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ABSTRACT
It is often difficult to analyse why a program executes more slowly
than intended. This is particularly true for concurrent programs.We
describe and evaluate a system, Rehype, which takes Java programs,
performs low-overhead tracing of method calls, analyses the result-
ing trace-logs to detect inefficient uses of concurrency constructs,
and suggests source-code-oriented improvements. Rehype deals
with task-based concurrency, specifically a future-based model of
tasks. Implementing the suggested improvements on an industrial
API server more than doubled request-processing throughput.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Object oriented languages; Concurrent programming languages;
Software performance; Dynamic analysis; • Theory of com-
putation → Concurrency; Program analysis.
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Concurrent improvements, Performance prediction, Trace refactor-
ing, Task-based concurrency
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1 INTRODUCTION
We address inefficient use of task-based concurrency within exist-
ing Java programs that use thread pools to schedule task execution.
Task-based concurrency (Section 2) simplifies parallelising pro-
grams as it is conceptually and logistically straightforward. It is
widely used in industrial software. As of writing (May 2021), public
GitHub [4] repositories had 938 196 instances of .java files im-
porting java.util.concurrent.ExecutorService (a core Java 8
utility for future-based task concurrency, it is the base interface
for spawning tasks). Furthermore, despite the increasing popular-
ity of reactive programming, task-based concurrency remains a
prevalent approach to concurrency within Java 8 (and beyond).
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Moreover, over the past decade numerous languages (including ver-
sions of Rust, C#, Dart, Python, Hack, JavaScript, Scala, and C++)
have added support for the async/await concurrency pattern –
in some cases this pattern is the core concurrency approach for
the language. The async/await pattern is task-based concurrency,
indeed in many languages and runtimes it is a syntactically sugared
version of futures.

Inefficient task patterns are easy to fall into and regularly occur
in industrial software. A common inefficient pattern is wait-limited
tasks. Wait-limited tasks do little computation and instead spend
the majority of their execution waiting on other tasks to finish. This
is inefficient because a waiting task consumes system resources (e.g.
a Java thread) without progressing the program’s computation. In a
server handling multiple requests, this performance loss manifests
as a reduction in throughput; it often has no visible effect on either
wall-clock or CPU time taken for a solitary request. The cause
is clogging of system-wide thread pools. For example, consider a
thread pool of eight worker threads with four physical CPU cores;
if seven threads are waiting for another task to complete, while
only one thread is doing work, then only one core is being used,
thus achieving a quarter of the potential performance. The seven
waiting threads remain idle, consuming system resources (memory),
even while other tasks may be queued in the thread pool, waiting
to be executed. In this scenario, refactoring wait-limited tasks can
improve performance (for metrics of throughput and wall-clock
time, but not classically-accounted CPU time) by freeing threads
for other tasks. While these inefficiencies may be resolved by using
a different concurrency model (e.g. reactive programming), such
refactoring is impractical for large programs, and may introduce
other issues. Incremental refactoring reduces risk, while prioritising
refactorings improves return on investment – performance benefit
per unit developer time.

Inmany cases there are relatively low-cost solutions (i.e. minimal,
localised, source-code improvements) to these inefficient patterns.
For example, wait-limited tasks can be either inlined or replaced
with combinators (e.g. CompletableFuture in Java 8). The two pri-
mary inhibitors to improving concurrency use are the difficulties in
identifying inefficient tasks and prioritising improvements. Identify-
ing inefficient concurrency patterns statically is difficult as, by their
nature, concurrency and performance patterns emerge at runtime.
Prioritising improvements is important in industrial contexts where
there are limited developer resources and substantial amounts of
source code.

We introduce and evaluate Rehype, a system1 that traces program
execution and performs automatic analysis on runtime execution
traces, identifies instances of inefficient concurrency patterns, and
suggests potential localised source-code improvements. It estimates
1For reference, Rehype is implemented in approx. 30k lines of Rust code.
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the effect of each suggested improvement on the program’s per-
formance as a set of metrics, without re-executing the program. A
developer can then sort and select suggested improvements, based
on the metrics, to optimise for their desired performance attributes.
Rehype produces improvement specificationswhich define how to im-
plement an improvement; it does not generate source code patches.
A companion paper [9], also appearing at FTfJP’21, describes a
system, Scopda, for generating source code patches from Rehype
improvement specifications.

Rehype consists of two main components: a low-overhead tracer
and an analyser (which is the primary focus of this paper). The
tracer (Section 3) automatically instruments Java programs, based
on a trace-config, and records specific execution events (such as
timestamped entry and exit of methods) that are then stored in a
trace-log. The analyser (Section 4) takes a trace-log, identifies po-
tential improvements (by moving sets of thread-contiguous events
within the trace-log) and estimates their performance effects by
recalculating timestamps.

While Rehype operates solely on dynamic data, in the form of
trace-logs, we give a static code example of an improvement (Fig. 2)
to provide intuition (noting that the absence of branching and loop-
ing in the example hides various issues). Importantly, Rehype aims
to suggest only statically implementable improvements. If multiple
tasks are spawned with identical dynamic context (functions active
on the stack) – perhaps due to a source-code loop construct – then
they must be treated consistently by the analyser (e.g. they must all
be inlined, or none of them). We accordingly distinguish the idea of
optimisation, such as Rehype’s convert-to-inline, from its instances
(here called improvements) which are concrete modifications of
trace-logs. For the case above, the improvement might be expressed
as “inline every task spawned at dynamic context X”.

A key idea is that Rehype identifies improvements by estimating
the performance effects of implementing them. This estimation is
performed by manipulating a trace-log. It occurs offline and does
not require re-executing the program. Using an estimation-based
approach enables Rehype to identify improvements in programs of
varying complexity and for a variety of patterns, as it does not detect
specific patterns, but tests specific improvements. This approach
is well suited to concurrency performance optimisation as it can
test the effect of implementing multiple interfering improvements.
The analyser can accurately estimate the effects of changes to con-
currency as the trace-log contains task life-cycle events that define
the inter-thread concurrent dependencies, allowing the analyser to
account for the concurrent behaviour.

Implementing a combination of improvements suggested by
Rehype for a large server program more than doubled its request
processing throughput (Section 5). While there is a lot of hype
around increasing concurrency, Rehype’s results show that reducing
concurrency can significantly improve performance in resource-
constrained programs, such as application API servers.

Finally, Section 6 positions this work among related work, Sec-
tion 7 discusses some questions regarding concurrency constructs,
and Section 8 concludes the paper.

2 TARGET CONCURRENCY MODEL
Rehype is designed to analyse programs that use task-based concur-
rency with thread-pool scheduling. Tasks are concurrent constructs
that enable scheduling the execution of a function (here called
the task-body function) with some parameters. Rehype specifically
analyses a future-based model of tasks, whereby spawning a task
generates a future representing the return value of the task. When
the task’s result is retrieved from the future, the call blocks until
the task has finished (providing synchronisation). Rehype assumes2
that concurrent communication occurs solely at task spawn and on
retrieving future-based results3. Thus, in essence, tasks present a
pure-functional interface with the exception of operations that do
not affect the result of the program, such as logging.

Intuitively, the mental model is of tasks corresponding to pure
functions that are called and eventually return a single result (via
a future). Specifically a task’s logical behaviour (modulo memory
locations, etc) is determined by its parameters. In practice, tasks will
rarely be true pure functions, theymay depend on, andmutate, some
external state (such as a database). However, the key is that such
state dependence is not relied upon for inter-task communication
(i.e. a task does not rely on another, concurrently executing, task
having edited that state).

Thread pools contain a fixed number of worker threads and a
queue of tasks to execute. We assume that all threads in a thread
pool are solely used for executing tasks. In this paper threads refer
to the source-code-level logical threads. Although threads may be
executed on various physical CPU cores, depending on the operat-
ing system scheduler, this is below the level of detail considered in
this paper.

Threads exist in one of three states: 1) active when executing
a task; 2) waiting when asleep waiting for the result of another
task; and 3) unoccupied when waiting to be assigned a task by
the thread pool. To maximise performance, programs should have
most threads active most of the time. While waiting, a thread is
consuming system resources but not actively progressing its current
task. An unoccupied thread is available for use and consumes fewer
system resources.

Java 8, the target runtime of this paper, has a standard task
concurrency framework in the java.util.concurrent package [5].
The key primitives are Future and ExecutorService. Future is a
handle for the result of a task, calling Future.get() sleeps the calling
thread until the task is complete. The ExecutorService is used to
schedule a task for execution and returns a Future for the task.

Java 8 includes the Future interfacewith various implementations.
The basic implementation FutureTask handles executing a task and
storing its result. A richer implementation CompletableFuture also
implements combinator pattern utilities.

2Unfortunately, it is not possible to determine automatically whether a Java program
adheres strictly to this concurrency model. While it is possible to check instances of the
model being broken (e.g. clear usage of shared memory for coordination), proving the
inverse (that themodel is adhered to) is undecidable due to the aliasing problem (objects
may be aliased and used between multiple tasks in non-obvious ways). However, new
type systems, such as Rust’s ownership system, may go some of the way towards
enabling better model adherence checking.
3As an indicator, of the 938 196 Java files that import ExecutorService on GitHub (see
introduction), 216 714 also contain the synchronized keyword, suggesting, though
not confirming, that they do not adhere to this pure task model.
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struct Event {
// The type of event (e.g. FnStart, FnEnd, etc).
enum EventType type;
// The nanosecond time when the event occurred.
uint64 time_stamp;
// The id of the thread that this event occurred on.
uint32 thread_id;
union {
// The id of the method the function event occurred in.
uint32 function_event_method_id;
// The id of the task the task event relates to.
uint32 task_id;

} aux_data;
}

Figure 1: A C-style definition of the data for each event.

Combinators allow wait-free programming; instead of a task
waiting for a concurrently computed result, it merely terminates
and a new task is spawned to use the result when it becomes ready.
Combinators are used in one of the optimisations described in this
paper. See Urma et al. [13] for more information on combinators in
Java 8.

3 TRACER
The tracer generates a trace-log containing events that capture
program-execution behaviour. It operates by inserting tracing code
into a program in the style of aspect-oriented programming. There
are three types of events: function, task life-cycle, and thread-pool
scheduling events.

The tracer consists of an instrumenter and a trace-logger . The
instrumenter takes a trace-config and inserts tracing code into a
program’s .jar file. When the program is executed, the tracing
code invokes trace-logger functions which save the events in a
trace-log. The trace-logger is a runtime in-process utility that uses
a client-server architecture. There is one client per thread and a
single server to write to the trace-log on disk. Clients each maintain
two buffers, when one is filled it is emptied into the trace-log by
the server. This ensures no slow or blocking I/O operations occur
on the instrumented program’s working threads. This process uses
a bespoke lockless buffer-swapping protocol to avoid waits on the
working threads.

The tracing code does not interfere with the normal output
of the program. However, tracing does introduce overhead as it
shares system resources; too much overhead can distort program
behaviour (especially concurrency and performance behaviour).
Such distortions can influence the efficacy of subsequent program
analysis, hence the need for a low-overhead tracer. Experimental
results suggest the overhead is in the order of tens of nanoseconds
per event.

Events. All events contain a type byte, a nanosecond time-stamp
of their occurrence, and the thread-id (unique identifier of a Java
Thread) of the thread they occurred on (Fig. 1). Function events
also contain a unique identifier of the function they occurred in
and task events contain a unique identifier of the task they relate
to (this is used to track concurrent execution across threads).

We assume a form of sequential consistency: that events executed
by a single thread appear in event order, and with strictly increasing
time-stamps, in the trace-log; events from separate threads may

class AgeQuerier {
static Future<DatabaseRecord> queryDatabase(

ExecutorService executorService, String id) {
return executorService.submit(() -> {

DatabaseRecord queryResult = /* ... */;
return queryResult;

});
}

static int queryAge(String id) {
DatabaseRecord result = queryDatabase(id).get();
return result.getAge();

}
}

Figure 2: Example of the convert-to-inline optimisation.

interleave in the trace-log, not necessarily in time-stamp order.
Furthermore, events of different types may interleave in the trace-
log.

4 ANALYSER
The analyser takes a trace-log and generates a list of suggested
improvements along with their estimated effect on performance.
The analyser individually estimates the effect of each possible opti-
misation for every task and then estimates the combined effect of
sets of compatible improvements.

4.1 Optimisations
The analyser considers three optimisations: convert-to-inline, hoist-
branch, and convert-to-combinator . The optimisations convert some
concurrently executed tasks in a program to execute immediately
at spawn (i.e. inline). Selectively removing concurrency can reduce
the number of threads waiting, improving performance by freeing
them to be used by other tasks. The optimisations differ on how
the source code would be changed and thus which tasks are af-
fected. Importantly, these optimisations do not affect the program’s
functionality, provided the program adheres to the “all concurrent
communication occurs through tasks (i.e. futures)” model explained
in Section 2.

Convert-to-inline. The convert-to-inline optimisation involves ex-
ecuting a task immediately when spawned (on its spawning thread,
instead of scheduling it to be executed on a separate thread). For ex-
ample, in Fig. 2, pre-change queryAge invokes queryDatabase and im-
mediatelywaits on the returned Future. Thus, for the task’s duration
two threads are occupied, one purely for waiting. The convert-to-
inline optimisation improves performance by reducing the number
of occupied threads without affecting execution duration (or even
reducing it depending on the task scheduling overhead). After the
change, the top-level task-body function, queryDatabase, becomes
synchronous.

A subtlety is that multiple tasks may be spawned at the same
code location and would thus all be affected by the same code
change. To account for this, the convert-to-inline optimisation is
estimated for the set of tasks spawned at the same dynamic context.

Hoist-branch. The convert-to-inline optimisation can be some-
what of a blunt instrument given its all-or-nothing approach. The
hoist-branch optimisation extends the convert-to-inline optimisa-
tion by identifying a subset of the tasks that can be inlined without
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static Future<DatabaseRecord> parallelSum(ExecutorService es) {
return es.submit(() -> {
Future<Integer> first = es.submit(Example::longOperation1);
Future<Integer> second = es.submit(Example::longOperation2);
return first.get() + second.get();

});
CompletableFuture<Integer> first = CompletableFuture.supplyAsync(

Example::longOperation1, es);
CompletableFuture<Integer> second = CompletableFuture.supplyAsync(

Example::longOperation2, es);
return second.thenCombine(first, (f, s) -> f + s);

}

Figure 3: Example of the convert-to-combinator optimisa-
tion.

affecting the other tasks. For example, when one subset of tasks
performs extensive work, suitable for a task, and another subset
returns quickly, it can be beneficial to inline only the latter subset.
In the simple form, this difference in execution may be caused by
an if-then-else (or switch) statement. The optimisation can be
practically implemented by hoisting (moving) the if-then-else
statement out of the task execution and to the task spawn code. Such
cases of divergent executions can be identified in program traces
based on the execution paths of the tasks (whereas convert-to-inline
is purely based on the task-spawn dynamic context); when there is
a hoist-able branching statement, the execution paths of the subsets
of tasks will differ. The dynamic estimation of inlining a subset of
tasks is the same as convert-to-inline, hence the optimisation is an
extension of convert-to-inline. In fact, from a purely dynamic per-
spective, the optimisation could be called convert-subset-to-inline,
however, the term hoist-branch better matches the practical change
a developer would implement.

While there are more complex causes of branching, such as
dynamic dispatch, the difference between task execution paths is
similar whether due to a simple if-then-else or a more complex
branching mechanism. As such, the analyser treats them similarly,
though the static implementation may be more complex.

Convert-to-combinator. In Java, concurrency combinators can
encode task scheduling and coordination (e.g. passing the result of
one task as an argument to another task). Perfect use of combinators
can result in sleep-free task concurrency as no thread ever waits for
a task to finish. Instead of some code, x , waiting on a thread to use
a task’s result, a combinator represents x as a task-body function to
be executed when the task result is ready.

Combinators are not as intuitive or straightforward to use as
they require designing the task scheduling explicitly, instead of
programming sequentially and relying on futures to determine
synchronisation (whereby scheduling is handled by imperative
code and threads waiting). Moreover, combinators are not always
easy to practically retrofit to existing code.

The convert-to-combinator optimisation replaces coordinator tasks,
tasks that primarily exist to coordinate other tasks, with combi-
nators. This frees a thread to be used by other tasks. The opti-
misation determines the scheduling of the tasks spawned by the
coordinator task and encodes it in a combinator (specifically a
CompletableFuture in Java 8). Fig. 3 illustrates the optimisation
in a simple parallel summation example.

A subtlety is that Rehype does not detect coordinator tasks, rather
it estimates the effect of converting each applicable task (those that
create and wait for another “sub-task”) to a combinator. This em-
bodies the “identify improvements by estimating the performance
effects of implementing them” key idea described in the introduc-
tion; we leave determining and proposing concrete patches to the
companion tool Scopda [9].

4.2 Estimation
To estimate the performance effects of an improvement δ (later we
allow δ to be a set of improvements), on a program p, the analyser
re-orders (and re-calculates the timings of) events in the trace-log
to model executing pδ , the idealised source-code program with δ
implemented. That is, writing the trace-log of the program as JpK,
then the re-ordered trace-log βδ JpK approximates Jpδ K, where βδ
is a function that re-orders the trace-log for δ .

We implement βδ using a trace-DAG of the trace-log. A trace-
DAG is a structured representation of a trace-log which simplifies
re-ordering as all time-stamps and thread-ids (see Fig. 1) are defined
by the edges of the graph, making them relative values instead of
absolute. The high-level βδ process is: transform trace-log into a
trace-DAG, apply δ changes to the trace-DAG, and transform the
trace-DAG back into a trace-log. To convert back into a trace-log, the
absolute values are calculated via propagation through the graph.

More formally, a trace-DAG is a triple (V ,EΘ,Eτ )whereV is a set
of vertices (one for each event in the trace-log) and EΘ,Eτ are sets of
directed dependency edges, thread edges and time edges, respectively.
Thread edges are unlabelled and chain together successive events
executed by a single thread; time edges are labelled with durations
which express a minimum delay between two events. Two vertices
connected by a thread edge are always connected by a time edge as
well. Theremay also be time edges between concurrently dependent
events (e.g. waiting on a task result), though the delay label will
always be 0 for concurrent dependencies to indicate a wait (i.e. a
“happens-before” edge).

Optimisations are estimated by editing the trace-DAG. All three
optimisations described, convert-to-inline, hoist-branch, and convert-
to-combinator , are based on the same core graph edit: moving the
execution events of a task to the position of its spawn event.4To
do this, the edges terminating and originating at the task’s spawn
event vertex are redirected to the task’s execution start- and end-
execution event vertices, respectively (Eq. 1). The edges that previ-
ously terminated at the task’s start-execution event vertex and those
originating at the task’s end-execution event vertex are stitched
together (Eq. 2). Formally, given task t , write tp for its spawn event
vertex (see Section 2), and ts and te for its start- and end-execution
event vertices. Write the replacement of edge(s) X with edge(s) Y
as X 7→ Y . Using this graph notation, and writing (v,w,d) for an
edge from v tow with label d , the graph edit for inlining a task’s
execution is:

(v, tp, d), (tp, w, d
′) 7→ (v, ts, d), (te, w, d

′) (1)
(v, ts, d), (te, w, d

′) 7→ (v, w, d + d ′) (2)

4For convert-to-combinator doing this naively would over-sequentialise the sub-tasks
in Fig. 3, but the inlined events from longOperation1 and longOperation2 are easily
separated in a later phase which creates the detailed combinator expression.
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(edits for thread edges are equivalent, sans labels.)
To derive a trace-log from a trace-DAG, the absolute timestamp

and thread-id values for each vertex are propagated through the
graph along the time- and thread-edges, respectively. These abso-
lute values are then used to create an event for each vertex (the
event type and auxiliary data is copied from the original event
corresponding to the vertex). The derived events are then written
(grouped by thread) in execution order as a new trace-log. While
thread-ids are trivially propagated from the first vertex on a thread,
the time-stamp for the event created for vertexw is calculated by:

T(w) = max
(v,w,d )∈Eτ

T(v) + d (3)

(this is naturally 0 ifw has no predecessors.)
To improve estimation accuracy when trace-DAGs have been

edited, thread sleeps are adjusted by modifying duration labels on
related time edges before calculating the absolute time-stamps. Intu-
itively, this involves calculating the earliest time a task could begin
executing based on when it was spawned and when the previous
work on the thread finished. The thread’s previous work comple-
tion time is determined by a thread-waiting-for-task event (one of
the thread-pool scheduling events). The earliest a task can begin
executing is based on the task-spawn event. Thus, given thread-
waiting-for-task and task-spawn event nodesw and s , respectively,
the (simplified5) calculation of the updated sleep duration is:

D(s,w) = max(0,T(s) − T (w)) (4)

This value is assigned as the time-edge label between the thread-
waiting-for-task and thread-processing-task event nodes (which de-
termine the start and end of the sleep).

Sound by design Rehype’s re-ordering of the trace-log is sound,
given adherence to the task concurrency model described in Sec-
tion 2. That is, the re-ordered trace-log reflects the trace-log the
program would generate given the immediate execution of the
task-body function. Recall that the concurrency model assumes
solely future-based concurrent communication. In particular, tasks
intuitively correspond to (externally) pure functions and their be-
haviour is determined by their parameters. Thus, a task will behave
the same whether it is executed immediately (as a direct call to
the task-body function) or scheduled on a thread-pool; therefore
re-ordering of task execution events in a trace-log is sound.

4.3 Multiple Improvements
Having described the analyser for estimating a single improvement,
we now extend it to sets of improvements. Changes to a program’s
concurrency naturally interfere with each other. This means that
the estimated effects of multiple improvements are not summative,
that is, the effect of implementing them together is not equal to the
sum of the effects of implementing them individually. As such, the
final step of Rehype is to estimate the effect of each combination
of improvements δ , to accurately estimate their overall effect. This
can result in a combinatorial explosion of 2n possible combinations,
for n improvements.

Given the potential size of the combinatorial space, it is impor-
tant to limit the space as much as possible and search it in a sensible

5In practice, to ensure robustness, the sleep duration calculation is slightly more
complex as it deals with a few (otherwise unimportant) nodes and time edges.

manner. To limit the space, Rehype identifies sets of mutually exclu-
sive improvements. To search the remaining space, Rehype uses a
form of hill-climbing to more efficiently identify the most beneficial
combinations. This hill-climbing optimises for a particular compos-
ite metric (Section 4.4) that minimises thread usage and execution
duration, to maximise throughput.

Two improvements are mutually exclusive if they would require
conflicting trace-log changes (and hence they would require con-
flicting source-level changes). In essence an improvement defines
“do X to tasks Y”, such as “do convert-to-inline to tasks A, B, and C”.
As an example, two mutually exclusive improvements might be: “do
convert-to-combinator to tasks A and B” and “do convert-to-inline
to tasks B and C”. These improvements require different operations
be applied to the same tasks (in this case, B), and are thus mutually
exclusive.

Efficient methods for searching combinatorial space is a well
established area of research and, in future work, we plan to in-
vestigate how these can be better leveraged in the improvement
combinatorial space.

4.4 Measuring and Selecting Improvements
Rehype calculates various metrics from a trace-log for program p;
these can be used to compare the original trace-log JpK with the
trace-log βδ JpK incorporating the improvements δ and with the
trace-log Jpδ K from executing the modified program pδ . Metrics
include time-series metrics which give a separate value for each
timestamp (e.g. number of threads in each state – active, waiting,
and unoccupied) and aggregate metrics (e.g. wall-clock execution
duration and summary statistics (e.g. mean, max)) derived from
time-series metrics.

The thread-usage metric values can be plotted to aid identifying
bottlenecks and spikes in concurrent thread usage. The aggregate
metrics can be used individually or collectively to sort and select
improvements, or combinations of improvements, that best opti-
mise for the improvements the developer seeks. In the simplest case,
sets of improvements along with their associated metric values can
be inserted into a spreadsheet for the developer to analyse. Derived
metrics can usefully combine multiple metrics into a new metric.
For example, squaring and averaging a set of metric values can
weight greater single-metric improvements more significantly.

5 EXPERIMENTAL RESULTS
We present evaluations of the accuracy of estimated trace-logs via
plotted time-series metrics (Fig. 4) and the performance effects
achieved by implementing the suggested improvements. The re-
sults demonstrate the effectiveness of Rehype for large real-world
systems, the potential and validity of estimating the effect of im-
provements based on previous executions for concurrency perfor-
mance analysis, and the significant performance improvements
achievable by reducing concurrency.

We evaluate Rehype against a (proprietary) industrial Java API
server (c. 500kLoC) for a consumer web and mobile application that:
employs the task-based concurrency model (Section 2); has been in
production for over 5 years; and has extensive automated testing
(providing practical confirmation that the improvements preserve
its functional results, as explained in Section 2). Measurements
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Figure 4: The concurrency profiles for the evaluated server on our synthetic workload – pre-change, estimated post-change
and actual post-change.

are taken using a synthetic series-of-requests workload which en-
queues a series of API requests to simulate standard use of the
system. This provides a consistent workload to evaluate the effects
of implemented improvements.

For completeness, all executions were performed with hardware
specifications: 3.1GHz quad-core Intel Core i7 CPU, 16GB 2133
MHz LPDDR3 RAM, macOS 11.2.3, and software versions: Java
SE 1.8.0_172, rustc 1.53.0-nightly (Rehype is implemented in Rust).
However, these details are not especially relevant to the results as
we focus on relative thread usage between executions. Multiple
executions of the same program without changes had negligible
differences in thread usage (the differences are orders of magnitude
smaller than those caused by code changes).

We first evaluate estimation accuracy on both aggregate and
time-series metrics with regards to a single suggested improvement
to isolate its effects. In our evaluation we execute the original pro-
gram once, then we estimate the effect of an improvement, and,
finally, we implement the improvement and execute the program
again. To assess estimation accuracy we compare a composite of
the aggregate metrics between the estimate trace-log and a trace-log
generated after implementing the improvement. The estimated and
real-change trace-logs’ composite metric values are within 0.5%
of each other. More informatively, Fig. 4 contains the concurrency
profiles of the trace-logs. The concurrency profile of a trace-log is the
“shape” of a program’s thread usage through an execution; this is
drawn here as the number of occupied threads against normalised
execution time. Multiple executions of a program should have simi-
lar concurrency profiles. As shown, the estimated and actual change
profiles are very similar, including their deviations from the base
profile. In Fig. 4 the top (green) dashed magnified circle highlights
where the suggested improvement affected thread usage as well as
illustrating the similarity between the estimate and actual change
profiles. The bottom (red) dotted magnified circle shows an area

unaffected by the improvement; all three profiles have a similar
shape, despite minor temporal displacement.

Finally, Rehype identified 59 individual potential improvements
to the server. By estimating over 10 000 improvement combinations,
a combination of 19 improvements was identified as most benefi-
cial (noting that some larger combinations produced less benefit).
Combinations were first filtered with a requirement that they do
not negatively impact execution duration or increase peak or aver-
age thread usage. The remaining combinations were then ranked
using a composite metric, which combined execution duration and
peak and average thread usage, to represent overall benefit. Im-
plementing the selected combination of 19 improvements more
than doubled the potential request-processing throughput of the
evaluated server. Specifically, the peak and mean concurrent total
thread usage dropped from 13 to 5 and 3.5 to 1.5, respectively, and
the peak and mean concurrent waiting thread usage dropped from
9 to 3 and 2.1 to 0.3, respectively. As the server uses a standard
thread pool of size 20, prior to the change two requests peaking
in thread usage at the same time would saturate the thread pool
and begin to throttle, whereas post change, the server could pro-
cess four concurrent requests without over-saturating the thread
pool (four concurrent requests would, at peak, only consume 20
threads). As the wall-clock request duration did not change statis-
tically significantly between the pre- and post-change programs,
the server gained the increased (doubled) concurrent processing
capacity without compromising individual request speed.

6 RELATEDWORK
There are two primary areas of related work: performance prediction
and concurrency analysis. Rehype differs from most performance
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prediction work by focusing on concurrency and estimating im-
provements based on an existing trace. It differs from most concur-
rency analysis work in only using dynamic analysis and in its focus
on performance rather than bug detection.

Performance prediction. Whereas Rehype performs estimation
on an already captured execution trace, many existing approaches
use some form of re-execution to predict performance. Dynamic
performance stubs by Trapp [12] mock a module to have it exhibit
certain performance characteristics (such as CPU usage or memory
usage). The program is then executed to determine the potential per-
formance improvement of optimising the targeted module. Sodhi
et al. [11] describe performance skeletons, “synthetically generated
short running program(s) whose execution time always reflects
the performance of the application it represents” [11]. Skeletons
capture the performance behaviour of a program by utilising sys-
tem resources (CPU, memory, disk IO, and network IO) in relative
proportion to the target program; they are automatically generated
based on execution traces of the target program. Sodhi et al. report
performance prediction accuracy of up to 95% using skeletons that
execute for 5 to 10 seconds. Performance skeletons are used to
predict the performance of a program in a new environment (e.g.
system configuration, data centre cluster, etc).

Concurrency analysis. Whereas Rehype focuses on performance
and is purely dynamic-analysis-based, much of the existing work on
concurrency analysis focuses on detecting concurrency-based bugs
such as race conditions [1, 2, 7], deadlocks [1], and more-general
thread-safety violations [3, 6]. Most approaches are either based
on static analysis [7], potentially with subsequent confirmation via
dynamic analysis [14] or a hybrid approach [1], or use dynamic
analysis such as execution-replay [10] or execution-modification [6]
(such as injected delays) to trigger bugs. While there are some pri-
marily dynamic analysis-based approaches (e.g. Chen et al. [2]),
these also focus on bug detection. We hypothesise that concurrency
analysis research currently focuses on bug detection for two rea-
sons: 1) there is a clear, immediate, and measurable benefit – every
additional bug detected is valuable; and 2) concurrency perfor-
mance analysis is predicated on a low-overhead tracer that avoids
distorting concurrent behaviour (whereas bug detection may use
higher overhead dynamic analysis tools).

Finally,Moesus et al. [8] present a technique for ranking potential
refactorings (such as using Java’s StringBuilder to concatenate
strings instead of the plus operator) based on estimating perfor-
mance improvements. Their approach estimates the benefit of a
given refactoring by combining the estimate execution frequency
of a piece of code and the approximate performance improvement
achievable by implementing the refactoring. Rehype differs both in
terms of the type of refactorings and in the approach to estimating
performance improvements. However, both share the base con-
cept that for automated performance analysis to be useful it must
accurately estimate the performance improvement of a refactoring.

7 DISCUSSION
Is this an artefact of Java’s thread implementation? Theoretically,

wait-limited tasks are problematic regardless of the implementation.
In practice, runtimes that have lightweight threading systems (such

as Go’s) are impacted less by this problem than heavyweight thread
systems (such as Java) that use operating system threads. If threads
are “infinitely” scalable, then using some threads simply to wait
is not necessarily problematic. Of course, lightweight threading
systems introduce other issues, such as the scheduling overhead
inherent in managing thousands of “threads” and potentially losing
some CPU pre-emption benefits.

Could better implementation/developer practice avoid these prob-
lems? Yes; as discussed in Section 4, perfect use of combinators
can result in wait-free task concurrency. However, wait-limited
tasks are a real problem that exist in industrial programs today;
it seems likely they will continue to be a problem in the future
given the relative complexity of using combinators. Fundamentally,
more-complex concurrency constructs can achieve better perfor-
mance, but simpler constructs are more accessible and regularly
used by developers. Improving the performance of these simpler
constructs (such as by removing wait-limited tasks), can have a sig-
nificant impact on real-world concurrency usage. In an ideal world,
developers would be able to program using simpler constructs and
achieve performance close to that achievable with more-complex
constructs (or even convert to using the more-complex constructs
where useful, as our convert-to-combinator optimisation does).

8 CONCLUSION
We have introduced Rehype, a concurrency performance analysis
system that uses execution-trace analysis to propose source-level
optimisations and estimate their performance effects. Rehype anal-
yses task-based concurrency, and more specifically a future-based
model of tasks. While Rehype consists of a tracer and an analyser,
this paper focused on the analyser. The analyser transforms the gen-
erated trace-log into a trace-DAG, performs edits to reflect a source
optimisation, derives a trace-log from the edited trace-DAG, and
compares the performance-metric values of the estimated trace-log
against the original. We evaluated Rehype on a substantial industrial
API server and found the estimation to be highly accurate. Further-
more, improvements suggested by Rehype more than doubled the
server’s potential throughput.

The key idea of this paper is to estimate quantifiable performance
effects to identify improvements, instead of detecting potentially
inefficient patterns. While we focus on Java concurrency optimi-
sations in this paper, the approach should be applicable to other
languages and optimisations.

In the future we plan to develop more optimisations, methods
for addressing the combinatorial explosion of improvements, and
support for concurrency models. A companion paper describes
Scopda [9] which considers the problem of generating git-style
source code patches for the optimisations suggested by Rehype.
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