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ABSTRACT

A
natural progression in machine learning research is to automate and learn from data

increasingly many components of our learning agents. Meta-learning is a paradigm that

fully embraces this perspective, and can be intuitively described as embodying the idea of

learning to learn. A goal of meta-learning research is the development of models to assist users

in navigating the intricate space of design choices associated with specifying machine learning

solutions. This space is particularly formidable when considering deep learning approaches,

which involve myriad design choices interacting in complex fashions to affect the performance

of the resulting agents. Despite the impressive successes of deep learning in recent years, this

challenge remains a significant bottleneck in deploying neural network based solutions in

several important application domains. But how can we reason about and design solutions to

this daunting task?

This thesis is concernedwith a particular perspective for meta-learning in supervised settings.

We view supervised learning algorithms as mappings that take data sets to predictive models,

and consider meta-learning as learning to approximate functions of this form. In particular, we

are interested in meta-learners that (i) employ neural networks to approximate these functions

in an end-to-end manner, and (ii) provide predictive distributions rather than single predictors.

The former is motivated by the success of neural networks as function approximators, and

the latter by our interest in the few-shot learning scenario. The introductory chapters of this

thesis formalise this notion, and use it to provide a tutorial introducing theNeural Process Family

(NPF), a class of models introduced by Garnelo et al. (2018a,b) satisfying the above-mentioned

modelling desiderata. We then present our own technical contributions to the NPF.

First, we focus on fundamental properties of the model-class, such as expressivity and

limiting behaviours of the associated training procedures. Next, we study the role of translation

equivariance in the NPF. Considering the intimate relationship between the NPF and the

representation of functions operating on sets, we extend the underlying theory of DeepSets to

include translation equivariance. We then develop novel members of the NPF endowed with

this important inductive bias. Through extensive empirical evaluation, we demonstrate that, in

many settings, they significantly outperform their non-equivariant counterparts.

Finally, we turn our attention to the development of Neural Processes for few-shot image-

classification. We introduce models that navigate the important tradeoffs associated with this

setting, and describe the specification of their central components. We demonstrate that the

resulting models—CNAPs—achieve state-of-the-art performance on a challenging benchmark

called Meta-Dataset, while adapting faster and with less computational overhead than their

best-performing competitors.
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Traveller, your footprints are the path and nothing more;

traveller, there is no path, the path is made by walking.

— Anotonio Machado
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1
INTRODUCT ION

T
his thesis is primarily concerned with the learning paradigm known as meta-

learning (Schmidhuber, 1987; Thrun and Pratt, 2012). Of particular interest

is a class of models—the Neural Process Family—which brings together two key

ideas: (i) the construction of meta-learners as function approximators parametrised

by deep neural networks, and (ii) incorporating estimates of uncertainty around

predictions made by the meta-learning models. Throughout this thesis, we will

develop these ideas, and present our own extensions to the Neural Process Family,

which focus on meta-learning for few-shot classification and regression.

1.1 motivation

A significant challenge of modern machine learning is specifying the learning

pipeline itself. For example, modern supervised learning tasks often employ

deep learning solutions (LeCun et al., 2015; Goodfellow et al., 2016), which have

witnessed significant and important successes in recent years. However, invoking

such solutions requires human experts to specify myriad design choices in

approaching a new problem, such as a neural network architecture, loss function,

optimiser and learning rate schedule, regularisation and normalisation strategy,

and many more. Moreover, the design of the pipeline can often encode important

inductive biases, and have significant effect on the resulting performance. Despite

enormous research effort in designing efficient pipelines in recent years, this

challenge remains an important bottleneck in making progress with machine

learning research.Meta-learningprovides a framework concernedwith automating

and learning the machine learning pipeline itself directly from the data. It aims to

assist experts in navigating these choices, thus scaling up our ability to discover

pipelines that are useful for challenging scenarios.

But how might we formalise and reason about models that approach such a

task? In this thesis, we assume the following perspective for meta-learning in

supervised settings. We view the supervised learning pipeline itself as a map

that takes data sets to predictive functions. Then, we think of meta-learning

as parametrising—and learning from data—a function approximator of the

appropriate form. In particular, we will be interested in a class of meta-learners

that (i) employ deep neural networks in the approximation of such functions,

and (ii) model distributions over functions rather than just single predictors. The

1



2 introduction

former is motivated by the enormous success of deep learning in supervised

function approximation in recent years. The latter is motivated by our central

application of interest: few-shot learning, where uncertainty is of crucial importance.

1.2 overview and main contributions

The majority of the results discussed in this thesis were presented in a series of

publications. In particular, the thesis mainly draws from Requeima et al. (2019),

Gordon et al. (2020a) and Foong et al. (2020). Below, we provide an overview of

the structure of the thesis, and the main contributions described in each chapter.

General Contributions to the NPF

Chapter 2 presents our perspective of meta-learning as learning to approximate

maps from data sets to predictive stochastic processes, provides a systematic

overview of the NPF, and concludes with several technical contributions. Specific-

ally, in Section 2.7.1, we study the implications of maximum-likelihood training

for members of the NPF in idealised settings, and provide a framework for

reasoning about the guarantees of such procedures. In Section 2.7.3 we leverage

these insights and propose a novel training procedure memmbers of the NPF

that employ latent variables, which, in later chapters, we demonstrate generally

improves performance of these models. The results in these two sections were

derived in collaboration with Andrew Y. K. Foong and Wessel Bruinsma under

the supervision of Richard E. Turner, and were published by Foong et al. (2020).

In Section 2.7.2, we turn our attention to the theory of machine learning on

sets, extending the results of Zaheer et al. (2017) to include vector-valued sets of

varying sizes. We then leverage this result to provide a representation theorem

characterising the expressive power of models in the NPF. The central results

here are Theorems 2.3 and 2.4, which were developed and proved (Appendix C)

in collaboration with Andrew Y. K. Foong and Wessel Bruinsma. These results

are not published elsewhere.

Convolutional DeepSets

In Chapter 3, we introduce the Convolutional DeepSets framework, which further

extends thework of Zaheer et al. (2017) to include translation equivariant functions

on sets. The central contribution is the introduction of the ConvDeepSets form,

pairedwith a universal representation theorem for functions satisfying the desired

properties (Theorem 3.1). The framework and proof were originally co-developed

with Wessel Bruinsma and Richard E. Turner, and later improved upon and

verified by Andrew Y. K. Foong. Richard E. Turner also supervised and guided
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the development of ConvDeepSets throughout. We acknowledge Mark Rowland

for further verifying and suggesting improvements to the proof (provided in

Appendix D). These results were published by Gordon et al. (2020a).

Translation Equivariant Members of the NPF

In Chapters 4 and 5, we proposemodels that extend theNPF to include translation

equivariance. The main contributions of these chapters are the ConvCNP and

ConvNP – novel members of the NPF. The models are empircally evaluated via

extensive experimentation to demonstrate their usefulness. These contributions

were produced in collaboration with my co-first authors Wessel Bruinsma and

Andrew Y. K. Foong, as well as Yann Dubois and James Requeima, who assisted

in conceptualising parts of the framework, writing the software and conducting

experiments, and writing and editing the papers. The entire development of these

models was carried out under the close supervision and guidance of Richard

E. Turner. These results were published by Gordon et al. (2020a) and Foong et al.

(2020).

Conditional NPF Models for Few-shot Classification

Finally, in Chapter 6, we introduce a novel member of the conditional NPF for

few-shot classification. The central contribution of this chapter is the introduction

of CNAPs, a member of the NPF that achieves state-of-the-art performance on

the challenging few-shot learning benchmark Meta-Dataset. The model was

conceptualised and developed with my co-first authors James Requeima and

John Bronskill, under the close supervision and guidance of Sebastian Nowozin

and Richard E. Turner. The results were published by Requeima et al. (2019).

1.3 list of publications

The following is a list of publications and software I co-authored while pursuing

my PhD, regardless of whether they appear in the chapters of this thesis.
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Learning.
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Versa: John Bronskill, Jonathan Gordon, and Matthias Bauer (2019).
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CNAPs: John Bronskill, Jonathan Gordon, and James Requeima (2019).

Code for “Fast andflexiblemulti-task classificationusingCondi-

tional Neural Adaptive Processes” and “TaskNorm: rethinking

batch normalisation for meta-learning”.

https://github.com/cambridge-mlg/cnaps

ConvCNP: Wessel Bruinsma, Jonathan Gordon, and Andrew Y. K. Foong

(2020). Code for “Convolutional ConditionalNeural Processes”.

https://github.com/cambridge-mlg/convcnp

NeuralProcesses.jl Wessel Bruinsma and Jonathan Gordon (2020). Compositional

Neural Processes with Julia. Reproduce experiments from

“Meta-learning stationary stochastic processes with Convolu-

tional Neural Processes”.

https://github.com/wesselb/NeuralProcesses.jl

The NPF: Yann Dubois, Jonathan Gordon, and Andrew Y. K. Foong

(2020). A Jupyter-book tutorial on the NPF, accompanied with

a unified implementation of prominent models.

https://yanndubs.github.io/Neural-Process-Family

https://github.com/Gordonjo/versa
https://github.com/cambridge-mlg/cnaps
https://github.com/cambridge-mlg/convcnp
https://github.com/wesselb/NeuralProcesses.jl
https://yanndubs.github.io/Neural-Process-Family/text/Intro.html




2
BACKGROUND

T
his chapter provides an introduction to the main concepts this thesis builds

upon.We begin by introducing the notion ofmeta-learning in Section 2.1, and

a probabilistic formulation thereof in Section 2.2. Then, in Section 2.3 we review

important results in machine learning on set-structured inputs, which form the

backbone for many of the models discussed in the thesis. In Sections 2.4 to 2.6, we

introduce the Neural-Process Family (NPF). We provide a general overview of the

NPF, followed by a more detailed examination of the two main sub-branches: the

conditional NPF (Section 2.5) and the latent-variable NPF (Section 2.6). The aim

of this chapter is to provide a tutorial and overview of probabilistic meta-learning

and the NPF. However, the chapter also presents several novel contributions to

the NPF. To introduce these while maintaining a distinction between existing

work and novel contributions, we have gathered novel results in the final section

of this chapter (Section 2.7).

Notation

We refer to inputs as x ∈ X (typically X = Rd for some fixed d ∈ N), and
outputs as y ∈ Y . Output spaces may be R in regression tasks, [0, 1] for grey

scale images and [0, 1]3 for RGB images, and {1, . . . ,K} for classification tasks.

For ease of notation we typically consider scalar outputs. A supervised learning

data set is denoted D = {(xn, yn)}Nn=1 for some N ∈ N. We use the notation

X = (x1, . . . ,xN ), and similarly y = (y1, . . . , yN ).

In the meta-learning setting, we will often be concerned with mappings from a

collection of data sets to a space of predictive functions. To make this notion precise,

let SN := (X ×Y)N be the collection of all supervised data sets of sizeN ∈ N, and
let S :=

⋃
N∈N SN . In words, S is the collection of all possible finite supervised

learning data sets in our domain. We denote F = {f : X _Y} as the collection of

functions mapping between our input and output spaces. With these collections

in place, we can formalise mappings of the above form as S_F .
An important object in meta-learning is a task, denoted ξ. Tasks consist of a

context set Dc and a target set Dt, such that ξ = (Dc,Dt) with Dc,Dt ∈ S. We use

the shorthandC := |Dc| and T := |Dt| to refer to the number of input-output pairs

in these sets. We denote XC and yC as the inputs and corresponding outputs of

Dc, and similarly for XT and yT . Finally, we often assume access to a data set of

tasks (referred to as a meta data set) with which we train meta-learning methods,

7
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Task 1 Task 2 Task N

Figure 2.1: Illustrating the notation associated with meta-learning (1d regression setting

used for the example). Each subplot represents a single task ξi in ameta-dataset

Ξ. Each task is comprised of a context set Dc and a target set Dt.

denoted Ξ := {ξi}Ni=1 for some N ∈ N. We assume that tasks in Ξ are identically

and independently distributed (i.i.d.) i.e. ξi ∼ p(ξ). Figure 2.1 illustrates key

quantities discussed above.

2.1 meta-learning

Informally, meta-learning is a machine learning paradigm that considers the

problem of learning to learn. To obtain intuition for this idea, let us consider a

standard approach to learning in supervised settings. Often, the first step is to

have an expert specify and tune a machine learning pipeline. In this thesis, we think

of machine learning pipelines as mappings Φ: S_F . For example, an expert may

specify Φ to consist of a single hidden layer neural network, a likelihood function

for the observed data (e.g. Gaussian), an optimiser, number of training epochs,

learning rate schedule, and `2 regularisation for the weights of the network. With

these choices specified, we can think of Φ as a mapping: given any data set S ∈ S ,
we can “push” S through Φ, which will output a predictive function over X to

be used in down-stream tasks. Later in this thesis we will consider learners that

output predictive distributions over Y rather than functions in F . The process of
producing a predictive function (distribution) by giving Φ a dataset is referred to

as training. This perspective is illustrated in Figures 2.2 and 2.3.

In the deep learning setting (LeCun et al., 2015; Goodfellow et al., 2016), the

set of decisions to be made can often feel daunting: a user must specify an

architecture, parameter initialisation scheme, optimiser, learning rate schedule,

early stopping patience, normalisation and augmentation schemes, regularisation

strategies, and more. Performance of the resulting models is sensitive to several

of these decisions, and design choices may interact (across the dimensions) in

often unexpected fashions.

For some well-studied domains, best practices are readily available, e.g. the

choice of ResNets (He et al., 2016) for image tasks or transformer models (Vaswani

et al., 2017) for natural language tasks. However, in less-studied domains, such
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Figure 2.2: Illustration of viewing supervised learning pipelines asmappings. The learning

pipeline, (ΦNN), is a single hidden-layer neural network with 25 hidden units

and ReLU activations, trained to maximise the log-likelihood of the data

with Adam (Kingma and Ba, 2015). Two regression data sets are drawn by

randomly sampling parameters for a cubic function and evaluating them

(with Gaussian noise) at a small number of locations. Each is then used to

train ΦNN, and the resulting predictive model is visualised.

as environmental or health-care applications, this problem can be extremely

challenging, and inhibit the deployment of machine learning solutions. Intuitively,

the goal of meta-learning can be thought of as alleviating this issue by learning

large parts of Φ directly from available data. In many senses, this is a natural

progression in machine learning research, where the tendency is to automate

as many decisions as possible by learning the (approximately) optimal choices

directly from data (Clune, 2019; Sutton, 2019).

Meta-Learning Problem Statement

Let us attempt to formalise the meta-learning problem from the perspective of

empirical riskminimisation (ERM) (Thrun and Pratt, 2012; Hospedales et al., 2020).

Later, we will introduce probabilistic formulations of meta-learning, which will

be used throughout this thesis. We assume there exists a distribution of interest

over tasks—p(ξ)—and our goal is to learn a learning pipeline Φ that achieves “good”

performance in expectation over p(ξ), as measured by a loss function L(f ; ξ).1 We

1 In this thesis, we will most often consider the negative log-likelihood.
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Figure 2.3: Same as Figure 2.2, but with a GP pipeline. The pipeline, (ΦGP), is an EQ-

kernel GP that learns the kernel hyper-parameters by optimising the marginal

likelihood of the data set with L-BFGS (Liu and Nocedal, 1989) and performs

exact posterior inference. The most prominent distinction from Figure 2.2 is

that ΦGP produces a distribution over predictors, while ΦNN produces a single

predictor. Later in this thesis we will formalise the handling of meta-learners

that output distributions rather than functions in F .

introduce a family of meta-learners {Ψθ : S_F ,θ ∈ Θ}. Given access to a meta

data set Ξ = {ξi}Ni=1 where ξi ∼ p(ξ), our goal is to find the meta-learner

θ∗ = arg min
θ

E
ξ∼p(ξ)

[
L
(

Ψθ

(
D(ξ)
c

)
; ξ
)]
. (2.1)

Of course, this optimisation problem is generally intractable, not least because the

underlying distribution p(ξ) is typically unknown. Instead we typically assume

access to an empirical distribution, Ξtrain and Ξtest (referred to as meta-train and

meta-test sets, respectively), and consider

θ∗ = arg min
θ

E
ξ∼Ξtrain

[
L
(

Ψθ

(
D(ξ)
c

)
; ξ
)]
, (2.2)

and measure our held-out performance analogously on Ξtest.

2.2 probabilistic meta-learning

In many applications, rather than providing point predictions, we are interested

in expressing the uncertainty associated with the predictions (Ghahramani, 2015).
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An important example is when the predictions are used in down-stream decision

making tasks, e.g. a systemmaking predictions based on a clinical health-care data

set to aid doctors in diagnosing patients. Another example, and one with which

this thesis will often be concerned, is few-shot learning. In this setting, by definition,

our context sets Dc contain only a handful of examples. Hence, we should not

expect to obtain a unique predictor from Dc, and may instead desire models

that output distributions over possible predictions consistent with the available

observations. The notion of a distribution over predictors, i.e. a distribution

over functions, leads us quite naturally to consider stochastic processes (SPs; Ross

et al., 1996; Lindgren, 2012). We next introduce a probabilistic perspective on

meta-learning that frames the problem as recovering prediction maps of underlying

stochastic processes.

2.2.1 Stochastic Processes, Kolmogorov Extension, and Prediction Maps

Distributions over functions are known in mathematics as stochastic processes (SPs;

Ross et al., 1996; Lindgren, 2012). We first provide a brief overview of stochastic

processes, and use the resulting definitions to present a view of probabilistic

meta-learning.
2

Overview of Stochastic Processes

For our purposes, a SP on X will be defined as a probability measure on

F = {f : X _Y}, i.e., YX , equipped with a σ-algebra, denoted Σ.
3
As in practice

we only ever observe finite data sets, we consider the measurable sets of Σ as

those which can be specified by the values of the function at a countable subset

I ⊂ X of its input locations. We denote the set of all such measures as P(X ).

We typically assume there is some ground truth SP P ∈ P(X ). In later chapters,

we will see examples of such a process, but in practice, we are only ever interested

in distributions on collections of finitely many random variables. To make the

connection between P and distributions over finite collections, we invoke the

Kolmogorov extension theorem.

Definition 2.1 (Kolmogorov Consistency)
Let X be an input space and n ∈ N. For every k ∈ N and finite sequence of distinct

variables x1, . . . ,xk ∈ X , let px1,...,xk be a density on (Y)k. We call the collection of

these densities Kolmogorov consistent if, for all y1, . . . , yk, they are

2 We note that while a comprehensive treatment of SPs requires concepts from measure theory, this

thesis requires only basic notions. We introduce only the concepts necessary for what follows. For a

comprehensive introduction to stochastic processes, see e.g. Tao (2011) or Ross et al. (1996).

3 In particular, Σ is the product σ-algebra of the Borel σ-algebra over each index point (Tao, 2011).
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1. consistent under permutations, i.e, for every permutation π of {1, . . . , k}

px1,...,xk (y1, . . . , yk) = pxπ(1),...,xπ(k)
(
yπ(1), . . . , yπ(k)

)
; (2.3)

2. consistent under marginalisation, i.e., for anym ∈ N

px1,...,xk (y1, . . . , yk) =

∫
px1,...,xk+m (y1, . . . , yk+m) dyk+1 . . . dyk+m. (2.4)

The Kolmogorov extension theorem (KET) states that for any collection of meas-

ures satisfying Definition 2.1, there exists a unique measure on (YX ,Σ) that has

these densities as its finite-dimension distributions. Hence, we can equivalently

think of SPs either in terms of (i) their finite-dimensional marginals or (ii) as

measures on F .

The Prediction Map

An important notion for this perspective of probabilistic meta-learning is that

of the prediction map associated with any P ∈ P(X ). To define the prediction

map, we must first clarify what it means to condition on observations from the

stochastic process. Let p(y|X) denote the density with respect to the Lebesgue

measure of the finite dimensional marginal of P with index set X. Now, assume

we have observed a finite number of points Dc = (XC ,yC) from P , and let XT be

another finite index set. Then by definition of conditional distribution, the finite

dimensional marginal at XT conditioned on Dc is the distribution with density

p(yT |XT ,Dc) =
p(yT ,yC |XT ,XC)

p(yC |XC)
. (2.5)

It is straightforward to verify that for a fixed Dc, the conditional marginal

distributions for anyXT fromEquation (2.5) satisfy the conditions ofDefinition 2.1.

Hence, the KET implies there is a unique measure P ∈ P(X ) on (YX ,Σ) that

has Equation (2.5) as its finite marginals. We denote this measure PDc . With this

notation in place, we can state the definition of a prediction map.

Definition 2.2 (Prediction map)
Let P and PDc be as defined above. We call πP : S_P(X ), the map such that πP =

Dc 7→ PDc , the prediction map.

Inwords, the predictionmap takes any observed data setDc to the exact predictive
SP conditioned on Dc. To gain further intuition, let us consider a well-studied

class of SPs in the machine learning literature: GPs. Recall that a GP is completely

defined by its mean function µGP : X _Y and covariance function kGP : X ×
X _R. For finite index sets X and X′, we use the notation µGP(X)i := µGP(Xi)
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Figure 2.4: Illustration of the prediction map associated with a GP. Left-hand side depicts

stochastic process defined by a GP with a zero mean function and EQ

covariance function with lengthscale 1 (k). The process is fully-specified by

these two functions. An observed data set, produced froma randomly sampled

cubic function, is also illustrated on the lefthand side. The prediction map

associated with this GP then maps the data set to another GP by outputting

posteriormean and covariance functions, illustrated on the righthand side.

and kGP (X,X′)i,j := kGP

(
Xi,X

′
j

)
. Then, For any X, a GP specifies p(y|X) =

N (y;µGP(X), kGP (X,X)).

A well-known property of GPs is that, for Gaussian likelihoods, the output of

the prediction map is also a GP which can be expressed analytically (Rasmussen,

2003; Williams and Rasmussen, 2006). In particular, for a GP with a zero mean

function and covariance function k, we have that

πGPk = Dc _ (µpost, kpost) (2.6)

µpost(X) = k(X,XC)k(XC ,XC)−1yC , (2.7)

kpost(X,X) = k(X,X)− k(X,XC)k(XC ,XC)−1k(XC ,X). (2.8)

Herewe have specified themapping as outputting amean and covariance function,

which completely specify the GP output by the map. The prediction map for a

particular GP and data set is illustrated in Figure 2.4.

2.2.2 Probabilistic Meta-Learning as Recovering Stochastic Process Prediction Maps

We are now ready to formalise our proposed notion of probabilistic meta-learning.

Let S and P(X ) be as defined above, and πP be the prediction map associated

with P ∈ P(X ). Given access to a meta-data set Ξ, where each ξ ∈ Ξ is assumed

to have arisen from observing P at a finite number of points, we define the goal

of probabilistic meta-learning to be recovering πP .

In this thesis, our strategy for recovering πP will generally follow two steps:

1. Construct models Ψθ : S_P(X ) parametrised by θ ∈ Θ. Ideally, these

models should be as expressive as possible, such that at least one member

of {Ψθ : θ ∈ Θ} is “close” to πP in a meaningful sense.
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2. Define a loss function L (Ψθ; ·) such that, in suitable data limits, πP is a

global minimiser, and (approximately) solve

θ∗ = arg min
θ∈Θ

L (Ψθ; Ξ) . (2.9)

2.2.3 Limitations

Before proceeding to introduce the main components of the NPF, we discuss an

important limitation of the formulation of probabilistic meta-learning presented

above. In particular, a core assumption in the derivation, which is implicit to the

KET assumptions, is that the functions f ∈ F are independent of the inputs x. While

common in the supervised meta-learning literature (see e.g. Finn et al., 2017; Ravi

and Larochelle, 2017; Snell et al., 2017; Triantafillou et al., 2020), this assumption

may be prohibitive in certain cases.

This assumption is also implicit in the graphical models discussed later in

this chapter when describing the NPF subfamilies (Figures 2.7 and 2.10), which

treat the inputs as observed (i.e. deterministic), the labels as the targets, and the

parameters θ as independent of the inputs. Such models, referred to as anti-causal

models (Schölkopf et al., 2012), suffer from several limitations. An important

example is that anti-causal models inhibit semi-supervised learning (Chapelle et al.,

2009; Schölkopf et al., 2012).

As a concrete example, in Chapter 6 we focus on an image-recognition applica-

tion from a challenging dataset dubbed meta-dataset (Triantafillou et al., 2020). In

this example, where tasks may arise from disparate image-recognition datasets

(e.g., MNIST (LeCun et al., 1989), ImageNet (Krizhevsky et al., 2012), etc’), the

assumption that the underlying function f is independent of the inputs seems

quite restrictive. A more reasonable assumption would be that the underlying

functions vary for different datasets in the amalgamation. Moreover, it seems

desirable in this setting to have the ability to improve models for this task when

given further unlabelled data from the distribution, which is not possible under

the current framework. Despite these limitations, the vast majority of models

applied to this benchmark make similar assumptions, and we demonstrate in

Chapter 6 that such models can achieve excellent performance.

2.3 learning and function approximation on sets

Before introducing the NPF, we review the intimately related area of machine

learning on sets. Representation learning on sets is an important sub-area of

machine learning, with applications to point-cloud modelling (Qi et al., 2017a;

Qi et al., 2017b; Wu et al., 2019), set retrieval (Zaheer et al., 2017), and image
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tagging (Zaheer et al., 2017). It is particularly relevant to this thesis, given the

need to parametrise models that operate on S. As S is a collection of sets, the

study of learning and function approximation on sets will form the theoretical

underpinning for many of the models considered in the thesis.

2.3.1 Valid functions on sets

Our goal is to construct and represent functions operating on sets. However, in

practice sets are often represented on computers as sequences, or ordered tuples.

The distinguishing property of sets, as opposed to sequences, is that they are

unordered. As such, any function f acting on sequences must be invariant to the

order in which it processes the elements of its input to be considered a valid

function on sets. This leads to the central notion of permutation invariance.

Property 2.1 (Sn-invariant and S-invariant functions)
Let Xn = (x1, . . . ,xn) be a sequence with n elements x1, . . . ,xn ∈ X . Let X ∗ be the
Kleene closure of X , i.e. the set of all finite sequences made up of elements of X , and denote
X ∗n ⊂ X ∗ be the set of all sequences of n elements. Let Sn be the group of permutations of

n symbols for n ∈ N. A function f on X ∗n is called Sn-invariant if

f(Xn) = f(πXn) for all π ∈ Sn and Xn ∈ X ∗n , (2.10)

where the application of π is given as π : Xn 7→
(
xπ(1), . . . ,xπ(n)

)
. A function f on X ∗

is called S-invariant if the restrictions f |X ∗n are Sn-invariant for all n ∈ N.

Definition 2.3 (Functions on sets)
Let f be a function acting on X ∗. We say that f is a valid function on sets if it satisfies

Property 2.1, i.e. f is S-invariant.

2.3.2 The DeepSets Representation Theorems

Zaheer et al. (2017) provide a general framework for modelling functions that

satisfy Property 2.1 with deep neural networks. They coin the frameworkDeepSets,

which is defined by parametrisations of the following form (for functions whose

target space is R):

f(X) = ρ(E(X)); E(X) =
∑
x∈X

φ(x), (2.11)

where φ : X _Rd, and ρ : Rd _R, both parametrised by neural networks. Za-

heer et al. (2017) further provide universal representation statements for DeepSet

networks, which we restate below.
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Theorem 2.1 (DeepSets: countable case)
Using the notation above, assume X is countable. A function f : X ∗_R operating on

ordered tuples satisfies Property 2.1 if and only if it can be decomposed as

f(X) = ρ

(∑
x∈X

φ(x)

)
(2.12)

for suitable continuous transformations ρ and φ.

The restriction to countable universes is quite severe, aswe are seldom interested

in such objects in machine learning (Wagstaff et al., 2019). Unfortunately, Zaheer

et al. (2017) could only prove the extension to the uncountable case for fixed-size

sets. The key result of that work can be (re)stated as follows.

Theorem 2.2 (DeepSets: uncountable case)
Let X = [0, 1] and f : XM _R. Then f is an SM -invariant and continuous function if

and only if it has a representation of the form

f(X) = ρ

(∑
x∈X

φ(x)

)
(2.13)

for some continuous functions φ : X _RM+1
and ρ : RM+1 _R.

Theorems 2.1 and 2.2 constitute important results in that they demonstrate

that any function satisfying Property 2.1 must have a representation of such a

form. The use of continuous functions for ρ and φmotivate the use of learnable

neural networks for these. Such parametrisations have been widely adopted and

demonstrated to achieve compelling results in several domains (e.g., Edwards

and Storkey, 2017; Qi et al., 2017a; Wu et al., 2019).

2.3.3 Weaknesses of the DeepSets Theorems

While Theorems 2.1 and 2.2 constitute important milestones in the theory of

learning on sets, they have several significant weaknesses. Most importantly, as

argued by Wagstaff et al. (2019), Theorem 2.1 is not of particular practical use

as it is limited to countable universes. Moreover, Theorem 2.2 holds only for

fixed-sized sets, and Zaheer et al. (2017) were not able to extend the proof to hold for

varying-size sets, which in practice are the objects of interest in machine learning

applications. Finally, an often overlooked fact is that Theorem 2.2 only applies

to univariate set elements in [0, 1]. It turns out that their proof, which relies on

sum-of-power-mappings (Zaheer et al., 2017, Lemma 4), is not straightforwardly

extended to the multivariate case without modification.

More recently, Wagstaff et al. (2019) provide an extension of Theorem 2.2 to the

case of varying-sized sets of elements in [0, 1]. Moreover, Bloem-Reddy and Teh
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(2020) provide a general (measure-theoretic) extension to Theorem 2.2 that allows

for varying-sized sets of elements from arbitrary spaces. In this thesis we will

build upon Theorem 2.2 and extend it in two ways:

1. In Section 2.7.2, we provide an additional extension Theorem 2.2 to include

vector-valued sets of varying sizes, and relate it directly to the NPF.

2. In Chapter 3 we extend the theory to include functions f that are both

permutation invariant and translation-equivariant.

2.4 the neural process family

We now turn our attention to the Neural Processes family (NPF): a class of models

for probabilisticmeta-learning. Neural Processes (NPs)were originally introduced

by Garnelo et al. (2018a,b), and subsequently expanded upon in several works

(e.g., Gordon et al., 2019; Kim et al., 2019; Louizos et al., 2019; Requeima et al., 2019;

Gordon et al., 2020a; Xu et al., 2020; Foong et al., 2020). The central idea in the NPF

is to use deep neural networks to parametrise a mapping between a collection of

data sets and a space of stochastic processes in an end-to-end fashion. To achieve

this, models in the NPF must deal with two major considerations: (i) the design

of architectures that accept data sets as inputs (i.e. satisfy Property 2.1), and

(ii) ensuring that model outputs respect the properties of SPs, namely, consistency

under permutation and marginalisation (Definition 2.1).

Remark 2.1
While the output of a NP is a proper SP for every context set Dc, NPs do not ensure

that the resulting predictive processes are consistent with respect to some prior process.

Thus, we should not think of NPs as modelling well-defined SPs, but rather only as

parametrising the mapping between context sets and predictive processes.

Below, we discuss the general design principles underlying the NPF, and how

these relate to and achieve the modelling desiderata. We then introduce two

approaches to enforcing the required consistency constraints on the predictive

processes, which define the two major branches of the NPF: factorised models,
4

known as conditionalNPs (e.g., Garnelo et al., 2018a; Gordon et al., 2020a), and

latent variable models (e.g, Garnelo et al., 2018b; Gordon et al., 2019), which we

will refer to as latent NPs (LNPs). These are discussed in detail in Sections 2.5

and 2.6, respectively.

4 The term factorised is somewhat ambiguous here, and will be made precise in Section 2.5.
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2.4.1 Design Principles for the Neural Process Model Class

Let us consider the construction of maps directly from data sets to predictive

processes using deep neural networks. The first challenge is that such a map must

accept as input a context set, Dc. This poses two major differences from standard

neural networks, which typically expect vector- (or tensor-) valued inputs:

• Sets may have varying sizes. We wish to consider architectures that can

handle sets of varying size.

• Sets have no intrinsic ordering. Thus, we require our architectures to be

invariant to the order with which they process the elements of the set, i.e.,

satisfy Property 2.1.

To satisfy these requirements, the NPF employs the following approach. First,

each observation in the context set is processed separately, using a shared

embedding function rc = φ(xc, yc), for each (xc, yc) ∈ Dc. We call φ the local

encoder, and rc a local encoding of the c
th
observation. NPs parametrise φ using a

neural network module with parameters θφ. Next, the local encodings {rc}Cc=1

are combined into a single representation r using an aggregation function (see

Figure 2.6). Typically, a simple operation such as averaging or summation will be

used for aggregation. Importantly, the aggregation is restricted to be a permutation

invariant function of the local encodings, and it is straightforward to see that either

choice results in a permutation invariant operation due to the commutativity of

summation. We can think of r as a representation of the entire context set, and

will sometimes write r (Dc) to make this explicit.

This encoding is then passed to the model decoder, dθ (also parametrised by a

deep neural network), which outputs predictions for the inputs in the target set,

Dt. The second major challenge for the NPF is that this predictive distribution

must respect the two requirements of the KET. We consider two approaches to

achieving this, which define the two major branches of the NPF.

Conditional NPs

Conditional members of the NPF assume that predictions over target inputs

factorise conditioned on r, i.e.

pθ (yT |XT ,Dc) =
T∏
t=1

pθ (yt|xt, r (Dc)) . (2.14)

For example, a typical assumption may be

pθ (y|x, r (Dc)) = N
(
y;µ(x, r),σ2(x, r)

)
. (2.15)
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Here, µ(·, ·) and σ(·, ·) are functions (parametrised by neural networks) that map

inputs x and representations r to the parameters of the predictive distribution. In

such a case, the decoder dθ(x, r) = (µ(x, r),σ(x, r)) ∈ R × R+ outputs a mean

and variance parameter for any (x, r) pair. We collectively refer to members of the

NPF that make this assumption as conditional NP models, and to this sub-family

as the conditional NPF (CNPF). In Section 2.5 we discuss the CNPF and the

implications of the factorisation assumption in further detail.

Latent-Variable NPs

Latent-variable members of the NPF use r(Dc) to define a latent variable z ∼
pθ(z|r(Dc)). For now, assume that z ∈ Rd. The predictive distribution is then

defined as

pθ (yT |XT ,Dc) =

∫
pθ(z|r(Dc))

T∏
t=1

pθ (yt|xt, z) dz. (2.16)

Note that if pθ(z|r(Dc)) = δ(z − r(Dc)), the CNPF predictive distribution is

recovered, implying that the LNPF subsumes the CNPF as a special case. Here too,

we must specify the form of the conditional distribution. A standard assumption

may be of the form

pθ (y|x, z) = N
(
y;µ(x, z),σ2(x, z)

)
. (2.17)

Hence, the decoder has a similar form as in the conditional case, i.e. dθ(x, z) =

(µ(x, z),σ(x, z)).

Remark 2.2
Importantly, while the conditional likelihood factorises, the predictive distribution

pθ (yT |XT ,Dc) does not, as z induces dependencies across target point predictions.

For latent-variable models, we must also specify the form of pθ(z|r), where again

a standard parametrisation is

pθ (z|r) = N
(
z;µ(r),σ2(r)

)
, (2.18)

where µ and σ are parametrised by additional neural networks. Note that we are

overloading the notation of the functions µ and σ, but it should be clear from

context to which functions we are referring. We collectively refer to members of

the NPF that employ this model structure as latent NPs (LNPs), and refer to this

branch of the NPF as the latent NPF (LNPF). In Section 2.6 we discuss the LNPF

and the implications of using latent variables in detail.
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Figure 2.5: Family tree of the NPFmembers discussed in this thesis. The first level depicts

the two approaches to designing predictive distributions satisfying the KET

conditions, defining the two major sub-branches of the NPF. The second

level relates to the inductive biases introduced when designing the model

architectures, which lead to different members of the NPF. Nodes are labeled

with the chapters/sections in the thesis in which they are discussed.

summary To summarise, models in the NPF employ an encoder-decoder archi-

tecture to parametrise a mapping between data sets and predictive processes with

deep neural networks. The encoder maps context sets Dc to a learned representa-

tion space, and the decoder conditions on the representation (or samples from the

resulting distribution), and outputs predictive distributions over target locations.

A computation graph for a generic member of the NPF is presented in Figure 2.6.

Specifying a NP model thus requires specifying:

• a local encoder φwith parameters θφ

• an aggregation function Agg: {rc}Cc=1 7→ r, where r may be deterministic

(CNPF) or stochastic (LNPF), potentially with additional parameters θµ,θσ

• a conditional likelihood of the form pθ (y|x, ·), where the final argument

may be a deterministic representation or sample of a random variable

• a decoder dθ that outputs the parameters of the conditional likelihood, with

parameters θd

We denote the model parameters as θ = {θφ,θµ,θσ,θd}. In Sections 2.5 and 2.6

we will see that these choices define a rich class of models, and allow us to encode

different assumptions into the NP model.

2.4.2 Training Members of the Neural Process Family

Similarly to other meta-learners, training members of the NPF requires access

to a meta-data set of the form Ξ = {ξi|i = 1, . . . , N}. Given that NP models

define a predictive distribution of the form pθ (yT |XT ,Dc), a natural idea is
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Aggregrate

Figure 2.6: Computational graph for NP models, depicting the computation for single

task ξ. Computational graphs are directed acyclic graphs (DAGs) representing

the order of computation specified by a model. Each circled node in the graph

represents a variable or intermediate computation, and arrows into nodes

indicate dependency on of a node on other quantities in the graph. We use

un-circled intermediate text to label function names.

Algorithm 1: Maximum likelihood training of Neural-Process models.

Input: Model parameters θ, Data Ξ = {ξi|i = 1, . . . , N}
Parameters :Learning rate α

1 while not converged do
2 Dc,Dt ← ξ ∼ Ξ;
3 L ← log pθ(yT |XT ,Dc);
4 θ ← θ + α∇θL
5 end
Output: θ

to train the parameters θ by maximising this likelihood over Ξ. This is the

maximum-likelihood approach to training NP models, and can be expressed as

θ∗ = arg max
θ∈Θ

L
ML

(θ; Ξ); L
ML

(θ; Ξ) :=
1

N

∑
ξ∈Ξ

log pθ (yT |XT ,Dc) , (2.19)

where the
1
N turns the likelihood to an expectation rather than a sum, but can be

simply “absorbed” into the learning rate when applying standard optimisation

procedures. A simple maximum-likelihood training procedure, using stochastic

gradient descent (Bottou, 2010) with a fixed learning rate α, is detailed in

Algorithm 1. In practice, we may use standard neural network software packages

(e.g. PyTorch (Paszke et al., 2019) or TensorFlow (Abadi et al., 2016)) that implement

backpropagation to compute the gradients∇θL (Rumelhart et al., 1986; Baydin et

al., 2017) , and employ more sophisticated optimisers (e.g. Polyak, 1964; Tieleman

and Hinton, 2012; Sutskever et al., 2013; Kingma and Ba, 2015).

Algorithm 1 assumes the predictive likelihoods pθ (yT |XT ,Dc) are tractable. As

we shall see, this is true for conditional members of the NP family, and is a useful

assumption in understanding the goals and tradeoffs associated with training NP
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Figure 2.7: Graphical model depicting the factorisation assumption common to Condi-

tional NP models. The graphical representation indicates that, conditioned

on the complete context set Dc and the model parameters θ, the predict-

ive distribution at any given target location xt is independent of any other

location.

models. In Section 2.7.1 we discuss guarantees offered by maximum-likelihood

training of NP members in suitable limits, and in Sections 2.6.2 and 2.7.3 we

discuss approximations and alternative training procedures when the tractability

assumption does not hold.

2.5 the conditional neural process sub-family

Models in the NPF must output predictive distributions pθ (yT |XT ,Dc) over

target sets of arbitrary size that satisfy the consistency conditions of the KET

(Definition 2.1). In this section, we consider what is arguably the simplest way to

achieve this: factorised predictive distributions of the form

pθ (yT |XT ,Dc) =
∏

x,y∈Dt

pθ (y|x, r(Dc)) , (2.20)

where r is a learned embedding function thatmaps context sets to a representation

space. We can represent this assumption concisely using the graphical model

depicted in Figure 2.7. Recall that the general strategy in the NPF is to first

encode Dc (via aggregation of the local encodings), and then decode this resulting

representation to produce predictive distributions. Thus, members of the CNPF

can be characterised and organised according to three key design decisions:

1. parametrisation of the local encoding function φ,

2. design of the aggregation function mapping local encodings to a single

representation, and

3. parametrisation of the decoder dθ.

Before introducing several prominent members of the CNPF, we take a closer

look at the assumption underlying this class of models.
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2.5.1 On the Factorisation Assumption

We first verify that the factorisation assumption indeed satisfies the conditions of

Definition 2.1, i.e. that the CNPF predictive distribution specifies a consistent SP

for any Dc,Dt. To see that the CNPF prediction is consistent under permutation,

note that we can express the predictive density as

pθ (y1, . . . , yT |x1, . . . ,xT ,Dc) =
T∏
t=1

pθ (yt|xt, r(Dc))

= pθ
(
yπ(1), . . . , yπ(T )|xπ(1), . . . ,xπ(T ),Dc

)
,

where all we have used in the above is the commutativity of multiplication. To

verify consistency under marginalisation, consider two target points x1 and x2.

By marginalising out the second target output, we have∫
pθ (y1, y2|x1,x2,Dc) dy2 =

∫
pθ (y1|x1, r(Dc)) pθ (y2|x2, r(Dc)) dy2

= pθ (y1|x1, r(Dc))
∫
pθ (y2|x2, r(Dc)) dy2

= pθ (y1|x1,Dc) ,

which shows that the predictive distribution obtained by querying the CNPF

member at x1 is the same as that obtained by querying it at (x1,x2), and

marginalising out the second target point. Of course, this simple idea works with

collections of any size, and marginalising any subset of the variables.

An important advantage of the factorisation assumption is that the density

pθ (yT |XT ,Dc) is tractable (for tractable choices of pθ (y|x, r(Dc))), implying

that we can train members of the CNPF using Algorithm 1 without further

modifications. Yet the factorisation assumption has important limitations. First, it

is generally not the case that distributions produced by πP factorise in this way,

limiting our ability to recover the true prediction map. Moreover, we can not

straightforwardly produce coherent samples from the model without employing

complicated auto-regressive sampling procedures (e.g. Larochelle and Murray,

2011; Oord et al., 2016a,b; Parmar et al., 2018; Papamakarios et al., 2019b). Such

procedures can be computationally expensive, and require specifying an ordering

forX , which conflicts with our notions of permutation invariance, and when used

in practical scenarios, will not lead to consistent predictive distributions. Finally,

typical parametrisations of CNPFmodels useGaussian predictive distributions for

pθ (y|x, r(Dc)). This choice implies that multi-modal, heavy-tailed, or asymmetric

predictive likelihoods cannot be recovered. While this can be avoided by choosing



24 background

alternative parametric forms for pθ (y|x, r(Dc)), this requires additional domain

expertise, and places additional modelling burdens on the user.

2.5.2 The Conditional Neural Process

We now turn our attention to the simplest member of the CNPF— the Conditional

Neural Process (CNP; Garnelo et al., 2018a; Eslami et al., 2018). The CNP was

the first member of the NPF proposed in the literature, and is defined by the

following choices.

encoder. The local encoding network is of the form φ : X × Y_Rdenc for
some denc ∈ N+. The CNP parametrises φ with a multi-layer perceptron (MLP)

that accepts as input the concatenation [x; y], and outputs a vector in Rdenc . The
aggregation function is specified as a simple averaging, i.e.

Agg = {rc|c = 1, . . . , C} 7→ 1

C

C∑
c=1

rc. (2.21)

Thus, we can concisely represent the encoder of the CNP as

r(Dc) =
1

C

C∑
c=1

φ ([xc; yc]) ∈ Rdenc . (2.22)

decoder and likelihood. For simplicity, we assume that the likelihood

function is Gaussian, i.e.,

pθ (y|x, r(Dc)) = N (y;µ(x, r), σ2(x, r)). (2.23)

This assumption is not necessary, but is common in the NP literature.
5
In this

case, the decoder is a function of the form dθ : Rdenc ×X _R× R+, parametrised

by a MLP that accepts as input the concatenation [r(Dc); x], and outputs (µ, σ),

the parameters of the predictive distribution. In practice, we typically treat the

output of dθ as (µ, log σ), so as to enforce non-negative variances. A schematic of

a forward pass through the CNP is illustrated in Figure 2.8.

2.5.3 The Attentive Conditional Neural Process

It has been noted by several authors that the representational power of standard

CNPs tends to scale poorly with the capacity of the networks ρ and φ (Kim et al.,

5 For y multivariate, we may use a factorised Gaussian distribution of the form pθ (y|x, r(Dc)) =
N

(
y;µ,diag

(
σ2

))
, where µ,σ ∈ Rdy , and diag(·) generates a diagonal matrix from a vector.
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Figure 2.8: Schematic illustration of the CNP. First, each element in the context set is

locally encoded using φ. The resulting representations are then averaged

to produce r(Dc). Finally, for each target location of interest, (r(Dc),xt) are
passed through the decoder dθ to produce the predictive parameters.

2019; Louizos et al., 2019; Gordon et al., 2020a). As a result, CNPs tend to severely

under-fit the modelled SP. Rather than increasing the capacity of φ and dθ, a

more promising approach is to introduce appropriate inductive biases in the

parametrisation.

A powerful idea is to consider target-specific representations of the form r(Dc,xt).
This was first proposed by Kim et al. (2019), who introduced the attentive CNP

(AttnCNP). The AttnCNP replaces the CNP mean aggregation of the local

encodings with an attention mechanism (Bahdanau et al., 2015; Xu et al., 2015;

Vaswani et al., 2017). Intuitively, this enables the model to place larger “weight”

on points in the context set that are more relevant to the predictive distribution of

a particular target location xt. More precisely, given the local encodings {rc}Cc=1,

we can express the representation for a target input as

rt := r(Dc,xt) =
C∑
c=1

wθ (xc,xt) rc∑C
c′=1wθ (xc′ ,xt)

, (2.24)

where wθ : X × X _R+ is a learned attention function. An illustration of the

AttnCNP is provided in Figure 2.9. Equation (2.24) highlights two important

points regarding the attentive representations:

1. they induce a strict generalisation of the standard CNP, recovering it when

wθ(·, ·) is the constant function.

2. they satisfy permutation invariance, as they are produced by a linear

combination of the context-set representations.

Though not necessary, the AttnCNP is often used in conjunction with self-

attention layers (Vaswani et al., 2017; Parmar et al., 2018) for the local encoder

φ. As demonstrated by Kim et al. (2019) and verified later in this thesis, the

AttnCNP achieves significant performance gains over the CNP, and will generally
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Cross-
Attention

Figure 2.9: Schematic illustration of the AttnCNP. First, each element in the context set

is locally encoded using φ. The resulting representations are then passed

through a cross-attentionmechanism, together with XC and a target location

xt, to produce the target representation rt. Finally, for each target location of

interest, (rt,xt) are passed through the decoder dθ to produce the predictive

parameters. Visualisation structure borrowed from Kim et al. (2019).

Figure 2.10: Graphical model representation for the latent NP sub-family. The conditional

distribution of the latent variable z depends on the context set Dc. Given z,
the predictive distribution over the target set Dt factorises over the target

locations.

be considered the benchmark for comparison in this thesis when proposing new

CNPF members for regression.

2.6 the latent-variable neural-process sub-family

In Section 2.5, we constructed members of the NPF by incorporating a factorisation

assumption on the predictive distribution. We further noted that the factorisation

assumption results inmodels that have several important drawbacks. In particular,

members of the CNPF (i) are unable to produce coherent samples without

resorting to auto-regressive sampling schemes, and (ii) require the specification

of parametric forms for the likelihood function, which in turn require domain

expertise to design appropriate forms.

In this section, we consider an alternative approach to constructing members

of the NPF, by introducing a latent variable z. The central assumptions for this

class of models, depicted in Figure 2.10, are that (i) the distribution of the
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latent variable depends only on Dc, and (ii) the predictive distribution over

yT factorises conditioned on instantiations of z. We can express the resulting

predictive distribution as

pθ (yT |XT ,Dc) =

∫
pθ (yT , z|XT ,Dc) dz (2.25)

=

∫
pθ (z|Dc)

∏
(x,y)∈Dt

pθ (y|x, z) dz. (2.26)

We can characterise members of the LNPF according to their two main compon-

ents:

• the encoder pθ (z|Dc), which accepts as input context sets Dc, and outputs a

distribution over the latent variable z.

• the decoder pθ (y|x, z), which outputs predictive distributions conditioned

on input locations x and latent variables z.

The design of the encoder will again follow the principles of the NPF (i.e. local

encoding of each (x,y) ∈ Dc), followed by an aggregation. However, here we will

use these principles to model a conditional distribution over the latent variable,

rather than a deterministic representation.

2.6.1 On the Latent Variable Parametrisation

We first demonstrate that the predictive distributions arising from the latent-

variable parametrisation respect the consistency requirements of the KET. To

see that these predictive distributions are consistent under permutations, let

XT = (x1, . . . ,xT ) be the input targets, and let π be a permutation of {1, . . . , T}.
The predictive density can be expressed as

pθ (y1, . . . , yT |x1, . . . ,xT ,Dc) =

∫
pθ (z|Dc)

T∏
t=1

pθ (yt|xt, z) dz

= pθ
(
yπ(1), . . . , yπ(T )|xπ(1), . . . ,xπ(T ),Dc

)
,
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where here too all that is required is the commutative property of multiplication.

To demonstrate consistency under marginalisation, we again consider two target

inputs x1 and x2. Marginalising the second target output y2 we have∫
pθ (y1, y2| x1,x2,Dc) dy2

=

∫∫
pθ (z|Dc) pθ (y1|x1, z) pθ (y2|x2, z) dzdy2

=

∫
pθ (z|Dc) pθ (y1|x1, z)

∫
pθ (y2|x2, z) dy2dz

=

∫
pθ (z|Dc) pθ (y1|x1, z) dz

= pθ (y1|x1,Dc) ,

which demonstrates that the predictive distribution obtained by querying an

LNPF member at x1 is the same as that obtained by querying it at (x1,x2), and

then marginalising out the second target point. We can easily generalise this

argument to collections of any size, and marginalising any subset of the variables.

Moreover, the latent-variable parametrisation introduces two important ad-

vantages for the LNPF. First, pθ (yT |XT ,Dc) now has dependencies across target

locations, induced by the marginalisation of z. This makes the predictive distribu-

tion more expressive, and also enables producing coherent samples via simple

ancestral sampling. Second, pθ (yT |XT ,Dc) is no longer restricted to a parametric

form. In fact, by noticing that the predictive is an infinite mixture of Gaussians,

this form can recover any distribution,
6
relieving users of the need to explicitly

designing likelihood functions that suit the application domain. However, these

advantages come at a cost. In particular, for non-linear decoders pθ(y|x, z), we can

no longer evaluate pθ (yT |XT ,Dc) in closed form. This has important implications

for training members of the LNPF, which we discuss next.

2.6.2 Neural Process Variational Inference (NPVI)

Due to the intractability of pθ (yT |XT ,Dc), we must consider alternatives to

Algorithm 1 for training LNPs. In this section, we discuss a procedure proposed

by Garnelo et al. (2018b). The algorithm is inspired by variational inference

(Jordan et al., 1999; Wainwright and Jordan, 2008) employing inference networks

(Gershman and Goodman, 2014; Kingma and Ba, 2015; Rezende and Mohamed,

2015; Zhang et al., 2018), and focuses on approximating the posterior distribution

of the latent variable z. In Section 2.7.3, wewill revisit this procedure, and propose

6 This argument must be qualified somewhat, but is similar to that motivating the parametrisation

of variational auto-encoders (Kingma and Welling, 2014; Rezende and Mohamed, 2015).
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Figure 2.11: Graphical model representation for the “idealised” latent-variable NP. In

this model, there is no distinction between context and target sets, and the

posterior distribution pθ (z|{(xn, yn)|n = 1, . . . , N}) given observed data is

defined directly via Bayes’ theorem. We use different colour schemes here to

distinguish this model from the ones used in practice in the NP family.

a simplified algorithm that abandons approximate inference of the latent-variable

in favour of a more direct approximate maximum-likelihood procedure.

Garnelo et al. (2018b) consider the following generative model for data:

z ∼ pθ(z); (2.27)

y(x) = fθ(x; z); (2.28)

pθ(yT |XT , z) =
∏

(x,y)∈Dt

N
(
y; fθ(x; z), σ2

y

)
, (2.29)

for some σy ∈ R+ and fθ : X × Z_Y (illustrated in Figure 2.11). Note that this

model differs from the model used to define the LNPF (e.g. as in Figure 2.10 or

Garnelo et al., 2018b, Figure 1a). In particular, this model makes no distinction

between context and target sets, and instead treats all observed data equivalently.

As a result, the quantity pθ(z|Dc) is not part of the model definition, but rather is

implicitly defined via Bayes’ rule. For any S ∈ S, we have

pθ (z|S) =
pθ (z)

∏
(x,y)∈S pθ (y|x, z)∫

pθ (z)
∏

(x,y)∈S pθ (y|x, z) dz
. (2.30)

For general, non-linear decoders this posterior is intractable.

Using ideas from amortised VI (Kingma and Welling, 2014; Rezende and

Mohamed, 2015), we can introduce an inference network qφ : S_P(Z) with

variational parameters φ ∈ Φ to approximate the true posterior distribution under

the model (Dayan et al., 1995; Hinton et al., 1995; Gershman and Goodman, 2014).

Note that qφ maps data sets to distributions over the latent variable z, which is a

familiar form in the NPF. Keeping in mind the design principles of Section 2.4.1, a

typical specification for qφ employs a set-encoder that outputs the parameters of a

factorised, multivariate normal distribution to parametrise qφ. This is equivalent
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to using a CNPF member as an inference network. Then, denoting D = Dc ∪ Dt,
we can derive the following lower bound:

log pθ(yT |XT ,Dc) = log

∫
pθ (z|Dc)

qφ(z|D)

qφ(z|D)
pθ(yT |XT , z)dz (2.31)

≥ E
qφ(z|D)

[
log pθ(yT |XT , z)− log

pθ(z|Dc)
qφ(z|D)

]
, (2.32)

where in Equation (2.32) we have used Jensen’s inequality.

Equation (2.32) is an appealing objective to use for learning, as it would be

well motivated both in training the model parameters θ, as well as performing

approximate inference for z given a data set S ∈ S . Unfortunately, Equation (2.32)

requires evaluating the intractable pθ (z|Dc), (expressed in Equation (2.30)). Thus,

Garnelo et al. (2018b) propose to substitute this term with the tractable inference

network qφ(z|Dc) ≈ pθ(z|Dc), yielding the following objective function:

L
NPVI

(θ,φ; ξ) := E
qφ(z|D)

[
log pθ(yT |XT , z)− log

qφ(z|Dc)
qφ(z|D)

]
. (2.33)

Equation (2.33) can be estimated without bias and with low variance using

Monte-Carlo sampling, i.e. zl ∼ qφ(z|D). While tractable, Equation (2.33) is

no longer a valid lower-bound for log pθ(yT |XT ,Dc) in the model described in

Equations (2.27) to (2.29), and thus lacks principled justification.

We can however, relate the L
NPVI

directly to the standard LNPF model (Fig-

ure 2.10). To so, we identify qφ with the encoder of a LNP, i.e., with the model

component pθ(z|Dc). This leads to a subtly different modelling interpretation: the

encoder of the LNP is now both part of the model as well as an approximation to the

true posterior under the model. With this interpretation, L
NPVI

constitutes a valid

ELBO for any task ξ. While admissible from a VI perspective, it is unclear what

the implications of this dual role for the encoder are in practice. In Section 2.7.3,

we introduce a simplified procedure for training LNPs, which directly targets

the intractable likelihood. The relationship between this proposed approach and

L
NPVI

will provide further insight into the potential drawbacks of the VI-inspired

approach.

2.6.3 Latent-Variable Neural Process Models

Armedwith a training procedure for LNPFmembers, we now turn our attention to

the models. In the following sections, we discuss theNeural Process (Garnelo et al.,

2018b) and the Attentive Neural Process (ANP; Kim et al., 2019), the latent-variable

counterparts of the conditional models introduced in the previous chapter.
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Figure 2.12: Schematic illustration of the NP. As with the CNP, each element in the

context set is locally encoded using φ. The resulting representations are then

averaged to produce r(Dc). Then, r(Dc) is passed through an additional

network to produce the parameters of pθ(z|Dc). Given a sample zl ∼ pθ(z|Dc)
and a target location xt, the decoder dθ produces the predictive parameters.

Neural Processes

The Neural Process (NP; Garnelo et al., 2018b; Eslami et al., 2018) is the latent

counterpart of the CNP, and is the first member of the LNPF proposed in the

literature. The idea is quite simple: given the vector r(Dc), which is computed in

the same way as for the CNP, we simply pass it through an additional MLP to

output the mean and variance of the latent variable z, specifying pθ (z|Dc). We

often refer to the computational graph that produces distributions over z as the

latent path. Conversely, the computational graph that produces the deterministic

representation is often referred to as the deterministic path. The decoder then has the

same structure as that of the CNP, dθ : (xt, z) 7→ (µt, logσt), where z ∼ pθ(z|Dc).
A schematic of the NP is provided in Figure 2.12.

Attentive Neural Processes

The Attentive Neural Process (ANP; Kim et al., 2019) is the latent counterpart of

the AttnCNP. In contrast to the NP, Kim et al. (2019) propose adding a latent path

to the AttnCNP, rather than replacing the deterministic path. The latent path

uses the same parametrisation as the NP. Thus, the ANP employs a target-specific

deterministic path (cross-attention), and a target-independent latent path.

2.7 technical contributions to the neural process family

We conclude the chapter with several novel contributions to the theory of the

NPF. In particular, we present the following contributions:

1. An analysis of the recovered objects when training members of the NPF

with maximum-likelihood in suitable limits (Section 2.7.1).
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2. An extension of Theorem 2.2 to vector-valued sets of any sizes, which in

turn yields a universal representation theorem for CNPs (Section 2.7.2).

3. A simplified (approximate) maximum-likelihood training procedure for

members of the LNPF, and an analysis relating it to the NPVI procedure

proposed by Garnelo et al. (2018b) (Section 2.7.3).

2.7.1 Maximum Likelihood – Idealised Case

To better understand the implications of maximum-likelihood training in the

NPF, we consider the following idealised scenario. Rather than access to a meta-

data set Ξ, we assume the following generative process for data. First, some

finite number of input locations, XC ,XT are sampled. Next, we sample yt,yc

from the finite marginal of the ground truth stochastic process P , which has

density p(yt,yc|Xt,Xc). Finally, we set (Dc, Dt) := ((XC ,yC), (XT ,yT )). With

these definitions in place, we can state the following proposition, which shows that

maximum-likelihood training recovers the prediction map πP of the underlying

process P (Definition 2.2) in a suitable limit.

Proposition 2.1
Let Ψ : S_P(X ) be any map from data sets to stochastic processes, and let LML(Ψ) :=

Ep(ξ)[log pΨ(yT |XT ,Dc)], where the density pΨ is that of Ψ(Dc) evaluated at XT . Then

Ψ globally maximises LML if and only if Ψ = πP , the prediction map.

Remark 2.3
We assume Pr (T = n) > 0 for all n > 0, where T := |XT | denotes the number of data

points in XT , and similarly for C = |XC |. Further, we assume that for each n > 0, the

distribution of X given |X| = n has a continuous density with support over all of Rn×dx .

Proof.

We have:

LML(Ψ) = E
p(Dc,XT ,yT )

[log pΨ(yT |XT ,Dc)] (2.34)

= E
p(Dc,XT )

[
E

p(yT |XT ,Dc)
[log pΨ(yT |XT ,Dc)]

]
(2.35)

= − E
p(Dc,XT )

[KL(p(yT |XT ,Dc) ‖ pΨ(y|XT ,Dc))] + constant,

(2.36)

where the additive constant is constant with respect to Ψ, and KL(· ‖ ·) is the
Kullback-Leibler divergence between two distributions (Kullback, 1959). First

note that the KL-divergence is non-negative (Kullback, 1959; MacKay, 2003),

and that the prediction map sends all the KL-divergences to zero, globally
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optimising L(Ψ). Furthermore, the KL-divergence is equal to zero if and only

if the two distributions are equal, and this must hold for all Xt, Dc. For, if this

were not the case, the KL-divergence would contribute a non-zero amount to

the expectation in Equation (2.36). �

limitations Proposition 2.1 tells us that with infinite capacity models, global

optimisation procedures, and infinite data, maximum-likelihood training of NPs

will recover the prediction map of the underlying process P . This is useful

in motivating maximum-likelihood training, and understanding what we are

attempting to recover with this training procedure. In particular, Proposition 2.1

demonstrates that maximum-likelihood training is sensible with an expressive

model and sufficient data. This is very similar to standard statements regarding

maximum-likelihood training, but adapted to the meta-learning setting. However,

several assumptions are violated in practice, andmay have important implications

for the resulting models.

First, in practice we should assume neither infinite capacity nor infinite data.

The proof of Proposition 2.1 reveals that in such cases, the resulting model

minimises the average KL-divergence between πP and the model being trained

(still assuming global optimisation procedures). Intuitively, we are looking for the

model that is “closest” to πP in the KL sense over our data. Second, Proposition 2.1

assumes the generating process has non-negative support over context sets with

arbitrarily many observations, and full support on X . However, in practice we

typically have access to data sets of limited size, as well as bounded support on X .
Hence, we should only expect the model to learn reasonable predictions within

the ranges encountered during training.

2.7.2 On the Universality of Conditional Neural Processes

Let us now consider the class of functions that may be represented by members of

the CNPF. Our goal will be to use the results of Zaheer et al. (2017) to determine

the representation power of the CNP architecture. However, to be compatible with

our goals, we must first extend Theorem 2.2 to (i) allow for sets of vector-valued

objects, and (ii) handle varying-sized sets.
7

Theorem 2.3 (Vector-valued Deep Sets)
LetX ⊂ Rd be compact, and let x denote a generic element ofX . LetXm = X × X . . .X︸ ︷︷ ︸

m times

,

[Xm] be the set of equivalence classes of elements of X under permutations, and denote

Xm an element (set) in Xm. Let [X ]≤M = ∪Mm=1[Xm], and let T be a topological space.

7 The theorem and proofs rely on basic concepts related to reproducing kernel Hilbert spaces (RKHS;

Sejdinovic and Gretton, 2012) and quotient-space topology (Munkres, 1974). In Appendices A

and B we provide a brief review of the required concepts.
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Then, any map f : [X ]≤M _T , such that its restrictions f |[Xm] are continuous for all

1 ≤ m ≤M has the form

f (Xm) = ρ (E(Xm)) ; E(Xm) =

m∑
i=1

φ(xi), (2.37)

for some continuous ρ : R2M _T and continuous φ : X _R2M
.

A proof of Theorem 2.3 is provided in Appendix C. The central idea is to

demonstrate that the mapping E(Xm) homomorphically encodes sets X into a

vector space, and that the mapping f ◦E−1
has a form that can be represented

by a neural network. Thus, by appropriately setting ρ, we have f = ρ ◦ E. This
proof structure is inspired by the work of Zaheer et al. (2017), and is similar

in spirit (though less general) to ideas used by Bloem-Reddy and Teh (2020).

In Chapter 3 we use a similar proof strategy to extend Theorem 3.1 to include

translation-equivariant functions. There, we also provide a high-level sketch of

the proof strategy invoked in both cases.

Informally, the theorem states that any function operating on vector valued sets

of size less than or equal toM can be represented as a Deep Sets network with a

representation space of dimensionality of 2M . The use of continuous functions

for ρ and φmotivates the use of neural networks to model them in practice.

One appealing property of Theorem 2.3 is that the dimensionality of the

representation space, 2M , does not depend on the dimensionality of S . We note

that Wagstaff et al. (2019) also considered the limitations of Theorem 2.2, and

provide a useful and insightful analysis of its strengths and weaknesses. They

too provide an extension of Theorem 2.2 to varying-sized sets, and are able to

do so using only an M -dimensional representation. However, their statement

is restricted to scalar elements, and it is not clear that extending their proof

technique to vector-valued sets is straightforward. Next, we explicitly relate the

Deep Sets architecture to CNPs, and leverage this relationship to quantify their

representational power.

Definition 2.4 (Conditional Neural Processes)
Let X ⊂ Rd and Y ⊂ R, both compact, and let Cb(X ,Y) be the space of bounded

continuous functions fromX to Y (endowed with the infinity norm). Let S = X ×Y , and
letSm, [S]m, and [S]≤M be defined as in Theorem 2.3. Then, a mapΦ: [S]≤M _ Cb(X ,Y)

is said to be a conditional neural process (CNP) if for all data sets [s] ∈ [S]≤M and all

x ∈ X ,

Φ([s])(x) = ρ

 ∑
(x,y)∈s

φ ([x; y]) ; x

 . (2.38)
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Here, φ : Rd+1 _Rdr continuous, where dr is the representation dimension of the

CNP, and ρ : Rdr+d _R continuous.

Note that Definition 2.4 employs a special case of the Deep Sets form (Equa-

tion (2.37)), where elements of the set are combined via concatenation before

being passed to φ, and the decoder ρ accepts an additional input x. With this

definition in place, we can now state our representation theorem for CNPs.

Theorem 2.4 (CNP representation theorem)
Using the notation from Definition 2.4, let Φ: [S]≤M _ Cb(X ,Y), with its restrictions

Φ|[S]m continuous for 1 ≤ m ≤M . Then, Φ can be represented as a conditional neural

process with representation dimension dr = 2M . Conversely, any CNP is a map from

[S]≤M _ Cb(X ,Y) with continuous restrictions.

A proof is provided in Appendix C. Theorem 2.4 tells us that we can use a CNP

to represent any continuous map between data-sets and the space of continuous

functions. Thus, for example, if we use a CNP to parametrise the mean and

variance function of Gaussian distribution, our CNP can recover the marginal

distributions of any SP with continuous first and second moments. Of course,

Theorem 2.4 only states that there exist some continuous ρ and φ functions for

which this is true. In practice we parametrise these with powerful neural networks,

and allow the training procedure to learn approximations to these, relying on

Proposition 2.1 for guarantees regarding the training procedure.

2.7.3 Maximum-Likelihood Training for LNPF Members

In Section 2.7.1, we saw that maximum-likelihood training of members of the NPF

is justified by its properties in suitable limits. Following this line of reasoning, we

nowpropose an alternative, approximatemaximum-likelihood training procedure

for members of the LNPF. We then relate this to the procedure proposed in

Section 2.6.2.

Letting Ξ = {ξn}Ntasks
n=1 be a meta-training set, we can train a member of the

LNPF by stochastic gradient maximization of LML with tasks sampled from

Ξ (Algorithm 1). Unfortunately, for non-linear decoders, log pθ(yT |XT ,Dc) is

intractable due to the expectation over z (Equation (2.26)). For a given task ξ, we

propose optimizing the following Monte Carlo estimate of LML(θ; ξ):

log pθ(Dt|Dc) = log

∫
pθ (yT |XT , z) pθ (z|Dc) (2.39)

≈ log
1

L

L∑
l=1

pθ (yT |XT , zl) , (2.40)
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with zl ∼ pθ (z|Dc). Importantly, Equation (2.40) is the log of anunbiased estimator,

and will thus tend to underestimate log pθ(Dt|Dc) (i.e., it is a biased estimator).

Plugging in Equation (2.26) and exponentiating log-likelihood terms, we can

express Equation (2.40) as a simple log-sum-exp objective for optimization:

LML(θ; ξ) := log

[
1

L

L∑
l=1

exp (log pθ(yT |XT , zl))

]
; zl ∼ pθ(z|Dc), (2.41)

where log pθ(yT |XT , zl) can be computed directly from the outputs of the decoder.

Equation (2.41) is similar in spirit to importance-weighted likelihood objectives

(e.g. Burda et al., 2015), and can be viewed as importance sampling in which the

prior is the proposal distribution. Similarly to the IWAE objective proposed by

Burda et al. (2015), Equation (2.41) is consistent and monotonically increasing (in

expectation) in L.

Prior sampling is typically ineffective as it is unlikely to propose functions

that pass near observed data. Here, however, Eθ depends on context sets Dc,
which often is sufficient to constrain prior function samples to be close to Dt.
One drawback of this objective is that single sample estimators are not useful,

as they drive z to be deterministic. In Chapter 5, we demonstrate that, perhaps

surprisingly, this estimator often significantly outperforms VI-inspired estimators.

Maximum-Likelihood vs NPVI Maximization for Training LNPF Members

We argue that the VI interpretation presented in Section 2.6.2 is unnecessary when

focusing on predictive performance, andmay be particularly detrimental for mem-

bers of the LNPF for which z has many elements. Letting Z =
∫
pθ (yT |XT , z) dz

and D = Dc ∪ Dt, we note the following equivalence

LNPVI(θ,φ; ξ) = LML(θ,φ; ξ)−KL(qφ (z|D) ‖ pθ (Dt|z) qφ (z|Dc) /Z). (2.42)

We are explicitly distinguishing between the parameters of the encoder (φ) and

decoder (θ). Thus, we can see that LNPVI is equal to LML up to an additional

KL term. This KL term encourages context-set-consistency among the qφ(z|D) in

the sense that Bayes’ theorem is respected if the target set is subsumed into the

context set. In the infinite capacity/data limit, LNPVI is globally maximized if the

LNP recovers (i) the prediction map πP for yT and (ii) exact inference for z. This

follows from (i) Proposition 2.1, since πP globally optimizes LML; and (ii) that

exact inference for z is Bayes-consistent, sending the KL term to zero.

In most applications however, only the predictive distribution over yT is of

interest. Given only finite capacity/data, it can be advantageous to not expend

capacity in enforcing context-set-consistency for z, which suggests it could be

beneficial to use LML over LNPVI. Further, LML has the advantage of being easy
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to specify for any map parametrising a predictive process, posing no conceptual

issues for complex members of the LNPF that do not employ finite-dimensional

latent variables (such models will be introduced in Chapter 5).

2.8 additional flavours of meta-learning

The focus of this chapter, and indeed this thesis, is the formulation of the NPF

for supervised meta-learning. In later chapters, we discuss additional approaches

to supervised meta-learning, such as gradient-based (Finn and Levine, 2018;

Nichol and Schulman, 2018), learned optimisation (Ravi and Larochelle, 2017),

and metric-based few-shot learning (Snell et al., 2017). However, a recent surge of

interest in meta-learning has lead to many additional flavours and applications

which are not discussed in this thesis. Before concluding the chapter, we provide a

brief overview of several important applications and approaches to meta-learning

not discussed elsewhere in this thesis.

2.8.1 Meta Reinforcement Learning

An important example is meta-learning for reinforcement learning (RL; Sutton

and Barto, 2018), which has seen rapid progress in recent years. In this setting, the

central idea is to train an RL agent over a distribution of related tasks (modelled

as Markov Decision Processes; MDPs) such that, at test time, the agent is able to

learn to solve a new task rapidly. This idea has been proposed (at least) as early as

Hochreiter et al. (2001), and has recently seen important successes using modern

deep learning techniques (Wang et al., 2016; Duan et al., 2016). For an accessible

and comprehensive review of meta-RL, we refer the reader to Weng (2019).

2.8.2 Auto ML

Another important application area of meta-learning not discussed in this thesis

is automated machine learning (AutoML). AutoML is a subfield of machine learning

that is chiefly concerned with the task of automating the design and imple-

mentation learning pipelines. Modern AutoML includes important undertakings

such as hyper-parameter optimisation (Snoek et al., 2012; Domhan et al., 2015),

neural architecture search (Zoph and Le, 2016; Casale et al., 2019), and learned

optimisation (Wichrowska et al., 2017; Metz et al., 2018). AutoML research relies

heavily on ideas from meta-learning (e.g., inner and outer optimisatoin loops,

learning to generalise/optimise etc’), and the two fields are tightly linked. For

comprehensive reviews of AutoML and related fields, we refer readers to Hutter

et al. (2019) and Elsken et al. (2019).
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2.8.3 Unsupervised Meta Learning

An additional and important class of meta-learning models and approaches not

discussed in this thesis deals with unsupervised meta-learners. In this setting, the

lack of labels requires a different formulation of the meta-learning problem. One

approach, which is most closely related to the models discussed in this thesis,

was proposed by Edwards and Storkey (2017). Here, the authors incorporated

latent-variables directly into the graphical models, and focussed the modelling

efforts on generative capacities.

More recently, the idea of pretraining increasingly large-scale networks on

massive datasets has gained in popularity both in natural language and image

modelling. Several authors, such as Brown et al. (2020) and Raffel et al. (2020), have

demonstrated that maximum likelihood training of large-scale autoregressive

models on massive collections of natural language can lead to the flavour of

few-shot generalisation in test-time tasks that is among the central desiderata of

meta-learning.

2.9 summary

In this chapter, we have introduced our perspective of (probabilistic) meta-

learning, and leveraged this view to provide a systematic overview of the NPF

and its two main sub-branches. Though a comprehensive review of models for

few-shot and meta-learning is out of the scope of this thesis, related models are

discussed in several sections throughout the chapters of the thesis. Moreover, in

Section 7.2 we provide a thorough discussion regarding several models related

to the NPF, focussing on the question of when a user may wish to employ one

or the other. For a thorough review of meta- and few-shot-learning with neural

networks, we refer readers to dedicated review articles such as the works of

Hospedales et al. (2020) and Wang et al. (2020).

The remainder of the thesis builds upon and develops the ideas introduced

in this chapter. In Chapter 3, we introduce the notion of translation equivariance,

motivate its importance in the NPF, and develop the necessary machinery for

its incorporation. Following this, Chapters 4 and 5 propose two new members

of the NPF that incorporate this important inductive bias. Finally, Chapter 6

introduces yet another member of the NPF, which specialises the family to the

few-shot classification setting. We conclude the thesis in Chapter 7 by reviewing key

concepts in the NPF, providing practical advice for potential users, and outlining

some ideas for future research.



3
TRANSLAT ION EQUIVAR IANCE IN THE NPF AND

CONVOLUT IONAL DEEPSETS

W
e have discussed how to parametrise and train mappings between data

sets and stochastic processes using deep neural networks. We further

discussed the idea of introducing inductive biases (e.g. attention) in the model

parametrisation to achieve significant performance improvements. In this chapter,

we introduce an additional inductive bias that turns out to be quite powerful

for NPF members in appropriate situations: translation equivariance. The focus of

this chapter is to provide the motivation and underlying theory for considering

translation equivariance in the NPF. In Chapters 4 and 5 we build on this

theory to propose translation equivariant NP models, and demonstrate that they

significantly outperform their existing counterparts when the inductive bias is

appropriate for the data.

3.1 introduction

We begin the chapter by motivating the need for considering translation equivari-

ant members of the NPF by (i) qualitatively studying the predictive distributions

produced by existing members and noting several important limitations of the

models, and (ii) establishing a concrete relationship between an important subclass

of SPs—stationary SPs (Lindgren, 2012)—and translation equivariant mappings.

Then, as functions on sets form the backbone of the NPF, we consider the more

general question of representing translation equivariant functions on sets. This

leads us to propose a novel framework, which we coin Convolutional DeepSets, that

extends the work of Zaheer et al. (2017) and provides a universal representation

theorem for functions of the desired form.

The results discussed in this chapter elaborate on work that was originally

published in “Convolutional Conditional Neural Processes” (Gordon et al., 2020a).

The research was conducted in collaboration with my co-first author Wessel

Bruinsma, as well as Andrew Y. K. Foong, James Requeima, Yann Dubois, and

Richard E. Turner. I was closely involved in all aspects of the project, including

formulation, development of the theory and proof, and writing the paper.

The main contributions of this chapter are:

• motivating the incorporation of translation equivariance via qualitative

(Sections 3.2.2 and 3.2.3) and quantitative (Section 3.4.2) analyses

39
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• introduction of the Convolutional DeepSets framework, including a func-

tional form that can be parametrised by neural networks (Equation (3.5))

• providing a universal representation theorem for translation equivariant

functions on sets (Theorem 3.1)

3.2 important limitations of npf members

We begin by providing a qualitative analysis of the predictive distributions

produced by the CNP and AttnCNP. In particular, we focus on two important

limitations of these members: a tendency to under-fit the data, and an inability

to generalise in time or space. We will then argue that the use of translation

equivariance as an inductive bias for the NPF will serve to alleviate these issues.

3.2.1 Visualizing CNPF Predictive Distributions

We introduce our Gaussian process experiments, which are used throughout the

thesis to benchmark the performance of the NPF. These experiments are useful as

they enable us to sample asmany tasks aswe desire, and compare the performance

of the NP to the oracle GP. Recall that Proposition 2.1 and Theorem 2.4 imply that

with enough capacity and data, a CNP trained with maximum-likelihood should

be able to exactly recover the marginal predictions of the underlying GP, allowing

us to benchmark performance against a “ground truth” object.

We can generate tasks ξ from a GP by first sampling a function, and evaluating

it at a finite number of input locations to form Dc and Dt. Training then follows

Algorithm 1, where instead of a finite dataset Ξ, tasks are sampled (typically in

batches) from the generative process. Beyond exponentiated quadratic (EQ) kernel

GPs (as proposed in Garnelo et al. (2018a) and Kim et al. (2019)), we will consider

more complex data arising fromMatérn-
5
2 and weakly-periodic kernels, as well as

a challenging, non-Gaussian sawtooth process with random shift and frequency.

Training and testing procedures are fixed across models throughout the thesis.

Full details on models, data generation, and training procedures are provided in

Appendix E. In this chapter we restrict ourselves to qualitative analyses of the

trained models, but in later chapters consider quantitative analyses as well.

Figure 3.1 illustrates the predictive distributions of a trained CNP andAttnCNP

on an EQ kernel for a variety of context sets. The figure demonstrates that both

models perform relatively well in this setting. We see that (i) as more data is

observed, the predictions tend to become “tighter” (uncertainty decreases) as

we might expect, and (ii) the model predictions are generally able to track the

predictive functions output by the ground truth GP.
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Figure 3.1: Qualitative analysis of the CNP (left column) and AttnCNP (right column)

predictive distributions for a GP with an EQ kernel. Solid purple line is the

oracle GP mean function, and dashed lines represent two standard deviations

around the mean. The blue solid line is the NP model mean function, shaded

blue region represents two standard deviations around the mean. The grey

shaded region is the training region, i.e., where data was observed during

training.

However, we can see some weaknesses of the models. For example, we see that

the CNP mean function doesn’t always pass through the observed data (despite

there being no noise in the generating process), and tends to overestimate the

uncertainty. The AttnCNPmean function does tend to pass through the observed

data, but exhibits “kinks”, certain locations where the function is not smooth. We

next take a closer look at these issues and additional drawbacks of the models.
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Figure 3.2: Qualitative analysis of the CNP (left) and AttnCNP (right) predictive distribu-

tions for a GP with a Matérn-
5
2 kernel. Coloring is the same as for Figure 3.1.

Here we see that the CNP predictive distribution underfits the ground truth

predictive distribution. In particular, we see that the CNP struggles to shrink

the uncertainty near observed data, and the variance function is far smoother

than that of the ground truth distribution.

3.2.2 Under-fitting the Prediction Map

The CNP andAttnCNP produce reasonable predictive distributions when trained

to mimic a GP with an EQ kernel. However, even in these simple cases, we see

that the models tend to underfit the ground truth predictive distribution or

produce mean and variance functions with unnatural “kinks”. These becomes

more apparent when considering more challenging kernels.

Figure 3.2 provides a visualisation of the predictive distributions of a CNP

and AttnCNP trained with tasks from a Matérn-
5
2 kernel. This kernel is more

challenging for the models as (i) functions sampled from it are only twice-differ-

entiable, and not as smooth as functions from the EQ kernel, and (ii) we choose a

shorter length-scale for theMatérn-
5
2 kernel, such that functions tend to havemore

“wiggles” in a given interval. Figure 3.2 demonstrates that here the CNP struggles

to fit the true predictive well, producing overly-smooth variance functions and

it fails to shrink the uncertainty near observed data. In contrast, the AttnCNP

produces functions that closely track the ground truth distribution, but continues

to produce unnatural “kinks” in both the mean and variance functions.

Finally, Figure 3.3 illustrates the same comparison, but with a weakly-periodic

component in the kernel. Here we see that the CNP completely fails to model

the predictive distribution in a meaningful way. The AttnCNP is able to track

the mean and variance functions, but does not do so adequately. Moreover, the

AttnCNP does not leverage the periodic structure in the data when making its

predictions, which is significantly different from the ground truth predictive.
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Figure 3.3: Qualitative analysis of the CNP (left) and AttnCNP (right) predictive dis-

tributions for a GP with a kernel containing a weakly-periodic component.

Colouring is the same as for Figure 3.1. The CNP is unable to model the

predictive distributions of this kernel in a meaningful way. The AttnCNP

mean function interpolates Dc, and the variance function roughly tracks

the variance function of the underlying GP. However, neither captures the

periodic structure of the data, and the AttnCNP fails to accurately track the

true predictive distribution.

3.2.3 Generalisation in Time and Space

We have so far considered the predictive distributions produced by NPF mem-

bers when data is observed in the same range at meta-training and “meta-test”

time. However, in many domains models must be able to make predictions in

regions unobserved during training (e.g. astronomical data (Boone, 2019), patient

healthcare (Bates et al., 2014), and environmental applications (Delhomme, 1978)).

We refer to this type of generalisation in time/space as extrapolation.

To study the extrapolation capacity of CNPFmembers, we consider the scenario

where a trained model is conditioned on a context set containing observations

outside the training range. An example of such a plot, using the EQ kernel GP, is

illustrated in Figure 3.4. We see that when data are observed outside the training

range, the predictive distributions produced by both models reduce dramatically

in quality, though in subtly differentways. For the CNP, observing data outside the

training range has a negative effect on the predictive distribution both inside and

outside the training range. In contrast, the quality of the predictive distributions

produced by the AttnCNP inside the training range is largely unaffected when

observing data from outside the range. However, like the CNP, the AttnCNP fails

to produce high quality predictions in the extrapolation range.

This failure mode is dissatisfying for two important reasons. First, it is a

significant difference from the underlying process, for which the prediction

map can generalise in this way without issue. Second, and importantly from a
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Figure 3.4: Evaluating the predictive distributions of the CNP (left) and AttnCNP (right)

when data is observed outside the training range. Models were trained on a

GPwith an EQ kernel. In both cases and for bothmodels, observations outside

the training range cause the predictive distribution to be of poor quality. For

the AttnCNP, the predictive distribution inside the training range remains

of reasonable quality, while the distribution outside the training range is

extremely poor. For the CNP, the predictive distribution both inside and

outside the training range is poor when observing data outside the training

range.

practical perspective, several important application domains require this form of

generalisation (Roberts et al., 2013; Delhomme, 1978; Bates et al., 2014).

We have qualitatively demonstrated two important limitations of the introduced

members of the CNPF: a tendency to severely underfit the prediction map, and

an inability to generalise in time/space. We hypothesise that by introducing

translation equivariance into the NPF, we can alleviate both of these limitations.

3.3 stationarity

Consider the task of predicting rainfall at an unseen test location from rainfall

measurements nearby. A powerful inductive bias for this task is stationarity.

Informally, stationarity corresponds to the assumption that the generative process

governing rainfall is spatially homogeneous. Given only observations in a limited

part of the space, stationarity allows the model to extrapolate to yet unobserved

regions. A more precise definition of stationarity, and stationary stochastic processes

(Lindgren, 2012), is as follows.

Definition 3.1 (Translating Stochastic Processes)
We define the action of the translation operator Tτ on stochastic processes, where τ ∈ X
denotes the shift vector of the translation. For a function f ∈ RX , define Tτf := f(x−τ )

for all x ∈ X . Let F ∈ Σ be a measurable set of functions, then TτF := {Tτf : f ∈ F}.
For any SP P ∈ P(X ), we define TτP (F ) := P (T−τF ) for all F ∈ Σ.
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Definition 3.2 (Stationary Stochastic Processes)
We say a stochastic process is (strictly) stationary if the densities of its finite marginals

satisfy

p(yT |XT ) = p(yT |TτXT ) (3.1)

for all yT , XT , and τ , where TτXT := (x1 + τ , . . . ,xn + τ ).

When stationarity is appropriate, incorporating it as an inductive bias for our

models yields significant benefits. This has been empirically demonstrated in

multiple domains, e.g. in time-series (Roberts et al., 2013), images (LeCun et al.,

1998), and spatio-temporal modelling (Delhomme, 1978; Cressie, 1990).

3.4 translation equivariance

A notion closely related to stationarity is translation equivariance. Informally,

translation equivariance is an inductive bias stating that if the data are translated in

time or space, then the predictions should be translated correspondingly (Kondor

and Trivedi, 2018; Cohen and Welling, 2016) An illustration of a translation

equivariant mapping, implemented with a convolutional neural network and

MNIST digits (LeCun et al., 1989), is provided in Figure 3.5.

Famously, convolutional neural networks (CNNs) endowMLPswith translation

equivariance (LeCun et al., 1998; Cohen and Welling, 2016), accounting in large

part for their success in domains such as image (Krizhevsky et al., 2012; He et al.,

2016) and time-series modelling (Oord et al., 2016a). Conversely, when translation

equivariance is appropriate for the domain, but not “baked into” the model, it

must be learned directly from the data. This is sample and parameter inefficient,

and has a negative impact on the ability of models to generalise (Kondor, 2008;

Kondor and Trivedi, 2018; Ravanbakhsh et al., 2017).

3.4.1 Translation Equivariant Mappings on Sets

We now turn to a more formal definition of translation equivariance, and in

particular the notion of translation equivariant mappings on sets. Recalling

that we denote as S the space of supervised datasets, we can define translation

equivariant mappings as follows.

Property 3.1 (translation equivariant mappings on sets)
LetH be an appropriate space of functions on X , and define T and T ′ as follows:

T : X × S_S, TτS = ((x1 + τ ,y1), . . . , (xm + τ ,ym)), (3.2)

T ′ : X ×H_H, T ′τh(x) = h(x− τ ). (3.3)
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Figure 3.5: Illustration of translation equivariance for feature extractors of images. A digit

from the MNIST test set (LeCun et al., 1989) (top left) is passed through a

trained convolutional neural network gθ. A subset of the final-layer feature

maps are then illustrated (three top right images). A translated version

of the digit (bottom left) is also passed through gθ, and the same feature

maps are illustrated (three bottom right images). The bounding boxes assist

in illustrating that the feature representation of the translated digit are

equivalent to the translated featuremaps of the original image. The illustration

is purposefully constructed analogously to a commutative diagram (Munkres,

1974; Kondor, 2008)

.

Then a mapping Φ: S_H is called translation equivariant if Φ(TτS) = T ′τΦ(S) for

all τ ∈ X and S ∈ S.

Note that Property 3.1 is defined for mappings between sets and functions. We

have seen how members of the CNPF define mappings to stochastic processes

in this way. When considering translation equivariant members of the LNPF,

we must extend this definition to translation equivariant mappings to stochastic

processes, which will simply apply Definition 3.1.

Property 3.2 (translation equivariant mappings to stochastic processes)
UsingDefinition 3.1, we say thatΨ: S_P(X ) is translation equivariant ifΨ(TτS) =

TτΨ(S) for any data set S ∈ S and shift τ ∈ X .

3.4.2 Relating Translation Equivariance and Stationarity

Intuitively, it seems clear that there is a relationship between the notions of

stationarity and translation equivariance. To make this relationship precise, we

consider the prediction map (Definition 2.2) of a stationary stochastic process P .

In this case, the prediction map πP possesses two important symmetries. First, as

discussed in previous chapters, πP is invariant to permutations ofDc (Zaheer et al.,
2017; Gordon et al., 2020a). This is true for any stochastic process, and motivates

the use of permutation invariant parametrisations. Second, if the ground truth
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process P is stationary, then πP is translation equivariant, i.e., satisfies Property 3.2.

This relationship is formalised in the following simple proposition.

Proposition 3.1
Let P be a stationary SP. Then the prediction map πP is translation equivariant.

Proof.

Let p(yT |XT ,Dc) denote the finite dimensional density of πP (Dc) at in-

dex set XT . To show that πP (TτDc) = TτπP (Dc) it suffices to show that

p(yT |XT , TτDc) = p (yT |T−τXT ,Dc). We have

p (yT |XT , TτDc) =
p (yT ,yC |XT , TτXC)

p (yC |TτXC)

=
p (yT ,yC |T−τXT ,XC)

p (yC |XC)

= p (yT |T−τXT ,Dc) ,

where we used the stationarity assumption in the second line. �

This simple statement highlights the intimate relationship between stationarity

and translation equivariance. Moreover, it suggests that models for the prediction

map should also be translation equivariance and permutation invariant. As such

models are a small subset of the space of all models, building in these properties

can greatly improve data efficiency and generalization for stationary SP prediction.

In the next section, we introduce the workhorse for extending the NPF to include

translation equivariance: convolutional DeepSet networks.

3.5 convolutional deep sets

We are interested in translation equivariance (Property 3.1) with respect to

translations on X . Recall from Section 2.3 that the form of a DeepSet network is

f(S) = ρ(E(S)); E(S) =
∑
s∈S

φ(s), (3.4)

where φ and ρ are parametrised by neural networks. The DeepSets encoder maps

sets S to an embedding in a vector space Rd (Zaheer et al., 2017), for which the

notion of equivariance with respect to input translations in X is not well defined.

For example, a function f on X can be translated by τ ∈ X : f(· − τ ). However, for

a vector x ∈ Rd, which can be seen as a function [d] _R, x(i) = xi, the translation

x(· − τ ) is not well-defined.

To overcome this issue, we enrich the encoder E : S_H to map into a function

spaceH containing functions onX . Since functions inHmap fromX , our notion of

translation equivariance (Property 3.1) is now also well defined for the DeepSets.
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As we demonstrate below, every translation equivariant function on sets has a

representation in terms of a specific functional embedding.

Definition 3.3 (Functional mappings on sets)
Call a map E : S_H a functional mapping on sets if it maps from sets S to an

appropriate space of functionsH. Furthermore, call E(S) the functional representation

of the set S.

Considering functional representations of sets leads to the central result of

this chapter, which can be summarized as follows. For S ′ ⊂ S appropriate, a

continuous function Φ: S ′_ Cb(X ,Y) satisfies Properties 2.1 and 3.1 if and only

if it has a representation of the form

Φ(S) = ρ (E(S)) , E(S) =
∑

(x,y)∈S

φ(y)ψ(· − x) ∈ H, (3.5)

for some continuous and translation equivariantρ : H_ Cb(X ,Y), and appropriate

φ and ψ. Note that ρ is a map between function spaces. We also remark that

continuity of Φ is not in the usual sense; we return to this below.

In Section 3.5.1, we present our theoretical results in more detail. In particular,

Theorem3.1 establishes equivalence between any function satisfying Properties 2.1

and 3.1 and the representational form in Equation (3.5). In doing so, we provide

an extension of the key result of Zaheer et al. (2017) to functional representations

on sets, and show that it can naturally be extended to handle varying-size sets. In

the next chapter, which deals with the practical implementation of translation

equivariant NP models, the design of ρ, φ, and ψ is informed by our results in

Section 3.5.1.

3.5.1 Representations of Translation Equivariant Functions on Sets

In this section we establish the theoretical foundation of ConvDeepSets. We begin

by stating a definition that is used in our main result. Throughout this section,

we use the notation [m] := {1, . . . ,m} for an integerm.

Definition 3.4 (Multiplicity)
A collection S ′ ⊂ S is said to havemultiplicityK if, for every set S ∈ S ′, every x occurs

at mostK times:

multS ′ := sup {sup {|{i ∈ [m] : xi = x̂}| : x̂ = x1, . . . ,xm
number of times every x occurs

} : (xi, yi)
m
i=1 ∈ S ′} = K.

For example, in the case of real-world data like time series and images, we often

observe only one (possibly multi-dimensional) observation per input location,
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which corresponds to multiplicity one. We are now ready to state our the central

result of this chapter.

Theorem 3.1 (ConvDeepSets Representation Theorem)
Consider an appropriate

1
collection S ′≤M ⊆ S≤M with multiplicity K. Then a func-

tion Φ: S ′≤M _ Cb(X ,Y) is continuous,
2
permutation invariant (Property 2.1), and

translation equivariant (Property 3.1) if and only if it has a representation of the form

Φ(S) = ρ (E(S)) , E((x1, y1), . . . , (xm, ym)) =

m∑
i=1

φ(yi)ψ(· − xi) (3.6)

for some continuous and translation equivariant ρ : H_ Cb(X ,Y) and some continuous

φ : Y_RK+1
andψ : X _R, whereH is an appropriate

3
space of functions that includes

the image of E. We call a function Φ of the above form a ConvDeepSet.

A constructive proof of Theorem 3.1 is provided in Appendix D. A sketch of the

proof is as follows. We begin by demonstrating that our proposed embedding into

function space is homeomorphic (Lemmas D.1 and D.2). Then, we show that the

embeddings of fixed-sized sets can be extended to varying-sized sets by “pasting”

the embeddings together while maintaining their homeomorphic properties

(Lemma D.3). Following this, we demonstrate that the resulting embedding may

be composed with a continuous mapping to our desired target space, resulting

in a continuous mapping between two metric spaces (Lemma D.4). Finally, we

combine the above-mentioned results to prove Theorem 3.1.

Here, we discuss several key points from the proof that have practical implica-

tions and provide insights for the design of translation equivariant members of

the NPF:

• For the construction of E, ψ is set to a flexible positive-definite kernel

associated with a Reproducing Kernel Hilbert Space (RKHS; Aronszajn

(1950)). This turns out to result in desirable properties for E that are

extremely useful in proving Theorem 3.1.

• Following the proof of Zaheer et al. (2017), we set φ(y) = (y0, y1, · · · , yK)

to be the powers of y up to orderK.

• The construction invoked in Appendix D requires ρ to be a powerful

function approximator of continuous, translation equivariant maps between

functions.

1 For everym ∈ [M ], S ′≤M ∩ Sm must be topologically closed and closed under permutations and

translations.

2 For everym ∈ [M ], the restriction Φ|S′≤M
∩Sm is continuous.

3 In particular, we construct H as a Hilbert space of functions for which ψ is an interpolating,

continuous positive-definite reproducing kernel. Further details in Appendix D.
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In the next chapter, we discuss in more detail how these theoretical results inform

our implementations of convolutional NPF members. Moreover, we demonstrate

(e.g. in Figure 4.2) that incorporating these results into the NPF leads to significant

improvements and alleviates the drawbacks highlighted in this chapter.

3.6 summary and conclusions

We conclude the chapter by summarising its central result. Theorem 3.1 ex-

tends Theorem 2.3 by embedding the set into an infinite-dimensional space—a

RKHS—instead of a finite-dimensional space. Beyond allowing the model to

exhibit translation equivariance, the RKHS formalism allows us to naturally

deal with finite sets of varying sizes, which turns out to be challenging with

finite-dimensional embeddings. This fact was also used in proof of Theorem 2.3.

Furthermore, our formalism requires φ(y) = (y0, y1, y2, . . . , yK) to expand up to

order no more than themultiplicity of the setsK; ifK is bounded, then our results

hold for sets up to any arbitrarily large finite sizeM , while fixing φ to be only

(K + 1)-dimensional.

ConvDeepSets have implications for several domains. A prominent example

is point-cloud classification (Qi et al., 2017a; Qi et al., 2017b; Wu et al., 2019;

Wang et al., 2018). An important work in this area is PointNet (Qi et al., 2017a; Qi

et al., 2017b), which introduces DeepSet-style networks for point-cloud classifiers.

The design of PointNet captures the important inductive bias of permutation

invariance when working with point-clouds, which are naturally represented as

varying-sized sets. However, as with image classification, it is natural to consider

translation equivariance as an additional inductive bias for classification tasks

in this domain. Indeed, Wu et al. (2019) extend the work of Qi et al. (2017a)

by incorporating translation equivariance, using architectures very similar to

those proposed in this chapter. Wu et al. (2019) go on to demonstrate that they

significantly outperform the state-of-the-art PointNet networks (Qi et al., 2017b)

at this task.

However, in this thesis we will mainly be concerned with the application of

ConvDeepSets to the NPF. In Chapters 4 and 5, we discuss the construction of

translation-equivariant members of the NPF, relying directly on the results of this

chapter. Yet ConvDeepSets provide an important stepping stone for architectures

incorporating more general forms of equivariance. Since the publication of the

results described in this chapter, several works have been published directly

extending the work described in this chapter to include NPF members exhibiting

equivariance to more general symmetries (e.g. Kawano et al., 2021; Holderrieth

et al., 2020).
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L
everaging the results of Chapter 3, we now turn our attention to the question

of constructing translation equivariant members of the NPF. Our main goal

in this chapter is to propose amember of the CNPF that incorporates this inductive

bias, and demonstrating that such a model (i) achieves significantly improved

performance over existing members of the CNPF, and (ii) is able to generalise

in time/space, allowing for its deployment in several important settings. These

goals are achieved via the introduction of the Convolutional Conditional Neural

Process (ConvCNP).

4.1 introduction

In this chapter,we introduce theConvolutionalConditionalNeural Process (ConvCNP),

a new member of the CNPF that models translation equivariance in the data.

Translation equivariance is an important bias for many problems including

time-series modelling, spatial data, and images. In contrast to existing members

of the CNPF, the ConvCNP employs ConvDeepSets to embed data sets into

infinite-dimensional function space, as opposed to a finite-dimensional vector

space.We evaluate ConvCNPs in several settings, demonstrating that they achieve

state-of-the-art performance compared to existing members of the CNPF.

The results discussed in this chapter are basedon thepublication “Convolutional

Conditional Neural Processes” (Gordon et al., 2020a). The research was carried

out in collaboration with my co-first author Wessel Bruinsma, as well as Andrew

Y. K. Foong, James Requeima, Yann Dubois, and Richard E. Turner. I was closely

involved in all aspects of the project, including formulation, development of the

software for the ConvCNP,
1
and writing the paper. The main contributions of

this chapter are to

• extend the CNPF to include translation equivariance

• evaluate the ConvCNP and demonstrate that it exhibits excellent perform-

ance on several synthetic and real-world benchmarks

• demonstrate that building in translation equivariance enables zero-shot

generalisation to challenging, out-of-domain tasks.

1 Software implementing the ConvCNP and to reproduce the experiments in this chapter can be

found at https://github.com/cambridge-mlg/convcnp
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4.2 model and parametrisation

We begin by introducing the parametrisation of the ConvCNP. The parametrisa-

tion leans heavily on the development of ConvDeepSets, introduced in Chapter 3.

ConvCNPs model the conditional distribution as

p(yT |XT ,Dc) =
N∏
n=1

p(yn|Φθ(Dc)(xn)) (4.1)

=
N∏
n=1

N (yn;µn,Σn), with (µn,Σn) = Φθ(Dc)(xn), (4.2)

whereΦ is aConvDeepSet network (Equation (3.5)). Asmentioned in theChapter 3,

the key considerations for the design of Φθ are then the parametrisation of ρ,

φ, and ψ. Except for the form of φ, we distinguish between implementations of

ConvCNPs for data that lie on-the-grid (inputs are evenly spaced) and data that

lie off-the-grid (inputs “live” in a continuous space).

form of φ The applications considered in this chapter have a single (potentially

multi-dimensional) output per input location, so the multiplicity of S is one

(i.e., K = 1). Recall that our universality statements for Φ relied on setting

φ(y) = (y0, y1, · · · , yK) to be the powers of y up to orderK. It therefore suffices to

let φ be a power series of order one, which is equivalent to appending a constant

to y in all data sets, i.e. φ(y) = [1 y]>. The first output φ1 thus provides the model

with information regarding where data has been observed, which is necessary

to distinguish between no observed data point at x and a data point at x with

y = 0. Denoting the functional representation as h, we can think of the first

channel h(0)
as a “density channel”. We found it helpful to divide the remaining

channels h(1:)
by h(0)

(Algorithm 2, line 5), as this improved performance when

there is large variation in the density of input locations. In the image processing

literature, this is known as normalized convolution (Knutsson and Westin, 1993).

The normalization operation can be reversed by ρ and is therefore not restrictive.

4.3 convcnps for off-the-grid data

Having specified φ, it remains to specify the form of ψ and ρ. Our proof of

Theorem 3.1 suggests thatψ should be a stationary, non-negative, positive-definite,

interpolating kernel. The EQ kernel with a learnable length scale parameter is

thus a natural choice. This kernel is multiplied by φ to form the functional

representation E(Dc) (Algorithm 2, line 4; Figure 4.1, arrow 1).
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Figure 4.1: Illustration of a forward pass through a ConvCNP. To be read from left to

right. The first panel represents the context set, which is input to the model.

The context set is then embedded into a functional representation, illustrated

in the second panel, for a single “signal” channel and the “density” channel.

This representation is then discretised at a fixed grid, as illustrated in the

third panel. Finally, this representation is passed through a CNN, and then

mapped back to continuous space to produce the predictive distribution at

the target locations, as illustrated in the fourth and final panel.

Next, Theorem3.1 suggests thatρ shouldbe a continuous, translation-equivariant

mapbetween function spaces. Kondor andTrivedi (2018) show that any translation-

equivariant model has a representation as a CNN. However, CNNs operate on

discrete (on-the-grid) input spaces and produce discrete outputs. In order to

approximate ρ with a CNN, we discretise the input of ρ, apply the CNN, and

finally transform the CNN output back to a continuous function X _Y . To do

this, for each context and test set, we space points (ti)
n
i=1 ⊂ X on a uniform grid

(at a pre-specified density) over a hyper-cube that covers both the context and

target inputs. We then evaluate (E(Dc)(ti))ni=1 (Algorithm 2, lines 2–3; Figure 4.1,

arrow 2). This discretised representation of E(Dc) is then passed through a

CNN (Algorithm 2, line 6; Figure 4.1, arrow 3). We note that a result of the

discretisation is that the network is only equivariant to translations larger than

∆t = ti − ti−1 (which is controlled via the density of the discretisation grid). A

further implementation detail relates to a common building block in the design

of CNNs—pooling—which interacts with translation equivariance (Cohen and

Welling, 2016). For example, a single pooling layer with stride swould result in

a network that is only equivariant to translations larger than s∆t. To avoid this

confounding issue, we ommit pooling layers from the design of the CNNs we use

in constructing ConvCNPs.

Tomap the output of the CNN back to a continuous functionX _Y , we use the

CNN outputs as weights for evenly-spaced basis functions (again employing the

EQ kernel), which we denote by ψρ (Algorithm 2, lines 7–8; Figure 4.1, arrow 3).

The resulting approximation to ρ is not perfectly translation equivariant, but will

be approximately so for length scales larger than the spacing of (E(Dc)(ti))ni=1.

The resulting continuous functions are then used to generate the (Gaussian)

predictive mean and variance at any input. This, in turn, can be used to evaluate

the log-likelihood. The complete process is detailed in Algorithm 2
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Algorithm 2: Forward pass through ConvCNP for off-the-grid data.

require : ρ = (CNN, ψρ), ψ, and density γ
require : context (xn, yn)Nn=1, target (x∗m)Mm=1

1 begin
2 lower, upper← range

(
(xn)Nn=1∪(x∗m)Mm=1

)
3 (ti)

T
i=1 ← uniform_grid(lower, upper; γ)

4 hi ←
∑N

n=1

[
1 yn

]>
ψ(ti − xn)

5 h
(1)
i ← h

(1)
i /h

(0)
i

6 (fµ(ti), fσ(ti))
T
i=1 ← CNN((ti,hi)

T
i=1)

7 µm ←
∑T

i=1 fµ(ti)ψρ(x
∗
m − ti)

8 σm ←
∑T

i=1 pos(fσ(ti))ψρ(x
∗
m − ti)

9 return (µm,σm)Mm=1

10 end

Remark 4.1
The form of ψ as an EQ kernel was used as part of a constructive proof of Theorem 3.1 (see

Appendix D for details). However, we note that in some applications, other, less restrictive

options may be preferable. For example, it is possible to model ψ as a neural network that

accepts as input x− x′ (see e.g. Wu et al., 2019).

4.4 convcnps for on-the-grid data

While ConvCNP is readily applicable to many settings where data live on a grid,

in this work we focus on the image setting. As such, the following description

uses the image completion task as an example, which is often used to benchmark

NPs (Garnelo et al., 2018a; Kim et al., 2019). Compared to the off-the-grid case,

the implementation becomes simpler as we can choose the discretisation (ti)
n
i=1

to be the pixel locations.

Let I ∈ RH×W×C be an image—H,W,C denote the height, width, and number

of channels, respectively—and let Mc be the context mask, which is such that

[Mc]i,j = 1 if pixel location (i, j) is in the context set, and 0 otherwise. To

implement φ, we select all context points, Dc := Mc � I, and prepend the context

mask: φ = [Mc,Dc]> (Algorithm 3, line 4).

Next, we apply a convolution to the context mask to form the density channel:

h(0) = convθ(Mc) (Algorithm 3, line 4). To all other channels, we apply a

normalized convolution: h(1:C) = convθ(y)/h(0)
(Algorithm 3, line 5), where the

division is element-wise. The filter of the convolution is analogous to ψ, which

means that h is the functional representation, with the convolution performing

the role ofE (the summation in Algorithm 2, line 4). Although the theory suggests

using a non-negative, positive-definite kernel, in practicewe do not find significant
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Algorithm 3: Forward pass through ConvCNP for on-the-grid data.

require : ρ = CNN and E = convθ

require : image I, context Mc, and target mask Mt

1 begin
2 // We discretize at the pixel locations.

3 Dc ← Mc � I // Extract context set.

4 h← convθ([Mc,Dc]>)

5 h(1:C) ← h(1:C)/h(0)

6 ft ← Mt � CNN(h)

7 µ← f
(1:C)
t

8 σ ← pos(f
(C+1:2C)
t )

9 return (µ,σ)

10 end

empirical differences between an EQ kernel and using a fully trainable kernel

restricted to positive values to enforce non-negativity.

Lastly, we describe the on-the-grid version of ρ(·), which consists of two

stages. First, we apply a CNN to E(Dc) (Algorithm 3, line 6). Second, we apply a

shared, pointwise MLP that maps the output of the CNN at each pixel location

in the target set to R2C
, where we absorb MLP into the CNN (MLP can be

viewed as an 1×1 convolution). The first C outputs are the means of a Gaussian

predictive distribution and the secondC the standard deviations, which then pass

through a positivity-enforcing function (Algorithm 3, line 7–8). To summarise,

the on-the-grid algorithm is given by

(µ,pos−1(σ)) = CNN

ρ

(

E(context set)

[ conv(Mc)

density channel

; conv(Mc � I)/ conv

multiplies by ψ and sums

(Mc)]
>), (4.3)

where (µ,σ) are the image mean and standard deviation, ρ is implemented

with a CNN, and E is implemented with the mask Mc and convolution conv.

Pseudo-code for the on-the-grid ConvCNP is given in Algorithm 3.

4.5 empirical evaluation

We evaluate the performance of ConvCNPs in both on-the-grid and off-the-grid

settings focusing on two central questions: (i) Do translation-equivariant models

improve performance in appropriate domains? (ii) Can translation equivariance

enable ConvCNPs to generalize to settings outside of those encountered during

training? We use several off-the-grid data-sets which are irregularly sampled

time series (X = R), comparing to Gaussian processes (GPs; Williams and

Rasmussen (2006)) and AttnCNP, the best performing member of the CNPF. We
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Table 4.1: Quantitative comparison of CNPFmembers on held-out tasks from the GP and

sawtooth experiments. We can see that both instantiations of the ConvCNP

significantly and consistently outperform both the CNP and the AttnCNP on

all tasks. Moreover, the second column illustrates that the ConvCNP models

are able to achieve this with far fewer parameters than their counterparts. For

reference, we also provide (where applicable) two likelihoods achieved by the

ground truth GP models, provided beneath the dashed line. GP (full) is the

likelihood evaluation for the ground truth GP with a full covariance matrix,

and GP (diag) is the likelihood for this GP, but considering independent normal

predictions. The latter is the Bayes’ optimal value for any model with factorised

predictive distributions.

Model Params EQ Weakly-Periodic Matern Sawtooth

CNP 66818 -0.86 ± 3e-3 -1.23 ± 2e-3 -0.95 ± 1e-3 -0.16 ± 1e-5

AttnCNP 149250 0.72 ± 4e-3 -1.20 ± 2e-3 0.10 ± 2e-3 -0.16 ± 2e-3

ConvCNP 6537 0.70 ± 5e-3 -0.92 ± 2e-3 0.32 ± 4e-3 1.43 ± 4e-3

ConvCNPXL 50617 1.06 ± 4e-3 -0.65 ± 2e-3 0.53 ± 4e-3 1.94 ± 1e-3
GP (diag) – – 2.87 ± 1e-5 -0.15 ± 7e-5 0.72 ± 1e-5 – –

GP (full) – – 5.69 ± 1e-6 0.31 ± 8e-5 1.76 ± 1e-5 – –

then evaluate on several on-the-grid image data sets (X = Z2
). In all settings we

observe substantial improvements over existing neural process models. For the

CNN component of our model, we propose a small and large architecture for each

experiment (in the experimental sections named ConvCNP and ConvCNPXL,

respectively). We note that these architectures are different for off-the-grid and

on-the-grid experiments, with full details regarding the architectures provided in

Appendices E.2 and F.1.

4.5.1 Synthetic 1D Experiments

We first consider the synthetic regression problems introduced in the previous

chapter. The ConvCNP is compared to the CNP (Garnelo et al., 2018a) and

AttnCNP (Kim et al., 2019). In this chapter, we provide both a qualitative analysis

of the ConvCNP predictive distributions, and a more rigorous quantitative

analysis of model performance based on held-out log-likelihoods. Training and

testing procedures are fixed across all models. Full details on models, data

generation, and training procedures are provided in Appendix E.

Table 4.1 reports the log-likelihood means and standard errors of the models

over 1000 tasks. The context and target points for both training and testing

lie within the interval [−2, 2] where training data was observed. Table 4.1 also

provides an evaluation of the ground truth GP kernel with a full covariancematrix

(GP (full)) and a diagonalised covariance matrix (GP (diag)). The latter provides

an upper-bound on the performance of any model with factorised predictive
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Figure 4.2: Evaluating the predictive distributions of the ConvCNP in interpolation

(left) and extrapolation (right) settings. The models depicted here are the

ConvCNPXL. Models were trained on tasks generated from GPs with (top)

EQ, (center) Matérn-
5
2 , and (bottom) weakly-periodic kernels. For each kernel,

two examples of interpolation and extrapolation tasks are provided. From the

lefthand column we see that the ConvCNP is able to very closely track the

predictive functions of the ground truth GP. Moreover, from the righthand

column we see that the ConvCNP is able to seamlessly generalise to settings

where data is observed outside the training range. This is an immediate

consequence of translation equivariance.

distributions over the target set, and can be thought of as the Bayes’ optimal

predictive distribution.
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Quantitative Analysis

First, we note that the ConvCNP requires far fewer parameters than the CNP or

AttnCNP (Table 4.2, second column). Even the “large”versionof theConvCNPhas

fewer parameters than the CNP. This is one of the important benefits of modelling

equivariance, namely, providing a principledmanner to share parameters (Kondor

and Trivedi, 2018; Ravanbakhsh et al., 2017).

More importantly, Table 4.1 demonstrates that, even when extrapolation is

not required, ConvCNP consistently and significantly outperforms other NPF

models, despite having fewer parameters. In all cases, ConvCNPXL significantly

outperforms the AttnCNP. Moreover, except for the EQ kernel experiment,

ConvCNP outperforms the CNP and AttnCNPwith an order of magnitude fewer

parameters. Finally, we note that despite the significantly improved performance

of the ConvCNP, there remains a significant difference in performance with the

diagonalised GP, implying that there is room for further improvement.

Qualitative Analysis

Figure 4.2 visualises the predictive distributions of the ConvCNP for each of the

GP kernels, in both the interpolation and extrapolation settings. For each setting,

two randomly generated context sets are plotted. We see that the predictive

distributions produced by the ConvCNP are quite impressive: there is a tight

correspondence between the mean and variance functions of the ConvCNP and

the ground truth GP. Moreover, the ConvCNP produces smooth functions that

appear to have similar inductive biases to those of the underlying GP. For example,

the ConvCNP appears able to model the periodic structure in the weakly-periodic

kernel GP. Finally, the right-hand column of Figure 4.2 demonstrates that the

ConvCNP seamlessly generalises to settings where data is observed outside the

training range. Observing data outside the range does not negatively affect the

predictive distribution, inside or outside the training range.

Remark 4.2
We note that the ConvCNP cannot exactly recover the underlying process. For example,

for the weakly-preiodic kernel, it can only model local periodicity because it has a bounded

receptive field — the size of the input region that can affect a particular output. In fact, this

is true for any of the GPs above, all of which have “infinite receptive fields”. In principle,

an observation at one point affects the predictions along the entire x-axis. This means that

no model with a bounded receptive field can exactly recover the GP predictive distribution

everywhere. In practice however, most GPs with non-periodic kernels (e.g., with EQ and

Matérn-
5
2 kernels) have a finite length-scale, and points much further apart than the

length-scale are, for all practical purposes, independent.
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Figure 4.3: Left and centre: two samples from the Lotka–Volterra process (simulated).

Right: ConvCNP trained on simulations and applied to the Hudson’s Bay

lynx-hare dataset (real). Each plot portrays the population levels of the lynx

and hare against time. The plots further show the means and two standard

deviations of the predictive models.

4.5.2 Predator-Prey Models: Sim2Real

The ConvCNP is well suited for applications where simulation data is plentiful,

but real world training data is scarce (Sim2Real). The ConvCNP can be trained

on a large amount of simulation data, and then be deployed with real-world

training data as the context set. To experiment with this setting, we consider the

Lotka–Volterra model, which is used to describe the evolution of predator–prey

populations (Wilkinson, 2011). This model has been used in the Approximate

Bayesian Computation literature where the task is to infer the parameters from

samples drawn from the Lotka–Volterra process (Papamakarios and Murray,

2016; Tran et al., 2017). These methods do not straightforwarddly extend to

prediction problems such as interpolation or forecasting. In contrast, we train

the ConvCNP on synthetic data sampled from the Lotka–Volterra model and

can then condition on real-world data from the Hudson’s Bay lynx–hare data set

(Leigh, 1968) to perform interpolation (see Figure 4.3; full experimental details

provided in Appendix E.4).

As demonstrated in Figure 4.3, the ConvCNP is able to provide accurate

interpolation predictions for both the simulated (left and center panels) and

real-world dataset (right panel). We note that the parameters used to simulate

the training data is unlikely to be similar to the parameters that would be

learned from the observations in the lynx-hare data set, as these were tuned to

produce reasonable time-series from the underlying process (see Appendix E.4

for further details). This demonstrates the ability of the ConvCNP to generalise

from simulated data to real-world datasets.

We also attempted to train an AttnCNP for comparison. Due to the nature

of the synthetic data generation, many of the training series end before 90 time

units, the length of the Hudson’s Bay lynx-hare series. Effectively, this means

that the AttnCNP was asked to predict outside of its training interval, a task

that it struggles with, as demonstrated and discussed in Chapter 3. The plots in

Figure 4.4 show that the AttnCNP is able to learn the first part of the time series

but is unable to model data outside of the first 20 or so time units.
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Figure 4.4: AttnCNP performance on two samples from the Lotka–Volterra process. Both

correspond to simulated tasks.

4.6 2d image completion experiments

To test ConvCNP beyond one-dimensional inputs, we evaluate our model on

on-the-grid image completion tasks and compare it to the AttnCNP. Image

completion can be cast as a prediction of pixel intensities yt (∈ R3
for RGB, ∈ R

for greyscale) given a target 2D pixel location xt conditioned on an observed

(context) set of pixel values Dc = (xn,yn)Nn=1. In the following experiments, the

context set can vary but the target set contains all pixels from the image. Further

experimental details are provided in Appendix F.

Table 4.2: Mean and two standard errors of log-likelihood from image experiments. For

each model, each experiment is run 6 times with different random seeds. All

models achieving error bounds overlapping with best performing model are

bolded. CelebA64 is not run with AttnCNP due to memory constraints.

Model Params MNIST SVHN CelebA32 CelebA64 ZSMM

AttnCNP 410k 1.08 ±0.04 3.94 ±0.02 3.18 ±0.02 – – -0.83 ±0.08
ConvCNP 113k 1.21 ±0.00 3.89 ±0.01 3.22 ±0.02 3.66 ±0.01 1.18 ±0.04
ConvCNPXL 400k 1.27 ±0.01 3.97 ±0.02 3.39 ±0.02 3.73 ±0.01 0.86 ±0.12

4.6.1 Standard Image Benchmark Tasks

We first evaluate the model on four common benchmarks: MNIST (LeCun et al.,

1998), SVHN (Netzer et al., 2011), and 32 × 32 and 64 × 64 CelebA (Liu et al.,

2018). Importantly, these data sets consist of images containing a single, centred

object. As a result, perfect translation-equivariance might hinder the performance

of the model when the test data are similarly structured. We therefore also

evaluated a larger ConvCNP that can learn such non-stationarity, while still

sharing parameters across the input space (ConvCNPXL).

Table 4.2 demonstrates that the ConvCNP significantly outperforms AttnCNP

when it has a large receptive field size, while being at least as good with a smaller

receptive field size. Qualitative samples for various context sets can be seen in
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Figure 4.5: Qualitative evaluation of the ConvCNP(XL). For each dataset, an image is

randomly sampled, the first row shows the given context points while the

second is the mean of the estimated conditional distribution. From left to right

the first seven columns correspond to a context set with 3, 1%, 5%, 10%, 20%,

30%, 50%, 100% randomly sampled context points. In the last two columns,

the context sets respectively contain all the pixels in the left and top half of

the image. ConvCNPXL is shown for all datasets besides ZSMM, for which

we show the fully translation equivariant ConvCNP.

Figure 4.5. Further qualitative comparisons and ablation studies can be found in

Appendices F.3 and F.4.
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Figure 4.6: (Left) Log-likelihood and qualitative results on ZSMM. The top row shows the

log-likelihood distribution for both models. The images below correspond to

the context points (top), ConvCNP target predictions (middle), and AttnCNP

target predictions (bottom). Each column corresponds to a given percentile of

the ConvCNP distribution. (Right) Qualitative evaluation of a ConvCNPXL

trained on the unscaled CelebA (218 × 178) and tested on Ellen’s Oscar

unscaled (337× 599) selfie with 5% of the pixels as context (top).

4.6.2 Generalization to Multiple, Non-Centred Objects

The data sets above consist of single, centred objects per image. Here we evaluate

whether ConvCNPs trained on such data can leverage translation equivariance to

generalise to images containing multiple, non-centred objects.

The last column of Table 4.2 evaluates the models in a zero shot multi-MNIST

(ZSMM) setting, where images contain multiple digits at test time (see Ap-

pendix F.2 for further details). The ConvCNP significantly outperforms the

AttnCNP in these settings. Figure 4.6 (left) provides a histogram of the image

log-likelihoods for the ConvCNP and AttnCNP, as well as qualitative results at

different percentiles of the ConvCNP distribution.Moreover, the ConvCNP is able

to extrapolate to this out-of-distribution test set, while AttnCNP appears tomodel

the bias of the training data and predict a centred “mean” digit independently of

the context. Interestingly, ConvCNPXL does not perform as well on this task. In

particular, we find that, as the receptive field becomes very large, performance

on this task decreases. We hypothesize that this has to do with behaviour of the

model at the edges of the image. CNNs with larger receptive fields—the region of

input pixels that affect a particular output pixel—are able to model non-stationary

behaviour by looking at the distance from any pixel to the image boundary. We

expand on this discussion and provide further experimental evidence regarding

the effects of receptive field on the ZSMM task in Appendix F.6.



summary and conclusions 63

Although ZSMM is a contrived task, we note that our field of vision often

contains multiple independent objects, thereby requiring generalisation of this

form. As amore realistic example, we tested a ConvCNPmodel trained on CelebA

on a natural image of different shape which contains multiple people (Figure 4.6

(right)). Even with 95% of the pixels removed, the ConvCNP is able to produce a

qualitatively reasonable reconstruction. A comparison with AttnCNP is given in

Appendix F.3.

4.6.3 Computational Efficiency

Beyond the performance and generalization improvements, a key advantage of

the ConvCNP is its computational efficiency. The memory and time complexity

of a single self-attention layer grows quadratically with the number of inputsM

(the number of pixels for images) but only linearly for a convolutional layer.

Empirically, we note that with a batch size of 16 on 32×32 MNIST, ConvCNPXL

requires 945MB of VRAM, while AttnCNP requires 5839 MB. For the 56 × 56

ZSMM ConvCNPXL increases its requirements to 1443 MB, while AttnCNP

could not fit onto a 32GB GPU. Ultimately, AttnCNP had to be trained with

a batch size of 6 (using 19139 MB) and we were not able to fit it for CelebA64.

Recently, restricted attention has been proposed to overcome this computational

issue (Parmar et al., 2018), but we leave an investigation of this and its relationship

to ConvCNPs to future work.

4.7 summary and conclusions

We have introduced the ConvCNP, a new member of the CNPF endowed with

translation equivariance. We demonstrated that this powerful inductive bias

enabled the ConvCNP to achieve significant performance improvements over

existing members of the CNPF, as well as generalise in interesting and important

ways.

ConvCNPs enable the deployment of deep learning tools to applications that

require models to (i) handle continuous time/space data, and (ii) generalise in

time and space. Example applications include environmental modelling (which

is often cast as a spatial modelling problem) and clinical healthcare data (which

can be viewed as continuous time-series modelling). In the future, we hope to see

applications of ConvCNPs in such settings, where to date deep learning models

have struggled to achieve good performance.

An important limitation of theConvCNP is the inability to capturedependencies

in the predictive distribution, and as a result, the inability to produce coherent

samples from this distribution. The NPF suggests a path towards alleviating these
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issues: extending the ConvCNP to allow for latent variable parametrisations. Due

to the nature of the latent representation of the ConvCNP, this is not necessarily a

straightforward endeavour. In the next chapter, we consider such a model, which

we coin the ConvNP.



5
CONVOLUT IONAL NEURAL PROCESSES

W
e have seen that incorporating translation equivariance in the CNPF

produces models with desirable properties. However, the ConvCNP

suffers from several drawbacks associated with membership in the CNPF. In this

chapter, we consider the development of translation equivariant members of the

LNPF, which overcome several limitations of the ConvCNP, though at the cost of

requiring approximate training procedures. This is achieved via the introduction

of the Convolutional Neural Process (ConvNP).

5.1 introduction

In this chapter we introduce the Convolutional Neural Process (ConvNP), which

endows Neural Processes (Garnelo et al., 2018b) with translation equivariance.

Conversely, we can think of the ConvNP as extending the ConvCNP to allow for

dependencies in the predictive distribution. This enables ConvNPs to be deployed

in settings which may benefit from coherent samples, such as Bayesian optimisa-

tion or conditional image completion. We demonstrate the strong performance

and generalisation capabilities of ConvNPs on 1d regression tasks, and show that

they are able to produce far more compelling samples than other members of the

LNPF. We further demonstrate the strong performance of ConvNPs on image

completion, and various tasks with real-world spatio-temporal data.

The work in this chapter is based on the publication "Meta-Learning Stationary

Stochastic Process Prediction with Convolutional Neural Processes" (Foong et al.,

2020). The research was conducted in collaboration with my co-first authors

Andrew Y. K. Foong and Wessel Bruinsma, as well as Yann Dubois, James

Requeima, and Richard E. Turner. I was closely involved in all aspects of the work,

including conceptualisation, development of the theoretical results, development

of the software,
1
experimental evaluation, and writing of the paper. The main

contributions of this chapter are to

• introduce ConvNPs, extending ConvCNPs to model rich join predictive

distributions

• evaluate our proposed training procedure (Section 2.7.3), and demonstrate

that it improves performance for members of the LNPF

1 Software to implement the ConvNP and reproduce the experiments in this chapter can be found at

https://github.com/wesselb/NeuralProcesses.jl

65
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• demonstrate the usefulness of ConvNPs on synthetic data, image-based

sampling and extrapolation, and real-world environmental data sets.

5.2 limitations of the convcnp

Before introducing the parametrisation of the ConvNP, we reiterate the main

limitations of the ConvCNP, which are inherited more generally from the CNPF.

Recall that the ConvCNP (Equation (4.1)) defines a map from context sets Dc to
predictive SPs. Specifically, let PN (X ) ⊂ P(X ) denote the set of noise GPs: GPs

on X whose covariance is given by Cov(x,x′) = σ2(x)δ[x−x′], where σ2 ∈ Cb(X )

and δ[0] = 1 with δ[ · ] = 0 otherwise. Then the ConvCNP is a map of the form

S_PN (X ), with Equation (4.1) defining its finite-dimensional distributions.

Unfortunately, processes in PN (X ) possess two key limitations. First, it is

impossible to obtain coherent function samples as each point of the function is

generated independently. Second, Gaussian distributions cannot model multi-

modality, heavy-tailedness, or asymmetry.

5.3 parametrising the convnp

Similarly to other members of the LNPF, the ConvNP extends the ConvCNP by

parametrising a map to a richer space of predictive SPs, allowing for coherent

sampling and non-Gaussian predictives. This is achieved by passing the output of

a ConvCNP through a non-linear, translation equivariant map between function

spaces. Specifically, the ConvNP uses an encoder–decoder architecture, where the

encoder E: S_PN (X ) is a ConvCNP and the decoder d : RX _RX is translation

equivariant. Conditioned on Dc, ConvNP samples can be obtained by sampling a

function z ∼ ConvCNP(Dc) and then computing f = d(z). An illustration of this

procedure is provided in Figure 5.1.

Importantly, d takes functions to functions and does not necessarily act point-

wise: letting f(x) depend on the value of z at multiple locations is crucial for

inducing dependencies in the predictive distribution. This sampling procedure

induces a map between SPs, D: PN (X ) _P(X ). Putting these together, with

explicit parameter dependence in E and D, the ConvNP is constructed as

ConvNPθ = Dθ ◦ Eφ, Eφ = ConvCNPφ, Dθ = (dθ)∗, (5.1)

where (dθ)∗ is defined by applying the map dθ to each sample of Eφ. Note that

we are explicitly distinguishing between the parameters of the encoder (denoted

φ) and those of the decoder (denoted θ).
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In practice, we cannot compute samples of noise GPs (PN ) because they

comprise uncountably many independent random variables. This further implies

that continuous model is not well-defined when the latent variable is defined

via noise GPs (though would be if we instead modelled the latent variable with

full-covariance GPs). Instead, we consider a discrete version of the model, which

enables computation and results in a well-defined model. As in Chapter 4, we

discretise the domain of z on a grid (xi)
K
i=1, with z := (z(xi))

K
i=1. As a consequence,

the model can only be equivariant up to shifts on this discrete grid. With this

discretisation, sampling z ∼ ConvCNPφ(Dc) amounts to sampling independent

Gaussian random variables, and dθ is implemented by passing z through a CNN.

Importantly, the discretized version of the model does not have the continuous

model as its limit as the discretesation grid becomes finer.

Following Kim et al. (2019), we define the model likelihood by adding hetero-

skedastic Gaussian observation noise σ2
y(x, z) to the predictive function draws

f = dθ(z) ∈ RX :

pθ(yT |XT ,Dc) = E
z∼Eφ(Dc)

 ∏
(x,y)∈Dt

N
(
y; dθ(z)(x), σ2

y(x, z)
) . (5.2)

Although the product in the expectation factorizes, pθ(yt|Xt, Dc) does not: z

induces dependencies in the predictive, in contrast to Equation (4.1).

5.4 translation equivariance of the convnp

It may not be immediately obvious from the above presentation that the ConvNP

indeed satisfies Property 3.2. In this section, we provide a simple proof that the

discretised version of ConvNPs are indeed translation equivariant, as desired.

We prove this by first proving that both the encoder and decoder are (separately)

translation equivariant. Thus, as the ConvNP is a composition of the decoder

and encoder (Equation (5.1)), it immediately follows that it satisfies the desired

property.

Proposition 5.1
Let d be a measurable, translation equivariant map from (RZ ,Σ) to (RX ,Σ), where Z
is the discretised space on which the latent variables is defined. The ConvNP decoder

D : P(Z) _P(X ), defined by D(P ) = d∗(P ), where d∗(P ) is the pushforward measure

under d, is translation equivariant.
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Proof.

Let F ∈ Σ be measurable. Then,

D(TτP )(F )
(a)

= TτP (d−1(F ))

= P (T−τd
−1(F ))

(b)

= P (d−1(T−τF ))

= D(P )(T−τF )

= TτD(P )(F ).

Here (a) follows from definition of the pushforward, and (b) follows because

T−τd
−1(F ) = T−τ{f : d(f) ∈ F}

= {T−τf : d(f) ∈ F}

= {f : d(Tτf) ∈ F}

= {f : Tτd(f) ∈ F}

= {f : d(f) ∈ T−τF}

= d−1(T−τF ). �

Proposition 5.2
The ConvNP encoder E (a ConvCNP), is a translation equivariant map from data sets

to stochastic processes.

Proof.

Recall that the mean and variance µ(·, S),σ2(·, S) (viewed as maps from

S_ Cb(X )) of the encoder E are both given by ConvDeepSets. Due to the

translation equivariance of ConvDeepSets Theorem 3.1,µ(·, TτS) = Tτµ(·, S)

for all S, τ , and similarly for σ2
. Let F ∈ Σ. Then since the measure E(S) ∈

PN (X ) is defined entirely by its mean and variance function, E(TτS)(F ) =

E(S)(T−τF ) = TτE(S)(F ). �

Finally, noting that a composition of translation equivariant maps is itself trans-

lation equivariant (Munkres, 1974; Kondor and Trivedi, 2018), we obtain the

following proposition:

Proposition 5.3
Define ConvNP = D ◦E. Then ConvNP is a translation equivariant map from data sets

to stochastic processes.

5.5 convnps in practice

The ConvNP can be implemented very simply by passing samples from a

ConvCNP through an additional CNN decoder, which we denote dθ. In this
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Algorithm 4: Forward pass through ConvNP for off-the-grid data.

require : dθ = (CNN, ψd), Eφ (off-the-grid ConvCNP), number of

samples L
require : context (xn, yn)Nn=1, target (x∗m)Mm=1

1 begin
2 µz,σz ← Eφ(Dc)
3 for l = 1, . . . , L do
4 zl ∼ N (µz,σz)

5 (fµ(ti), fσ(ti))
K
i=1 ← CNN(zl)

6 µm,l ←
∑T

i=1 fµ(ti)ψd(x
∗
m − ti)

7 σm,l ← pos (fσ(ti))

8 end
9 return (µ,σ)

10 end

Algorithm 5: Forward pass through ConvNP for on-the-grid data.

require : dθ = CNN, Eφ (on-the-grid ConvCNP), number of samples L
require : image I, context mask Mc, and target mask Mt

1 begin
2 µz,σz ← Eθ(I,Mc)
3 for l = 1, . . . , L do
4 zl ∼ N (z;µz,σ

2
z)

5 (fµ(ti), fσ(ti))
K
i=1 ← CNN(zl)

6 µ← f
(1:C)
t

7 σ ← pos

(
f

(C+1:2C)
t

)
8 end
9 return (µ,σ)

10 end

section, we provide further implementation details for the ConvNP, including

pseudo-code and illustrations. As in Chapter 4, we distinguish between the “on-

the-grid” and “off-the-grid” versions of the model. For an “off-the-grid” ConvNP,

similarly to the ConvCNP, we must map the output of a standard CNN back to

functions on a continuous domain X . This can be achieved via an RBF mapping,

similar to the off-the-grid ConvCNP, e.g. Algorithm 4 lines 6, 7. Pseudo-code for

off- and on-the-grid ConvNPs are provided in Algorithms 4 and 5, respectively.

Note that for the ConvNP, the discretisation of the latent function z is typically on

a pre-specified grid, and therefore lines 7 and 8 of Algorithm 2 are unnecessary

when calling the ConvCNP (Algorithm 4, line 1).

Finally, Figure 5.1 provides an illustration of a forward pass through the

ConvNP. The diagram was created using a context set drawn from an EQ kernel,

and passed through a trained ConvNP.
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Figure 5.1: Illustration of a forward pass through a ConvNP for off-the-grid data. To be

read counter-clockwise, starting at top-left panel. The first panel represents the

context set, which is input to the model. The context set is then embedded into

a functional representation, illustrated in the second panel, for a single “signal”

channel and the “density” channel. This representation is then discretised at a

fixed grid, as illustrated in the third panel. Next, the discretised representation

is passed through a CNN, which produces the mean and variances of the

latent function evaluated at the discretisation locations, illustrated in the

fourth panel. A sample from the latent function distribution is sampled at

each evaluated point (fifth panel), which is then passed through an additional

CNN to produce a sample from the predictive distribution (sixth panel).

5.6 training convnps

In Chapter 2we introduced two training procedures formembers of the LNPF. The

first is inspired by performing approximate VI in a generative model associated

with the LNPF, and requires maximising LNPVI (Equation (2.33)). The second is

inspired by the results in Section 2.7.1, and forgoes approximate inference for the

latent variable in favour of a simpler, approximatemaximum-likelihood procedure

involving maximising L̂ML (Equation (2.41)). We briefly discuss implications of

these two procedures that are specific to the parametrisation of the ConvNP.

When considering the generative process associated with the LNPF (Equa-

tions (2.27) to (2.29)) with ConvNPs, z is a latent function, qφ is a map from data

sets to SPs, and dθ is a map between function spaces. A natural choice is then to

use a ConvCNP and CNN for qφ and dθ, respectively.
2
This results in the same

parametrisation as in Section 5.3, but a subtly different modelling interpretation.

2 Recall that LNPVI requires the introduction of an inference network qφ.
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For the non-discretised ConvNP, LNPVI involves KL divergences between SPs

which cannot be computed directly and must be treated carefully (Matthews

et al., 2016; Sun et al., 2019). On the other hand, for the discretised ConvNP, the

KL divergences can be computed, but grow in magnitude as the discretisation

becomes finer, and it is not clear that the KL divergence between SPs is recovered

in the resulting limit. This raises practical issues for the use of LNPVI with

the ConvNP, as the balance between the two terms depends on the choice of

discretisation. In contrast, L̂ML has the advantage of being easy to specify for

any map parametrising a predictive process, posing no conceptual issues for the

ConvNP. In the next sections we demonstrate that ConvNPs trained with LML

significantly outperform their counterparts trained with LNPVI, and moreover,

this is often the case for ANPs as well.

5.7 experiments

We evaluate ConvNPs on a broad range of tasks. Our main questions are: (i) Does

the ConvNP produce coherent, meaningful predictive samples? (ii) Can it leverage

translation equivariance to outperform baseline methods within and beyond

the training range (generalisation)? (iii) Does it learn expressive non-Gaussian

predictive distributions?

evaluation and baselines We use several approaches for evaluating NPs.

First, as in (Garnelo et al., 2018b; Kim et al., 2019), we provide qualitative

comparisons of samples. These allow us to see if the models display meaningful

structure, quantify uncertainty, and are able to generalise spatially. Second, NPs

lack closed-form likelihoods, so we evaluate lower bounds on their predictive

log-likelihoods via importance sampling (Le et al., 2018). As these bounds can be

quite loose (see Appendix E.6 for more details and a discussion on this point),

they are primarily useful to show when NPs outperform baselines that admit

exact likelihoods, such as GPs and ConvCNPs. Finally, in Section 5.7.3 we consider

Bayesian optimization to evaluate the usefulness of ConvNPs for downstream

tasks. In Sections 5.7.1 and 5.7.2, we compare against the ANP (Kim et al., 2019),

which in prior work is trained with LNPVI. The ANP architectures used here are

comparable to those in Kim et al. (2019), and have a parameter count comparable

to or greater than the ConvNP. Full details are provided in Appendices E to G.

5.7.1 1D Regression

As in Chapter 4, we train models on samples from (i) a EQ GP, (ii) a Matérn-
5
2

GP, (iii) a noisy mixture of EQ kernels GP, (iv) a weakly periodic GP, and
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Figure 5.2: Predictions of ConvNPs and ANPs trained with LML and LNPVI, showing

interpolation and extrapolation within (grey background) and outside (white

background) the training range. Solid blue lines are samples, dashed blue

lines are means, and the shaded blue area is µ± 2σ. Purple dash–dot lines
are the ground-truth GP mean and µ± 2σ. ConvNP handles points outside

the training range naturally, whereas this leads to catastrophic failure for

the ANP. Note ANP with LNPVI tends to collapse to deterministic samples,

with all uncertainty explained with the heteroskedastic noise. In contrast,

models trained with LML show diverse samples that account for much of the

uncertainty.

(v) a non-Gaussian sawtooth process with random shifts and frequency (see

Appendix E for complete details).

Qualitative analysis

Figure 5.2 shows predictive samples, where during training the models only

observe data within the grey regions (training range). While samples from the

ANP exhibit unnatural “kinks” and do not resemble the underlying process,

the ConvNP produces smooth samples for Matérn-
5
2 and samples exhibiting

meaningful structure for the weakly periodic and sawtooth processes. The

ConvNP also generalises gracefully beyond the training range, whereas ANP

fails catastrophically.

Further, we observe that theANPwithLNPVI collapses to deterministic samples,

with the epistemic uncertainty explained using the heteroskedastic noise σ2
y(x, z).

Similar behaviour was also noted by Le et al. (2018). This behaviour is alleviated

when trainingwith L̂ML, withmuch of the predictive uncertainty due to variations

in the sampled functions, rather than the heteroskedastic noise.
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Quantitative analysis

Table 5.1: Log-likelihood for ConvCNP, ConvNP, ANP, and NP. Each of the stochastic

modelswas trained on each data set withLML andLNP, separately.We evaluate

the models in three settings: interpolation within training range (first block),

interpolation beyond training range (second block), and extrapolation beyond

training range (third block). For each task, we further compare the models’

performance to three models with tractable likelihoods: a ConvCNP, the

ground truth GP with a full covariance matrix (GP (full)), and a diagonalised

(i.e., factorised) version of the ground truth GP (GP (diag)).

EQ Matérn–
5
2 Noisy Mixt. Weakly Per. Sawtooth

Interpolation inside training range

GP (full) 5.80± 0.02 1.22± 6.3e –3 1.00± 4.1e –3 –0.06± 4.6e –3 N/A

GP (diag) –0.59± 0.01 –0.84± 9.0e –3 –0.89± 0.01 –1.17± 5.2e –3 N/A

ConvCNP –0.70± 0.02 –0.88± 0.01 –0.92± 0.02 –1.19± 7.0e –3 1.15± 0.04

ConvNP LML –0.30± 0.02 –0.58± 0.01 –0.55± 0.01 –1.02± 6.0e –3 2.30± 0.01

ANP LML –0.52± 0.01 –0.73± 0.01 –0.69± 0.01 –1.14± 6.0e –3 0.09± 3.0e –3

NP LML –0.84± 9.0e –3 –0.96± 7.0e –3 –0.93± 9.0e –3 –1.23± 5.0e –3 –0.02± 2.0e –3

ConvNP LNP –0.50± 0.02 –0.77± 0.01 –0.48± 0.02 –1.03± 8.0e –3 2.47± 8.0e –3

ANP LNP –0.82± 0.01 –0.96± 0.01 –1.04± 0.01 –1.37± 6.0e –3 0.20± 9.0e –3

NP LNP –0.58± 9.0e –3 –1.00± 9.0e –3 –0.72± 0.01 –1.22± 5.0e –3 –0.16± 2.0e –3

Interpolation beyond training range

GP (full) 5.80± 0.02 1.22± 6.3e –3 1.00± 4.1e –3 –0.06± 4.6e –3 N/A

GP (diag) –0.59± 0.01 –0.84± 9.0e –3 –0.89± 0.01 –1.17± 5.2e –3 N/A

ConvCNP –0.69± 0.02 –0.87± 0.01 –0.94± 0.02 –1.19± 7.0e –3 1.11± 0.04

ConvNP LML –0.30± 0.02 –0.58± 0.01 –0.56± 0.01 –1.03± 6.0e –3 2.29± 0.02

ANP LML –1.35± 6.0e –3 –1.39± 7.0e –3 –1.65± 5.0e –3 –1.35± 4.0e –3 –0.17± 1.0e –3

NP LML –2.70± 3.0e –3 –2.60± 3.0e –3 –2.82± 3.0e –3 - –0.03± 2.0e –3

ConvNP LNP –0.48± 0.02 –0.79± 0.01 –0.48± 0.02 –1.04± 8.0e –3 2.47± 8.0e –3

ANP LNP –1.91± 0.03 –1.48± 4.0e –3 –1.85± 7.0e –3 –1.66± 0.01 –0.30± 4.0e –3

NP LNP –13.7± 0.82 –3.96± 0.04 –3.80± 0.02 - –4.98± 0.02

Extrapolation beyond training range

GP (full) 4.29± 6.2e –3 0.82± 4.3e –3 0.66± 2.2e –3 –0.33± 3.4e –3 N/A

GP (diag) –1.40± 5.0e –3 –1.41± 4.8e –3 –1.72± 6.2e –3 –1.40± 4.0e –3 N/A

ConvCNP –1.41± 6.0e –3 –1.41± 7.0e –3 –1.73± 8.0e –3 –1.41± 6.0e –3 0.27± 0.02

ConvNP LML –1.09± 5.0e –3 –1.11± 5.0e –3 –1.30± 4.0e –3 –1.24± 4.0e –3 1.61± 0.02

ANP LML –1.29± 6.0e –3 –1.29± 5.0e –3 –1.55± 5.0e –3 –1.34± 5.0e –3 –0.25± 2.0e –3

NP LML –2.23± 4.0e –3 –2.08± 3.0e –3 –2.50± 4.0e –3 –1.39± 4.0e –3 –0.06± 2.0e –3

ConvNP LNP –1.21± 0.01 –1.31± 0.01 –1.19± 0.01 –1.51± 8.0e –3 2.10± 7.0e –3

ANP LNP –1.44± 6.0e –3 –1.45± 6.0e –3 –1.77± 7.0e –3 –1.46± 6.0e –3 –0.20± 2.0e –3

NP LNP –5.85± 0.05 –2.65± 3.0e –3 –4.06± 0.04 –1.49± 5.0e –3 –1.99± 6.0e –3
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Table 5.1 compares lower bounds on the log-likelihood for ConvNP with our

proposed L̂ML objective, as well as a NP andANPwith both L̂ML and the standard

LNPVI objective. The comparison is carried out in three separate regimes:

• Interpolation inside training range: bothDc andDt contain data onlywithin the

training range. This is the “vanilla” regime often used to evaluate members

of the NPF with GP experiments.

• Interpolation beyond training range: both Dc and Dt may contain observations

from outside the training range. This setting evaluates the models’ ability

to extrapolate to data observed outside the training range.

• Extrapolation beyond training range: Dc contains data within the training

range, Dt may contain data from outside the training range. This setting

evaluates models’ ability to make sensible predictions outside the training

range, “far” from observed data.

We also show three exact log-likelihoods: (i) the ground-truth GP (full) (ii) the

ground-truth GP with diagonalised predictions (diag), and (iii) ConvCNP. The

ConvCNP performs on par with GP (diag), which is the optimal factorized

predictive.
3
Both the ConvNP and ANP trained with L̂

ML
lower-bounds are

consistently higher than the GP (diag) in the interpolation setting, demonstrating

that correlated predictives significantly improve predictive performance. This is

not the case for the NP, or when the models are trained with L
NPVI

. The ConvNP

consistently and significantly outperforms the other models on all tasks.

Further, the ConvNP performs similarly inside and outside its training range,

demonstrating that translation equivariance aids generalisation; this is in contrast

to the ANP and NP, which fail catastrophically outside the training range. Finally,

we can see that the ANP tends to achieve significantly higher likelihoods when

trained with L̂
ML

as opposed to L
NPVI

. While this trend appears consistent across

our experiments, we believe that further investigation is required to conclusively

determine that one objective is strictly superior to the other.

5.7.2 Image Completion

We evaluate ConvNPs on image completion tasks focusing on spatial generalisa-

tion. To test this, we again consider zero-shot multi MNIST (ZSMM), where we

train on single MNIST digits but test on two MNIST digits on a larger canvas. We

randomly translate the digits during training, so the generative SP is stationary.

The black background on MNIST causes difficulty with heteroskedastic noise,

3 We note that this work was conducted after the work detailed in Chapter 4. Several implementation

details that lead to improved performance of the ConvCNP had been introduced at this point,

which accounts for the improved quantitative performance of the ConvCNP in Table 5.1.
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Table 5.2: Test log-likelihood lower bounds for image completion (5 runs).

MNIST CelebA32 SVHN ZSMM

LML LNP LML LNP LML LNP LML LNP

ConvNP 2.11± 0.01 0.99± 0.42 6.92± 0.10 −0.27± 0.00 9.89± 0.09 0.17± 0.00 4.58± 0.04 0.14± 0.00

ANP 1.66± 0.03 1.64± 0.03 5.98± 0.08 6.04± 0.10 9.18± 0.08 8.91± 0.06 −10.8± 1.99 −6.45± 0.99

Figure 5.3: Left two plots: predictive samples on zero-shot multi MNIST. Left-most plot is

ConvNP, left-centre is ANP. Right two plots: samples andmarginal predictives

on standard MNIST. We plot the density of the five marginals that maximize

Sarle’s bimodality coefficient Ellison, 1987. We use LML for training. Blue

pixels are not in the context set.

as the models can obtain high likelihood by predicting the background with

high confidence whilst ignoring the digits. Hence for MNIST and ZSMM we use

homoskedastic noise σ2
y(z). Figure 5.3 (left and centre-left) demonstrate that the

ANP fails to generalise spatially, whereas this is naturally handled by the ConvNP.

We also test the ConvNP’s ability to learn non-Gaussian predictive distributions.

Figure 5.3 (centre-right) demonstrates that the ConvNP learns multi-modal

predictives, enabling the generation of diverse yet coherent samples. Finally, a

quantitative comparison of models using log-likelihood lower bounds is provided

in Table 5.2, where a ConvNP trained with L̂ML consistently achieves the highest

values. Appendix F provides details regarding the data, architectures, and

protocols used in our image experiments. In Appendix F.7, we provide samples

and further quantitative comparisons of models trained on SVHN (Netzer et al.,

2011), MNIST LeCun et al., 1989, and 32× 32 CelebA Netzer et al., 2011 in a range

of scenarios, along with full experimental details.

5.7.3 Environmental Data

We next consider a real-world spatial data set, ERA5-Land (Balsamo et al., 2015),

containing measured environmental variables at a ∼9 km spacing across the

globe. We consider predicting daily precipitation y at spatial position x. We

also provide the model with orography (elevation) and temperature values. We

choose a large region of central Europe as our train set, and use regions east,

west, and south as held-out test sets. For such tasks, models must be able to make
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Table 5.3: Joint predictive log-likelihoods (LL) and RMSEs on ERA5-Land, averaged over

1000 tasks. For each model / task, we plot the mean and standard error of the

log-likelihood over the tasks. Bolded values correspond to best performing

model, and all models with overlapping error bars.

Central (train) West (test) East (test) South (test)

LL

ConvNP 4.47± 0.07 4.55± 0.08 5.07± 0.07 4.65± 0.08

GP 3.33± 0.06 3.65± 0.06 4.07± 0.06 3.34± 0.06

RMSE (×10−2
)

ConvNP 5.72± 0.33 5.77± 0.37 3.23± 0.22 6.92± 0.39

GP 6.26± 0.30 5.75± 0.29 3.10± 0.18 7.94± 0.44

predictions at locations spanning a range different from the training set, inhibiting

the deployment of NPs not equipped with translation equivariance. To sample a

task at train time, we sample a random date between 1981 and 2020, then sample

a sub-region within the train region, which is split into context and target sets. In

this section, we train using L̂ML. See Appendix G for experimental details.

Figure 5.4: Samples from the predictive processes overlaid on central Europe. Darker

colours show higher precipitation. Left-most column depicts the (top) ground

truth values and (bottom) context set observed by the models. In the context

set panel (bottom left), coloured pixels represent observed context points.

Remaining plots are samples from model predictive posteriors for (top)

ConvNP and (bottom) GP. GP samples often take negative values (lighter

than ground truth data, see Appendix G for a discussion), whereas the NP

has learned to produce non-negative samples which capture the sparsity

of precipitation. To produce high-quality samples, the model is trained on

subregions roughly the size of the lengthscale of the precipitation process.

More samples in Appendix G.2.
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Figure 5.5: Average regret plotted against number of points queried, averaged over 5000

tasks. Plots compare a GP and ConvNP, observing the same context sets, and

using UCB and Thompson sampling to perform Bayesian optimisation.
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5.7.4 Prediction

Wefirst evaluate the ConvNP’s predictive performance, comparing to a GP trained

individually on each task as a baseline. In about 10% of tasks, the GP obtains a

poor likelihood (< 0 nats); we remove these outliers from the evaluation. The

results are shown in Table 5.3. The ConvNP and GP have comparable RMSEs

except on south, where the ConvNP outperforms the GP. However, the ConvNP

consistently outperforms the GP in log-likelihood, which is expected for the

following reasons: (i) the GP does not share information between tasks and

hence is prone to over-fitting on small context sets, resulting in overconfident

predictions; and (ii) the ConvNP can learn non-Gaussian predictive densities

(illustrated inAppendixG.2). Figure 5.4 shows samples from thepredictive process

of a ConvNP and GP, over the whole of the train region. This demonstrates spatial

extrapolation, as the ConvNP is trained only on random subregions. Further

samples are provided in Appendix G.2.

5.7.5 Bayesian optimization

We demonstrate the usefulness of the ConvNP in a downstream task by con-

sidering a toy Bayesian optimisation problem (Brochu et al., 2010; Snoek et al.,

2012), where the goal is to identify the location with heaviest rainfall on a given

day. We also test the ConvNP’s spatial generalisation, by optimising over larger

regions (for central, west, and south) than the model was trained on. We test

both Thompson sampling (TS; Thompson, 1933) and upper confidence bounds

(UCB; Auer, 2002) as methods for acquiring points. Note that TS requires coherent

samples. The results are shown in Figure 5.5. On all data sets, ConvNPTS andUCB

significantly outperform the random baseline by the 50th iteration; the GP does

not reliably outperform random. We hypothesize this is due to its overconfidence,

in line with the results on prediction.

5.8 summary and conclusions

We have introduced the ConvNP, a translation equivariant map from data sets to

predictive SPs. ConvNPs extend ConvCNPs tomodel rich predictive distributions

with dependencies across the target points, largely overcoming the limitations of

ConvCNPs discussed in Section 5.2.

However, aswith othermembers of the LNPF, this comes at the cost of sacrificing

the tractability of the likelihood pθ(yT |XT ,Dc). This cost has several important

implications. First,wemust resort to biased estimators of the likelihood for training,

rendering guarantees on the recovery of πP ineffective. Some consequences of
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this are apparent when working with members of the LNPF, and, for example,

can be seen when observing the predictive distributions produced by the models

in Section 5.7.1. More generally, it is difficult to reason about artefacts that arise

when training members of the LNPF with either L̂
ML

or L
NPVI

.

Second, evaluation of the models is complicated by the lack of a tractable

evaluation metric. We must resort to evaluating the models using lower bounds

on the quantities of interest, which may be quite loose. This means that we must

rely onmore qualitative evaluations of themodel, limiting scalability of developing

the models, or devise more sophisticated evaluation procedures. Finally, both

objectives for training members of the LNPF require sampling based approximations

incurring significant computational overhead in training the models. This is

particularly true for L̂
ML

, which in our experiments requires on the order of 20-30

samples during training to achieve the desired levels of performance.

Given these limitations, my informal conclusion is that users should prefer

working with members of the CNPF if they suit the needs of the application.

Members of the LNPF should be invoked only if there is reason to believe

the members of the CNPF are not suited for task, e.g. if (i) coherent samples

are necessary to perform the task, (ii) the task at hand is dominated by the

dependencies across target points, or (iii) if the design of an appropriate likelihood

function is overly complex for a human expert. In other cases, my recommendation

would be to invoke members of the CNPF, which are easier and faster to train.

We thus conclude our exploration of translation equivariant members of the

NPF. In the next section, we turn our attention to the construction and deployment

of members of the NPF for few-shot image classification.
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CONDIT IONAL NEURAL ADAPT IVE PROCESSES FOR

FEW-SHOT CLASS I F ICAT ION

W
e now turn our attention to the task of few-shot image classification (Fei-Fei

et al., 2006; Lake et al., 2015). In particular, we consider the case where

tasks arise from complicated generative processes inducing a distribution over

a broad set of tasks. Extending the NPF to the few-shot classification setting

involves several challenges particular to the application. As such, much of the

chapter is concerned with modelling developments that address these issues. The

central contribution of this chapter is CNAPs, a specialisation of the CNPF to

few-shot image classification that achieves state-of-the-art performance on the

challenging Meta-Dataset benchmark (Triantafillou et al., 2020).

6.1 introduction

In this chapter, we extend the CNPF so as to be well-positioned with respect to

important tradeoffs for the few-shot, multi-task classification setting. We name

the resulting model Conditional Neural Adaptive Processes (CNAPs). As other

members of the CNPF, CNAPs directly model the desired predictive distribution

(Geisser, 1983, 2017). Unlike existing members of the CNPF, CNAPs handle

varying way classification tasks and introduce a parametrization and training

procedure enabling the model to learn to adapt the feature representation for

classification of diverse tasks at test time.

Thework in this chapter is basedon thepublication “Fast andFlexibleMulti-Task

Classification Using Conditional Neural Adaptive Processes” (Requeima et al.,

2019). The research was conducted in collaboration withmy co-first authors James

Requeima and John Bronskill, as well as Sebastian Nowozin and Richard E. Turner.

I contributed equally to all aspects of the work, including conceptualisation of

the model, writing the related software,
1
devising the experiments, and writing

of the paper. The central contributions of this chapter are to

• introduce the CNAPs modelling framework for multi-task classification,

• demonstrate that CNAPs achieve state-of-the-art performance on the Meta-

Dataset benchmark, often by comfortable margins and at a fraction of the

time required by competing methods, and

1 The software to implement CNAPs and reproduce the experiments in this section can be found at

https://github.com/cambridge-mlg/cnaps
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• demonstrate that CNAPs are able to adapt to held-out tasks in a fraction of

the time required by competing methods.

6.2 motivation

Existing work in few-shot image classification typically considers homogeneous

task distributions at train and test-time (e.g., mini-ImageNet (Vinyals et al., 2016)

and Omniglot (Lake et al., 2015)) that therefore require only minimal adaptation.

To handle the more challenging case of different task distributions we invoke

the NPF and propose several modelling extensions tailored towards few-shot

classification and increased capacity.

Current approaches to meta-learning and few-shot learning for classification

are characterized by two fundamental tradeoffs. (i) The number of parameters

that are adapted to each task. One approach adapts only the top, or head, of

the classifier leaving the feature extractor fixed (Snell et al., 2017; Gordon et al.,

2019). While useful in simple settings, this approach is prone to under-fitting

when the task distribution is heterogeneous (e.g. Triantafillou et al., 2020).

Alternatively, we can adapt all parameters in the feature extractor (as in Finn

et al., 2017; Nichol and Schulman, 2018) thereby increasing fitting capacity, but

incurring a computation cost and opening the door to over-fitting in the low-shot

regime. What is needed is a middle ground which strikes a balance between

model capacity and reliability of the adaptation. (ii) The adaptation mechanism.

Many approaches use gradient-based adaptation (Finn et al., 2017; Nichol and

Schulman, 2018). While this approach can incorporate training data in a flexible

way, it is computationally inefficient at test-time, may require expertise to tune the

optimization procedure, and is again prone to over-fitting. Conversely, function

approximators can be used to directly map training data to the desired parameters

(e.g. Gordon et al., 2019; Oreshkin et al., 2018). We refer to this as amortization.

This yields fixed-cost adaptation mechanisms, and enables greater sharing across

training tasks. However, it may under-fit if the function approximation is not

sufficiently flexible, and high-capacity function approximators require a large

number of training tasks to be learned.

We develop a class ofmodels that specialises the CNPF to few-shot classification,

and is well-positioned with respect to these important tradeoffs, which we coin

Conditional Neural Adaptive Processes (CNAPs). CNAPs utilise i) a classification

model with shared global parameters and a small number of task-specific para-

meters. We demonstrate that by identifying a small set of key parameters, the

model can balance the trade-off between flexibility and robustness. ii) A rich

adaptation neural network with a novel auto-regressive parametrisation that

avoids under-fitting while proving easy to train in practice.
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Figure 6.1: Computational diagram depicting the CNAPs model class. Red boxes imply

parameters in the model architecture supplied by adaptation networks. Blue

shaded boxes depict the feature extractor and the gold box depicts the linear

classifier.

6.3 model design

To facilitate flexible parametrisations of the CNPF, we introduce a hierarchy

of parameters in the model. We will use θ to denote global parameters, that

are shared across all tasks. As is standard for the CNPF, there is also set of

variables (these will be parameters for CNAPs) that are local at the task level,

which we denote ψf . Finally, to specialise the CNPF to the classification setting,

we also introduce a set of variables (parameters) that are local at the class level,

which we denote ψw. We sometimes collectively refer to all local parameters as

ψ = {ψf ,ψw}.
As usual, we consider a scenario where each task ξ = (Dc,Dt) consists of a

context and target set. However, we note that in this setting the labels correspond

discrete categories, i.e. y ∈ {1, . . . , Cτ}, where τ indexes tasks in the meta-dataset

Ξ. Importantly, the number of categories may vary across tasks. Context sets

consist of Dτc = (xn, yn)Nτn=1. Target sets similarly consist of D(τ)
t = (xm, ym)Mτ

m=1,

where the labels are observed only during training.

As all members of the CNPF, CNAPs models the predictive distribution for

each label independently as

pθ (yT |XT ,Dc) =
M∏
m=1

pθ
(
ym|xm,ψτ = ψφ (Dc)

)
. (6.1)

The local parameters ψ are produced by a function ψφ(·) that acts on Dc. The
function ψφ(·) has another set of global parameters φ called adaptation network

parameters. The learnable parameters of the model are thus θ and φ.

CNAPs are characterized by a number of design choices, made specifically for

the multi-task image classification setting. The model employs global parameters

θ that are trained off-line to capture high-level features, facilitating transfer
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and multi-task learning. Whereas existing members of the CNPF define ψτ to

be a fixed dimensional vector used as an input to the model, CNAPs instead

let ψτ be specific parameters of the model itself. We discuss our choices (and

associated tradeoffs) for these parameters below. Finally, CNAPs employ a novel

auto-regressive parametrisation of ψφ(·) that significantly improves performance.

An schematic of CNAPs is provided in Figure 6.1.

6.3.1 Specification of the classifier: θ and ψτ

We begin by specifying the classifier’s global parameters θ followed by how these

are adapted by the local parameters ψτ .

Global Classifier Parameters

The global classifier parameters will parametrise a feature extractor fθ(x) whose

output is fed into a linear classifier, described below. A natural choice for fθ(·)
in the image setting is a convolutional neural network, e.g., a ResNet (He et al.,

2016). In what follows, we assume that the global parameters θ are fixed and

known. In Section 6.4 we discuss the training of θ.

Class-specific classifier parameters: linear classification weights

The final classification layer must be task-specific as each task involves distinguish-

ing a potentially unique set of classes. We use a task specific affine transformation

of the feature extractor output, followed by a softmax activation. The class-specific

weights are denoted ψτw ∈ Rdf×Cτ (suppressing the biases to simplify notation),

where df is the dimension of the feature extractor output fθ(x) and Cτ is the

number of classes in task τ .

Task-specific classifier parameters: feature extractor parameters

A sufficiently flexible model must have capacity to adapt its feature representation

fθ(·) as well as the classification layer (e.g. compare the optimal features required

for ImageNet versus Omiglot). We therefore introduce a set of local feature

extractor parameters ψτf , and denote fθ(·) the unadapted feature extractor, and

fθ(·;ψτf ) the feature extractor adapted to task τ .

It is critical in few-shot multi-task learning to adapt the feature extractor in a

parameter-efficient manner. Unconstrained adaptation of all the feature extractor

parameters (e.g. by fine-tuning Finn et al., 2017) gives flexibility, but it is also slow

and prone to over-fitting (Triantafillou et al., 2020). Instead, we employ linear

modulation of the convolutional feature maps as proposed by Perez et al. (2018),
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Figure 6.2: (Left) A FiLM layer operating on convolutional feature maps indexed by

channel ch. (Right) How a FiLM layer is used within a basic Residual network

block (He et al., 2016).

which adapts the feature extractor through a relatively small number of task

specific parameters.

A Feature-wise Linear Modulation (FiLM) layer (Perez et al., 2018) scales and

shifts the ith unadapted feature map fi in the feature extractor FiLM(fi; γ
τ
i , β

τ
i ) =

γτi fi +βτi using two task specific parameters, γτi and βτi . Figure 6.2 (left) illustrates

a FiLM layer operating on a convolutional layer, and Figure 6.2 (right) illustrates

how a FiLM layer can be added to a standard Residual network block (He et al.,

2016). A key advantage of FiLM layers is that they enable expressive feature

adaptationwhile adding only a small number of parameters (Perez et al., 2018). For

example, in our implementation we use a ResNet18 with FiLM layers after every

convolutional layer. The set of task specific FiLM parameters (ψτf = {γτi ,β
τ
i })

constitute fewer than 0.7% of the parameters in the model. Despite this, as we

show in Section 5.7, they allow the model to adapt to a broad class of data sets.

6.3.2 Computing the local parameters via adaptation networks

The previous sections have specified the form of the classifier pθ (yT |XT ,ψ
τ )

in terms of the global and task specific parameters, θ and ψτ = {ψτf ,ψτw}.
Conceptually, we could now learn the local parameters separately for every task τ

e.g. via optimization. While in practice this is feasible for small numbers of tasks

(see e.g., Rebuffi et al., 2017, 2018)), this approach is computationally demanding,

requires expert oversight (e.g. for tuning early stopping), and can over-fit in the

low-data regime.

Instead, CNAPs invokes the central ideas of the CNPF, i.e. using a function,

such as a neural network, that takes the context set Dc as an input and returns

the task-specific parameters, ψτ = ψφ (Dc). Thus, the function ψ(·) is playing the

role of the encoder in standard CNPF models. Sacrificing some of the flexibility of

the optimisation approach, this method is comparatively cheap computationally

(only involving a forward pass through the adaptation network), automatic (with

no need for expert oversight), and employs explicit parameter sharing (via φ)

across the training tasks.
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Figure 6.3: Implementation of functional representation of the class-specific parameters

ψw. In this parametrisation, ψcw are the linear classification parameters for

class c, and φw are the learnable parameters.

Adaptation Network: Linear Classifier Weights

CNAPs represents the linear classifier weights ψτw as a parametrised function of

the form ψτw = ψw(Dc;φw,ψf ,θ), denoted ψw(Dc) for brevity. There are three
challenges with this approach: (i) the dimensionality of the weights depends on

the task (ψτw is a matrix with a column for each class, see Figure 6.3) and thus the

network must output parameters of varying dimensionalities; (ii) the number of

observations in Dc will depend on the task. Thus, the network must be able to

take inputs of variable cardinality; The latter challenge is standard for members

of the CNPF, and is handled with a permutation invariant function, as discussed

in previous chapters. To handle the first challenge, we follow Gordon et al. (2019).

First, each column of the weight matrix is generated independently, using only

the context points from that class, i.e.,

ψτw =
[
ψw (Dτ

1) , . . . , ψw (Dτ
C)
]
, (6.2)

an approach which scales to arbitrary numbers of classes.

Intuitively, the classifier weights should be determined by the representation

of the data points emerging from the adapted feature extractor. We therefore

input the adapted feature representation of the data points into the network,

rather than the raw data points (hence the dependency of ψw on ψf and θ). To

summarize, ψw(·) is a function on sets that accepts as input a set of adapted feature

representations from Dc, and outputs the cth column of the linear classification

matrix, i.e.,

ψw
(
Dτc ;φw,ψf ,θ

)
= ψw

(
{fθ

(
xm;ψf

)
|xm ∈ Dτc , ym = c};φw

)
. (6.3)

Here φw are learnable parameters of ψw(·). See Figure 6.3 for an illustration.

Adaptation Network: Feature Extractor Parameters

CNAPs represents the task-specific feature extractor parameters ψτf , comprising

the parameters of the FiLM layers γτ and βτ in our implementation, as a

parametrised function of the context-set Dc. Thus, ψf (·;φf ,θ) is a collection of
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Figure 6.4: Implementation of the feature-extractor: an independently learned set encoder

g provides a fixed context that is concatenated to the (processed) activations

of x from the previous ResNet block. The inputs zi = (zτ
G
, zi

AR
) are then

fed to ψif (·), which outputs the FiLM parameters for layer i. Green arrows

correspond to propagation of auto-regressive representations. Note that

the auto-regressive component zi
AR

is computed by processing the adapted

activations {f iθ(x;ψτf )} of the previous convolutional block.

functions (one for each FiLM layer) with parametersφf , many of which are shared

across functions. We denote the function generating the parameters for the ith

FiLM layer ψif (·) for brevity.
Our experiments (Section 5.7) show that this mapping requires careful para-

metrisation. We propose a novel parametrisation that improves performance

in complex settings with diverse data sets. Our implementation contains two

components: a task-specific representation that provides context about the task to

all layers of the feature extractor (denoted zτ
G
), and an auto-regressive component

that provides information to deeper layers in the feature extractor concerning

how shallower layers have adapted to the task (denoted zi
AR

). The input to the

ψif (·) network is zi = (zτ
G
, zi

AR
). The representation zτ

G
is computed for every task

τ by passing the inputs xτn through a global set encoder g with parameters in φf .

To adapt the lth layer in the feature extractor, it is useful for the system to

have access to the representation of task-relevant inputs from layer l − 1. While

zG could in principle encode how layer l − 1 has adapted, we opt to provide

this information directly to the adaptation network adapting layer l by passing

the adapted activations from layer l − 1. The auto-regressive component zi
AR

is

computed by processing the adapted activations of the previous convolutional

block with a layer-specific set encoder (except for the first residual block, whose

auto-regressive component is given by the un-adapted initial pre-processing stage

in the ResNet). Both the global and all layer-specific set-encoders are implemented

as permutation invariant functions (Zaheer et al., 2017; Qi et al., 2017a) (see

Appendix H.2 for details). The full parametrisation is illustrated in Figure 6.4,

and the architecture of ψif (·) networks is illustrated in Figure 6.5.
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6.4 training procedure

Having specified the model, we now describe how to train the global classifier

parameters θ and the adaptation network parameters φ = {φf ,φw}.

6.4.1 Training the Global Parameters

A natural approach to training the model, which we have used throughout the

thesis, would be to maximize the likelihood of the training data jointly over θ

and φ. However, as we demonstrate in Section 6.6.2, in this setting, it is crucially

important to adopt a two stage process instead. In the first stage, θ are trained

on a large dataset (e.g. the training set of ImageNet Krizhevsky et al., 2012;

Triantafillou et al., 2020) in a full-way classification procedure, mirroring standard

pre-training. Second, θ are fixed and φ are trained using episodic training over all

meta-training data sets in the multi-task setting. We hypothesize that two-stage

training is important as during the second stage, φf are trained to adapt fθ(·) to
tasks τ by outputting ψτf . As θ has far more capacity than ψτf , if they are trained

in the context of all tasks, there is no need for ψτf to adapt the feature extractor,

resulting in little-to-no training signal for φf and poor generalisation. Further,

as discussed in Section 6.6.2, end-to-end training in a single procedure proved

unstable, often diverging. We hypothesize that training stability is related to the

implementation of batch normalization (more details in Section 6.6.2), but we

leave an in-depth investigation of this matter for future work. Finally, fixing θ

during meta-training is desirable as it results in a dramatic decrease in training

time.
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Algorithm 6: Stochastic Objective Estimator for Meta-Training CNAPs

Input: Model parameters (θ,φ), Task-data ξ = {XT ,yT ,Dc}
1 ψτf ← ψf

(
{fθ(xn)|x ∈ Dc};φf

)
2 ψτc ← ψw

(
{fθ(xn;ψf )|x ∈ Dc, yn = c};φw

)
∀c ∈ Cτ

3 form = 1, . . . ,M do
4 πm ← fθ(xm;ψτf )Tψτw
5 log pθ(ym|πm)← logCAT(ym;πm)

6 end
7 L̂(φ; ξ)← 1

M

∑
M log pθ(ym|πm)

Output: L̂(φ; ξ)

6.4.2 Training the Adaptation Network Parameters

We trainφ in the standardmanner of training CNPFmembers, i.e. with maximum

likelihood. In this setting, we can similarly express L̂
ML

as

L̂
ML

(φ; Ξ) =
1

MT

∑
ξτ∈Ξ

Mτ∑
m=1

log pθ

(
y(τ)
m |x(τ)

m ,ψφ (Dτc )
)
. (6.4)

Maximum likelihood training therefore naturally uses episodic context / target

splits often used in meta-learning for few-shot classification (Vinyals et al., 2016;

Ravi and Larochelle, 2017). In our experiments we use the protocol defined

by Triantafillou et al. (2020) and Meta-Dataset for this sampling procedure.

Algorithm 6 details computation of the stochastic estimator for a single task.

6.5 related work on few-shot classification

This chapter is mainly concerned with models for few-shot classification. There

has been much interest in this topic, and other chapters of this thesis have not

considered it directly. As such, many of the relevant models and ideas have not

been covered elsewhere in this thesis. To this end, we provide a brief review of

recent work in this area, focusing on placing the central ideas developed in this

chapter in context of the related work.

6.5.1 Comparison to Standard CNPF Models

As we have seen throughout this thesis, members of the CNPF directly model

the predictive distribution pθ(y|x,Dc) and train the parameters using maximum

likelihood. Whereas previous work on the CNPF has focused on homogeneous

regression and classification data sets and fairly simple models, here we study

multiple heterogeneous classification data sets and use a more complex model



88 conditional neural adaptive processes for few-shot classification

to handle this scenario. In particular, whereas the original CNP approach to

classification required pre-specifying the number of classes in advance (Garnelo

et al., 2018a), CNAPs handles varying way classification tasks, which is required

for e.g. the Meta-Dataset benchmark. Further, CNAPs employs a parameter-

sharing hierarchy that parametrises the feature extractor. This contrasts to the

approach discussed in previous chapters, where parameters are all shared across

tasks, and latent inputs to the decoder are used to adapt to new tasks. Finally,

CNAPs employs a meta-training procedure geared towards learning to adapt

to diverse tasks. Similarly, our work can be viewed as a deterministic limit of

ML-PIP (Gordon et al., 2019) which employs a distributional treatment of the

local-parameters ψ.

6.5.2 Design Space for Few-Shot Classification

Our work specialises the central ideas from the CNPF to multi-task classification

by directly modelling the predictive distribution p(y|x,ψ(Dτ )). Continuing with

this perspective, we can organise previous work (e.g. Finn et al., 2017; Gordon

et al., 2019; Perez et al., 2018; Ravi and Larochelle, 2017; Rebuffi et al., 2017, 2018;

Snell et al., 2017; Triantafillou et al., 2020; Vinyals et al., 2016; Zintgraf et al., 2019;

Bauer et al., 2017) in terms of (i) the choice of the parametrisation of the classifier

(and in particular the nature of the local parameters), and (ii) the function used

to compute the local parameters from the training data. This space is illustrated

in Figure 6.6, which is characterised by two important dimensions: the choice of

model parameters to adapt, and the mechanism used to adapt the parameters.

The choice of Task-Specific Parameters

Clearly, any approach to multi-task classification must adapt, at the very least,

the top-level classifier layer of the model. A number of successful models have

proposed doing just this with e.g., neighbourhood-based approaches (Snell et al.,

2017), variational inference (Bauer et al., 2017), or inference networks (Gordon

et al., 2019). On the other end of the spectrum are models that adapt all the

parameters of the classifier, e.g., (Finn et al., 2017; Nichol and Schulman, 2018;

Yoon et al., 2018). The trade-off here is clear: as more parameters are adapted, the

resulting model is more flexible, but also slow and prone to over-fitting. For this

reason CNAPs modulates a small portion of the network parameters, following

recent work on multi-task learning (Rebuffi et al., 2017, 2018; Perez et al., 2018).

We argue that just adapting the linear classification layer is sufficient when the

task distribution is not diverse, as in the standard benchmarks used for few-shot

classification (Omniglot (Lake et al., 2011) and mini-ImageNet (Vinyals et al.,

2016)). However, when faced with a diverse set of tasks, such as that introduced



related work on few-shot classification 89

Adaptation Mechanism

Faster at Test-Time

# 
Ta

sk
-s

p
ec

if
ic

 P
ar

am
et

er
s

All

Classifier
and

Feature
Adapters

Classifier
Only

Multi-step Gradient Few-step Gradient Semi-Amortized Amortized

Finetune

Residual
Adapters

LEO,
Proto-MAML

CNAPS,
TADAM 

VERSA,
Proto Nets,

Matching Nets

MAML Meta-LSTM

M
o

d
el

 F
le

xi
b

ili
ty

CAVIA

Disc. k-shot

Figure 6.6:Model design space. The y-axis represents the number of task-specific para-

meters |ψτ |. Increasing |ψτ | increasesmodel flexibility, but also the propensity

to over-fit. The x-axis represents the complexity of the mechanism used to

adapt the task-specific parameters to training data ψ(Dτ ). On the right are

amortized approaches (i.e. using fixed functions). On the left is gradient-based

adaptation.Mixed approaches lie between. Computational efficiency increases

to the right. Flexibility increases to the left, but with it over-fitting and need

for hand tuning.

recently by Triantafillou et al. (2020), it is important to adapt the feature extractor

on a per-task basis as well.

The Adaptation Mechanism

Adaptation varies in the literature from performing full gradient descent learning

with Dc (Yosinski et al., 2014) to relying on simple operations such as taking the

mean of class-specific feature representations (Snell et al., 2017; Vinyals et al.,

2016). Recent work has focused on reducing the number of required gradient steps

by learning a global initialization (Finn et al., 2017; Nichol and Schulman, 2018)

or additional parameters of the optimization procedure (Ravi and Larochelle,

2017). Gradient-based procedures have the benefit of being flexible, but are

computationally demanding, and prone to over-fitting in the low-data regime.

Another line of work has focused on learning neural networks to output the

values of ψ, which we denote amortization (Gordon et al., 2019). Amortization

greatly reduces the cost of adaptation and enables sharing of global parameters,

but may suffer from the amortization gap (i.e. underfitting Cremer et al., 2018),

particularly in the large data regime. Even more recently, some authors have

proposed using semi-amortized inference (Triantafillou et al., 2020), but have

done so while only adapting the classification layer parameters.

A model with design choices closely related to CNAPs is TADAM (Oreshkin

et al., 2018). TADAM employs a similar set of local parameters, allowing for
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adaptation of both the feature extractor and classification layer. However, it

uses a far simpler adaptation network (lacking auto-regressive structure) and

an expensive and ad-hoc training procedure. Moreover, TADAM was applied to

simple few-shot learning benchmarks (e.g. CIFAR100 and mini-ImageNet) and

sees little gain from feature extractor adaptation. In contrast, we see a large benefit

from adapting the feature extractor. This may in part reflect the differences in

the two models, but we observe that feature extractor adaptation has the largest

impact when used to adapt to different data sets and that two stage training is

required to see this.

6.6 empirical evaluation

Our experiments our focused on two key questions: (i) Can CNAPs improve

performance in multi-task few-shot learning? (ii) Does the use of an adapta-

tion network benefit computational-efficiency and data-efficiency? We use the

following modelling choices. While CNAPs can utilize any feature extractor, a

ResNet18 (He et al., 2016) is used throughout to enable fair comparison with

Triantafillou et al. (2020). To ensure that each task is handled independently, batch

normalization (Ioffe and Szegedy, 2015) statistics are learned (and fixed) during

the pre-training phase for θ. Actual batch statistics of the test data are never used

during meta-training or testing. For complete experimental protocols and details,

see Appendix H.

6.6.1 Few Shot Classification with Meta-Dataset

Our experiments tackle a demanding few-shot classification challenge called

Meta-Dataset (Triantafillou et al., 2020). Meta-Dataset is composed of ten (eight

train, two test) image classification data sets. The challenge constructs few-shot

learning tasks by drawing from the following distribution. First, one of the data

sets is sampled uniformly; second, the “way” and “shot” are sampled randomly

according to a fixed procedure; third, the classes and context / target instances are

sampled. Where a hierarchical structure exists in the data (ILSVRC or Omniglot),

task-sampling respects the hierarchy. In the meta-test phase, the identity of the

original dataset is not revealed and the tasks must be treated independently

(i.e. no information can be transferred between them). Notably, the meta-training

set comprises a disjoint and dissimilar set of classes from those used for meta-test.

Full details are available in Appendix H.1 and (Triantafillou et al., 2020).

Triantafillou et al. (2020) consider two stage training: an initial stage that trains

a feature extractor in a standard classification setting, and a meta-training stage

of all parameters in an episodic regime. For the meta-training stage, they consider
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Table 6.1: Few-shot classification results on Meta-Dataset (Triantafillou et al., 2020) using models meta-trained on all training datasets. The feature

extractor parameters θ are trained on ILSVRC, using only observations from the training set according to the Meta-Dataset split. All figures

are percentages and the ± sign indicates the 95% confidence interval over tasks. Bold text indicates the scores within the confidence interval

of the highest score (among methods published concurrently with CNAPs). Tasks from data sets below the dashed line were not used for

meta-training. Competing methods’ results are as reported by Triantafillou et al. (2020). The final two columns represent the results of Simple

CNAPs (Bateni et al., 2020) and Universal Represenation Transoformers (URT Liu et al., 2020), two methods that were published after and

improve upon CNAPs, representing state-of-art performance in Meta-Dataset at the time of writing this thesis.

Dataset Finetune MatchingNet ProtoNet fo-MAML Proto-MAML

CNAPs

(no ψf )
CNAPs

(no zAR)
CNAPs

Simple

CNAPs

URT

ILSVRC 43.1 ± 1.1 36.1 ± 1.0 44.5 ± 1.1 32.4 ± 1.0 47.9 ± 1.1 43.8 ± 1.0 51.3 ± 1.0 52.3 ± 1.0 58.6 ± 1.1 55.7 ± 1.0

Omniglot 71.1 ± 1.4 78.3 ± 1.0 79.6 ± 1.1 71.9 ± 1.2 82.9 ± 0.9 60.1 ± 1.3 88.0 ± 0.7 88.4 ± 0.7 91.7 ± 0.6 94.4 ± 0.4

Aircraft 72.0 ± 1.1 69.2 ± 1.0 71.1 ± 0.9 52.8 ± 0.9 74.2 ± 0.8 53.0 ± 0.9 76.8 ± 0.8 80.5 ± 0.6 82.4 ± 0.7 85.8 ± 0.6

Birds 59.8 ± 1.2 56.4 ± 1.0 67.0 ± 1.0 47.2 ± 1.1 70.0 ± 1.0 55.7 ± 1.0 71.4 ± 0.9 72.2 ± 0.9 74.9 ± 0.8 76.3 ± 0.8

Textures 69.1 ± 0.9 61.8 ± 0.7 65.2 ± 0.8 56.7 ± 0.7 67.9 ± 0.8 60.5 ± 0.8 62.5 ± 0.7 58.3 ± 0.7 67.8 ± 0.8 71.8 ± 0.7

Quick Draw 47.0 ± 1.2 60.8 ± 1.0 64.9 ± 0.9 50.5 ± 1.2 66.6 ± 0.9 58.1 ± 1.0 71.9 ± 0.8 72.5 ± 0.8 77.7 ± 0.7 82.5 ± 0.6

Fungi 38.2 ± 1.0 33.7 ± 1.0 40.3 ± 1.1 21.0 ± 1.0 42.0 ± 1.1 28.6 ± 0.9 46.0 ± 1.1 47.4 ± 1.0 46.9 ± 1.0 63.5 ± 1.0

VGG Flower 85.3 ± 0.7 81.9 ± 0.7 86.9 ± 0.7 70.9 ± 1.0 88.5 ± 0.7 75.3 ± 0.7 89.2 ± 0.5 86.0 ± 0.5 90.7 ± 0.5 88.2 ± 0.6

Traffic Signs 66.7 ± 1.2 55.6 ± 1.1 46.5 ± 1.0 34.2 ± 1.3 52.3 ± 1.1 55.0 ± 0.9 60.1 ± 0.9 60.2 ± 0.9 73.5 ± 0.7 69.4 ± 0.8

MSCOCO 35.2 ± 1.1 28.8 ± 1.0 39.9 ± 1.1 24.1 ± 1.1 41.3 ± 1.0 41.2 ± 1.0 42.0 ± 1.0 42.6 ± 1.1 46.2 ± 1.1 52.2 ± 1.1

MNIST 76.0 ± 0.8 88.6 ± 0.5 92.7 ± 0.4 93.9 ± 0.4

CIFAR10 61.5 ± 0.7 60.0 ± 0.8 61.5 ± 0.7 74.3 ± 0.7

CIFAR100 44.8 ± 1.0 48.1 ± 1.0 50.1 ± 1.0 60.5 ± 1.0
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two settings: meta-training only on the Meta-Dataset version of ILSVRC, and on

all meta-training data. We focus on the latter as CNAPs rely on training data from

a variety of training tasks to learn to adapt. We pre-train θ on the meta-training

set of the Meta-Dataset version of ILSVRC, and meta-train φ in an episodic

fashion using all meta-training data. We compare CNAPs to models considered

by Triantafillou et al. (2020), including their proposed method (Proto-MAML) in

Table 6.1. We meta-test CNAPs on three additional held-out data sets: MNIST,

CIFAR10, and CIFAR100. As an ablation study, we compare a version of CNAPs

that does not make use of the auto-regressive component zAR, and a version that

uses no feature extractor adaptation. In our analysis of Table 6.1, we distinguish

between two types of generalization: (i) unseen tasks (classes) in meta-training

data sets, and (ii) unseen data sets.

Unseen Tasks

CNAPs achieve significant improvements over existing methods on seven of

the eight data sets. The exception is the Textures dataset, which has only seven

test classes and accuracy is highly sensitive to the train / validation / test

class split. The ablation study demonstrates that removing z
AR

from the feature

extractor adaptation degrades accuracy in most cases, and that removing all

feature extractor adaptation results in drastic reductions in accuracy.

Unseen data sets

CNAPs-models outperform all competitive models with the exception of Finetune

on the Traffic Signs dataset. Removing z
AR

from the feature extractor decreases

accuracy and removing the feature extractor adaptation entirely significantly

impairs performance. The degradation is particularly pronounced when the

held out dataset differs substantially from the dataset used to pretrain θ, e.g. for

MNIST.

Note that the superior results when using the auto-regressive component can

not be attributed to increased network capacity alone. In Appendix H.1.1 we

demonstrate that CNAPs yields superior classification accuracy when compared

to parallel residual adapters (Rebuffi et al., 2018) even though CNAPs requires

significantly less network capacity in order to adapt the feature extractor to a

given task.

6.6.2 Joint Training of Global Parameters and Adaptation Networks

Wecompare different trainingprocedures to verify the importance of our proposed

two-stage procedure for training themodel parameters. To study this, we compare
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Table 6.2: Few-shot classification results on Meta-Dataset (Triantafillou et al., 2020)

comparing joint training for θ and φ (columns 2 and 3) to two-stage training

(column 4). All figures are percentages and the ± sign indicates the 95%

confidence interval. Bold text indicates the highest scores that overlap in their

confidence intervals.

Dataset

Joint Training

(warmstart BN)

Joint Training

(BN train mode)

Two-Stage Training

(BN test mode)

ILSVRC 17.3±0.7 41.6±1.0 49.5±1.0
Omniglot 74.9±1.0 80.8±0.9 89.7±0.5
Aircraft 51.4±0.8 70.5±0.7 87.2±0.5
Birds 44.1±1.0 48.3±1.0 76.7±0.9
Textures 49.1±0.7 73.5±0.6 83.0±0.6
Quick Draw 46.6±1.0 71.5±0.8 72.3±0.8
Fungi 20.4±0.9 43.1±1.1 50.5±1.1
VGG Flower 66.6±0.8 71.0±0.7 92.5±0.4
Traffic Signs 21.2±0.8 40.4±1.1 48.4±1.1
MSCOCO 18.8±0.7 37.1±1.0 39.7±0.9

versions of CNAPs where joint training of θ and φ is performed, as is standard

for members of the CNPF. Our experiments with joint training of θ and φ

demonstrate that the two-stage training procedure proposed in Section 6.4 is

crucially important. In particular, we find that joint training diverged in almost

all cases we attempted. We were only able to successfully train jointly in two

circumstances: (i) Using batch normalization in “train” mode for both context and

target sets. We stress that this implies computing the batch statistics at test time,

and using those to normalize the batches. This is in contrast to the methodology

we propose previously in the chapter: only using batch normalization in “eval”

mode, which enforces that no information is transferred across tasks or data

sets. (ii) “Warm-start" the training procedure with batch normalization in “train”

mode, and after a number of epochs (we use 50 for the results shown below),

switch to proper usage of batch normalization. All other training procedures

we attempted diverged. Table 6.2 demonstrates that these procedures result in

consistently and significantly poorer performance than our proposed two-stage

procedure, validating its importance.

6.6.3 FiLM Parameter Learning Performance: Speed-Accuracy Trade-off

CNAPs generate FiLM layer parameters for each task τ at test time using the

adaptation network ψf (·). It is also possible to learn the FiLM parameters via

gradient descent (Rebuffi et al., 2017, 2018). We compare CNAPs to this approach.

Figure 6.7 shows plots of 5-way classification accuracy versus time for four held

out data sets as the number of shots was varied. For gradient descent, we used
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Figure 6.7: ComparingCNAPs to gradient based feature extractor adaptation: accuracy on

5-way classification tasks from withheld data sets as a function of processing

time. Dot size reflects shot number (1 to 25 shots).

a fixed learning rate of 0.001 and took 25 steps for each point. The overall time

required to produce the plot was 1274 and 7214 seconds for CNAPs and gradient

approaches, respectively, on a NVIDIA Tesla P100-PCIE-16GB GPU. CNAPs is

at least 5 times faster at test time than gradient-based optimization requiring

only a single forward pass through the network while gradient based approaches

require multiple forward and backward passes. Further, the accuracy achieved

with adaptation networks is significantly higher for fewer shots as it protects

against over-fitting. For large numbers of shots, gradient descent catches up, albeit

slowly.

6.7 conclusion and discussion

This chapter has introduced CNAPs, specialising the CNPF to the few-shot

classification setting. CNAPs is an automatic, fast and flexible modelling approach

for multi-task classification, which achieves state-of-the-art performance on the

challenging Meta-Dataset benchmark.

Since its introduction, several papers have built directly on the work of CNAPs.

For example, Bateni et al. (2020) propose “Simple CNAPs”, which replaces the

CNAPs linear classifier with a prototypical networks classification scheme (Snell

et al., 2017), achieving significant performance improvements over the model

proposed in this chapter. In a separate work, Nguyen et al. (2020) propose a new

measure—LEEP—to quantify the transferability of representations learned by

few-shot classifiers. The authors go on to demonstrate that LEEP can predict the

performance of CNAPs, demonstrating a correlation between the LEEP score and

test accuracies for held-out tasks. Finally, in a very recent paper, Liu et al. (2020)

propose an attention-based architecture for few-shot classification. They pretrain

separate feature-extractors for each of the eight training data sets inMeta-Dataset,

and use multi-head attention over the resulting features to produce a single

representation for unseen tasks. This leads to state-of-the-art performance for

the “unseen tasks” (i.e. in-domain tasks), but still falls short of the CNAPs-based

architecture of Bateni et al. (2020) on the “unseen data sets”.



7
CONCLUS IONS AND DISCUSS ION

W
e conclude the thesis with a summary of the central contributions, a

discussion on the Neural Process Family and their role in meta-learning,

and a brief discussion on future research directions in the NPF.

7.1 summary of contributions

The central focus of this thesis has been the Neural Process Family; a class

of models for probabilistic meta-learning. In particular, the thesis is aimed at

constructing a framework with which to reason about the NPF, and which can

be leveraged to construct new members. Chapter 2 introduces the perspective

of meta-learning as parametrising and learning maps from a space of data sets

to a space of predictive stochastic processes. With this view in place, the NPF

can be thought of as parametrising such maps with deep neural networks while

respecting their most important properties (e.g. permutation invariance and the

KET conditions). Chapter 2 then provides a general overview of the NPF and its

two important sub-families: the Conditional NPF and the Latent-Variable NPF.We

conclude Chapter 2 with several novel results, e.g. characterising the expressivity

of the CNPF, and the limiting behaviours of NPF training procedures.

Chapter 3 introduces the notion of translation equivariance in the NPF, and

motivates its importance. An important step is then taken towards translation

equivariant members of the NPF by introducing the ConvDeepSets framework.

ConvDeepSets extend the theory of representing and learning functions on

sets by providing a universal representation statement for parametrisations that

incorporate this translation equivariance. Chapters 4 and 5 then demonstrate how

ConvDeepSets can be leveraged to construct translation equivariant members of

the NPF, with both conditional and latent variable variants provided. Extensive

experimentation is carried out to validate the usefulness of the proposed models.

Finally, in Chapter 6, we consider the development of NPF models for few-shot

image classification.We argue that the central challenge in this setting is to balance

model capacity and robustness of adaptation to new tasks. To navigate this trade-

off,we proposeCNAPs, a novelmember of theNPF geared towards heterogeneous

few-shot image classification tasks. Experiments with Meta-Dataset (Triantafillou

et al., 2020) demonstrate that CNAPs achieves state-of-the-art performance while

being faster to deploy on unseen tasks.

95
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7.2 should you use the npf for your machine learning application?

An important question is whether and when we should use members of the NPF

in practice? To address this, we compare the NPF to several of its most natural

alternatives.

7.2.1 Neural Processes or Gradient-Based Meta-Learning?

Much interest has been devoted to meta-learning, and as a result several ap-

proaches have been proposed with modelling capacity similar to that of the NPF.

A particularly prominent approach to meta-learning employs gradient-based

methods (Finn, 2018). Such models provide similar guarantees regarding the

universality of the representation and learning procedures to those presented in

Section 2.7 (Finn and Levine, 2018). Yet for both approaches, these guarantees are

valid only in infinite data/capacity regimes. How then, should we make practical

decisions regarding which approach to invoke? There are several dimensions of a

modelling problem which we may consider to help us reason about this difficult

question. Below, I discuss what I see as the important factors in answering this

question, and my advice to practitioners on the matter.

The Need for Probabilistic Predictions

Augmenting predictions with a measure of uncertainty may or may not be

important to the application under consideration. For example, if accuracy is the

only important metric for a particular few-shot classifier, there is little evidence

that improving the model’s ability to provide meaningful uncertainty leads to

improved performance. Conversely, if a meta-learning model trained on health-

care records is providing outputs used to augment doctors’ decision making

processes, it is crucially important that the system provide calibrated uncertainty

estimates along with its predictions.

Despite significant research effort, gradient-based meta-learners producing

calibrated uncertainty estimates remain elusive. Conversely, when appropriately

designed, members of the NPF are able to closely recover the uncertainty asso-

ciated with the true underlying process. As such, in settings where uncertainty

plays an important role, invoking the NPF may be more appropriate than a

gradient-based approach.

Flexibility, Over-fitting, and Compute

An important aspect of an application is how much data and compute a user

expects to have available at meta-test time, i.e. when encountering unseen tasks.
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Considering the capacity of the neural networks typically employed in the NPF

encoders, gradient-based learning may be more flexible, and thus may be able to

model a larger class of functions, often leading to better test-time performance

when large context sets are available. However, this flexibility comes at a cost:

when context sets are small, gradient-based learners will be more prone to

over-fitting, as demonstrated in Section 6.6. On the other hand, members of the

NPF share the parameters of the adaptation mechanism across tasks, leading to

increased data-efficiency and improved performance when context sets are small.

Similarly, we have seen that invoking amortisation for the adaptation mech-

anism leads to models that require less compute to adapt, as no gradient-based

computations are required. And yet gradient-based learning of neural networks

is the de-facto standard procedure for training deep learning models. There

are many best practices and “tricks” that enable us to improve performance of

models trained this way, and much of our current software is tailored towards

this solution-class, often leading to easier-to-deploy solutions.

Thus, if a user expects to have little data/compute to adapt at meta-test time,

it may be reasonable to consider amortisation as an adaptation mechanism.

Conversely, if a user expects large context sets to be available at test time, or the

application allows for the use of more significant compute, it may be beneficial to

employ gradient-based meta-learners.

Bridging the Gap: Semi-Amortised Inference

Finally, it should be mentioned that these two approaches are not mutually

exclusive. An interesting “compromise” is semi-amortised inference (e.g. Kim

et al., 2018), which employs amortisation networks to output initial values, and

then tune these values with gradient-based procedures. For many applications,

such a “middle-ground” may in fact be the most appropriate approach.

7.2.2 Neural or Gaussian Processes?

Gaussian processes provide a principled approach to modelling data and admit

exact methods for posterior inference. Moreover, they allow us to encode our prior

beliefs via the design of themean and kernel functions. Under what circumstances

then, should we use members of the NPF instead of GPs? Below, I provide several

instances where we may prefer a Neural process to a Gaussian process.

Sharing Information Across Tasks

An important feature of meta-learning is that it naturally enables sharing across

multiple related tasks, which can lead to significant performance gains. In contrast,
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doing so with GPs is not as straightforward. A naive approach would be to jointly

learn the hyper-parameters of the kernel across multiple tasks, but even this can

be difficult to do in a principled way. Thus, if the data at hand can be viewed as a

collection of related tasks (as in the experiments in Section 5.7.3 or with patient

health-care data), the NPF may be more appropriate.

Non-Gaussian Predictive Distributions

In many applications it may be unreasonable to assume that the predictive

distribution has a Gaussian form. This may be due to multi-modality (as in the

image experiments in Section 5.7.2) or heavy tailedness and asymmetry (as in

the environmental experiments of Section 5.7.3), or even that the task involves

varying-way classification, as in Chapter 6. In such cases, employing GPs may

be futile, as the resulting predictive distributions are limited to Gaussian forms.

Conversely, with little modelling overhead, we can use alternative parametric

forms for the predictive distributions of CNPF members, e.g. Laplace for heavy-

tailed distributions, finite mixture-of-Gaussians for multi-modal distributions,

or categorical for classification tasks. Employing these requires nothing more

than defining the likelihood function pθ(y|x, r), and modifying dθ to output

the appropriate parameters. Moreover, we can invoke the LNPF to parametrise

arbitrarily flexible predictive distributions.

Complicated or High-Dimensional Input Spaces

Finally, we are often interested in applications involving high-dimensional or

complex input spaces, for which it can be difficult to design appropriate kernel

functions, and costly to compute and store the necessary kernel (Gram) matrices.

Here again, the canonical example is modelling of images, where designing

appropriate kernel functions is notoriously difficult (see for example Wilk et al.,

2017). In contrast, the NPF can be viewed as learning an implicit prior over

function space, which is then used for inference when a new context set is

observed (Garnelo et al., 2018a,b). This allows us to leverage the power of neural

networks for representation learning, which is has proven to be extremely useful

for high-dimensional or complicated input spaces.

7.2.3 Which Member of the NPF?

Having decided to invoke the NPF for a particular modelling application, which

member should the user consider. The twomain decisions to be made are whether

to consider the CNPF or LNPF, and which inductive biases should be encoded

into the architecture.
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Conditional or Latent-Variable?

Members of the LNPF have the obvious benefit that they parametrise a richer

predictive space of SPs, allowing for dependencies across target points. However,

this comes at the significant cost of an intractable likelihood pθ (yT |XT ,Dc),
complicating both training and evaluation of the models.

My opinion is that, other than for particular exceptions, working with the

CNPF is far easier and more reliable, and should thus be preferred. As mentioned

in Chapter 5, the exceptional cases are when (i) sampling from the predictive is a

core requirement of the application, (ii) the predictive performance is dominated

by dependencies in the distribution, or (iii) designing an appropriate likelihood

function is overly complex for a human expert. In any of these cases, invoking a

member of the LNPF may be more appropriate than its CNPF counter-part. In all

other cases, my recommendation would be to first consider the deployment of

the CNPF, which are more robust and less costly to train.

Appropriate Inductive Biases

Choosing the appropriate inductive biases or architecture for the NPF member is

highly application-specific. Generally speaking, the best performing architectures

in the current literature are most likely attentive or convolutional architectures.

One consideration is that the expressive power of convolutional architectures

is generally smaller than that of attentive models, since they are (by definition)

restricted to translation equivariant mappings, which are a small subset of

all possible mappings. In fact, in many cases the assumption of a stationary

underlying SP can exclude important desirable characteristics (see e.g. Mishra

et al., 2020, for a discussion on the matter). The other is the dimensionality of

the input space X : for X = Rd with d > 3, invoking convolutions will generally

be extremely memory intensive, and most likely infeasible. Thus, in such a

case, I would recommend employing an attentive member of the NPF before a

convolutional one.

Conversely, as we have seen, convolutional architectures enable generalisation

in time/space in a way that other architectures cannot. This property may be cru-

cial in several important applications of the NPF. Further, as we have seen, inmany

cases (even when stationarity is not necessarily “perfectly” appropriate), convo-

lutional NPF members may outperform their non-convolutional counterparts,

whichmay be due to other properties of the inductive bias (e.g. parameter-sharing).

Therefore, if stationarity seems even moderately appropriate as an inductive bias

on the input spaceX (andX is nomore than 3-dimensional), my recommendation

would be to first try a convolutional member of the NPF.
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7.3 future work

Finally, we conclude with a brief discussion on interesting avenues for future

work. Research towards probabilistic meta-learning with the NPF is quite nascent,

such that there are many interesting directions to pursue. Below, I focus on several

directions which are of particular impact in my own opinion.

7.3.1 Training Procedures for the LNPF

In Sections 2.6.2 and 2.7.3 we discussed two procedures for training members of

the LNPF.However, both procedures involve biased estimators of the log-marginal

likelihood, complicating both training and evaluation of members of the LNPF.

Better procedures are required to make the LNPF a more viable class of models

for real-world applications.

One line of research would be to consider importance-weighted objectives for

training (Burda et al., 2015). In preliminary experiments not discussed in this

thesis, we observed that invoking such objectives lead to improved performance

for some models, but invoked peculiar artefacts in others. We hypothesise that

such behaviours result, at least to a certain degree, from the bias in the training

objective. Recently, Luo et al. (2020) proposed an unbiased, importance-weighted

objective estimator of the log-marginal likelihood in latent variablemodels. Similar

ideas could be used to derive an unbiased objective for the LNPF, alleviating

many of the difficulties associated with training and evaluation of the models.

7.3.2 Neural Process Flows

The central drawback of the CNPF is the limitation to parametric and factorised

predictive distributions.An alternative to the LNPF could be to invoke normalising

flows for the predictive distribution. Normalising flows allow us to express

arbitrarily complex distributions that can be evaluated analytically using a change

of variables (Papamakarios et al., 2019a).

A straightforward approach would simply be to apply a point-wise flow the

density at each target point output by a member of the CNPF. This would solve

the problem of the parametric form, but would not allow for dependencies in the

predictive distribution. A far more interesting approach would be to develop a

flow that operated directly on SPs. Such objects have been considered in the recent

literature (e.g. Deng et al., 2020), but a solution not involving a latent variable

is yet to be proposed. It is not clear whether such an object is well-defined, but

if it could be constructed, it could allow the construction of NPF members that

achieve the central advantages of both the CNPF and LNPF.
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A
REPRODUCING KERNEL HILBERT SPACES

H
ere we provide a brief review of some concepts related to reproducing

kernel Hilbert spaces (RKHS; Sejdinovic and Gretton, 2012) that are used

in the thesis. We begin with the definition of a Hilbert space.

Definition A.1 (Hilbert space)
A Hilbert space is a complete inner product space. In other words, it is a Banach space

endowed with an inner product.

Let X = Rd and let Y ⊂ R be compact. Let ψ be a symmetric, positive-

definite kernel on X . By the Moore–Aronszajn Theorem (Aronszajn, 1950),

there is a unique Hilbert space (H, 〈·, ·〉H) of real-valued functions on X for which

ψ is a reproducing kernel. This means that (i) ψ(·,x) ∈ H for all x ∈ X and

(ii) 〈f, ψ(·,x)〉H = f(x) for all f ∈ H and x ∈ X (reproducing property). For

ψ : X × X _R, X = (x1, . . . ,xn) ∈ X n, and X′ = (x′1, . . . ,x
′
n) ∈ X n, we denote

ψ(X,X′) =


ψ(x1,x

′
1) · · · ψ(x1,x

′
n)

.

.

.

.
.
.

.

.

.

ψ(xn,x
′
1) · · · ψ(xn,x

′
n)

 .

Definition A.2 (Interpolating RKHS)
CallH interpolating if it interpolates any finite number of points: for every

((xi, yi))
n
i=1 ⊂ X × Y

with (xi)
n
i=1 all distinct, there is an f ∈ H such that f(x1) = y1, . . . , f(xn) = yn.

For example, the RKHS induced by any strictly positive-definite kernel, e.g.

the exponentiated quadratic (EQ) kernel ψ(x,x′) = σ2 exp(− 1
2`2
‖x−x′‖2),

is interpolating: Let c = ψ(X,X)−1y and consider f =
∑n

i=1 ciψ(·,xi) ∈ H. Then
f(X) = ψ(X,X)c = y.

The next lemma will be useful in proving several results in Chapters 2 and 3.

Lemma A.1
Let X ⊆ Rd. For any N ∈ N, there exists an N -dimensional RKHS of functions X _R
that is N -interpolating.

Remark A.1
Since all N -dimensional inner product spaces are isomorphic to RN with the usual inner

product, we may takeH ∼= RN by choosing a basis.
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Proof.

Let ψ be the EQ kernel. Fix Z = (z1, · · · , zN ) with zi ∈ X and zi 6= zj

when i 6= j. Define k(x,x′) := ψ(x,Z)ψ(Z,Z)−1ψ(Z,x′). Note that ψ(Z,Z)−1

always exists since the zi are distinct and the EQ kernel is strictly positive

definite. We first show that k is a positive semi-definite function. LetM ≥ 1,

a ∈ RM , X ∈ XM . Then

aTk(X,X)a = aTψ(X,Z)ψ(Z,Z)−1ψ(Z,X)a (A.1)

= (ψ(Z,X)a)Tψ(Z,Z)−1ψ(Z,X)a (A.2)

≥ 0, (A.3)

which holds since ψ(Z,Z)−1
is positive definite. By the Moore-Aronszajn

theorem, there is then a unique RKHS of functions from X _R, denotedH,
for which k is a reproducing kernel. Consider the pre-RKHS

H0 =

{
I∑
i=1

αik(xi, ·)

∣∣∣∣∣ I ∈ N, αi ∈ R,xi ∈ X

}
. (A.4)

For f, g ∈ H0 with f =
∑I

i=1 αik(xi, ·) and g =
∑J

j=1 βik(yj , ·), we define

the inner product as

〈f, g〉H0
:=

I∑
i=1

J∑
j=1

αiβjk(xi,yj). (A.5)

It can be easily verified (Sejdinovic and Gretton, 2012)[Theorem 42] thatH0

is a well-defined inner-product space and that k is a reproducing kernel for

H0. To see thatH0 is an RKHS, it remains to be shown that it is complete.

We first show that H0 is a finite-dimensional vector space. Consider the

set ofH0-elements {k(zn, ·)}Nn=1 = {ψ(zn,Z)ψ(Z,Z)−1ψ(Z, ·)}Nn=1. To show

they are linearly independent, choose {an}Nn=1 such that

f =
N∑
n=1

anψ(zn,Z)ψ(Z,Z)−1ψ(Z, ·) = 0.

Then in particular,

[f(z1), . . . , f(zN )] =

N∑
n=1

anψ(zn,Z)ψ(Z,Z)−1ψ(Z,Z) (A.6)

=
N∑
n=1

anψ(zn,Z) = 0. (A.7)
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Since ψ(Z,Z) is invertible, this implies an = 0 for 1 ≤ n ≤ N . Next we show

that {k(zn, ·)}Nn=1 spansH0. Let f ∈ H0. Then we can write

f =
I∑
i=1

αik(xi, ·) (A.8)

=

I∑
i=1

αiψ(xi,Z)ψ(Z,Z)−1ψ(Z, ·). (A.9)

But for any v ∈ RN , we have that v is a linear combination of {ψ(zn,Z)}Nn=1,

since ψ(Z,Z) is invertible. Applying this to v =
∑I

i=1 αiψ(xi,Z), we see that

there exist c1, . . . , cN ∈ R such that

f =
N∑
n=1

cnψ(zn,Z)ψ(Z,Z)−1ψ(Z, ·) =
N∑
n=1

cnk(zn, ·).

Hence {k(zn, ·)}Nn=1 is a basis for H0, which is N -dimensional. Since all N -

dimensional inner product spaces are isomorphic to RN , which is complete,

it follows that H0 is complete, and hence is the RKHS H for which k is a

reproducing kernel.

Finally, we show that H is N -interpolating. Let X = (x1, . . . ,xN ) ∈ XN

with each xi distinct. We show that k(X,X) is invertible. Let a ∈ RN . Then

aTk(X,X)a = aTψ(X,Z)ψ(Z,Z)−1ψ(Z,X)a (A.10)

= (ψ(Z,X)a)Tψ(Z,Z)−1ψ(Z,X)a (A.11)

≥ 0, (A.12)

with equality if and only if ψ(Z,X)a = 0. Suppose ψ(Z,X)a = 0. Note that

ψ(Z,X) is invertible. Hence a = 0, and k(X,X) is positive definite, hence

invertible. Let b = k(X,X)−1y and consider f =
∑N

n=1 bnk(xi, ·) ∈ H. Then
f(X) = k(X,X)b = y. �





B
THE QUOT IENT SPACE OF PERMUTAT IONS

H
ere we provide a brief review of some concepts quotient space topology

(Munkres, 1974) that are used in the thesis. The review is accompanied by

several simple statements that will be used in the thesis, along with their proofs.

Let A be a Banach space. For x = (x1, . . . , xn) ∈ An and y = (y1, . . . , yn) ∈ An,
let x ∼ y if x is a permutation of y; that is, x ∼ y if and only if x = πy for some

π ∈ Sn where

πy = (yπ(1), . . . , yπ(n)).

Let An/Sn be the collection of equivalence classes of ∼. Denote the equivalence

class of x by [x]; for A ⊂ An, denote [A] = {[a] : a ∈ A}. Call the map x 7→
[x] : An _An/ Sn the canonical map. The natural topology on An/ Sn is the

quotient topology, in which a subset of An/ Sn is open if and only if its preimage

under the canonical map is open inAn. In what follows, we show that the quotient

topology is metrizable.

On An, since all norms on finite-dimensional vector spaces are equivalent,

without loss of generality consider

‖x‖2An =

n∑
i=1

‖xi‖2A.

Note that ‖ · ‖An is permutation invariant: ‖π · ‖An = ‖ · ‖An for all π ∈ Sn. On

An/ Sn, define

d : An/ Sn ×An/ Sn _[0,∞), d([x], [y]) = minπ∈Sn ‖x− πy‖An .

Call a set [A] ⊂ An/Sn bounded if {d([x], [0]) : [x] ∈ [A]} is bounded.

Proposition B.1
The function d is a metric.
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Proof.

We first show that d is well defined on An/ Sn. Assume x ∼ x′ and y ∼ y′.

Then, x′ = πxx and y′ = πyy. Using the group properties of Sn and the

permutation invariance of ‖ · ‖An :

d([x′], [y′]) = minπ∈Sn ‖πxx− ππyy‖An

= minπ∈Sn ‖πxx− πy‖An

= minπ∈Sn ‖x− π−1
x πy‖An

= minπ∈Sn ‖x− πy‖An

= d([x], [y]).

It is clear that d([x], [y]) = d([y], [x]) and that d([x], [y]) = 0 if and only if

[x] = [y]. To show the triangle inequality, note that

‖x−π1π2y‖An ≤ ‖x−π1z‖An+‖π1z−π1π2y‖An = ‖x−π1z‖An+‖z−π2y‖An ,

using permutation invariance of ‖ · ‖An . Hence, taking the minimum over π1,

d([x], [y]) ≤ d([x], [z]) + ‖z− π2y‖An ,

so taking the minimum over π2 gives the triangle inequality for d. �

Proposition B.2
The canonical map An _An/ Sn is continuous under the metric topology induced by d.

Proof.

Follows directly from d([x], [y]) ≤ ‖x− y‖An . �

Proposition B.3
Let A ⊂ An be topologically closed and closed under permutations. Then [A] is topologic-

ally closed in An/Sn under the metric topology.

Proof.

Recall that a subset [A] of a metric space is closed iff every limit point of

[A] is also in [A]. Consider a sequence ([an])∞n=1 ⊂ [A] converging to some

[x] ∈ An/ Sn. Then there are permutations (πn)∞n=1 ⊂ Sn such that πnan _ x.

Here πnan ∈ A, because A is closed under permutations. Thus x ∈ A, as A is

also topologically closed. We conclude that [x] ∈ [A]. �

Proposition B.4
Let A ⊂ An be open. Then [A] is open in An/Sn under the metric topology. In other

words, the canonical map is open under the metric topology.
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Proof.

Let [x] ∈ [A]. BecauseA is open, there is some ballBe(y)with e > 0 andy ∈ A
such thatx ∈ Be(y) ⊂ A. Then [x] ∈ Be([y]), since d([x], [y]) ≤ ‖x−y‖An < e,

and we claim that Be([y]) ⊂ [A]. Hence [x] ∈ Be([y]) ⊂ [A], so [A] is open.

To show the claim, let [z] ∈ Be([y]). Then d(πz,y) < e for some π ∈ Sn.
Hence πz ∈ Be(y) ⊂ A, so πz ∈ A. Therefore, [z] = [πz] ∈ [A]. �

Proposition B.5
The quotient topology on An/Sn induced by the canonical map is metrizable with the

metric d.

Proof.

Since the canonical map is surjective, there exists exactly one topology on

An/ Sn relative to which the canonical map is a quotient map: the quotient

topology (Munkres, 1974).

Let p : An _An/ Sn denote the canonical map. It remains to show that p is

a quotient map under the metric topology induced by d; that is, we show

that U ⊂ An/ Sn is open in An/ Sn under the metric topology if and only if

p−1(U) is open in An.
Let p−1(U) be open in An. We have that U = p(p−1(U)), so U is open in

An/ Sn under the metric topology by Proposition B.4. Conversely, if U is

open in An/ Sn under the metric topology, then p−1(U) is open in An by

continuity of the canonical map under the metric topology. �





C
PROOFS OF THEOREMS 2 . 3 AND 2 . 4

W
e provide the proofs for Theorems 2.3 and 2.4. Our proof strategy is

as follows. We will first show that there exists a homemorphic (i.e.,

continuous with a continuous inverse) embedding of datasets size to m into a

RKHS (Lemma C.1). Then, we will demonstrate that this embedding encodes

datasets of different sizes into disjoint subsets of the RKHS, such that these may

be “stitched together” to construct a homemorphic embedding for datasets of size

less than or equal toM . Finally, we will demonstrate that these subsets are closed

in the embedding space, and use the pasting lemma (Munkres, 1974) to show

that there exists a continuous map that satisfies our desiderata. We conclude by

“putting the results together” to prove our theorems.

Lemma C.1
Let S ⊂ Rd be compact, and let Sm = S × . . .× S︸ ︷︷ ︸

m times

, wherem ≤M . Let k : S × S_R

be the kernel defined in the proof of Lemma A.1 with 2M points in Z. DenoteH as the

2M -dimensional RKHS associated with k, and form ≤M let

Hm =

{
m∑
i=1

k(·,xi)

∣∣∣∣∣ (xi)mi=1 ∈ Sm

}
⊆ H ∼= R2M .

Then the map

Em : [Sm] _Hm, Em([(x1, ...,xm)]) =

m∑
i=1

k(·,xi)

is injective, hence invertible, and continuous. Moreover, the inverse E−1
m is continuous,

i.e., Em is a homeomorphism.

Proof.

First note that Em is clearly permutation invariant and hence well-defined

on [Sm]. To show that it is injective, let X = (x1, . . . ,xm) and let X′ =

(x′1, . . . ,x
′
m). Suppose

Em([X]) = Em([X′]); and

m∑
i=1

k(·,xi) =
m∑
i=1

k(·,x′i). (C.1)

125



126 proofs of theorems 2.3 and 2.4

Taking the inner product with any f ∈ H and using the reproducing property,

m∑
i=1

f(xi) =
m∑
i=1

f(x′i), (C.2)

for all f ∈ H. Let x̂ ∈ X ∪X′. SinceH is 2M -interpolating, and the number

of distinct points in X∪X′ is at most 2M , we can find a function f ∈ H such

that f(x̂) = 1 and f(x) = 0 for all other x in X ∪X′. Then∑
i:xi=x̂

1 =
∑
i:x′i=x̂

1, (C.3)

hence the number of occurrences of x̂ in X is the same as the number of

occurrences of x̂ in X′. Since this is true for all x̂ ∈ X ∪X′, it follows that X

is a permutation of X′, so that [X] = [X′], proving injectivity.

To show that Em is continuous, compute∥∥∥∥∥
m∑
i=1

k(·,xi) −
m∑
i=1

k(·,x′i)

∥∥∥∥∥
2

H

(C.4)

=

〈
m∑
i=1

k(·,xi)− k(·,x′i) ,
m∑
j=1

k(·,xj)− k(·,x′j)

〉
H

(C.5)

=
m∑
i=1

m∑
j=1

[
k(xi,xj)− 2k(xi,x

′
j) + k(x′i,x

′
j)
]
, (C.6)

where we used the reproducing property of k. This goes to zero as [X′] _[X]

by continuity of k. Finally, since the continuous image of a compact set

is compact, and the canonical map from Sm to [Sm] is continuous, [Sm]

is compact. Since any continuous bĳection between a compact space [Sm]

and a Hausdorff space Hm is a homeomorphism, it follows that Em is a

homeomorphism. �

Lemma C.1 demonstrates that there exist homeomorphic map Em from the space

of fixed-sized data sets [S]m to finite-dimensional Hilbert spaces. Next, we study

the properties of the map E, which has as its restrictions the maps Em.

Lemma C.2
Let

[S≤M ] =

M⋃
m=1

[Sm] ; and H≤M =

M⋃
m=1

Hm ⊆ H ∼= R2M .

Then, the {Hm}Mm=1 are pairwise disjoint. It follows that the map E

E : [S≤M ] _H≤M ; E([S]) = Em([S]) if [S] ∈ [Sm]
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is injective, hence invertible. Denote this inverse as E−1
, where E−1(f) = E−1

m (f) if

f ∈ Hm.

Proof.

Assume the {Hm}Mm=1 are not pairwise disjoint. Then there exists [X] ∈ [Sm]

and [X′] ∈ [Sm′ ] withm 6= m′ such that

Em([X]) = Em′([X
′]) (C.7)

m∑
i=1

k(·,xi) =
m′∑
i=1

k(·,x′i). (C.8)

Again taking the inner product with any f ∈ H and using the reproducing

property,

m∑
i=1

f(xi) =
m′∑
i=1

f(x′i). (C.9)

Since H is 2M -interpolating, we set f(x) = 1 for all x ∈ X ∪ X′, which

impliesm = m′, a contradiction. �

Next, we show that we may use the inverse map E−1
, in conjunction with the

pasting lemma (Munkres, 1974), to construct a continuous map from the image of

the embedding E to a target toplogical space.

Lemma C.3
Let T be a topological space. Let Φ: [S≤M ] _T , such that the restrictions Φ|[Sm] are

continuous for 1 ≤ m ≤M , and let E be as defined in Lemma C.2. Then, the map

Φ ◦ E−1 : H≤M _T (C.10)

is continuous.

Proof.

By Lemma C.1, each E−1
m : Hm _[Sm] is continuous. Since

Φ|[Sm] : [Sm] _Cb(X ,Y) (C.11)

is continuous, the composition Φ|[Sm] ◦E−1
m : Hm _Cb(X ,Y) is also continu-

ous. But Φ|[Sm] ◦ E−1
m is just (Φ ◦ E−1)|Hm . Assume Hm is closed in H≤M .

Then by the pasting lemma, Φ ◦ E−1
is continuous.

It remains to be shown that Hm is closed in H≤M . First, as Hm is the

continuous image of a compact set [Sm], it is compact. SinceH is isomorphic

to R2M
, it has the Heine-Borel property, implying that Hm is closed in H.

Finally, a set is closed inH≤M if and only if it is the intersection of a closed

set ofH withH≤M , which shows thatHm is closed inH≤M . �
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With these results in place, we are now ready to prove our first theorem regarding

the representational power of vector-valued Deep Sets networks of size less than

or equal toM .

Theorem C.1 (Deep Sets for vectors)
Let S ⊂ Rd be compact, and let s denote a generic element of S. Let Sm = S × . . .× S︸ ︷︷ ︸

m times

and let [Sm] be the set of equivalence classes of elements of S under permutation. 5 Let

[S]≤M =
⋃M
m=1[Sm]. Let T be a topological space. Then any map g : [S]≤M _T such

that its restrictions g|[Sm] are continuous for all 1 ≤ m ≤M has the form:

g([(s1, . . . , sm)]) = ρ

(
m∑
i=1

φ(si)

)
, (C.12)

for some continuous ρ : R2M _T and continuous φ : S_R2M
. The function φ is

independent of g.

Proof.

By Lemma C.2 we have that the map E : [S]≤M _H≤M is a bĳection.

However, sinceH ∼= R2M
, we may take I : H_R2M

to be an isomorphism

of inner product spaces (and hence also a homeomorphism), and define

E′ : [S]≤M _ I(H≤M ) ⊆ R2M , E′([S]) = I ◦ E([S]), which is also a bĳection.

For [S] ∈ [S]≤M we have

g([S]) = g([(s1, . . . , sm)]) = g(E′−1(E′([S])))

= g ◦ E′−1

(
m∑
i=1

I(k(·, si))

)
, (C.13)

where we used the linearity of I . Define ρ : I(H≤M ) _T by ρ = g ◦ E′−1 =

g◦E−1◦I−1
, which is continuous by LemmaC.3 and continuity of I−1

(ρmay

be extended continuously in an arbitrary way on R2M \ I(H≤M ) to define a

function ρ : R2M _T ). Finally, define φ : S_R2M
as φ(s) = I(k(·, s)) and

note that it is continuous by continuity of k and I . �

Now, we can use Theorem 2.3 to prove Theorem 2.4, i.e., the representation

power of the CNP architecture (Definition 2.4). However, before doing so, we

must account for the concatenations inherent to the CNP architecture. This is

considered in the following lemma.

Lemma C.4
Let ρ : Rdr _ Cb(X ,Y) be continuous, where Cb(X ,Y) is endowed with the topology of

uniform convergence. Then there exists ρ′ : Rdr × X _Y continuous such that for all

r ∈ Rdr and x ∈ X , (ρ(r))(x) = ρ′((r,x)).
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Proof.

We begin by defining ρ′((r,x)) := (ρ(r))(x) for all r,x. It remains to be shown

that ρ′ is continuous:

‖ρ′((r,x))− ρ′((r′,x′))‖ = ‖(ρ(r))(x)− (ρ(r′))(x′)‖ (C.14)

= ‖(ρ(r))(x)− (ρ(r′))(x) + (ρ(r′))(x)− (ρ(r′))(x′)‖ (C.15)

≤ ‖(ρ(r))(x)− (ρ(r′))(x)‖+ ‖(ρ(r′))(x)− (ρ(r′))(x′)‖.
(C.16)

As (r′,x′) _(r,x), the first term goes to zero by continuity of ρ, and the

second term goes to zero by continuity of ρ(r′). �

We are now ready to prove Theorem 2.4.

Theorem C.2 (CNP Representation)
Let Φ : [S]≤M _ Cb(X ,Y) with its restrictions Φ|[Sm] continuous for 1 ≤ m ≤ M .

Then Φ can be represented as a conditional neural process with representation dimension

dr = 2M . Conversely, any CNP is a map from [S]≤M _Cb(X ,Y) with continuous

restrictions.

Proof.

Let [S] = [(s1, . . . , sm)] ∈ [S≤M ]. Here each si = (xi,yi) ∈ Rdin+dout
. By The-

orem 2.3, Φ([S]) = ρ (
∑m

i=1 φ(si)) for some continuous ρ : R2M _Cb(X ,Y)

and continuous φ : S_R2M
. Moreover, by Lemma C.4, there exists a

continuous ρ′ : R2M × X _Y such that for all r ∈ R2M
and x ∈ X ,

(ρ(r))(x) = ρ′((r,x)). Hence, for all x ∈ X ,

Φ([S])(x) = ρ

(
m∑
i=1

φ(si)

)
(x) = ρ′

((
m∑
i=1

φ(si),x

))
(C.17)

Identifying ρ′ as the decoder and E([S]) =
∑m

i=1 φ(si) as the encoder with

representation dimension dr = 2M and φ = r, we see that Φ is a CNP. The

converse is straightforward. �





D
PROOF OF THEOREM 3 . 1

W
e provide the proof of Theorem 3.1. Our proof strategy is very similar to

the proof of Theorem 2.3, but specialising the encoder to be translation

equivariant, and allowing for embeddings to infinite-dimensional function spaces.

We begin by demonstrating that our proposed embedding into function space is

homeomorphic (Lemmas D.1 and D.2). Then, we show that the embeddings of

fixed-sized sets can be extended to varying-sized sets by “pasting” the embed-

dings together while maintaining their homeomorphic properties (Lemma D.3).

Following this, we demonstrate that the resulting embedding may be composed

with a continuous mapping to our desired target space, resulting in a continuous

mapping between two metric spaces (Lemma D.4). Finally, we combine the

above-mentioned results to prove Theorem 3.1.

embeddings of sets into an rkhs

Lemma D.3 states that it is possible to homeomorphically embed sets into an

RKHS, which is central in proving our main result. Before proving Lemma D.3,

we provide several useful intermediate results. We begin by demonstrating that

an embedding of sets of a fixed size into a RKHS is continuous and injective.

Lemma D.1
Consider a collection S ′M ⊂ SM that has multiplicityK. Set

φ : Y_RK+1, φ(y) = (y0, y1, · · · , yK) (D.1)

and let ψ be an interpolating, continuous positive-definite kernel. Define

HM =

{
M∑
i=1

φ(yi)ψ(·,xi) : (xi, yi)
M
i=1 ⊂ SM

}
⊆ HK+1, (D.2)

whereHK+1 = H×· · ·×H is the (K+ 1)-dimensional-vector–valued–function Hilbert

space constructed from the RKHSH for which ψ is a reproducing kernel and endowed

with the inner product 〈f, g〉HK+1 =
∑K+1

i=1 〈fi, gi〉H. Then the embedding

EM : [S ′M ] _HM , EM ([(x1, y1), . . . , (xM , yM )]) =

M∑
i=1

φ(yi)ψ(·,xi) (D.3)

is injective, hence invertible, and continuous.

131
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Proof.

First, we show that EM is injective. Suppose that

M∑
i=1

φ(yi)ψ(·,xi) =

M∑
i=1

φ(y′i)ψ(·,x′i). (D.4)

Denote X = (x1, . . . ,xM ) and y = (y1, . . . , yM ), and denote X′ and y′

similarly. Taking the inner product with any f ∈ H on both sides and using

the reproducing property of ψ, this implies that

M∑
i=1

φ(yi)f(xi) =
M∑
i=1

φ(y′i)f(x′i) (D.5)

for all f ∈ H. In particular, since by construction φ1(·) = 1,

M∑
i=1

f(xi) =
M∑
i=1

f(x′i) (D.6)

for all f ∈ H. Using thatH is interpolating, choose a particular x̂ ∈ X ∪X′,

and let f ∈ H be such that f(x̂) = 1 and f(·) = 0 at all other xi and x′i. Then∑
i:xi=x̂

1 =
∑
i:x′i=x̂

1, (D.7)

so the number of such x̂ in X and the number of such x̂ in X′ are the same.

Since this holds for every x̂, X is a permutation of X′: X = π(X′) for some

permutation π ∈ SM . Plugging in the permutation, we can write

M∑
i=1

φ(yi)f(xi) =
M∑
i=1

φ(y′i)f(x′i) (D.8)

(X′=π−1(X))
=

M∑
i=1

φ(y′i)f(xπ−1(i)) (D.9)

(i^π−1(i))
=

M∑
i=1

φ(y′π(i))f(xi). (D.10)

Then, by a similar argument, for any particular x̂,∑
i:xi=x̂

φ(yi) =
∑
i:xi=x̂

φ(y′π(i)). (D.11)

Let the number of terms in each sum equal S. Since S ′M has multiplicity

K, S ≤ K. By Lemma 4 from Zaheer et al. (2017), the ‘sum-of-power
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mapping’ from {yi : xi = x̂} to the first S + 1 elements of

∑
i:xi=x̂ φ(yi),

i.e.

(∑
i:xi=x̂ y

0
i , . . . ,

∑
i:xi=x̂ y

S
i

)
, is injective. Therefore,

(yi)i:xi=x̂ is a permutation of (y′π(i))i:xi=x̂. (D.12)

Note that xi = x̂ for all above yi. Furthermore, note that also x′π(i) = xi = x̂

for all above y′π(i). We may therefore adjust the permutation π such that

yi = y′π(i) for all i such that xi = x̂whilst retaining that x = π(x′). Performing

this adjustment for all x̂, we find that y = π(y′) and x = π(x′).

Second, we show that EM is continuous. Compute

∥∥∥∥∥
M∑
i=1

φ(yi)ψ(·,xi)−
M∑
j=1

φ(y′j)ψ(·,x′j)

∥∥∥∥∥∥
2

HK+1

=
K+1∑
i=1

(
φ>i (y)ψ(X,X)φi(y)− 2φ>i (y)ψ(X,X′)φi(y

′)

+φ>i (y′)ψ(X′,X′)φi(y
′)
)
,

which goes to zero if [X′,y′] _[X,y] by continuity of ψ. �

Having established the injection, we now show that this mapping is a homeo-

morphism, i.e. that the inverse is continuous. This is formalised in the following

lemma.

Lemma D.2
Consider Lemma D.1. Suppose that S ′M is also topologically closed in SM and closed

under permutations, and that ψ also satisfies (i) ψ(x,x′) ≥ 0, (ii) ψ(x,x) = σ2 > 0,

and (iii) ψ(x,x′) _ 0 as ‖x‖_∞. ThenHM is closed inHK+1
and E−1

M is continuous.

Remark D.1
Before moving on to the proof of Lemma D.2, we remark that Lemma D.2 would directly

follow if S ′M were bounded: then S ′M is compact, so EM is a continuous, invertible

map between a compact space and a Hausdorff space, which means that E−1
M must be

continuous. This argument is the same to the one used in Lemma C.1. The intuition

that the result must hold for unbounded S ′M is as follows. Since φ1(·) = 1, for every

f ∈ HM , f1 is a summation ofM “bumps” (imagine the EQ kernel) of the form ψ(·,xi)
placed throughout X . If one of these bumps goes off to infinity, then the function cannot

uniformly converge pointwise, which means that the function cannot converge inH (if

ψ is sufficiently nice). Therefore, if the function does converge in H, (xi)
M
i=1 must be

bounded, which brings us to the compact case. What makes this work is the density

channel φ1(·) = 1, which forces (xi)
M
i=1 to be well behaved. The above argument is

formalized in the proof of Lemma D.2.
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Proof.

Define

SJ = ([−J, J ]d × Y)M ∩ S ′M , (D.13)

which is compact inAM as a closed subset of the compact set ([−J, J ]d×Y)M .

We aim to show thatHM is closed inHK+1
and E−1

is continuous. To this

end, consider a convergent sequence

f (n) =

M∑
i=1

φ(y
(n)
i )ψ(·,x(n)

i ) _ f ∈ HK+1. (D.14)

Denote X(n) = (x
(n)
1 , . . . ,x

(n)
M ) and y(n) = (y

(n)
1 , . . . , y

(n)
M ). Claim: (X(n))∞n=1

is a bounded sequence, so (X(n))∞n=1 ⊂ [−J, J ]dM for J large enough, which

means that (X(n),y(n))∞n=1 ⊂ SJ where SJ is compact. Note that [SJ ] is

compact in SM/ SM by continuity of the canonical map.

First, we demonstrate that, assuming the claim,HM is closed. Note that by

boundedness of (X(n),y(n))∞n=1, (f
(n))∞n=1 is in the imageofEM |[SJ ] : [SJ ] _HM .

By continuity of EM |[SJ ] and compactness of [SJ ], the image of EM |[SJ ] is

compact and therefore closed, since every compact subset of a metric space is

closed. Therefore, the image of EM |[SJ ] contains the limit f . Since the image

of EM |[SJ ] is included inHM , we have that f ∈ HM , which shows thatHM is

closed.

Next, we prove that, assuming the claim, E−1
M is continuous. Consider

EM |[SJ ] : [SJ ] _EM ([SJ ]) restricted to its image. Then (EM |[SJ ])
−1

is continu-

ous, because a continuous bĳection from a compact space to a metric space

is a homeomorphism. Therefore

E−1
M (f (n)) = (X(n),y(n)) = (EM |[SJ ])

−1(f (n)) _(EM |[SJ ])
−1(f) = (X,y).

(D.15)

By continuity and invertibility of EM , then f (n) _EM (X,y), so EM (X,y) =

f by uniqueness of limits. We conclude that E−1
M (f (n)) _E−1

M (f), which

means that E−1
M is continuous.

It now remains to show the claim. Let f1 denote the first element of f ,

i.e. the density channel. Using the reproducing property of ψ,

|f (n)
1 (x)−f1(x)| = |〈ψ(x, ·), f (n)

1 −f1〉| ≤ ‖ψ(x, ·)‖H‖f (n)
1 −f1‖H = σ‖f (n)

1 −f1‖H,

(D.16)
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so f
(n)
1 _ f1 inHmeans that it does so uniformly pointwise (over x). Hence,

we can letN ∈ N be such that n ≥ N implies that |f (n)
1 (x)− f1(x)| < 1

3σ
2
for

all x. Let R be such that |ψ(x,x
(N)
i )| < 1

3σ
2/M for ‖x‖ ≥ R and all i ∈ [M ].

Then, for ‖x‖ ≥ R,

|f (N)
1 (x)| ≤

M∑
i=1

|ψ(x,x
(N)
i )| < 1

3σ
2

=⇒ |f1(x)| ≤ |f (N)
1 (x)|+ |f (N)

1 (x)− f1(x)| < 2
3σ

2.

At the same time, by pointwise non-negativity of ψ, we have that

f
(n)
1 (x

(n)
i ) =

M∑
j=1

ψ(x
(n)
j ,x

(n)
i ) ≥ ψ(x

(n)
i ,x

(n)
i ) = σ2. (D.17)

Towards contradiction, suppose that (X(n))∞n=1 is unbounded. Then (x
(n)
i )∞n=1

is unbounded for some i ∈ [M ]. Therefore, ‖x(n)
i ‖ ≥ R for some n ≥ N , so

2
3σ

2 > |f1(x
(n)
i )| ≥ |f (n)

1 (x
(n)
i )| − |f (n)

1 (x
(n)
i )− f1(x

(n)
i )| ≥ σ2− 1

3σ
2 = 2

3σ
2,

(D.18)

which is a contradiction. �

The following lemma states that we may construct an encoding for sets con-

taining no more thanM elements into a function space, where the encoding is

injective and every restriction to a fixed set size is a homeomorphism.

Lemma D.3
For every m ∈ [M ], consider a collection S ′m ⊆ Sm that (i) has multiplicity K, (ii) is

topologically closed, and (iii) is closed under permutations. Set

φ : Y_RK+1, φ(y) = (y0, y1, · · · , yK) (D.19)

and letψ be an interpolating, continuous positive-definite kernel that satisfies (i)ψ(x,x′) ≥ 0,

(ii) ψ(x,x) = σ2 > 0, and (iii) ψ(x,x′) _ 0 as ‖x‖_∞. Define

Hm =

{
m∑
i=1

φ(yi)ψ(·,xi) : (xi, yi)
m
i=1 ⊂ S ′m

}
⊆ HK+1, (D.20)
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whereHK+1 = H×· · ·×H is the (K+ 1)-dimensional-vector–valued–function Hilbert

space constructed from the RKHSH for which ψ is a reproducing kernel and endowed

with the inner product 〈f, g〉HK+1 =
∑K+1

i=1 〈fi, gi〉H. Denote

[S ′≤M ] =
M⋃
m=1

[S ′m] and H≤M =
M⋃
m=1

Hm. (D.21)

Then (Hm)Mm=1 are pairwise disjoint. It follows that the embedding E

E : [S ′≤M ] _H≤M , E([Z]) = Em([Z]) if [Z] ∈ [S ′m] (D.22)

is injective, hence invertible. Denote this inverse by E−1
, where E−1(f) = E−1

m (f) if

f ∈ Hm.

Proof.

Recall that Em is injective for everym ∈ [M ]. Hence, to demonstrate that E is

injective it remains to show that (Hm)Mm=1 are pairwise disjoint. To this end,

suppose that

m∑
i=1

φ(yi)ψ(·,xi) =
m′∑
i=1

φ(y′i)ψ(·,x′i) (D.23)

form 6= m′. Then, by arguments like in the proof of Lemma D.1,

m∑
i=1

φ(yi) =

m′∑
i=1

φ(y′i). (D.24)

Since φ1(·) = 1, this gives m = m′, which is a contradiction. Finally, by

repeated application of Lemma D.2, E−1
m is continuous for everym ∈ [M ].�

Lemma D.4
Let Φ: [S ′≤M ] _ Cb(Y,Y) be a map from [S ′≤M ] to Cb(X ,Y), the space of continuous

bounded functions from X to Y , such that every restriction Φ|[S′m] is continuous, and let

E be from Lemma D.3. Then

Φ ◦ E−1 : H≤M _ Cb(X ,Y) (D.25)

is continuous.

Proof.

Recall that, due to Lemma D.1, for every m ∈ [M ], E−1
m is continuous and

has image [S ′m]. By the continuity of Φ|[S′m], then Φ|[S′m] ◦ E−1
m is continuous

for everym ∈ [M ]. Since Φ ◦E−1|Hm = Φ|[S′m] ◦E−1
m for allm ∈ [M ], we have

that Φ ◦ E−1|Hm is continuous for all m ∈ [M ]. Therefore, as Hm is closed
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inH≤M for everym ∈ [M ], the pasting lemma (Munkres, 1974) yields that

Φ ◦ E−1
is continuous. �

universality of convolutional deepset networks

From here on, we let ψ be a stationary kernel, which means that it only depends

on the difference of its arguments and can be seen as a function X _R. With the

above results in place, we are finally ready to prove our central result, Theorem 3.1.

Here, we provide a slightly more detailed statement of the theorem, and then

proceed to prove it.

Theorem D.1
For every m ∈ [M ], consider a collection S ′m ⊆ Sm that (i) has multiplicity K, (ii) is

topologically closed, (iii) is closed under permutations, and (iv) is closed under translations.

Set

φ : Y_RK+1, φ(y) = (y0, y1, · · · , yK) (D.26)

and letψ be an interpolating, continuous positive-definite kernel that satisfies (i)ψ(x,x′) ≥ 0,

(ii) ψ(x,x) = σ2 > 0, and (iii) ψ(x,x′) _ 0 as ‖x‖_∞. Define

Hm =

{
m∑
i=1

φ(yi)ψ(·,xi) : (xi, yi)
m
i=1 ⊂ S ′m

}
⊆ HK+1, (D.27)

whereHK+1 = H× · · · ×H is the (K + 1) dimensional-vector–valued–function Hilbert

space constructed from the RKHSH for which ψ is a reproducing kernel and endowed

with the inner product 〈f, g〉HK+1 =
∑K+1

i=1 〈fi, gi〉H. Denote

S ′≤M =

M⋃
m=1

S ′m and H≤M =
M⋃
m=1

Hm. (D.28)

Then a function Φ: S ′≤M _Cb(X ,Y) satisfies (i) continuity of the restriction Φ|Sm
for every m ∈ [M ], (ii) permutation invariance (Property 2.1), and (iii) translation

equivariance (Property 3.1) if and only if it has a representation of the form

Φ(S) = ρ (E(S)) , E((x1, y1), . . . , (xm, ym)) =

m∑
i=1

φ(yi)ψ(· − xi) (D.29)

where ρ : H≤M _ Cb(X ,Y) is continuous and translation equivariant.

Proof (Proof of sufficiency.).

To beginwith, note that permutation invariance (Property 2.1) and translation

equivariance (Property 3.1) for Φ are well defined, because S ′≤M is closed

under permutations and translations by assumption. First, Φ is permutation
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invariant, because addition is commutative and associative. Second, that Φ is

translation equivariant (Property 3.1) follows from a direct verification and

that ρ is also translation equivariant:

Φ(TτS) = ρ

(
M∑
i=1

φ(yi)ψ(· − (xi + τ ))

)
(D.30)

= ρ

(
M∑
i=1

φ(yi)ψ((· − τ )− xi)

)
(D.31)

= ρ

(
M∑
i=1

φ(yi)ψ(· − xi)

)
(· − τ ) (D.32)

= Φ(S)(· − τ ) (D.33)

= T ′τΦ(S). (D.34)

�

Proof (Proof of necessity.).

To begin with, since Φ is permutation invariant (Property 2.1), we may define

Φ:
M⋃
m=1

[S ′m] _ Cb(X ,Y), Φ(S) = Φ([S]), (D.35)

for which we verify that every restriction Φ|[S′m] is continuous. By invertibility

of E from Lemma D.3, we have [S] = E−1(E([S])). Therefore,

Φ(S) = Φ([S]) = Φ(E−1(E([S]))) = (Φ◦E−1)

(
M∑
i=1

φ(yi)ψ(· − xi)

)
. (D.36)

Defineρ : H≤M _ Cb(X ,Y)byρ = Φ◦E−1
. First,ρ is continuousbyLemmaD.4.

Second, E−1
is translation equivariant, because ψ is stationary. Also, by as-

sumption Φ is translation equivariant (Property 3.1). Thus, their composition

ρ is also translation equivariant. �

Remark D.2
The function ρ : H≤M _ Cb(X ,Y) may be continuously extended to the entirety ofHK+1

using a generalisation of the Tietze Extension Theorem by Dugundji et al. (1951). There

are variants of Dugundji’s Theorem that also preserve translation equivariance.
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1D REGRESS ION EXPER IMENTAL DETA ILS

I
n this chapter, we provide details regarding the synthetic regression experi-

ments carried out in Chapters 4 and 5.

e.1 data details

We begin by discussing the data generation details. For the 1D regression experi-

ments, we consider the following generative processes:

EQ: samples fromaGaussianprocesswith the following exponentiated-

quadratic kernel:

k(t, t′) = exp

(
−1

8
(t− t′)2

)
;

Matérn–
5
2 : samples from a Gaussian process with the following Matérn-

5
2

kernel:

k(t, t′) =

(
1 + 4

√
5d+

5

3
d2

)
exp

(
−
√

5d

)
with d = 4|x− x′|;

noisy mixture: samples from a Gaussian process with the following noisy

mixture kernel:

k(t, t′) = exp

(
−1

8
(t− t′)2

)
+exp

(
−1

2
(t− t′)2

)
+10−3δ[t−t′];

weakly periodic: samples from a Gaussian process with the following weakly-

periodic kernel:

k(t, t′) = exp

(
−1

2
(f1(t)− f1(t′))2 − 1

2
(f2(t)− f2(t′))2 − 1

8
(t− t′)2

)
with f1(t) = cos(8πt) and f2(t) = sin(8πt); and

sawtooth: samples from the following sawtooth process:

f(t) =
A

2
− A

π

K∑
k=1

(−1)k
sin(2πkf(t− s))

k
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with A = 1, f ∼ U [3, 5], s ∼ U [−5, 5], and K ∈ {10, . . . , 20}
chosen uniformly.

e.2 cnn architectures

For the experiments in Sections 4.5.1 and 4.5.2, we consider two models: Con-

vCNP (which utilizes a smaller architecture), and ConvCNPXL (with a larger

architecture). For all architectures, the input kernel ψ was an EQ (exponentiated

quadratic) kernel with a learnable length scale parameter, as detailed in Section 4.3,

as was the kernel for the final output layer ψρ. When dividing by the density

channel, we add ε = 10−8
to avoid numerical issues. The length scales for the

EQ kernels are initialized to twice the spacing 1/γ1/d
between the discretisation

points (ti)
T
i=1, where γ is the density of these points and d is the dimensionality

of the input space X .
Moreover, we emphasize that the size of the receptive field is a product of

the width of the CNN filters and the spacing between the discretisation points.

Consequently, for a fixedwidth kernel of the CNN, as the number of discretisation

points increases, the receptive field size decreases. One potential improvement

that was not employed in our experiments, is the use of depthwise-separable

convolutions (Chollet, 2017). These dramatically reduce the number of parameters

in a convolutional layer, and can be used to increase the CNN filter widths, thus

allowing one to increase the number of discretisation points without reducing the

receptive field. The architectures for ConvCNP and ConvCNPXL are described

below.

convcnp. For the 1d experiments, we use a simple, 4-layer convolutional

architecture, with ReLU non-linearities. The kernel size of the convolutional layers

was chosen to be 5, and all employed a stride of length 1 and zero padding of 2

units. The number of channels per layer was set to [16, 32, 16, 2], where the final

channels where then processed by the final, EQ-based layer of ρ as mean and

standard deviation channels. We employ a softplus non-linearity on the standard

deviation channel to enforce positivity.

convcnpxl. Our large architecture takes inspiration from UNet (Ronneberger

et al., 2015). We employ a 12-layer architecture with skip connections. The number

of channels is doubled every layer for the first 6 layers, and halved every layer for

the final 6 layers. We use concatenation for the skip connections. The following

describes which layers are concatenated, where Li ← [Lj , Lk] means that the

input to layer i is the concatenation of the activations of layers j and k:

• L8 ← [L5, L7],
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• L9 ← [L4, L8],

• L10 ← [L3, L9],

• L11 ← [L2, L10],

• L12 ← [L1, L11].

Like for the smaller architecture, we use ReLU non-linearities, kernels of size 5,

stride 1, and zero padding for two units on all layers.

e.3 lnpf model details

We describe the implementation details for the models used in the experiments

in Chapters 4 and 5. For the CNPF models (CNP and AttnCNP) in Chapter 4,

we follow the implementations of Garnelo et al. (2018a) and Kim et al. (2019),

respectively. For the LNPF models and experiments in Chapter 5, we compare the

following models, where all activation functions are leaky ReLUs with leak 0.1:

ConvCNP: The first model is the ConvCNP. The architecture of the Con-

vCNP is equal to that of the encoder in the ConvNP, described

next.

ConvNP: The second model is the ConvNP as described in the main

body. The functional embedding uses separate length scales for

the data channel and density channel (Figure 5.1), which are

initialized to twice the inter-point spacing of the discretization

and learned during training. The discretization uniformly

ranges over [min(x)− 1,max(x) + 1] at density ρ = 64 points

per unit, where min(x) is the minimum x value occurring in

the union of the context and target sets in the current batch and

max(x) is corresponding maximum x value. The discretization

is passed through a 10-layer (excluding an initial and final

point-wise linear layer) CNN with 64 channels and depthwise-

separable convolutions. The width of the filters depends on the

data set and is chosen such that the receptive field sizes are as

follows:

EQ: 2,

Matérn–
5
2 : 2,

noisy mixture: 4,

weakly periodic: 4,

sawtooth: 16.
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The discretized functional representation consists of 16 chan-

nels. The smoothing at the end of the encoder also has separate

length scales for the mean and variance which are initialized

similarly and learned. The encoder parametrizes the standard

deviations by passing the output of theCNN through a softplus.

The decoder has the same architecture as the encoder.

ANP: The third model is the Attentive NP with latent dimensionality

d = 128 and 8-head dot-product attention (Vaswani et al., 2017).

In the attentive deterministic encoder, the keys (t), queries (t),

and values (concatenation of t and y) are transformed by a

three-layer MLP of constant width d. The dot products are

normalised by

√
d. The output of the attention mechanism is

passed through a constant-width linear layer, which is then

passed through two layers of layer normalization (Ba et al.,

2016) to normalise the latent representation. In the first of these

two layers, first the transformed queries are passed through

a constant-width linear layer and added to the input. In the

second of these two layers, the output of the first layer is first

passed through a two-layer constant-width MLP and added

to itself, making a residual layer. In the stochastic encoder,

the inputs and outputs are concatenated and passed though

a three-layer MLP of constant width d. The result is mean-

pooled and passed through a two-layer constant-width MLP.

The decoder consists of a three-layer MLP of constant width d.

NP: The fourth model is the original NP (Garnelo et al., 2018b). The

architecture is similar to that of the ANP,where the architecture

of the deterministic encoder is replaced by that of the stochastic

encoder.

For all models, positivity of the observation noise is enforced with a softplus

function. Parameter counts of the ConvCNP, ConvNP, ANP, and NP are listed in

Table E.1.

e.4 sim2real additional details

We describe the simulation process of training data for the experiment in Sec-

tion 4.5.2. The description is borrowed from (Wilkinson, 2011).

LetX be the number of predators and Y the number of prey at any point in our

simulation. According to the model, one of the following four events can occur:

A: A single predator is born according to rate θ1XY , increasing X by one.
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EQ Matérn–
5
2 Noisy Mixt. Weakly Per. Sawtooth

ConvCNP 42 822 42 822 51 014 51 014 100 166
ConvNP 88 486 88 486 104 870 104 870 203 174

ANP 530 178 530 178 530 178 530 178 530 178
NP 479 874 479 874 479 874 479 874 479 874

Table E.1: Parameter counts for the ConvCNP, ConvNP, ANP, andNP in the 1D regression

tasks

B: A single predator dies according to rate θ2X , decreasing X by one.

C: A single prey is born according to rate θ3Y , increasing Y by one.

D: A single prey dies (is eaten) according to rate θ4XY , decreasing Y by one.

The parameter values θ1, θ2, θ3, and θ4, as well as the initial values of X and Y

govern the behavior of the simulation. We choose θ1 = 0.01, θ2 = 0.5, θ3 = 1, and

θ4 = 0.01, which are also used in (Papamakarios and Murray, 2016) and generate

reasonable time series. Note that these are likely not the parameter values that

would be estimated from the Hudson’s Bay lynx–hare data set (Leigh, 1968), but

they are used because they yield reasonably oscillating time series. Obtaining

oscillating time series from the simulation is sensitive to the choice of parameters

and many parametrizations result in populations that simply die out.

Time series are simulated using Gillespie’s algorithm (Gillespie, 1977):

1. Draw the time to the next event from an exponential distribution with rate

equal to the total rate θ1XY + θ2X + θ3Y + θ4XY .

2. Select one of the above events A, B, C, or D at random with probability

proportional to its rate.

3. Adjust the appropriate population according to the selected event, and go

to 1.

The simulations using these parameter settings can yield a maximum population

of approximately 300 while the context set in the lynx–hare data set has an

approximate maximum population of about 80 so we scaled our simulation

population by a factor of 2/7. We also remove time series which are longer

than 100 units of time, which have more than 10000 events, or where one of the

populations is entirely zero. The number of context points n for a training batch

are each selected randomly from a uniform distribution between 3 and 80, and

the number of target points is 150− n. These target and context points are then

sampled from the simulated series. The Hudson’s Bay lynx–hare data set has time

values that range from 1845 to 1935. However, the values supplied to the model

range from 0 to 90 to remain consistent with the simulated data.
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For evaluation, an interval of 18 points is removed from the the Hudson’s Bay

lynx–hare data set to act as a target set, while the remaining 72 points act as the

context set. This construction highlights the model’s interpolation as well as its

uncertainty in the presence of missing data.

Models in this setting were trained for 200 epochs with 256 batches per epoch,

each batch containing 50 tasks. For this data set, we only used the ConvCNP, as

we found the ConvCNPXL to overfit. The learning rate was set to 10−3
, and we

discretize E(Dc) by evaluating 100 points per unit.

e.5 training and evaluation details for gp experiments

For the experiments in Section 5.7.1, all LNPF models are trained with LML

(L = 20) and LNPVI (L = 5). For LNPVI, the context set is appended to the target

set when evaluating the objective. The models are optimised using ADAMwith

learning rate 5 · 10−3
for 100 epochs. One epoch consists of 214

tasks divided

into batches of size 16. For training, the inputs of the context and target sets are

sampled uniformly from [−2, 2]. The size of the context set is sampled uniformly

from {0, . . . , 50} and the size of the target set is fixed to 50. To encourage the LNPF

models—but not the CNPF models—to fit and not revert to their conditional

variants, the observation noise standard deviation σ is held fixed to 10−2
for the

first 20 epochs.

For evaluation, the size of the context set is sampled uniformly from {0, . . . , 10},
and the losses are evaluatedwithL = 5000 and batch size one. To test interpolation

within the training range, the inputs of the context and target sets are, like training,

sampled uniformly from [−2, 2]. To test interpolation beyond the training range,

the inputs of the context and target sets are sampled uniformly from [2, 6]. To

test extrapolation beyond the training range, the inputs of the context sets are

sampled uniformly from [−2, 2] and the inputs of the target sets are sampled

uniformly from [−4,−2] ∪ [2, 4]. As described in Appendix E.6, models trained

with LNPVI are evaluated using importance weighting to obtain a better estimate

of the evaluation loss.

e.6 effect of number of samples

In this section we empirically examine the effect of L, the number of samples

used to estimate likelihood bounds, on the training and evaluation of ConvNPs

and ANPs.
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Effect of Number of Samples Used for Evaluation
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Figure E.1: Log-likelihood bounds achieved by various combination of models and

training objectives when evaluated with LML and LIW for various numbers of

samples L on (top) a Matérn-
5
2 and (bottom) weakly-periodic kernel GP. Color

indicates model. Solid lines correspond to models trained and evaluated with

LML. Dashed lines correspond to models trained with LNPVI and evaluated

with LIW. Dotted lines correspond to models trained with LML and evaluated

with LML.

As the true log-likelihoods of NP-based models are intractable, quantitative

evaluation and comparison of models is challenging. Instead, we compare models

by using an estimate of the log-likelihood. A natural candidate is LML. However,

unless largeL is used,LML is conservative and tends to significantly underestimate

the log-likelihood. Oneway to improve the estimate ofLML is through importance

weighting (IW) (Wu et al., 2016; Le et al., 2018). DenotingD = Dc∪Dt, the encoder
Eφ(D) can be used as a proposal distribution:

L̂IW(θ,φ; ξ) := log

 1

L

L∑
l=1

exp

logw(zl) +
∑

(x,y)∈Dt

log pθ(y|x, zl)

 , (E.1)

where zl ∼ Eφ(D), and the importance weights are given by logw(zl) :=

log qφ(z|Dc) − log qφ(z|D). Here qφ(z|D) is the density of the encoder distri-
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bution. We find that training models with LML results in encoders that are

ill-suited as proposal distributions, so we only use LIW to evaluate models trained

with LNP.

Figure E.1 demonstrates the effect of the number of samples L used to estimate

the evaluation objective for the ConvNP and ANP trained with L
ML

and L
NPVI

.

The models used to generate Figure E.1 are the same models used in Section 5.7.1,

i.e. having heteroskedastic noise. Observe the general trend that the log-likelihood

estimates tend to increase with L, as expected. The ANP trained with LNPVI

collapsed to a conditional ANP, meaning that the encoder became deterministic;

in that case, LML is exact, which means that larger L and importance weighting

will not increase the estimate. In contrast, the ANP trained with LML did not

collapse, and we see that there the estimate increases with L. For the ConvNP

trained with LNPVI, evaluating with LIW yields a significant increase, showing

that the bound estimated with LIW is very loose. The models trained with LML

tend to be the best performing, although the ConvNP trained with LNPVI is best

for weakly periodic kernel and appears to still be increasing with L.

In both the main and the supplement, all log-likelihood lower bounds reported

are computed with LML if the model was trained using LML and with LIW if the

model was trained using LNPVI.

Effect of Number of Samples Used During Training

Figure E.2: Interpolation performance (within training range) for context set sizes uni-

formly sampled from {0, . . . , 50} of the ConvNP and ANP on Matérn-
5
2

samples. The models are trained with LML and LNPVI for various number of

samples L. Models trained with LML are evaluated with LML, while models

trained with LNPVI are evaluated with LML. At evaluation, all bounds are

estimated using 2,048 samples.
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Figure E.2 shows the effect of the number of samples L in the training objectives

on the performance of the ConvNP and ANP. Observe that the performance of

LML reliably increases with the number of samples L and that LML outperforms

LNPVI. The performance for LNP does not appear to increase with the number

of samples L and appears more noisy than LML. Note that the models used for

Figure E.2 were trained with homoskedastic observation noise. This is achieved

by pooling fσ over the time dimension.





F
IMAGE COMPLET ION DATA AND EXPER IMENTAL DETA ILS

I
n this chapter, we provide details regarding the image-completion experiments

carried out in Chapters 4 and 5.

f.1 experimental details

Training details.

In all experiments, we sample the number of context points uniformly from

U(ntotal

100 ,
n
total

2 ), and the number of target points is set to n
total

. The context and

target points are sampled randomly from each of the 16 images per batch. The

weights are optimised using Adam (Kingma and Ba, 2015) with learning rate

5 × 10−4
. We use a maximum of 100 epochs, with early stopping of 15 epochs

patience. All pixel values are divided by 255 to rescale them to the [0, 1] range.

In the following discussion, we assume that images are RGB, but very similar

models can be used for greyscale images or other gridded inputs (e.g. 1d time

series sampled at uniform intervals).

CNPF architectures

attncnp baseline The AttnCNP we use corresponds to the deterministic

path of the model described by (Kim et al., 2019) for image experiments. Namely,

an encoder first embeds each context point c to a latent representation (xc,yc) 7→
rc ∈ R128

. This is achieved using a 2-hidden layer MLP of hidden dimensions 128.

Every context point then goes through two stacked self-attention layers. Each

self-attention layer is implemented with an 8-headed attention, a skip connection,

and two layer normalizations (as described in (Parmar et al., 2018), modulo the

dropout layer). To predict values at each target point xt, we embed xt 7→ rt

and xc 7→ rc using the same single hidden layer MLP of dimensions 128. A

target representation rc is then estimated by applying cross-attention (using an

8-headed attention described above) with keys K := {rc}Cc=1, values V := {rc}Cc=1,

and query q := rt. Given the target representation rt, the conditional predictive

posterior is given by a Gaussian pdf with diagonal covariance parametrised by

(µt,σpret
) = decoder(rt) where µt,σpret

∈ R3
and decoder is a 4 hidden layer

149
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MLP with 64 hidden units per layer for the images, and the same decoder as the

CNP for the 1d experiments.

Following (Le et al., 2018), we enforce we set a minimum standard deviation

σmin = [0.1; 0.1; 0.1] to avoid infinite log-likelihoods by using the following

post-processed standard deviation:

σt = 0.1σ
(t)
min

+ (1− 0.1) log(1 + exp(σ
(t)
pre)). (F.1)

convcnp architectures Unlike AttnCNP and off-the-grid ConvCNP, on-

the-grid ConvCNP takes advantage of the gridded structure. Namely, the target

and context points can be specified in terms of the image, a context mask Mc, and a

target mask Mt instead of sets of input–value pairs. Although this is an equivalent

formulation, it is more natural, and simpler to implement in standard deep

learning libraries. In the following, we dissect the architecture and algorithmic

steps succinctly summarized in Section 4.4. Note that all the convolutional layers

are actually depthwise separable (Chollet, 2017); this enables a large kernel size

(i.e. receptive fields) while being parameter and computationally efficient.

1. Let I denote the image. Select all context points signal := Mc� I and append

a density channel density := Mc, which intuitively says that “there is a

point at this position”: [signal, density]>. Each pixel value will now have 4

channels: 3 RGB channels and 1 density channel Mc. Note that the mask

will set the pixel value to 0 at a location where the density channel is 0,

indicating there are no points at this position (a missing value).

2. Apply a convolution to the density channel density′ = convθ(density) and a

normalized convolution to the signal signal′ := convθ(signal)/density′. The

normalized convolution makes sure that the output mostly depends on the

scale of the signal rather than the number of observed points. The output

channel size is 128 dimensional. The kernel size of convθ depends on the

image shape and model used (Table F.1). We also enforce element-wise

positivity of the trainable filter by taking the absolute value of the kernel

weights θ before applying the convolution. As discussed in Appendix F.4,

the normalization and positivity constraints do not empirically lead to

improvements for on-the-grid data. Note that in this setting, E(Dc) is

[signal′, density′]>.

3. We now describe the on-the-grid version of ρ(·), which we decompose into

two stages. In the first stage, we apply a CNN to [signal′,density′]>. This

CNN is composed of residual blocks (He et al., 2016), each consisting of 1

or 2 (Table F.1) convolutional layers with ReLU activations and no batch

normalization. The number of output channels in each layer is 128. The
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kernel size is the same across the whole network, but depends on the image

shape and model used (Table F.1).

4. In the second stage of ρ(·), we apply a shared pointwise MLP : R128 _R2C

(we use the same architecture as used for the AttnCNP decoder) to the

output of the first stage at each pixel location in the target set. Here C

denotes the number of channels in the image. The first C outputs of the

MLP are treated as the means of a Gaussian predictive distribution, and

the last C outputs are treated as the standard deviations. These then pass

through a positivity-enforcing function (e.g., softplus).

Table F.1: CNN architectures for image-completion experiments.

Model Input Shape convθ

Kernel Size CNN

Kernel Size CNN Num.

Res. Blocks Conv. Layers

per Block

ConvCNP < 50 pixels 9 5 4 1

> 50 pixels 7 3 4 1

ConvCNP XL any 9 11 6 2

lnpf architectures and details

general architecture details For all models, we follow Le et al. (2018) and

process the predicted standard deviation of the latent function σz using a sigmoid

and the standard deviation σ of the predictive distribution using lower-bounded

softplus:

σz = 0.001 + (1− 0.001)
1

1 + exp(fσ,z)
, (F.2)

σ = 0.001 + (1− 0.001) ln(1 + exp(fσ)). (F.3)

As the pixels are rescaled to [0, 1], we also process the mean of the posterior

predictive (conditioned on a single sample) to be in [0, 1] using a logistic function

µ =
1

1 + exp(−fµ)
. (F.4)

In the following, we describe the architecture of ANP and ConvNP. Unless stated

otherwise, all vectors in the following paragraphs are in R128
and all MLPs have

128 hidden units.
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anp details As the ANP cannot take advantage of the fact that images are on

the grid, we preprocess each pixel so thatx ∈ [−1, 1]2. The only exception being for

the test set of ZSMM, where x ∈ [−56
32 ,

56
32 ]2 as the model is trained on 32× 32 but

evaluated on 56× 56 images. Each context feature is first encoded x(c) 7→ rxc by a

single hidden layer MLP, while a second single hidden layer MLP encodes values

yc 7→ ryc . We produce a representation rc by summing both representations

rxc + ryc and passing them through two self-attention layers (Vaswani et al.,

2017). Following Parmar et al. (2018), each self-attention layer is implemented as

8-headed attention, a skip connection, and two layer normalizations (Ba et al.,

2016). To predict values at each target point t, we embed xt 7→ rxt using the hidden

layer MLP used for rxc . A deterministic target representation rt is then computed

by applying cross-attention (using an 8-headed attention described above) as for

the AttnCNP. For the latent path, we average over context representations rc, and

pass the resulting representation through a single hidden layer MLP that outputs

(µz,σz) ∈ R256
.σz is made positive by post-processing it using Equation (F.2). We

then sample (with reparametrization) L latent representation zl ∼ N (z;µz,σ
2
z).

We describe the remainder of the forward pass for a single zl, though in

practice multiple samples may be processed in parallel. The deterministic and

latent representations of the context set are concatenated, and the resulting

representation is passed through a linear layer [rt; zl] _ r′t ∈ R128
. Given the target

and context-set representations, the predictive posterior is given by a Gaussian

pdf with diagonal covariance parametrised by (µ(t),σ
(t)
pre) = decoder([r

(t)
x ; r

(t)
xyz])

where µ(t),σ
(t)
pre ∈ R3

and decoder is a 4 hidden layer MLP. Finally, the σ(t)
is

processed by Equation (F.3) using Equation (F.4). In the case ofMNIST and ZSMM,

σ(t)
is also spatially mean pooled, which corresponds to using homoskedastic

noise. This improves the qualitative performance by forcing ANP and ConvNP

to model the digit instead of focusing on predicting the black background with

high confidence. Kim et al. (2019) did not suffer from that issue as they used a

much larger lower bound for Equation (F.3).

convnp details The core algorithm of on-the-grid ConvNP is outlined in

Algorithm 5 as well as Algorithm 3. Here we discuss the parametrizations used

for each step of the algorithm. All convolutional layers are depthwise separable

(Chollet, 2017). convθ is a convolutional layer with kernel size of 11 (no bias).

We enforce positivity on the weights in the first convolutional layer by only

convolving their absolute value with the signal.

The CNNs are ResNets (He et al., 2016) with 9 blocks, where each convolution

has a kernel size of 3. Each residual block consists of two convolutional layers,

pre-activation batch normalization layers, and ReLU activations. The output of the

pre-latent CNN (CNN in Algorithm 5) goes through a single hidden layer MLP
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that outputs (µz,σz) ∈ R256
. As with ANP, fσ,z is processed by Equation (F.2) and

then used to sample (with reparametrization) L latent functions zl. Importantly,

we found that the coherence of samples improves if the model uses a global

representation in addition to the the pixel dependent representation. We achieve

this by mean-pooling half of the functional representation. Namely, we replace

zl by the channel-wise concatenation of z
(1:64)
l and mean(z

(65:128)
l ), where the

mean is taken over the spatial dimensions. This latent function then goes through

the post-latent CNN (CNN in Algorithm 5), as well as a linear layer to output

(fµ, fσ) ∈ R256
. As for ANP fµ is processed by Equation (F.4) and fσ is re-scaled

with Equation (F.3) and is spatially pooled in the case of MNIST and ZSMM to

obtain homoskedastic noise.

f.2 zero shot multi mnist (zsmm) data

Figure F.1: Samples from our generated Zero Shot Multi MNIST (ZSMM) data set.

In the real world, it is very common to have multiple objects in our field of

view which do not interact with each other. Yet, many image data sets in machine

learning contain only a single, well-centered object. To evaluate the translation

equivariance and generalization capabilities of our model, we introduce the

zero-shot multi-MNIST setting.

The training set contains all 60000 28× 28 MNIST training digits centered on a

black 56× 56 background. (Figure F.1 (left)). For the test set, we randomly sample

with replacement 10000 pairs of digits from the MNIST test set, place them on a

black 56× 56 background, and translate the digits in such a way that the digits

can be arbitrarily close but cannot overlap (Figure F.1 (right)). Importantly, the

scale of the digits and the image size are the same during training and testing.
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f.3 attncnp and convcnp qualitative comparison

Figure F.2: Log-likelihood and qualitative comparisons betweenAttnCNP andConvCNP

on four standard benchmarks (from left to right, top to bottom: MNIST, SVHN,

CelebA32, CelebA64). The top row shows the log-likelihood distribution

for both models. The images below correspond to the context points (top),

ConvCNP target predictions (middle), and AttnCNP target predictions

(bottom). Each column corresponds to a given percentile of the ConvCNP

distribution. AttnCNP could not be trained on CelebA64 due to its memory

inefficiency.

Figure F.2 shows the test log-likelihood distributions of an AttnCNP and

ConvCNP model as well as some qualitative comparisons between the two.

Althoughmost mean predictions of both models look relatively similar for SVHN

and CelebA32, the real advantage of ConvCNP becomes apparent when testing

the generalization capacity of both models. Figure F.3 shows ConvCNP and

AttnCNP trained on CelebA32 and tested on a downscaled version of Ellen’s

famous Oscar selfie. We see that ConvCNP generalizes better in this setting.
1
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Figure F.3: Qualitative evaluation of a ConvCNP (center) and AttnCNP (right) trained

on CelebA32 and tested on a downscaled version (146× 259) of Ellen’s Oscar

selfie with 20% of the pixels as context (left).

Table F.2: Log-likelihood from image ablation experiments (6 runs).

Model MNIST SVHN CelebA32 CelebA64 ZSMM

ConvCNP 1.19 ±0.01 3.89 ±0.01 3.19 ±0.02 3.64 ±0.01 1.21 ±0.00
. . . no density 1.15 ±0.01 3.88 ±0.01 3.15 ±0.02 3.62 ±0.01 1.13 ±0.08
. . . no norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
. . . no abs. 1.15 ±0.02 3.83 ±0.02 3.08 ±0.03 3.56 ±0.01 1.15 ±0.01
. . . no abs. norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
. . . EQ 1.18 ±0.00 3.89 ±0.01 3.18 ±0.02 3.63 ±0.01 1.21 ±0.00

f.4 ablation study: first layer

To understand the importance of the different components of the first layer, we

performed an ablation study by removing the density normalization (ConvCNP

no norm.), removing the density channel (ConvCNP no dens.), removing the

positivity constraints (ConvCNP no abs.), removing the positivity constraints and

the normalization (ConvCNP no abs. norm.), and replacing the fully trainable

first layer by an EQ kernel similar to the continuous case (ConvCNP EQ). Table F.2

demonstrates the following: (i) Appending a density channel helps. (ii) Enforcing

the positivity constraint is only important when using a normalized convolution.

(iii) Using a less expressive EQ filter does not significantly decrease performance,

suggesting that the model might be learning similar filters (Appendix F.5).

f.5 qualitative analysis of the first filter

As discussed in Appendix F.4, using a less expressive EQ filter does not signific-

antly decrease performance. Figure F.4 shows that this happens because the fully

trainable kernel learns to approximate the EQ filter.

1 The reconstruction looks worse than Figure 4.6 (left) despite the larger context set, because the

test image has been downscaled and the models are trained on a low resolution CelebA32. These

constraints come from AttnCNP’s large memory footprint.
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Figure F.4: First filter learned by ConvCNPXL, ConvCNP, and ConvCNP EQ for all our

datasets. In the case of RGB images, the plotted filters are for the first channel

(red). Note that not all filters are of the same size.

f.6 effect of receptive field on translation equivariance

As seen inTable 4.2, aConvCNPXLwith large receptive fieldperforms significantly

worse on the ZSMM task than ConvCNP, which has a smaller receptive field.

Figure F.5 shows a more detailed comparison of the models, and suggests that

ConvCNPXL learns to model non-stationary behaviour, namely that digits in

the training set are centred. We hypothesize that this issue stems from the

the treatment of the image boundaries. Indeed, if the receptive field is large

enough and the padding values are significantly different than the inputs to

each convolutional layer, the model can learn position-dependent behaviour by

“looking” at the distance from the padded boundaries.

For ZSMM, Figure F.6 suggests that “circular” padding, where the padding

is implied by tiling the image, helps prevent the model from learning non-

stationarities, even as the size of the receptive field becomes larger.We hypothesize

that this is due to the fact that “circularly” padded values are harder to distinguish

from actual values than zeros. We have not tested the effect of padding on other

datasets, and note that “circular” padding could result in other issues.
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Figure F.5: Log-likelihood and qualitative results on ZSMM. The top row shows the log-

likelihood distribution for both models. The images below correspond to the

context points (top), ConvCNP target predictions (middle), and ConvCNPXL

target predictions (bottom). Each column corresponds to a given percentile of

the ConvCNP distribution.

Figure F.6: Effect of the receptive field size on ZSMM’s log-likelihood. The line plot shows

the mean and standard deviation over 6 runs. The blue curve corresponds to

a model with zero padding, while the orange one corresponds to “circular”

padding.
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f.7 additional results for lnpf image-completion

We provide additional qualitative samples and quantitative analyses for the

ConvNP and ANP.

Additional ConvNP Samples

Figure F.7 provides further samples from a ConvNP trained with LML. We

observe that the ConvNP produces reasonably diverse yet coherent samples when

evaluated in a regime that resembles the training regime (in the first four sub-

columns of MNIST, SVHN, and CelebA). However, Figure F.7 also demonstrates

that the ConvNP struggles with context sets that are significantly different from

those seen during training.

Further comparisons of ANP and ConvNP

We provide further qualitative comparisons of ConvNPs, ANPs trained with LML,

and ANPs trained with LNPVI. We omit ConvNPs trained with LNP as these are

significantly outperformed by ConvNPs trained with LML (see e.g. Table 5.2).

Figure F.8 demonstrates that all models perform relatively well when context

sets are drawn from a similar distribution as employed during training (first

four sub-columns of MNIST, SVHN, and CelebA). Furthermore, we observe that

samples from the ConvNP prior tend to be closer to samples from the underlying

data distribution (e.g. for CelebA).

The qualitative advantage of the ConvNP is most significant in settings that

require translation equivariance for generalization. Figure F.8 row 2 (ZSMM)

clearly demonstrates that ConvNP generalizes to larger canvas sizes and multiple

digits, while ANP attempts to reconstruct a single digit regardless of the context

set. Finally, Figure F.9 provides the test log-likelihood distributions of ANP and

ConvNP as well as some qualitative comparisons between the two.
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Figure F.7: Qualitative samples for a ConvNP trained with LML in Table 5.2. From top to

bottom the four major rows correspond to MNIST, ZSMM, SVHN, CelebA32

datasets. For each dataset and each of the two major columns, a different

image is randomly sampled; the first sub-row shows the given context points

(missing pixels are in blue for MNIST and ZSMM but in black for SVHN

and CelebA), while the next three sub-rows show the mean of the posterior

predictive corresponding to different samples of the latent function. To show

diverse samples we select three samples that maximize the average Euclidean

distance between pixels of the samples. From left to right the first four sub-

columns correspond to a context set with 0%, 1%, 3%, 10% randomly sampled

context points. In the last two sub-columns, the context sets respectively

contain all the pixels in the left and top half of the image.
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Figure F.8: Qualitative samples for (left) ConvNP trained with LML; (centre) ANP trained

with LML; and (right) ANP trained with LNPVI. For each model the figure

shows the same format as Figure F.7.
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Figure F.9: Log-likelihood and qualitative samples comparing ConvNP and ANP trained

with LML on (top-left) MNIST; (top-right) CelebA; (bottom-left) ZSMM;

(bottom-right) SVHN. For each sub-figure, the top row shows the log-

likelihood distribution for both models. The images below correspond to

the context points (top), followed by three samples form ConvNP (mean of

the posterior predictive corresponding to different samples from the latent

function), and three samples from ANP. Each column corresponds to a given

percentile of the ConvNP test log likelihood (as shown by green arrows).
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W
e provide details regarding the data, models, and experimental protocols

used to conduct the experimentswith the ERA5-Land data in Section 5.7.3.

g.1 data details

Table G.1: Coordinates for boxes defining the train and test regions. Latitidues are given

as (north, south), and longitudes as (west, east).

Central (train) Western (test) Eastern (test) Southern (test)

Latitudes (52, 46) (50, 46) (52, 49) (46, 42)
Longitudes (08, 28) (01, 08) (28, 35) (19, 26)

ERA5-Land (Balsamo et al., 2015) contains high resolution information on

environmental variables at a 9 km spacing across the globe.
1
The data we

use contains daily measurements of accumulated precipitation at 11pm and

temperature at 11pm at every location, between 1981 and 2020, yielding a total of

14,304 temporal measurements across the spatial grid. In addition, we provide

orography (elevation) values for each location. We normalize the data such

that the precipitation values in the train set have zero mean and unit standard

deviation.

We consider the task of predicting daily precipitation y, with latitude and

longitude as x. In addition, at each context and target location, we provide the

model with access to side information in the form of orography (elevation) and

temperature values. We also normalize the orography and temperature values to

have zero mean and unit standard deviation. We choose a large region of central

Europe as our train set, and use regions East, West and South of the train set as

held out test sets (see Figure G.1 and Table G.1). At train time, to sample a task,

we first sample a random date between 1981 and 2020. We then sample a square

subregion of grid of values from within the train region (which has size 61× 201).

We consider two models, one trained on 28× 28 subregions, and another trained

on 40× 40 subregions. During training, each subregion is then split into context

1 URL: https://www.ecmwf.int/en/era5-land. Neither the European Commission nor ECMWF is

responsible for any use that may be made of the Copernicus Information or data it contains.
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Figure G.1: Training (blue) and test (red) regions in Europe, along with orography data

from ERA5Land.

and target sets. Context points are randomly chosen with a keep rate pkeep with

pkeep ∼ U [0, 0.3]. In this section, we train only on the LML objective.

Gaussian Process Baseline

We mean-centre the data for each task for the GP before training, and add the

mean offset back for evaluation and sampling. We use an Automatic Relevance

Determination (ARD) kernel, with separate factors for latitude/longitude, tem-

perature and orography. In detail, let x = (xlat, xlon) denote position, and let ω, t

denote orography and precipitation respectively, and let r := (x, ω, t). Then the

kernel is given by

k(r, r′) = σ2
vkl(x,x

′)kω(ω, ω′)kt(t, t
′) + σ2

nδ(r, r
′).

Here each of kl, kω and kt are Matérn-
5
2 kernels with separate learnable length-

scales; δ(r, r′) = 1 if r = r′ and 0 otherwise; and σ2
v , σ

2
n are learnable signal

and noise variances respectively. We learn all hyperparameters by maximising

the log-marginal likelihood using Scipy’s implementation of L-BFGS (Liu and

Nocedal, 1989).

transforming the data As the data is non-negative, we considered applying

the transform y 7→ log(ε+y) for theGP tomodel. If ε = 0, thiswould guarantee that

the GP would only yield positive samples, which would be physically sensible as

precipitation is non-negative. However, this cannot be done as precipitation often

takes the value y = 0, which would lead to the transform being undefined. On the

other hand, if ε > 0, the GP samples after performing the inverse transform could

still predict a precipitation value as low as −ε, which is still unphysical. Further, a

small value of ε leads to large distortion of the y values in transformed space. In
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the end, we run all experiments for the GP and NP without log-transforming the

data; hence the models have to learn non-negativity.

ConvNP Architecture and Training Details

As the ERA5-Land dataset is regularly spaced, we use the on-the-grid version of

the architecture, without the need for an RBF smoothing layer at the input (see

Section 5.5). All experiments used a convolutional architecture with 3 residual

blocks (He et al., 2016) for the encoder and 3 residual blocks for the decoder.

Each residual block is defined with two layers of ReLU activations followed by

convolutions, each with kernel size 5. The first convolution in each block is a

standard convolution layer, whereas the second is depthwise separable (Chollet,

2017). All intermediate convolutional layers have 128 channels, and the latent

function z has 16 channels. The networks were trained using ADAM (Kingma

and Ba, 2015) with a learning rate of 10−4
. We used 16 channels for the latent

function z, and estimated LML using 16-32 samples at train time, with batches of

8-16 images.

We train the models for between 400 and 500 epochs, where each epoch is

defined as a single pass through each day in the training set, where at each day,

a random subregion of the full 61 × 201 central Europe region is cropped. We

estimated the predictive density using 2500 samples of z during test time.

Prediction and Sampling

To create Table 5.3, at test time we sample 28× 28 subregions from each of the

train and test regions. This is done 1000 times. For the GP, we randomly restart

optimisation 5 times per task and use the best hyper-parameters found. In order

to remove outliers where the GP has very poor likelihood, we set a log-likelihood

threshold for the GP. If the GP has a log-likelihood of less than 0 nats on a

particular task, then that task is removed from the evaluation.

We find that to produce high quality samples, we need to train the model on

subregions that are roughly as large as the lengthscale of the precipitation process.

Hence we sample from the model trained on 40 × 40 subregions in Figure 5.4

in the main body. We show samples from the model trained on both 28 × 28

subregions and 40× 40 subregions in Appendix G.2. We also compare to samples

from GPs trained on each context set (no random restarts were used for sampling).
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Bayesian Optimization

Weuse the samemodels as described above, trained on random 28×28 subregions

of the train region, and compare to the GP baselines described above. For the

Bayesian optimization experiments in Figure 5.5 in the main body, we do not

perform random restarts as this was too time-consuming. We carry out the

Bayesian optimization (BayesOpt) experiments in each of the four regions: Central

(train), West (test), East (test), and South (test). Each Bayesian optimization

“episode” is defined by randomly sub-sampling a day (uniformly at random

between 1981 and 2020), then sampling a sub-region from the tested region. To

test the models’ spatial generalization capacity (where possible), we sub-sample

episodes from each of the four regions with the following sizes: (i) Central: 42x42,

(ii) West: 40x40, (iii) East: 28x28, and (iv) South: 36x36.

Episodes begin fromempty setsD(0)
c =, andmodels sequentially query locations

for t = 1, . . . , 50. Denoting (x(t), y(t)) the query location and queried value

at iteration t, the context set is then updated as D(t)
c = D(t−1)

c ∪ {(x(t), y(t))}.
Denoting y as the complete set of rainfall values in the sub-region, and y(t)

as

the set of queried values at iteration t, we can define the instantaneous regret as

rt = max(y)−max(y
(t)
c ), and compute the average regret (plotted in Figure 5.5

in the main text) at the tth iteration as r̄t = 1
t

∑t
i=1 ri.

g.2 additional figures for environmental data

Predictive density

Figure G.2 displays the predictive densities for precipitation at different locations,

conditioned on a context set used for testing. The density of the ConvNP is

estimated using 2500 samples of z. To examine why the ConvNP outperforms

the GP in terms of log-likelihood, we plot cases where the ConvNP likelihood

is significantly better than the GP likelihood. We see that this is due to the GP

occasionally making very overconfident predictions compared to the ConvNP.We

also see that theConvNP in a small proportion of cases exhibits very non-Gaussian,

asymmetric predictive distribtuions.

Additional Samples

In this section we show additional samples from the model trained on 28× 28

images (Figures G.3 and G.4) and also on 40× 40 images (Figures G.5 and G.6).

Training on larger images reduces the occurence of blocky artefacts. Figure 5.4 in
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Figure G.2: Predictive density at two target points, in a task where the ConvNP signific-

antly outperforms the GP. The orange and blue circles show the likelihood of

the ground truth target value under the GP and ConvNP. Note that as the

precipitation values are normalized to zeromean and unit standard deviation,

yt = −0.53 corresponds to no rain. The left subplot shows that the ConvNP

sometimes produces predictions heavily centered on this value, showing it

has learned the sparsity of precipitation values. In the right subplot we see

the ConvNP predictive distribution is sometimes asymmetric with a heavier

positive tail, reflecting the non-negativity of precipitation.

Figure G.3: Samples from the predictive processes overlaid on central Europe, for a

model trained on random 28 × 28 subregions of the full 61 × 201 central

Europe region. Layout is identical to Figure 5.4. Note some blocky artefacts

in the ConvNP samples due to training on small subregions. Here the GP

has overfit to the orography data, with samples that resemble the orography

rather than precipitation.

the main body was trained on 40× 40 images. Note that samples shown here are

61× 201, i.e. the size of the entire central Europe train region.
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Figure G.4: Samples from the predictive processes overlaid on central Europe, for a

model trained on random 28 × 28 subregions of the full 61 × 201 central

Europe region. Layout is identical to Figure 5.4. Here the GP has learned a

lengthscale that is too large.

Figure G.5: Samples from the predictive processes overlaid on central Europe, for a

model trained on random 40 × 40 subregions of the full 61 × 201 central

Europe region. Layout is identical to Figure 5.4. Here the GP has overfit to

the orography data, with samples that resemble the orography rather than

precipitation.

Figure G.6: Samples from the predictive processes overlaid on central Europe, for a

model trained on random 40 × 40 subregions of the full 61 × 201 central

Europe region. Layout is identical to Figure 5.4. The GP has again overfit to

the orography data.

Figure G.7: Samples from the predictive processes overlaid on central Europe, for amodel

trained on random 40 × 40 subregions of the full 61 × 201 central Europe

region. Layout is identical to Figure 5.4.
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h.1 experimental details and protocols

All experiments were implemented in PyTorch (Paszke et al., 2019) and executed

either onNVIDIATesla P100-PCIE-16GBorTeslaV100-SXM2-16GBGPUs. The full

CNAPsmodel runs in a distributed fashion across 2GPUs and takes approximately

one and a half days to complete episodic training and testing.

Meta-Dataset Training and Evaluation Procedure

Feature Extractor Weights Pretraining

We first reduce the size of the images in the ImageNet ILSVRC-2012 dataset

(Krizhevsky et al., 2012) to 84 × 84 pixels. Some images in the ImageNet ILSVRC-

2012 dataset are duplicates of images in other datasets included in Meta-Dataset,

so these are removed. We then split the 1000 training classes of the ImageNet

ILSVRC-2012 dataset into training, validation, and test sets according to the criteria

detailed in (Triantafillou et al., 2020). The test set consists of the 130 leaf-node

subclasses of the “device" synset node, the validation set consists of the the 158

leaf-node subclasses of the “carnivore" synset node, and the training set consists

of the remaining 712 leaf-node classes. We then pretrain a feature extractor with

parameters θ based on a modified ResNet-18 (He et al., 2016) architecture on the

above 712 training classes. The ResNet-18 architecture is detailed in Table H.5.

Compared to a standard ResNet-18, we reduced the initial convolution kernel

size from 7 to 5 and eliminated the initial max-pool step. These changes were

made to accommodate the reduced size of the imagenet training images. We train

for 125 epochs using stochastic gradient descent with momentum of 0.9, weight

decay equal to 0.0001, a batch size of 256, and an initial learning rate of 0.1 that

decreases by a factor of 10 every 25 epochs.

During pretraining, the training dataset was augmented with random crops,

random horizontal flips, and random color jitter. The top-1 accuracy after pretrain-

ing was 63.9%. For all subsequent training and evaluation steps, the ResNet-18

weightswere frozen. Thedimensionality of the feature extractor output is df = 512.

The hyper-parameters used were derived from the PyTorch (Paszke et al., 2019)

ResNet training tutorial. The only tuning that was performed was on the number

of epochs used for training and the interval at which the learning rate was de-

169
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Table H.1: Datasets used to train, validate, and testmodels. Corresponds to theprocedures

laid out by Triantafillou et al. (2020) in handling Meta-Dataset.

ImageNet ILSVRC-2012 All Datasets

Train Validation Test Train Validation Test

ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC ILSVRC

Omniglot Omniglot Omniglot Omniglot

Aircraft Aircraft Aircraft Aircraft

Birds Birds Birds Birds

Textures Textures Textures Textures

Quick Draw Quick Draw Quick Draw Quick Draw

Fungi Fungi Fungi Fungi

VGG Flower VGG Flower VGG Flower VGG Flower

MSCOCO MSCOCO MSCOCO

Traffic Signs Traffic Signs

MNIST MNIST

CIFAR10 CIFAR10

CIFAR100 CIFAR100

creased. For the number of epochs, we tried both 90 and 125 epochs and selected

125, which resulted in slightly higher accuracy. We also found that dropping

the learning rate at an interval of 25 versus 30 epochs resulted in slightly higher

accuracy.

Episodic Training of the Adaptation Networks

Next we train the functions that generate the parameters ψτf , ψ
τ
w for the feature

extractor adapters and the linear classifier, respectively. We train two variants of

CNAPs (on ImageNet ILSVRC-2012 only and all datasets – see Table H.1). We

generate training and validation episodes using the reader from the repository

provided by Triantafillou et al. (2020). We train in an end-to-end fashion for

110,000 episodes with the Adam (Kingma and Ba, 2015) optimizer, using a batch

size of 16 episodes, and a fixed learning rate of 0.0005. We validate using 200

episodes per validation dataset. Note that when training on ILSVRC only, we

validate on ILSVRC only, however, when training on all datasets, we validate on

all datasets that have validation data (see Table H.1) and consider a model to be

better if more than half of the datasets have a higher classification accuracy than

the current best model.

No data augmentation was employed during the training of φ. Note that while

training φ the feature extractor fθ(·) is in ‘eval’ mode (i.e. it will use the fixed

batch normalization statistics learned during pretraining the feature extractor

weights θ with a moving average). No batch normalization is used in any of the

functions generating the ψτ parameters, with the exception of the set encoder

g (that generates the global task representation zτ
G
). Note that the target points

are never passed through the set encoder g. Again, very little hyper-parameter

tuning was performed. No grid search or other hyper-parameter search was used.
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Table H.2: Few-shot classification results on Meta-Dataset (Triantafillou et al., 2020)

using models trained on all training datasets for Parallel Residual Adapters

(Rebuffi et al., 2018) and CNAPs. All figures are percentages and the ± sign

indicates the 95% confidence interval over tasks. Bold text indicates the scores

within the confidence interval of the highest score. Tasks from datasets below

the dashed line were not used for training.

Dataset Parallel Residual Adapter CNAPs

ILSVRC 51.2 ± 1.0 52.3 ± 1.0
Omniglot 87.3 ± 0.7 88.4 ± 0.7
Aircraft 78.3 ± 0.7 80.5 ± 0.6
Birds 67.8 ± 0.9 72.2 ± 0.9
Textures 55.5 ± 0.7 58.3 ± 0.7
Quick Draw 70.9 ± 0.7 72.5 ± 0.8
Fungi 44.6 ± 1.1 47.4 ± 1.0
VGG Flower 81.7 ± 0.7 86.0 ± 0.5
Traffic Signs 57.2 ± 0.9 60.2 ± 0.9
MSCOCO 43.7 ± 1.0 42.6 ± 1.1
MNIST 91.1 ± 0.4 92.7 ± 0.4
CIFAR10 64.5 ± 0.8 61.5 ± 0.7

CIFAR100 50.4 ± 0.9 50.1 ± 1.0

For learning rate we tried both 0.0001 and 0.0005, and selected the latter. We

experimented with the number of training episodes in the range of 80,000 to

140,000, with 110,000 episodes generally yielding the best results. We also tried

lowering the batch size to 8, but that led to decreased accuracy.

Evaluation

We generate test episodes using the reader provided by Triantafillou et al. (2020).

We test all models with 600 episodes each on all test datasets. The classification

accuracy is averaged over the episodes and a 95% confidence interval is computed.

We compare the best validation and fully trained models in terms of accuracy

and use the best of the two. Note that during evaluation, the feature extractor

fθ(·) is also in ‘eval’ mode.

h.1.1 Comparison Between CNAPs and Parallel Residual Adapters

We ablate the parametrisation of our task level parametersψf (using FiLM layers),

by comparing to a CNAPs model that instead makes use of parallel residual adapters

(Rebuffi et al., 2018) to parametrise ψf . Note that parallel residual adapters

add 1 × 1 convolutions in parallel with each convolution layer. Thus, if the

number of feature channels is C, then the number of parameters required for

each convolutional layer in the feature extractor is 2C for FiLM layers and C2
for
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parallel residual adapters. Hence, parallel residual adapters have C/2 times the

capacity compared to FiLM layers.

Thus, the ablation study serves two important purposes: (i) It verifies the

usefulness of the particular parametrisation employed by CNAPs (i.e. FiLM

layers), and (ii) it studieswhether the improvedperformance of the auto-regressive

version can be attributed to increased capacity alone: if this is indeed the case, we

should see similar improvements by increasing the capacity by alternative means,

e.g. increasing the number of adapted parameters.

Despite this advantage, CNAPs achieves superior performance when using

FiLM layers, as can be seen in Table H.2. This provides important evidence

that one must carefully consider the tradeoff between the number of adapted

parameters as well as their role in the feature extractor when designing models for

few-shot classification.

h.2 network architecture details

h.2.1 ResNet18 Architecture details

Throughout our experiments in Section 6.6, we use a ResNet18 (He et al., 2016)

as our feature extractor, the parameters of which we denote θ. Table H.3 and

Table H.4 detail the architectures of the basic block (left) and basic scaling block

(right) that are the fundamental components of the ResNet that we employ.

Table H.5 details how these blocks are composed to generate the overall feature

extractor network. We use the implementation that is provided by the PyTorch

(Paszke et al., 2019),
1
though we adapt the code to enable the use of FiLM layers.

Table H.3: ResNet-18 basic block b.

Layers

Input

Conv2d (3× 3, stride 1, pad 1)

BatchNorm

FiLM (γb,1,βb,1)

ReLU

Conv2d (3× 3, stride 1, pad 1)

BatchNorm

FiLM (γb,2,βb,2)

Sum with Input

ReLU

Table H.4: ResNet-18 basic scaling block b.

Layers

Input

Conv2d (3× 3, stride 2, pad 1)

BatchNorm

FiLM (γb,1,βb,1)

ReLU

Conv2d (3× 3, stride 1, pad 1)

BatchNorm

FiLM (γb,2,βb,2)

Downsample Input by factor of 2

Sum with Downsampled Input

ReLU

1 https://pytorch.org/docs/stable/torchvision/models.html
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Table H.5: ResNet-18 feature extractor network.

ResNet-18 Feature Extractor (θ) with FiLM Layers: x→ fθ(x;ψτf ), x∗ → fθ(x∗;ψτf )

Stage Output size Layers

Input 84× 84× 3 Input image

Pre-processing 41× 41× 64 Conv2d (5× 5, stride 2, pad 1, BatchNorm, ReLU)

Layer 1 41× 41× 64 Basic Block × 2

Layer 2 21× 21× 128 Basic Block, Basic Scaling Block

Layer 3 11× 11× 256 Basic Block, Basic Scaling Block

Layer 4 6× 6× 512 Basic Block, Basic Scaling Block

Post-Processing 512 AvgPool, Flatten

h.2.2 Adaptation Network Architecture Details

We provide the details of the architectures used for our adaptation networks.

Table H.6 details the architecture of the set encoder g : Dτ 7→ z
G
that maps context

sets to global representations.

Table H.6: Set encoder g.
Set Encoder (g): x→ zτG

Output size Layers

84× 84× 3 Input image

42× 42× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
21× 21× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
10× 10× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
5× 5× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)
2× 2× 64 Conv2d (3× 3, stride 1, pad 1, ReLU), MaxPool (2× 2, stride 2)

64 AdaptiveAvgPool2d

Table H.7 details the architecture used in the auto-regressive parameterization

of z
AR

. In our experiments, there is one such network for every block in the

ResNet18 (detailed in Table H.5). These networks accept as input the set of

activations from the previous block, and map them (through the permutation

invariant structure) to a vector representation of the output of the layer. The

representation zi = (z
G
, z

AR
) is then generated by concatenating the global and

auto-regressive representations, and fed into the adaptation network that provides

the FiLM layer parameters for the next layer. This network is detailed in Table H.8,

and illustrated in Figure 6.5. Note that, as depicted in Figure 6.5, each layer has

four networks with architectures as detailed in Table H.8, one for each γ and β,

for each convolutional layer in the block.
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Table H.7: Network of set encoder φf (FC stands for fully connected).

Set Encoder (φf ): {f
li
θ (x;ψτf )} → zi

AR

Output size Layers

li channels × li channel size Input {f liθ (x;ψτf )}
li channels × li channel size AvgPool, Flatten

li channels FC, ReLU

li channels 2 × FC with residual connection, ReLU

li channels FC with residual skip connection

li channels mean pooling over instances

li channels Input from mean pooling

li channels FC, ReLU

Table H.8: Network φf .

Network (φf ): (z
G
, z

AR
)→ (γ,β)

Output size Layers

64 + li channels Input from Concatenate

li channels FC, ReLU

li channels 2 × FC with residual skip connection, ReLU

li channels FC with residual skip connection

h.2.3 Linear Classifier Adaptation Network

Finally, we provide details for the linear classifer ψτw, and the adaptation network

that provides these task-specific parameters ψw(·). The adaptation network

accepts a class-specific representation that is generated by applying a mean-

pooling operation to the adapted feature activations of each instance associated

with the class in the context set: zτc = 1
Nτ
c

∑
x∈Dτc

fθ(x;ψτf ), where N τ
c denotes the

number of context instances associated with class c in task τ . The parametrisation

ofψw comprises of two separate networks (one for the weightsψw and one for the

biasesψb) detailed in Table H.9 and TableH.10, respectively. The resultingweights

and biases (for each class in task τ ) can then be used as a linear classification layer,

as detailed in Table H.11.

Table H.9: Network φw.

Network (φw):
zc → ψw,w

Output size Layers

512 Input from mean pooling

512 2 × fully connected, ELU

512 fully connected

512 Sum with Input

Table H.10: Network φb.

Network (φb):
zc → ψw,b

Output size Layers

512 Input from mean pooling

512 2 × fully connected, ELU

1 fully connected
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Table H.11: Linear classifier network.

Linear Classifier (ψw): fθ(x∗;ψτf )→ p(y∗|x∗,ψτ (Dτ ),θ)

Output size Layers

512 Input features fθ(x∗;ψτf )

512× Cτ Input weights w
512× 1 Input biases b
Cτ fully connected

Cτ softmax
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