to Mp conjugated
by 1. in PGLy(K). Since {Mp, P € J[2]} forms a basis for Mat,(K) by Lemma
3.2.1(i), {Mp, P € J[2]} also forms a basis for Mat,(K).

Lemma 3.2.2. Fiz K. as a subvariety in P3. Let i, : K. CP? — K C P? be
two different isomorphisms as above. Then ¥4 is the action of translation by
some P € J[2] on K C P3. This implies there exist precisely 16 isomorphisms
K. C PP — K C P? corresponding to € and the construction of ©, is independent
of the choice of 1. corresponding to €. Let P — M}, be a section for @, — J|[2].
Suppose 1 : K. C P3 — K C P? is a linear isomorphism represented by A €

Maty(K). We have (i) if and only if (ii), where
(i) ¢ corresponds to e,
(ii) Mp = A"*MpA € PGLy(K) for all P € J[2].

Moreover, suppose K. can be embedded as subvarieties K, and Ky in P> which
both give rise to the same theta group ©. C GLy(K). Then Ki = Ky C P32
Hence, the different ways of viewing K. as a subvariety in P one to one corre-
spond to the different theta groups O, C GLy(K) constructed.

Proof. Suppose ., ¢. and Y., ¢’ both satisfy the commutative diagram (1.6.2)
corresponding to €. Then, ¢/¢-! is an automorphism of the base Brauer-Severi
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diagram, which implies ¢/¢-! is a translation by a two-torsion point on J by

Lemma 1.5.2. Hence, 1/¢)~! is the action of translation by some P € J[2] on
K C P? and the automorphism on K. induced by P € J[2] is independent of
the choice of 1. corresponding to e.

It is straightforward that (i) implies (ii). Now suppose 1 satisfies (ii). Let
Y. 1 Kc € PP — K C P3, represented by A, € Maty(K), be an isomorphism
corresponding to € and hence it satisfies (ii). Then AA-! commute with Mg
in PGLy(K), for all Q € J[2]. By Lemma 3.2.1(i), we know A, = MpA in
PGL4(K) for some P € J[2]. Suppose ¢, : J. — J and 1), satisfy the commuta-
tive diagram (1.6.2). Then ¢ = 7_po ¢, and ¥ satisfy the commutative diagram

(1.6.2) which gives (i).

Moreover, let ¢ : K; C P32 — K C P34, : Ky C P2 — K C P? be
isomorphisms corresponding to ¢ represented by A;, Ay € GLy(K) respec-
tively. Since they give rise to the same theta group ®. C GL4, we have
AT MgA, = A;'MgA; € PGLy(K) and so A; Ay commute with Mg in
PGL4(K), for all Q € J[2]. This, by Lemma 3.2.1(i), implies 11105 " is the
action of translation by some P € J[2] on K C P3. Hence, K; = Ky C P3.

3.2.2 Computing the invariants of ©.

In this section, we compute inv(©,), invy(®,) for € € Sel®(.J) and explain how
they are related to finding an explicit twist of IC corresponding to €. By Lemma
3.1.16, we need to study w;(€) and wq(€). Recall our genus two curve C is de-
fined by y* = f(x) with deg f = 6. Let L = K[z]|/(f) and let Q = {wy, ...,ws}
denote the 6 roots of f. As discussed in Section 1.10.1, we know there is a ho-
momorphism Sel®(J) — L*/(L*)2K*. We have the following lemma that gives
explicit formulae for w; and ws.

Lemma 3.2.3. Let § € L* represent the image of ¢ € Sel(J) in L*/(L*)*K*
with N(§) = n%. Suppose € is represented by (8, m) under the identification in
Remark 1.10.6, with m =n or m = —n. Let d; € K such that d? = 6(w;) and
[1°_, di = m. Define~y € R* such that v(O;) = 1 and v({(w;,0), (w;,0)}) = dyd,
fori # j. We have w(e,) = o(v)/y for all 0 € Gk and (0 — €,) is a cocycle
representing €.

Proof. As discussed in Section 1.10.1, we have isomorphism L = Map(Q, K) =
K% where the first natural isomorphism is Galois equivariant and the second
isomorphism is evaluation at the 6 roots in a fixed order wy, ...,wgs. Via the first
isomorphism, we get L = Map,(Q, K). Let 6; € L that sends w; to —1 and sends

wj to 1 for i # j. Recall we also defined M C ps(L) = ker(ua(L) &, po(K))
where 6;; form a basis for M as a Fy-vector space, 8 : M — J[2] that sends 6;0;
to {(w;,0), (w;,0)}, and « : J[2] = pa(L)/pe(K) that sends {(w;,0), (w;,0)} to
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5:6;.

We have the following commutative diagram where the top half appears in
(1.10.1):

M ——— ps(L)

S

p2(L
pa(

I

J[2] == pa(R)

—

J[2] —o s

5\

(3.2.1)

where 115(L) /2 (K) — pi2(R) sends f to the map {(wz, 0), (w;, 0)} = f(wi) f(wy).
The commutative diagram (3.2.1) above gives the commutative diagram on the
cochains. Let d; € K such that d? = §(w;) and [[o_, d; = m. There exists ¢ € L
satisfying ((w;) = d;. This implies that ¢* = § and N(¢) = m. By Proposition
1.10.4, we have the image of (¢ — 0(¢)/¢) € C'(Gk, M) induced by f3, is a
cocycle (o — ¢,) € CY(G, J[2]) representing e. Then via a diagram chase, we

get w(e,) = o(vy)/vy where v({(w;,0), (w;,0)}) = did; for i # j and v(Oy) =1

as required.

]

Remark 3.2.4. Follow the notation in Lemma 3.2.3. By Lemma 3.2.3 and
the definitions of wy,wy, we know wi(e) = a(R*)? with a = 7* € R and
wsy(€) = pOR* with p = dvy € (R® R)*. In particular, @ € R is defined by

OJ — 1
{(wi, 0), (@, 0)} = d(wi)d(wy);

and p € (R® R)* is defined by

(0;,07) — 1,
({(wi,0), (w;,0)},05) =1
({(wi, 0), (wy, 0)}, {(wi, 0), (w;, 0)}) = ( 1)0(w;),
({(wi, 0), (w;,0)}, {(wi, 0), (wk, 0)}) = 6(wi),

for distinct 7, j, k and

({(wi,0), (wj, 0}, {(wr, 0), (@i, 0)}) = 5o (w0

where (i, 7, k,1,p,q) is a permutation of (1,2,3,4,5,6). Note that 0v(P, P) =
v3(P) for any P € J[2].
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Remark 3.2.5. Note that in the statement of Lemma 3.2.3, d; are defined up
to a choice of sign. From the explicit formulae in Remark 3.2.4, 4? and 9y are
independent of the choices of sign.

We now show that to compute a linear isomorphism v, : K. C P3 — K C P3
corresponding to e, it suffices to first compute a set of basis { N}, P € J[2]} for

Mat,(K) such that
Np,Np, = £(P1, P)Np,, p, and 0(Np)' = N, p),

where { = p§ € (R® R)* with Mp Mp, = {(P1, P2)Mp,p, and p explicitly

given in Remark 3.2.4. Then one such 1. is represented by B € Mat,(K) with
N = B-'MpB € PGLy(K) for all P € J[2).

Consider K, as a fixed subvariety of P* and the theta group ©, C GL4(K)
representing the action of J[2] on K. C P? as defined in Section 3.1.2. By Lemma
3.1.16 and Remark 3.2.4, we know there exists a Galois equivariant section for
©. — J[2], given by P + Mp, such that Mp My, = §(Py, Py)Mp,  p,. We
also know that there exists A € Maty(K) representing an linear isomorphism
K. C P3 — K C P3 corresponding to € such that My, = A"'MpA € PGL,(K)
for all P € J[2].

Suppose we have a set of basis {Np, P € J[2]} for Maty(K) such that
Np Np, = &(P1, P2)Np p, and o(Np)" = N/ p for all P € J[2]. Then the
automorphism of Maty(K) given by M} — N} restricts to an automorphism
of Maty(K) which is the conjugation by some C' € Maty(K) by the Noether
Skolem theorem. This implies that Ny = C~'MpC and AC € Maty(K) also
represents an linear isomorphism K, C P? — K C P? corresponding to e with a
change of coordinates for the ambient space of .. Moreover, by Lemma 3.2.2,
different choices of C' give the same K. C P? and finding 1), is equivalent to

solving for a matrix B € Maty(K) with N, = B~'MpB € PGLy(K) for all
P e J2].

Remark 3.2.6. By the discussion above, we know that any set of basis { Np, P €
J[2]} for Maty(K) such that Np Np, = {(Pr, P2)Np, p, and o(Np)' = N} p,
for all P € J[2] can be taken to represent the action of J[2] on the image of

some embedding of K, in P3. Therefore, we also denote N by M} for simplicity.

3.2.3 Algorithm for the naive method

In this section, we describe a method for computing a linear isomorphism
K. c PP - K C P? corresponding to €, when the base field is Q. As dis-
cussed at the end of Section 3.2.2, we do this by explicitly computing a set

of basis {Mp, P € J[2]} for Maty(K') such that Mp Mp, = & (P, Po)Mp, ,p,
and o(Mp)" = M for all P € J[2]. Then one such ¢, is represented by
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B € Maty(K) with My, = B~'MpB € PGL4(K) for all P € J[2]. We call this
the naive method and we will describe it assuming that there is an algorithm
that trivializes a matrix algebra specified by its structure constants. More pre-
cisely, the algorithm solves Problem 3.4.1 in the case n = 4. First, we consider

a change of basis of { M}, P € J[2]} for Mat,(K) in the following lemma.

Lemma 3.2.7. Letry,...,116 be a basis for R. Fiz an ordering Py, ..., Pig of J[2].
Define P € GLis(K), where P;; = r;(P;). Change the basis {M}, P € J[2]} for
Maty(K) via P gives M; := > pegp Ti(P)Mp for all i € {1,2,...,16}. More-
over, My, ..., Myg also form a K-basis for Mat,(K) and the structure constants
with respect to My, ..., Myg are defined over K.

Proof. For r € R, it can be checked that > peyp T(P)Mp € Maty(K) if and
only if € R. This implies, M; € Maty(K) for all i = 1,...16. Since 71, ..., 716
form a basis for R, it can be checked that the matrix P is indeed invertible.
Then the rest of the lemma follows.

O

By the construction of My, ..., Mg in Lemma 3.2.7, we know the correspond-
ing structure constants of Mat,(K) from the structure constants of Mat,(K)
with the basis M} specified by & € (R ® R)*. It can also be checked that,
given My, ..., Mg with the derived structure constants, the matrices obtained
via the change of basis specified by P71 indeed satisfy the structure constants
and Galois condition required for { M}, P € J[2|}. Hence, to compute such M},

for P € J[2|, we first compute My, ..., M.
Description of the algorithm

Suppose K = Q and the genus two curve is defined by y? = f(z). Let
L = Q[z]/(f) and Ly denote the splitting field of f. Now we give the naive
method for computing a linear isomorphism 1, : K. C— K C P? that corre-
sponds to € € Sel?(J).

e Step 1: Compute £ € (R ® R)* such that MpMgy = (P, Q)Mp.g for
any P, € J[2|, with the formulae for {Mp, P € J[2]} given in Lemma
3.2.1(id).

e Step 2: For e € Sel?(.J), compute its image in L*/(L*)?Q* via MAGMA
as in Remark 3.2.8. Then compute p € (R ® R)* as in Remark 3.2.4 and
define £ = p - €.

e Step 3: From &, we compute the structure constants for Maty(Q) with
basis M, ..., Mg defined in Lemma 3.2.7. Then we compute My, ..., Mg €
Mat,(Q) explicitly via the algorithm in Section 3.4 and compute { My, P €
J[2]} via the change of basis specified by P~! defined in Lemma 3.2.7.
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e Step 4: Compute A € GL4(Q) such that AMp = MpA € PGL4(Q), for
all P € J[2]. A result represents a linear isomorphism K, C P? — K C P?
corresponding to e.

Remark 3.2.8. The existing algorithm for computing Sel?(.J), as implemented
in MAGMA originally by Michael Stoll, represents Selmer group elements via
their images in L*/(L*)2K*. Such computation in MAGMA is possible in the
case where K = Q and in the case where f is degree 5 if K a general number
field.

Remark 3.2.9. We can simplify Step 4 by picking generators Py, P, P3, P,
for J[2] and it suffices to solve for A € GL4(Q) satisfying AM},, = MpA €
PGL4(Q), for all i = 1,...,4. More explicitly, we can pick ¢; € Q such that
2 = &(Py, P)/&(P;, P;) and solve for A € GL4(Q) such that AM}, = t;Mp,A,
for all i = 1,...,4. Suppose the image of ¢ in L*/(L*)*Q* is represented by
d € L* which corresponds to (aj,as,...,as) via evaluation at the 6 roots of f
as discussed in Section 1.10.1. Solving the ¢; is a linear algebra problem over

Li(\/ai,+/az, ..., \/ag) which can be done by MAGMA. We observe that there
are 16 choices of ¢;, which is compatible with Lemma 3.2.2.

3.3 The Flex Algebra Method

Same as in Section 3.2, unless stated otherwise, we fix e € Sel*(.J) and (J., )
the 2-covering of J corresponding to €. In this section, we will describe another
method for explicitly computing a linear isomorphism 1, : K. C P? — K C P3
corresponding to e. Recall, this means 1. a linear change of coordinates on
P? in the commutative diagram of the base Brauer-Severi diagram [J — P
and its twist [J. — P3] that corresponds to € and K. = ¥ 1(K) Cc P3. So
e 1 Ko C PP — K C P? and there exists an isomorphism ¢, : J. — J such that
[2]o e = ., with a commutative diagram (1.6.2) in Remark 1.6.3 corresponding
to €. Equivalently, we look for a linear isomorphism 9. : K. C P? — K C P3
such that (o — ¥.(171)7) gives a cocycle for €. An advantage of this method,
comparing to the native method, is that it requires a smaller field extension.
Most results in this section generalize and follow the same proofs of the results
in the elliptic curve case as in [CFO'08, Sections 4, 5|.

3.3.1 Enveloping algebras

In this section, we give the definition of the enveloping algebra of a central
extension of J[2] by G,, and study its properties. It is a generalization of
[CFOT08, Definition 4.1] and is needed when describing the flex algebra method
in later sections.
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Definition 3.3.1. Let A be a central extension of J[2] by G,,. Let A be a
K-algebra with [A : K] = 16. Denote A = A®g K. An embedding of A in A is
a morphism of K-group varieties ¢ : A — A* such that

(i) ¢ preserves scalars, i.e. t(\) = \ for all A € K*,

(ii) the image of ¢ spans A as a K-vector space.

If A embeds in a K-algebra A, then we call A the enveloping algebra of A. Let ©®
be a theta group for J[2]. A special case of Definition 3.3.1 is when ® embeds
in the matrix algebra Mat,(K). An embedding in this case is a morphism of
group varieties @ — GL4 that preserves scalars.

Remark 3.3.2. Recall that the base theta group ®j is defined as a subgroup
of GLy. By Lemma 3.2.1(i), we get that ®; naturally embeds in Mat,(K).
Similarly we constructed ®, as a subgroup of GLy4 for ¢ € Sel*(J) in Section
3.1.2, which is the twist of ®; by € shown in Lemma 3.1.7. We get ©, also
naturally embeds in Maty(K) as {Mp, P € J[2|} is shown to be a basis for

Mat,(K) for P +— M} a section for ®, — J|[2] in Section 3.2.1.

Before we state and prove results related to enveloping algebras, we first
define the trace map Tr : R ® R — R, viewing R ® R as an R-algebra via
A : R — R® R where A(p)(Py, P2) = p(P1 + P»). More explicitly, under the
trace map, p € R ® R maps to

T Y p(T1,To).

ThW+To=T

Recall R ® R is the algebra of Galois equivariant maps from J[2] x J[2] in
to K. By Proposition 3.1.10, we know R® R is étale. The above map may also
be built out of the trace maps for the constituent fields of R ® R and R. We
will prove it explicitly in a special case in Lemma 6.3.1.

Given an element p € (R® R)*, we can define a new multiplication %, on R
via
21 %, 20 7 =Tr(p- (21 ® 22)),
for 21,20 € R.

The lemma below generalizes the results for elliptic curves as in [CFOT08,
Lemma 4.5, Lemma 4.3|

Lemma 3.3.3. The following statements hold.

(i) Let A be a central extension of J[2| by G,,. Suppose inve(A) = pOR*.
Then A has enveloping algebra (R, *,).
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(11) Let Ay, Ay be central extensions of J[2| by G, with enveloping algebras
Ay, As. Then any isomorphism of central extensions ¥ : A — Ay extends
uniquely to an isomorphism of K-algebras W : A; — A,.

Proof. Define dp € R for P € J[2], such that 6p(Q) = 1if P = Q and 0p(Q) = 0
otherwise. This makes {0p, P € J[2]} a basis for R as a K-vector space. Now
let ¢ : J[2] — A be the Galois equivariant section for A such that ¢(71)p(Ts) =

p(T1, Ty)p(T) + T»). Consider the Galois equivariant inclusion of A in R:

AO(T) — Nor,

for all A\ € K* and T € J[2]. The group law on A extends uniquely to a
new K-algebra multiplication * on R, which then descends to a K-algebra
multiplication R x R — R. In particular, we have

55‘ * 6T = p(S, T>6S+T~
for all 5,7 € J[2]. Then

axzm =Y 2a(P)ip)* (Y =(P)sp)

=> (> p(Pr,P)x(P)z(Py)op
P Pi+P=P

=Tr(p- (21 ® 22)).

Hence, * = %, and A embeds in (R, *,) which gives (i).

~ For (ii), we construct W by first extending v linearly to an isomorhism of
K-algebras and then restricting to K-algebras. By the definition of enveloping
algebras, we know W is unique.

]

Suppose the theta group © has an embedding in Maty(K) and recall the
discussion above Remark 3.3.2. Then by definition, we have a commutative
diagram

0 > G, > © > J[2] > 0

l: l lx (3.3.1)

0 > G,, > GLy —— PGL, —— 0.

Moreover, we have the following corollary of Lemma 3.3.3.

Corollary 3.3.4. Let © be the twist of ®3 by ¢ € Sel’(J). Suppose ® has an
embedding in Maty(K) with a commutative diagram (3.3.1). There is a unique
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subvariety K. C P3 that is the twisted Kummer surface corresponding to € as in
(1.6.2) with the action of P € J[2] on K. given by x(P).

Proof. Fix K. as a subvariety of P3. Recall we constructed ©, which is a twist
of ®3 by € and consists of elements that represent the action of J[2] on K, C P3.
It has an embedding in Mat,(K) as explained in Remark 3.3.2. By Proposition
3.1.6 and Lemma 3.3.3(ii), these two embeddings differ only by an automor-
phism of Maty(K). By the Noether Skolem theorem, this automorphism is
conjugation by an element of GL4(K). Hence, the existence part of the state-
ment is proved via potentially a suitable change of coordinates on the ambient
space of K, C P2. The uniqueness part follows from Lemma 3.2.2.

[]

Suppose € € Sel*(.J). We showed that the theta group ©, naturally embeds
in Mat,(K) in Remark 3.3.2. Let P — M} be a Galois equivariant section for
©. — J[2] such that MpMg = {Mp, o, for § € (R® R)*. By Lemma 3.3.3(i),
we know Mat,(K) = (R, *¢ ). In fact, it can be checked that this isomorphism

is given by M}p +— dp over K. We verify

(5p *e, 5@ = Tr(fe(Sp (%9 5@)
=Y. D &P P)op(P)dg(Pa)dr
Tel[2) Pi+Pa=T

= &(P,Q)op1q-

Let 71, ...,716 be a basis for R and define M; = ZPer] 7i(p)M,. Then we know
My, ..., Mg is a basis for Maty(K) as shown in Lemma 3.2.7. Hence, the iso-

morphism above restricts to an isomorphism Mat,(K) = (R, *¢_) sending M; to
r; defined over K.

3.3.2 Obstruction map and enveloping algebra

In this section, we introduce the definition of the obstruction map and explain
how it is related to the enveloping algebra defined in the previous section.

Definition 3.3.5. The obstruction map
Ob: HY(Gg, J[2]) — H*(Gk, K*) = Br(K)

is the composition of the map H'(Gg,J[2]) — HY(Gg,PGL4(K)) induced

by the action of translation of J[2] on P? in the base Brauer-Severi diagram

J 2 B3 and the injective map H'(Gx,PGLy(K)) — H*(Gk, K*) induced

from the short exact sequence 0 — K* — GL4(K) — PGL4(K) — 0.
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Remark 3.3.6. Suppose [X — S] is the Brauer-Severi diagram corresponding
toe € HY(Gg, J[2]). Then there exist isomorphisms ¢, defined over K satisfy-
ing (1.6.1). In particular, ¢(¢~')? = 7., where (0 — €,) is a cocycle representing
e. It follows that 1(¢)~1)? is the action of ¢, on K C P? which implies that S
is the twist of P corresponding to the image of € in H'(Gg, PGL,). Hence, we
can view Ob(¢) as the Brauer-Severi variety S since H'(Gg,PGL,) — Br(K)
is injective. Moreover, Ob(e) is trivial for e € Sel*(J) as the corresponding
twisted Brauer-Severi diagram is [J. — P?] by Lemma 1.6.2. The result for
elliptic curves is in [CFOT08, Corollary 2.5].

Remark 3.3.7. In general the obstruction map is not a group homomorphism.
But, as shown in [O’N02, Lemmas 4.2, 4.4], it is quadratic in the sense that

(i) Ob(ae) = a?Ob(e), for all a € Z , and
(ii) (e,m) — Ob(e+n) — Ob(e) — Ob(n) is bilinear.

We state and prove the proposition below on the relationship between the

obstruction map and enveloping algebra. The result in the elliptic curve case is
in [CFO"08, Theorem 4.10].

Proposition 3.3.8. Let © be a theta group for J[2| with enveloping algebra
A, then the obstruction map sends the class of ©, considered as an element in

HY(Gg, J[2]), to the class of A in Br(K).

Proof. By Lemma 3.1.5, we know © is a twist of @ ;. Then by Lemma 3.3.3(ii)
and Remark 3.3.2, we get that A is a twist of Mat, (K) and hence a central
simple K-algebra.

Suppose © is a twist of @5 by ¢ € H'(Gg,J[2]). By Proposition 1.5.3,
we know that there exists an isomorphism v : ® — ©j such that vy(y~1)7 :
x — ey(€y, Br(x))x, for all z € 5. Then by the commutator relationship, we
know 7(y~1)? is conjugation by M, . Since isomorphism between two theta
groups extends uniquely to an isomorphism between their enveloping algebras
by Lemma 3.3.3(ii), we get an isomorphism I' : A — Mat,(K) that extends
7. Hence, the image of € via the map H*(Gg, J[2]) = H'(Gg,PGLy(K)) =
HY(Gg, Aut(Maty(K))) = {isomorphism classes of twists of Mat,(K)} is the
class of A. So, Ob(e) = [A] by Remark 1.4.14.

]

Suppose € € Sel*(J). We know the theta group ©, is the twist of @5 corre-
sponding to € by Lemma 3.1.7 and it naturally embeds in Maty(K) as explained
in Remark 3.3.2. Then the above proposition shows that Ob(e) is trivial which
is compatible to the discussion in Remark 3.3.6.
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3.3.3 Flex algebra

Recall that we have identified H'(G g, J[2]) with the isomorphism classes of 2-
coverings of J, Brauer-Severi diagrams, commutative extensions of J[2] by G,,
and theta groups for J[2|. In this section, we show another interpretation of
H'(G, J[2]) before giving the definition of flex algebra.

Definition 3.3.9. A J[2/-torsor is a pair (®, u), where @ is a zero-dimensional
variety and p : J[2] x & — & is a morphism which induces a simple transitive
action on the K-points of ®. An isomorphism of J[2]-torsors is an isomorphism
between the varieties that respect the action of J[2].

The trivial J[2]-torsor is (J[2],+), with + denoting the restriction of the
group law on J. It can be checked that any .J[2]-torsor, (®, i), is a twist of the
trivial torsor via the isomorphism (J[2], +) = (®, u) such that P+ u(P, Fy) for

some fixed choice of Py € ®(K). We usually denote (@, p) by ¢ and we have
the following parametrization of the isomorphism classes of .J[2]-torsors.

Proposition 3.3.10. The isomorphism classes of J[2|-torsors, viewed as twists
of (J[2],+), are parameterized by H (G, J[2]).

Proof. Given a J[2]-torsor, (®, 1), the argument above shows that P +— u(P, Py)
for some fixed choice of Py € ®(K) defines the inverse of ¢ : (®, u) = (J[2], +).
It can be checked that ¢(¢~!)° is a translation by some P. € J[2] and (o — P.)
is a cocycle in Z'(Gg, J[2]). On the other hand, suppose ¢ € H'(Gx, J[2]) has
cocycle representation (o +— €,). There exists a 2-covering of J, (J, [2] o ¢),
such that ¢ (¢ 1) = 7., by Proposition 1.5.10. From Proposition 1.5.7, we
know p : (P,Q) — ¢ (P + ¢.(Q)) is a simply transitive action of J on .J,
defined over K. Hence, this restricts to a simply transitive action of J[2] on
¢ (J[2]) defined over K which makes ¢_'(J[2]) a J[2]-torsor that gives rise to
the cocycle (0 +— €.). The rest of the proof is following routine arguments, as

in Propositions 1.5.10 and 1.6.1.

]

Remark 3.3.11. Let (J, m) be the 2-covering of J that corresponds to € €
H'(Gg, J[2]). Suppose [2] 0 ¢ = m.. We know 7 1(O;) = ¢-1(J[2]) is a J[2]-
torsor corresponding to € by the proof of Proposition 3.3.10. In the case where
€ € Sel?(J), we have the twisted Kummer K. C P? and we can also view the
singular points on ¢ as a J[2]-torsor corresponding to €.

Definition 3.3.12. Let € € H'(G, J[2]). The flex algebra of € is the envelop-
ing algebra of the commutative extension of J[2] by G,, that corresponds to €.
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We show the following lemma, where the result in the elliptic curve case is
in [CFO"08, Theorem 4.8].

Lemma 3.3.13. Let ¢ € HY(Gg, J[2]) and let ® denote the J[2]-torsor that
corresponds to €. The flex algebra of € is isomorphic to the étale algebra of ®.

Proof. Let F denote the étale algebra of ®, which means F' = Mapy(®, K).
define

A ={z € F* : there exists T € J[2] such that 2(S + P) = (S, T)z(P) for all
Se Jj2, P e d).

By the non-degeneracy of the Weil pairing, we obtain a commutative extension

of J[2] by G

0 G S AD J2] -0,
where ((z) = T using the notation in the definition of A.

It suffices to show the A constructed from ® is the commutative extension of
J[2] by G,, corresponding to €, as A embeds in F' by construction. Consider the
isomorphism v : ® — J[2] such that ¢ (™1)7 = 7., with the cocycle (o + ¢,)
representing e. This isomorphism ¢ induces an isomorphism F' = Map(®, K) —
R = Map(J[2], K):

2z (P z(p1(P))).

It can be checked that this then restricts to an isomorphism between the central
extensions W : A — Ao, where Ag = G, X J[2] = {dMw(T) € R*: A € K*,T €
J[2]}. Then, viewing Ay = { \w(T) € R*: A € K*,T € J[2|}, we have

(U N iz U(zo09)=zo0T,,.
It can be checked that, viewing Ay = G,, x J[2], we have

V(U Nz eyeq, 7)),

as required.

]

Remark 3.3.14. The proof of Lemma 3.3.13 shows the compatibility between
the parameterization of the isomorphism classes of J[2]-torsors and the param-
eterization of the isomorphism classes of commutative extensions of J[2] by
G, by HY(Gg, J[2]). Let e € Sel*(J) and suppose ws(e) = pOR*. By Lemmas
3.1.15 and 3.3.3(i), we know that the flex algebra of € is (R, *,). Then by Lemma
3.3.13, we have (R,*,) & F = Mapy(®, K), where ® denotes the J[2]-torsor
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that corresponds to €.

Recall that we always embed K C P? as in Section 1.3.2 and we have ex-
plicit formulae for {Mp € GL4(K), P € J[2]} representing the action of J[2]
on K C P? given in Lemma 3.2.1(ii). In particular P+ Mp is Galois equivari-
ant. Define M € GL4(R) = Mapg(J[2], GL4(K)) such that M(P) = Mp, for
P e J[2]. We also define £ € (R® R)* such that MpMg = £(P, Q) Mp.q for all
P,Q € J[2|. Suppose wy(€) = pOR* for p € (R® R)*. Let & = p¢. By Lemma
3.3.3(1) and Lemma 3.1.16, A = (R, *¢) and A, = (R, *¢.) are the enveloping
algebras for @3 and the theta group corresponding to €. Since € € SelQ(J ), we
showed in Section 3.3.1 that (A, ¢ ) = Mat,(K). We now prove two proposi-
tions following the proofs in the elliptic curve case as in [CFO708, Theorems

5.8, 5,9.

Proposition 3.3.15. Let ¢ € Sel’(J). Suppose wy(€) = pdR* for p € (R® R)*.
Let & = p€. Define A= (R, *¢) and A. = (R, *¢.).

(i) Suppose we have y € R* such that Oy = p, then there exists an isomor-
phism of K-algebras -y : Ac — A. Note the multiplication is that in R.

(ii) Suppose we have v € R* such that -y : A. — A is an isomorphism
of K-algebras. For any isomorphism 7. : A. & Maty(K) as K-algebras
and the isomorphism of K-algebras 7 : A — Mat,(K) given by 7(z);; =
trry (e Mig) = Y- pe yig (@(P)(Mp)ij), we have the following commutative
diagram:

A~ Maty(K)

l‘” s (3.3.2)

AT+ Mat4(K'),

where (3 is the conjugation by a matriv B € GLy(K) which represents
a change of coordinates on P? in the commutative diagram of the base
Brauer-Severi diagram [J — P3] and its twist [J. — P3| that corresponds
to the Selmer element €.

Proof. We note that A and A, are central simple algebras of the same dimension.
Hence, to show a map is an isomorphism, it suffices to show that it is a ring
homomorphism. For (i), we have that - (21 *¢, 22) sends T" € J[2] to

V(T) Y & To)a(Th)z(Ty)

Ti+T>=T

= Z (T, To)y(Th) 21 (Th)y(T2) 22(T5),
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which is (7 z1) *¢ (7 - 22) as required.

For (i), we first need to show that 7 is a ring homomorphism. It suffices
to prove it over K, where 7(0p) = Mp. Since dp *¢ 0g = (P, Q)dp1o and
MpMg = &(P,Q)Mpq, the result follows.

Then for the remaining part of the proposition, we let S be the isomorphism
that makes (3.3.2) commute. By the Noether Skolem theorem, we have that
3 is conjugation by some matrix B € GL4(K). Since A, A, are the enveloping
algebras of @3 and O, the twist of @3 by ¢, we now get embeddings of @3 and
© in Mat,(K) via composing with the isomorphisms 7, 7. respectively. In this
way, O3 and © are now subgroups of GL, generated up to scalars by 7(dp)
ad 7.(dp) for P € J[2]. We observe that 7(P) = Mp for any P € J[2]. The
commutativity of (3.3.2) shows that ®3 C GL; and ® C GL, are related by
conjugation by B. By Corollary 3.3.4, we know there exists a unique subvariety
K. C P? that is the twisted Kummer corresponding to € as in (1.6.1) such that
© consists of elements that represent the action of J[2] on .. This implies that
there exists C' € GL4(K) such that @5 C GL, and © C GL, are related by con-
jugation by C. Hence, BC~! represents an element in PGL4(K) that commutes
with Mp in PGLy(K) for all P € J[2] which implies the induced isomorphism
BC™' = Mg € PGLy(K) for some @ € J[2] by Lemma 3.2.1(i). Therefore,
B represents the change of coordinates on P? in the commutative diagram of

the base Brauer-Severi diagram and its twist [J. — K. C P3] corresponding to e.

]

We now modify the above method for computing the twist of Kummer
K. c PP — K C P3 Proposition 3.3.15 suggests that we need to solve
for v € (R ® K)* such that 9y = p. Recall in Remark 3.3.11, we showed
¢ = 71(0y) is a J[2]-torsor induced by the 2-covering (J,, 7) of J correspond-
ing to e. The next proposition shows that we can actually solve for v € (R® F})*
where Fj is the field of definition of a point in ®. We follow the proof of the
result in the elliptic curve case in [CFOT08, Theorem 5.9|.

Proposition 3.3.16. Let ¢ € Sel’(J). Suppose wy(e) = pdR* for p € (R® R)*.
Let & = p€. Define A= (R,*¢), Ac = (R,*¢,) and F = (R, *,).

(i) We have an isomorphism of F-algebras o : A. ®x F' — A®y F such that

n2

x®1r—>2rfx®ri,

=1

where r1,..,716 15 a set of basis for R and 17, ...,r]¢ 15 its dual basis with
respect to the trace form (r,s) = trri(rs) = 3 pcyor(P)s(P), te

(ri,rj) = 0y
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(i) We have the following commutative diagram with T, 7. defined in Proposi-
tion 5.5.15:
A, @ F —“— Maty(F)

[ |

ARF — M(Zt4(F),

where B is conjugation by some matriz B € GLy(F) = Mapy (P, GLy(K))
with ® a J[2]-torsor corresponding to €. Moreover, for each Q € ®, the
matriv Bg € GLy(K) represents a change of coordinates on P in the
commutative diagram of the Brauer-Severi diagram [J — P3| and its twist
[J. — P3] that corresponds to the Selmer element €.

Proof. We observe that « is multiplication by I' = (1®:r) (32,0, ri®r;) € RRF

where 1p : R = F' is the isomorphism of the underlying K-vector space and it
can be checked that the definition of « is independent of the choice of basis
1,...,716. To show a a ring homomorphism, it suffices to prove it over K and
assume r; = 0p, = rf, where Py, ..., Pjg are the 16 points in J[2]. Hence, we

need

16 16

16
> 0p(3s %e. 01) @05, = Y Y (0p,0s *¢ 6p,0r) @ (5p, %, Op).
=1

i=1 j=1
With some simplification, the above equation becomes
£(S,T)p(S,T)ds+1 ® ds1 = &(5,T)ds+r ® p(S, T)ds+,

which always holds. Then, it can be checked that « is indeed an isomorphism
which gives (i).

For (ii), we define 8 to be the isomorphism of F-algebras that makes the
above diagram commute. Since F' is the flex algebra of €, by Remark 3.3.14, we
know it is the étale algebra of ® which implies it is a product of field extensions
of K. Hence,  is conjugation by some matrix B € GL,4(F) via applying the
Noether Skolem theorem to each constituent field of F. We note « is multipli-
cation by T' = (1 ® 1p) (3202, 7F ® 1;) € R® F at the start of the proof. This
implies that for each @ € ®, we get the commutative diagram (3.3.2) with ~
replaced with I'g € R* and f3 is conjugation by Bg € GL,(K). Then the result
follows by Proposition 3.3.15.

]

Remark 3.3.17. Follow the notation in the above two propositions. We observe
that any ring homomorphism A, — A for some v € R* satisfies 9y = p. Indeed,
we have vdg ¢ y0p = 70g *¢ O which simplifies to y(S)y(T) = v(S+T)p(S,T)
for any S,T € J[2]. This then implies that A, = A for some v € R* is a ring
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homomorphism if and only if 9y = p by Proposition 3.3.15(i). Note such ring
homomorphism is an isomorphism as A, is central simple. Since wq(€) = pOR*,
we know there exists 79 € R* such that w(e,) = o(70)/7 and dyy = p where
(0 — €,) is a cocycle representation of €. Via the exactness of (3.1.1), we know
each I'g constructed in Proposition 3.3.16 is yow(P) for some P € J[2|. More-
over, since 71, ...,716 is a basis for R, we know I'g, # I'g, for Q1 # Q2 € P.
Hence, we have {I'g, @ € &} = {yw(P), P € J[2]}.

3.3.4 Algorithm for the flex algebra method

In this section, we describe the flex algebra method for computing the linear
isomorphism K, C P> — K C P3 corresponding to € € Sel?(.J). Here, we assume
K = Q and we have an algorithm that trivializes a matrix algebra specified by
its structure constants.

e Step 1: Compute £ € (R ® R)* such that MpMgy = &(P,Q)Mpq for
any P,@Q € J[2|, with the formulae for {Mp, P € J[2|} given in Lemma
3.2.1(ii).

e Step 2: For e € Sel?(.J), compute its image in L*/(L*)?Q* via MAGMA
and recall Remark 3.2.8. Then compute p € (R® R)* as in Remark 3.2.4
and define § = p - €.

o Step 3: Let A = (R, *¢). As specified in Proposition 3.3.15, we compute
the isomorphism 7 : A — Mat,(Q).

o Step 4: Let A, = (R, *¢. ). Compute the structure constants of A, with
respect to a basis of R and use the algorithm in Section 3.4 to compute
an isomorphism 7, : A, — Maty(Q).

e Step 5: Let F' = (R, *,). Compute the following composition of maps:

/A S AR F D Maty(F),

which is given by z +— 1% 7(rf2) ® r; with details explained in Propo-
sition 3.3.16.

e Step 6: Solve for a matrix B € GL4(F) such that Br.(z) = 7/(z)B for all
x € R. This is a linear algebra problem over F', where [F': Q] = 16 and
can be solved using MAGMA.

The flex algebra method for computing the explicit twist map of K requires
a much smaller number field than the naive method in general. In Chapter 6, we
will give more details on the computation using the flex algebra in a special case.
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3.4 Trivializing Matrix Algebras over QQ

Recall that in Sections 3.2 and 3.3, we gave two methods for computing a linear
isomorphism IC. € P? — K C P? for € € Sel*(J). In the description of these
methods, we required an algorithm that trivializes a Q-algebra that is known
to be isomorphic to Mat,(Q) and specified by its structure constants. More
precisely, we need to solve Problem 3.4.1 in the case n = 4. The algorithm we
give in this section works in principle over any number field K. However, it
is more practical over the field of rationals. Hence, in this section we assume
K = Q. A similar algorithm for trivializing an algebra A = Mat,,(Q) is done in
[CFO™15, Section 6]. However, there it was mostly under the assumption that
n is prime, which does not apply to our case. Hence, we also need to combine
with the results done in [Pil07] to complete the algorithm for the case n = 4.
We will discuss the details in this section. Also, see [[RS12] for the algorithm
and complexity analysis in the general case.

Problem 3.4.1. Given a Q-algebra A that we know is isomorphic to Mat,, (Q),
compute the isomorphism explicitly. More precisely, we need to find a practical
algorithm for the following:

The input of the algorithm is a list of structure constants c;;, € Q corre-
sponding to a set of basis ay,...,a,2 of A such that a,a; = Zijcijka’k" The
return of the algorithm is My, ..., M2, a set of basis for Mat,(Q) such that

MZ‘M]‘ = Z CijkMk'

,J

Note that the output is not unique since conjugating the basis elements M;
by any matrix in GL,(Q) also works.

3.4.1 Subproblem: case n—=2

It will be shown that a subproblem of Problem 3.4.1 in the case n = 4 is Prob-
lem 3.4.1 in the case n = 2. Finding such an isomorphism over Q is equivalent
to finding a rational point on a plane conic. There exist algorithms for solving
this, see for example [CRO3|[IS96][Sim05]. Here, we give one method for finding
the explicit isomorphism and the results also hold if K = R.

Lemma 3.4.2. The quaternion algebras (a,b) and (a,c) are isomorphic if and
only if be is a norm in the extension K(y/a)/K. Moreover, finding the explicit
isomorphism is equivalent to solving the conic ax® + bey? = 2% in the case a is
not a square.
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Proof. Since the class of a quaternion algebra is in Br[2], we know (a, b) = (a, ¢)
if and only if (a,b) + (a,c¢) = 0. By Proposition 1.4.11(ii), we then know
(a,b) = (a,c) if and only if (a,bc) = 0 which by Proposition 1.4.11(iii) is if and
only if be is a norm in the extension of K(y/a)/K.

Now as for the explicit isomorphism, we have the following.

Let 1,4,7,ij denote the basis for (a,b) and 1,4, k,ik be the basis of (a,c).
Then we have i = a, j?> = b,ij = —ji and need to find r,s,t,u € K such that
k =1+ si+tj + uij satisfying k* = ¢ and ik = —ki.

Some calculations show that we need r = s = 0 and ¢ = (¢ + ui)(t — ui)b.
Suppose a is not a square in K, then we have

be = Ni(yay (¢ +uv/a)b).

This implies that finding ¢, u € K and hence the explicit isomorphism is equiv-
alent to solving the norm equation of bc over the extension K(y/a)/K which is
also equivalent to solving the conic az? + bey? = 22. Notice that since a is not
a square, a solution to the conic has y # 0. Let (:Uo, yo, zo) be a solution to the
conic, then be = Ng(a)/x (32 + z—g\/ﬁ) Hence k = 255 + -04j works, which
gives the isomorphism required.

yob

O

Remark 3.4.3. Suppose the quaternion algebras (a,b) and (a,c) are isomor-
phic and a is a square in K. We can assume a =1 and let 1,4, 7,75 denote the
basis for (a,b). Then define k = C+b] +5 b4 and we get that 1,4, k, ik is a basis
for (a,c).

Corollary 3.4.4. Given a K-algebra A that is known to be isomorphic to
Maty(K), there is a practical algorithm that finds such isomorphism explicitly.

Proof. Using the algorithm as described in [Voi05, Algorithm 4.2.9|, we can
find an explicit isomorphism between A and some quaternion algebra (a,b).
Note that this algorithm has already been implemented in MAGMA. We know
(a,b) = (1,1). If a or b is a square, then we get an isomorphism between (1, 1)
and (a,b) following Remark 3.4.3. Else, we first get an explicit isomorphism
between (1,1) and (a, 1) then we find an explicit isomorphism between (a,b)
and (a, 1) following the proof of Lemma 3.4.2. This gives us the explicit isomor-
phism between (a,b) and (1,1). We then have an explicit isomorphism between

(a,b) and Maty(K) via taking the generators of (1,1) to be [01 _01} and [[1)’ (1)]
in Maty(K).
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Remark 3.4.5. Suppose we have an explicit isomorphism ¢ : A — Matq(K).

Then ¢! maps l(l) 8} to a nonzero zero divisor of A.

3.4.2 Trivializing the algebra given a zero divisor

Corollary 3.4.4 describes a practical solution to Problem 3.4.1 in the case n = 2.
Now our goal is to solve Problem 3.4.1 in the case n = 4. One approach re-
quires first trivializing the algebra over R. Let A be a K-algebra that we know
is isomorphic to Mats(K), here K can be Q or R. In this section, we give an al-
gorithm that constructs an explicit isomorphism A = Mat,(K) given a nonzero
zero divisor d € A as done in [Pil07]. First we have the following lemma.

Lemma 3.4.6. Let A be a left A-module of dimension 4 with a fixed choice of
basis. We define ¢ : A — Maly(K) = End(A;) that sends a € A to the matriz
representing the endomorphism x — ax on Ay as a vector space. Then ¢ is an
1somorphism of algebras.

Proof. We observe ¢ is a nontrivial ring homomorphism. Since A is an simple
algebra, ¢ is injective which implies that it is an isomorphism by a dimension
check.

]

Define p; : A — A a homomorphism of left A-modules with p,(a) = ad. We
have the following lemma using the Jordan Normal Form. In the case K = Q,
the result is stated and proved in [Pil07, Lemma 5|. It is clear from the proof
that the same result holds over any field.

Lemma 3.4.7. Let ¢ : A — Maty(K) be an isomorphism and let d € A be a
nonzero zero divisor such that none of ker pg, Im pg, ker p;NIm py has dimension
4. Then ¢(d) is similar to one of the following block matrices:

(1) {lg 8] , where D € Maty(K) is an invertible matriz;

B 0 ‘ .10 1
(2) {0 B}’ where B is the matriz [0 0].

Remark 3.4.8. Suppose d € A is a nonzero zero divisor and ¢ : A — Mat,(K)
is an isomorphism. We check that ¢(d) similar to a block matrix of type (1)
in Lemma 3.4.7 implies that dimIm p; = 8 and dim(ker p; N Im p;) = 0. Sim-
ilarly, ¢(d) similar to a block matrix of type (2) in Lemma 3.4.7 implies that
dim Im pg; = 8 and dim(ker py N Im py) = 8.
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Suppose we have a nonzero zero divisor d € A. We know that the rank of
dis 1, 2, or 3, corresponding to dim Im py being 4, 8, 12 respectively. We then
have the following cases.

Case 1: dimImpy; = 4. Then applying Lemma 3.4.6 with A; = Im p,
gives an isomorphism A = Mat,(K).

Case 2: dimImpy; = 12. This implies dimker p;, = 4. Then applying
Lemma 3.4.6 with A; = ker pg gives an isomorphism A = Mat,(K).

Case 3(i): dimImp; = 8 and dim(ker p; N Imp,) = 4. Then applying
Lemma 3.4.6 with A; = ker pgNIm p, gives an isomorphism A = Mat,(K).

Case 3(ii): dimImp, = 8 and dim(kerpg N Impy) = 0. Let ¢ : A —
Maty(K) be an isomorphism. From Lemma 3.4.7 and Remark 3.4.8, we
know ¢(d) is similar to a block matrix of type (1) in Lemma 3.4.7.

Now define Ay : A — A with A\y(a) = da. It can be directly checked
that in this case the intersection A; = Im pg N Im A\; is mapped by ¢
to the sub-algebra of all matrices with only the upper left 2 by 2 sub-
matrix being possibly nonzero. So A; = Maty(K). Let d; be nonzero
zero divisor in A;, which can be explicitly found via Corollary 3.4.4 and
Remark 3.4.5. This implies that d; is rank 1 in A; and hence it is also
rank 1in A. Now applying Case 1 with d; gives the trivialization required.

Case 3(iii): dim Im pg = 8 and dim(ker p4NR,;) = 8. Let ¢ : A — Maty(K)
be an isomorphism. From Lemma 3.4.7 and Remark 3.4.8, we know ¢(d)

S : 0 : .10 1

is similar to matrix {O B} , where B is the matrix {O O} .

In this case, we let A; denote the centralizer Cy(d) and R(A4) denote
ker pg Nker Ag. Then there is the natural projection 7 : Ay — Ag/R(Aq).
The following Lemma is needed and the result in the case K = Q is in
[Pil07, Lemma 6]. We note that the proof in [Pil07, Lemma 6] works over

any field, and we include it here as we need to follow it in the algorithm.

Lemma 3.4.9. The algebra w(Ay) is isomorphic to Maty(K). Ife € w(Ay)
is a monzero zero divisor, then for a generic element f in 7 '(e) we have
dimker p; = 4.

(Note, here a "generic element” means an element in a dense Zariski open
subset.)
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Proof. We may assume ¢(d) is actually equal to {ﬁ g] , where B is the

matrix {8 (1)} . Then it can be checked that

a7 51 (8% /32

0 aq 0 [6%)

ag 53 Qg 54

0 (0% 0 QY

¢<Ad> = { : Oéi,ﬁi & K}

We compute that ¢(R(Aq)) C ¢(Ag) consists of all elements in ¢(A,) such
that a; = 0, for all 4. This implies that ¢(Ag)/P(R(Ag)) = {a € ¢(Ay) :
B; =0, for all i}, which can be checked to be isomorphic to Mats(K).

Now consider the natural projection 7’ : ¢(Ay) — ¢(Aq)/P(R(Ay)) =
Maty(K). If e is a zero divisor in Maty(K), then (7')~1(e) consists of
elements in ¢(Ay) such that «; are fixed with ajay = asas. Now for
I € (7')"(e), we have dimker pys = 4 if and only if the rank of f’ is 3.
This is if and only if a 3x 3 minor of f’ is nonzero which is if and only if
1084+ a1 # asfs+ asfs by looking at the 3x 3 submatrices containing
all the 8;. Hence, a generic element in (7')~!(e) satisfies dimker pp, = 4
and so f = ¢~ !(f') satisfies dimker p; = 4 as required.

]

Let e be a nonzero zero divisor in A;/R(Ag), which can be explicitly com-
puted by Corollary 3.4.4 and Remark 3.4.5. We know from the proof of
Lemma 3.4.9, whether or not an element in 77!(e) gives a dimension 4
left ideal is a homogeneous linear condition. Fix an element f' € 771(e)
and let {by, b, bs,bs} be a basis of 77%(e) — f’. Then at least one of the
elements f', f'+0b; i € {1,...,4} gives a dimension 4 left ideal as these five
points span 7 '(e) and for a generic element f € 7 !(e), dimker p; = 4
by Lemma 3.4.9 . So we get the trivialization by further applying Case 1.

3.4.3 Finding nonzero zero divisor over R

In this section, we describe an algorithm that finds a nonzero zero divisor d € A,
in the case K = R.

The algorithm starts by picking a random element ¢ € A. We compute its

minimal polynomial m.(x). Suppose m.(z) is a degree 4 polynomial with no
repeated roots. It then factorizes into two quadratic polynomials fi, fo over R
and fi(c) is a nonzero zero divisor. Note that in this case, the characteristic

polynomial of the image of x in Mat,(K') under any isomorphism A 2 Maty(R),
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denoted by x.(z), is equal to m.(x) and so also has no repeated roots. We ob-
serve that x.(z) has repeated roots if and only if it and its derivative share a
common root which is an algebraic condition on the coefficients of x.(x) and
hence an algebraic condition on the entries of ¢(x). This implies the set of
elements in Mat,(R) whose characteristic polynomials have no repeated roots
forms a dense Zariski open subset. Hence, we simply pick another random ele-
ment in A if m.(z) is not a degree 4 polynomial with no repeated roots.

Remark 3.4.10. Combining the algorithm in Section 3.4.2 in the case K =R
and the algorithm above, we now have an algorithm to trivialize an algebra
A = Maty(R) that is specified by the structure constants.

3.4.4 Algorithm for trivializing matrix algebra over QQ

In this section, we describe an algorithm that solves Problem 3.4.1 in the case
n = 4. We first give the following definitions and known results. These are also
given in [CFO™15, Section 6].

Suppose A is a Q-algebra that is isomorphic to Mat,(Q). An order in
A is a subring O C A whose additive group is a free Z-module of rank n?.
Let a; = 1,a9,...,a,2 be a Q-basis for A that is also a Z basis for O. The
discriminant of O is defined as

Disc(O) = det(Trd(a,a;)),

where Trd denotes the reduced trace and Trd(a;a;) = Tr(M;M;) with a; — M,
under an isomorphism A = Mat,,(Q). Note this does not depend on the choice
of A= Mat, (Q) by the Noether Skolem theorem. An order O is mazimal if it
is not a proper subring of any other order in A.

From the definition above, we know an order of A can be viewed as a lattice
in Mat,2(R) = R™. We also have the following known results on lattices. Let
L C R™ be a lattice with a choice of basis as the rows of an m X m matrix B.
Then det L = |det B| depends only on L and not on B. By the geometry of
numbers, we know L contains a nonzero vector x such that

1] < e(det L)*™,

where the constant ¢ only depends on m and || || denotes the standard Euclidean
norm. The best possible value for ¢ is the Hermite’s constant denoted by ~,,.
It was shown in |Blil4] that

2 m+ 2
m<_mF1 _2.
< G+ )

Now suppose n = 4 and A = Mat,(Q). An algorithm that finds such iso-
morphism explicitly starts by finding a nonzero zero divisor of A. We follow
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the same method as in [CFO™"15, Section 6| in the case where the algebra is
isomorphic to Mat3(Q) or Mats(Q). Let O be a maximal order of A. All
maximal orders of A have equal discriminant, denoted by Disc(A), as shown in
[Rei03, Section 25]. We have Disc(Q) = Disc(Maty(Z)) = 1.

Let a1 = 1,a0,...,a16 denote a set of Q-basis for A that is also a Z-basis
for O. Let Ag = A ®g R and we have Ag = Maty(R). By Remark 3.4.10, we
can compute such isomorphism explicitly and compute the corresponding basis
of Maty(R), denoted by Ny, ..., N1g. This implies that we can identify O as a
subring of Mat,(R) and identify Mat,(R) as R'. This makes O a lattice. Let
B be an 16 x 16 matrix whose rows are basis for @. We have

Disc(O) = (det B)*Disc(Mat,(Z)).
Since Disc(O) = Disc(Maty(Z)) = 1, we get |det B| = 1. By the geometry of
numbers, O contains a nonzero element M € O C Maty(R) such that
IMI* < e,

where 71 < (2)*T'(1 + £)2. Tt can be checked that 716 < 4. Now by running
Gram Schmldt algorithm to columns of M, we can write M = QQR, where @ is
orthogonal and R is upper triangular with diagonal entries 7y, ...,74. Then by

AM-GM inequality:

4
1 1
| det M|'/? = Hr ZZ Z||R||2 ||M||2<1.

Since O is an order, we know det M is an integer. This implies det M = 0.

Therefore 0 is an eigenvalue of M. This implies that its minimal polynomial
pa(z) will have a factor of x and therefore M is a nonzero zero divisor. In
practice, we use MAGMA to try some small integer linear combination of the
basis Ny, ..., N1g and find one that has reducible minimal polynomial.

Now we summarize the algorithm for solving Problem 3.4.1 in the case n = 4
that is discussed in this section.

e Compute a maximal order O C A which can be done using MAGMA. See
for example [R’090] [IR93| [Fri] and the MAGMA implementation by de
Graaf.

o Trivialize A over R. This is discussed in Remark 3.4.10.
e Embed O as a lattice in Mat,(R) = R'® using the above trivialization.

e Look for small linear combinations of the basis elements of O that has
reducible minimal polynomial which gives a nonzero zero divisor of A.

e Then trivialize A over QQ as discussed in 3.4.2 in the case K = Q.
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Remark 3.4.11. In practice, we can compute an LLL-reduced, short and nearly
orthogonal, basis for O after embedding O € R in the above algorithm. The
LLL lattice basis reduction algorithm given in [LLL82| is a polynomial time
lattice reduction algorithm that computes an LLL-reduced lattice basis and is
implemented in MAGMA. Working with an LLL-reduced basis tends to speed
up the MAGMA computation and give a simpler trivialization.
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Chapter 4

The Cassels-Tate Pairing with
K-Rational Two-Torsion Points

In this chapter, we let J denote the Jacobian variety of a genus two curve C that
is defined by y* = f(z) such that f is a degree 6 polynomial defined over the
base field K and all roots of f are defined over K. Note that this implies that
all points in J[2] are defined over K by Remark 1.2.1. We will prove an explicit
formula for the Cassels-Tate pairing on Sel*(J) x Sel*(J). In this chapter, the
base field K is always a number field, unless stated otherwise. We will then
describe an algorithm such that in the case where K = QQ, we can compute this
explicit formula. This method is a generalization of what was done by Cassels
in [Cas98] in the case of elliptic curves. Later on, in [FSS10], the pairing in
[Cas98| was proved to be the Cassels-Tate pairing.

4.1 Formula for the Cassels-Tate Pairing

In this section, we state and prove an explicit formula for the Cassels-Tate pair-
ing on Sel?(.J) x Sel*(J) under the assumption that all points in .J[2] are defined
over the base field K.

4.1.1 Choice of generators of J[2]

We first explain some notation used in this chapter.

Let the genus two curve C be of the form
C:y* =Mz —w)(x —w)(z — ws)(z — wy)(x — ws) (T — we),
where A\, w; € K and A # 0. Its Jacobian variety is denoted by J.

Define
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We check that they generate J[2] and by Lemma 1.7.6, the Weil pairing among
them is represented by W:

1 -1 1 1
-1 1 1 1
T (4.1.1)
1 1 -1 1

More explicitly, W;; denotes the Weil pairing between the 7" and j™* generators.

We first recall some discussion in Section 1.10. In Remark 1.10.6, we showed
that in the case where f has a root defined over K then P!(Gg, J[2]) =
{6 € L*/(L*)*K* : N(0) is a square} where P'(Gg, J[2]) = ker~ in (1.10.2)
and L = Klz]/(f). Since now we assume all roots of f are defined over
K, we get that M = ker(uy(L) X, p2(K)) is isomorphic to pg(K )5 which
implies that H?(Gx, M) = (Br(K)[2])°. Since Br(K)[2] — (Br(K)[2])® is
injective, by the exactness of H'(Gg, J[2]) = Br(K)[2] — H?*(Gg, M), we
have v is the zero map and P'(Gg, J[2]) = H'(Gk, J[2]). This implies that
HY Gk, J[2]) 2 {6 € L*/(L*)?K* : N() is a square}.

We now show that we also have H'(Gg, J[2]) = (K*/(K*)?)* induced by
the generators P, @, R, S and that the two interpretations of H'(Gg, J[2]) are
compatible.

Consider the map J[2] <2 (uo(K))*, where w, denotes taking the Weil
pairing with P,Q, R, S. Since P,Q, R, S form a set of generators of J[2] and
the Weil pairing is a nondegerate bilinear pairing, we get that ws is injective.
This implies that w, is an isomorphism as |J[2]| = |(u2(K))*| = 16. We then
get

H' (G, J[2]) =5 H' (G, (pa(K))*) = (K*/(K*))*,
where wy , is induced by wy and = is the Kummer isomorphism derived from

Hilbert’s Theorem 90. Since the above map H' (G, J[2]) —= HY (G, (u2(K))*)
is an isomorphism, we can represent elements in H'(Gg, J[2]) by elements in
(K /(K)%)*

Note that we have the following commutative diagram:

l: ’ (4.1.2)

where the bottom exact sequence is given in (1.10.1) and g is an isomorphism

(12(K))* = ker (pa(L)/pa(K) = pa(K*)) defined by
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(a,b,c,d) — (abc,be,ac, d, cd, 1),

with its inverse given by
(ah a2, a3, a4, as, aﬁ) = (a1a27 aias, aq4as, CL4CL6)~

Hence, (4.1.2) induces a commutative diagram on the cohomology. Since

all roots of f are defined over K, we have pa(L)/p2(K) L_/JQ(K) is surjective
which implies that ., : H'(Gg, J[2]) = HY(Gx, po(L)/12(K)) induced by « is
injective.

H' (G, J[2]) =2 H'(Gx, (ua(K))")

L —— HY(Gr, J[2]) —=— HY(G, L%

) — s HY (G, pa(K)),

—

~

(4.1.3)
where g, is the isomorphism induced by g and N, is induced by N. By a diagram
chase, we get H' (G, (u2(K))*) is isomorphic to ker (H' (G, pa(L)/ p2(K)) SN
H'(Gk, p2(K))), which is isomorphic to {0 € L*/(L*)?K* : N(9) is a square}.
Hence, we have the commutative diagram below that shows the compatibility
of the two interpretations of H'(G, J[2]).

W2, x

HY (G, J[2]) —== HY(Gx, (p2(K))") = (K*/(K*)*)*

! i

HY(Gg,J2]) —2— {6 € (L*];;K* : N(0) is a square}.

o

Suppose the image of ¢ € H'(Gg, J[2]) in L*/(L*)?K* via a* is represented
by & € L* which gives (ai,as,as, a4, as,ag) when evaluating at the 6 roots

w1, ...,ws. The above commutative diagram implies that under the isomorphism
HY(Gg, J[2]) = (K*/(K*)?)*, € corresponds to (ajag, ajaz, asas, asag).

Remark 4.1.1. Let S = {places of bad reduction for C}U{places dividing 2}U

{infinite places}. Similar to Remark 2.3.3(ii), if we embed H'(Gg, J[2]) —=
(K*/(K*)*), then the image of any Selmer element is in K(S,2)* by Lemma

2.3.2 with ¢ = [2].
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4.1.2 Statement of the formula

In this section, we give the statement of the theorem on the formula for the
Cassels-Tate pairing on Sel?(.J) x Sel®(.J) assuming all points in J[2] are defined
over K. Recall that in this thesis, J is principally polarized via the theta divisor
O, as defined in Section 1.2.3. More specifically, as stated in Section 1.2.4, the
polarization A : J — JVY is given by P — [750 — ©]. We will first prove the
following lemma.

Lemma 4.1.2. Fore € Sel’(J), let (J.,7.) denote the corresponding 2-covering
of J. Hence, there exists an isomorphism ¢. : Jo — J defined over K such that

2] 0 pe = 7. Suppose T € J(K) and Ty € J(K) satisfy 2Ty =T. Then

(i) There exists a K-rational divisor on J., Dr, representing the divisor class

of ¢7(1,(20)).

(ii) Let D, Dy be K-rational divisors on J. representing the divisor class of
¢:(20) and ¢;(77,(20)) respectively. Then Dr — D ~ ¢ (170 —O). Sup-
pose T is a two-torsion point. Then 2D — 2D is a K-rational principal
divisor. Hence, there exists a K-rational function fr on J. such that
div(fr) = 2Dy — 2D.

Proof. By definition of a 2-covering, [2] o ¢ = 7. is a morphism defined over K.
Also, by Proposition 1.5.10, ¢.0(¢-1)° = 7., for all ¢ € Gk, where (0 — ¢,) is a
cocycle representing e. Now consider 77, 0 ¢, we have [2]orp, 0¢ = Tro[2]op, =
Tr o me. Since 77 is defined over K, (J., 7r o ) is also a 2-covering of J. We
get 7p, 0 ¢ o ((7y, 0 ¢e) 1) = Tp, 0 ¢ 0 (071)7 © T_g(1) = Tey © Try © Too(1y),
for all ¢ € Gk. This implies the 2-covering (J, 71 o m¢) corresponds to the ele-
ment in H'(Gg, J[2]) that is represented by the cocycle (o — ¢, + Ty — o(T})).
Hence, (J., 7 o ) is the 2-covering of J corresponding to € + 6(7), where o

denotes the connecting map that corresponds to J [—2]—> J as in Notation 1.4.1.

oz (77, (20))]
By Proposition 1.6.2; there exists a Brauer-Severi diagram: [J, ——nr P3]

and a commutative diagram:

92007, O

Je
lTTl o ¢E ldk

Jﬂwlﬁ.

|2 (77, (20))]
Recall the morphism J, —— 1" " P3 is defined over K. So the pull back
of a hyperplane section via this morphism gives us a rational divisor Dr repre-
senting the divisor class of ¢} (77, (20)) as required by (i).

Since the polarization \ : J — JV is an isomorphism and 27} = T, we have

¢: (A1) = [¢2(170 = )] = [¢7(77,(20))] = [¢7(20)] = [Dr] — [D]. The fact

€
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that 7" is a two-torsion point implies that 2¢*(A(P)) = 0. Hence, 2Dy — 2D is
a K-rational principal divisor which gives (ii).

]

We now deduce the following remark from Lemma 4.1.2. This is needed in
the formula for the Cassels-Tate pairing on Sel*(J) x Sel*(.J).

Remark 4.1.3. We now apply Lemma 4.1.2(i) to T’ = O,, P,Q, R, S € J[2] and
obtain D = Dg,, Dp, Dg, Dg, Ds. Then we apply Lemma 4.1.2(ii) to D and
Dy for Dy = Dp, Dg, Dg, Dg. Therefore, D denotes a K-rational divisor on J.
representing the divisor class of ¢?(20) and Dp denotes a K-rational divisor on
Je representing the divisor class of ¢} (75, (20)), for some P, such that 2P, = P.
Moreover, Dp — D ~ ¢*(7,0 — ©). We have similar statements that hold for
Dq, Dg, Dg. Furthermore, there exist K-rational functions fp, fo, fr, fs on J.
such that div(fr) = 2Dy — 2D for T = P,Q, R, S.

Theorem 4.1.4. Let J be the Jacobian variety of a genus two curve C defined
over a number field K where all points in J[2] are defined over K. For any
e,n € Sel(J), let (J.,[2] o ¢.) be the 2-covering of J corresponding to € where
¢c : J. — J is an isomorphism defined over K. Fix a choice of {P,Q, R, S},
generators of J[2|, that satisfy the Weil pairing matriz (4.1.1). Let (a,b,c,d)
denote the image of n via H'(Gg, J[2]) = (K*/(K*)*)*, which is induced by
taking Weil pairing with {P,Q, R, S} as explained in Section J.1.1. Then there
exist fp, fo, fr, fs, K-rational functions on J., such that

(ener= [T (Fp(P).0)u(fo(Po)sa)o(fr(P), d)u(fs(P.), )

place v

where (, ), denotes the Hilbert symbol for a given place v of K and P, is
an arbitrary choice of a local point on J. avoiding the zeros and poles of these

fp,fq, fr: fs-

Remark 4.1.5. In Section 4.4, we will show that the formula for the Cassels-
Tate pairing on Sel®(J) x Sel?(.J) given in Theorem 4.1.4 is in fact always a
finite product.

4.1.3 Proof of the formula

In this section, we give a proof for Theorem 4.1.4. We need to first quote the
following lemma which can be proved via explicitly computing the difference of
the two cocycles as a coboundary element.

Lemma 4.1.6. [Ser79, Chapter XIV, Section 2, Proposition 5| Let a,b € K*
for some perfect field K. The following two cocycles represent the same element
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(i)
o r) s { b i olVA)/Va = T\ = -1

otherwise
(ii)

1 otherwise

(0.7) = { -1 ifo(Va)/Va=7(VB)/Vb= -1,

Furthermore, by Remark 1.4.16, we know they both represent the equivalence
class of the quaternion algebra (a,b) in Br(K) = H*(Gk, K*).

Now we prove Theorem 4.1.4.

Proof of Thoerem 4.1./. We will show that the formula given in the theorem
is the same as the homogeneous space definition of the Cassels-Tate pairing
defined in Section 1.8.2.

We know n € H' (G, J[2]) corresponds to (a,b,c,d) € (K*/(K*)*)* via
taking the Weil pairing with P, Q, R, S, as explained in Section 4.1.1. Hence, 7
is represented by the following cocycle

(0 = byP + 4,Q + d, R + ¢,5),

where o € Gk and for each element z € K*/(K*)?, we define Z, € {0,1} such

that (—1)% = o(v/z)/V/z.

Then the corresponding image of 7 in H'(G, Pic’(J,)) is represented by
the cocycle that sends o € G to

bo®:[THO — O] + o ¢ [750 — O] + do ¢ [THO — O] + &2 [0 — 6.

By Remark 4.1.3, there exist K-rational divisors Dp, Dg, Dg, Dg on J, such
that the above cocycle sends 0 € Gk to

by[Dp — D] + ay[Dg — D] + dy[Dg — D] + &,[Ds — D).

Now we need to map this element in H'(G,Pic’(J.)) to an element in
H?(Gg,K(J)*/K*) via the connecting map induced by the short exact se-
quence 0 — K(J.)*/K* — Div’(J.) — Pic’(J.) — 0. Hence, by the for-
mula for the connecting map as in Section 1.4 and the fact that the divisors
D,Dp,Dg, Dg, Ds are all K-rational, we get that the corresponding element
in H* (G, K(J.)*/K*) has image in H?(G g, Div"(J.)) represented by the fol-

lowing cocycle:
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It can be checked that, for x € K*/(K*)? and 0,7 € Gk, we get T, —
Tor + Z5 = 2 if both ¢ and 7 flip \/x and otherwise it is equal to zero. Define
torz = 1 if both o and 7 flip \/z and otherwise ¢, ,, = 0. Note that the map
that sends x € K*/(K*)? to the class of ((¢,7) v ty...) explicitly realizes the
map K*/(K*)? 2 HY(Gg,1/2Z)Z) C H (Gk,Q/Z) — H*(Gk,Z). Then, for
0,7 € G, the cocycle in the last paragraph sends (o,7) to

tort - 2(Dp — D)+ lgra - 2(Dg — D) + torq - 2(Dp — D) + tyre - 2(Dg — D).

Hence, by Remark 4.1.3, there exist K-rational functions fp, fq, fr, fs on
J. such that the corresponding element in H?*(Gy, K(J.)*/K*) is represented
by
(o, 7) = [fFm - fgm [ £, for all 0,7 € G.

For each place v of K, following the homogeneous space definition of (e, M,
we obtain an element in H*(Gk,, K) from the long exact sequence induced by
the short exact sequence 0 — K — K,(J)* — K,(J)*/K,” — 0. This ele-
ment in H%(Gg,, K,") can be represented by

(0,7) = fp(Py) s fo(Py) o - fr(Py) =t fs(P,) e, forall 0,7 € G,
for some local point P, € J.(K,) avoiding the zeros and poles of fp, fo. fr, fs
by Remark 1.8.7(i).

Hence, by Lemma 4.1.6, the above element in Br(K,) & H?(Gg,, K,”) is
the class of the tensor product of quaternion algebras

(fp(P),b) + (fo(Py), a) + (fr(Ey), d) + (fs(Fy), ¢).
Then, by Lemma 1.4.19,

inv((fP(Pv)vb) + (fQ(Pv)7a> + (fR(Pv)7d> + (fs(Pv),C))
= (fP(Pvab)v(fQ(Pv)’a)v(fR<Pv)7d)v(fS(Pv)ac)va

where (, ), denotes the Hilbert symbol: K} x K} — {1, —1}, as required.
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4.2 Explicit Computation

In this section, we explain how we explicitly compute the Cassels-Tate pairing
on Sel®(.J) x Sel*(J) using the formula given in Theorem 4.1.4, under the as-
sumption that all points in J[2] are defined over K. We fix ¢ € Sel*(J) and
(Je, [2]0¢.), the 2-covering of J corresponding to € with ¢, : J. C P — J C P®
given in Theorem 1.11.1. The statement of Theorem 4.1.4 suggests that we need
to compute the K-rational divisors D, Dp, Dg, Dg, Dg on J. and the K-rational
function fp, fo, fr, fs on Je, as in Remark 4.1.3.

4.2.1 Modified naive method

Recall that in Sections 3.2 and 3.3, we described two general methods for com-
puting a linear isomorphism v, : K. C P? — K C P? corresponding to €. More
explicitly, we have t.(1)-1)? is the action of translation by ¢, € J[2] on K and
(0 — €,) is a cocycle representing €, as explained in the beginning of Section
3.2. Since all points in J[2] are defined over K, we can in fact simplify the naive
method.

By Lemma 3.2.1, we have an explicit formula for My that represents the
action of translation by 7' € J[2] on the Kummer surface K C P? and { M7, T €
J[2]} form a basis of Mat,(K). Since all points in J[2] are defined over K, we
get My € Maty(K), and {Mr,T € J[2]} forms a basis of Mat,(K). We follow
the notation of the étale algebra R as in the Section 3.1.3. Define £ € (R® R)*

such that My My, = (T4, Ty) My, +1, and cp, cg, cr, cs € K such that
M} = cpl, M§ = cql, M}, = cgl, and M = csl.

The explicit formulae for cp, ¢, cg, cs can also be found in [CF96, Chapter 3
Section 2|. Moreover, by |[CF96, Chapter 3 Section 3] and the Weil pairing re-
lationship among the generators P, @, R, S of J[2] specified by (4.1.1), we know
that [Mp, Mg| = [Mg, Ms] = —I and the commutators of the other pairs are
trivial.

By the discussion at the end of Section 3.2.2, to compute a linear isomor-
phism 1, : K. € P? — K C IP? corresponding to e, it suffices to first compute a
set of basis { M7, T € J[2]} for Maty(K) such that My My, = (11, To) My, 415,
where & = £p with p given in Remark 3.2.4. Then one such 1. is represented by
B € Maty(K) with M}, = B~*MyB € PGLy(K) for all T € J[2]. Recall that
T +— M} is a Galois equivariant section for @, — J[2]. As explained in Re-
mark 3.2.9, in fact we only need to compute Mp, Mg, M, Mg. We observe that
Mp, Mg, My, Mg generate Mat,(K) as P, Q, R, S generate J[2] and My, My, is
a multiple of My, 4 for any 71,7, € J[2] by construction. Hence, in the sec-
tion, we discuss how to find such matrices explicitly without the algorithm in
Section 3.4 which is needed in the general case.
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Suppose (ac, be, ¢, d.) € (K*/(K*)?)* represents € as in Section 4.1.1. By the
formula for p in Remark 3.2.4, we know that M2 = cpa.l, MS = cob I, M3 =
cred, Mg = cgd 1. Also, by Definition 3.1.2, we have [Mp, M{] = [Mp, Mg| =
—1I and the commutators of the other pairs are trivial. This implies that

Mat,(K) = (cpae, cgbe) ® (cree, csd,)
Mllgi—>ll®1,Mé '—>j1®1,M]/%|—> 1®22,Mé — 1®]27
where the generators of (cpac, cgb.) are iy, j; and the generators of (cge,, csd,)

are ig, jg.

Let A = (cpae,cqgbe), B = (cgree, csd.). By the argument above, we know
A ® B represents the trivial element in Br(K) and an explicit isomorphism
A ® B = Maty(K) gives us the explicit matrices Mp, Mg, Mp, Mg required.
Since the classes of A, B are in Br[2], we have A, B representing the same ele-
ment in Br(K'). This implies that A = B over K, by Remark 1.4.10. We have
the following lemma.

Lemma 4.2.1. Given a tensor product of two quaternion algebras AQ B, where
A = (a,8) B = (v,9), with generators iy, j; and iy, jo respectively. Suppose
there is an isomorphism 1 : B = A given by

tgrray-1+by -t +ci-j1+di -

Jarrag - 14by iy +co-j1 +do iy,

then we have explicit formula for

A® B Maty(K)

where
0 o 0 O
. 10 0 O
11 ® 11— Mil = 00 0 a
0 010
0 0 8 0
. 0O 0 0 —
nele My=17 ¢ oﬁ
0O -1 0 O
-0,1 b1 jye Ct- ﬂ —d1 . Oéﬁ-
. _ | o =& a-p
1®22}—>Mi2 T c di-«o ai —b -«
_d1 C1 —bl ai |
[ay by-a - —dy-af]
. b2 a2 —d-B - p
1®]2'_>Mj2 T Co dQ'O{ a9 —bg'a
_dQ Co —62 az ]
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Proof. Recall Remark 1.4.5 says that A® A is isomorphic to a matrix algebra.
More specifically, A ® A = Endg(A) via u ® v — (x +— uzv), which makes
A ® A = Maty(K) after picking a basis for A. Hence,

A®BOP = Mat4(K)
u@v = (2= uxy(v)).

More explicitly, fixing the basis of A to be {1,141, j1,4171}, the isomorphism is
given as in the lemma.

]

Hence, by taking A = (cpac, cgbe), B = (cgrce, csd,) in Lemma 4.2.1 above,
we can compute the Mp, Mg, Mg, My provided we can explicitly find an isomor-
phism 9 : B =2 A. We now give an explicit and practical algorithm for finding
an isomorphism between two quaternion algebras over Q that are known to be
isomorphic. First we have the following lemma.

Lemma 4.2.2. Let A be the quaternion algebra (a,b) over Q, where a,b € Q*.
Let w # 0,1 be a squarefree integer. The following are equivalent.

(i) The algebra A contains a subalgebra isomorphic to Q(y/w).

(ii) There exist s,t,u € Q with as® + bt* — abu® = w.

Proof. Explicitly, A has Q-basis 1,1, j,j and multiplication determined by % =
a, 72 = b and ij = —ji. Suppose v € A is given as r + si + tj + uij where
r,s,t,u € Q. We compute

v = r? 4+ as® + bt? — abu® + 2r(si + tj + uij).
Then 22 = w if and only if 7 = 0 and the equation in (ii) is satisfied.

]

Corollary 4.2.3. Let A = (a,b) and B = (c¢,d) be two isomorphic quaternion
algebras over Q. There is an explicit and practical algorithm for finding such
an isomorphism A = B.

Proof. Let i1, j; denote the generators of A. We can assume a, b, ¢, d are square-
free integers after multiplying by suitable squares. If ¢ = d = 1, then we are
done by Corollary 3.4.4. Otherwise, we can assume ¢ # 1. Since A = B, we
know A has a subalgebra Q(y/c). By Lemma 4.2.2, there exist s1,t1,u; € Q
such that as? + bt3 — abu? = c. Let a = s1iy + t1j1 + uyiyj; € A. Now we look
for so,19, us € Q that satisfies

asgi1 + tagi + ugirfi) = — (821 + tajr + ugiygi)av.
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Let 8 = s9iy + toji + usiyjs € A. Define e = as3 + bt2 — abu3 and we have
% = e. Consider the quaternion algebra (c,e) with generators denoted by
ia, j2. We have an explicit isomorphism (¢, e) = A such that

ig — Oé,jg — ﬂ

Then, by Lemma 3.4.2, we compute an explicit isomorphism (¢, d) = (¢, e). The
composition of these two isomorphisms give B = A, as required.

4.2.2 Explicit computation of D

In this section, we explain a method for computing the K-rational divisor D
on J, representing the divisor class ¢(20). The idea is to compute it via the
commutative diagram of Brauer-Severi diagrams (1.6.2) as in Remark 1.6.3.

Recall, by Theorem 1.11.1, we have an explicit isomorphism J, C P N
J C P and we let wy, ..., ug, v1, ..., v denote the coordinates of the ambient
space of J. C P, ki1, kia, ..., kaa, b1, ..., bg denote the coordinates of the ambi-
ent space of J C P®. Moreover, ¢, is represented by a block diagonal matrix
consisting of a block of size 10 corresponding to the even basis elements and a
block of size 6 corresponding to the odd basis elements. Via Section 4.2.1, we
have an explicit isomorphism v, : K, C P? — K C P? corresponding to € and we
let k%, ..., k} denote the coordinates of the ambient space of K. C P3. Suppose
d(p71)7 and . (171)7 both give the action of translation by some ¢, € J[2]
such that (o + ¢,) represents € € Sel?(J). Observe that since all points in J[2]
are defined over K, this condition is automatic.

Define kj; = kjk}. The isomorphism ¢, : K. C P}, — K C P}, induces a

natural isomorphism 156 P, — IP’%J_. More explicitly, suppose 1. is represented
ij 2.

by the 4 x 4 matrix A where (k} : ...,k}) — (L Akl o s 0L Ak,

Then ¢ : P, — P} is given by (kjy : Ky ¢ . s ki) = (351 AvuAukl;
‘.1,: A Agkl ‘.1,: Ay AgEL). We have the following commutative
1,7=1 J'Vig 1,7=1 7™

diagram which also give embeddings of K, KC, in P?.

K.cP) —£5 K. c P
1] [

¥ |

KcP) 25 KcP,
1j T

where g1 @ (k11 @ .o @ kga) = (k1 : . : kig) and go o (K] ¢t k) &
(ki : ... : kj,) are the projection maps. We observe the natural morphisms
(kv oot ky) = (k1 : kg oot kyg) and (K] @ ot K — (KYy 2 Kl o Kly)

are the inverses of g; and go, when restricted to K and K. respectively. We
also note that K, and X do not lie on any hyperplane in P?. This makes
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?ﬁe : ]P’%,__ — ]P’%j the natural map, as it is the unique extension of the morphism
ij g

K.CcP), -KCcC Pzﬁ that makes the above diagram commute.
ij

On the other hand, the isomorphism ¢, : J. C P15
a natural isomorphism ¢, : P — ]P’Zij represented by the 10 x 10 block of the
matrix representing ¢.. Since ¢.(¢. )7 and . (171)7 both give the action of
translation by some ¢, € J[2]|, we get ggg(gg;l)" = ﬁe(qgeil)". Therefore, we get
zEeilgz;E defined over K and the following commutative diagram that decomposes
the standard commutative diagram (1.6.2):

y = J C P{k b} induces

{ui,v;

()~ e

JocPB T P, » By, o K C P,

lqse \ / [+ (4.2.1)

JCPE. b Pl » K C Py,

The composition of the morphisms on the bottom gives the standard mor-

. S .- . .
phism J ﬂ> K C P? and the composition of the morphisms on the top gives

J, 02O, |92 (20)] K. C P3,

proi, po (G0 b, by proi,
7 k/ 7 /

Let D be the pull back on J, via J, C ]P’{u“ A
of the hyperplane section given by k] = 0. This implies that D is a K- ratlonal
divisor on J, representing the class of ¢*(20). Moreover, the pull back on J, via
J. C PP
2D.

Coni) proj, P W)™ PZ;]_ of the hyperplane section given by k7, = 0 is

4.2.3 Explicit computation of Dp, Dg, Dg, Dg

In this section, we explain how to explicitly compute the K-rational divisors
Dp,Dg, Dg, Dg defined in Remark 4.1.3. More explicitly, for T € J[2], we give
a method for computing a K-rational divisor Dy on J. representing the divi-
sor class of ¢} (77, (20)) for some T on J such that 277 = T. Recall that we
assume all points in J[2] are defined over K and we have an explicit isomor-
phism ¢, : J. — J such that (J,,[2] o ¢.) is the 2-covering of J corresponding
to € € Sel®(J). Let 0 denote the connecting map J(K)/2J(K) — H* (G, J[2])

induced by the short exact sequence given by J 2, J as in Notation 1.4.1. We
let §(7") denote the image of the equivalence class of T and first prove the fol-
lowing lemma.

Lemma 4.2.4. Let T € J(K). Suppose ¢eis(r) : Jepsery — J s an isomorphism
and (Jeys(r), [2] © ers(ry) is the 2-covering of J corresponding to € + 6(T) €
Hl(GK,J[ ]) Let Ty € J such that 217 = T. Then, gb;rl&(T) o1 0 ¢ 1 J. —
Jeys(r) is defined over K.
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Proof. Using the same argument as in the proof of Lemma 4.1.2(i), we know that
(J, [2]oTr, 0¢.) is the 2-covering of J corresponding to e+4d(T) € H' (G, J[2]).
Since all points in J[2] are defined over K, we have 77, 0 ¢. o ((77;, 0 @)~ 1)7 =
Peys(T) © (qb;rlé(T))", as required.

]

Let T' € J(K) with 277 = T'. Consider the commutative diagram below, the
composition of the morphisms in red is defined over K by Lemma 4.2.4. Then
the pull back on J, via the red arrows of a hyperplane section on K. 57y C P3
is a K-rational divisor Dy on J, representing the divisor class ¢} (77, (20)). We
note that in the case where T' € J[2], the composition of the vertical maps on
the left hand side of the the diagram below is in fact given by a 16 x 16 matrix
defined over K even though the individual maps are not defined over K.

JEC]P’15&>ICECP3

d)f lw(

JCIP15L>ICC]P3

™,
J C P 120 Kcp

Seiscr) ) Tmeé(T)

Jeysr) C P15|GM)|IC6+5(T) C 3.

2 (20)]
Notice that the bottom horizontal morphism J 57 SMGLICPAREEN Ketsry C

IP3 can be explicitly computed using the algorithm corresponding to the Selmer
element € + §(7") described in Section 4.2.2. Also, by Theorem 1.11.1, we have
explicit formulae for ¢, and ¢.,s5(7). Hence, to explicitly compute D7, we need
to find a way to deal with 7p,, for some T; such that 277 =T.

Since we need to apply the above argument to T' = P, @), R, S, the genera-

tors for J[2], we need to deal with the explicit computation of 77, : J C P —
J C P when Ty € J[4]. We do this via the following proposition.

Proposition 4.2.5. Suppose Ty € J[4]. Given the coordinates of Ty € J C
IP}(ZM b} We can compute the following composition of morphisms:

. 15 Ty 15 Proj. mo9
veJcC P{kmbi} — J C P{kijbi} — ]P)kij'

Proof. Let T = 2T} € J[2]. Recall that we let M7 denote the action of
translation by T on K C P3. Then for any P € J, we have k;(P + T) =
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ijl(MT)ijkj(P) projectively, as a vector of length 4, and the following equal-
ities hold projectively, as a vector of length 10,

kZZ](P—i‘Tl)
= ki(P +T1)k;j(P + Th)
:kZ(P+T1)kJ(TT(P—T1))

=k(P+T)- Z(MT)jlkl(P —T)

=1

4
(Mrp) ki (P —Th)k;(P +T1).
=1

By Theorem 1.3.5, there exists a 4 x4 matrix of bilinear forms ¢;;(P, T} ), with
explicit formula, that is projectively equal to the matrix k;(P — T1)k;(P + T}).
Since we have an explicit formula for My in [CF96, Chapter 3, Section 2|, we
can partially compute the linear isomorphism 77, :

. 15 Ty 15 Proj  m9

as required.

]

Remark 4.2.6. Suppose 277 =T € J[2]. From the doubling formula on K as
in [Fly93, Appendix C|, we can compute the coordinates of the image of T} on
K C P3 from the coordinates of the image of T on K C P3. This gives the 10
even coordinates, k;;j(T7) and we can solve for the odd coordinates by the 72
defining equations of J given in Theorem 1.3.2. Note that by Lemma 4.2.4, we
know the field of definition of 7} is contained in the composition of the field of
definition of ¢, and ¢, s7). Hence, we can compute this field explicitly which
helps with the point search using MAGMA.

Consider T' € J[2] with T} € J[4] such that 277 = T. We follow the
discussion in Section 4.2.2 for e+ d(7") and compute a similar diagram as (4.2.1)
for € + 6(T'). Suppose we embed Keysr) in P? with coordinates ki r, ..., k) 1
and embed J. 57 in P'5 with coordinates UOTs ooy U9, T, V1T vy Vg - i€t k:gj’T =
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ki pk} 7. Consider the commutative diagram below:

15 |9z (20)]

Je CPLLoa y K. C IP’3;
Pe lwe
15 1261 N 3
JC ]P){kijybi} » K C ]P)ki
r, \
v 4.2.2
C {kij,bi} kij C I,
Gets(T) l(155+6(T))7] %+5(T)T
J€+6(T) = Pﬁi,:ﬁﬂh’j} - ]P)z' —F— IC€+5(T) C sz

ij,T i, T

Recall Proposition 4.2.5 explains how ¥ can be explicitly computed and the
composition of the red morphisms in (4.2.2) is defined over K by Lemma 4.2.4.
Let D7 be the pull back on J, via the red morphisms in (4.2.2) of the hyper-
plane section given by &} » = 0. This implies that Dr is a K-rational divisor
on J. representing the class of ¢!(77,(20)). Moreover, the pull back on J. via
(Pets(r) "

15 Pe 15 ¥ mo
J. C P{um} = J C P{kij,bi} — P

hii Pgij,T of the hyperplane section

given by ki, p = 01s 2Dr.

We now apply the above discussion with 7' = P, @, R, S and get the K-
rational divisors Dp, Dg, Dg, Dg on J. described in Remark 4.1.3 as required.

Remark 4.2.7. From the above discussion and the discussion in Section 4.2.2,
the K-rational functions fp, fg, fr, fs in the formula for the Cassels-Tate pair-
ing in Theorem 4.1.4 are quotients of linear forms in the coordinates of the
ambient space of J. C P¥. In particular, they have the same denominator.

4.3 Obstruction Map

In this section, we give the explicit formula for the obstruction map Ob :
H'(Gg, J[2]) — Br(K) defined in Section 3.3.2. Recall we have explicit for-
mula for M7y € GL4(K) given in [CF96, Chapter 3 Section 2|, which represents
the action of translation by T' € J[2] on the Kummer surface X C P3. In par-
ticular, we define cp, ¢, cr,cs € K such that M3 = cpl, M4 = cql, M}, =
crl, and M2 = cgl with P,Q, R, S a set of generators for J[2] satisfying the
Weil pairing matrix (4.1.1). Also, [Mp, Mg] = [Mg, Mg] = —I and the com-
mutators of the other pairs are trivial. Consider ¢ € Sel?(.J) that corresponds
to (a,b,c,d) € (K*/(K*)*)* as in Section 4.1.1. By Proposition 3.3.8, we know
that a representation of Ob(e) is the enveloping algebra for ®, which is natu-
rally given as (cpa, cob) @ (cge, csd) from the discussion in Section 4.2.1. From
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this observation and the formula for the obstruction map in the case of elliptic
curves, we conjectured that such formula exists for any element in H'(Gy, J[2]).
This is proved in the following theorem.

Theorem 4.3.1. Let J be the Jacobian variety of a genus two curve defined
over a field K with char(K) # 2. Suppose all points in J[2] are defined over K.
For e € HY(Gg, J[2]), represented by (a,b,c,d) € (K*/(K*)*)* as in Section
4.1.1, the obstruction map Ob: H' (G, J[2]) — Br(K) sends € to the class of
the tensor product of two quaternion algebras:

Ob(e) = (cpa, cob) + (cre, csd).

P’/’OOf. Leth:\/%MP,NQ:\/%MQ,NR:\/%MR,NS:\/LC—SMSGGL4<K).

Then Np is a normalized representation in GL4(K) of [Mp] € PGLy(K). Simi-
lar statements are true for @, R, S. Notice that N3 = N3 = N = N5 = I. So

there is a uniform way of picking a representation in GL4(K) for the translation
induced by a1 P + asQ + asR + a4 S for o; € Z, namely NglNS2N§3N§“4.

Since e € H'(K, J[2]) is represented by (a, b, c,d) € (K*/K**)* as in Section
4.1.1 and P,Q, R, S satisfy the Weil pairing matrix (4.1.1), a cocycle represen-
tation of e is:

0+ by P + 4,Q + d,R + ¢,5,

where for each element x € K*/(K*)?, we define &, € {0, 1} such that (—1)% =

o(vx)/ V.

Now consider the following commutative diagram of cochains:

Cl(GK,Gm) — CI(GK,GL4) —_— Cl(GK,PGL4)

J# J# J#

02(GK,Gm) — CZ(GK,GL4) — CQ(GK,PGL4)

Define N, = NIE:,"Ng"Ng"Ng", we have

HYK,J[2]) — HYGg,PGLy)
(a,b,c,d) (0 [Ny]).

Then (0 — [N,]) € CYGg,PGLy) lifts to (0 — N,) € C'(Gg,GLy4) which is
then mapped to

((o,7) = (N,)’N;IN,) € C*(Gg, GLy).
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Note that Np = (F=Mp)” = sd=Mp = 20E5Np = (=1)F) Np, treat-

ing cp in K*/(K*)% Similar results also hold for Q, R,S. Observe that for
any x € K*/(K*)? 0,7 € G, we have T, — T,, + I, is equal to 0 or 2. Since
Np = N§ = Ni = N§ =1, [Np, Ng] = [N, Ng] = —I and the commutators of
the other pairs are trivial, we have

(N,)’N;'N,
(NY NG N N )7 Ng % Ny dr N 3o N Ve Nl Nie Nz N
()P () (et ()
. Né}f Ng‘r N]d;'r Ng‘r Ngéd‘r N};dJT NQ_&UT N];BUT N]BDO' Ngo' N}d;U Ngo'
=(=1)@P)ebr . (_1)(@)rdr . (_1)(R)odr  (_1)(EB)rEr
. Ngﬂ' Ng‘r Né&o'f N;EO'T Nll:;)o' Ngo' . Ng‘r Ng‘r NSTEO'T ngjar Nga Ngo'
:(_1)(C~P)cr‘br . (_1)(C~Q)o"(~1‘r . (_1)(C}Q)U‘d‘r . (_1)(03')0"67 . (_1)177"640 . (_1)d7"60' . [

On the other hand, (cp, cg)®(cr, cs) is isomorphic to < Mp, Mg, Mr, Mg >=
Mat4(K') which represents the identity element in the Brauer group. Hence, by
Proposition 1.4.11, we have

(cpa, cob) + (cre, csd) = (a,b) + (¢, d) + (cp,b) + (cg, a) + (cr,d) + (cs, ¢).

From Proposition 1.4.13, we have Br(K) = H?(Gy, K*). By Remark 1.4.16,
we know the cocycle representation of the class of a quaternion algebra (a, f)
in Br(K) is precisely (o,7) + (—=1)% 57 treating o, 8 € K*/(K*)%. Therefore,
a cocycle representation of (a,b) + (¢, d) + (cp,b) + (cg,a) + (cr,d) + (cs,¢) €
Br(K) = H*(Gg, K*) sends (o,7) to

(= 1)(P)rbr (1) (@)odr (1) (R)odr . (_1)(E)oEr . (_1)brdo . (_1)dro

for all o, 7 € Gk as required.

]

Remark 4.3.2. Theorem 4.3.1 generalizes the theorem in the elliptic curve
case, which was done by O’Neil in [O’N02, Proposition 3.4, and later refined
by Clark in [Cla05, Theorem 6].

4.4 Prime Bound

Suppose all points in J[2] are defined over K. In Theorem 4.1.4, we proved that
the Cassels-Tate pairing of €, € Sel*(J), with 1 corresponding to (a, b, c,d) €
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(K*/(K*)*)* as in Section 4.1.1, has the formula

<67 77>C'T = H(fp(Pv)7 b)v(fQ(Pv)’ a)v(fR(Pv)v d)v(fS(Pv)a C)v'

v

Recall that ( , ), denotes the Hilbert Symbol for a given place v of K and
P,Q, R, S are generators for J[2| satisfying the Weil pairing matrix (4.1.1). Let
(Je,[2] © @) denote the 2-covering of J corresponding to €. By Remark 4.2.7,
we know fp, fo, fr, fs are computable as quotients of two linear forms with the
same denominator, in the coordinates of the ambient space of .J, C P, denoted
by x1, ..., 216 in this section. Also P, is any local point on J, avoiding the zeros

and pOleS of fP7fQ7fR7fS‘

In this section, we show that the above formula for the Cassels-Tate pairing
is actually always a finite product, as mentioned in Remark 4.1.5. In partic-
ular, there exists a computable bound for each pair of (e,n), which depends
on fs, fo, [r, fs, such that for a place of K whose norm is a power of a prime
above that bound, the local Cassels-Tate pairing between e and 7 is trivial.

4.4.1 Statement of the problem

Let Ok be the ring of integers for the number field K. By rescaling the vari-
ables, we assume the genus two curve is defined by y* = f(x) = fez + ... + fo
where f is defined over Og.

Recall we have S = {places of bad reduction for C} U {places dividing 2} U
{infinite places}. For the Selmer element = (a,b, ¢, d) € (K*/(K*)?)*, we have
a,b,c,d € K(S,2) by Remark 4.1.1. Hence, outside S, the second arguments
of the Hilbert symbols in the formula for (e,n)cr have valuation 0. By the
definition of the Hilbert symbol in Section 1.4.4 and Lemma 1.4.18, it suffices
to find a finite set S, a subset of places of K containing S, such that outside
S1 the first arguments of the Hilbert symbols in the formula for (e, n)cr also
have valuation 0.

The first arguments of the Hilbert symbols in the formula for (e, n)cr are
fe(Py), fo(P,), fr(P,) or fs(P,), where fp, fo, fr, fs can be computed as the
quotients of two linear forms in P'° with the denominators being the same, as
explained in Remark 4.2.7. Since we know that the Cassels-Tate pairing is in-
dependent of the choice of the local points P, as long as it avoids all the zeros
and poles, it suffices to find a finite set of places S; containing S such that there
exists at least one local point P, on .J. with which the values of the quotients
of the linear forms all have valuation 0 for all v outside S;. So the following is
the statement of the problem that we need to solve.

Problem 4.4.1. Let [y, ...l,, be n linear forms in variables x1, ..., 14 with coef-
ficients in O, for some integer n > 2. Does there exist a finite set S of places
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of K containing S that depends only on n, coefficients of [y, ..., [, and fo, ..., fs,
such that for any place v of K outside Sy, there exists @, € J.(Q,) C PL’ such
that 1;/11(Q,) has valuation 0, for all i = 2,...n7

4.4.2 Reduction of the problem

We now give a solution to Problem 4.4.1. The idea is to first reduce the problem
to the residue field.

Suppose (ay, ..., ag) represents the image of € in L*/(L*)?K* with L =
K{z]/(f) as described in Section 1.10.1. By Theorem 1.11.1 and Remark 1.11.2,
we have an explicit formula for the linear isomorphism ¢,

J. CPY %5 Jc P,

which is defined over K( /ai,..., /ag) and (J.,[2] o ¢) is the 2-covering of
J corresponding to e. Let € = (s1,89,53,84) € (K*/(K*)?)* as in Section
4.1.1, we showed (s1,s9,583,84) = (a1ag,a1as3, asas,asas) € (K*/(K*)?)% Tt
can be checked that K(\/aias, ..., /acas) = K(\/51,+/52, /53, /51) and we let
K’ denote this field. Since (ajag, ..., agag) also represents the image of € in
L*/(L*)?K*, we have an explicit formula for the linear isomorphism ¢, repre-
sented by M, € GLjs(K’). Note we can assume that all entries of M, are in
Ok, the ring of integers of K’.

Notation 4.4.2. Let K be a local field with valuation ring Ok and residue
field k. Let X C PN be a variety defined over K and I(X) C K|z, ..., zn] be
the ideal of X. Then the reduction of X, denoted by X, is the variety defined
by the polynomials {f : f € I(X) N Oklxo, ..., vn5]}. Here f for a polynomial f
with coefficients defined over Ok denotes the same polynomial with coefficients
in the residue field k.

Remark 4.4.3. Note that the definition of the reduction of a variety X C PV
defined over a local field K in Notation 4.4.2 is equivalent to taking the special
fibre of the closure of X in PY, where S = Spec O.

Fix a place v ¢ S of K and suppose it is above the prime p. We now treat
J,J. and C as varieties defined over the local field K,. Let O, denote the val-
uation ring of K, and F, denote its residue field, where ¢ is some power of p.
It can be shown that .J is also an abelian variety as the defining equations of J
are defined over O, and are derived algebraically in terms of the coefficients of
the defining equation of the genus two curve C by Theorem 1.3.2. In fact, J is
the Jacobian variety of C, the reduction of C. We have the following two lemmas.

Lemma 4.4.4. Let X and Y be varieties in PV defined over a local field K,
and are isomorphic via a matric M € GLn.1(Ok) where Ok is the valuation
ring of K. Then their reductions are isomorphic over F,.
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Proof. Let I = I(X),J = I(Y). Denote I' = I N Oklzg,....,xn],JJ = JN
Oxlxo,...,xy] and I' = {f : f € I'Y and J' = {f : f € J'}. Let M denote
M over the residue field F,, we have M is a well-defined invertible matrix in
GLn41(F,). Also we have I = M*J := {foM : f € J} as M is an isomor-
phism X — Y. Hence, I' = I N Oklxg,...,xn] = (M*J) N Oklzg, ..., xN] =
M*(JNOklzg, ..., xx]) = M*J'. This implies that I’ = M*J’ which means that
M is a morphism X — Y. Hence, M is indeed an isomorphism X — Y as
required.

O

Lemma 4.4.5. Let L be a finite extension of a local field K, with their valuation
rings denoted by O, Oy respectively. For an ideal I C K|z, ..., xN], we have

([@ L) N OL[iL'o, ...,.TN] = ([ N OK[LL‘O, ...,xN]) ®(9K OL.

Proof. We observe that (I N Ok|xo, ...,xN]) ®o, O C (I ® L) N Of[zo, ..., xN]
is immediate. It suffices to prove

([@L) mOL[.CEo,...,.%’N] C ([mOK[ZL’O, ...,SEN]) R0 Or.

Since Oy, is a free Og-module, we let by, ...,b,, be a free basis for O as Ok-
module. Note that they are also basis for L as a K-module. Moreover, we
know that > " x;b; € Oy for some z; € K if and only if z; € Ok for any i.
Suppose v € (I®@L)NOg[zy,...,xn]. Since v € (IQL), we get v =Y ", v;b; for
some v; € I. Since v € Of[xy,...,xy], we get that v; € Oklxo, ..., zn]. Hence,
v e (INOklzg,....,zn]) ®o, Of as required.

]

Now fix a place v" of K’ above the place v of K. Let O, and F, denote the
valuation ring and the residue field of K;,. We treat J, J. as varieties defined
over K, and apply Lemma 4.4.4. By Lemma 4.4.5, we know that the reductions
of J, J. treated as varieties defined over K], is the same as the reductions of .J, J,
as varieties over K,, but treated as varieties defined over F;-. Hence, as long as
v does not divide det M, € O, the following diagram commutes and M, is a
well defined linear isomorphism defined over the residue field F,» between the
two varieties defined over F: J, — J.

JcPB M g pis

lreduction lreduction

Jocpy My Jopls

where M, denotes the matrix M, over the residue field Fyr.
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This linear isomorphism M, implies that J. is smooth whenever J is and in
which case, J, is a twist of J. It in fact is a principal homogeneous space of J.
Indeed, the surjectivity of the natural map Gal(K],/K,) — Gal(F,/F,) shows
that M(M~1)? = 1p, for all ¢ € Gal(K!,/K,) implies that M (M~1)° = 75, for
all Gal(F,/F,). We know any principal homogeneous space of J over a finite
field has a point by [Lan56, Theorem 2| and so is trivial by Corollary 1.5.6.

Therefore, there exists an isomorphism 1: J, ¥ J defined over F,. Hence, as
long as v ¢ S and v does not divide Ng//x (det M,), J. has the same number of
[F,-points as J. By the Hasse-Weil bound, we know the number of F,-points on
C is bounded below by ¢ — 1 —4,/q. Since we can represent points on J by pairs
of points on C and this representation is unique other than the identity point
on J, as discussed in Section 1.2.2. The number of F,-points on J is bounded

below by (¢ —1—4,/q)(q — 3 —4,/9)/2.

On the other hand, we assume that the coefficients of [; are in Ok by scaling,
for all = 1,...,n. Fix a place v of K that does not divide all the coefficients
of l;, for any i = 1,...,n. Let H; be the hyperplane defined by the linear form
l; and H; be its reduction, which is a hyperplane defined over the residue field
F,, We need to bound the number of F,-points of J. that lie on one of the
hyperplanes H;. Let r; be the number of irreducible components of J. N H;. By
|[Har77, Chapter 1, Theorem 7.2(Projective Dimension Theorem) and Theorem
7.7], we know that each irreducible component C’; of J.NH;, where j =1,....1,
is a curve and the sum of degrees of all the irreducible components counting
intersection multiplicity is deg .J. = 32. Let d; = deg C”‘ we get Z 1 d; < 32 for
all 7. This implies that for a hyperplane that does not contain C” the number
of intersections of C and the hyperplane counting multiplicity is d. Suppose

each irreducible component C’; is contained in PV but not in P! (ie. it is
not contained in any hyperplane in P"7), for some N ; € N with NV ; < 15. Note,
ol SV g for all N e N

qg—1
Also, each FF-point in PV lies on SVt g many hyperplanes, we get the number
of F,-points of J. that lie on one of the hyperplanes H;,7 = 1,...,n, is no more
than

the number of hyperplanes in PV over F, is 4

n T4

Zdl Zkoq <szl (g+1),

i=1 j=1 Zkoq i=1 j=1

which is bounded above by 32(¢ +1) - n

To sum up, if v is a place of K above the prime p such that v ¢ S,
v does not divide Ng//k(det M) or all the coefficients of /; for some i and
(¢ —1—-49)(q—3—4,9)/2 > 32(q + 1) - n, we have a smooth F,-point
on J. which by Hensel’s Lemma [HS00, Exercise C.9(c)] lifts to the point @,
as required. Recall that ¢ is the size of the residue field of K, and so is a
power of p. We know there exists a bound N’ € N that depends on n such
that any x > N, (z — 1 —4y/z)(x — 3 — 4/x)/2 > 32(x + 1) - n. Hence, the
finite set S; can be taken to be the set S U {places dividing Nx//x (det M)} U
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{places dividing all the coefficients of [; for some i} U{places above primes less
than N'}. Therefore, the answer to Problem 4.4.1 is yes and the bound N can
be the maximum prime p that divides the norm of some element in 5.

Remark 4.4.6. To show the formula for the Cassels-Tate pairing in Theorem
4.1.4 is always a finite product, we need to solve Problem 4.4.1 with n = 5. Note
for any = > 500, we have (z — 1 —4/x)(x —3—4y/z)/2 > 32(x + 1) -5. Suppose
all entries of M, are in Ok, and f is defined over O, the set S; can be taken
to be {places of bad reduction for C} U {places dividing 2} U {infinite places} U
{places dividing N/ k (det M)} U {places dividing all the coefficients of the
denominator or the numerator of fp, fo, fr or fs} U {places above primes less
than 500}. By the discussion above, the local Cassels-Tate pairing between
e,n € Sel?(.J) is trivial for any prime of K above the maximum prime p that
divides the norm of some element of S;. Hence, the formula for the Cassels-Tate
is indeed always a finite product.

Note that the set S; in Remark 4.4.6 is under the assumptions that all en-
tries of M, are in O and f is defined over Ok where the genus two curve is
defined by y* = f(x). We give the following remarks on some practical issues
and simplification.

Remark 4.4.7.
(i) We can always rescale y to make f defined over Of.

(ii) In the case where not all entries of M, are in Ok, and K = Q, we look for
n € Z such that all entries of nM, are in Oks. Suppose K’ = Q(z) with z €
Ok and [K' : Q] = m. For each a € K’, define d(a) to be the least com-
mon multiple of the denominators of ¢, ...., ¢,,—1, where a = 221_01 et
and ¢; € Q in the simplest form. Then d(a)-a € Ok and we can take n to
be the least common multiple of d((M)11), d((M,)12), ..., d((Me)44). This
implies we can replace the subset {places dividing N+, x(det M)} in the
definition of Sy by S’ which is the set of all primes dividing n or the nu-
merator of Ng g(det M,). Note that this method is far from optimal and
might include a lot more primes than needed. For example, one possible
improvement is to pick a more suitable integral basis for K’. However, it
does not require any number field computation and is a practical method
as the local Cassels-Tate pairing is fast to compute.

(iii) In the case where K = Q, we can always make the linear forms primitive
by scaling. Therefore, in this case, the subset {places dividing all the co-
efficients of the denominator or the numerator of fp, fo, fr or fs} of S
is empty.
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4.5 Algorithm and Worked Example

In this section, we describe an algorithm for computing the Cassels-Tate pair-
ing on Sel?(.J) x Sel*(J) using the formula in Theorem 4.1.4, where .J is the
Jacobian variety of a genus two curve defined over a number field K such that
all points in J[2] are defined over K. Then we will apply this algorithm in a
worked example. Note that this algorithm in theory works over any number
field, but we have only computed examples in the case K = Q.

4.5.1 Description of the algorithm

Start with a genus two curve C with the following defining equation which we
can assume to be defined over Ok by rescaling y:

C:y® = f(x) = foa + f52° + fux" + fz2® + for® + fix + fo,

with all roots of f defined over K which implies that all points in J[2] are over
K by Remark 1.2.1. We denote the roots of f by wy, ..., ws and let the generators
of J[2] be

P = {(wlao)a (w270)}7 Q= {(who)? (W3,0)},
R = {(W470)7 (W570)}7 S = {(W4=O)7 (W(;,O)}.

We know that they satisfy the Weil pairing matrix (4.1.1). Let ¢ : J(K)/2J(K) —
H'(Gk, J[2]) denote the connecting map induced by the short exact sequence
0 J2 = J 3 J— 0and let §(P),5(Q),5(R),5(S) denote the images of
[P],[Q], [R],[S] € J(K)/2J(K) in H' (G, J[2]).

For €,n € Sel?(.J), we give an algorithm for computing (e, n)cr.

e Step 1: Compute the image of €,n in (K*/(K*)?)%. Note that MAGMA
gives their images in (L*/(L*)2K*) where L = Klz]/(f) as discussed in
Remark 3.2.8. Follow the discussion in Section 4.1.1, we can then find the
corresponding elements in (K*/(K*)?)*.

e Step 2: By the explicit formula for the Cassels map in Remark 1.10.3,
compute §(P),5(Q),5(R),5(S) € Sel*(J) ¢ H'(Gg,J[2]) and compute
their images in (K*/(K*)?)%.

e Step 3: Follow Section 4.2.2 and compute the morphism J. C IP’E’LZ v} proj,
(e)~?

P W70, P), % K. C P} in (4.2.1). We showed that k{,, treated as a

function on J, (Jvia the pull back), gives the denominator of fp, fo, fr, fs
in the formula for (¢, 7)cr in Theorem 4.1.4.
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e Step 4: Follow Remark 4.2.6 and find P, € J such that 2P, = P. Then
compute the linear map W in Proposition 4.2.5.

e Step 5: Follow Section 4.2.3 with T = P, and compute the morphism

be T (Yetspy) ™"
Je PGy = T CPRL Ly — Py . P, | 5 Kevsry C Ph p
in (4.2.2) using the linear map ¥ computed in Step 4. We showed that

ki, p, treated as a function on J. (via the pull back), gives the numerator
of fp.

e Step 6: Compute fp = ki, p/ki;, which is a K-rational function on J
satisfying Remark 4.1.3.

e Step 7: Repeat Steps 4, 5 and 6 with the other generators @, R, S of J[2]
and compute fq, fr, fs similarly.

e Step 8: Follow Remarks 4.4.6, 4.4.7 and compute the bound N, € N
such that any finite place v of K above any prime bigger than N,, the
local Cassels-Tate pairing between € and 7 using the formula in Theorem
4.1.4 is trivial.

e Step 9: For any place v of K that is above a prime that is not greater than
the number N, computed in Step 8, find a local point P, on J. avoiding
the zeros and poles of fp, fo, fr, fs-

e Step 10: Compute (€, n)cr via the formula in Theorem 4.1.4.

Using the above algorithm, we can compute the Cassels-Tate pairing matrix
for Sel?(.J), that is a square matrix where the ;%" entry represents the Cassels-
Tate pairing between the i and the j** generators of Sel*(.J). Recall that here
we assume all points in J[2] are defined over K, the Cassels-Tate pairing in this
case is in fact alternating by Lemma 1.8.3, which simplifies our computation.

Remark 4.5.1. One method for finding a local point P, on J. avoiding the
zeros and poles of fp, fo, fr, fs is by looking for a corresponding local point
on K. C P3. Recall that the numerators and denominators of fp, fo, fr, fs
are linear forms. A linear form on J, is of the form f.,en + foaa Where fopen is
linear in the even coordinates and f,4q is linear in the odd coordinates. By
the explicit defining equations of J. as discussed in Section 1.11, we know
(feven + fodd)(feven — foda) 1s @ homogeneous polynomial of degree 4 in the coor-
dinates on K. Hence, it suffices to find a local point on &, that comes from .J,
and does not vanish on these corresponding homogeneous polynomials of degree
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4. To test if a local point on I, comes from J, or not, we can compute its corre-
sponding image (o, -.....ug) € PY then follow the discussion at the end of Section
1.11. Tt is more convenient to find local points via this way because K. C P? is
defined by one equation whereas .J, C P'% is defined by a system of 72 equations.

4.5.2 Worked example

Now we follow the steps in Section 4.5.1 with an example. In particular, we
will see with this example, that computing the Cassels-Tate pairing on Sel(.J)
does improve the rank bound obtained via a 2-descent. This genus two curve
was kindly provided by my supervisor, Tom Fisher, along with a list of other
genus two curves for me to test the algorithm.

Consider the following genus two curve

C:y* = —10x(x + 10)(x + 5)(x — 10)(z — 5)(x — 1).

Its Jacobian variety J has all the two-torsion points defined over Q by Remark
1.2.1. A set of generators of J[2] satisfying the Weil pairing matrix (4.1.1) are

P = {<O’O>7 (_1070)}7 Q= {(070)’ (_5’())}’
R=1{(10,0), (5.0}, S = {(10,0),(1,0)}.

e Consider ¢,1 € Sel?(J) represented by (—33,1, —1, —11) and (11,1, —1, —11)
respectively, under the isomorphism H'(Gg, J[2]) — (Q*/(Q*)?)*.

e Under the isomorphism H'(Gg), J[2]) — (Q*/(Q*)?)*, the images of [P], [Q)],
[R],[S] via ¢ : J(Q)/2J(Q) — H'(Gg, J[2]), computed via the formula
for the Cassels map, are

5([P]) = (_66’ 176722>’ 5([@]) = <_17 L, 3, 1)7
S(R) = (6,3,1,3),  8(S]) = (22,1, 3, —11).
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e Using the coordinates cy, ..., ¢y, dy, ..., dg for J. € P¥ described below in
Remark 4.5.2(i), we have

ki, = 618874080co — 496218440¢; — 390547052¢3 4+ 205551080¢,4
+ 384569291 ¢ + 52868640cs;

kh,P = —36051078800000c, + 8111492730000c3 4 265237150000¢7
— 196928587500cs — 6786529337500¢cy + 22531924250d,
— 126449158891dy — 117221870375d5 + 937774963000d;

k:’H’Q = 134800c¢; + 235600c3 4 62000c4 + 52235¢6 + 60016d; — 5456d5;
k:’lLR = —30223125¢ + 4050000cg — 49750d3 + 709236d,

kh,s = 4724524800c¢; + 8557722360c3 + 13102732800¢4 + 1258642935¢4
+ 7291944000cy — 2709362304d; + 97246845d, + 8475710d3
+ 30788208ds.

Hence, we have explicit formulae for

O Kup o, kue ., Fur , kusg
fP_ 7fQ_ / afR_ / 7fS_ I
kll kll kll

In particular, they are defined over QQ as claimed.

e Following Remarks 4.4.6 and 4.4.7, we have the following primes that
potentially contribute to (e, n)cr.

— Prime 2;
— Primes of bad reduction of the genus two curve C: 2,3,5,11;

— Primes arise from M., denoted by S’ in Remark 4.4.7(ii): 2,3,5,11,17,
19,31, 197, 199;

— Primes below 500.

It turns out that the only nontrivial local Cassels-Tate pairings between
e and 7 are at places 11,19, 00 and (e, n)cr = —1.

Remark 4.5.2.

(i) In the case where all points of J[2] are defined over the base field, the co-
ordinates in [FTvL12, Definitions 6.9, 6.11] as described in Remark 1.11.2
are Galois invariant and denoted by cq, ..., ¢g, dq, ..., dg Where ¢y, ..., cg are
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even and di,...,dg are odd. In the above worked example, we embed-
ded J. C P'® with this set of coordinates instead of the coordinates
Ug, ..., Ug, V1, ..., Vg given in Theorem 1.11.1.

(ii) As discussed in Remark 4.4.7, we probably have computed the local
Cassels-Tate pairing for more primes than needed. We also suspect that
via some suitable minimization and reduction techniques, we can simplify
the set of primes that potentially contribute to (e,n)cr. However, this
does not have much effect on the computation as the local Cassels-Tate
paring is fast to compute, even for very large primes.

(iii) We list a few sanity checks throughout the computation. We verified
that all the defining equations of the twisted Kummer surfaces are indeed
defined over Q. For each local Cassels-Tate pairing computations, we
computed 100 local points at random and verified that these local points
all give the same value of the local pairing.

Under the isomorphism H'(Gg, J[2]) — (Q*/(Q*)?)*, Sel®(J) has size 2°
and is generated by

(=33,1, — 1, —11), (11,1, -1, —11), (66, 1, 2, 22),
(11,1,2,22),(3,3,3,3),(3,1,3,1).

Since C has rational points, we know the Cassels-Tate pairing is alternat-
ing by Lemma 1.8.3. Since all the two-torsion points on J are rational and
<€7 77>CT = _17 we get |ker< ) >CT| = 24-

Indeed, we verified that the Cassels-Tate pairing matrix, with the generators

of Sel?(.J) listed above, is

1 -1 1 1 -1 —1]
-1 1 1 -1 1 -1
111 1 1 1
1 -1 1 1 -1 —1|°
-1 1 1 -1 1 -1
-1 -1 1 -1 -1 1|

which is a rank 2 matrix.

Recall in Remark 1.9.4(i), we showed that we can potentially improve the
rank bound from the standard descent calculation via computing the Cassels-
Tate pairing as J(Q)/2J(Q) C ker{ , )or C Sel®(J). This is indeed true and
in this example, we improve the rank bound from 2" < [Sel*(.J)|/|J(Q)[2]| = 22
to 2" < |ker(, Yor|/|J(Q)[2]| = 2°. Therefore, we not only improved the rank
bound but also proved that the rank of this particular Jacobian variety is in
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fact equal to 0.

Also recall in Proposition 1.9.3 and Remark 1.9.4(ii), we proved that in the
case where all points in J[2] are defined over the base field, computing the
Cassels-Tate pairing on Sel?(.J) gives the same rank bound as obtained from
carrying out a 4—descent which involves computing Sel4(J ). More specifically,
we have Ima = ker(, )or, where a is defined in the following exact sequence :

0 — J2J(K) — J4|(K) — J2J(K) — Sel*(J) — Sel*(J) % Sel*(J).
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Chapter 5

The Cassels-Tate Pairing with
Points on the Twisted Kummer

In this chapter, we let J denote the Jacobian variety of a genus two curve C
that is defined by y? = f(x) = fsz% + ... + fo such that f is a degree 6 polyno-
mial defined over the base field K. For €,1 € Sel?(J), we will prove an explicit
formula for the Cassels-Tate pairing (¢,7)cr under the assumption that the
twisted Kummer surface K, defined in Remark 1.6.3 has a K-rational point.
In this chapter, the field K is a number field, unless stated otherwise. We will
then describe an algorithm that explicitly computes the pairing using this for-
mula. This algorithm becomes more practical in the case where K = Q and
the size of the Galois group of f is relatively small. In Chapter 6, we will give
a modified algorithm for computing the pairing using this formula which works
in the general case.

5.1 Formula for the Cassels-Tate pairing

In this section, we state and prove an explicit formula for (e, n)cr with €, €
Sel?(.J) under the assumption that the twisted Kummer surface K, has a K-
rational point.

5.1.1 Statement of the formula

Consider ¢ € Sel®(J). Let (J.,m) be the 2-covering of J corresponding to .
There exists an isomorphism ¢, defined over K such that [2] o ¢, = 7. which is
defined over K and a linear isomorphism 1, : K, C P? — K C P? defined over
K satisfying the usual commutative diagram (1.6.2).

Suppose R is a K-rational point on the twisted Kummer IC.. Let Q1, Q)2 de-

note the two preimages of R via the degree two morphism J, M K. C P3.
From the discussion at the end of Section 1.11, we know there exists a nonzero
a € K such that K(Q1) = K(Q2) = K(y/a). Moreover, a is explicitly com-
putable given the defining equation of C, € and the coordinates of R. Then,
by Corollary 1.5.6, we know J. is a trivial principal homogeneous space of J
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considered as a variety defined over K (v/a).

Now we state the following theorem on the formula for the Cassels-Tate
pairing.

Theorem 5.1.1. Let J be the Jacobian variety of a genus two curve C de-
fined over a number field K. For e,n € Sel(J), let (J.,7.),(Jy,m,) denote
the corresponding 2-coverings of J. Suppose IC,, the twisted Kummer surface
corresponding to n, has a K-rational point R and the field of definition of the
preimages of R on J, is K(y/a) for some nonzero a € K. Then there exists a
K -rational function g on J., which also depends on n, such that

<€777>CT = H (g(Pv)7a>v7

place v

where ( , ), denotes the Hilbert symbol for a given place v of K and P, is an
arbitrary choice of a local point on J. avoiding the zeros and poles of g.

Remark 5.1.2. Similar to Remark 4.1.5, we will show that the formula for the
Cassels-Tate pairing given in Theorem 5.1.1 is in fact always a finite product.

5.1.2 Proof of the formula

In this section, we give a proof for Theorem 5.1.1. Suppose the twisted Kum-
mer K, for n € Sel’(J) has a K-rational point. We have the following lemmas
computing a cocycle representation of the image of  in H' (G, J).

Lemma 5.1.3. Let (J,,m,) be the 2-covering of J that corresponds to n €
HY(Gg,J[2]). Let ¢, : J, — J be an isomorphism defined over K with
m, = [2] o ¢,. Then, for any Q € J,, the image of n in H' (G, J) is rep-
resented by the cocycle o — ¢,(Q) — ¢,(0(Q)).

Proof. We know n € H'(Gx, J[2]) is represented by the cocycle o +— 7, where

¢n(¢,")7 is translation by n,. Therefore 7, = ¢,(0(Q)) — o(¢,(Q)). This
differs from the cocycle in the statement of the lemma by the coboundary

o= U((bn(Q)) - ¢n(Q)

]

Lemma 5.1.4. Let (J,,m,) be the 2-covering of J that corresponds to n €
HY(Gg, J[2]). Let R be a K-rational point on the twisted Kummer IC,, with the
field of definition of its preimages Q1, Q2 on J, being K(\/a) for some nonzero
a € K. Let S = m,(Q1). Then the image of n in H' (G, J) is represented by

the cocycle
OJ ng(\/a) = \/57
“H{ S ifo(va)=—a.
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Proof. Let ¢, : J, — J be an isomorphism defined over K with 7, = [2]o¢,. By
Notation 1.6.4, the involution ¢, on J,, such that [-1]o¢, = ¢, 01, is defined over

K and swaps over ()1 and (2. In particular, ¢,(Q2) = ¢, (t,(Q1)) = —¢,(Q1)-

We take @ = @ in Lemma 5.1.3. If 6(v/a) = /a, then ¢,(Q1)— ¢, (0(Q1)) =
Dn(Q1) = 8y(Q1) = Oy T o(va) = —v/a, then 6,(Q1) = dy(a(Q1)) = ¢4(Q1) -
¢n<@2) = 2¢77(Q1) = 77'7)(@1) = S.

]

Remark 5.1.5. Follow the notation and condition in Lemma 5.1.4. If a is a
square in K, then J, has a K-rational point which makes it a trivial torsor
by Corollary 1.5.6 and the cocycle given in the above lemma is indeed trivial.
Suppose a is not a square in K and Gk (/a,x = {1,0}. The lemma above
shows that the image of n is the image via the inflation map of the element in
HY(Gk(yayx: J(K(y/a))) represented by the cocycle

(1—0Oy,0—09).

We now define the twisted group law in the lemma below.

Lemma 5.1.6. Let (J.,m.),(J,,m,) and (Jepy, Tern) be the 2-coverings of J
corresponding to €, n and e+n in H (Gg, J[2]). Let ¢ - Jo — J and ¢y, = J, — J
be isomorphisms defined over K satisfying . = [2] o ¢. and m, = [2] 0 ¢,. If
we make a suitable choice of ¢pciry, an isomorphism Je.p, — J defined over K
satisfying Terny = [2] © Gety, then there exists a morphism p defined over K
making the following diagram commute

Je X Ty = ey
¢e l@sn ¢e+n
J

J x J—"s

Proof. We know the cocycle (o — €,) represents ¢, where ¢.(¢-1)7 is the trans-
lation by €, € J and we have similar results for 7,. By Remark 1.5.4(ii), we can
always find an isomorphism ¢et, : Jet,, — J, with the cocycle condition that

€c + 1o = (6"'_77)0'

Let p : Jo x J, = Jeyy be the morphism that makes the diagram in the
lemma commute. For any P, () € J and any o € Gk, we then have the following
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1 (671 (P), 6,(Q)) = o (uld7 (de(67H) 1 (P ), 67 (0 (0, 1) Q)
= (¢, (P )+ Q) + et +1p1))
= ¢ey(P+Q)
= (¢, ' (P), ¢, (Q)).

Hence, p is indeed defined over K.

O

Corollary 5.1.7. Let (J.,[2] o ¢c), (Jy, [2] © @) and (Jeiy, [2] © ¢esy) be the
2-coverings of J corresponding to €, n and € + 1 in Sel(J) that satisfy the
condition in Lemma 5.1.6. Suppose the twisted Kummer surface KC,, has a K-
rational point R. Let Q € J, be a preimage of R and K(Q) = K(y/a). Let
P = ¢,(Q) € J. Consider the isomorphism ¢ : J. — Jey, that makes the
following diagram commute:

¢
Jo =2 Jep

l(ée l¢e+n

J—L 5

We have ¢ is defined over K (\/a).

Proof. By Lemma 5.1.6, we have a morphism p : J. x J, = Jey,, defined over
K and ¢ = pu(—, Q). This implies that ¢ is defined over K(Q) = K( /a).

[]

Now we will give a proof for Theorem 5.1.1 using the lemmas proved above.

Proof of Theorem 5.1.1. We will show that the formula given in the theorem is
indeed the Cassels-Tate pairing following the homogeneous space definition as
defined in Section 1.8.2.

First, we notice that if the preimages of R are in fact defined over K and a is
a nonzero square in K, then J, has a K-rational point. By Corollary 1.5.6, we
know that .J, is the trivial homogeneous space and the image of n in H* (G, J)
is the trivial element. By the bilinearity of the Cassels-Tate pairing, we know
that (e,n)cr is trivial. On the other hand, since a is a nonzero square in K,
then the Hilbert symbol between a and anything else is 1 by definition. Hence,
we can take g to be any K-rational function on J,, for example the constant
function on J, that always takes the value 1.
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Now we assume a is not a square in K. Let ¢, : Jo — J, ¢, : J,, — J be two
isomorphisms such that [2] o ¢ = 7. and [2] 0 ¢, = m,. Then, there exists an
isomorphism ¢y, : Jeyy — J such that (Jeiy, [2] © ¢eyy) is the 2-covering of J
corresponding to € + n and the condition in Lemma 5.1.6 is satisfied.

Let @Q € J,(K(v/a)) be a preimage of R and P = ¢,(Q) € J. By Lemma
5.1.4, we know that the image of  in H!'(G, J) is represented by the following
cocycle

ooy d Qs ilo(Va)=a,
2P if o(y/a) = —/a.
Following the homogeneous space definition of (€, n)cr, we have the correspond-
ing element in H'(Gg, Pic’(J)) represented by the following cocycle

id if o(v/a) = va,
o { 730 - 6] if o(va) = —va.

Recall we have the isomorphism ¢ = ¢_ J}nrque defined over K (y/a) in Corol-

lary 5.1.7. Then, let H. on J. be the pull back of any fixed hyperplane section on

K. via J. M K¢ and Hey, on Jey, be the pull back of any fixed hyperplane

. . |p¢y,(20)] _
section on Ky, via Jeyy Al Ketn. Define = = ¢*H,,, — H.. We have

(b Trde) (671,(20)) - 67(20))

Since 75(20)—20 ~ 75,0—06, the corresponding element in H'(G g, Pic’(J;))
is represented by the cocycle

id if 0(v/a) = Va,
‘M{ g ifo(va) = -va.

Then we consider the image of the following cochain in (G g, Div"(J)) under
the homomorphism d : C*(Gg, Div’(J)) — C?(Gg, Div®(J)), described in Sec-
tion 1.4.

id if o(va) = Va,
~ { = if o(ya) = —/a.

Since ¢ is defined over K (y/a) and Z is defined over K(y/a), we compute that
the image of the above cochain under the homomorphism d is

(01, 09) — { O*Hery + 01(0"Hp) — 2H,  if 01(1/a) = 02(v/a) = —/a,

id otherwise.
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Let G (ya)x = {1,0}. Since ¢ is defined over K (y/a), we have o(¢*Heypy) =
01(¢*Heyy) for any o1 € Gg such that o1(y/a) = —+/a. Following the homo-
geneous space definition of the Cassels-Tate pairing, there exists a K-rational
function g on J, such that

diV(g) = ¢*H6+Ti + U(¢*He+n) —2H..

And for each place v of K, we need to consider the element ¢, in H?(Gg,, K,")
represented by the cocycle

(01, 02) > { 9(P,) it o1(va) = oa(v/a) = —/a,

1 otherwise,
where P, is any local point on J, avoiding the zeros and poles of g.

By Lemma 4.1.6, we know that the element ¢, € H*(Gg,, K,") = Br(K,) is
the class of the quaternion algebra (g(P,),a). Moreover, by Lemma 1.4.19, we
know inv((g(P,),a)) = (9(P,),a), as required.

[

Remark 5.1.8. Follow the condition and notation in Theorem 5.1.1. We know
(e,mer is trivial if K(y/a) = K. Now suppose G a,x = {1,0}. From the
proof of Theorem 5.1.1, the K-rational function ¢ in the statement of Theorem
5.1.1 has divisor of zeros and poles precisely at ¢* H.y,+0(¢* Heyyy) —2H,, where
H, on J. is the pull back of any fixed hyperplane section on K and H,, on Jey,
is the pull back of any fixed hyperplane section on K. To explicitly compute
(e,m)cr, we need to explicitly compute such g which is done in the next section.

5.2 Explicit Computation

In this section, we give a method for explicitly computing the formula for the
Cassels-Tate pairing of €, € Sel?(.J), as stated in Theorem 5.1.1 and explained
in Remark 5.1.8. For T' € J, we let k(T') = (k1(T), ko(T), k3(T), ks(T)), where
ki, ..., k4 is the basis for £L(©T + ©7) and the fixed coordinates on K C P? as
described in Section 1.3.2.

5.2.1 (2,2,2)-form

In this section, we introduce a (2,2, 2)-form F. This will be shown to be related
to the explicit computation for the function g that appears in the formula for
the Cassels-Tate pairing in Theorem 5.1.1.

Recall the genus two curve is defined by y* = f(z) = fes2® + ... + fo. In
Corollary 1.3.7, we showed that, for S,7 € J and 4,5 € {1,...,4}, there exist
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symmetric biquadratic forms v;; defined over Z|[fo, ..., fs] with explicit formulae,
such that the 4 by 4 matrix (¢;;(k(S),k(T"))) is projectively equal to

We define A(S,T'), independent of ¢ and j, such that
Vi (k(S), k(T))) = A(S, T) (ki(S — T)k;(S + T) + k;(S — T)k;i(S + T)).

Since k1 = 1, we get that A\(S,T) = w By the explicit formula for
Y11, We Verlfy that S +— A(S,T) is never the zero function on J for any T € J.
The lemma below constructs a (2,2, 2)-form.

Lemma 5.2.1. Let v = (21, %2, %3, 24), Y = (Y1, Y2, Y3, Ys), 2 = (21, 22, 23, 24) be
three vectors. Then

4

Flz,y,2 Zzzz% T, y)z

i=1 j=1

is a (2,2,2)-form that is defined over K, symmetric in the first two sets of coor-
dinates and it vanishes on (k(S),k(T),c), for any S,T € J and column vector
c = (c1,¢2,c3,¢4) such that cT'k(S +T) = 0.

Proof. Since 35 k(S 4 T)e; = 0, we get

chiwij(k(‘s)?k(T))cj

i=1 j=

=\(S,T) ZZCi(k’j(SJrT)k,»(S— T) + k(S + T)k;(S — T))¢y

=0.

Also, the (2,2,2)-form F is defined over K and symmetric in the first two
sets of coordinates as each v;; is defined over K and symmetric.
O

We also state and prove the following two lemmas that describe some prop-
erties of F.

Lemma 5.2.2. Fiz any T € J and ¢ = (c1,¢q,¢3,¢4) not a zero vector. For
SelJ,
S F(k(S),k(T),c)
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s not the zero function on J.

Proof. By the definition of F,

F(k(S), k( ZZczww (T))cs,

=1

which is equal to

S, T) ZZQ Vi (S +T) + ki (S — T)ki(S +T))
=2X\(S,T) - () ciki(S = T)) - (ZkJ(S+T)c])

Moreover, we know S +— A(S,T') is not the zero function on J. Recall ki, ..., k4
form a basis for L(O1 +607). We note that {(S — k;(S—T)),i=1,...,4} form
a basis for L(7* (07 4+07)) and {(S — k;(S+T)),7 =1, ...,4} form a basis for
L(75(0% +07)). Since ¢; are not all zero, both S +— S ¢;ki(S —T) and S
Z?Zl kj(S + T')c; are not the zero function on J. Hence, S — F(k(S), k(T),c)

is not the zero function on J as required.

]

Lemma 5.2.3. Suppose T1, Ty, T3 € J[2] satisfy Ty + Ty + T3 = Oj. Let
My, Mr,, My, € GL4(K) represent the action of translations by Ty, T2, T5 on
K C P3, respectively. Then

F(Mr,z, Mr,y, M%;z) = rkF(z,y,z)

as polynomials in x,y, z for some constant k € K.

Proof. We decided to prove it by a generic calculation. Suppose the defining
polynomial of the genus two curve is y* = f(z) = Mz —w;)(x —ws) - -+ (z — wg).
Let K' = Q(\,wy,...,ws) and then the coefficients of f are defined over K.
Recall for T' = {(w;,0), (w;,0)} we have formulae for My defined over K’ in
[CF96, Chapter 3, Section 2|. Also by Lemma 5.2.1, we know that the coef-
ficients of F are defined over Z[fy, ..., f¢] and so are defined over K’. Hence,
it suffices to verify the statement of the lemma over K’. Note by symme-
try of the roots, we only need to check 3 cases: T} = {(w1,0), (w2,0)} with
Ty = {(w1,0),(ws,0)}, Th = {(w1,0), (we,0)} with Ty = {(ws3,0), (ws,0)}, and
Ty = T = {(w1,0), (w2,0)}. This reduces the statement to linear algebra over
K’ and we used MAGMA to verify it.
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5.2.2 Twisted (2,2, 2)-form

In this section, we twist the (2,2,2)-form F, by €,n,¢ +n € Sel*(J). More

explicitly, let (Je,[2] 0 ¢c), (Ji, [2] © @), (Jetns [2] © Petry) be the 2-coverings of J
corresponding to €,1,€ + 7 that satisfy the condition in Lemma 5.1.6. We

let 6. : Jo = K. Cc P 0, : J, = K, C P Oy : iy = Ky C P?
denote the morphisms induced by |¢*(2@)| \(;5*(2@)\ o +77( O)| respectively.
Let ¢, ¥y, Yeqry be the corresponding linear 1somorphlsms P3 — 3 that satisfy
(1.6.2). Suppose N, N,, Ny, € GL4(K) represent these linear isomorphisms.
We define the corresponding twisted (2, 2, 2)-form F, ,(z,y, z) as

F(New, Nyy, (NL,)7'2),

Note that F., depends on the choice of N, N;;, Ncy, and is only defined up to
scalar multiplication.

Proposition 5.2.4. There exists a constant u € K such that /%feyn(x,y, z) s
defined over K.

Proof. We know ¢c(¢; ') = 7, dp(¢;')7 = 7, Where (0 — &), (0 = 75)
are cocycles representing €, n respectively and ¢e+n(¢e_+ln)g is the translation by
€s + No. Let Mr € GLy(K) represents the action of translation by 7' € J[2] on
K C P3. We have N(N1)? = M, € PGLy(K), N,(N; 1) = M, € PGLy(K),

n

and Ny (N7 = Me, 4y, € PGLy(K). Therefore, for ¢ € Gk, by Lemma
5.2.3 and the fact that F is defined over K, we have

Foo(@,y,2)
=F(NZx, Ny, (NL,) 7))
=F(NIN'New, NN, ' Nyy, (Neyy (N7 T (N, 7 2)
=N\ F (M., N, My, Nyy, (M, 1) (NL,)7'2)
=\, F(Nx, Nyy, (NL,,)7'2)
2)\;}_57n(x,y,z),

for all ¢ € Gk with some constants \,, \, € K that only depend on o.

For any 01,00 € Gk, we have A, . = o1(\, )\, . Therefore (o — X))
represents a cocycle in H'(Gg, K*). Since H' (G, K*) is trivial by Hilbert’s
Theorem 90, we know that there exists u € K such that X\, = o(u)/u for all
o € Gg. Hence, for any o € Gk, we have

1 1
0(—-7:5,77) = —Fens
u M

as required.
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]

Remark 5.2.5. By Proposition 5.2.4, we can assume the (2,2, 2)-form F,, is
defined over K, for any €, € Sel?(J). Note that this is still up to scalar mul-
tiplication in K. Since we will only need to look at the vanishing of F,, this
will not be a problem.

Recall that in Lemma 5.1.6 we showed that there exists the twisted group
law 1 : Je x J, = Jeyy that is defined over K. We have the following lemma
following Lemma 5.2.1 and the definition of F .

Lemma 5.2.6. For any P, € J., P, € J,, and column vector ¢ = (c1, ¢a, C3, C4)
such that ¢'Ocipy(u(Pr, Py)) = 0, we have

Fe,nwe(Pl)a GW(P2)7 c)=0.

Proof. By definition of F,, it suffices to prove

F(NOe(Pr), Noby(P2), (NZy,)~'e) = F(k(de(P1)), k(94 (P2)), (NEy, ) ~'e) = 0.

€+n

Since ¢70.1,(u(Pr, P2)) = 0, we have

(NZ) ™) k(0c(P1) + 6 (P))
= cTN;lnk(¢e+nM(Pl7 P))
="y (u(Pr, P))
=0

Then we are done by Lemma 5.2.1.

5.2.3 Constructing the rational function g

We follow the notation defined at the start of Section 5.2.2. Consider any P € J.
Let ¢ : Jo — Jeyy be an isomorphism such that ¢ = gzﬁ;rln oTp o ¢.. Recall we
denote the induced involutions on Je, J,, Jeyy by te, Ly, Lty as in Notation 1.6.4.
Let H, on J. be the pull back of any fixed hyperplane section on K, and Hy,
on Jei, be the pull back of any fixed hyperplane section on K,. We have the
following lemma.

Lemma 5.2.7. The divisors H., ¢*H.1,, and v:(¢*Hy,) on J. are numerically
equivalent.
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Proof. Since H. is the divisor on J. obtained by pulling back a hyperplane
section on K. C P?, H. ~ ¢7(20). Similarly, Heyy ~ ¢},,(20). Recall ¢ =
60y 0mp0 6. We get 6",y ~ 67(75(20)) and 12 (6" Hory) ~ 0267 (15(26))) =
o:([-1]*(75(20))). By Remark 1.2.2, the divisors 20 and 75(20) are alge-
braically equivalent hence numerically equivalent, for any P € J. Since isomor-
phisms preserve numerical equivalence, the divisors He, ¢* Hey,y and ¢ (¢*Heyyy)
on J. are numerically equivalent.

]

We now state and prove the following theorem for computing the K-rational
function ¢ in the formula for (¢, n)cr in Theorem 5.1.1. Note that this theorem
holds for any P € J and ¢ : J. — Jei,;, depends on the choice of P. Later we
will apply the theorem where P is the point on J corresponding to a K-rational
point on &, for the construction for g.

Theorem 5.2.8. Let J be the Jacobian variety of a genus two curve C de-
fined over a number field K. For e,n € Sel(J), let (J.,[2] o ¢¢), (Jy,[2] © ¢n)
and (Jeyy, [2] © Getn) denote the corresponding 2-coverings of J satisfying the
commutative diagram in Lemma 5.1.6. Let H. = 6*{zy = 0} and H.y, =
9;‘+n{cly1 + ...+ cyys = 0} for ¢; € K not all zero. Fiz any P € J. If

g/(flﬁ'l, P ,1’4) = ./—'-5777(1'1, Ce ,274;0,7 o} qb;l(P);Cl, Ce ,04),

then regarding g = ¢'/x? as a rational function on J. (via pull-back by 6.) we
have
div(g) = ¢"Hery + 1. (9" Heyy) — 2H..

Proof. Step 1: We first prove the result when P ¢ J[4] and cyy1 +...+c4y4 =0
defines a general hyperplane on K, avoiding the 16 singular points.

Taking P, = gb;l(P) in Lemma 5.2.6, it follows that g(P;) = 0 whenever
Oein(d(P1)) - ¢ = 0. Therefore, g vanishes on ¢*H.y,. Since 0., = 6., we know
it must also vanish on ¢} (¢*Hy,). Also, by Lemma 5.2.2 and the definition of
Fen, we know g does not vanish on the whole of J.

Consider the degree two morphism 0.y, : Jy — Koy We know Ky
taking away the 16 singular points is a smooth quasi-projective variety. By
Bertini’s Theorem, a general hyperplane section of K., taking away the 16 sin-
gular points is smooth. Since K., has dimension two and a hyperplane section
is ample, we know it is connected by [Har77, Chapter III, Corollary 7.9] which
implies that it is irreducible. Suppose D is a smooth irreducible hyperplane sec-
tion on Ky, that is away from the 16 singular points. Then we will show that
C = 07,,D is irreducible. Suppose it is the union of more than one irreducible
components. Since D is irreducible, the restriction of 6., on each irreducible
component of C is surjective on D. Since the degree of 6, is two and there
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are only finitely many interection points of the irreducible components of C,
we get that the number of irreducible components of C' is two. Moreover, the
number of preimages on each of the irreducible componenets, denoted by C}
and Cy, of a general point on D is one. We will show Cy =2 D = (5. If (4
is smooth, then the restriction of 0.4, gives a degree one morphism between
smooth curves C'y — D, which is then an isomorphism. If ('} is not smooth,
then consider the composition of the blow up morphism of C; and the restric-
tion of 0.4, on Cy: C7 = C; — D. We get the composition is a degree one
morphism between two smooth curves, and so is an isomorphism. This implies
that D — C7] — C} is the inverse of C; — D and hence C} = D. Similarly we
get that Cy = D. Since C' ~ ¢7,,(20), C is ample and hence connected. This
implies that 0, (s, (T)) = {T'} for any T € C; N Cy and hence 0.4, (T) € D
is one of the 16 singular points on K,. This contradicts with the assumption
of D.

From the above discussion, we know that assuming cyy; + ... +c4y4 = 0 gives
a general hyperplane section on K, avoiding the 16 singular points, H., is
irreducible. Suppose ¢*H.y, # t*(¢*Hc.,). We have

div(g) = ¢*Hesy + 15 (¢*Hop) + E — 2H,.

for some effective divisor E. Taking the intersection product with H, and using
Lemma 5.2.7 shows that £ - H. = 0. Since E is effective and H, is ample it
follows that £ = 0.

We will now show that ¢} (¢*Hcy,) = ¢*Hcy,y implies P € J[4] which com-
pletes the proof of the theorem for a general hyperplane section on K., avoiding
the 16 singular points and P ¢ J[4].

Suppose t ¢ *Hey, = ¢*Hepyy. We get ¢X75(20) ~ 1f¢i75(20). Since ¢ o
te = [—1] o ¢, this implies ¢ 75(20) ~ ¢:[—1]*75(20) and hence 75(20) ~
[—1]*75(20) ~ 7 p[—1]*(20) ~ 7 5(20). So in this case, we derive 4P = 0 as
required.

Step 2: Suppose P ¢ J[4], we now show that the result holds for any hyper-
plane section on K,,.

Consider ¢ = (¢; : ¢2 : ¢35 : ¢4) and wlog ¢; # 0. We assume ¢; = 1 and pass to
the corresponding affine patch. Define g, = F. (1, ..., T4; Qnogzﬁ;l(P); Cly ey C4)-
Let D, = ¢*H.y,, which is the pull back on J. of the hyperplane section
on K¢, defined by the linear form with coefficient vector c. We know that
div(g./2%) = D.+ 1! D. — 2H, for a general ¢ € A*>. Now we show that in fact
the result holds for any ¢ € A3.

Let * € A? satisty div(geo/2?) = Do+ Do—2H,. Treat y;, the coordinates
of K4y, as functions on J..,. We have g./g. is a rational function on J, x A3,
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Define ) )
Zi:l C?yl * % Zi:l C?yl
1 ) L) (4—)
> i1 Cili Y i1 Cili
which is a well-defined nonzero rational function on .J, x A3. For a general
c € A3, as functions on J,, we have div(g.0/g.) = Do + t*Dyo — D, — 17D, and

hc = ¢*(

div(geo/g.) = div(he). (5.2.1)

Hence, define A such that Ah. = g.o/g., which makes A a well-defined ratio-
nal function on J, x A3. Moreover, we know \(—,c) is a constant function on
J. for c € U C A® and U is open. It suffices to show that A(—, c) is a constant
function on J, for any ¢ € A®. Consider the following commutative diagram.

Jox U -2y J x A3

| |

inc 3
U —nc 4 A3

where each vertical map is the projection to the second component. Consider
the induced commutative diagram of the corresponding function fields. Define
m(c) = AT, c) in K(U) for a fixed T € J. and any ¢ € U. Then the image of
m in K(J. x U) is M., and hence the image of m in K(J. x P?) is A\. The
fact that X is also the image of the corresponding element of m in K (P?) shows
that A is a constant function given any second input ¢ € A® as required.

Step 3: Lastly, we show that the result holds for any P € J. Consider ¢; € K
not all zero. Let gp = Fo (21, ..., T4; 9no¢;1(P); C1y ...y Cq) and ¢op = gb;rlnofpogbe.
Suppose Heyy = 07, {ciy1 + ... + caya = 0}. We have div(gp/a3) = ¢pHeyn +
viopHeyy, — 2H, for general P € J. We now show that in fact the result holds
for any P € J.

Fix a general Py € J satisfying the equation above. We know gp,/gp is a
rational function on .J. x J. For a general P € J, the following holds as functions
on J,

div(gp,/gp) = div(hp)

bp, (Cioy civi) L bp, (i civi)
(Xt cvi) € (i civi)

where hp =

It suffices to prove that hp is a well-defined nonzero rational function on
JexJ, then the rest of the proof is the same as in Step 2. However, this naturally
follows from the fact that: for any f rational function on J, (Q, P) — f(Q+ P)
is a well-defined rational function on J x J.

O
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Recall that the condition of Theorem 5.1.1 is that there exists a K-rational
point R € K, and the field of definition of the preimages of R is K (v/a) for some
nonzero a € K. Let Q € J, be a preimage of R € IC,,(K). Consider ¢ = pu(—,Q),
which is defined over K(y/a) as shown in Corollary 5.1.7. By Remark 5.1.8, we
assume [K(Q) : K] = 2 and we need to construct a K-rational function g whose
divisor of zeros and poles is ¢*(Hcy,) + 0(¢*(Heyy)) — 2H,, where H, on J, is
the pull back of some fixed hyperplane section on K., Hey, on Jey, is the pull
back of some fixed hyperplane section on K1, and Gk q)x = {1,0}.

Lemma 5.2.9. If Ggqyx = {1,0}, then

0(P) = Leyy © PO L.

Proof. From the definition of p : Jo X J, = Jeyyy, we get pu(ee(Th), 1n(12)) =
Len(1(Th, Ty)) for any Ty € J. and any T, € J,. Since o(Q) = ¢,(Q), we have

tern © 9 0 Le(T) = tesn(p(ee(T), Q) = (T, 14(Q)) = (T, 0(Q)) = a(P)(T), for
any T' € J..

]

Remark 5.2.10. It is immediate from Lemma 5.2.9 that 0(¢* Hetyy) = 5 (¢*Heyyy).

Corollary 5.2.11. Suppose Ggyx = {1,0}. Let H. = 0 {x, = 0} and
Hepy =05, {ciyn + ... + cays = 0} for ¢; € K not all zero. Define

gl(fEl, PN ,ilf4> = Fe,n(xla Ce ,.1'4;R; C1y... 704).

Then regarding g = ¢' /2% as a K-rational function on J. (via pull-back by 0. ),
we have
div(g) = ¢"Hepy + 0(¢* Hesyy) — 2H..

Proof. The result follows from applying Theorem 5.2.8 with P = ¢,(Q) and
Remark 5.2.10.

]

Now we describe a method for pulling back ¢ via J; e, ICe. This is almost
identical to the discussion in Section 4.2.2, but we still include it here for com-
pleteness.

Recall, by Theorem 1.11.1, we have an explicit isomorphism .J, C P P,
J C P and we let ug, ..., ug, 1, ..., v denote the coordinates of the ambient
space of J. C P, ki1, kia, ..., kus, b1, ..., bg denote the coordinates of the ambi-
ent space of J C P¥. Moreover, ¢, is represented by a block diagonal matrix
consisting of a block of size 10 corresponding to the even basis elements and a
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block of size 6 corresponding to the odd basis elements. By the naive method de-

scribed in Section 3.2, we compute an explicit 1som0rph1sm Ke C P8 Y5 K c P
corresponding to e. More specifically, we know ¢(¢-1)7 = 7., and 9 (717 is
the action of translation by €, € J[2] on K C P? such that (o — ¢,), (0 +— €,)
both represent ¢ € Sel*(.J). By potentially replacing 1. with ¢ such that ¢/~
is the action of translation by some suitable T' € J[2], we can assume €, = €
for any o € G.

_ The isomorphism . : K. C P* = K C P? induces a natural isomorphism
Y : PY — PY. More explicitly, suppose . is represented by the 4 x 4 matrix

AWM@(H:“wM)H(Zi“%@:“.:ZiH%M)I%mmk KiK.
Then . : IP’Q — ]P’g, is given by (K}, : kiy @ .. 0 Kly) — (Z” A Ak
Z” 1 AlZAgjk:Z] D Z” 1 A4iAgjki;). On the other hand, the isomorphism

G J. C ]P’{u wy I C P b, induces a natural isomorphism be P — IP’9
which is simply represented by the 10 x 10 block of the matrix representmg
¢c. Since ¢, = ¢ for all ¢ € G, we actually have ¢ (b)) = e ((de)~1)7.
Therefore, we get (Qﬂg)*lngE defined over K and the following commutative dia-
gram that decomposes the standard diagram (1.6.2):

Pe) oo

g

Joc P T P, P By, "o K C P

F \\N ﬁe (5.2.2)

JCPR b ool KcP},

g

where g1 1 (k11 @ oot kag) = (ki1 oo ki) and go @ (Kyy 0ot Kly) — (K 0
14) are the natural projection maps. The composition of the morphisms on

. . S} ..
the bottom gives the standard morphism J |—2——|> K C P? and the composition

of the morphisms on the top gives J. N K. C P? representing the morphism
induced by [¢F(20)].

We observe the following two remarks.

Remark 5.2.12. From Corollary 5.2.11 and the discussion above, we know
that the K-rational function g constructed in the formula for the Cassels-Tate
pairing is a quotient of two linear forms on J, C P!. Moreover, by the con-
struction for g and the formula for the Cassels-Tate pairing in Theorem 5.1.1,
we note the denominator of g(P,) is a always a square for any P, € J.(K,) and
so we can replace g by its numerator in the computation.

Remark 5.2.13. From the above discussion and diagram (5.2.2), given a point
R € K(K) C P},, we can compute its corresponding image (uo : ... : ug) € P .
Then following the discussion at the end of Section 1.11, we can compute a
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nonzero a € K such that the field of definition of the preimages of R in J, is
K(y/a). Moreover, they are defined over K if and only if K(y/a) = K. The
same result holds when replacing K with K,, for any place v of K.

5.3 Equations Satisfied by Vp

We initially investigated the results in this section as we thought they are needed
in the computation for the Cassels-Tate pairing. However, it turned out that
they are not needed. We still include these results here as they describe some
properties of the (2,2, 2)-form F and might be useful for other related research
questions.

As discussed in Section 1.3.2, the morphism J ﬂ K C P? denotes the map
P — k(P), where k(P) = (ky(P) : ko(P) : k3(P) : ky(P)) € P3 and ky, ..., k4
form a basis for L(©T+07). Fix P € J. We define the image of the morphism
Q— (k(Q), k(P +Q)) in P? x P3:

126] x|} (26)]
Vp=Im|J —— S PP x P3| .

In the special case where P € J[2], we observe Vp = {(k(Q), Mpk(Q)), P €
J}, where Mp € GL4(K) represents the action of translation by P on K C P3.
This implies that Vp = K. In the case where P ¢ J[2], we check that Vp bijects
with J set-theoretically.

In this section, we will study the equations satisfied by Vp as well as the
defining equations of Vp. By the reason above, we are interested in the case
where P ¢ J[2]. We will show how the equations satisfied by Vp are related to
the (2,2, 2)-form F constructed in Lemma 5.2.1.

5.3.1 (i,7)-forms vanishing on Vp

Let 7, j be positive integers and .S;; be the vector space of (i, j)-forms vanishing
on Vp. Consider the following natural linear maps:

Lij : S'L(20) ® ST L(15(20)) — L(2i0 + 75(2j0)),

such that l;;(f ® g) = fg for any f € S'L(20),9 € STL(75(20)). Note that we
let S*V denote the symmetric product of order k of the vector space V.

By Section 1.3.1, we know dim £(2i0) = 4. We compute dim S°L(20) =
("£%). Since 2i0+75(2j0) ~ 74(2(i+4)O) for S € J such that jP = (i+)9, we
get dim £(2i0 + 75(2j0)) = 4(i + j)?. This implies that dim Im{;; < 4(i + j)*
Recall 2n© ~ n(©*+07). By construction, we have dim S;; = dim ker [;; which
implies dim .S;; > (1;3) (j ;3) — 4(i + j)*. Moreover, each of these inequalities is
an equality if and only if the corresponding [;; is surjective. We first quote the
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following lemma.

Lemma 5.3.1. Let P, P, be two points on J. Suppose the theta divisor ©
corresponds to {wo} X C+C x{wo} on C xC with wy a fized choice of Weierstrass
point on C. Consider the following natural map for i,j > 2 positive integers:

L(75,(10)) ® L(7},(0)) = L(75, (i) + 77,(jO)).
We have that
(1) if i >2 orj > 2, then ay; is surjective;

(ii) s is surjective if and only if {R € J[2]: P, — P» € © + R} = 0.

Proof. (i)|BL04, Proposition 7.3.4]. (ii)[PP04, Theorem 5.8]

]

Corollary 5.3.2. Let T = {©,+ R : R € J[2], w is a Weierstrass point}.
dim Sy; = 0 if and only if P ¢ T. In particular, for a general point P € J,
dim 511 =0

Proof. Apply Lemma 5.3.1(ii) in the case P, = Oy and P, = P with a fixed
choice of Weierstrass point wy. We can see P ¢ T if and only if {R € J[2] :
—P € 0,, + R} = 0 which is if and only if /;; is surjective. In this case, I3 is
also injective which implies that dim S1; = dimkerl;; = 0.

Proposition 5.3.3. If dim Si; = 0, then l,,, is surjective which gives

dim S, = (m; 3) (n ;_ 3) — 4(m +n)?,

for all m,n > 1.

Proof. Recall that dim S,,,, = dimker l,,,,,, with [,,,,, defined as
lnn = STL(20) @ STL(TH(20)) — L(2mO + 75(2n0)),
where l,,,,(f ® g) = fg for any f € S™L(20),g € S"L(7/(20)).

By hypothesis dim S;; = 0, this map is surjective when (m,n) = (1,1). Our
claim is that it is surjective for all m,n > 1 and we will prove it by induction.

To prove the result when (m,n) = (i+1, j) given that the result holds when
(m,n) = (i,7), we consider the commutating diagram
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SIL(20) ® SIL(15(20)) ® L£(20) —s SH1IL(20) ® §7L(15(20))

lv llwl)j

L(2i0 + 75(2j0)) ® L£(20) — 2 £(2(i + 1)© + 73(25O))

where h1 2 QYR 2= 22QyY,v: QYR 2z —ry®zand hy : TRy — zy.

We have v surjective by induction hypothesis. To show the surjectivity of
ha, we replace 2i©+75(2j0) by a linearly equivalent divisor (i+j)75(20) where
JjP = (i+j)Q and apply Lemma 5.3.1(i). A diagram chase shows that [;;1; is
surjective as required.

]

Remark 5.3.4. For completeness, we note l,,, is surjective for (m,n) = (0,0), (1, 0)

or (0,1), but not surjective for (m,n) = (d,0) or (0,d) with d > 2.

5.3.2 Partials of the (2, 2, 2)-form F

In this section, we suppose P ¢ J[2] and we will construct 4 linearly indepen-
dent (2,1)-forms and 4 linearly independent (1,2)-forms vanishing on Vp. In
the case where dim .S1; = 0, with criteria given in Corollary 5.3.2, these span
S91 and Si2 by Proposition 5.3.3. We first have the following definition from
[CF96, Chapter 4, Section 0].

Definition 5.3.5. The dual of the Kummer surface K is a quartic surface in
PP3 that parameterizes Pic?(C) modulo the involution induced by the involution
on the genus two curve C. It is denoted by *.

Remark 5.3.6. It is explained in [CF96, Chapter 4, Sections 3 and 4| that *
is in fact the projective dual of K. Recall k(P) = (ki(P) : ... : k4y(P)) € K C P?
for any P € J and the quartic defining equation of K is denoted by G (k1, ..., ky)
as in Section 1.3.2. We therefore define k*(P) = (ki (P) : ... : k}(P)) € K* C P3,
where kf(P) = 0G/0x;(k(P)) and P € J\ J[2].

In Lemma 5.2.1, we constructed explicitly
4
Fla,y,z) = Y bijla,y)zz
ij=1
where the 9;;, defined in Corollary 1.3.7, are (2, 2)-forms satisfying

Vi (k(Q), k(P + Q)) = (P, Q) (ki(P)k;(P + 2Q) + k;(P)k;(P 4+ 2Q)) (5.3.1)
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for all P,@ € J and some rational function ¢(P, @) on J x J independent of
i,j. Note ¢(P, Q) = AN(Q, P+ Q) where X is defined in the beginning of Section
5.2.1. Since Y1, ki(P)k:(P) = 0 for P € J\ J[2], by Lemma 5.2.1, we know
that

F(k(Q), k(P +Q),k*(P)) =0,

forall P e J\ J[2],Q € J.

Let TpJ be the tangent space at P € J. This is a 2-dimensional vector
space defined intrinsically. If the rational map k : J — A% is regular at P, then
it has a well-defined derivative, which is a linear map

dk(P): TpJ — A*
with image contained in the affine cone over Tjp)K C P3. Therefore

4

> (dk(P)(v))ik;(P) =0 (5.3.2)

=1

for all v € TpJ.

We have the following proposition.

Proposition 5.3.7. The 4 (1,2,2)-forms and 4 (2,1, 2)-forms derived from tak-
ing partials of the (2,2,2)-form F with respect to the first and second sets of
coordinates vanish at (k(Q), k(P + Q),k*(P)) for all P € J\ J[2],Q € J.

Proof. Fix Q € J, 1,5 € {1,...,4} and view each side of (5.3.1) as a function of
P € J. The left hand side of the equation, denoted by L(P), is the composition
of the following;:

J 28 gk At Bue, L
where K 292 A maps a = (a1, az, as, as) to V¥ (k(Q), a).
Hence, via taking derivative of L(P) and applying chain rule, we get
dL(P) = d%' Q(k(P +Q)) 0 dk(P + Q) o d7q(P)

Z %ﬁf k(P +Q)) - dk,(P +Q)) o dro(P).
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On the other hand, denote the right hand side of (5.3.1) by R(P). We get

dR(P) = dc(P, Q) (ki(P)k;(P + 2Q) + k;(P)ki(P + 2Q))
+c(P, Q) (k;(P + 2Q)dk;(P) + k;(P + 2Q)dk;(P)
+ ki(P)dk;(P + 2Q)draq(P) + kj(P)dk;(P + 2Q)drag(P)).

By .1, ki(P)k:(P) = 0 and (5.3.2), we deduce that

YD ki(P)k;(P)d =33 K(P)K(P)AR(P)(v) = 0,

i=1 j=1 i=1 j=1

for any v € Tp.J. This implies that 375, Z] ki (P)k;(P)dL(P) : TpJ — A
is the zero map. Since the map k : J — A* is local diffeomorphism around

a general point on J, for general P € J and any w € Tjpig)K, there exists
w' € TpJ such that dk(P + Q) o drg(P)(w') = w. Therefore,

SN KRk Za% KP+Q)) - w

=> D> k(P (P)( %iyf(k@% k(P +Q)) - dk, (P +Q)) o dro(P)(w')

i=1 j=1 r=1

=0.

Hence, we it can be checked that

OF . .
G(k(Q). k(P + QUK (P)) = h(P.QKI(P+ Q) (5.3.3)
where h is a rational function on J x J, independent of r =1,... 4.

To show that the 4 (2,1,2)-forms derived from taking partials of F with
respect to the second sets of coordinates vanish at (k(Q), k(P + @), k*(P)) for
all P, € J, it suffices to show they vanish at (k(Q),k(P + Q),k*(P)) for
general P, () € J. Hence, it suffices to show that A is identically zero. Then
since the (2,2,2)-form F is symmetric in the first two sets of variables, we
obtain .F /dx;(x,y, z) by swapping x and y in OF /0y;(x,y, z). Hence,

OF [0x;(k(Q), k(P + Q), k™ (P))
=0F [0z;i(k(—Q), k(=P — Q),k*(P))
=0F |0y;(k(—P — Q), k(—Q),k*(P))
=0,

which implies the 4 (1,2, 2)-forms also vanish at (k(Q), k(P + @), k*(P)), for
any P,Q € J.
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Suppose that h is nonzero. We will derive a contradiction by fixing P €
J\ J[4] and viewing each side of (5.3.3) as a rational function of Q) € J.

We know {ky, ko, ks, ks} is a basis for L(©T + ©7). Since the defining
equation of K, denoted by G, is a homogeneous quartic polynomial, we get
k¥ = 0G/0k;(ky, ..., ky) € L(30T +307). Now we equate the divisors of zeros
and poles of each side of (5.3.3) we obtain

D, —20"+607) 750" +07)=div(h) + D. - 3715(067 +©0")
where Dy, ..., Dy and D, ..., D} are effective divisors on J. This implies that
div(h) = 2(r5(©0t+0©7) - (01 +©07)) =D, - D’

forall r=1,...,4.

Recall even elements in £(201+4207) are spanned by k;k; withi,j =1, ..., 4
and it can be checked that k; { k) as polynomials for any » = 1,...,4. Writ-
ing kY = kihy1(ky, ko, ks, ka) + heo(ko, ks, k4) with h,; homogeneous polyno-
mial of degree 2 and h,» homogeneous polynomial of degree 3, we get that
klhr,l(/ﬁ, /{32, /{33,/{34> c £(2@+ + 2@_) and hng(kg, ]fg, k4) € £(3®+ + 3@_) \
L(207 +207). Also because h,o(ki1, k2, ks, k4) is even, we know it has a pole
at P € J if and only if it has a pole at —P. This implies that the divi-
sor of poles of h,a(ks, ks, k) is precisely 30" + 30~ and D, is the divisor
of zeros of k. Since the Kummer surface has only 16 singular points and
points on the common components of D! are singular points by definition. We
deduce that the divisors D, ..., D} have no common components. This im-
plies that div(h) — 2(75(0F + ©7) — (©F + ©7)) is effective. By Remark
1.2.2, we know div(h) — 2(75(©F + ©7) — (O + ©7)) is algebraically equiv-
alent to zero, and hence numerically equivalent to zero. Therefore, div(h) =
2(H(OT+607) = (0T +607)) ~ 75(40) — 40, which contradicts with P ¢ J[4].

O

Remark 5.3.8. Let x = (z1,...,24),y = (y1,...,44). For P € J\ J[2], let
k*(P) = (k1 (P),...,k;(P)) and define Fp(x,y) = F(z,y, k*(P)). Then Fp(z,y)
is a (2,2)-form vanishing on Vp. By Proposition 5.3.7, its partial derivatives,
which are 4 linearly independent (2, 1)-forms and 4 linearly independent (1, 2)-
forms, also vanish on Vp.

5.3.3 Defining equations of Vp

It would be interesting to determine the bi-degrees of a set of polynomials
sufficient to define Vp set-theoretically. We give an answer in the next lemma
in the case dim .S;; = 0.

Lemma 5.3.9. If dim Sy, = 0, then Vp is defined by (2,2)-forms.
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Proof. Let fi,..., fs and g1,..., g4 be bases for £(20) and L(75(20)) respec-
tively. Then the 16 elements f;g; € £(20 + 75(20)) are linearly independent
by our assumption dimS;; = 0. For ¢Q € J such that P = 2@, we have
20 + 75(20) ~ 75(40). Via the commutating diagram

; I5(40)| pis

|2®|Xln*>®\ %

P3 x P3

and the fact that J C P! is defined by quadratic forms by [Mum69, Theorem
10], we deduce that Vp C P? x P3 is defined by (2,2)-forms.

O

A further question would be to determine the bi-degrees of a generating set
for the bi-homogeneous ideal I(Vp) C K[xy,...,24;91,.-.,ys4]. However, we
will not address it in this thesis.

5.4 Prime Bound

In this section, we show that the formula for the Cassels-Tate pairing in The-
orem 5.1.1 is always a finite product. Moreover, there exists a computable
bound for each pair of Selmer elements (e,7) such that for a place of K whose
norm is a power of a prime above the bound, the local Cassels-Tate pairing
between € and 7 is trivial, as mentioned in Remark 5.1.2. The argument is
very similar to Section 4.4 and we have S = {places of bad reduction for C} U
{places dividing 2} U {infinite places}.

Recall we assume K, the twisted Kummer surface corresponding to 7, has
a K-rational point R. There exists a computable nonzero a € K, such that the
field of definition of the preimages of R on J, is K(y/a) as explained in Section
1.11. As discussed in Remark 5.1.8, {(e,n)cr is trivial if K(y/a) = K. Suppose
K(y/a) is a quadratic extension of K. By Corollary 5.2.11, we can compute a
rational function g on J., which is a quotient of two linear forms denoted by
li,l5 on J. C P¥ as discussed in Remark 5.2.12, such that

<€7 77>C’T = H(g(Pv)v a)v~
Recall that (, ), denotes the Hilbert Symbol for a given place v of K and P,
is any local point on .J. avoiding the zeros and poles of g. By Lemma 1.4.18, it
suffices to find a finite set S, a set of places of K containing S, such that both
arguments of the Hilbert symbol in the formula for (e, n)cr have valuation 0 for
any v ¢ S;. Hence, it suffices to choose a subset S; that contains the places of
K that divide a and solves Problem 4.4.1 in the case n = 2.
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Suppose (ay, ..., as) represents the image of € in L*/(L*)?K* with L =
K|[z]/(f) as described in Section 1.10.1. By Theorem 1.11.1, we have an explicit
formula for the linear isomorphism ¢,

J. CP® % P,

which is defined over K" = L;(y/ay, ..., 1/Gs) With L; denoting the splitting field
of f. Let M, € GLjs(K’) represent ¢.. We can assume all entries of M, are in
Ok, the ring of integers of K'.

By bounding the number of points on the reduction of J,, using the same ar-
gument in Section 4.4.2, we know that we can take S = {places of bad reduction
for C}U{places dividing 2}U{infinite places}U{places dividing a}U{places that
divide N, i (det M) }U{places dividing all the coefficients of I, or I,}U{places
above primes less than N'}. Here N’ is a natural number such that any x > N’
we have (r—1—44/x)(z—3—4y/x)/2 > 64(x+1). In fact, we can take N’ = 300.
Note, as in Remark 4.4.6, we require f to be defined over O and all entries of
Me in OK/.

Remark 5.4.1. We make the same three remarks as in Remark 4.4.7 on some
practical issues.

5.5 Algorithm and Worked Example

In this section, we describe an algorithm for computing (¢, n)cr for €, 1 € Sel*(J)
using the formula in Theorem 5.1.1. Recall, we assume the twisted Kummer
surface K, has a K-rational point. We also present a worked example that
shows the improvement of the rank bound using the Cassels-Tate pairing.

5.5.1 Description of the algorithm

In this section, we describe an algorithm for computing the Cassels-Tate pairing
{e,n)cr for €,m € Sel*(J), using the formula in Theorem 5.1.1. Here we assume
that the twisted Kummer surface K, has a K-rational point. Note that this al-
gorithm in theory works over any number field but we only computed examples
in the case K = Q.

We start with a genus two curve C with the following defining equation which
we can assume to be defined over Ok by rescaling y:

C:y” = f(z) = fer + f52° + fax' + fs2® + for + fiz + fo.
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e Step 1: For €,n € Sel?(.J), compute their representations (91, n1), (02, n2),
where 01,0, € L*, n? = N(6,),n2 = N(d2) with L = K[z]/(f) as in Re-
mark 1.10.6. Recall Remark 3.2.8 for computing d;, o and we assume X,
has a K-rational point.

e Step 2: Apply the naive method described in Section 3.2 to compute the
linear isomorphism 1, : K, € P* — K C P? which is represented by a
matrix N,.

e Step 3: Compute G, the defining equation for K, using v, from Step
2. Then search for a K-rational point R on K, using the PointSearch
function in MAGMA.

e Step 4: Compute the linear isomorphism .J, C P¥ LN N 2 given
in Theorem 1.11.1. Note, here we potentially need to replace 1), by the
linear map represented by MpN, for some T' € J[2] such that (o —
dn(071)7), (0 = Py(1h;")7) give the same cocycle for 7. Explicit formula
for My for T € J[2] is in Lemma 3.2.1.

e Step 5: Compute nonzero a € K such that the field of definition of the
preimages of R in J, is K(y/a) via Remark 5.2.13.

The rest of the algorithm is under the assumption that K(y/a) # K. Else,
{e,n)cr is trivial for any e € Sel®(.J) as discussed in Remark 5.1.8.

e Step 6: Compute the isomorphisms ¢, 1. and the defining equation G,
for IC. similarly as above.

e Step 7: Compute ey, similarly. Suppose ¥c(¥7')7, 1y, (¢; ") represent
the action of translation by €,,7,. We require e, (¢ Jrln)" to represent
the action of translation by €, 4+ 7,. This implies that the computed ¢,
potentially differs from the one we want by composition of Mz for some
T € J[2]. Recall My represents the translation by 7" € J[2] on K and we
have explicit formulae for them as in Lemma 3.2.1.

e Step 8: Compute the (2,2,2)-form F as constructed in Lemma 5.2.1.
Then compute F, via the linear isomorphisms ), . and 1., as defined
in Section 5.2.2.

e Step 9: Compute the K-rational function g on J. with formula stated in
Corollary 5.2.11 via the method explained at the end of Section 5.2.3.
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e Step 10: Compute the bound N, € N such that any finite place v of K
above any prime bigger than N ,, the local Cassels-Tate pairing between
¢ and 7 using the formula in Theorem 5.1.1 is trivial. This is explained in
detail in Section 5.4.

e Step 11: For any place v of K that is above a prime less than the number
N, computed in Step 10, find a local point P, on J avoiding the zeros
and poles of the rational function g computed in Step 9.

e Step 12: Compute (¢, n)cr via the formula in Theorem 5.1.1.

Remark 5.5.1.

(i) In practice, we probably would not know whether or not K, has a K-
rational point before running the first 3 steps in the above algorithm. So
we only proceed to the later steps if the point search on K, is successful.

(ii) For the cocycle condition in Step 7, instead of checking the cocycle condi-
tion for all 16 choices, we only need to check those such that F, is defined
over K by Proposition 5.2.4. In particular, there is no need to check any
cocycle if there is only one 7' € J[2] such that the twisted (2,2,2)-form
corresponding to My o 9y, is defined over K.

(iii) Recall, from Corollary 5.2.11, we know g on J, is defined as the pull back
of a rational function on k.. In practice, we need not pull back this ra-
tional function to J.. Instead, we just evaluate it on a local point on /C,
avoiding the zeros and poles. Note we require that the local point on /C,
does lift to a local point on J., which we can check via Remark 5.2.13.

5.5.2 Worked example

Now we demonstrate the algorithm described in Section 5.5.1 with an example.
In particular, we will see with this example, that computing the Cassels-Tate
pairing on Sel*(J) does improve the rank bound obtained via a 2-descent.

We consider the genus two curve

C:y*=f(z) =20+ 1)@ -5)(" +1),
and define L = Q[z]/(f).

Note that here f has a rational root, which implies that each Selmer element
is represented by its image in L*/(L*)*Q* by Remark 1.10.6.
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e We pick ¢, € Sel?(.J) such that the image of € in L*/(L*)?Q* is repre-
sented by —52/313x°+261/3132* —52/313x+574/313 and the image of n
in L*/(L*)*Q" is represented by —42/313x5+271/313x* — 23 +271/313z —
42/313, as given by MAGMA.

e We compute the defining equation G, for K, as below

G, = 709888z} — 53875522 w9 — 278204873 w3 — 2113024z 24
+ 1533040025 25 + 158415043:31-2953 + 1202523222 2914 + 410560023 23
+ 621256027 w374 + 23581927727 — 19384936275 — 3006383271 7573
— 22808272x1x3x4 — 15593112x1x2x3 — 2357996811923,
— 89455047 2927 — 27064087175 — 61144162 2514 — 462368011 1375
— 1169504z 5 + 919052975 + 190156762573 + 14417956251,
+ 148039827523 + 223715485374 + 848210852 + 51427327075
+ 1160972429757, + 8773336297375 + 221782479775 + 67308175
+ 2016260z524 + 22762047527 + 1146880325 + 2174647

We get a rational point R =(3:0:0:4) on K, and a = —1 where the
field of definition of the preimages of R in J, is Q(y/a).

e We compute the defining equation G, for I, as below

G, = 30380478021 + 331641136252, + 34618533655 + 125445776151,
+ 135762832m1x2 + 28345435242 1T + 102705200x1$2x4
+ 1479496487773 + 10721050407 w374 + 194283762727 + 247012487, 75
+ 773648962 2373 + 280294087 2324 + 807674642 197
+ 5852224021 797374 + 106043362, 2977 + 2810579671 75
+ 3054612871 7514 + 1106965621 1375 + 13375842125 + 168537625
+ 7038688x5w3 + 25498887574 + 110231762525 + 7986400257374
+ 1447024x2x4 + 7672336x2x3 + 8337736x2x3x4 + 3021264x2x3x4
+ 3650402927 + 200247723 + 2901428z5 74 + 15769927525
+ 381064z3775 + 345402

We compute the rational function g with formula stated in Corollary 5.2.11
and (c1,co,c3,¢4) = (1,0,0,0), viewed as a rational function on /C,:



5.5. Algorithm and Worked Example 153

g = (—8674722% — ATATE27, 75 — 4888967173 — 1776327124 — 6495275
— 133780x573 — 486007574 — 6888123 — 500642374 — 909277) /27

e We include some local Cassels-Tate pairing computations. For a place v,

we represent a local point on K. (Q,) such that the first three coordinates
are exact and we give enough precision or decimal places for the last coor-
dinate to pin down a unique point on K. (Q,). For a place v, we represent

g(P,),a as elements in Q*/(Q})%.

places v local points P, on /. g(Py) | a | (9(Py),a),
2 (31:1:18:5+ 0(2%)) -1 | -1 ~1
3 (17/9:14: 26 : 1/3 + O(3%)) 1 | -1 |
313 | (159-3132:240:170: 189+ O(313)) | 1 | —1 1
00 (6:—15:—4:—-7.70...) 1 -1 1

e Following the discussion at the end of Section 5.4 and Remark 4.4.7, we

have the following primes that potentially contribute to (e, n)cr:

— Prime 2;
— Primes of bad reduction of the genus two curve C: 2, 3, 313;

— Primes arise from M, denoted by S’ in Remark 4.4.7(ii): 2, 3, 5, 19,
31, 113, 313;

— Primes below 300.

It turns out that the only place where the local Cassels-Tate pairing be-
tween e and 7 is nontrivial is 2 and so (¢, n)cr = —1.

Remark 5.5.2.

(i)

As discussed in Remark 4.4.7, we probably have computed the local
Cassels-Tate pairing for more primes than needed. We also suspect that
via some suitable minimization and reduction techniques, we can simplify
the set of primes that potentially contribute to (¢,n)cr. However, this
does not have much effect on the computation as the local Cassels-Tate
paring is fast to compute, even for very large primes.

We list a few sanity checks throughout the computation. We verified that
all the defining equations of the twisted Kummer surfaces and the twisted
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(2,2,2) forms are indeed defined over Q. For each local Cassels-Tate pair-
ing computations, we computed 100 local points at random and verified
that these local points all give the same value of the local pairing.

Note that in this example, |Sel*(J)| = 2% and |J(Q)[2]| = 2' which implies
that |ker(, )or| > 2' . On the other hand, we note that C has a rational point
(—1,0). This implies the Cassels-Tate pairing on Sel®(.J) x Sel®(J) is in fact
alternating by Lemma 1.8.3. Since (¢,n)cr = —1, we get |ker( , )or| < 2%
Therefore, we deduce that | ker(, )or| = 2.

Recall in Remark 1.9.4(i), we showed that we can potentially improve the
rank bound from a descent calculation via computing the Cassels-Tate pair-
ing as J(K)/2(J(K)) C ker (, Yer C Sel?(J). This is indeed true and in this
example, we improve the rank bound from 27 < |Sel*(J)|/|J(K)[2]] = 22 to
2" < |ker (, Yor|/|J(K)[2]] = 2°. Therefore, we not only improved the rank
bound but also proved that the rank of this particular Jacobian variety is in
fact equal to 0.
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Chapter 6

Improving the Algorithm Using
the Flex Algebra

Throughout this chapter, we let J denote the Jacobian variety of a genus two
curve C defined by y? = f(x) where f is a degree 6 polynomial with coefficients
in K and A(f) # 0. In Section 5.5.1, we described an algorithm for computing
the Cassels-Tate pairing on Sel®(.J) x Sel?(.J). More explicitly, for €, € Sel*(.J),
we computed (€, n)cr using the formula in Theorem 5.1.1 and Corollary 5.2.11.
Recall that we need to be under the assumption that the twisted Kummer C,
has a K-rational point. In the original algorithm, we used the naive method de-
scribed in Section 3.2 to compute v, : K. — K corresponding to € and used the
explicit isomorphism given in Theorem 1.11.1 to compute ¢ : J. — J, where
(Je, [2]0 ) is the 2-covering of J corresponding to e. Recall such v, are precisely
the linear isomorphisms IC. — K that preserve the action of J[2], as shown in
Lemma 3.2.2. By the field of definition of the formula for ¢. given in Theorem
1.11.1 and the naive method described in Section 3.2, the explicit computation
related to e for the Cassels-Tate pairing was done over Ly = Li(\/ar, ..., 1/Gs)-
Here L; denotes the splitting field of f(z) and (aq, ..., ag) represents the image
of € in L*/(L*)?K* under the natural isomorphism L = K% with L = K[z]/(f),
as described in Section 1.10.1. In this chapter, we will improve this algorithm
by using the flex algebra method described in Section 3.3, in the general case.
The advantage of this method is that we will be working over a smaller number
field. Note that in Section 6.2.1, we will give a precise definition of what we
mean by the general case.

6.1 Twist of the Desingularized Kummer Surface

Recall in Sections 1.2.5 and 1.3.4, we denote the desingularized Kummer surface
by S and its embedding in P? is defined to be the locus of (py : ... : ps) for which
P(x)? is congruent to a quadratic in z modulo f(z), where P(z) = Z?:o pjal.
We also showed that the projection of J C ]P’%Zij’bi} — IP5 onto the 6 odd coor-
dinates by, ..., bg is isomorphic to § with the explicit linear isomorphism given
in Proposition 1.3.8. In this section, we study the twist of S corresponding to

an element in Sel®(.J).
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Remark 6.1.1. We know that points of J[2] act on K by translation. Since S
is the desingularization of K and the action of J[2] preserves the set of singular
points on K, translation by points of J[2] on S is defined to be the unique
extension of the translation by points of J[2] on K. In particular, we have the
commutative diagram:

S —— S
blow—upl lblaw—up
KM

Y

where Mp represents the translation of P € J[2] on K and the blow-up mor-
phism § — K has explicit formula given in Remark 1.3.9. The unique morphism
S — S that makes this diagram commute is the action of 7p on S.

6.1.1 Twisted desingularized Kummer

Fix e € Sel?(J) for the Jacobian variety J of C. We say S, is the twist of S
corresponding to € if S, is a variety defined over K and there exists an isomor-
phism ¥ : S, — S defined over K such that W(¥~1)? is the action of ¢, € J[2]
on S and (0 — ¢€,) is a cocycle representing e.

We now follow [FTvL.12, Chapter 4] and give an explicit description of the
twisted desingularized Kummer surface S, corresponding to e. It is also the

desingularization of the twisted Kummer /C, as discussed at the end of Chapter
7 of [FTvL12).

Suppose the image of € in L*/(L*)2K* is represented by § € L* as described
in Section 1.10.1. Then the embedding of S, in P° is defined to be the locus
of (po : ... : ps) for which §P(z)? is congruent to a quadratic in x modulo f(z)

where P(x) = Z?:o P

6.1.2 Explicit twist map of the desingularized Kummer

Let (J., [2]o¢.) denote the 2-covering of .J corresponding to € € Sel®(.J) for some
isomorphism ¢, : J. — J. By the definitions of & and its twist S, embedded in
P, we quote the following natural twist map corresponding to € as described in
[FTvI.12, Proposition 4.1, Corollary 4.2].

Lemma 6.1.2. Suppose € € Sel’(.J) is represented by (6,n) as in Remark 1.10.6,
where § € L* represents the image of € in L* /(L*)?K*. Let ¢ € L* satisfy (> = 0
and N(¢) = n. Then we have the following linear isomorphism corresponding
to the twist by e:



6.2. Computation over the Flex Algebra 157

S.CP’ =S cP
that sends (po : ... : ps) — (p} : ... : ps) where ( - Z?:()pjxj = Z?:o p;-xj cL.

Remark 6.1.3. In this remark, we give more details to the explicit construc-
tion of the linear isomorphism ¢, : J, C Piil vy J C P%Zijybi} corresponding to
€ described in Theorem 1.11.1 and Remark 1.11.2. Recall that ¢, is represented
by [gl g} with some A € GLo(K) and B € GLg(K). In fact, following the
proof in [F'TvL12], the matrix B, under the change of basis described in Propo-
sition 1.3.8, precisely represents the multiplication by ¢ € L as constructed in
Lemma 6.1.2, for the ¢ that is in the construction for ¢..

6.2 Computation over the Flex Algebra

In this section, we fix ¢ € Sel®(J) and (J.,[2] o &) the 2-covering of J cor-
responding to e for some isomorphism ¢, : J. — J. In particular, Theorem
1.11.1 constructs such isomorphism where we embed J, in P! with a set of
Galois invariant coordinates wy, ..., ug, 1, ..., vg and embed J in P! with the
standard coordinates ki1, k1o, .., k44, b1, ..., bg. Moreover, by Remark 1.11.2; we
know such ¢, : J. C }P’%ii’vi} —J C P%Zijybi} is represented by {61 B
A € GLyo(K) and B € GLg(K). We will describe a method for computing
the isomorphism ¢, over a field that is smaller than what is required in the
method for computing ¢. via the explicit formula in Theorem 1.11.1. Here, we
require that the action of the Galois group G on the corresponding J[2]-torsor
is general and we make this assumption precise in Section 6.2.1.

] with some

6.2.1 Galois action on J[2|-torsors

Recall in Section 1.7.2, we described the Galois action on J[2] using symplectic
group Sp,(Fs) and viewing J[2] as a Fa-vector space of dimension 4. In Lemma
1.7.7(i), we showed Sp,(Fs) = Sg. In this section, we study the Galois action
on ¢ 1(J[2]), using the affine symplectic group ASp,(F3), which is defined as

ASp,(Fy) = {F; ERN F5 : f(x) = Az + b for some A € Sp,(Fy),b € F3},
and we have a natural short exact sequence

0 — F3 — ASp,(Fy) — Sp,(Fy) — 0. (6.2.1)

As explained in Remark 3.3.11, ¢_!(J[2]) is a J[2]-torsor corresponding to
¢ € Sel*(J), which is a zero-dimensional variety defined over K. Hence, o € G
induces an automorphism of it. Via the isomorphism ¢, : J. — J, this induces
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an automorphism of J[2] that is ¢. 0o 0 0 ¢! = 7., 0 0, where ¢.(¢71)7 = 7.,
and (o — €,) is a cocycle representation for €. This implies the action of G
on ¢_'(J[2]) corresponds to elements in ASp,(Fs). In particular, this induces
a group homomorphism G = ASp,(Fy) as 7(0(P) + ¢,) + €, = 70(P) + €74
for every P € J[2|, 0,7 € Gk. Let M denote the smallest field over which
all points in ¢ '(J[2]) are defined. We know ker v = G and hence v induces
an injective group homomorphism Gy — ASp,(F2). We have the following
proposition.

Proposition 6.2.1. Gx = ASp,(Fy) is surjective if and only if
(i) Gal(f) = Se;
(ii) K(P) is a degree 16 extension of K for any P € ¢-(J[2]).

Proof. Suppose v is surjective. By the short exact sequence (6.2.1), we know
Gx — Spy(Fq) is surjective. Hence, by Lemma 1.7.7(ii), we know (i) holds.
Since the action of G is transitive on ¢_'(J[2]), we get (ii).

Suppose (i) (ii) both hold and P € ¢ *(J[2]). By potentially composing ¢,
with a translation by a two-torsion point on J, we can assume ¢.(P) = O,.
The action of Gy on ¢;'(J[2]) has one orbit and Stabg,,,, (P) = Spy(F2).
Hence, by the orbit-stabilizer theorem, we have |G| = |ASp,(F2)|. Since
Gumyx = Imv, we get v is surjective as required.

]

Remark 6.2.2. Suppose v is surjective. Then Gyyx = Imv = ASp,(F,) by
the first isomorphism theorem. Recall we denote the splitting field of f by L,
and G, is the kernel of G — Sp,(F2) induced by the action of Gk on J[2].
This implies, by the exact sequence (6.2.1) and kerv = Gy, that Gy C Gy,
and so L is a sub-extension of M. By the tower law of field extensions and
Proposition 6.2.1(i), we get |Gyr,| = 16. Since any o € G/, acts trivially
on J[2], v induces a group homomorphism G/, — ASp,(Fs):

O Te,.

Since the above map is injective, a size count shows that the map o € Gy, —
€, is sujective on J[2]. This implies that all points in ¢ !(J[2]) are in fact
conjugate to each other over L;. Moreover, via the above discussion we can
interpret the exact sequence (6.2.1) as

0— GM/Ll — GM/K — GL1/K — 0.

In the following proposition, we prove more results under the assumption
that G - ASp,(F,) is surjective.
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Proposition 6.2.3. Suppose G = ASp,(Fy) is surjective. Suppose P €
d-1(J[2]). Then we have the following.

(1) P is the unique point in ¢-'(J[2]) that is defined over K(P).

(ii) There is no field Fy such that K C Fy C K(P).

Proof. Note by potentially composing ¢, with a translation by a two-torsion
point on J, we can assume ¢.(P) = O;. We know Gy = Imv = ASp,(Fs).
Consider the action of Gk on ¢ (J[2]). We know Gpr/x(p) = Stabg,, . P-
Since ¢.(P) = O; which is defined over K, the induced action of Gy/kp) on
J[2] gives Sp,(Fy). But the only fixed point of Sp,(Fs) is 0 as Sp,(Fs) acts
transitively on F3 \ {0}, which gives (i).

Suppose there exists Fy such that K C Fy C K(P). Then Galy k) =
Spy(F2) € Galyym, © Galyyx = ASpy(Fo). However, we observe that Spy(Fs)

=

is a maximal subgroup in ASp,(Fs). This is because suppose we have Sp,(F2) C
H C ASp,(F;), then H NTF} # 0 which implies F§ C H as Sp,(Fs) acts transi-
tively on F3\ {0}, and therefore H = ASp,(F5). Hence, we have a contradiction

which proves (ii).

]

For ¢ € Sel?(.J), we say we are in the general case when the corresponding
homomorphism G x <> ASp,(FF,) defined at the start of this section is surjective.
From now on, we always assume we are in this case and therefore we have the
statements (i) and (ii) in Proposition 6.2.3. Note that we make this assumption
so that the étale algebras considered below are always fields. This simplifies
some of the arguments.

6.2.2 Twist of J over the flex algebra

Let F denote the flex algebra of € as defined in Definition 3.3.12. We view
F as the étale algebra Mapy(¢-(J[2]), K) by Lemma 3.3.13. By Proposi-
tion 6.2.1(ii), we know that F' is isomorphic to an extension of K of degree 16
and we fix an embedding of F in K. This implies that F' = K(P) for some
P € ¢ '(J[2]). Recall the flex algebra method in Section 3.3 gives a linear
isomorphism 1, : K. C P? — K C P? corresponding to € and defined over F.
Now fix K. as a subvariety in P?. By Lemma 3.2.2, we know that there are
precisely 16 choices of linear isomorphisms K, C P? — K C P? that correspond
to €, namely Mp o ¢, for P € J[2]. Note here Mp represents the the action
of translation by P on K. By the assumption Gal(f) = S, we know the 16
linear isomorphisms K, C P> — K C P? corresponding to € give rise to the 16
different cocycles for €. On the other hand, we know the 16 singular points on
K. are Galois conjugates over Ly, the splitting field of f, as discussed in Remark
6.2.2. Hence, there exists oy, ...,016 € G, such that oy(1,), ..., 016(1) are the
16 different linear isomorphisms K, C P? — K C P? corresponding to €, each
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is defined over o;(F') and gives a different cocycle for e. Since € is not trivial,
o;(F) is in fact the field of definition of ¢;(1).) by Proposition 6.2.3(ii). Recall,
we assume we are in the general case.

Suppose € is represented by (d,n) with § € L* representing the image of €
in L*/(L*)?K* and N(§) = n? as in Remark 1.10.6. In this section, we will
describe a method that computes a linear isomorphism ¢, : J. C P — J Cc P¥?
corresponding to € over F', in the general case. We will need to show that there
exists a computable linear isomorphism S, C P° — S C P® corresponding to e
that is defined over F' and constructed as in Lemma 6.1.2. Since there exists
an element in ¢ *(J[2]) defined over F, we know e is trivial in H'(GF, J[2])
and so § € (L%)?F* where Lp = L ® F = Flz]/(f). This implies that there
exist A € [*, 8 € L% such that A\3? = §. We note the multiplication by 3 gives
the same morphism S, € P> — & C P% as the multiplication by v A3. More
work needs to be done in order to further satisfy the condition N(vA3) = n as
required by Lemma 6.1.2.

First, recall the explicit construction of the twist described in Theorem 1.11.1
and Remark 1.11.2. We note the following choices made in the construction.
We need to pick ¢ € L satisfying (2 = 6 with N(¢) = n. Observe the ex-
tra condition that the diagonal entries of T}, as defined in Remark 1.11.2, are
nonzero is automatically satisfied as we are in the general case. We now prove
the following properties of the linear isomorphisms constructed as in Theorem
1.11.1 and Remark 1.11.2.

Note that in this section, by Hilbert’s Theorem 90, any matrix representa-
tion for a linear morphism between projective spaces is assumed to be defined
over the field of definition of the morphism, unless stated otherwise.

Proposition 6.2.4. Under the assumptions in this section, the following state-
ments hold:

(i) Suppose ¢, : J. C P — J C P is an isomorphism corresponding to €
and constructed as in Theorem 1.11.1, then o(¢.) is also an isomorphism
corresponding to € and constructed as in Theorem 1.11.1, for any o € Gp,.

(ii) For any cocycle (o +— €,) representing €, there exists an isomorphism
¢+ J. C P — J C PY corresponding to € and constructed as in Theo-
rem 1.11.1 such that ¢p.(¢p.1)° = 7,.

(111) Suppose an isomorphism ¢. : J. C P¥ — J C P corresponding to € is

0 . _
0 B}’ with some A € GLyo(K)
and B € GLg(K). The field of definition of A is F if and only if the field
of definition of B s F.

represented by a matrixz in the form of {
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Proof. From the explicit construction described in Remark 1.11.2, it can be
checked that the only effect of the action of o € GG, is potentially the change of
the value of ¢(w;) to the other square root of §(w;) while keeping [0_, ¢(w;) = n,
where wy, ..., wg are the roots of f. Hence, o(¢.) : J. C P¥ — J C P¥ is also
an linear isomorphism corresponding to € and constructed as in Theorem 1.11.1
which proves (i).

Let ¢ : J. C P — J C P be an isomorphism constructed as in Theorem
1.11.1 and ¢.(¢;')7 = 7., with (6 — €,) a cocycle representing €. Suppose
(o +— €.) is another cocycle representing e. By the argument at the start of
Section 6.2.2, there exists ¥, : K. C P> — K C P3 such that v.(¢71)7 is the
action of ¢, on K C P? and there exists 7 € G, such that 7(1) gives the
cocycle (o + €.). It can be checked that 7(¢) also gives the cocycle (o +— €!)
and it is indeed constructed as in Theorem 1.11.1 by (i). This proves (ii).

Lastly, there are only 16 choices of linear isomorphisms J, C P% — J C P¥
corresponding to € by Remark 1.5.9 which implies ¢, is defined over a degree
16 extension of K. If the field of definition of A is a degree 16 extension F' of
K, then the field of definition of ¢, is equal to F' and so B is also defined over
F. Since € is not trivial and by assumption there is no nontrivial subfield of F',
we know the field of definition of B is F'. The same argument proves the other

direction which then proves (iii)
[

We now show that there exists a computable linear isomorphism S, C P5 —
S C PP corresponding to € that is defined over F' and constructed as in Lemma
6.1.2.

Recall there exists 9. : K. C P2 — K C P3 corresponding to ¢ with the field
of definition being F. Suppose we have K and K. both embedded in P? with
Galois invariant coordinates ky, ..., ks and ki, ..., kf, respectively. Let k;; = k;k;
and kj; = kjk%. We can also embed K, K, in IP’%M and P}, respectively and let

: i
A. € GLyo(F) represent the linear map K, C PY, — K C Piij induced by ..
ij
By Proposition 6.2.4(ii), there exits an isomorphism ¢, : J, C IP’E; oy = J C
P}iﬁ,bi} corresponding to € constructed as in Theorem 1.11.1 and give the same

cocycle as the one given by 1).. Suppose it is represented by M, = {Ig g} . By

the following commutative diagram

15 Proj  mo . D9
J. C ]P’{ui’vi} > P, 5 Pk;j
J# s A
15 Proj  mo
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we deduce A7'A, is defined over K. Hence, the field of definition of A is F
and so the field of definition of B is also F' by Proposition 6.2.4(iii). By Re-
mark 6.1.3, we know that there exits ¢ € L such that N(¢) = n, (2 = § and
the linear isomorphism S, C P° — & C P° induced by the multiplication by
( is defined over F. Hence, let Ly denote L ® F' = F[z|/(f) and there exists
B € L% such that A3 = ¢ for some A\ € F and N(v/A3) = n. We note that
N(V/AB) is independent of the choice of square root of A and the multiplica-
tion by ( is the same isomorphism S, C P° — & C P% as the multiplication by 3.

Suppose we have computed some 3 € L} such that A3? = § for some A\ € F
and N(vVAB) = n. Let B. € GLg(F) represent S, € P} — S C P) which
is the composition of the linear isomorphism S, C P° 5'S C P5 that is the
multiplication by S which is defined over F' corresponding to the twist by €
as described above, and the linear change of coordinates given in Proposition
1.3.8. Note here we let b}, ..., by denote the coordinates of the ambient space of
S, that are Galois invariant. We have the following proposition.

Proposition 6.2.5. Embed J. in P with Galois invariant coordinates k', ks,
oy Ky, Uy b, There exists a unique t € F such that the matriz

A0
Mﬁ_[o tBJ

represents a twist J. C ]P’%i,_ s J C IP’%Z,J, bi} that is corresponding to € and
i5%% 17,97
defined over F.

Proof. By the definition of # in the construction of B,, we know there exists
an isomorphism ¢, : J, C PP y = J C P%ZM »y constructed by ¢ = VB in

{ui7vi

Theorem 1.11.1. Hence, ¢, is represented by [gl g] , with some A € GL1o(K)

and B € GLg(K). Moreover, via a change of coordinates between by, ..., bg
and vy, ...,vg over K given in Proposition 1.3.8, we have B = B, projectively.
Since the field of definition of B, is F', the field of definition of A is also F' by
Proposition 6.2.4(iii). Hence, by the argument at the beginning of Section 6.2.2,
A(AZH? = A(A7Y) for all ¢ € Gg. Since both kiy, Ko, ..., ki and ug, ..., ug
are Galois invariant, we know the linear change of coordinates between them
is defined over K. So via this change of coordinates, A. = A projectively and
A = t; A, for some t; € F. Similarly, B = t3B. for some t, € F. Hence,
t = ty/t; € F satisfies the proposition and is unique.

]

From the proposition above, we can and will always assume we embed J,
in P'® with Galois invariant coordinates ki, kio..., ki, 0}, ..., 5. We also know
that to compute the twist map J, C Pl{z;,,b;} —JC ]P’%Zmbi}, it remains to find
the value of t € F' as in Proposition 6.2.5. Because we can always apply a
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change of coordinates of J, over K, it will suffice to find the value of t € F' up
to multiplication by an element in K.

Remark 6.2.6. By Remark 1.3.3, we know there are 21 equations vanishing on
J of the form b;b; = g;;(ku, ..., k1), where g;; are quartic forms with coefficients in
K. Applying A, and B, gives a 21-dimensional F-vector space V of polynomials
with coefficients in F. By linear algebra, there exists a unique polynomial in
V of the form b —h(ky, ..., k4) where h is a homogeneous polynomial of degree 4.

Now we prove the following lemma and corollary on computing the value of
t € F as in Proposition 6.2.5 up to scalar multiples in K.

Lemma 6.2.7. There exist \,u € F and hy, defined over K such that h =
Ay + pGe where h is a homogeneous polynomial of degree 4 defined in Remark
6.2.6 and G, is the defining equation of the twisted Kummer K, C P3,. More-

over, A = M A3 where \; € K, \y € F and )\, is unique up to squares in K. In
particular, suppose R € K. is defined over K and let () denote a preimage of R

via the double cover J. C P}Z%?b;} N e Pi;- Suppose hi(R) = h(R) # 0. We

have K(Q) = K(y/A1h1(R)) and Q is defined over K if and only if \yhi(R) is
a square i K.

Proof. By Proposition 6.2.5 and Theorem 1.11.1, we know that b2 = g(k1, ..., k})
where ¢ is homogeneous polynomial of degree 4 and the coefficients of g are de-
fined over K. We observe h(k},...,k}) = t?g(k}, ..., k}) on K. with ¢ defined in
Proposition 6.2.5. Hence, t%h — ¢ is a degree 4 polynomial vanishing on /..
Since the defining equation of IC., denoted by G, is a irreducible polynomial of
degree 4, we get t%h — g is equal to G, up to scalar multiples in F'. Therefore,
h = Ahy + uG, for some A\, € F and hy defined over K.

By the argument above, we have t%()\hl + nGe) — g is equal to G, up to
scalar multiples in F'. So t%)xhl = g on K, which implies that hy/g is a constant
function on K, defined over K. Hence t%/\ € K which implies A = A\ \3 for some
A € K, )y € F. If we also have A = M| \% for some other \] € K, \, € F, then
A1/A] € K is a square in F. This implies A\; /)] is a square in K as required, as
otherwise we get a quadratic sub-extension of K in F' which contradicts Propo-
sition 6.2.3(ii).

Finally suppose R € K, C Pi; is defined over K and ) € J. C P}{Z;,,b;} is a
preimage of R via the double cover. By the forms of the 72 defining eoiuations
of J. discussed in Section 1.11, K(Q) = K(y/g(R)) and @ is defined over K if
and only if g(R) is a square in K. But t%/\hl = g on K, and t%)\ = A\ up to
squares in K. This implies that K(Q) = K(y\/A1h1(R)) and @ is defined over
K if and only if A\1h;(R) is a square in K as required.



164 Chapter 6. Improving the Algorithm Using the Flex Algebra

Remark 6.2.8. Let vy, ..., v15 be the basis of F' as a dimension 16 vector space
over K. To solve for A, u € F' and h; defined over K such that h = A\h; + pG.,
we look for sq, ..., S16, 11, ..., t1 € K such that Zz.lil $;0;Ge + Z;ﬁl t;v;h has co-
efficients in K. This is proved to be possible in Lemma 6.2.7.

Corollary 6.2.9. Suppose h = A\hy + uG. as in Lemma 6.2.7 and A = M\ A3 for
A € K and Mg, u € F. Then t = Ay up to multiplication in K for the unique t
mn Proposition 6.2.5.

Proof. Since for a t € F that satisfies Proposition 6.2.5, t%)\ € K as proved in

the proof of Lemma 6.2.7. Hence (;A2)> € K which, by Proposition 6.2.3(ii),
implies that ¢ = Ay up to multiplication by an element in K.

O

Suppose A € F and K = Q. We now describe a practical algorithm in order
to solve for A\; up to squares satisfying Lemma 6.2.7.

Let O denote the ring of integers of F. We can assume A € Op and
A1 € Z square free. It suffices to describe the possible prime factors of A;.
Suppose pOp = [[,v;" for v; primes in Op. We observe that if p|A;, then
ord,, (\) = r; + 2ord,,(A\2) for all v; above p, which implies that

ord,,(A) = r; mod 2.

We also observe that if p|A; and p { Np/g()), then ord,,(\2) = —% € Z which
implies that r; is even for any ¢ and p ramifies. Note that we do not need

to consider the prime p if p ramifies, pOp = [[,v]" and [], UFZ is principal as
M2 = (%)(1//\2)2 where [], Ufl = vOp for some v € Op. We know that p
ramifies if and only if it divides the discriminant of F', denoted by Apg, which
implies the set of primes that we need to consider is finite and computable.

We summarize the above argument in the short algorithm below.
e Step 1: Scale A by squares in F' such that it is in Op.

e Step 2: Compute

S1 = {p prime : pOp = Hvi”,ordvi(/\) = r; mod 2 for all ¢ and p|Np/g(N)},
Sy = {p prime : pOp = Hv:",p\AF and r; even for all i},

7

S3 = {p prime : p € Sy and H UFI is principal}.

Then S; U S5\ S5 gives the set of possible prime factors of A; up to squares
satisfying A = A A2 for some X, € F' as in the statement of Lemma 6.2.7.
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Remark 6.2.10. In reality, when K = Q, we can always try to use NiceRepre-
sentativeModuloPowers in MAGMA, with details in [Fis08, Section 5|. In the
case K # QQ, we also get a similar computable and finite set of possible places
dividing Ay which gives a computable and finite set of possible values of A\; up
to squares as the class group is finite.

6.3 Twist of the Kummer Surface Revisited

As discussed in the previous sections, we will be using the flex algebra method
to compute K, C P3 — K C P3 corresponding to € in the general case. Recall
the étale algebra R = Map(J[2], K), defined in Section 3.1.3. From the de-
scription of the flex algebra method in Section 3.3.4, we notice that the only
non-explicit step is computing the algebras (R, *¢), (R, *¢, ), (R, *,) as they re-
quire computing the trace map defined in Section 3.3.1. In this section, we give
an explicit description of the trace map in the general case where Gal(f) = Sg by
Proposition 6.2.1(i). Let wy, ..., ws denote the 6 roots of f and fix P a nontrivial
two-torsion point of J corresponding to {(wi,0), (w2,0)}. Define K; := K(P).
We have K is a degree 15 extension of K and R = K x K. Recall, the trace
map Tr: R® R — R is defined via:

T)T) = S ol T),

T1+T>=T

and R ® R is the étale algebra of Galois equivariant maps from J[2] x J[2] to
K. The lemma below gives another interpretation of the trace map under the
assumptions in this section.

Lemma 6.3.1. Under the assumptions in this section, we have
ROIREK x K1 x K1 x K1 x M x N,

where M, N are some extensions of Ky such that |M/K,| =8 and |N/K,| = 6.
Also, the trace map R ® R — R is the same as built out of the trace maps for
the constituent fields of R® R and R. More explicitly, under the identifications,
Tr: K x K1 x Ki x K1 x M x N — K x Ky s precisely given by

(CL, b, C, d, e, f) —> (Cl + tTKl/K(d)a b +c+ trM/Kl (6) + tTN/Kl (f)),

where try, i, ko — ki denotes the field trace for a finite field extension ky/k .

Proof. Since Gal(f) = Sg, we know J[2] x J[2] has 6 Galois orbits. The first
4 orbits are {(O;,0,)},{(0;,Q),Q € J[2]},{(Q,0,),Q € J]2]},{(Q,Q),Q €
J[2]}. The fifth orbit is the set of pairs (@1, Q2) for Q1, Q2 € J[2] with corre-
sponding Weierstrass points not the same or disjoint and the last orbit is the
set of pairs (Q1, Q) for Q1,Q2 € J[2] with disjoint corresponding Weierstrass
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points.

Let M denote the field of definition of ({(wi,0), (ws,0)}, {(w2,0), (ws,0)})
and N denote the field of definition of ({(ws,0), (w4, 0)}, {(ws,0), (ws,0)}). Fol-
lowing the proof of Proposition 3.1.10, the isomorphism R ® R = K x K; X
K1 x Ki x M x N is obtained by

p(a,b,c de, f),

where a = p(0,;,0,),b = (P O,),c=p(O;, P),d = p(P,P),e = p({(w1,0),
(ws,0)}, {(w2,0), (ws,0)}), f = ({(W& 0), (ws,0)}, {(ws,0), (ws,0)}).

We observe that M, N are extensions of K;. Since Gal(f) = Sg, we know
p({(w1,0), (w3)}, {(w2,0), (ws,0)} has precisely 8 Galois conjugates over K; and
p({(ws,0), (ws,0)}, {(ws,0), (ws, 0)}) has 6. Hence |M/K;| = 8 and |[N/K;| = 6.
More explicitly, M = K;(ws,ws3) and N = K (w3 + wa, wswy).

From the definition of the trace map and the definition of the field trace,
it can be checked that the corresponding trace map under the identifications:
Tr: K x Ki Xx K1 x K1 x M x N - K x K is precisely given in the lemma.

[]

6.4 Algorithm in Section 5.5.1 Using the Flex Al-
gebra

Recall in Section 5.5.1, we described an algorithm for computing the Cassels-
Tate pairing (e,n)cr for €, € Sel?(.J), using the formula in Theorem 5.1.1.
The algorithm is under the assumption that the twisted Kummer surface K,
has a K-rational point R. Recall the genus two curve C is defined by 3? =
f(x). As mentioned in the beginning of this chapter, the explicit computa-
tion related to e for the Cassels-Tate pairing using this algorithm is done over
Ly = Li(y/a1, ...,\/ag), where L; is the splitting field of f(z) and (a1, ..., aq)
represents the image of ¢ in L*/(L*)?K* as described in Section 1.10.1 with
L = K[x]/(f). In this section, we explain how we can improve the algorithm
so that the computation of (¢, n)cr can potentially be done over a smaller field.
Recall we assume we are in the general case where Gx — ASp,(F,) is surjec-
tive for all of €,7,¢ + 1. This implies the Galois group of f(z) is Sg and the
flex algebras of €, 7, € +n are all degree 16 field extensions of K by Proposition
6.2.1(ii). Also although this algorithm works in principle over any number field
K, we have only worked out examples when K = Q.

6.4.1 Modifications using the flex algebra method

Start with a genus two curve C with the following defining equation which we
can assume to be defined over Ok by rescaling y:
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C:y* = f(x) = fer° + f52° + faz* + fs2® + foz” + fiz + fo.

We follow the same steps in the algorithm described in Section 5.5.1 with
the following modifications.

In the original algorithm, the computation related to ¢ € Sel*(.J) is done
using the following commutative diagram:

J CPY —— K. CcP3

2 [ (6.4.1)

JCPY® —— K cCP3,

where ¢, is computed via the explicit formula in Theorem 1.11.1 and 1), is com-
puted via the naive method described in Section 3.2.

In the new algorithm, we compute the commutative diagram (6.4.1) using
the isomorphism ¢, : J, C P® — J C P described in Section 6.2.2 and the
isomorphism 1, :  C P? — K C P?3 via the flex algebra method described in
Section 3.3. Note that with these modifications to the algorithm, the computa-
tion for the Cassels-Tate pairing can be done over a smaller field extension of
K comparing to the original algorithm.

Some details and useful techniques

Now we give some details and useful techniques used in the modified algo-
rithm.

(i) We need to make sure the flex algebras of €, and € + 1 are indeed iso-
morphic to degree 16 field extensions of K as required by the algorithm.
One method is to find an element in the algebra with minimal polynomial
irreducible and degree 16.

(ii) For e € Sel*(J) represented by (4,n) as in Remark 1.10.6, we need to solve
for $ € LQ F = F[x]/(f) such that F is the flex algebra of €, \3*> = § € L
and N(v/A\B) = n. One method is to use MAGMA to find points defined
over F' of the zero-dimensional variety whose defining equations are ob-
tained by equating (bsx® + byz* + ...by)? = § up to scaling. As explained
in Section 6.2.2, we know this is solvable.
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(ili) Suppose R € K (K) such that h(R) # 0 with i defined in Remark 6.2.6.
By Section 6.2.2, we can compute a nonzero a € K such that the preim-
ages of R in J. are defined over K if and only if a is a square in K. The
same method can be used to determine whether a local point on IC.(K,)
comes from a local point on J.(K,) for any place v of K. In the case
where h(R) = 0, we can either look for another R € IC.(K) or change
the construction for h via using a polynomial involving b? with i # 1 in
Remark 6.2.6.

(iv) Let Fy, F; and F3 denote the flex algebras of €,7 and € + 7, respectively.
Recall that here we assume all three flex algebras are isomorphic to degree
16 field extensions of K. Suppose we fix embeddings of F| and F; in K.
Let I} F, denote the composite of I} and F,. We know the images of
€, in L*/(L*)*K* are represented by d,d, and d. = A\.3Z,0, = \,f3; for
Ae € F¥ N, € F5 and B € (L® Fy)*, B3, € (L ® Fy)*. This implies that
the image of e+ n in L*/(L*)?K* is represented by 0.0, = (A\,) - (B:5,)*.
Viewing & C P° as the locus of (pg : ... : ps) for which P(z)? is congruent
to a quadratic in  modulo f(z) and S as the locus of (py : ... : p5) for
which §. P(z)? is congruent to a quadratic in z modulo f(x), we know the
twist S, — S corresponding to € is the multiplication by S, and similarly
for n. Therefore, if the multiplication by S, corresponds to the cocycle
(0 — €,) representing e and the multiplication by 3, corresponds to the
cocycle (o +— 1),) representing n, then the multiplication by 8./, corre-
sponds to the cocycle (o + €, + 1) representing € + 7.

In particular, the field of definition of the coefficient vector of 5.3, as a pro-
jective point gives an embedding of Fj in F} Fy. We note [F} Fy : K] = 256
by Proposition 6.2.3(ii) and the second isomorphism theorem. Suppose
there is another conjugate of F3, which is o(F3) for some o € G, in F1 F5.
Then there exist 1., defined over F3 and o(s,,) defined over o(F3) both
representing € + 7. Hence, there exists P € J[2] such that o(¢eyy)¥ Jrln is
the action of 7p on K by Lemma 3.2.2. This implies that there is in fact a
unique embedding of F3 in F} Fy because otherwise, there exists a degree
15 subextension of F;F, which is not possible.

(v) In the computation for (e, n)cr, it is much more practical to first evaluate
the (2,2,2)-form F following the formula in Corollary 5.2.11 then twist
to obtain the quadratic form on I, rather than computing the twisted
(2,2,2)-form F, then evaluate.

6.4.2 Worked example

Now we follow the steps in Section 5.5.1 with the modifications described in
Section 6.4.1 and demonstrate with a worked example. In particular, we have
chosen an example where computing the Cassels-Tate pairing on SelQ(J ) does
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improve the rank bound obtained via a 2-descent.
Let the genus two curve be given by

C:y* = f(r) = —32° + 3z — 15,

and define L = Q[z]/(f). The discriminant of f is 3'°-55.7-31-43. Note that
Gal(f) = S as required by the assumptions of this algorithm.

e We pick ¢,7 € Sel?(J) such that the image of ¢ in L*/(L*)?Q* is repre-
sented by 6, = —2° + 32* + 223 — 522 — 42 + 9 and the image of 1 in
L*/(L*)*Q* is represented by 8, = 2° — 22* + 22° — 2% + 1, as given by
MAGMA. Moreover, € is represented by (d., —1) and 7 is represented by
(0, 1).

e We compute the defining equation G, for K, as below

G, = 18z} — 44x3xy — daizy — 1922524 + 1282775 — 60x7T973 + 6075 1024
— 472z w5 + 48z w31y + dviw; — 50z s + 1008z w5w3 — 131622574
+ 214x1x2x§ + 50322129374 — 1060x1:102x?1 + 1492x1x§ + 732x1:p§x4
+ 9487 w375 + 7481175 + 300z — 486w5x3 + 1277257, + 13642523
+ TA5Ta5232, — 446TT50] + 16220905 — 6665120574 + 11222000377
— 1132923 + 628025 + 25707237y + 137192325 + 4167375 — 84677

We get a rational point R = (10 : —24 : —1: 3) on K,, and a = —3 where
the field of definition of the preimages of R in J,, is Q(v/a).

e We compute the defining equation G, for K. as below

G, = 24389x] + 9518625 w5 + 831062 w3 — 107648x1x4 + 2264702775
+ 2599109013:21’3 — 3479121‘11’233’4 + 35670951 3+ 281908301:63954
+ 2166122222 — 2690942, 25 4 548581 w5x3 + 702887 1274
+ 15906871 7215 — 5619447 197374 + 5167170075 + 477162175
+ 648048z 7574 — 3048047 w325 — 772320225 + 10462125
+ 1027742323 — 22926075, — 327347575 + 674440257374
+ 2463641:2x4 + 1084443:2563 + 1162620:62:1:3364 — 878172@:633331
— 1837912x92% — 21254425 — 537980x3w, + 22264847277
+ 2609168375 — 31993287

We compute the rational function g with formula stated in Corollary 5.2.11
and (c1, ¢, c3,¢4) = (1,0,0,0), viewed as a rational function on /C,:
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g = (222386427 + 14731410z 29 + 248478152, 13 — 247883372124
+ 7037517725 + 746322897973 — 707209512074 — 1563378873
+ 80664164374 + 5835846127 /27

e We include some local Cassels-Tate pairing computations. For a place v,
we represent a local point on K. (Q,) such that the first three coordinates
are exact and we give enough precision or decimal places for the last coor-
dinate to pin down a unique point on K.(Q,). For a place v, we represent
g(P,),a as elements in Q/(Q)%

places v local points P, on K, g(P) | a | (g(B),a),
2 (0:19:29:5/4+ O(2)) 1 | -3 1
3 (17:6:11: 31 + O(3%)) 1| -3 1
5 (625:2: 18 : 10 + O(5)) 1|2 1
7 (2:21:10:3- 7>+ O(7?) -7 |1 1
31 | (4-31:7:0:41040(312) | 1 | -3 1
43 | (35-43:13:8:13+0(432) | 3 | -3 1
0 (—15:-7:16:-10.90...) | —1 | —1 -1

e Following the discussion at the end of Section 5.4, we have the following
primes that potentially contribute to (€, n)cr:

— Prime 2;
— Prime dividing a: 3;
— Primes of bad reduction of the genus two curve C: 2, 3, 5, 7, 31, 43;

— Primes arise from M., denoted by S” in Remark 4.4.7(ii): 2, 3, 5,
7. 23, 29, 31, 61, 137, 163, 433, 2423, 2741, 25349, 54319, 62213,
1544864029, 26461826122654523, 2028400254463776241,
530632017512828986501, 3336769826692800145221511352415941,
460880029340931796471170179203303093;

— Primes below 300.

It turns out that the only place where the local Cassels-Tate pairing be-
tween € and 7 is non-trivial is co and (¢,n)cr = —1.

Remark 6.4.1. As explained in Remark 5.5.2, we did various sanity checks
throughout the computation and suspect that we could reduce the number of
primes for the local Cassels-Tate pairing. Since the local pairing is fast to com-
pute even for the largest primes included in this example and primes larger than
those, they did not have much effect on the computation. However, it would
still be good to find methods to reduce these large primes as factorization will
be a problem in larger examples.
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Note that in this example, [Sel*(J)| = 2% and |J(Q)[2]| = 1. Let r denote
the rank of J(Q). The rank bound given by a 2-descent is 3. Recall we have
the short exact sequence

0 — J(Q)/2J(Q) — Sel*(J) — III(A)[2] — 0.

On one hand, we found a rational non-torsion point P on J: {(z1,v1), (z2,92)}
where x1, 2y are roots of z? — 119/62x + 199/124, and y; = 7717/1922x; —
13793/7688. This implies that » > 1. Since |J(Q)/2(J(Q))| = 2"-|J(Q)[2]| > 2,
we get |[II1(J)[2]| < 22 via the short exact sequence above. On the other hand,
{(e,n)or = —1 which implies that the images of €,n in H'(Gg, J) are nontriv-
ial elements in I1,,4(.J)[2] where II1,,4(J) denotes the quotient of III(.J)) by its
maximal divisible subgroup. Note the images of €, 7 can potentially be the same
in H' (G, J). Therefore, if we can show |II1,4(J)[2]| is a perfect square, then
we can deduce that |I11,,4(J)[2]| = [III(J)[2]| = 22. and so |J(Q)/2(J(Q))| = 2
via the short exact sequence above. Hence r = 1.

Let ¢ € II1(J) denote the class of the principal homogeneous space Pic'(C).
By [PS99, Theorem 8|, we have [IIL,4(J)[2]| is a perfect square if (c,c)or is
trivial. Then, from [PS99, Corollary 12|, we know that (c, c)cr is trivial if and
only if the number of deficient places of C, defined as places v of Q such that C
has no Q,-rational divisor of degree 1, is even. Hence, it suffices to show that
the number of deficient places of C is even.

e p odd and p?® does not divide the discriminant of f: not deficient. This
is because an odd prime p can be deficient only if the discriminant of f
is divisible by p* by [PS99, Lemma 18]. Recall the discriminant of f is
310.56.7.31-43.

e p=>5: =2,y = 2is asmooth point on C(F5). Then by Hensel’s Lemma,
#C(Q5) > 0 which implies that 5 is not a deficient place.

e p = 2: We note that y?> = —32° + 32 — 15 has a solution over Z, when
r=0,as —15 = 1(8).

e p = 3: By [PS99, Lemma 16|, we know that an odd prime p is defi-
cient if f(x) = wh(z)? + pj(x) where the reduction of u € Z, is in
F* \ (F%)?, degh = 3,degj = 6 and if the reductions of h,j modulo
p have no common factor of odd degree. Since we can write f(z) =
—(32%)2 4+ 3(—2® + 2 — 5+ 32%) and it can be checked that —2% + 2 —5
is irreducible modulo 3, we get p = 3 is deficient.

e 0o: It can be checked that —3(2% — x +5) < 0 for any * € R which
implies that C(R) = (). Suppose D is a R-divisor of degree 1 on C, then
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D = Dy — D,, for some Dy, D, effective divisors with disjoint support.
In particular, Dy, Dy are R-divisors and the degree of precisely one of
them is odd. This gives a contradiction as C(R) = () and any effective R-
divisor on C is a sum of complex conjugate pairs. So oo is a deficient place.

Note, the computation of the deficient places for genus two curves defined
over Q is implemented in MAGMA and we have verified our results.

We also observe that without computing the Cassels-Tate pairing, we only know
r = 1,2 or 3 by carrying out a 2-descent, finding a rational non-torsion point
on J and computing the number of deficient places.
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