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ABSTRACT
Dynamic analysis can identify improvements to programs that
cannot feasibly be identified by static analysis; concurrency im-
provements are a motivating example. However, mapping these
dynamic-analysis-based improvements back to patch-like source-
code changes is non-trivial. We describe a system, Scopda, for
generating source-code patches for improvements identified by
execution-trace-based dynamic analysis. Scopda uses a graph-based
static program representation (abstract program graph, APG), con-
taining inter-procedural control flow and local data flow informa-
tion, to analyse and transform static source-code. We demonstrate
Scopda’s ability to generate sensible source code patches for Java
programs, though it is fundamentally language agnostic.
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1 INTRODUCTION
Dynamic analysis can identify improvements for programs that
cannot be identified using static analysis. In particular, dynamic
analysis is well suited to identifying improvements in performance
and concurrency, and especially concurrency performance. How-
ever, implementing these improvements is non-trivial as the data
they use and emit are not directly connected to the static program
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structure. This barrier to implementation reduces the utility and
adoption of such dynamic analyses.

We describe a system, Scopda, for generating source-code patches
to transform programs following dynamic analysis. It uses the
Rehype [7] companion tool to identify improvements (instances
of optimisations1) to a program’s concurrency performance using
execution-trace-based dynamic analysis (Section 2). Rehype gen-
erates improvement specifications, based on trace data, that can
point a developer towards a source code change to be made, but
leaves interpreting the specification to implement the change to the
developer. This interpretation is non-trivial and open to errors.

Scopda (Section 3) automatically generates concrete source-code
patches for the improvements identified by Rehype. A patch is the
git-style diff between the source code pre- and post-change. Scopda
maps the dynamic-domain improvement specifications into the static
domain and then generates source-code patches to implement them.
While there is a single, generalised method for dynamic-to-static
mapping, Scopda implements a specialised change transformation
function (CTF) for each optimisation.

An improvement specification consists of an optimisation type, a
caller-path, and a callee-tree. The optimisation type determines the
appropriate CTF, while the caller-path and callee-tree determine2 the
specification’s dynamic context. The dynamic context approximates
where the improvement should bemade.Caller-paths and callee-trees
are structured sets of function invocations. For a given invocation,
the caller-path is the series of invocations that contain it, and the
callee-tree contains the invocations it triggers.

To implement an improvement, the dynamic context must be
mapped into a static location. A static location is a specific location
within the source code (e.g. a function call). In the main example in
this paper the mapping is one-to-one, however, in more complex sit-
uations a dynamic context may map to multiple static locations (see
Section 3.2). Scopda explores execution paths in the program to map
dynamic contexts to static locations. This execution is performed
on an abstract program graph (APG), a static program represen-
tation that contains inter-procedural control flow and local data
flow. After calculating the static locations, Scopda performs graph
transformations on the APG to implement the improvement and
renders the modified APG as source code.

Dynamic-to-static mapping is non-trivial as it has to match
sparse dynamic traces (caller-paths and callee-trees) to concrete
static locations. The dynamic traces are sparse as Rehype only traces
a subset of the program’s functions (the tracked functions) and does
not trace sub-function information (e.g. branches). This sparse trac-
ing is necessary to limit the tracing overhead. Too much overhead

1In this paper we only consider the convert-to-inline optimisation from Rehype.
2Intuitively the dynamic context is exactly the caller-path but since the caller-path
traces entry points, rather than call sites, information from the callee-tree can refine it.
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can distort program behaviour, resulting in an execution trace that
does not reflect untraced program behaviour. Concurrency per-
formance behaviour is especially fragile to such distortions given
its natural non-determinism. If these distortions are too great, the
resulting analysis could be invalid.

To enable the exploration of all execution paths in an APG,
it must represent the entire program. As many components of a
program will be pre-compiled .jar libraries (both the Java stan-
dard library and third party libraries), Scopda supports generating
APGs from both Java source code and JVM bytecode. The APG is
fundamentally language agnostic and a single APG may contain
subgraphs generated from multiple formats. For each supported
input format, Scopda defines a language interface which converts
the format to APG subgraphs and, for some formats (i.e. source code
but not bytecode), renders APG subgraphs back into the source
format.

Section 4 explores language features beyond those used in the
running example (e.g. conditional control flow, inheritance, and
unstructured JVM bytecode). Most features are naturally handled
by the semantic lowering involved in generating an APG. However,
some unstructured patterns in JVM bytecode cannot be represented
in structured formats such as the APG. Scopda handles such patterns
at the per-function level using a grey box (a simplified representa-
tion) approach, whereby precision is sacrificed while preserving
safety.

To validate Scopda’s approach in the real-world, we apply it to
improvement specifications generated by Rehype for a large real-
world Java program (c. 500kLoC). Scopda successfully generates
(sensible) source-code patches for nineteen suggested improvements
(Section 5).

The contributions of this paper are:
(1) A method for generating concrete source code patches based

on improvements identified using dynamic analysis and spec-
ified with dynamic-domain data.

(2) A method for mapping dynamic traces to nodes in a static
code graph.

(3) A new static program representation, the abstract program
graph, that enables: dynamic-to-static mapping, reflecting
edits made on the graph back into the original source code,
and supporting multiple source formats (e.g. Java source
code and JVM bytecode) within a single graph.

Finally, Section 6 positions this work among related work and
Section 7 concludes the paper.

2 RUNNING EXAMPLE
We concentrate on the “convert-to-inline” optimisation – where Re-
hype suggests inlining a spawned task to improve a program’s con-
currency performance (an example is given in Fig. 1). The convert-
to-inline optimisation can be applied to certain concurrent tasks to
improve resource usage efficiency, see Rehype [7] for more details.
Rehype specifies the task to be inlined using the caller-path for the
task-spawn invocation and the callee-tree of the task execution. The
caller-path and callee-tree will not be contiguous on a thread in
most instances (i.e. the callee-tree will not be rooted at the end of
the caller-path), as the callee-tree will be invoked from a separate
thread. Scopda identifies the specific task-spawn static location, and

derives additional patch points, and generates a source-code patch
encapsulating the improvement. Patch points are source-code loca-
tions that are concomitant with the static location (e.g. usages of the
Future variable the task-spawn function returns). If the task-spawn
static location is ambiguous, Scopda can:

(1) generate multiple patches, one for each static location (the
user can choose which to apply);

(2) report the ambiguity as an error; and/or
(3) generate a new Rehype trace-config that, when used for a

new program execution, will capture trace data sufficient to
disambiguate the static location in future uses of Scopda.

Fig. 1a shows, in JSON format, the improvement specification
generated by Rehype (simplified3 for readability), and Fig. 1b shows
a source code patch to implement the improvement. In this exam-
ple calculateNumber() contains the task-spawn call and query-
Database() is the task-body function. The task framework consists
of the spawning function ExecutorService.submit() and the
root task execution function Future.run() (these are the standard
task concurrency utilities in Java 8, see the java.util.concurrent
package documentation [4]). The first invocation in the calleeTree
is Future.run() as it is the first (tracked) function called by the
thread that executes the task. It, in turn, calls queryDatabase via
the callback (e.g. a Java Runnable) given when spawning the task.
Given the improvement specification, Scopda identifies (Fig. 1b)

• (static-location) the es.submit() call at line 2 as the task-
spawn call to modify;

• (patch-point) the task-body function queryDatabase; and
• (patch-point) the databaseResult.get() call at line 5 as a
use of the task result that should also be modified (as it uses
Future.get() to wait for the task result).

The modified source code calls the task-body function directly
at line 2, updates the returned variable’s type, and removes the
Future.get() call, instead using the variable directly, at line 5.

Determining the benefit of the convert-to-inline optimisation (i.e.
identifying it as an improvement) in this example requires dynamic
analysis. It is unclear from a purely static perspective whether the
elided code (line 3 of Fig. 1b) performs significant work or not. In
the former case we should retain queryDatabase as a task, but in
the latter we should inline the spawn as a direct call. By contrast,
dynamic analysis can determine how much work the elided code
performs and thus whether inlining queryDatabase is beneficial.

3 METHOD
Scopda contains three primary components (illustrated in Fig. 2):
a language interface, dynamic-static mapper , and change transfor-
mation functions. The language interface (LI) generates APGs from
source-code (and JVM bytecode) and renders APGs back into source-
code. The dynamic-static mapper (DSM) takes a dynamic context
and an APG and returns the corresponding set of static locations –
in effect, nodes in the APG. A change transformation function (CTF)
takes an APG and static locations as input and transforms the APG
to implement the improvement. One CTF is implemented for each

3 Specifically, method names are not qualified by type signature or containing class,
and interface names such as Future are treated as if they were class names.
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{
"optimisationType": "convertToInline",
"callerPath": ["main", "calculateNumber", "ExecutorService.submit"],
"calleeTree": {
"function": "Future.run",
"children": [
{ "function": "queryDatabase", "children": [ ] }

]
}

}

(a) A JSON-format improvement specification.

1: static int calculateNumber(ExecutorService es) {
2:- Future<Integer> databaseResult = es.submit(

ThisClass::queryDatabase);
2:+ int databaseResult = queryDatabase();
3: // ... elided code ...
4: int otherValue = other();
5:- return databaseResult.get() + otherValue;
5:+ return databaseResult + otherValue;
6: }
7:
8: static int queryDatabase() { /* ... */ }
9: static int other() { /* ... */ }

(b) Source-code patch generated by Scopda.

Rehype: “Execution tracing for the program above has suggested performance gains from:
inlining the task that is spawned at the dynamic context corresponding to the "callerPath"
that, when executed, invokes the "calleeTree".”
Scopda: “Suggested patch is: calling queryDatabase directly from calculateNumber, in-
stead of spawning a task for it; concomitantly when calling queryDatabase directly, the
result is an int and does not require a .get() call to get the value.”

Figure 1: Informal explanation of an example “convert-to-
inline” improvement proposed by Rehype (a) and imple-
mented by Scopda (b).

optimisation. The appropriate CTF to use is determined by the opti-
misation type in the improvement specification. The Scopda process
is thus:

step 1: (LI) generate the APG;
step 2: (DSM) map dynamic contexts to static locations;
step 3: (CTF) transform the APG for the improvement;
step 4: (LI) render the transformed APG back into source-code; and
step 5: generate a patch (a git-style diff) by comparing the rendered

source-code to the original.

3.1 Abstract Program Graph
An APG is a unified graph structure containing a program’s inter-
procedural control flow and local data flow as well as structural
(AST-like) information. It has 4 node types (function, variable, op-
eration, and branch) and 15 edge types. It is edge-centric – most
semantic details are encoded by the edges. A key property is that
it can be rendered back to the unique input AST that generated it,
and hence back into the original source-code (modulo white space
and spurious bracketing).

The APG contains the semantic information of an AST, its call
graph, and its control flow graph. While existing representations,
such as graph-overlays [9], contain equivalent information and
are equally effective for query and analysis, Scopda also needs
to modify code for patch generation; the APG’s unified design is
better suited to transformation as it does not need to coordinate
the transformation of multiple overlays.

Dynamic dataStatic data

Sc
op

da

Original
source code
and bytecode

Execution
trace

Rehype

Improvement
specification

APG

Dynamic-Static
mapper

Static
locations

Change
transformation

function

Optimisation type – selects CTF

Modified
APG

Source code
patch

(final output)

Language interface

Figure 2: High-level structure of Scopda. Arrows indicate in-
formation flow.

Fig. 3 illustrates the APG for the calculateNumbermethod from
Fig. 1 (pre- and post-change). The operation nodes (circles) resem-
ble an AST statement and expression tree. Though the function
implementations are elided, the <calls> edges connect directly
to the target function nodes, providing the call-graph information.
The operation and branch nodes along with the solid (structural)
and dashed (control flow) edges define the control flow. The variable
nodes and zigzag edges define the data flow.

The APG design prioritises simplicity of analysis and transforma-
tion over simplicity of APG-to-source-code rendering. This priority
takes form as a guiding principle: maintain a narrow interface while
retaining full expressiveness of (Java) programs. An example of
the narrow interface is the simple control flow constructs: stan-
dard control flow is described with branch nodes and <goto> and
<returns> edges, while exceptional control flow is represented via
<on-exception-goto> edges (effectively a catch statement).

When generating an APG (Scopda step 1), a series of lowering
transformations are applied to normalise source-code representa-
tion:

• Local variables are represented in Single Static Assignment
(SSA) [10] form (SSA ϕ-functions are represented as inde-
pendent variable nodes with <ssa-predecessor> edges to
their SSA versions).

• Unnamed variables use A-Normal Form [11].
• Non-local variable accesses become calls to intrinsics. An
intrinsic is a function node representing a language-specific
operation, such as accessing an object field or referencing
a method. Intrinsics provide a unified approach to various
language features and make shared memory access explicit,
without affecting the semantics of the program.

• Operators are also converted into intrinsics (e.g. the plus
operator in the running example becomes an
Intrinsic::Operator::Plus function node in Fig. 3).

• All functions are represented statically (i.e. ‘this’ parame-
ters are explicit).
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Boxes containing source code are merely aids to the reader.

Figure 3: APG representations of calculateNumber before and after the patch from Fig. 1b. Hollow nodes and edge arrowheads
are those deleted or created by the patch (these also follow git-diff colour conventions).
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• Function and variable symbols are resolved (e.g. <calls>
edges terminate at function nodes which are also the root of
the function implementation graph).

While the APG defines a narrow interface and retains full se-
mantic expressiveness, rendering back into the input AST may
require language-specific information. LIs annotate nodes with
this language-specific information during APG construction. For
example, the Java LI annotates branch nodes to indicate the type
of branch statement (e.g. if, for, while). These annotations are
opaque to the rest of Scopda, but are associated with all copies of a
node (CTFs may duplicate nodes).

3.2 Dynamic-Static Mapper
The dynamic-static mapper converts a given dynamic context into a
set of static locations (Scopda step 2) by exploring static execution
paths in the APG. To identify the static locations that correspond to
a dynamic context, the mapper identifies all possible static code paths
(SCPs) that can correspond to a caller-path (this method generalises
to callee-trees as a tree can be treated as a series of paths). An SCP
is a series of nodes in the APG connected by control flow edges. An
SCP is valid for a caller-path if the SCP, filtered to tracked function
nodes, is equal to the caller-path. Each node within an SCP is a static
location. Once the SCPs are calculated, the CTF for the optimisation
selects relevant static location(s) from the SCPs. For example, the
key static location in our running example (Fig. 1) is the operation
node for the call to ExecutorService.submit (highlighted in the
topmost dashed (blue) circle in Fig. 3).

In simple cases, including Fig. 1, every dynamic context maps to
a single static location. In richer situations, such as when a function
can be called from two different dynamic contexts, a dynamic context
may map to multiple static locations.

Scopda’s execution path exploration is intuitively a guided graph
traversal along APG control flow paths. It identifies SCPs that are
valid for a given caller-path by testing all control flow paths starting
at the first invoked function in the caller-path and terminating at the
last invocation in the caller-path. A control flow path is invalidated
(and exploration on it is terminated early) when it encounters a
tracked function node that does not correspond to the next invoked
function in the caller-path.

A naive approach might generate a set of concrete SCPs using
standard traversal, but this would not scale to real-world programs.
Such an approach would result in a combinatorial explosion of SCPs
when there are many possible static code paths between tracked
functions (in fact, there may be infinite paths given recursion).
Moreover, the number of possible paths makes it computationally
infeasible to sequentially iterate over them.

Instead, when given a caller-path, Scopda uses the call graph to
produce a caller-path-enhanced call graph. The paths in this caller-
path-enhanced call graph are exactly the set of valid SCPs. In this
graph, invocations, that are adjacent in the caller-path, are inter-
posed by a graph representing the SCPs of non-tracked functions
between the invoked functions.

More concretely, given a caller-path p and an invocation pi
within it, andwritingG for the program’s call graph, defineGforw(pi )
to be the subgraph ofG which can be reached from pi without pass-
ing through a tracked function node. Similarly defineGback(pi+1) as

the subgraph ofG which is backwards reachable from pi+1 without
passing through a tracked function node. Then, the graph of SCPs
that interposes two adjacent invocations, pi and pi+1, is calculated
as Gforw(pi ) ∩Gback(pi+1) – the non-tracked sub-call-graph that is
reached from pi and can reach pi+1.

3.3 Change Transformation Functions
Scopda’s CTFs implement improvements (Scopda step 3) by trans-
forming the APG (e.g. by inlining a task’s execution). CTFs take
an APG and a set of static locations as input, and generate a trans-
formed APG. CTFs are implemented as a series of graph analyses
and transformations applied to the original APG.

For example, in the running example (Fig. 1), the convert-to-inline
CTF’s process is:

(1) Derive additional patch points (Section 2) from the task
spawn static location (the submit() call) by identifying:

(a) The second argument to the submit() call (the <used-by2>
edge terminating at the task spawn static location in Fig. 3)
is the task-body function.

(b) The Future.get() call, that takes the submit() call’s
result variable (databaseResult) as the first argument,
must be removed.

(2) Modify the submit() call to call the task-body function.
(3) Make the result variable, databaseResult, an int instead

of a Future<Integer>.
(4) Remove the call to Future.get() and replace it with a sim-

ple usage of the databaseResult variable.

This is illustrated in Fig. 3, where the top and bottom graphs are pre-
and post-change versions, respectively. Edges changed between the
versions (corresponding to the patch) have enlarged arrow heads
and nodes created/deleted are hollow. Modified edges and nodes
also follow git-diff colour conventions.

3.4 Rendering Source Code
There are two subtleties in the APG-to-source-code rendering pro-
cess (Scopda step 4). First, APG to AST conversion is done per-
function; higher-level constructs, such as classes, are rendered un-
changed (save for the modified functions). Since Scopda operates at
the function level, for both analysis and transformation, no other
source code needs to be changed. Second, the final patch is min-
imised at each output step (APG-to-AST and AST-to-source-code);
this is important for adoption as larger and more complex patches
are harder for developers to check.

At each output step, Scopda copies as much of the original data
(AST nodes or source code text) as possible and only generates new
versions for the parts that have been modified. At the APG to AST
step, Scopda copies the original AST for the function being rendered
and replaces only those nodes that correspond to modified APG
subgraphs. Similarly, at the AST-to-source code step, if an AST node
is unmodified the corresponding source code is copied, whereas
if it is modified the source code is generated from the AST. This
process of using the original data where possible ensures that the
resulting diff is minimal (and non-functional aspects of the code,
such as code style and comments, are retained).

5
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Finally, the output patch (Scopda step 5) is generated by applying
git’s diff algorithm to the original source code and generated source
code.

4 REAL-WORLD COMPLEXITY
The running example does not include various features present in
real-world programs, such as branch statements, inheritance, un-
available source code, and unanticipated binary code structures. We
now summarise how the APG, and Scopda more generally, handles
these, to illustrate Scopda’s approach to real-world complexity.

Branching While branching statements can generate various
branch orders and behaviours (e.g. if vs. switch statements), such
distinctions are irrelevant to the analysis and transformation per-
formed by Scopda. The dynamic-static mapper explores all branch
options irrespective of order. Similarly, CTFs that modify branching
statements consider the branches as identified by the static loca-
tions, not their order. Therefore, the APG identifies branches as
distinct from each other, but does not specify how they are distin-
guished by the source language (LI annotations can indicate this
for source-code rendering).

Inheritance and interfaces Though omitted in the running
example, the APG supports inheritance with an <overrides> edge
linking a function implementation to an interface function it in-
herits/overrides. In analysis these edges are, effectively, expanded
as <calls> edges between operation nodes that call the interface
function node and the implementation function nodes. Scopda does
not (yet) perform call-graph reduction using infeasible path analy-
sis [13] as the dynamic-static mapper’s reachability-based approach
for constructing graphs of SCPs is currently sufficient for the anal-
yses it performs.

Source-code availability APGs must contain all tracked func-
tions and all functions on static call paths between tracked functions
to enable dynamic-to-static mapping. In many cases this includes
functions for which the source code is unavailable (e.g. third-party
libraries). As such, Scopda also implements a language interface
for generating APGs from JVM bytecode, though it cannot render
bytecode derived nodes into Java source code. Individual APGs may
contain subgraphs derived from multiple input formats/languages
(e.g. JVM bytecode and Java source code).

JVM bytecode and grey boxes JVM bytecode is an unstruc-
tured format in which there are valid bytecode patterns4 that can-
not be represented in structured graphs (Miecznikowski and Hen-
dren [6]), such as an APG. These patterns are addressed by an
additional APG construct, the grey box. Grey boxes contain only
those nodes and edges to enable inter-procedural analysis (e.g. call-
graph edges) by the dynamic-static mapper; they do not support
code modification. Grey boxes provide safe, but imprecise, informa-
tion. Moreover, grey boxes permit Scopda to follow a fall back to
simpler representation principle when encountering unanticipated
structures in code; this enables support for unstructured formats
and eases support for new languages. While grey boxes have the

4Note that these unrepresentable patterns are structural patterns, such as multi-
entry basic blocks, not behavioural patterns that enable dynamic behaviour, such as
Android Intents. Behavioural patterns can be represented in the APG format just as
any in any other structured format (e.g. Java). Fundamentally, any structural pattern
that can be represented in a structured programming language can be represented as
an APG.

potential to reduce analysis precision, they should not impede fi-
nal patch generation (and do not in our experimental experience
(Section 5)) as they never represent source-available functions (i.e.
code which patches affect).

// Track main(), g(), and h(), but not untracked1() nor untracked2().
void main() {

if (cond) {
untracked1();

} else {
untracked2();

}
}
void untracked1() { g(); h(); }
void untracked2() { h(); g(); }

Figure 4: Representing untracked1 and untracked2 as grey
boxes causes ambiguity in Scopda’s analysis.

As an example of the analysis imprecision that grey boxes can
cause, Fig. 4 presents a constructed case that, with grey boxes,
could cause ambiguity in Scopda’s analysis. In the example, func-
tions main, g, and h are tracked and functions untracked1 and
untracked2 are not. The main function calls untracked1 and un-
tracked2, which both call g and h but in different orders. Given a
trace-log showing main calling g and then h in turn, Scopda could
determine that untracked1 was called (due to the order of the g
and h invocations). However, if untracked1 and untracked2 were
both grey boxes, Scopda would not be able to determine which one
was called as both would indicate that they call g and h, but would
not indicate the order. If a patch then depended on which was called
(e.g. a patch that needs to edit main in some way), this ambiguity
could impede patch generation.

Implementation In practice it is faster to generate APGs from
JVM bytecode instead of raw .java files as it does not require
further compilation (raw .java files must be compiled by javac
to resolve types for the APG, whereas these are already resolved
in bytecode). As the APG representations of bytecode and source-
code versions of a function are semantically equivalent, we initially
generate the entire program APG from bytecode and only generate
APG function representations from source-code when necessary.
Specifically, when source-code is available for a function Scopda
uses it if

• the bytecode version cannot be successfully generated (i.e.
it would be a grey box); or

• the CTF must transform the function to generate a patch.
If the CTF attempts to transform a source-unavailable function, an
error is returned.

While this approach requires generating APG subgraphs twice
for functions to be edited (first from bytecode and then from source
code), potentially presenting scalability issues for large code bases,
in practice this is not a significant issue. APG generation is constant
w.r.t. the number of .java files to be edited for a given set of patches.
Only those .java files that will be edited in at least one patch are
converted into an APG, the rest of the source code can be ignored
(the vast majority of code in large projects). Ignoring non-patch-
relevant code during (javac) compilation is possible as the compiled
.jar file – which is executed to generate the original trace and is
also used as the basis of initial APG construction – can be given as a

6
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public UncheckedFuture<ByteBuffer> sign(ByteBuffer value, Key key) {
return executorService.submit(() -> {

try {
SecretKey secretKey = getKey(key, true);
Mac mac = Mac.getInstance(secretKey.getAlgorithm());
mac.init(secretKey);
return ByteBuffer.wrap(mac.doFinal(value.array()));

} catch (NoSuchAlgorithmException | InvalidKeyException e) {
throw new RuntimeException(e);

}
});

}

Figure 5: An example patch generated by Scopda for a real-
world Java server.

class-path library to the javac compiler, providing all dependencies
required by the .java files. Naturally, if a .java file is affected by
multiple patches, it only needs to be compiled once as the same
APG can be used to generate multiple patches.

5 APPLICATION TO REAL-WORLD
We evaluate Scopda on a (proprietary) industrial Java API server
(c. 500kLoC) for a consumer web and mobile application – the same
software Rehype was evaluated against. Scopda successfully gen-
erates source-code patches for each of the nineteen improvements
suggested by Rehype (discussed in the results section of [7]). Fig. 5
contains one of the real patches generated by Scopda.

The APG is constructed from the server’s source code .java files,
compiled .jar file, and the Java 8 SE standard library .jar file. The
final APG contains 8 690 403 total nodes, 409 231 functions, and
223 492 intrinsics. Of these, the JVM bytecode language interface
successfully generates APG representations for 398 699 functions,
97.43% of all functions. Grey box versions are generated for the
remaining functions (all are in third-party .jar files where source
is unavailable).

The server with patches automatically applied, by git apply,
successfully executes and exhibits the predicted performance in-
crease (see Rehype [7]).

6 RELATEDWORK
We are unaware of existing work that transforms static source code
based on dynamic analysis.

Work relevant to the APG includes established general repre-
sentations such as control flow graphs [1] and call graphs, system-
specific internal representations (e.g. LLVM’s IR [5]), and task-
specific representations such as source-code query graphs [8, 9],
among others [12]. These differ from the APG in specificity (e.g.
CFGs), target use (query graphs), or structure (compiler IRs de-
signed for optimisation and machine-code generation). By nature
of the target application, the APG does not need to represent some
information that is critical to other IRs, such as an efficiently check-
able type-system, as it can assume the input programs are valid.
Within the context of compiler IRs, the APG uses a form of semantic
lowering that can be uniquely reversed (i.e. the lowered IR can gen-
erate the unique input high-level source code (modulo white space
and spurious bracketing)), whereas most IRs do not require this
attribute [3]. Furthermore, given its unified approach (as opposed

to, for example, overlay graphs), the APG is particularly well suited
to algorithms that combine analysis and transformation.

Some existing work combines static analysis and dynamic anal-
ysis for the detection of bugs [2, 14], especially multi-threading
bugs which are particularly difficult to find with static analysis
alone. Such work combines static analysis and dynamic analysis to
enhance the analysis (detection) process, whereas Scopda combines
them to translate dynamic analysis identified improvements back
into the static domain (source code).

7 CONCLUSION
We introduced and evaluated Scopda, a system for generating source-
code patches for improvements identified by execution-trace-based
dynamic analysis, specifically the Rehype companion tool. Scopda
first maps the dynamic-domain improvement specifications into the
static domain using a general method and then applies a code trans-
formation method specialised to each optimisation. Scopda uses
a custom static program representation (abstract program graph,
APG) to map between dynamic and static domains and perform
code transformation within a single representation. We evaluated
Scopda on a large real-world program and demonstrated that it
generates sensible source-code patches.

In the future we plan to develop support for more optimisa-
tions and expand Rehype and Scopda to work on more program-
ming languages. We also plan to incorporate further static analysis
techniques, such as infeasible path analysis, to improve Scopda’s
treatment of trace sparsity in improvement specifications.
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