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I am especially grateful to my advisor Máté and fellow BLG members Jake, Alberto, and Rodrigo

for their insightful comments and suggestions on my work over the last four years.

Special thanks to fellow CBL members Robert, Adrià, Jonathan, and Will for fascinating
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Optimal anticipatory control as a theory of motor preparation

Ta-Chu Kao

Supported by a decade of primate electrophysiological experiments, the prevailing theory of

neural motor control holds that movement generation is accomplished by a preparatory process

that progressively steers the state of the motor cortex into a movement-specific optimal subspace

prior to movement onset. The state of the cortex then evolves from these optimal subspaces,

producing patterns of neural activity that serve as control inputs to the musculature. This theory,

however, does not address the following questions: what characterizes the optimal subspace

and what are the neural mechanisms that underlie the preparatory process? We address these

questions with a circuit model of movement preparation and control. Specifically, we propose

that preparation can be achieved by optimal feedback control (OFC) of the cortical state via

a thalamo-cortical loop. Under OFC, the state of the cortex is selectively controlled along

state-space directions that have future motor consequences, and not in other inconsequential ones.

We show that OFC enables fast movement preparation and explains the observed orthogonality

between preparatory and movement-related monkey motor cortex activity. This illustrates the

importance of constraining new theories of neural function with experimental data. However, as

recording technologies continue to improve, a key challenge is to extract meaningful insights from

increasingly large-scale neural recordings. Latent variable models (LVMs) are powerful tools

for addressing this challenge due to their ability to identify the low-dimensional latent variables

that best explain these large data sets. One shortcoming of most LVMs, however, is that they

assume a Euclidean latent space, while many kinematic variables, such as head rotations and the

configuration of an arm, are naturally described by variables that live on non-Euclidean latent

spaces (e.g., SO(3) and tori). To address this shortcoming, we propose the Manifold Gaussian

Process Latent Variable Model, a method for simultaneously inferring nonparametric tuning

curves and latent variables on non-Euclidean latent spaces. We show that our method is able to

correctly infer the latent ring topology of the fly and mouse head direction circuits.

vii



Chapter 1

Introduction

Advances in systems neuroscience over the last twenty years bring with them new questions

and fresh challenges in the study of motor control. Chief among these is a need for a theory

of biological motor control that can explain large-scale behavioural and neuronal recordings of

animals performing complex motor tasks. A second but equally important challenge is a need

for technical tools to process and analyse these experimental recordings. This need is especially

pressing as the data sets increase in size and become more heterogeneous as recording technologies

improve. This thesis includes contributions in both of these directions. In particular, we propose

a model of movement preparation and generation that explains key aspects of monkey motor

cortex population activity during a delayed reach task in Chapter 3. In Chapter 5, we extend

Gaussian Process Latent Variable Models to discover non-Euclidean latent structures in neuronal

recordings. Here, I review these two contributions in the context of relevant literature.

1.1 Towards a theory of biological motor control

The ability to accurately plan and robustly produce movements is one of the most important

computations that the brain performs. Without it, animals are unable to eat, communicate,

reproduce, change their environments, or escape from danger. Ironically, the importance of motor

control is easily taken for granted, obfuscated by the relative ease with which we perform daily

movements, and yet most acutely felt when that ability is suddenly lost.

The importance of motor control notwithstanding, its neural mechanisms remain a mystery

due largely to its complexity. Several factors contribute to the complexity of motor control.

First, motor control encompasses multiple sub-computations including muscular control [84],

motor planning, motor prediction, state estimation [205, 206], and motor learning. Each sub-

1



2 CHAPTER 1. INTRODUCTION

computation may employ a different algorithm or neural implementation depending on the type

of movement produced: voluntary or involuntary, rhythmic or ballistic [84].

Second, motor computations are distributed and hierarchical, involving multiple brain areas,

ranging from low-level control of the musculature in the spinal cord and the midbrain [126,

153] to the high-level planning in the cortex [54, 166], thalamus, basal ganglia [135], and the

cerebellum [53, 208]. A complete theory of motor control thus necessarily involves understanding

the interaction between multiple brain regions, the animal’s biomechanics and the environment.

Third, the motor system is degenerate on multiple levels. At the level of motor planning, the

same goal (e.g., picking up a cup of coffee) can be achieved by an infinite number of different

movements (e.g., hand trajectories through space). At the level of muscular control, the same

patterns of muscle activity can be achieved by many different patterns of neural activity in the

brain. Characterising such degeneracies is challenging, as we cannot, with today’s technology,

record all the neurons that may be involved in a single motor computation.

Last but not least, motor computations are dynamic in nature, requiring an understanding of

how populations of neurons collectively perform computations over time. This adds an additional

layer of complexity when compared to the study of static sensory representations, which can

often be studied without taking recurrence and feedback into consideration.

While the challenges involved in understanding motor control are great — and at times, may

even seem insurmountable — new advances in recording technologies, coupled with the advent

of machine learning and improved computational capacity gives us hope that we can one day

understand the neural mechanisms of motor control. In fact, there are many reasons why this

is the best of times to be studying motor control. To start with, we are now simultaneously

recording more neurons, across more brain regions, at higher temporal resolutions, and with

animals performing more complicated motor tasks than ever before [202]. This has produced

high quality neural recordings, which provide us with unprecedented access to the inner workings

of the brain areas that underlie motor control. What is more, due in part to Moore’s law and

the development of specialised computer chips such as graphics processing units, we now have

the computational capacity to run increasingly complicated analyses on large-scale neural and

behavioural recordings [35, 131]. Correspondingly, the success of machine learning in solving

difficult — some seemingly impossible — problems in a plethora of domains has brought exciting

new methods and ideas to bear on the study of motor control.

Therefore, an important motivation for this thesis is to build on these exciting new advances

in systems neuroscience and contribute towards a theory of biological motor control that is
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grounded in experimental studies.

1.1.1 Computational building blocks

A first step towards a theory of biological motor control is to elucidate the relevant computations

that the brain needs to perform to effectively control movements. Five of the most important

computations are [205, 206]:

• motor planning: planning an upcoming movement to achieve a specific goal (e.g., pick up

an object),

• inverse control: determining the sequence of motor commands (e.g., muscle contractions)

necessary for executing that plan,

• motor prediction: predicting the effect that a sequence of motor commands has on the

effector (e.g., the position of the arm after applying a sequence of muscular contractions;

this may be achieved for example with a forward model of the body biomechanics),

• state estimation: estimating the state of the body (e.g., position of the hand) by combining

sensory information and predictions of a forward model, and

• motor learning: learning new motor skills and improving old ones through experience.

Over the last twenty years, clever behavioural experiments have provided compelling evidence

that the brain performs all of the aforementioned computations and in many situations performs

them optimally. That is, these studies have shown that animal behaviours are consistent with

those predicted by optimal control theory [159, 185, 187] and Bayesian probability theory (e.g.,

animals perform Bayesian inference to estimate the state of the body; 93, 116). Notably, Todorov

and Jordan applied stochastic optimal feedback control to model motor planning in the face of

uncertainty. They showed through simulations that the optimal strategy is to correct movement

variability in dimensions that matter for the task, and allow behavioural variability to persist or

even grow in task-irrelevant dimensions [187]. They found that human behaviour is consistent

with this prediction when performing a range of behavioural tasks.

1.1.2 Motor cortex controls muscles

Despite the success of behavioural experiments at elucidating the principles of neural motor

computations, they do not explain the neural mechanisms by which these computations are
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carried out inside the brain. This raises several questions. Where do the motor commands to the

musculature arise in the brain and how are they generated?

Electrophysiological studies suggest that the motor cortex generates at least some of the motor

commands that actuate the musculature. As early as 1870, Fritsch and Hitzig demonstrated

that electrical stimulation of the dog motor cortex elicited movements [62]. Later, Evarts

and colleagues showed that the neural activity in the motor cortex are correlated with force

production [39, 40, 180]. Moreover, the existence of the corticospinal pathway (i.e., motor cortex

neurons that directly project to motor neurons and interneurons in the spinal cord) suggests

that the motor cortex could directly exert muscular control if required [61, 127]. These studies

suggest that the primary role of the motor cortex is to actuate the musculature.

Georgopolous and colleagues proposed an alternative view, namely that the motor cortex

represents high-level motor plans, which are converted into commands in the spinal cord. Indeed,

neurons in the motor cortex of reaching monkeys are selective to high-level movement parameters

such as reach direction [55] and movement speed [120]. Can the two seemingly contradictory

views be reconciled? Todorov and later Lillicrap and Scott showed through computational

modelling that the findings of Georgopolous and colleagues’ are expected, if one takes into

account the biomechanics of the effector [100, 183]. In other words, the tuning of cortical neurons

to high-level movement parameters is an epiphenomenon that results from the motor cortex

controlling a limb with its own mechanics.

Ultimately, whether the motor cortex is directly involved in muscular control may depend on the

movement type and the context in which the movement is produced. For example, Kawai et al.

showed that mice need their motor cortices to learn a level-pressing task, but not for executing

it [89]. This study suggests that the role of the motor cortex may extend beyond simple muscular

control, and in some contexts, other brain regions can control motor outputs independently of

the motor cortex.

1.1.3 Motor cortex as a dynamical system

A potential mechanism by which the motor cortex generates motor commands is through its

population dynamics, an idea commonly referred to in the literature as the dynamical systems

perspective of the motor cortex [21, 166]. Concretely, let the activity of a population of N neurons

in the motor cortex be represented by a vector x(t) = (x1(t), x2(t), . . . , xN (t)) where xi(t) is the

activity of neuron i at time t. The activity of the population evolves according to
dx

dt
= f(x(t),u(t)), (1.1)
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where u denotes inputs to the population, and f is some function of x and u. The activity

of this population may then be converted into motor commands m(t) = g(x(t)) through some

mapping g that models the effect of downstream spinal cord circuitry.

The dynamical systems perspective of the motor cortex is typically contrasted with a representa-

tional view of motor cortex activity, proposed by Georgopoulos and colleagues:

x(t) = h(θ1(t), θ2(t), . . . , θM (t)), (1.2)

where x(t) is a function of movement parameters θ1(t), . . . , θM (t). Notably, Churchland and

colleagues showed that monkey motor cortex activity is better described by equations of the form

Equation (1.1) than that of Equation (1.2) during a well-studied delayed reaching task [21, 166].

In this task, monkeys are trained to perform centre-out reaches on a fronto-parallel screen. At

the beginning of each trial, monkeys hold their hands at the centre of the screen for a fixed

duration. Next, a target appears on the screen, followed by a variable delay period (0− 1000 ms),

during which the animal is trained to stay still. At the end of the delay period, a go cue is given,

signalling the monkeys to reach towards the target. Churchland et al. showed that during the

“movement-epoch” (i.e. the period during which the reach unfolds), the population response in

the motor cortex contains a large oscillatory component that is better explained by a dynamical

systems perspective than by a representational one (see 118 for further comparisons of the two

perspectives).

Another important piece of evidence for the dynamical systems view is that population activity

converges to movement-specific subspaces during the delay period. Deviations of the population

from these movement-specific subspaces at the go cue lead to longer reaction times [1], suggesting

that a time-consuming preparatory process is needed to carefully seed the state of the motor

cortex dynamical system into some movement-specific optimal subspace prior to movement onset.

After the state of the motor cortex reaches the optimal subspace, it evolves away from it according

to Equation (1.1), producing the desired muscle commands m(t) and reaching movement.

Lara et al. tested the necessity of such a time-consuming preparatory process for a range of

movement conditions [95]. They found that such a preparatory process always precedes movement,

irrespective of the length of the delay period, or whether the movement is self-paced or prompted

by a go cue. Moreover, they found that the preparatory process can be fast (∼ 150 ms), indeed

much faster than the duration of the movement itself (∼ 400 ms).

A theory of the motor cortex consistent with a decade of monkey electrophysiological experiments

and analysis thus emerges. It suggests that (1) the motor cortex is a dynamical system, whose

patterns of activity directly actuate the musculature and (2) a preparatory process progressively
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seeds the movement-generating dynamics of the motor cortex with an appropriate initial condition

prior to movement execution.

1.1.4 Controlling the controller

The brain’s ability to control the state of the motor cortex goes beyond movement preparation.

Brain-computer interface (BCI) experiments show that animals have a remarkable ability to

modify the activity patterns of the motor cortex [59, 155]. In these experiments, population

recordings are used to actuate the motion of a cursor on a screen in real-time. The animal’s task

is to control the cursor towards target locations on the screen, akin to performing centre-out

arm reaches. By changing the readout from the recorded neuronal activity to the motion of

the cursor, experimentalists are able to change the specific patterns of activity that must be

produced for solving the task. They found that animals are able to quickly learn to produce

these new target patterns of activity when they lie within the so-called “intrinsic manifold” [155],

the linear subspace spanned by the activity patterns commonly visited during natural conditions

(e.g., passively watching the movement of a cursor a screen). These experiments suggest the

existence of neural mechanisms to “control the controller”, i.e. a mechanism to control the state

of the motor cortex which in turn actuates the musculature.

One potential mechanism by which the state of the motor cortex may be controlled is by receiving

external inputs from other brain areas (i.e., u in Equation (1.1)). Guo et al. showed that input

from the thalamus is necessary for maintaining persistent activity in the mouse anterior lateral

motor cortex (ALM) during the delay epoch of a delayed licking task [63]. During this epoch,

ALM activity also converges into lick-specific subspaces, similar to how motor cortex activity

converges into reach-specific subspaces during the delay period of monkeys performing a delayed

reaching task [98, 179].

Guo et al. also showed that the thalamus receives inputs from the ALM during the delay epoch,

forming a thalamo-cortical loop [63]. In fact, Gao et al. later showed that in addition to the

thalamo-cortical loop, there exists a cortico-cerebellar loop that is also important during the delay

epoch of the same task. Perturbing these recurrent loops via photoinhibition (e.g., suppressing

the activity of ALM-projecting neurons in the thalamus) disrupts the convergence of ALM

activity into lick-specific subspaces during the delay epoch. What is more, they showed that

suppressing ALM activity removes selectivity in the ALM-projecting neurons in thalamic and

cerebellar neural populations. These findings suggest that thalamus and the cerebellum may

be controllers of the motor cortex during the delay period, providing the necessary (feedback)
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inputs for steering the state of the cortex to a desired subspace.

1.1.5 A model of optimal movement preparation and generation

In line with the idea that the motor cortex is under the active control of other brain circuits,

models of the monkey motor cortex during the monkey delayed reaching task typically assume

that the cortex receives some spatially-constant input during the preparatory period that sets its

initial state prior to movement [73, 178]. These models are able to capture key aspects of the

movement-generating dynamics observed in monkey motor cortex (e.g., multiphasic activity with

a strong rotational component). However, these models do not capture the observed relationship

between preparatory and movement-related neuronal activity, namely they evolve in largely

orthogonal subspaces [37]. That is, the subspace that captures most of the activity variance

during the delay epoch captures little variance during the movement epoch, and vice versa.

Perhaps more importantly, these models do not address some of the outstanding theoretical

questions concerning the dynamical systems perspective of the motor cortex: what is the optimal

subspace that activity converges into during the delayed epoch? In what sense is this subspace

optimal?

One of the primary contributions of this thesis is a model of movement preparation and generation

that addresses some of the outstanding questions in the prevailing theory of the motor cortex

dynamics described above. This model, described in Chapter 3, is inspired by the idea that

the motor cortex is under the active control of another brain area (e.g., thalamus). We bring

the methodology of optimal control — which has successfully explained behaviour [159, 185]

— “inside the brain”, proposing a perspective from which the motor cortex is the plant to be

optimally controlled by other neural circuits [85]. Specifically, we posit that the state of the

motor cortex is optimally prepared towards target initial states, in anticipation of the prospective

movement. This corresponds to minimising — as quickly as possible — the prospective motor

error, a measure which at any time prior to movement quantifies how much movement error would

occur if the preparation process were to end and the movement triggered. This measure allows

us to define the notion of an optimal subspace and derive an optimal control strategy during the

preparatory process. The optimal strategy is feedback control, which we show could be achieved

via a circuit model of the thalamo-cortical loop that respects known biological constraints such

as Dale’s law and known connectivity patterns from the cortex to the thalamus and from the

thalamus to the cortex. Importantly, we show that optimal feedback control of the motor cortex

during the delay period enables fast movement preparation, indeed preparation faster than the
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duration of the reaching movement [95]. Moreover, optimal feedback control is necessary for the

observed orthogonality between delay and movement epoch motor cortex dynamics [37].

Some of the essential control-theoretic tools used in Chapter 3 to derive the optimal control

strategy such as observability and controllability are reviewed in Chapter 2. In particular, we

discuss how these concepts can be and have been used in the literature to analyse the behaviour

of biological and artificial neural circuits.

To construct the realistic circuit model in Chapter 3, we optimised the connectivity of the

thalamocortical loop by differentiating through a specific algebraic matrix equation. In recent

years, automatic differentiation has become the workhorse of most machine learning models that

require large-scale gradient-based optimisations. Thus in Chapter 4 — as a standalone technical

note — we derive the forward and reverse-mode gradients of several algebraic matrix equations

commonly used in control theory.

1.2 Technical advances for analysing neural and behavioural

recordings

Neuronal and behavioural recordings provide important constraints on theories of biological

motor control. After all, the success of a theory depends on how well it explains experimental

observations and generates new testable predictions. While data analysis provides insights that

can be used to modify and update those theories, theories generate new predictions that can be

tested in data, thus completing an experiment-analysis-theory cycle [133].

The experiment-analysis-theory cycle has been accelerated in recent years thanks in part to two

factors. First, advances in neural recording technologies (e.g., calcium imaging, 202; NeuroPixels,

82) have enabled simultaneous recordings of thousands of neurons, producing data at a rate of

terabytes per hour [133]. Not only have the number of simultaneously recorded neurons increased,

the movement tasks have also become more complex, including multiple movement patterns

and changes in reward structure. The advent of targeted neural perturbation technologies

such as photoinhibition adds to the complexity of the task structure of the neural recordings.

The availability of such large-scale, heterogeneous recordings allows neuroscientists to ask new

questions that they would not have been able to ask otherwise.

Second, the exponential increase in the number of new machine learning methods for analysing

large datasets over the last ten years has percolated into neuroscience, inspiring numerous

new methods and techniques for behavioural and neural data analysis. For example, labelling
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animal body positions in video recordings has traditionally been a labour-intensive process

that required long hours of manual labelling and has been a limiting factor in accelerating the

experiment-analysis-theory cycle. In recent years, this limitation has been partially removed by

new methods such as DeepLabCut [115], which enables automatic labelling of body positions

with deep neural networks.

As recording technology continues to improve in the future, there needs to be a commensurate,

if not faster, improvement in scalable methods for analysing complex, large-scale experimental

recordings. I now review supervised and unsupervised machine learning approaches to analysing

neural recordings and relating them to behaviour. Then, I introduce one of the main contributions

of this thesis along this direction: a method for identifying non-Euclidean latent variables from

population recordings.

1.2.1 Supervised discovery of neural correlates of behaviour

Predicting behaviour from neural activity One approach to extracting information from

neural recordings is to train supervised machine learning models to predict behaviour from

neural recordings. Popular models include linear regression, kernel ridge regression, and deep

neural networks. These methods allow us to identify the extent to which behaviourally-relevant

information can be decoded from these recordings. For example, Stringer et al. used two-photon

calcium imaging to record ∼10,000 neurons in the visual cortex of awake mice. They also recorded

the facial behaviour of the mice during these recordings [172]. They showed that population

activity is able to reliably predict the facial behaviour of the mice during both spontaneous

behaviour and when the animal is passively viewing a stimulus, suggesting that visual cortex

neurons encode both visual and behavioural information. Using NeuroPixels probes, Stringer

et al. recorded thousands of neurons across multiple brain areas and showed that such behavioural

information is also present in these brain areas. While such methods are unable to show that

the brain uses the behavioural information for any computations (such conclusions can only be

drawn through causal experiments such as photoinhibition experiments), these analyses still

provide valuable insight into what information is present in different parts of the brain.
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Predicting neural activity from behaviour Another way of applying supervised learning

to neural data analysis is to reverse the direction of prediction: instead of predicting task-relevant

variables from neural recordings, predict the activity of neurons based on these variables. One

popular family of probabilistic models of spiking activity are Generalised Linear Models (GLMs;

134). A GLM predicts the spiking activity of a single neuron based on the history of (1) the spike

trains of the population and (2) task-relevant variables such as behaviour and visual input. By

dissecting the parameters of a trained GLM, we can identify the relative importance of different

behavioural variables, and of the activity of the population itself, for predicting the spiking

activity of each neuron. This can be viewed as a proxy for how “tuned” each neuron is to the

task and the activity of other neurons.

Comparing artificial and biological networks trained on the same task Supervised

learning is also used in an increasingly popular black-box, normative approach to modelling neural

circuits and relating them to both neural recordings and behaviour [8, 211]. Specifically, the idea

is to (i) train a neural network to perform the same task that an animal is trained to perform, (ii)

analyse these trained agents to understand the algorithms and mechanisms that they use to solve

the task, and (iii) compare the activity of the trained networks with neural recordings of animals

performing the same motor task as the artificial agents. The hypothesis underlying this approach

is that neural networks, biological or artificial, may find similar “solutions” when trained to

perform the same task. By “opening the black-box”, i.e. dissecting the trained networks and

relating them to neural recordings, it may be possible to gain mechanistic insights about how

the brain and the trained networks solve the task. This hypothesis has been partially validated

in several studies that show that trained networks activity are similar to that of the neural

recordings in a variety of tasks, including visual object recognition [211], decision making [110],

time estimation [145], and motor control [100, 117, 119, 178, 184, 216]. By analysing the trained

networks and comparing them with neural recordings, these studies have generate new hypotheses

for how the brain solves each of these tasks.

In the motor domain, this black-box approach typically involves training a RNN to either

generated recorded motor outputs (e.g., electromyograms; 178, 216) or to actuate a model of

a body part to perform a specific task (e.g., outputs to muscles that actuate a two-link arm

to produce reaching movements) [100, 117, 119, 184]. Detailed models of body biomechanics

are made possible by physics-based simulators such as MuJoCo [186]. In addition to body

biomechanics, there are also simulators that model the details of muscular contractions and force

production (e.g., OpenSim; 30).



1.2. TECHNICAL ADVANCES FOR ANALYSING EXPERIMENTAL RECORDINGS 11

1.2.2 Unsupervised discovery of task-relevant latent variables

Latent variables models (LVMs) are widely applied for unsupervised neural data analysis. An

LVM reduces the dimensionality of the datasets by identifying “latent variables”, which best

explain the dataset according to (1) some user-defined criterion (e.g., reconstruction of the

dataset) as well as (2) prior knowledge about the dataset (e.g., temporal smoothness of the latent

variables). For example, principal component analysis of neural recordings may be viewed as an

LVM that extracts latent variables which capture most of the activity variance.

There are several reasons for the popularity of LVMs in neural data analysis. First, by reducing

the dimensionality of the data, it is useful for visualising large data sets. For example, Afshar

et al. used Gaussian Process Factor Analysis [213] to uncover single-trial latent trajectories from

population recordings of the motor cortex during the delayed reaching task [1]. By plotting these

latent-trajectories in three-dimensional space, we can visualise how single-trial activity converges

to movement specific subspaces during the delay period and subsequently evolves according to

the dynamics of the motor cortex during the movement epoch.

LVMs are also useful for comparing neural recordings to circuit models that are designed to

model those neural recordings. For example, Sussillo et al. used principal component analysis

to first extract low-dimensional latent trajectories in both monkey M1 recordings and an RNN

trained to model those recordings [178]. Then, they applied canonical correlation analysis to the

latent trajectories so as to compare the latent dynamical structure of the the recordings and the

RNN.

By summarising information scattered across multiple trials, neurons, and behavioural conditions

with latent variables, LVMs capture the “essence” of the neuronal recordings. For example,

Latent Factor Analysis via Dynamical Systems (LFADS) is a LVM that is able to encode entire

neural recordings in a distribution over the initial states of a recurrent neural network; it can

even do this over multiple sessions, with some neurons missing across different sessions. By

pooling information across multiple sessions, LFADs is able to reach state of the art performance

predicting trial-by-trial behaviour from inferred neural activity.

LVMs have also been applied to infer neuronal tuning curves. For example, Wu et al. applied

a Gaussian Process Latent Variable Model (GPLVM) to neural data analysis. While methods

such as probabilistic PCA and GPFA assume linear tuning functions (i.e., linear mapping from

the latent variables to the activity of each neuron), GPLVMs place a Gaussian Process prior on

the tuning functions. This enables learning of highly non-linear tuning curves that capture the

complex neuronal responses to the latent variables.
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1.2.3 Manifold Gaussian Process Latent Variable Model

Most of the LVMs that are currently applied to neural data analysis assume a Euclidean latent

space. However, movement kinematics likely evolve on some low-dimensional non-Euclidean

manifold. For example, head rotations are naturally represented as elements in SO(3) and

the configuration of a two link arm is naturally represented on a torus. Therefore, one of

the important contributions of this thesis is an extension of Gaussian Process Latent Variable

Models [97] to non-Euclidean latent spaces. Leveraging recent advances in machine learning

that generalise the reparameterisation trick to Lie groups [41], we develop a variational inference

algorithm for jointly inferring nonparametric tuning curves and latent variables that live on

non-Euclidean spaces. We call our method Manifold Gaussian Process Latent Variable Model

(mGPLVM). We verify the validity of our method on toy datasets and show that our method

recovers latent ring topologies in neural recordings of the fly and mouse head direction systems.

As presented in Chapter 5, mGPLVM assumes a Gaussian noise model and an independent

and identically distributed prior over the latent states. However, it can also be extended to

incorporate non-Gaussian noise models (e.g., Poisson or Negative Binomial noise models) as well

as smooth priors over the latent variables. At the time of writing, we are extending mGPVLM in

these directions and implementing it as a general software package for fitting a variety of LVMs

commonly used for neural data analysis.



Chapter 2

Neuroscience out of control:

control-theoretic perspectives on

neural circuit dynamics

Summary

This chapter presents the following article:

Neuroscience out of control: control-theoretic perspectives on neural circuit dynamics.

Ta-Chu Kao and Guillaume Hennequin (2019). Current Opinion in Neurobiology,

58, 122–129.

A major challenge in systems neuroscience is to understand how the dynamics of neural circuits

give rise to behaviour. Analysis of complex dynamical systems is also at the heart of control

engineering, where it is central to the design of robust control strategies. Although a rich

engineering literature has grown over decades to facilitate the analysis of such systems, little

of it has percolated into neuroscience so far. Here, we give a brief introduction to a number of

core control-theoretic concepts that provide useful perspectives on neural circuit dynamics. We

introduce important mathematical tools related to these concepts, and establish connections

to neural circuit analysis, focusing on a number of themes that have arisen from the modern

“state-space” view on neural population dynamics.

13
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Figure 2.1: State space & control perspective on neural dynamics. The population

activity vector x(t) traces out trajectories in state space (solid black, left diagram), following

a flow (gray arrow) determined by the state matrix A as well as external inputs u(t) (right

diagram; cf. Equation (2.1)). In a standard feedback control scenario, inputs are computed based

on some measurements y(t) = Cx(t) (green) of the state vector, modifying the flow of activity

along a few select “input channels” B (orange).

2.1 Introduction

Behaviour arises from dynamics that unfold in recurrently connected neural circuits, both locally

within specialized regions and globally across multiple brain areas. To understand the principles

that govern these dynamics, computational neuroscientists build model networks in a variety

of ways: i) models that directly implement a number of known physiological features of the

brain area(s) of interest [200], ii) low-dimensional latent dynamical models fitted to neural

population recordings [21, 52, 131, 132], and iii) artificial neural networks trained to perform

complex tasks [8]. In all cases, a critical research step is to understand the behaviour of the

model through an analysis of its dynamics [174, 176].

Basic linear algebra provides useful geometric intuitions for the structure of population activity

patterns, often represented as points in a so-called “state-space” (Figure 2.1; 46, 48, 154, 158,

166). Concepts such as projections, subspaces, nullspaces, etc, lie at the core of many linear

dimensionality reduction techniques that are widely used to explore neural datasets [26, 27, 92],

and help us reason geometrically about the computations carried out by neural circuits [59, 74,

87, 110, 138, 145, 155, 164, 178]. However, similar intuitions are more difficult to obtain for

population dynamics, i.e. for the temporal evolution of neural activity in state space (Figure 2.1).

This challenge is especially relevant given the recent shift in focus from static analyses to

dynamical descriptions of circuit computations [21, 73, 110, 145, 166, 178]. Thus, an important

goal in computational neuroscience is to develop an “algebra of dynamics”, i.e. a set of conceptual,

algebraic, and numerical tools for the study of neural circuits.
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Control theorists have long been developing such tools [168]. Here, we review the key theoretical

concepts of controllability, observability, model reduction and stability, which we find particularly

relevant to the analysis of neural circuits. We briefly introduce these concepts in the control

engineering context in which they were developed, and discuss the new perspectives that they

provide on a number of recent results concerning the dynamics of neural computation.

2.2 State space models

A large part of classical control theory is dedicated to the control of linear state-space models of

the form:
dx
dt

= Ax(t) + Bu(t) + noise

y(t) = Cx(t) + noise.
(2.1)

Here, A is the so-called “state matrix” that governs the temporal evolution of the activity

vector x(t) in the state space, possibly subject to process noise, and B is an “input matrix”

whose columns define the directions along which time-varying inputs u(t) actuate the system

(Figure 2.1). To control the state of the system (e.g. steer it along desired trajectories or towards

desired end points), inputs are often derived as feedback from some (noisy) linear measurements

y(t) of the full state, involving a readout matrix C.

Equation (2.1) will look familiar to many neuroscientists. It lies at the heart of many sta-

tistical models, where it describes the dynamics of a set of “latent factors” that recapitulate

the spatiotemporal structure in population recordings [13, 21, 151]. Due to their analytical

tractability, linear(ized) models have also shed light on a variety of circuit computations, including

short-term memory [50, 58, 203], selective amplification and surround suppression in primary

visual cortex [121, 128], movement generation[73, 178], attention and decision-making [49], and

probabilistic inference [2, 72]. Equation (2.1) has also been the workhorse of numerous studies

on the origin, stimulus-dependence, and attentional-modulation of noise correlations [71, 75]. In

many of these contexts, x(t) represents the vector of momentary firing rates in the network, A

encapsulates recurrent connectivity and single-neuron leak, and B is a matrix of input synaptic

weights.

Control theory textbooks contain a wealth of results that summarize important dynamical

properties of systems governed by Equation (2.1), using matrices that are obtained through

algebraic manipulations of A, B and C. We begin our review with two important such matrices

that can be used to describe the input-output behaviour of a neural network: the observability

and controllability Gramians.
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2.3 Network observability

2.3.1 Control-theoretic context

Before even attempting to design a feedback control strategy, a control engineer will first establish

feasibility. In particular, do the available partial observations y(t) of the full state x(t) provide

enough information for efficiently controlling the system? Answers are found in the observability

Gramian [168], a positive definite matrix associated with A and C and defined as

Q =
∫ ∞

0
exp

(
tAT

)
CTC exp (tA) dt. (2.2)

This matrix characterizes how well the initial state x(0), and therefore any subsequent state,

can be inferred from observations of y(t) and u(t) – systems that make such inferences are often

called “observers” [69]. Determining where x(0) was positioned along a given direction v in state

space requires the quantity E(v) = vTQv to be strictly positive. If it is zero, one simply cannot

resolve x(0) along v, and such ambiguity makes controlling x more difficult. More generally, E(v)

quantifies an ideal observer’s confidence in this estimate. Conveniently, Q is also the solution to

a simple “Lyapunov equation”,

ATQ + QA + CTC = 0, (2.3)

with efficient solvers available for most programming languages.

2.3.2 Geometry of input sensitivity in neural circuits

The observability Gramian is a very useful tool for the analysis of neural circuits, as it pro-

vides information about a network’s sensitivity to specific input patterns, or initial conditions.

Specifically, E(v) above can be re-interpreted as the amount of “energy” in the output y(t)

evoked by a pulse of input along direction v in state space [73] (Figure 2.2A and B). Input that

momentarily pushes (or initializes) the state along a highly observable direction typically gives rise

to strong and/or long output transients (Figure 2.2A, bottom left), especially in networks known

as “nonnormal” which include all physiologically realistic models of brain circuits with balanced

excitation and inhibition [58, 70, 73, 121]. In contrast, weakly observable initial conditions cause

y(t) to decay away rapidly, or outright not to respond (Figure 2.2A, bottom right).

This connection was first exploited to examine the response properties of high-dimensional,

inhibition-stabilized network models of primary motor cortex[73, 173]. It is also highly relevant

to the current view of motor cortical networks as near-autonomous dynamical systems, where
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Figure 2.2: Network observability. (A) Interpretation of network observability as input

sensitivity. Using simple algebraic techniques based on a neural network’s observability Gramian

Q, one can identify directions in state space (i.e. sets of input weights, black arrows) along which

input pulses trigger large transients (bottom left) in the available readouts (shades of green),

or, on the contrary, generate no output response at all (bottom right). (B) More generally,

the (eigenbasis of the) observability Gramian defines a full set of orthogonal initial conditions

that can be sorted by how much energy they evoke, from the most to the least. (C) Using the

observability Gramian, one can determine the optimal way of stimulating a subset of neurons

(green) to elicit the strongest possible response in another neuron (red). The optimal response

(red) here is much larger than the typical response obtained through random stimulation patterns

of the same energy (black; gray shading shows ± std.). (D) Illustration of communication

subspaces and dynamical nullspaces, explained in the main text. Scale bars denote 20 ms in all

panels.
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initial conditions (a.k.a. preparatory states) largely determine the activity trajectories that

follow [22, 137, 145, 166, 197]. The critical role of initial states is further corroborated by the

success of modern data analysis methods such as LFADS [131], which use trial-specific initial

conditions to accurately predict subsequent neural population activity through near-autonomous,

nonlinear latent dynamics.

2.3.3 Optimal drive, robustness to perturbations

Knowing a circuit’s sensitivity to inputs can lead to efficient strategies for interacting with it, e.g.

to most efficiently drive or suppress some target cells. Figure 2.2C shows an example where the

concept of observability is used to derive the optimal way of stimulating a subset of neurons, so

as to elicit maximum response in another, non-stimulated neuron.

Conversely, emergent technologies for optical, random-access perturbations of neural dynamics [18,

38, 130] will soon enable the identification of observability spectra in neural circuits. This could

be done using empirical techniques [65] similar to the classical reverse correlation-based mapping

of receptive fields in sensory cortices. Alternatively, input sensitivity could be inferred by fitting

dynamic latent-variable models, which — beyond explaining variance in the recorded data —

incorporate the effect of external perturbations. Recently, by fitting such a model to monkey M1

recordings, Duncker et al. could explain the surprising robustness of M1 dynamics to optogenetic

perturbations [33]. Their analysis suggested that optogenetic inputs transiently excite a set of

weakly observable state-space directions, whose contributions to the momentary activity state

tend to decay rapidly. This points to the existence of a “dynamical nullspace” in the circuit.

While weak observability can result from rapidly decaying directions in the full state space (as

discussed above), it can also result from state-space trajectories evolving orthogonally to the

subspace that defines the network readout (green plane in Figure 2.1, left). Such output-null

dynamics may underlie movement preparation [87] or learning [138] in monkey, where preparatory

cortical activity is largely orthogonal to movement-related activity [37]. An analogous phenomenon

has also been observed in the premotor cortex of mice, where orthogonality seems achieved

through anatomical segregation of preparatory neurons and output-related neurons. Indeed, this

brain area contains a class of projection neurons that have a direct influence on movement, and

which show little selectivity for the upcoming movement during preparation; these neurons are

genetically distinct from other neurons that show strong preparatory selectivity, and are coupled

to the thalamus [34].
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2.3.4 Interacting brain areas

Beyond local circuits, dynamical nullspaces could also emerge from interactions between distant

brain areas. For example, preparatory activity in mouse premotor cortex recovers from unilateral

— but not bilateral — optical silencing during a delayed sensory discrimination task [98]. This

suggests that it is the interactions between the two hemispheres that underpin the system’s

weak sensitivity to unilateral perturbation. More generally, input sensitivity may dictate how

multiple, interconnected brain areas influence each other. Consider the two coupled networks

of Figure 2.2D. Network B responds strongly when the activity of network A traverses their

“communication subspace”, i.e. when A’s input to B spans B’s most observable modes. On the

other hand, it is also possible for network A to produce “private” activity fluctuations that do not

influence B, so long as A’s input falls in B’s dynamical nullspace. A recent analysis of the joint

dynamics of macaque areas V1 and V2 point to such signal propagation motifs [164]: a small

“communication” subspace of V1 activity was found to predict V2 activity, with other “private”

dimensions having little influence on V2 activity yet accounting for non-negligible variance in

V1 activity. Mechanistically, selective propagation of signals across brain areas could — in

theory — arise from a form of detailed excitation/inhibition balance, which only allows specific

balance-breaking activity transients to propagate[73, 194].

2.4 Network controllability

2.4.1 Control-theoretic context

To establish control feasibility, an engineer will examine not only the observability of the system

(c.f. above), but also its controllability. Can the state x(t) of the network be steered along any

direction v in state space, using control inputs u(t) that can only actuate the network along a

restricted set of directions (defined by the columns of B; Figure 2.1)? Answers can be found

in the controllability Gramian [168], a positive definite matrix associated with A and B and

defined as:

P =
∫ ∞

0
exp (tA) BBT exp

(
tAT

)
dt (2.4)

(similar to the observability Gramian in Equation (2.2), P can be obtained by solving AP +

PAT + BBT = 0). In particular, the minimum amount of input “energy” required to move the

state of the system some distance along direction v is proportional to vTP−1v; if this quantity

is infinite, no clever control strategy will ever succeed in moving x along v, whereas if it is small,

control is easy and cheap. Figure 2.3A illustrates these ideas in a toy three-dimensional system.
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Figure 2.3: Network controllability. (A) Minimum-energy control of a 3-neuron network,

which can be easily steered along two directions in state space (orange and blue), but much less

easily along a third direction (pink). Solid lines (top) represent state-space trajectories under the

action of optimal control inputs (bottom, same color code), ie. those of least “energy” that achieve

the target end points (open circles) in finite time T . (B) Illustration of controllability for the same

inhibition-stabilized network as used in Figure 2.2A [73]. The controllability Gramian contains

information about the amount of variance (or “energy”) in the activity of any readout, across

all possible input channels (shades of orange) through which the network can be stimulated. In

particular, it tells us which readout captures the most (bottom left) or least (right) state variance.

The scale bar denotes 20 ms. (C) More generally, the (eigenbasis of the) controllability Gramian

defines a full set of orthogonal state-space directions that can be sorted by how controllable they

are, from the most to the least. (D) In BCI experiments, tasks that can be solved by modulating

neural activity within the intrinsic manifold (green) can be learned more rapidly than tasks in

which activity must span other, non-intrinsic directions (gray).



2.4. NETWORK CONTROLLABILITY 21

2.4.2 Intrinsic manifolds and control costs

The controllability Gramian P has a useful interpretation for the analysis of neural circuits:

whereas the observability Gramian encodes a network’s input sensitivity, P encodes the “intrinsic

manifold” of the network’s dynamics, i.e. the directions in state space that the network activity

is most inclined to visit. This intrinsic manifold is a reflection of the network’s connectivity

(A) and input channels (B; Equation (2.4)). More formally, stimulating each of the available

input channels individually results in a collection of state-space trajectories (Figure 2.3B) whose

covariance matrix is, in fact, P. Thus, the quantity σ(v) = vTPv is the average energy in these

trajectories along state-space direction v. In particular, directions with large σ(v) (often referred

to as “principal components”) form the “natural repertoire” of the network, as they contribute a

lot to state-space trajectories elicited by unspecific inputs (Figure 2.3B,C). In contrast, directions

with small σ(v) are almost never visited, unless the network is specifically driven by strong input

patterns (Figure 2.3A).

The above connection between intrinsic manifold and control gives an interesting perspective on

the results of recent brain-computer interface (BCI) experiments, in which monkeys modulate

neural activity in a subset of M1 neurons to move a cursor on a screen [59, 74, 155]. As

these studies show, how well a monkey can actuate a BCI strongly depends on the mapping

from recorded M1 activity to BCI state variables (e.g. cursor velocity) — in other words,

performance depends on the state-space directions that M1 activity needs to visit. In particular,

monkeys struggle to learn new mappings that require M1 to produce activity outside its intrinsic

manifold [155, 201]. In the toy illustration of Figure 2.3D, where the green plane depicts the

intrinsic manifold, that would correspond to cursor velocity being suddenly associated with neural

activity along the pink direction. In fact, even when the new mapping requires no such difficult

excursions (for example, velocity originally defined by the yellow direction and now defined by

the blue direction), the cloud of activity patterns generated within the intrinsic manifold under

the new mapping appears similar to the one generated under the previous mapping [59, 74].

This suggests that learning occurs by repurposing a fixed distribution of within-manifold activity

patterns, by reassociating each pattern with a new intended cursor movement.

These phenomena emerge naturally in networks such as the one discussed in Figure 2.3A, which

has a set of highly controllable directions (forming the intrinsic manifold) and a set of poorly

controllable ones (orthogonal to the intrinsic manifold). Modulation of neural activity within the

intrinsic manifold is straightforward, as it can exploit the natural flow of activity without the need

for large control inputs. In contrast, control of activity outside the intrinsic manifold requires
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full model

reduced model

inputs outputs

Figure 2.4: Model reduction. An inhibition-stabilized network with 200 neurons (from [73])

is reduced to a much smaller linear model of dimension 8. Here, the reduced model responds to

time-varying inputs in almost exactly the same way as the full model does (compare black and

dashed green outputs).

much larger inputs, perhaps larger than is physiologically feasible, thus limiting learnability of

outside-manifold mappings. Moreover, if inputs to the network are energy-limited, controlling

the state of the network along any direction within the intrinsic manifold will likely produce a

fixed, common distribution of activity patterns that is determined by the controllability spectrum

of the network [85].

2.4.3 Structural controllability

A recent study of the nervous system of C. elegans used an extension of the concept of controllabil-

ity to investigate the role of various neuron classes in controlling the nematode’s behaviour [212].

The authors considered the theoretical impact of individually ablating every possible class of

neurons on the so-called “structural controllability” of the worm’s muscles. They predicted that

ablating certain classes of neurons would result in a reduction in the number of controllable

muscles. Interestingly, while most of these neuron classes had already been causally implicated

in the control of locomotion in previous studies, one neuron class had not been previously

investigated. Ablation of these neurons resulted in small but significant motor impairments.

Analogous predictions were also made and validated for the ablation of individual neurons within

a class of motor neurons, illustrating the promise of applying control-theoretic methods to make

causal predictions regarding the neural circuit basis of behaviour.
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2.5 Model reduction

In control engineering, examination of observability and controllability often culminates in

model reduction: the substitution of the original large-scale model with a more tractable,

lower-dimensional model. Principled methods exist for performing dimensionality reduction

while preserving the dynamic mapping from inputs to outputs. One such method is “balanced

truncation” [168], whereby the state space is trimmed to eliminate directions that are both

weakly controllable and weakly observable (Figure 2.4).

Critically, a reduced model is cheaper to simulate, enables computationally efficient control

strategies, and is often easier to understand qualitatively. In neuroscience, model reduction has

been applied to linearized models of signal propagation along active cables [47]. We speculate it

will be useful for reverse engineering brain computations, by analyzing model networks that are

either learned from data [131], or trained [8, 176] or hand-crafted [112] to perform a task. For

example, trained models often need to be large enough to find solutions to their assigned task,

but theses solutions often involve low-dimensional dynamics [110, 178]. Model reduction could

help reveal and interpret these dynamics.

2.6 Stability and homeostasis

Control theory and neuroscience can also cross-fertilize in seeking to understand how complex,

inherently unstable dynamical processes can be controlled and stabilized. Brain circuits contain

major sources of dynamical instability that are kept in check by specific regulatory processes.

Two prominent examples include i) positive feedback due to the presence of recurrent excitatory

connections, which tend to cause runaway activity, and ii) positive feedback in Hebbian learning,

causing runaway synaptic potentiation [214]. The control-theoretic methods aimed at stabilizing

unstable systems could shed light on how neural circuits achieve stable behaviour. For example,

even simple control rules such as homeostatic scaling of inhibitory synapses based on postsynaptic

activity can restore E/I balance in networks with structural heterogeneity [94]. A more sophisti-

cated form of Hebbian plasticity at inhibitory synapses [70] establishes and maintains stability in

networks with strong excitatory feedback [195], and can be understood as an approximation to

optimal robust stabilization algorithms [73].

On a more technical level, elements of systems theory have inspired useful parameterizations of

(linear) latent dynamical models that guarantee stability, even when only limited data is available

to constrain the system [13, 72]. Recently, systems theory has also been elegantly combined with
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statistical approaches to characterize the stability and other aspects of the closed-loop behaviour

of networks trained to have multiple fixed points [150].

2.7 Conclusions

The brain solves a variety of hard control problems, which are naturally studied in the framework

used by engineers to tackle similar challenges. Control theory has long been applied to study

motor control [159, 206], providing insights into the computational and algorithmic principles of

internal models [60], error-corrective feedback [187], and planning [185]. Here, we have reviewed

concepts that form the foundations of classical control theory and are specifically applicable

to the analysis of neuronal network dynamics. They offer simple geometric descriptions of the

dynamic input/output behaviour of neural circuits, along with a set of accessible analytical and

numerical tools.

While the methods discussed here apply primarily to linear state-space models, they can be

adapted to nonlinear systems in various ways, from standard linearization to more advanced

operator-theoretic techniques [105]. Further extensions may be necessary for the analysis of

recurrent neural networks that may be operating in highly nonlinear regimes. As we have

noted, the observability and controllability Gramians afford several equivalent definitions in the

linear case; nonlinear extensions will likely not capture all of them [65], and the specific needs

of neuroscientists could in fact inspire the development of relevant extensions by the control

community.

In reviewing the most basic properties of linear systems (i.e. those covered in the first few

chapters of most control theory textbooks [168]), we have only scratched the surface. Control

theory is primarily the science of feedback, and will continue to provide unique insights into how

feedback is used in the brain to support the functions of single neurons, circuits, and systems.

More generally, dissecting the circuit basis of complex computations such as motor control or

reinforcement learning will benefit from a deeper integration of control theory, machine learning,

and neuroscience.



Chapter 3

Optimal anticipatory control as a

theory of motor preparation: a

thalamo-cortical circuit model

Summary

This chapter presents the following article:

Optimal anticipatory control as a theory of motor preparation: a thalamo-cortical

circuit model. Ta-Chu Kao, Mahdieh S. Sadabadi and Guillaume Hennequin (2021).

Neuron (in press).

Across a range of motor and cognitive tasks, cortical activity can be accurately described by low-

dimensional dynamics unfolding from specific initial conditions on every trial. These “preparatory

states” largely determine the subsequent evolution of both neural activity and behaviour, and

their importance raises questions regarding how they are — or ought to be — set. Here, we

formulate motor preparation as optimal anticipatory control of future movements, and show

that the solution requires a form of internal feedback control of cortical circuit dynamics. In

contrast to a simple feedforward strategy, feedback control enables fast movement preparation

and predicts orthogonality between preparatory and movement activity, a distinctive feature

of peri-movement activity in reaching monkeys. We propose a circuit model in which optimal

preparatory control is implemented as a thalamo-cortical loop gated by the basal ganglia.
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M1

ẋ = f (x , u)

internal
control
input u(t)

motor
output

x1

x2

xN

spontaneous
activity

optimal
subspace

preparation

movement

controlled dynamics
uncontrolled dynamics (u(t) = 0)A B

Figure 3.1: Preparation & execution of ballistic movements. (A) Under a dynamical systems

view of motor control [166], movement is generated by M1 dynamics. Prior to movement, the M1

population activity state x(t) must be controlled into an optimal, movement-specific subspace in a phase

of preparation; this requires internally generated control inputs u(t). (B) Schematic state space trajectory

during movement preparation and execution.

3.1 Introduction

Fast ballistic movements (e.g. throwing) require spatially and temporally precise commands

to the musculature. Many of these signals are thought to arise from internal dynamics in the

primary motor cortex (M1; Figure 3.1A; 40, 127, 160, 166, 184). In turn, consistent with state

trajectories produced by a dynamical system, M1 activity during movement depends strongly on

the “initial condition” reached just before movement onset, and variability in initial condition

predicts behavioural variability [1, 19, 131]. An immediate consequence of this dynamical systems

view is the so-called “optimal subspace hypothesis” [22, 166]: the network dynamics that generate

movement must be seeded with an appropriate initial condition prior to each movement. In other

words, accurate movement production likely requires fine adjustment of M1 activity during a

phase of movement preparation (Figure 3.1B, green).

The optimal subspace hypothesis helps to make sense of neural activity during the preparation

epoch, yet several unknowns remain. What should the structure of the optimal preparatory

subspace be? How does this structure depend on the dynamics of the cortical network during

the movement epoch, and on downstream motor processes? Must preparatory activity converge

to a single movement-specific state and be held there until movement initiation, or is some slack

allowed? What are the dynamical processes and associated circuit mechanisms responsible for

motor preparation? These questions can be (and have been partially) addressed empirically, e.g.

through analyses of neural population recordings in reaching monkeys [3, 22, 37] or optogenetic
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dissection of circuits involved in motor preparation [53, 63, 98, 157]. Yet, for lack of an appropriate

theoretical scaffold, it has been difficult to interpret these experimental results within the broader

computational context of motor control.

Here, we bridge this gap by considering motor preparation as an integral part of motor control.

We show that optimal control theory, which has successfully explained behaviour [161, 187] and

neural activity [100, 184] during the movement epoch, can also be brought to bear on motor

preparation. Specifically, we argue that there is a prospective component of motor control that

can be performed in anticipation of the movement (i.e. during preparation). This leads to a

normative formulation of the optimal subspace hypothesis. Our theory specifies the control

inputs that must be given to the movement-generating network during preparation to ensure that

(i) any subsequent motor errors are kept minimal and (ii) movements can be initiated rapidly.

These optimal inputs can be realized by a feedback loop onto the cortical network.

This normative model provides a core insight: the “optimal subspace” is likely high dimensional,

with many different initial conditions giving rise to the same correct movement. This has an

important consequence for preparatory control: at the population level, only a few components of

preparatory activity impact future motor outputs, and it is these components only that need active

controlling. By taking this into account, the optimal preparatory feedback loop dramatically

improves upon a simpler feedforward strategy. This holds for multiple classes of network models

trained to perform reaches, and whose movement-epoch dynamics are quantitatively similar

those of monkey M1. Moreover, optimal feedback inputs, but not feedforward inputs, robustly

orthogonalize preparatory- and movement-epoch activity, thus accounting for one of the most

prominent features of perimovement activity in reaching monkeys [37, 87].

Finally, we propose a way in which neural circuits may implement optimal anticipatory control.

In particular, we propose that cortex is actively controlled by thalamic feedback during motor

preparation, with thalamic afferents providing the desired optimal control inputs. This is

consistent with the causal role of thalamus in the preparation of directed licking in mice [63].

Moreover, we posit that the basal ganglia operate an on/off switch on the thalamocortical

loop [25, 66, 81, 103], thereby flexibly controlling the timing of both movement planning and

initiation.

Beyond motor control, a broader set of cortical computations are also thought to rest on low

dimensional circuit dynamics, with initial conditions largely determining behaviour [131, 169].

These computations, too, may hinge on careful preparation of the state of cortex in appropriate

subspaces. Our framework, and control theory more generally, may provide a useful language for
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reasoning about putative algorithms and neural mechanisms [86].

3.2 Results

3.2.1 A model of movement generation

We begin with an inhibition-stabilized network (ISN) model of the motor cortex in which a

detailed balance of excitation and inhibition enables the production of rich, naturalistic activity

transients (73, Figure 3.2A). This network serves as a pattern generator for the production of

movement (we later investigate other movement-generating networks). Specifically, the network

directly controls the two joint torques of a two-link arm (Section 3.4.1), via a linear readout of

the momentary network firing rates:

m(t) = Cr(t). (3.1)

Here, m(t) is a vector containing the momentary torques, and r(t) is the population firing

rate vector (described below). The network has N = 200 neurons, whose momentary internal

activations x(t) = (x1, x2, . . . , xN )T evolve according to (29; Section 3.4.1):

τ
dx

dt
= −x(t) +W r(t) + h+ h(t) (3.2)

r(t) = φ[x(t)] . (3.3)

Here, τ is the single-neuron time constant, W is the synaptic connectivity matrix, and φ[x]

(applied to x element-wise) is a rectified-linear activation function converting internal activations

into momentary firing rates. The network is driven by two different inputs shared across all

movements: a constant input h responsible for maintaining a heterogeneous spontaneous activity

state xsp, and a transient input h(t) arising at movement onset and decaying through movement.

The latter input models the dominant, condition-independent timing-related component of

monkey M1 activity during movement [88]. We note that, while the network model is generally

nonlinear, it can be well approximated by a linear model (r = x) as only a small fraction of

neurons are silent at any given time (Figure 3.12; Discussion). Our formal analyses here rely on

linear approximations, but all simulations are based on Equations (3.2) and (3.3) with nonlinear

φ.

We calibrated the model for the production of eight rapid straight reaches with bell-shaped velocity

profiles (Figure 3.2B, top left; details in Section 3.4.1; see also Figure 3.11). To perform this

calibration, we noted that – in line with the dynamical systems view of movement generation [166]
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Figure 3.2: Movement generation in a network model of M1 and comparison with monkey

M1 dynamics during movement. (A) Schematics of our M1 model of motor pattern generation.

The dynamics of an excitation-inhibition network [73] unfold from movement-specific initial conditions,

resulting in firing rate trajectories (left; 5 neurons shown) which are linearly read out into joint torques

(middle), thereby producing hand movements (right). The model is calibrated for the production of eight

straight center-out reaches; firing rates and torques are shown only for the movement colored in black. To

help visualize initial conditions, firing rates are artificially clamped for the first 100 ms. (B) Top: model

(left) and monkey (center and right) hand trajectories for each straight reach (color-coded). Black bars

denote 10 cm. Monkey hand trajectories are averaged across trials with delays longer than 400 ms. Middle:

overlap (Pearson correlation across neurons) between the preparatory end-states for model (left) and

monkey activity (center and right). Reaches are numbered counter-clockwise as indicated near the model

hand trajectories. Bottom: neural activity projected into the top jPC plane (see text). (C) Timecourse

of the 1st, 3rd, 5th and 14th CCA projections (canonical variables) in the model (top) and monkey J

(bottom), for each condition (color-coded as in B). Black scale bars indicate 200 ms from movement onset

(note that “movement onset” in the model is re-defined to account for the latency between the go cue and

actual movement onset in the monkey; see Section 3.5.2). To equalize the number of movement conditions

across model and monkeys, we dropped the 9th movement, which is kinematically redundant the 8th (c.f.

B). (D) Same as C, for monkey N (5th movement excluded, redundant with the 6th). (E) Full spectrum

of canonical correlations, with average labeled ρ̄.
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– movements produced by our model depend strongly on the “initial condition”, i.e. the cortical

state x just before movement onset [1, 22]. We thus “inverted” the model numerically, by

finding eight different initial conditions and a common readout matrix C such that the dynamics

of the nonlinear model (Equations (3.2) and (3.3)), seeded with each initial condition, would

produce the desired movement. Importantly, we constrained C so that its nullspace contained

the network’s spontaneous activity state, as well as all eight initial conditions. This constraint

ensures that movement does not occur spontaneously nor during late preparatory stages when

x(t) has converged to one of these initial conditions. Nevertheless, these constraints are not

sufficient to completely silence the network’s torque readout m(t) during preparation. While

such spurious output tended to be very small in our simulations (Figure 3.10), the two stages of

integration of m(t) by the arm’s mechanics led to substantial drift of the hand before the reach.

To prevent drift without modelling spinal reflexes for posture control, we artificially set m(t) = 0

during movement preparation.

We re-analyzed population recordings of monkey M1/PMd during straight reaching (data courtesy

of Mark Churchland, Matt Kaufman and Krishna Shenoy; 20). We found that our model captures

several essential aspects of movement-related neural dynamics (Figure 3.2B-E). First, neurons

exhibit heterogeneous, multiphasic oscillatory activity that often grows transiently from the

preparatory end-state before shrinking back to spontaneous levels (Figure 3.2A; 73), similar

to monkey M1 activity [21]. Second, kinematically similar reaches are produced from similar

preparatory end-states in both model and monkeys (Figure 3.2B, middle). Third, jPCA [21]

reveals consistent state-space rotations in peri-movement population activity in both model

and monkeys (Figure 3.2B, bottom). Finally, canonical correlations analysis [178] uncovers

subtantial overlap between monkey and model population activity across time and conditions

(Figure 3.2C-D). Indeed, the average canonical correlation between the model and each of the

two monkeys we analyzed is on a par with that between those two monkeys (Figure 3.2E).

3.2.2 Optimal control as a theory of motor preparation

Having calibrated our network model of movement generation, we now turn to preparatory

dynamics. Shenoy et al.’s dynamical systems perspective suggests that accurate movement

execution likely requires careful seeding of the generator’s dynamics with an appropriate, reach-

specific initial condition [1]. In our model, this means that the activity state x(t) of the cortical

network must be steered towards the initial condition corresponding to the intended movement

(Figure 3.1B, green). This process, which we call “preparatory control”, forms the core of this
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Figure 3.3: Formalization of the optimal subspace hypothesis. (A) Effect of three qualitatively

different types of small perturbations of the initial condition (potent, readout-null, dynamic-null) on the

three processing stages leading to movement (M1 activity,joint torques, and hand position), as already

shown in Figure 3.2A. Unperturbed traces are shown as solid lines, perturbed ones as dashed red lines.

Only one example neuron (top) is shown for clarity. Despite all having the same size here (Euclidean

norm), these three types of perturbation on the initial state have very different consequences. Left:

“potent” perturbations result in errors at every stage. Middle: “readout-null” perturbations cause sizeable

changes in internal network activity but not in the torques. Right: “dynamic-null” perturbations are

inconsequential at all stages. (B) Timecourse of root-mean-square error in M1 activity across neurons and

reach conditions, for the three different types of perturbations. (C) Same as (B) but root-mean-square

error in torques. (D) The motor potency of the top 20 most potent modes. In (A-C), signals are artificially

held constant in the first 100 ms for visualization, and black scale bars denote 200 ms from movement

onset.

study.

An important first step towards formalizing preparatory control and unravelling putative circuit

mechanisms is to understand how deviations from “the right initial condition” impact the

subsequent movement. Are some deviations worse than others? Mathematical analysis reveals

that, depending on the direction in state space along which the deviation occurs, there may

be strong motor consequences or none at all (Figure 3.3; Section 3.4.2). Some preparatory

deviations are “prospectively potent”: they propagate through the dynamics of the generator

network during the movement epoch, modifying its activity trajectories, and eventually leading

to errors in torques and hand motion (Figure 3.3A, left). Other preparatory deviations are

“prospectively readout-null”: they cause subsequent perturbations in cortical state trajectories,

too, but these are correlated across neurons in such a way that they cancel in the readout and
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leave the movement unaltered (Figure 3.3A, center). Yet other preparatory perturbations are

“prospectively dynamic-null”: they are outright rejected by the recurrent dynamics of the network,

thus causing little impact on subsequent neuronal activity during movement, let alone on torques

and hand motion (Figure 3.3A, right; Figure 3.3B-C).

We emphasize that the “prospective potency” of a preparatory deviation is distinct from its

“immediate potency”, i.e. from the direct effect such neural activity might have on the output

torques [87, 196]. For example, the initial state for each movement is prospectively potent by

construction, as it seeds the production of movement-generating network responses. However, it

does not itself elicit movement on the instant, and so is immediately null. Having clarified this

distinction, we will refer to prospectively potent/null directions simply as potent/null directions

for succinctness.

The existence of readout-null and dynamic-null directions implies that, in fact, there is no

such thing as “the right initial condition” for each movement. Rather, a multitude of initial

conditions which differ along null directions give rise to the correct movement. To quantify the

extent of this degeneracy, we measure the “prospective potency” of a direction by the integrated

squared error in output torques induced during movement by a fixed-sized perturbation of the

initial condition along that direction. We can then calculate a full basis of orthogonal directions

ranking from most to least potent (an analytical solution exists for linear systems, Section 3.4.2,

86). For our model with only two readout torques, the effective dimensionality of the potent

subspace is approximately 8 (Section 3.5.1; Figure 3.3D). This degeneracy substantially lightens

the computational burden of preparatory ballistic control: there are only a few potent directions

in state space along which cortical activity needs active controlling prior to movement initiation.

Thus, taking into account the energetic cost of neural control, preparatory dynamics should aim

at preferentially eliminating errors in preparatory states along those few directions that matter

for movement.

We now formalize these insights in a normative model of preparatory motor control. We assume

that, prior to movement, the initial condition for cortical dynamics is progressively reached

during a preliminary phase of movement preparation. In this phase, the cortical network receives

additional movement-specific control inputs u(t) (Figure 3.1, green) which are rapidly switched

off to initiate movement:

τ
dx

dt
= −x(t) +W r(t) + h+ h(t) + u(t). (3.4)

How should these preparatory inputs u(t) be chosen? At any time t during preparation, we

can assign a “prospective motor error” C(x) to the current cortical state x(t). This prospective
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error is the total error in movement that would result if movement was initiated at this time,

i.e. if control inputs were suddenly switched off and the generator network was left to evolve

dynamically from x(t) (Section 3.4.2). Note that C(x) is directly related to the measure of

prospective potency described above. An ideal controller would supply the cortical network with

such control inputs u(t) as necessary to lower the prospective motor error as fast as possible.

This would enable accurate movement production in short order. We therefore propose the

following cost functional:

J [u(t)] =
∫ ∞

0
C(x(t)) + λR(u(t)) dt (3.5)

where R(u) is an energetic cost which penalizes large control signals in excess of a baseline

required to hold x(t) in the optimal subspace, and λ sets the relative importance of this energetic

cost. Note that x(t) depends on u(t) via Equation (3.4).

3.2.3 Optimal preparatory control

When (i) the prospective motor error C is quadratic in the output torques m, (ii) the energy cost

R is quadratic in u, and (iii) the network dynamics are linear, then minimizing Equation (3.5)

corresponds to the well-known linear quadratic regulator (LQR) problem in control theory [168].

The optimal solution is a combination of a constant input and instantaneous (linear) state

feedback,

uopt(t) = u? +K δx(t), (3.6)

where δx(t) is the momentary deviation of x from a valid initial condition for the desired

movement (Section 3.4.2). In Equation (3.6), the constant input u? is movement specific, but the

optimal gain matrix K is generic; both can be derived in algebraic form. Thus, even though the

actual movement occurs in “open loop” (without corrective sensory feedback), optimal movement

preparation occurs in closed loop, with the state of the pattern generator being controlled via

internal feedback in anticipation of the movement. Later in this Results section, we build a

realistic circuit model in which optimal preparatory feedback (Equation (3.6)) is implemented as

a realistic thalamo-cortical loop. Prior to that, we focus on the core predictions of the optimal

control law as an algorithm, independent of its implementation.

Optimal control inputs (Equation (3.6)) lead to multiphasic preparatory dynamics in the cortical

network (Figure 3.4A, top). Single-neuron responses separate across movement conditions in

much the same way as they do in the monkey M1 data (Figure 3.4C), with a transient increase

in total across-movement variance (Figure 3.4D).The prospective motor error decreases very
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Figure 3.4: Optimal preparatory control. (A) Dynamics of the model during optimal preparation

and execution of a straight reach at a 144-degree angle. Optimal control inputs are fed to the cortical

network during preparation, and subsequently withdrawn to elicit movement. Top: firing rates of a

selection of ten model neurons. Middle: generated torques (line), compared to targets (dots). Bottom:

the prospective motor error C(x(t)) quantifies the accuracy of the movement if it were initiated at time t

during the preparatory phase. Under the action of optimal control inputs, C(x(t)) decreases very fast,

until it becomes small enough that an accurate movement can be triggered. The dashed line shows the

evolution of the prospective cost for the naive feedforward strategy (see text). Gray lines denote the other

7 reaches for completeness. (B) Hand trajectories for each of the eight reaches (solid), following optimal

preparation over a window of 25 ms (left), 50 ms (center) and 200 ms (right). Dashed lines show the target

movements. (C) Firing rate of a representative neuron in the model (left), and the two monkeys (center

and right) for each movement condition (color-coded as in Figure 3.2B). Green bars mark the 600 ms

preparation window, black scale bars indicate 20 Hz. (D) Evolution of the average across-movement

variance in single-neuron preparatory activity in the model (left) and the monkeys (center and right).

Black scale bars indicate 16 Hz2. (E) Prospective motor error during preparation, averaged over the eight

reaches, for different values of the energy penalty parameter λ. (F) The state of the cortical network

is artificially set to deviate randomly from the target movement-specific initial state at time t = 0, just

prior to movement preparation. The temporal evolution of the squared Euclidean deviation from target

(averaged over trials and movements) is decomposed into contributions from the 10 most and 10 least

potent directions, color-coded by their motor potency as in Figure 3.3D. In (A-D) and (F), we used

λ = 0.1.
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quickly to negligible values (Figure 3.4A, bottom; note the small green area under the curve) as

x(t) is driven into the appropriate subspace. After the preparatory feedback loop is switched off

and movement begins, the system accurately produces the desired torques and hand trajectories

(Figure 3.4A, middle). Indeed, movements are ready to be performed after as little as 50 ms

of preparation (Figure 3.4B). We note, though, that it is possible to achieve arbitrarily fast

preparation by decreasing the energy penalty factor λ in Equation (3.5) (Figure 3.4E). However,

this is at the price of large energetic costs R(u), i.e. unrealistically large control inputs.

The neural trajectories under optimal preparatory control display a striking property, also

observed in monkey M1 and PMd recordings [3, 95]: by the time movement is ready to be

triggered (approx. 50 ms in the model), the firing rates of most neurons have not yet converged to

the values they would attain after a longer preparation time — that is, ‖δx(t)‖ � 0 (Figure 3.4A

and C). Intuitively, this arises for the following reasons. First, the network reacts to the sudden

onset of the preparatory input by following the flow of its internal dynamics, thus generating

transient activity fluctuations. Second, the optimal controller is not required to suppress the null

components of these fluctuations, which have negligible motor consequences. Instead, control

inputs are used sparingly to steer the dynamics along potent directions only. Thus, the network

becomes ready for movement initiation well before its activity has settled. To confirm this

intuition, we artificially set x(t) at preparation onset to randomly and isotropically deviate from

the target initial condition. We then computed the expected momentary squared deviation δx(t)

along the spectrum of potent directions (shown in Figure 3.3D) during preparation. Errors are

indeed selectively eliminated along directions with motor consequences, while they linger or even

grow in other, inconsequential directions (Figure 3.4F, top).

Importantly, feedback control vastly outperforms a naive preparation strategy which uses a

simpler, constant feedforward input u(t) = u? and ignores the error feedback term (K = 0 in

Equation (3.6)). This strategy corresponds to the limit of zero input energy as it is defined

in our framework (Section 3.4.2; it is also the optimal solution in the limit of λ → ∞ in

Equation (3.5)). Under this naive strategy, network activity successfully settles in a desired initial

condition eventually, but the decrease in prospective motor error is much slower than under LQR

(Figure 3.4A, bottom). Moreover, this decrease is non-selective, i.e. errors along potent and null

directions are eliminated at the same rate (compare Figure 3.4F, top and bottom).
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Figure 3.5: Optimal preparatory control benefits other models of movement generation.

(A) ISN model. Top: eigenvalues of the connectivity matrix. Middle: activity of 20 example neurons during

optimal preparatory control (LQR) and subsequent execution of one movement, with hand trajectories

shown as an inset for all movements. The green bar marks the preparatory period. Bottom: same as

middle, under the naive feedforward strategy. (B-D) Same as (A), for a representative instance of each

of the three other network classes (see text). (E-G) Index of nonnormality (E), Frobenius norm of the

connectivity matrix ‖W ‖F (F), and H2 norm (G) for the 10 network instances of each class (excluding

chaotic networks for which these quantities are either undefined or uninterpretable). Dots are randomly

jittered horizontally for better visualization. Both ‖W ‖F and the H2 norm are normalized by the ISN

average. (H) Quantification of controllability in the various networks. Optimal control cost (
∫∞

0 C(x(t)) dt

in Equation (3.5)) against associated energy cost (
∫∞

0 R(u(t)) dt), for different values of the energy penalty

parameter λ (varied implicitly). Note that the naive feedforward strategy corresponds to the limit of zero

energy cost (y-“intercepts”).

3.2.4 Preparatory control in other M1 models

So far we have shown that feedback control is essential for rapid movement preparation in a specific

model architecture. The inhibition-stabilized network (ISN) model we have used (Figure 3.2A

and Figure 3.5A) has strong internal dynamics, whose “nonnormal” nature (Figure 3.5E; 189)
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gives rise to pronounced transient amplification of a large subspace of initial conditions [73].

This raises the concern that this ISN network might be unduly high-dimensional and difficult to

control. After all, feedback control might not be essential in other models of movement generation

for which the naive feedforward strategy might be good enough.

To address this concern, we implemented optimal control in two other classes of network

models which we trained to produce eight straight reaches in the same way as we trained

the ISN, by optimizing the readout weights and the initial conditions (Figure 3.5B and C;

Section 3.4.1). Importantly, we also optimized aspects of the recurrent connectivity: either

all recurrent connections (‘full’ networks, Figure 3.5B), or a low-rank parameterization thereof

(‘low-rank’ networks, Figure 3.5C; 112, 175). We trained 10 instances of each network class, and

also produced 10 new ISN networks for comparison. Empirically, we found that training was

substantially impaired by the addition of the condition-independent movement-epoch input h(t)

in Equation (3.2) in the full and low-rank networks. We therefore dispensed with this input in

the training of all these networks, as well as in the newly-trained ISNs for fair comparison (the

results presented below also hold for ISNs trained with h(t) 6= 0).

The full and low-rank networks successfully produce the correct hand trajectories after training

(Figure 3.5B and C, middle), relying on dynamics with oscillatory components qualitatively

similar to the ISN’s (eigenvalue spectra in Figure 3.5A-C, top). They capture essential aspects

of movement-epoch population dynamics in monkey M1, to a similar degree as the ISN does

(Figure 3.6). Nevertheless, the trained networks differ quantitatively from the ISN in ways that

would seemingly make them easier to control. First, they are less non-normal (Figure 3.5E).

Second, they have weaker internal dynamics than the ISN, as quantified by the average squared

magnitude of their recurrent connections (Figure 3.5F). Third, these weaker dynamics translate

into smaller impulse responses overall, as quantified by the H2 norm (Figure 3.5G; Section 3.5.1;

73, 86).

Although these quantitative differences suggest that optimal feedback control might be superfluous

in the full and low-rank networks, we found this is not the case. In order to achieve a set

prospective control performance, all networks require the same total input energy (Figure 3.5H).

In particular, the feedforward strategy (limit of zero input energy) performs equally badly in

all networks: preparation is unrealistically slow, with 200 ms of preparation still resulting in

large reach distortions (Figure 3.5A-C, bottom). In fact, we were able to show formally that the

performance of feedforward control depends only on the target torques specified by the task, but

not on the details of how these targets are achieved through specific initial conditions, recurrent

connectivity W , and readout matrix C (Section 3.4.7). Stronger still, our derivations explain
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Figure 3.6: Movement-generating dynamics in an example ‘full’ network (A-E) and an example

‘low-rank’ network (F-J), and comparison to monkey M1 dynamics. For details, please see the

caption of Figure 3.2 where the same panels are shown for the ISN model.

why the movement errors resulting from insuffiently long feedforward preparation are identical in

every detail across all networks (Figure 3.5A-C, bottom).

Finally, we also considered networks in the chaotic regime with fixed and strong random connection

weights and the same threshold-linear activation function (‘chaotic’ networks, Figure 3.5D;

83, 111). In these networks, since static inputs are unable to quench chaos, the naive feedforward

strategy cannot even establish a fixed point, let alone a correct one (Figure 3.5D, bottom).

However, by adapting the optimal feedback control solution to the nonlinear case (Section 3.4.4),

we found that it successfully quenches chaos during preparation and enables fast movement

initiation (Figure 3.5D, middle).
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In summary, the need for feedback control during preparation is not specific to our specific ISN

model, but emerges broadly in networks of various types trained to produce reaches.

3.2.5 Orthogonal preparatory and movement subspaces
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Figure 3.7: Reorganization between preparatory and movement activity in model and

monkey. (A) Example single-neuron PSTHs in model (top) and monkey M1/PMd (middle and bottom),

for each reach (c.f. Figure 3.2B). (B) Fraction of variance (time and conditions) explained during movement

preparation (left) and execution (right) by principal components calculated from preparatory (green) and

movement-related (magenta) trial-averaged activity (Section 3.5.2). Only the first 10 components are

shown for each epoch. Variance is across reach conditions and time in 300 ms prep. and move. windows

indicated by green and magenta bars in (A). The three rows correspond to those of (A). (C) Alignment

index calculated as in Elsayed et al. [37], for the two monkeys (left) and the three classes of trained

networks (colors as in Figure 3.5A-C) under three different preparation strategies (LQR, instant, naive;

right). Here, preparation is long enough (500 ms) that even the naive feedforward strategy leads to the

correct movements in all networks. Hashed bars show the average alignment index between random-but-

constrained subspaces drawn as in Elsayed et al. [37] (see text and Section 3.5.2). (D) Amplification factor,

quantifying the growth of the centered population activity vector x(t)−xsp during the course of movement,

relative to the pre-movement state (Section 3.5.1). It is shown here for the two monkeys (black and gray),

as well as for the three classes of trained networks (solid) and their surrogate counterparts (dashed).

Shaded region denotes ±1 s.t.d. around the mean across the 10 instances of each network class. To isolate

the autonomous part of the movement-epoch dynamics, here we set h(t) = 0 in Equation (3.2). (E-

F) Frobenius norm ‖C‖F of the readout weights (F), and alignment index under the ‘instant’ preparation

strategy (G; see text), for the original trained networks and their surrogates. Error bars denote ±1 s.t.d.

across the 10 networks of each class.

Optimal anticipatory control also accounts for a prominent feature of monkey motor cortex
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responses during motor preparation and execution: across time and reach conditions, activity

spans orthogonal subspaces during the two epochs. To show this, we followed Elsayed et al. and

performed principal components analysis (PCA) on trial-averaged activity during the two epochs

separately, in both the ISN model of Figure 3.4 and the two monkey datasets (Section 3.5.2;

Figure 3.7A). We then examined the fraction of variance explained by both sets of principal

components (prep-PCs and move-PCs) during each epoch. Activity in the preparatory and

movement epochs are, respectively, approximately 4- and 6-dimensional for the model, 5- and 7-

dimensional for monkey J, and 8- and 7-dimensional for monkey N (assessed by the “participation

ratio”; Section 3.5.1).

Moreover, consistent with the monkey data, prep-PCs in the model account for most of the

activity variance during preparation (by construction; Figure 3.7B, left), but account for little

variance during movement (Figure 3.7B, right). Similarly, move-PCs capture little of the

preparatory-epoch activity variance.

To systematically quantify this (lack of) overlap for all the trained models of Figure 3.5A-C

and compare with monkey data, we used Elsayed et al.’s “alignment index”. This is defined as

the amount of preparatory-epoch activity variance captured by the top K move-PCs, further

normalized by the maximum amount of variance that any K-dimensional subspace can capture.

Here, K was chosen such that the top K prep-PCs capture 80% of activity variance during the

preparatory-epoch. Both monkeys have a low alignment index (Figure 3.7C, left), much lower

than a baseline expectation reflecting the neural activity covariance across both task epochs

(“random” control in 37; Section 3.5.2). All trained models show the same effect under optimal

preparatory control (Figure 3.7C, ‘LQR’). Importantly, alignment indices arising from the naive

feedforward solution are much higher and close to the random control.

To understand the origin of this effect, we first note that the preparatory end-states themselves

tend to be orthogonal to movement-epoch activity in the models. Indeed, artificially clamping

network activity to its end state during the whole preparatory epoch yields low alignment indices

in all trained networks (Figure 3.7C, ‘instant’). We hypothesize that this effect arises from the

penalty on large readout weights introduced in the training procedure to protect from overfitting.

This penalty encourages networks to find solutions whereby internal activity grows and decays

during the course of movement as in the monkey data (Figure 3.7D), with an envelope reflecting

that of the target torques. Since the autonomous (near-linear) dynamics that drive these activity

transients are stable, the initial growth of activity at movement onset must be accompanied by a

rotation away from the initial condition. Otherwise the growth would continue, contradicting

stability.
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To substantiate this interpretation, for each network that we trained, we built a surrogate network

that achieved the same task without resorting to transient growth. We thus predicted higher

alignment indices in these surrogate networks. To construct them, we noted that by applying a

similarity transformation simultaneously to W , C and the initial conditions (Section 3.4.1), one

can arbitrarily suppress transient activity growth at movement onset yet maintain performance

in the task in the linear regime (a similarity transformation does not change the overall transfer

function from initial condition to output torques). In particular, the similarity transformation

that diagonalizes W returns a purely normal network for which the magnitude of movement-

epoch population activity can only decay during the course of movement, unlike that of the

original network and that of the two monkeys (Figure 3.7D, dashed). Consistent with our

hypothesis, these surrogate networks have larger readout weights (Figure 3.7E), and indeed a

higher alignment index (Figure 3.7F).

So far, we have shown that orthogonality between late-preparatory and movement subspaces

emerges generically in regularized trained networks. However, this does not fully explain why

the alignment index is low under LQR in all models when early-/mid- preparatory activity is

considered instead, as in Elsayed et al. [37]. In fact, under the naive feedforward strategy, early

preparatory activity can be shown to be exactly the negative image of movement-epoch activity,

up to a relatively small constant offset (Section 3.4.8). Thus, the temporal variations of early

preparatory- and movement-epoch activity occur in a shared subspace, generically yielding a

high alignment index (Figure 3.7C, ‘naive’). In contrast, optimal control rapidly eliminates

preparatory errors along potent directions, which contribute significantly to movement-epoch

activity: if x(t) during movement had no potent component, by definition the movement would

stop immediately. Thus, one expects optimal control to remove a substantial fraction of overlap

between preparatory- and movement-epoch activity. What is more, by quenching temporal

fluctuations along potent directions early during preparation, optimal feedback also suppresses

the subsequent transient growth of activity that these potent fluctuations would have normally

produced under the naive strategy (and which are indeed produced during movement). The

combination of these primary and secondary suppressive effects results in the lower alignment

index that we observe (Figure 3.7C, ‘LQR’).

In summary, orthogonality between preparatory and movement activity in monkey M1 is consistent

with optimal feedback control theory. In the ISN, as well as in other architectures trained on

the same task, orthogonality arises robustly from optimal preparatory control, but not from

feedforward control.
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3.2.6 Circuit model for preparatory control: a gated thalamocortical loop
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Figure 3.8: Optimal movement preparation via a gated thalamo-cortical loop. (A) Proposed

circuit architecture for the optimal movement preparation (cf. text). (B) Cortical (top) and thalamic

(upper middle) activity (10 example neurons), generated torques (lower middle), and prospective motor

error (bottom) during the course of movement preparation and execution in the circuit architecture shown

in (A). The prospective motor error for the naive strategy is shown as a dotted line as in Figure 3.4A.

All black curves correspond to the same example movement (324-degree reach), and gray curves show

the prospective motor error for the other 7 reaches. (C) Hand trajectories (solid) compared to target

trajectories (dashed) for the eight reaches, triggered after 100 ms (left), 200 ms (middle) and 600 ms

(right) of motor preparation.

So far we have not discussed the source of optimal preparatory inputs u(t), other than saying

that they close a feedback loop from the cortex onto itself (Equation (3.6)). Such a loop could in

principle be absorbed in local modifications of recurrent cortical connectivity [175]. However,

we are not aware of any mechanism that could implement near-instant on/off switching of a

select subset of recurrent synapses, as required by the model at onset of preparation (on) and

movement (off). If, instead, the preparatory loop were to pass through another brain area, fast

modulation of excitability in that relay area would provide a rapid and flexible switch [44]. We
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therefore propose the circuit model shown in Figure 3.8A, where the motor thalamus acts as a

relay station for cortical feedback [63, 123]. The loop is gated on/off at preparation onset/offset

by the (dis)-inhibitory action of basal ganglia outputs [25, 32, 66, 81, 103]. Specifically, cortical

excitatory neurons project to 160 thalamic neurons, which make excitatory backprojections to a

pool of 100 excitatory (E) and 100 inhibitory (I) neurons in cortex layer 4. In turn, these layer 4

neurons provide both excitation and inhibition to the main cortical network, thereby closing the

control loop. Here, inhibition is necessary to capture the negative nature of optimal feedback. In

addition to thalamic feedback, the cortical network also receives a movement-specific constant

feedforward drive during preparation (analogous to u? in Equation (3.6) for the standard LQR

algorithm; this could also come from the thalamus).

The detailed patterns of synaptic efficacies in the thalamo-cortical loop are obtained by solving the

same control problem as above, based on the minimization of the cost functional in Equation (3.5)

(mathematical details in Section 3.4.6). Importantly, the solution must now take into account

some key biological constraints: (i) feedback must be based on the activity of the cortical E

neurons only, (ii) thalamic and layer-4 neurons have intrinsic dynamics that introduce lag, and

(iii) the sign of each connection is constrained by the nature of the presynaptic neuron (E or I).

The circuit model we have obtained meets the above constraints and enables flexible, near-optimal

anticipatory control of the reaching movements (Figure 3.8B). Before movement preparation,

thalamic neurons are silenced due to strong inhibition from basal ganglia outputs (not explicitly

modelled), keeping the thalamocortical loop open (inactive) by default. At the onset of movement

preparation, rapid and sustained disinhibition of thalamic neurons restores responsiveness to

cortical inputs, thereby closing the control loop (on/off switch in Figure 3.8B, top). This

loop drives the cortical network into the appropriate preparatory subspace, rapidly reducing

prospective motor errors as under optimal LQR feedback (Figure 3.8B, bottom). To trigger

movement, the movement-specific tonic input to cortex is shut off, and the basal ganglia resume

sustained inhibition of the thalamus. Thus, the loop re-opens, which sets off the uncontrolled

dynamics of the cortical network from the right initial condition to produce the desired movement

(Figure 3.8C).

The neural constraints placed on the feedback loop are a source of suboptimality with respect

to the unconstrained LQR solution of Figure 3.4. Nevertheless, movement preparation by this

thalamocortical circuit remains fast, on par with the shortest preparation times of primates in

a quasi-automatic movement context [95] and much faster than the naive feedforward strategy

(Figure 3.8B, bottom).
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3.2.7 Model prediction: selective elimination of preparatory errors following

optogenetic perturbations

An essential property of optimal preparatory control is the selective elimination of preparatory

errors along prospectively potent directions. As a direct corollary, the model predicts selective

recovery of activity along those same directions following preparatory perturbations of the

dynamics, consistent with results by Li et al. [98] in the context of a delayed directional licking

task in mice. Here, we spell out this prediction in the context of reaching movements in primates

by simulating an experimental perturbation protocol similar to that of Li et al. [98], and by

applying their analysis of population responses. These concrete predictions should soon become

testable with the advent of optogenetics techniques in primates [129].

As our E/I cortical circuit model operates in the inhibition-stabilized regime [73, 128, 156, 190], we

were able to use the same photoinhibition strategy as in Li et al. [98] to silence the cortical network

(Figure 3.9A) in the thalamo-cortical circuit of Figure 3.8. We provided strong excitatory input

to a random subset (60%) of inhibitory neurons, for a duration of 400 ms starting 400 ms after

preparation onset. We found that “photoinhibition” has mixed effects on the targeted neurons:

some are caused to fire at higher rates, but many are paradoxically suppressed (Figure 3.9B,

top). For E cells and untargeted I cells, though, the effect is uniformly suppressive, as shown in

Figure 3.9B (middle and bottom).

The perturbation transiently resets the prospective motor error to pre-preparation level, thus

nullifying the benefits of the first 400 ms of preparation (Figure 3.9C). Following the end of

the perturbation, the prospective motor error decreases again, recovering to unperturbed levels

(Figure 3.9C, solid vs. dashed) and thus enabling accurate movement production (compare

middle and bottom hand trajectories). This is due to the selective elimination of preparatory

errors discussed earlier (Figure 3.4F): indeed, shuffling δx across neurons immediately prior to

movement, thus uniformizing the distribution of errors in different state space directions, leads

to impaired hand trajectories (Figure 3.9C, top right).

We next performed an analysis qualitatively similar to Li et al.’s. We identified a “coding

subspace” (CS) that accounts for most of the across-condition variance in firing rates towards

the end of movement preparation in unperturbed trials (Section 3.4.6). Similarly, we identified

a “persistent” subspace (PS) that captures most of the activity difference between perturbed

and unperturbed trials towards the end of preparation, regardless of the reach direction. Finally,

we also contructed a third subspace, constrained to be orthogonal to the PS and the CS, and

capturing most of the remaining variance across the different reaches and perturbation conditions
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Figure 3.9: Testable prediction: selective recovery from preparatory perturbations. (A) Il-

lustration of perturbation via “photoinhibition”: a subset (60%) of I neurons in the model are driven

by strong positive input. (B) Left: firing rates (solid: perturbed; dashed: unperturbed) for a pair of

targeted I cells (top), untargeted I cells (middle) and E cells (bottom). Green bars (1.6 s) mark the

movement preparation epoch, and embedded turquoise bars (400 ms) denote the perturbation period.

Right: histogram of firing rates observed at the end of the perturbation (turquoise), and at the same time

in unperturbed trials (gray). Error bars show one standard deviation across 300 experiments, each with a

different random set of targeted I cells. (C) Prospective motor error, averaged across movements and

perturbation experiments, in perturbed (solid) vs. unperturbed (dashed) conditions. Subsequent hand

trajectories are shown for one experiment of each condition (middle and bottom insets; dashed lines show

target trajectories). These are compared with the reaches obtained by randomly shuffling final preparatory

errors δx across neurons, and re-simulating the cortical dynamics thereafter (top inset; see also text).

(D) Magnitude of the deviation caused by the perturbation in the activity of the network projected into

the coding subspace (left), the persistent subspace (center) and the remaining subspace (right). Lines

denote the mean across perturbation experiments, and shadings indicate ±1 s.t.d. Green and turquoise

bars as in (B).
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(“remaining subspace”, RS).

We found the CS and the PS to be nearly orthogonal (minimum subspace angle of 89 degrees)

even though they were not constrained to be so. Moreover, the perturbation causes cortical

activity to transiently deviate from unperturbed trajectories nearly equally in each of the three

subspaces (Figure 3.9D). Remarkably, however, activity recovers promptly along the CS, but not

along the other two modes. In fact, the perturbation even grows transiently along the PS during

early recovery. Such selective recovery can be understood from optimal preparation eliminating

errors along directions with motor consequences, but (owing to energy constraints) not in other

inconsequential modes. Indeed, the CS is by definition a prospectively potent subspace: its

contribution to the preparatory state is what determines the direction of the upcoming reach. In

contrast, the PS and the RS are approximately prospectively null (respectively 729 times and 8

times less potent than the CS, by our measure C of motor potency in Figure 3.3D). This not only

explains why the CS and PS are found to be near-orthogonal, but also why the thalamocortical

dynamics implementing optimal preparatory control only quench perturbation-induced deviations

in the CS.

In summary, optogenetic perturbations of M1 could be used to test a core prediction of optimal

preparatory control, namely the selective recovery of activity in subspaces that carry movement

information, but not in others.

3.3 Discussion

Neural population activity in cortex can be accurately described as arising from low-dimensional

dynamics [8, 16, 21, 27, 110, 118, 163]. These dynamics unfold from a specific initial condition on

each trial, and indeed these “preparatory states” predict the subsequent evolution of both neural

activity and behaviour in single trials of the task [22, 131, 145, 169]. In addition, motor learning

may rely on these preparatory states partitioning the space of subsequent movements [165].

How are appropriate initial conditions reached in the first place? Here, we have formalized

movement preparation as an optimal control problem, showing how to translate anticipated

motor costs phrased in terms of muscle kinematics into costs on neural activity in M1. Optimal

preparation minimizes these costs, and the solution is feedback control: the cortical network

must provide corrective feedback to itself, based on prospective motor errors associated with

its current state. In other words, optimal preparation may rely on an implicit forward model

predicting the future motor consequences of preparatory activity—not motor commands, as in
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classical theories [31, 160, 207]—and feeding back these predictions for online correction of the

cortical trajectory. Thus, where previous work has considered the motor cortex as a controller

of the musculature [100, 178, 184], our work considers M1 and the body jointly as a compound

system under preparatory control by other brain areas.

One of the key assumptions of this work is that the cortical dynamics responsible for reaching are at

least partially determined by the inital state (we do not assume that they are autonomous). If, on

the contrary, M1 activity were purely input-driven, there would be no need for preparatory control,

let alone an optimal one. On the one hand, perturbation experiments in mice suggest thalamic

inputs are necessary for continued movement generation and account for a sizeable fraction (though

not all) of cortical activity during movement production [157]. On the other hand, experiments

in non-human primates provide ample evidence that preparation does occur, irrespective of

context [95], and that initial pre-movement states influence subsequent behaviour [1, 22, 166].

Thus, preparatory control is likely essential for accurate movement production.

3.3.1 Sloppy preparation for accurate movements

A core insight of our analysis is that preparatory activity must be constrained in a potent

subspace impacting future motor output, but is otherwise free to fluctuate in a nullspace. This

readily explains two distinctive features of preparatory activity in reaching monkeys: (i) that

pre-movement activity on zero-delay trials needs not reach the state achieved for long movement

delays [3], and (ii) that nevertheless movement is systematically preceded by activity in the same

preparatory subspace irrespective of whether the reach is self-initiated, artificially delayed, or

reactive and fast [95]. In our model, preparatory activity converges rapidly in the subspace that

matters, such that irrespective of the delay (above 50 ms), preparatory activity is always found

to have some component in this common subspace as in Lara et al. [95]. Moreover, exactly which

of the many acceptable initial conditions is reached by the end of the delay depends on the delay

duration. Thus, our model predicts that different preparatory end-states will be achieved for

short and long delays, consistent with the results of Ames et al. [3]. Finally, these end-states

also depends on the activity prior to preparation onset. This would explain why Ames et al. [3]

observed different pre-movement activity states when preparation started from scratch and when

it was initiated by a change in target that interrupted a previous preparatory process. In the

same vein, Sauerbrei et al. [157] silenced thalamic input to mouse M1 early during movement,

and observed that M1 activity did not recover to the pre-movement activity seen in unperturbed

trials, even when the movement was successfully performed following the perturbation. This
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Figure 3.10: Preparing whilst not moving. Norm of the output joint torques, ‖m(t)‖, averaged

over the 8 reaches, for the naive feedforward strategy (light blue), optimal preparatory control (dark

blue), and an extended optimal preparatory control strategy that explicitly penalizes premature movement

(green). The black bar marks the preparatory epoch.

result is expected in our model if the perturbation is followed by a new preparatory phase in

which the effect of the perturbation rapidly vanishes along prospectively potent dimensions, but

subsists in the nullspace.

3.3.2 Preparing without moving

How can preparatory M1 activity not cause premature movement, if M1 directly drives muscles?

Kaufman et al. [87] argued that cortical activity may evolve in a coordinated way at the

population level so as to remain in the nullspace of the muscle readout. Here, we have not

explicitly penalized premature movements as part of our control objective (Equation (3.5)). As

a result, while preparatory activity enters the nullspace eventually —because we constrained

the movement-seeding initial conditions to belong to it—, optimal preparatory control yields

small activity excursions outside the nullspace early during preparation (Figure 3.10), causing

the hand to drift absent any further gating mechanism. Nevertheless, one can readily penalize

such premature movements in our framework and obtain network models that prepare rapidly

“in the nullspace” via closed-loop feedback (Figure 3.10; Section 3.4.5). Importantly, a naive

feedforward control strategy is unable to contain the growth of movement-inducing activity

during preparation.

3.3.3 Thalamic control of cortical dynamics

The mathematical structure of the optimal control solution suggested a circuit model based

on cortico-cortical feedback. We have proposed that optimal feedback can be implemented as

a cortico-thalamo-cortical loop, switched on during movement preparation and off again at
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movement onset. The on-switch occurs through fast disinhibition of those thalamic neurons

that are part of the loop. Our model thus predicts a large degree of specificity in the synaptic

interactions between cortex and thalamus [67, 76], as well as a causal involvement of the thalamus

in movement preparation [63, 157]. Furthermore, the dynamical entrainment of thalamus with

cortex predicts tuning of thalamic neurons to task variables, consistent with a growing body

of work showing specificity in thalamic responses [63, 123, 149]. For example, we predict that

neurons in the motor thalamus should be tuned to movement properties, for much the same

reasons that cortical neurons are [100, 127, 184]. Finally, we speculate that an on/off switch

on the thalamocortical loop is provided by one of the output nuclei of the basal ganglia (SNR or

GPi), or a subset of neurons therein. Thus, exciting these midbrain neurons during preparation

should prevent the thalamus from providing the necessary feedback to the motor cortex, thereby

slowing down the preparatory process and presumably increasing reaction times. In contrast,

silencing these neurons during movement should close the preparatory thalamocortical loop at a

time when thalamus would normally disengage. This should modify effective connectivity in the

movement-generating cortical network and impair the ongoing movement. These are predictions

that could be tested in future experiments.

Thalamic control of cortical dynamics offers an attractive way of performing nonlinear computa-

tions [103, 175]. Although both preparatory and movement-related dynamics are approximately

linear in our model, the transition from one to the other (orchestrated by the basal ganglia)

is highly nonlinear. Indeed, our model can be thought of as a switching linear dynamical

system [101]. Moreover, gated thalamocortical loops are a special example of achieving nonlinear

effects through gain modulation. Here, it is the thalamic population only that is subjected to

abrupt and binary gain modulation, but changes in gain could also affect cortical neurons. This

was proposed recently as a way of expanding the dynamical repertoire of a cortical network [173].

Switch-like nonlinearities may have relevance beyond movement preparation, e.g. for movement

execution. In our model, different movement patterns are produced by different initial conditions

seeding the same generator dynamics. However, we could equally well have generated each reach

using a different movement-epoch thalamocortical loop. Logiaco et al. have recently explored

this possibility, showing that gated thalamocortical loops provide an ideal substrate for flexible

sequencing of multiple movements. In their model, each movement is achieved by its own loop

(involving a shared cortical network), and the basal ganglia orchestrate a chain of thalamic

disinhibitory events, each spatially targeted to activate those neurons that are responsible for

the next loop in the sequence [103]. Interestingly, their cortical network must still be properly

initialized prior to each movement chunk, as it must in our model. For this, they proposed a
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generic preparatory loop similar to the one we have studied here. However, theirs does not take

into account the degeneracies in preparatory states induced by prospective motor costs, which

ours exploits. In sum, our model and theirs address complementary facets of motor control

(preparation and sequencing), and could be combined into a single model.

To conclude, we have proposed a new theory of movement preparation and studied its implications

for various models of movement-generating dynamics in M1. While these models capture several

salient features of movement-epoch activity, they could be replaced by more accurate, data-

driven models [131] in future work. This would enable our theory to make detailed quantitative

predictions of preparatory activity, which could be tested further in combination with targeted

perturbation experiments. Our control-theoretic framework could help elucidate the role of

the numerous brain areas that collectively control movement [179], and make sense of their

hierarchical organization in nested loops.

3.4 Methods

3.4.1 A model for movement generation by cortical dynamics

Parameters

The values of all the parameters used in this study are listed in Table 3.1.

Network dynamics

We model M1 as a network with two separate populations of NE = 160 excitatory (E) neurons

and NI = 40 inhibitory (I) neurons, operating in the inhibition-stabilized regime [73, 128, 190].

We constructed its synaptic architecture using the algorithm we have previously described in

Hennequin et al. [73]. Briefly, we iteratively updated the inhibitory synapses of a random network,

with an initial spectral abscissa of 1.2, to minimize a measure of robust network stability. We

implemented early stopping, terminating the stabilization procedure as soon as the spectral

abscissa of the connectivity matrix dropped below ∼0.8.

We describe the dynamics of these N = NE +NI neurons by a standard nonlinear rate equation.

Specifically, the vector x(t) =
(
xE(t)T ,xI(t)T

)T
of internal neuronal “activations” obeys:

τ
dx

dt
= −x(t) +Wφ [x(t)] + h+ h(t) + u(t) (3.7)

where τ is the single-neuron time constant, W is the synaptic connectivity matrix, and φ(x) =
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symbol value unit description

Parameters of the M1 circuit model

NE 160 - number of E units

NI 40 - number of I units

τ 150 ms time constant of M1 dynamics

τrise 50 ms rise time constant of h(t)

τdecay 500 ms decay time constant of h(t)

A implicit - set so that h(t) has a maximum of 5

Arm mechanics and hand trajectories

L1 30 cm length of upper arm link

L2 33 cm length of lower arm link

M1 1.4 kg mass of upper arm link

M2 1.0 kg mass of lower arm link

D2 16 cm center of mass of lower link, away from elbow

I1 0.025 kg m−2 moment of inertia of upper link

I2 0.045 kg m−2 moment of inertia of lower link

θinit
1 10. deg. value of θ1 at rest

θinit
2 143.54 deg. value of θ2 at rest

θ
(i)
reach 36× (i− 2) deg. reach angles (i = 1, . . . , 8)

dreach 20 cm reach distance

τreach 120 ms time constant of reach velocity profile

LQR solution

λ 0.1 - input energy penalty in Equation (3.28)

Thalamo-cortical circuit model

λ 0.01 - input energy penalty in Equation (3.28)

p 0.2 - density of random connections from M1 to thal.

ME 100 - number of E units in M1 L4

MI 100 - number of I units in M1 L4

τy 10 ms neuronal time constant in thalamus

τz 10 ms neuronal time constant in M1 L4

Photoinhibition

Nph 100 - number of M1 I units perturbed (60%)

hph 3 - input to perturbed I units during photoinhibition

Tph 400 ms duration of photoinhibition

Table 3.1: Generic parameters used throughout all simulations

max(x, 0) is a static, rectified-linear nonlinearity – applied elementwise to x – that converts

internal activation into momentary firing rates. The input consists of three terms: an input

h = xsp −Wφ [xsp] held constant throughout all phases of the task to instate a heterogeneous

set of spontaneous firing rates xsp (elements drawn i.i.d. from N (20, 9)); a transient, movement-
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Figure 3.11: (A) Schematics of the arm model. (B) Reaches produced by the model, along

with associated torques at the two joints, and x-y velocities of the hand (solid lines). Dashed

lines denote target trajectories. Scale bar: 200 ms.

condition-independent and spatially uniform α-shaped input bump

h(t) = (1, . . . , 1)T ×

 if t > tmove : A
[
exp

(
− t−tmove

τdecay

)
− exp

(
− t−tmove

τrise

)]
otherwise: 0

(3.8)

kicking in at movement onset [88]; and a preparatory control input u(t) (further specified below)

whose role is to drive the circuit into a preparatory state appropriate for each movement.

We assume that the uncontrolled dynamics (u = 0) of this network directly drives movement.

To actuate the two-link arm model described in the next section, the activity of the network is

read out into two joint torques:

m(t) = Cφ [x(t)] (3.9)

where C ∈ R2×N is such that its last NI columns are zero, i.e. only the excitatory neurons

contribute directly to the motor output. Although our simulations show that the muscle readouts

m(t) are very small during preparation, they do cause drift in the hand prior to movement

onset (and therefore wrong movements afterwards) as they are effectively integrated twice by the

dynamics of the arm (see below and Figure 3.10). For this reason, we artificially set m to zero

during movement preparation.

Arm model

To simulate reaching movements, we used the planar two-link arm model previously described in

Li and Todorov [99], with parameters listed in Table 3.1. The upper arm and the lower arm are

connected at the elbow (Figure 3.11). The two links have lengths L1 and L2, masses M1 and

M2, and moments of inertia I1 and I2 respectively. The lower arm’s center of mass is located at
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a distance D2 from the elbow. By considering the geometry of the upper and lower limb, we can

write down the position of the hand as a vector y(t) given by

y =

 L1 cos θ1 + L2 cos(θ1 + θ2)

L1 sin θ1 + L2 sin(θ1 + θ2)

 (3.10)

where the angles θ1 and θ2 are defined in Figure 3.11A. The joint angles θ = (θ1; θ2)T evolve

dynamically according to the differential equation

M(θ)θ̈ + X (θ, θ̇) + Bθ̇ = m(t), (3.11)

wherem(t) is the momentary torque vector (the output of the neural network, c.f. Equation (3.9)),

M is the matrix of inertia, X accounts for the centripetal and Coriolis forces, and B is a damping

matrix representing joint friction. These parameters are given by

M(θ) =

 a1 + 2a2 cos θ2 a3 + a2 cos θ2

a3 + a2 cos θ2 a3

 (3.12)

X (θ, θ̇) = a2 sin θ2

 −θ̇2(2θ̇1 + θ̇2)

θ̇1
2

 B =

 0.05 0.025

0.025 0.05

 (3.13)

with a1 = I1 + I2 +M2L
2
1, a2 = M2L1D2, and a3 = I2.

Target hand trajectories

We generated a set of eight target hand trajectories, namely straight reaches of size d = 20 cm

going from the origin ((0, d) from the shoulder) into eight different directions, with a common

bell-shaped scalar speed profile

v(t) = v0

(
t

τreach

)2
exp

[
−1

2

(
t

τreach

)2
]
, (3.14)

where v0 is adjusted such that the hand reaches the target. Given these target hand trajectories,

we solved for the required timecourse of the torque vector m(t) through optimization, by

backpropagating through the equations of motion of the arm (discretized using Euler’s method)

to minimize the squared difference between actual and desired hand trajectories. We forced the

initial torques at t = 0 to be zero, and also included a roughness penalty in the form of average

squared torque gradient.

Similarly, we then backpropagated through the equations of the recurrent neural network

(Equations (3.7) and (3.9)) to optimize a set of eight movement-specific initial conditions {x?k},

k = 1, . . . , 8, as well as the readout matrix C, so as to achieve the desired torques in the
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output. This was done by minimizing the squared difference between actual and desired torque

trajectories, with a penalty on C’s squared Frobenius norm.

We parameterized the readout matrix C in such a way that its nullspace automatically contains

both the spontaneous activity vector xsp and the movement-specific initial conditions {x?k},

k = 1, . . . , 8. This is to ensure that (i) there is no muscle output during spontaneous activity

and (ii) the network does not unduly generate muscle output at the end of preparation, before

movement. More specifically, prior to movement preparation and long enough after movement

execution, the cortical state is in spontaneous activity xsp. By ensuring thatCφ(xsp) = Cxsp = 0,

we ensure that our model network does not elicit movement “spontaneously”. Similarly, control

inputs drive the cortical state x towards x?k, which it will eventually reach late in the preparation

epoch; therefore, if we did not constrain x?k to be in C’s null-space, premature movements would

be elicited towards the end of preparation.

Training of other network classes

In Figures 3.5 and 3.7, we considered three other network types: ‘full’, ‘low-rank’, and ‘chaotic’

networks, which differed from the ISN in the way we constructed their synaptic connectivity

matrices. We implemented 10 independent instances of each class.

Synaptic weights in the chaotic networks were drawn from a normal distribution with mean

−25/N and variance 1.82/N [83]. The connectivity matrices of the full and low-rank networks

were obtained through optimization. Specifically, we jointly optimized W , {x?k}k=1,...,8, and C

to minimize errors in output torque just as described above for the ISN. Following Sussillo et al.

[178], we also added a penalty on the squared Frobenius norm of both C and W . While we

optimized every element of W for the full networks, we parameterized the low-rank networks as

W = Wbase + uvT , (3.15)

where uvT is a rank-5 perturbation to a random connectivity matrix Wbase. Here, both u and

v ∈ RN×5 are free parameters, whereas Wbase is a fixed matrix with elements drawn anew for

each network instance from N (0, 0.92/N).

We found that the addition of the reach-independent input h(t) during the movement epoch

(Equation (3.2)) made these networks difficult to train: they either became unstable, entered a

chaotic regime, or were unable to produce the desired movements altogether. Thus, we excluded

h(t) for all these networks, as well as for the 10 other ISNs that we constructed as part of this

multi-network comparison.
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Similarity transformation of network solutions

A trained (linear) network’s solution is completely determined by the triplet S = (A,C, {x?k}),

whereA , I−W is the state transition matrix, C is the linear readout, and {x?k} for k = 1, · · · , 8

is the set of movement-specific initial conditions. Using an invertible transformation T , we can

construct a new solution given by the triplet S̃ = (Ã, C̃, {x̃?k}), where

Ã = T −1AT , C̃ = CT , and x̃?k = xsp + T −1(x?k − xsp), (3.16)

and h changed to −Ãxsp to ensure the spontaneous state remains the same. To see that S̃ is

also a solution to the task, we note that the output torques m?
k(t) at any time t are equal to

m?
k(t) = Ce(t/τ)Ax?k = C̃e(t/τ)Ãx̃?k = m̃?

k(t). (3.17)

In Figure 3.7, we build the surrogate networks by applying the similarity transformation T that

(block-)diagonalizes A, resulting in Ã of the form:

Ã =



. . .

cj
. . .

ak bk

−bk ak
. . .


(3.18)

where {ck} and {ak ± ibk} are the sets of real and complex-conjugate eigenvalues of A. The

resulting Ã is a “normal” matrix (ÃÃT = ÃT Ã; 189), which—contrary to the original matrix

A—is unable to transiently amplify the set of movement-specific initial states {x̃?k} during

movement (Figure 3.7D). In order to be able to meaningfully compare ‖C‖F and ‖C̃‖F in

Figure 3.7F, we scale T so as to preserve the average magnitude of the initial states (relative to

the spontaneous state): ∑
k

‖x̃?k − xsp‖2 =
∑
k

‖x?k − xsp‖2. (3.19)

We can always achieve this because Ã = T −1AT = (αT )−1A(αT ) for any α 6= 0.

3.4.2 Formalization of anticipatory motor control

We formalise the notion of anticipatory control by asking: given an intended movement (indexed

by k), and the current (preparatory) state x(t) of the network, how accurate would the movement

be if it were to begin now? We measure this prospective motor error as the total squared
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difference Ck(x) between the timecourses of the target torques m? and those that the network

would generate (Equations (3.7) and (3.9)) if left uncontrolled from time t onwards, starting

from initial condition x(t):

Ck(x) ,
∫ ∞
t

dt′

τ
‖m(t′)−m?

k(t′ − t)‖2 with u(t′ ≥ t) = 0 (3.20)

(we will often drop the explicit reference to the movement index k to remove clutter, as we did in

the main text). Thus, any preparatory state x is associated with a prospective motor error C(x).

The prospective error C(x) changes dynamically during movement preparation, as x(t) evolves

under the action of control inputs. The aim of the control inputs is to rapidly decrease this

prospective error, until it drops below an acceptably small threshold, or until movement initiation

is forced. We formalize this as the minimization of the following control cost:

J [u(t)] ,
〈∫ ∞

0

dt

τ
(C (x(t)) + λR (u(t)))

〉
p(x(t=0))

(3.21)

where R(u) is a regularizer (see below) and the average 〈·〉 is over some distribution of states we

expect the network to be found in at the time the controlled preparatory phase begins (we leave

this unspecified for now as it turns out not to influence the optimal control strategy – see below).

Thus, we want control inputs to rapidly steer the cortical network into states of low C(x) from

which the movement can be readily executed, but these inputs should not be too large. The

infinite-horizon summation expresses uncertainty about how long movement preparation will

last, and indeed encourages the network to be “ready” as soon as possible.

Mathematically, J [·] is a functional of the spatio-temporal pattern of control input u(t) —

indeed, x(t) depends on u(t) through Equation (3.7). The regularizer R(u), or “control effort”,

encourages small control inputs and will be specified later. Without regularization, the problem

is ill-posed, as arbitrarily large control inputs could be used to instantaneously force the network

into the right preparatory state in theory, leading to physically infeasible control solutions in

practice. Also note that Equation (3.21) is an “infinite-horizon” cost, i.e. the integral runs from

the beginning of movement preparation when control inputs kick in, until infinity. This does not

mean, however, that the preparation phase must be infinitely long. In fact, good control inputs

should (and will!) bring the integrand close to zero very fast, such that the movement is ready

to begin after only a short preparatory phase (see e.g. Figure 3.4A in the main text).

In order to derive the optimal control law, we further assume that the dynamics of the network

remain approximately linear during both movement preparation and execution. This is a good

approximation provided only few neurons become silent in either phase (the saturation at zero

firing rate is the only source of nonlinearity in our model, c.f. φ(·) in Equation (3.7); Figure 3.12).
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Figure 3.12: Role of the nonlinearity in preparatory control. (A) Distribution of firing

rates across all neurons, times (including both preparation and movement epochs) and reach

conditions. (B) Firing rate range (max − min) across time and reach conditions, computed for

each neuron in monkey J, monkey N, and the model (min, 25th percentile, median, 75th percentile,

max). (C) Prospective motor error during optimal preparation, under three different assumptions.

NL: nonlinear network dynamics during preparation, but prospective error computed assuming

linear dynamics during movement (c.f. Figure 3.4A of the main text). LL: same as NL, but

with linear dynamics during preparation. NN: nonlinear dynamics during preparation, and

prospective error computed using rollouts of the same nonlinear network dynamics during the

movement-epoch. In all three cases, the optimal preparatory inputs were computed assuming a

linear model as throughout the paper.

In this case, the prospective motor error C(x) of Equation (3.20) affords a simpler, interpretable

form, which we derive now. In the linear regime, Equation (3.7) becomes

τ
dx

dt
= Ax(t) + h+ h(t) + u(t) (3.22)

with an effective state transition matrix A ,W − I. The network output at time t′, starting

from state x at time t′ = 0 and with no control input thereafter, has an analytical form given by

m(t′) = C
[
e(t′/τ)A(x− xsp) + q(t′)

]
(3.23)

and similarly for m?(t′) with x replaced by x?. The final term q(t′) is a contribution from the

external input: it does not depend on the initial condition, and is therefore the same in both

cases. Thus, the prospective motor error (Equation (3.20)) attached to a given preparatory state

x is

C(x) =
∫ ∞

0

dt′

τ
‖Ce(t′/τ)A(x− x?)‖2 = (x− x?)T

[∫ ∞
0

dt′

τ

(
e(t′/τ)ATCTCe(t′/τ)A

)]
︸ ︷︷ ︸

Q

(x− x?).

(3.24)
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The matrix integral on the r.h.s. of Equation (3.24) is known as the “observability Gramian” Q

of the pair (A,C) [86, 168]. It is found algebraically as the solution to the Lyapunov equation1

ATQ+QA+CTC = 0. (3.25)

Thus, under linearity assumptions, the prospective motor error is a quadratic function of the

difference between the momentary preparatory state x and an optimal initial state x? known

to elicit the right muscle outputs in open loop. The Gramian Q, a symmetric, positive-definite

matrix, determines how preparatory deviations away from x? give rise to subsequent motor errors.

Deviations along the few eigenmodes of Q associated with large eigenvalues will lead to large

errors in muscle outputs. The optimal control input u(t) will need to work hard to minimize this

type of ‘prospectively potent’ deviations – luckily, there are few (see Figure 3.3D in the main text,

where the top 20 eigenvalues of Q are shown; see also Section 3.4.3 for further dissection). In

contrast, errors occurring along eigenmodes of Q with small eigenvalues – the vast majority – have

almost no motor consequences (‘prospectively null’). This large bottom subspace of Q provides a

safe buffer in which preparatory activity is allowed to fluctuate without sacrificing control quality.

It comprises both the “readout-null” and “dynamic-null” directions described in the main text

(Figure 3.3). Geometrically, we can therefore think of the optimal preparatory subspace as a

high-dimensional ellipsoid centered on x?, and whose small and (potentially inifinitely) large axes

are given by the top and bottom eigenvectors of Q, respectively (small axes, steep directions,

large eigenvalues; long axes, flat directions, small eigenvalues).

Finally, we note that the optimal control input u(t) must keep the infinite-horizon integral in

Equation (3.21) finite. This is achieved if x(t) reaches a fixed point equal to x?, which is in turn

achieved if the control input eventually settles in a steady state equal to

u? = −Ax? − h (3.26)

Thus, defining δu(t) , u(t)− u? and δx(t) , x(t)− x?, a relevant regularizer for our control

problem is

R (u(t)) , ‖δu(t)‖2 (3.27)

and our control cost functional becomes

J [u(t)] =
〈∫ ∞

0

dt

τ

[
δx(t)TQδx(t) + λ‖δu(t)‖2

]〉
p(x(t=0))

. (3.28)

1 This result is central to the theory of linear quadratic control, where cost functions are often of the form of

integrated squared functions of the state, output, or input, under linear dynamics. It allows one to manipulate

these integrals algebraically, and compute them numerically by solving a linear matrix equation (e.g. 9). Indeed

we will use this result again several times below in different contexts.
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In our simulations, we perform a simple scalar normalization of Q so that Tr (Q) = N . This

makes the first term of the cost more easily comparable to the energy penalty λ‖δu‖2, which also

scales with N . In the next section, we show that the quadratic formulation of J in Equation (3.28)

leads to analytically tractable optimization. In the rest of the Star Methods, as in the main

text, we continue to assume linear network dynamics in order to derive optimal control laws but

implement these solutions in the fully nonlinear circuit.

Classical LQR solution

When no specific constraints on u(t) are imposed, the minimization of Equation (3.28) is given

by the celebrated linear quadratic regulator (LQR). Specifically, the optimal control input

uopt(t) = u? + δuopt(t) takes the form of instantaneous linear state feedback (Figure 3.14A):

δuopt(t) = K δx(t) with K = −λ−1P (3.29)

where P is a symmetric, positive-definite matrix, obtained as the solution to the following Riccati

equation:

ATP + PA− λ−1PP +Q = 0. (3.30)

We will recover this optimal feedback law in Section 3.4.6 as part of a more general mathematical

derivation; for now, we refer to standard texts, e.g. 168.

Thus, to achieve optimal anticipatory control of fast movements, the best strategy for the

preparatory phase is to feed back into the circuit a linearly weighted version of the momentary

error signal δx(t). The optimal feedback matrix K turns out to not depend on the choice of

distribution p(x(t = 0)). For a linear model, this also implies that K does not depend on

the specific movement to be performed, i.e. on the specific state x? to be approached during

preparation. Only the steady-state control input u? in Equation (3.26) is movement-specific.

The total control cost is given by J = δxT0 Pλδx0, where δx0 is the deviation of the network

state from x? at the onset of movement preparation (i.e., the state of the network at preparation

onset is x? + δx0). The corresponding total energy cost
∫
Rdt is given by δxT0 Y δx0 where Y is

the solution to

AT
clY + Y Acl + λ−2PP = 0, (3.31)

and

Acl , A+K = A− λ−1P (3.32)

is the effective state matrix governing the dynamics of the closed control loop. The associated

integrated prospective motor cost is then given by
∫
C(x(t))dt = δxT0 (P − λY ) δx0. This is how
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Equation (3.24). Note that νi is also the motor error C incurred by a deviation of the preparatory

state x? of unit length in the direction of the corresponding eigenvector vi, just prior to movement.

Right: same νi and Emin as shown on the left, plotted against each other.

we evaluate the total energy cost and integrated prospective motor cost in Figure 3.5H.

We emphasize that the LQR problem (and its solution in Equation (3.29)) assumes linear

dynamics throughout the preparatory and movement epochs to compute (and optimize) the

prospective motor cost C(x(t)). We verified that the quadratic form of Equation (3.24) provides a

good approximation to the actual C(x(t)) resulting from nonlinear dynamics during the movement

epoch (Figure 3.12C). Moreover, all our simulations use the nonlinear activation function φ(·) in

Equation (3.7) unless indicated otherwise.

Naive feedforward solution

A straightforward solution exists for ensuring that, after enough preparation time, x(t) converges

exponentially to x? – thus eventually leading to the correct movement. This “naive” solution

consists in setting u(t) to the constant vector u? in Equation (3.26) (thus δu(t) = 0 throughout

preparation). Note that for the full nonlinear model, u? = x? −Wφ [x?] − h. This constant

input is provided during movement preparation and removed at the desired time of movement

onset. This naive strategy does not rely on feedback, and so can be seen as a type of feedforward

preparatory control. It also corresponds to the LQR solution in the limit of infinite energy

penalty λ in Equation (3.28), and indeed the solution in this limit yields K = 0, resulting in

R(u(t)) = 0.
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3.4.3 Control geometry of the ISN

The optimal LQR strategy can be used to expose the challenges associated with controlling the

inhibition-stabilized model of M1 that we use here. Indeed, network activity may be more easily

controlled (or “steered”) along some directions than along others, and having analytical access

to the optimal control inputs (Equations (3.29) and (3.30)) allows us to quantify this “control

geometry”. Specifically, we quantify control performance as E =
∫∞

0 (δxTQδx)dt, i.e. our original

cost functional J in Equation (3.21) without the input energy penalty. We can then ask: what is

the smallest such cost Emin that can be achieved with a fixed input energy budget
∫∞

0 ‖δu‖2dt?

We know that Emin is achieved by the LQR solution δu = λ−1Pλ (we use the ·λ subscript to

make the dependence of P on λ explicit). It can be shown that the input energy induced by this

optimal feedback law is a decreasing function of λ. Thus, all we need to do is find the λ that

gives us the desired value of
∫∞

0 ‖δu‖2dt, and evaluate Emin for this particular λ. Importantly,

the result will depend on the state of the cortical network at the beginning of the controlled

preparatory phase, relative to the target x?.

A simple derivation based on the LQR Ricatti equation shows that starting the control phase from

some initial condition x? + δx0 yields a total control cost equal to J = δxT0 Pλδx0. Moreover,

the corresponding energy cost is given by δxT0 Y δx0 where Y is the solution to

AT
clY + Y Acl + λ−2PλPλ = 0, (3.33)

and

Acl , A+K = A− λ−1Pλ (3.34)

is the effective state matrix governing the dynamics of the closed control loop. For a given δx0,

we use a simple root-finding method (bisection with initial interval bracketting) to find the λ that

achieves the set, desired energy cost (our fixed “energy budget”). For this λ, we then calculate

the associated control cost E = δxT0 (P − λY ) δx0. This is plotted in Figure 3.13, for initial

deviations of x from x? chosen to be the top 20 eigenvectors of Q, ranked by their respective

eigenvalues νi (Equation (3.24)).

Figure 3.13 (right) shows that there is “no free lunch”: preparatory deviations from x? that

induce the worst motor errors (the top eigenvectors of Q, with the largest eigenvalues νi) are

also those that are the most difficult to control, i.e. for which the minimal control cost Emin will

be largest for a fixed input energy budget.

From the point of view of dynamical systems, this result is rather intuitive. The optimal initial

conditions {x?k} (found via optimization to achieve the required torques; Section 3.4.1) are
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positioned in state space where the flow induced by the recurrent connectivity is strong – strong

enough to elicit rich transients that can be decoded into torques patterns that grow transiently

before decaying. To steer M1 towards (and maintain it at) these states, the input δu(t) (and

the steady input u?) must work against the strong local flow of the recurrent dynamics. This

requires large inputs. From a physiological standpoint, this is also intuitive. The optimal initial

states {x?k} are shown to be states in which the E/I balance is momentarily broken [73]. Much

input energy must be spent to sustain an E/I imbalance in a network whose connectivity strives

to maintain balance.

3.4.4 Adapting optimal control to chaotic networks

In Figure 3.5D, we adapt optimal preparatory control to a chaotic network and find that LQR

stabilizes its otherwise unstable dynamics during movement preparation. Thus far, we have

assumed that A is Hurwitz-stable in deriving the optimal control law, which allows us to evaluate

the integral in Equation (3.24) analytically by solving Equation (3.25). This integral diverges for

unstable A, and thus cannot be evaluated for a chaotic network. In this work, we simply set

Q = I for the chaotic network, which likely overestimates the number of state-space directions

that matter for preparatory control. More sophisticated methods could potentially be used for

estimating the sensitivity of these nonlinear dynamics to errors in the initial condition. This

would presumably lead to faster preparation for a set energy budget R(u(t)), but we leave this

for future work.

3.4.5 Preparing in the nullspace

In Figure 3.10, we extend the optimal control model to explicitly penalize non-zero output torques

during movement preparation. Specifically, we augment the cost functional in Equation (3.28)

with a penalty on the integrated squared magnitude of m(t), which can be written as a quadratic

form in δx much like the prospective motor cost in Equation (3.24):

∫ ∞
0

dt

τ
‖m(t)‖2 =

∫ ∞
0

dt

τ
δxTCTCδx (3.35)

where m(t) = Cδx because we have constrained the initial conditions {x?k} to be in the nullspace

of C. We thus write the combined cost functional as

J [u(t)] =
〈∫ ∞

0

dt

τ

[
δx(t)T Q̃δx(t) + λ‖δu(t)‖2

]〉
p(x(t=0))

(3.36)
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with

Q̃ = ηQ+ (1− η)N CTC

Tr(CTC) , (3.37)

where η ∈ [0, 1] is a scalar that weighs the relative importance of preparing fast and preparing

while not moving (η = 0.2 in Figure 3.10).

3.4.6 Optimality under neural constraints

dx
dt

u?

δu = Kδx

A cortex

dx
dt

u?

δu = KδxE

B cortex

x
ũ?

cortexC

y

thalamus

z

KyxKzy

Kxz

dx
dt

ũ?
cortexD

dy
dt

thalamus

dz
dt

KyxKzy

Kxz

Figure 3.14: Four steps to arrive at a biologically plausible implementation of optimal anticipatory

motor control. (A) The classical LQR solution prescribes instantaneous state feedback, with

reentrant control inputs of the form of δu(t) = Kδx(t) and a constant external input u?.

Section 3.4.2 shows how to obtain the optimal feedback matrix K in this case. (B) It is

possible to constrain feedback to be of the form δu(t) = K [INE 0Ni ] δx(t) = KδxE(t) instead.

Section 3.4.6 shows how to obtain the optimal feedback matrix K in this case. (C) For flexibility,

we propose that feedback be relayed by the motor thalamus, which is under the gating control

of the basal ganglia. In Section 3.4.6, we show that the optimal feedback gain K obtained in

(B) can be decomposed into sign-constrained matrices implementing E connections from M1 to

thalamus (Kyx), from thalamus to M1-layer 4 (Kzy), and Dale-structured E/I connections from

layer 4 back into the main recurrent M1 circuit (Kxz). (D) Finally, first-order dynamics can be

introduced in our model thalamus and M1-layer 4 neurons. We show in Section 3.4.6 how the

lag introduced by such dynamics can be taken into account, to obtain a set of connections that

achieve optimal anticipatory control of movement under these biological constraints.

The linear quadratic regulator presented in Section 3.4.2 brings the fundamental insight that

control can (and in fact, should) be achieved via a feedback loop (Figure 3.14A). Such a loop

could technically be embedded directly as a modification of the recurrent connectivity within M1,

as all that matters for the control cost is the effective closed-loop state matrix A+K. However,
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this would make it very difficult to switch the loop ON when movement preparation must begin,

and OFF again when the movement is triggered. A more flexibly strategy would be to have the

loop pass through another brain area, and gain-modulate this area (e.g. via inhibitory drive) to

close or open the loop when appropriate.

A natural candidate structure for mediating such cortico-cortical feedback is the motor thalamus,

which has been shown to be causally involved in movement preparation [63]. Importantly, basic

anatomy and physiology pose constraints on the type of connectivity and dynamics around the

control loop, such that we will have to adapt the classical LQR theory to derive plausible circuit

mechanisms. In particular, the thalamus is not innervated by the local inhibitory interneurons

of M1, so feedback will have to computed based on the activity of (some of) the excitatory

cells only, precluding full-state feedback. Moreover, the optimal LQR gain matrix K (given by

Equations (3.29) and (3.30)) contains both positive and negative elements with no structure;

this violates Dale’s law, i.e. that neurons can be either excitatory or inhibitory but are never of a

mixed type. Finally, the classical LQR solution prescribes instantaneous state feedback, whereas

thalamic neurons will have to integrate their inputs on finite timescales, thereby introducing

some “inertia”, or lag, in the feedback loop. In the rest of this section, we flesh out these

biological constraints in more detail, and show that all of these limitations can be addressed

mathematically, to eventually yield optimal control via a realistic thalamocortical feedback loop

(see Figure 3.14B-D for a graphical overview).

Feedback based on excitatory neurons only

Here, we incorporate the key biological constraints that feedback from the cortex onto itself via the

thalamus will have to originate from the excitatory cells only. Thus, instead of δu(t) = Kδx(t),

we look for a feedback matrix of the form (Figure 3.14B)

K = ZΓ (3.38)

where Γ , [INE 0NE×NI ] singles out the activity of the E neurons when computing the control

input Kδx, and Z is an N ×NE matrix of free parameters. To gain generality (which we will

need later), we also assume that the control input enters the network through a matrix B, i.e.

the closed-loop state matrix (Equation (3.32)) becomes Acl = A+BZΓ, and the energy penalty

becomes λ‖Bδu(t)‖2. We now derive algebraic conditions of optimality for Z, along with a

gradient-based method to find the optimal Z that fulfills them.

First, we use the general result of Equation (3.25) (see also Footnote 1) to rewrite the cost
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function J in Equation (3.28) as:

J (Z) = Tr (P ) (3.39)

where P satisfies

0 = G(P ,Z) , AT
clP + PAcl +Q+ λΓTZTBTBZΓ. (3.40)

Note that J in Equation (3.39) is now a function of the feedback matrix K, and therefore of the

parameter matrix Z. To minimize J w.r.t. Z subject to the constraint in Equation (3.40), we

introduce the Lagrangian:

L(P ,Z,S) , Tr (P ) + Tr (G(P ,Z)S) , (3.41)

where S is a symmetric matrix of Lagrange multipliers (the matrix equality in Equation (3.40) is

symmetric, thus effectively providing N(N + 1)/2 constraints). After some matrix calculus, we

obtain the following coupled optimality conditions:

0 = ∂L/∂P = AclS + SAT
cl + I (3.42)

0 = ∂L/∂S = G(P ,Z) (3.43)

0 = ∂L/∂Z = 2BT (P + λBZΓ)SΓT . (3.44)

When the two Lyapunov equations Equations (3.42) and (3.43) are satisfied, the second term

(Tr (GS)) in L vanishes, such that ∂L/∂Z of Equation (3.44) is in fact the gradient of Tr (P )

w.r.t. Z subject to the algebraic constraint of Equation (3.40). We use this gradient equation,

together with the L-BFGS optimizer [15] to find the optimal parameter matrix Z. We then

recover the optimal feedback gain matrix K according to Equation (3.38). We start each

optimization by setting Z = KΓT (ΓΓT )−1, where K is the classical LQR solution to the same

problem, such that Z is the least-square solution to K = ZΓ.

Dale’s law

The previous subsection showed how to obtain a gain matrix K of size N ×NE that implements

optimal, instantaneous cortico-cortical feedback originating from the excitatory cells. However,

this optimal matrix typically has a mix of positive and negative elements that are not specifically

structured. To implement the more realistic feedback architecture shown in Figure 3.14C,

implicating the motor thalamus and M1 layer 4 (M1-L4), we seek a decomposition of the form

K ≈ Kxz︸︷︷︸
(+|−)

Kzy︸︷︷︸
(+)

Kyx︸︷︷︸
(+)

(3.45)
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where Kyx (M1 to thalamus) is an NE × N matrix of non-negative elements, Kzy (thalamus

to M1-L4) is an M × NE matrix of non-negative elements, and Kxz (M1-L4 to the recurrent

M1 network) is an N ×M matrix composed of ME non-negative columns and MI non-positive

columns (thus M = ME +MI). Such a sign-structured decomposition will allow optimal control

to be performed through the more realistic feedback architecture shown in Figure 3.14C, with

corresponding dynamics of the form:

M1 τ
dx

dt
= −x(t) +Wφ [x(t)] + h+ h(t) + ũ? +Kxzφ[z(t)] (3.46)

M1-layer 4 z(t) = Kzyφ[y(t)]

Thal. y(t) = Kyxφ[x(t)]

where

ũ? = x? − (W +K)φ(x?)− h (3.47)

is a condition-dependent steady input given to the network during movement preparation so as

to achieve the desired fixed point x?.

To achieve this decomposition, we note that without loss of generality we can choose Kyx =

[R 0NE×NI ] – where R is a random, element-wise positive NE × NE matrix – and apply the

algorithm developed in Section 3.4.6 now with Γ = Kyx. This will return an optimal N ×NE

matrix Z describing feedback from thalamus back to M1, which – as long as R is invertible –

will achieve the same minimum cost as if R had been set to INE (as in Section 3.4.6). Here, we

simply draw each element of R from Bernoulli(p), i.e. random sparse projections (the magnitude

of R does not matter at this stage, as only the product ZΓ does; R will be renormalized later

below). We now need to decompose this optimal feedback matrix as Z = KxzKzy, with the

same sign constraints as in Equation (3.45). We approach this via optimization, by minimizing

the squared error implied by the decomposition, plus an 2-norm regularizer:

‖Z −KxzKzy‖2F
‖Z‖2F

+ γ
(
‖Kxz‖2F + ‖Kzy‖2F

)
(3.48)

We parameterize each element of Kxz and Kzy as ±z2, where z is a free parameter to be

optimized, and the ± sign enforces the sign structure written in Equation (3.45). Minimization

is achieved using BFGS and typically converges in a few tens of iterations. We note that the

product KxzKzyKyx is invariant to any set of rescalings of the individual matrices as long as

they cancel out to 1. Thus, after optimization, we re-balance the three matrices such that they

have identical Frobenius norms. This is mathematically optional, but ensures that firing rates in

M1, thalamus and M1-L4 have approximately the same dynamic range.
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Importantly, we find that as long as the number of M1-L4 neurons (M) is chosen sufficiently

large, the decomposition of Z that we obtain is almost exact, which implies that the dynamics of

Equation (3.46) still achieves optimal anticipatory control of movement under the architectural

constraint of Equation (3.38).

Taking into account integration dynamics in thalamus and M1-layer 4

The optimal control solution that we arrived at in Equation (3.46) still relies on instantaneous

feedback from cortex back onto itself. However, neurons in the thalamus and in M1’s input layer

have their own integration dynamics – this will introduce lag around the loop, which must be

taken into account when designing the optimal feedback. We therefore include these dynamics:

M1 τ
dx

dt
= −x(t) +Wφ [x(t)] + h+ h(t) + ũ? +Kxzφ[z(t)] (3.49)

M1-layer 4 τz
dz

dt
= −z +Kzyφ[y(t)]

Thal. τy
dy

dt
= −y +Kyxφ[x(t)]

where the steady input ũ? is again given by Equation (3.47), and {τy, τz} are the single-neuron

time constants in the thalamus and the cortical input layer. We then seek the optimal connectivity

matrices {Kxz,Kzy,Kyx} to fulfill the same optimal-control principles as before, namely the

minimization of the cost functional in Equation (3.28). In order to do that, we note that the

dynamics of x (M1 activity) in the linear regime do not change if the system of differential

equations in Equation (3.49) is simplified as

M1 τ
dx

dt
= (W − I)x(t) + h+ h(t) + ũ? +Kz(t) (3.50)

M1-layer 4 τz
dz

dt
= −z + y(t)

Thal. τy
dy

dt
= −y + x(t)

where K = KxzKzyKyx summarizes the three connectivity matrices around the loop into one

effective feedback gain matrix. This formulation allows us to combine the steps developed in

Section 3.4.6 to find the optimal connectivity matrices.

Specifically, we apply the algorithm of Section 3.4.6 to an augmented system with state matrix

A′ ,


A 0N×NE 0N×NE

(τ/τy)[R 0] −(τ/τy)INE 0NE

0 (τ/τz)INE −(τ/τz)INE

 , (3.51)
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input matrix

B′ ,


IN

0NE×N

0NE×N

 , (3.52)

quadratic cost weighting matrix

Q′ ,


Q 0N×NE 0N×NE

0NE×N 0NE×NE 0NE×NE

0NE×N 0NE×NE 0NE×NE

 (3.53)

and feedback input parameterized as

u = Kx with K = ZΓ = Z [0NE×N 0NE×NE INE ] (3.54)

In Equation (3.51), the matrix R is again a random matrix of sparse positive connections

from M1 to thalamus (cf. Section 3.4.6 above). The optimal Z (Section 3.4.6) corresponds to

the product KxzKzy, which we can further decompose under sign constraints to recover the

individual connectivity matrices Kxz and Kzy.

Disinhibitory action of the basal ganglia

We model the disinhibitory action of the basal ganglia (BG) on thalamic neurons as an on-off

switch: to trigger movement, BG become active (BG neurons not explicitly modelled here) and

the thalamic neurons are silenced instantly (i.e. y is set to 0). When this happens, thalamic inputs

to M1-L4 vanish and M1-L4 neural activity decays to zero on a time-scale τz (see Equation (3.51)).

As the activity of L4 neurons decays, these neurons continue to exert an influence on M1 activity

through the connectivity matrix Kzx. This lead to changes in movement-related M1 dynamics,

resulting in small movement errors, which we correct post-hoc by re-optimizing the desired initial

state x? for each movement. From these new desired states, network dynamics evolves—with

the additional inputs from M1-L4 neurons after movement onset—to produce accurate hand

trajectories. Crucially, unlike what we described in Section 3.4.1, we do not re-optimize the

readout matrix C here. This is because the observability Gramian Q and thus the closed-loop

controller K depend on C: changing the readout matrix C at this stage would cause the K we

found to no longer be optimal with respect to J . However, because the closed-loop solution does

not depend on the desired fixed points x?, we can re-optimize x? and still be guaranteed that

the K that we found remains optimal.
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Modelling the effect of photoinhibition

To model photoinhibition in our full circuit (whose dynamics are described by Equation (3.46)),

we simply add a constant positive input hph to a subset of cortical inhibitory neurons chosen

randomly, for a duration Tph = 400 ms (see parameters in Table 3.1). This results in an overall

decrease in population activity across both excitatory and inhibitory neurons, consistent with

the well-known paradoxical effects of adding positive inputs to I cells in inhibition-stabilized

networks [128, 156, 190].

In Figure 3.9D, we consider how, after photoinhibition, the activity of the full circuit recovers

in three subspaces: the coding subspace (CS), the persistent subspace (PS), and the remaining

subspace (RS). To define the CS, we focus on unperturbed neural activity in the last 400 ms of

movement preparation. For each movement condition, we compute the time-averaged population

activity vector in this time window and combine them into a data matrix Xunpert ∈ RN×8. We

perform principal components analysis (PCA) on Xunpert and extract an orthonormal basis UCS,

which captures 90% of the variance in Xunpert. The CS is defined as the subspace spanned by

the columns of UCS.

The PS and the RS are defined specifically for each perturbation experiment. In each experiment,

we simulate the perturbed dynamics of the network for each movement condition, each with a

different random subset of inhibitory neurons being ‘photostimulated’. To compute the PS, we

consider the same time window that we do for the CS and calculate the perturbed, time-averaged

population activity vector for each movement. We again collate them into a matrix Xpert ∈ RN×8

and perform PCA on the deviation induced by the perturbations in the given experiment,

∆ = Xpert−Xunpert. We extract an orthonormal basis UPS, which captures 90% of the variance

in ∆. The PS is defined as the subspace spanned by the columns of UPS. Similarly, to compute

the RS, we construct the data matrix Y =
[
Xunpert Xpert

]
in each perturbation experiment

and orthogonalize it with respect to both UCS and UPS. We perform PCA on the resulting data

matrix and again extract an orthonormal basis URS that captures 90% of the variance, which

defines the RS. We find that the three subspaces combine to capture 98% of the total variance

in Y , averaged over 300 independent perturbation experiments.

To examine how activity trajectories recover in the three subspaces, we project the perturbed

and unperturbed activity onto UCS, UPS, and URS and calculate the magnitude of the deviation

in each subspace. This is averaged over all movements and 300 independent perturbation

experiments, which is what is shown in Figure 3.9D.
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3.4.7 Universal performance of naive feedforward control

In this section, we show that for a linear system solving a motor task, the anticipatory control

cost J under the naive feedforward strategy only depends on the movements that are generated

as part of the task.

Consider a network characterized by a state matrix A and generating a given movement using

readout weights C and an initial condition x? using the following movement-epoch dynamics:

τ
dx

dt
= Ax(t) + h (3.55)

where h = −Axsp sets the spontaneous fixed point at xsp. These are the same dynamics as

Equation (3.7) but excluding h(t) as explained in Section 3.4.1. When the feedforward strategy

is used for preparatory control, a constant preparatory input u? (Equation (3.26)) is added to

the r.h.s. of Equation (3.55) that instantaneously switches the network’s fixed point from xsp to

x?. Thus,

x(t) = x? + e
t
τ
A(xsp − x?). (3.56)

Now, let x(t, t′) be the activity of the network at time t+ t′, where t marks the end of preparation

and the beginning of the movement. At time t, the constant preparatory input u? is withdrawn,

causing the fixed point of the dynamics to switch back to xsp. Therefore,

x(t, t′) = xsp + e
t′
τ
A(e

t
τ
A − I)(xsp − x?) (3.57)

and the corresponding output torques as Cx(t, t′). To compute the corresponding error in

torques, m(t, t′)−m?(t′), we note that the system produces the target movements with no error

in the limit of infinite preparation time (t→∞). Thus, the momentary error at time t+ t′ is

given by

m(t, t′)−m?(t′) = C
[
x(t, t′)− x(∞, t′)

]
(3.58)

= Ce
t+t′
τ
A(xsp − x?) (3.59)

where we have also used the fact that Cxsp = 0. Importantly, it is easy to show that Equa-

tion (3.59) is in fact equal to the target output torque t + t′ seconds after movement onset,

i.e. m?(t + t′) = Cx(∞, t + t′). In summary, under the naive feedforward control strategy,

motor errors following insufficiently long preparation only depend on the target movements, but

not on the actual (linear) system meant to achieve them. A fortiori, since the control cost J

(Equation (3.28)) is defined based on output errors in torques, it must also be the same for any

network that has been successfully trained to produce the target torques (in the limit of long
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preparation). We calculated this cost to be

Jnaive = 1
τ2

∫∫ ∞
0

dt dt′ ‖m?(t+ t′)‖2. (3.60)

3.4.8 Alignment index under naive feedforward control

Early preparatory activity under the naive feedforward strategy can be shown to be the negative

image of movement-epoch activity, up to a constant offset. Consider a network solution to

the reaching task characterized by linear dynamics with a state matrix A and a set of initial

conditions {x?k}. During the preparatory epoch for movement k, the network activity evolves

according to

τ
dx

dt
= Ax(t) + h̄+ u?k (3.61)

where u?k sets the fixed point of the preparatory dynamics at x?k. Thus, preparatory activity

xp
k(t) for a movement k is given by:

xp
k(t) = x?k + e

t
τ
A(xsp − x?k). (3.62)

Movement-epoch dynamics, on the other hand, obey:

τ
dx

dt
= Ax(t) + h̄+ h(t) (3.63)

where h̄ = −Axsp sets the fixed point at xsp and h(t) is the condition-independent input

(h(t) = 0 for the ‘full’ and ‘low-rank’ networks). Assuming the network activity successfully

reaches x?k during the preparation epoch, movement activity xm
k (t) is given by

xm
k (t) = xsp + e

t
τ
A(x?k − xsp) + q(t), (3.64)

where

q(t) =
∫ t

0
e
t−t′
τ
Ah(t′)dt′ (3.65)

is the contribution of the condition-independent external drive h(t). Comparing Equation (3.63)

and Equation (3.64), we find that xp
k is the negative image of xm

k , up to a constant offset, and

condition-independent temporal variations:

xp
k(t) = −xm

k (t) + x?k + xsp + q(t). (3.66)

In computing the alignment index, Elsayed et al. [37] first removed the mean across condition at

every time point, and we do the same here. Therefore,

x̂p
k(t) = −x̂m

k (t) + x̂?k (3.67)

where ·̂ denotes deviation from the condition mean. This explains the high alignment index of

all network classes under the naive feedforward strategy (Figure 3.7C).
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3.5 Quantification and statistical analysis

3.5.1 Network measures

Participation ratio To estimate the dimensionality of subspaces, we use the “participation

ratio” [51], calculated based on the eigenvalue spectrum σ1, σ2, · · · , σN of the relevant symmetric,

positive-definite matrix as

(
∑
i σi)2∑
i σ

2
i

. (3.68)

Nonnormality In Figure 3.5E, we define the nonnormality of a network with synaptic connec-

tivity matrix W as

‖W ‖2F − ‖Λ‖2F
‖W ‖2F

(3.69)

as proposed by Murphy and Miller [121], where Λ is a diagonal matrix containing the eigenvalues

of W .

H2 norm In Figure 3.5F, we define the H2 norm of a network as
√

Tr (Wo), where the

full-state observability Gramian Wo satisfies the Lyapunov equation ATWo + WoA+ I = 0

and A = −I +W .

Prospective motor potency The prospective motor potency of a state space direction d

(with ‖d‖ = 1) is dTQd, where Q satisfies Equation (3.25). This quantifies the prospective motor

error induced by a deviation x? + d of the final preparatory state away from x?. In Figure 3.3D,

we plot the top 20 eigenvalues of Q, i.e. the motor potency of the 20 most potent directions (the

corresponding eigenvectors of Q). The prospective motor potency of a K-dimensional subspace

S, spanned by the unit vectors d1, · · · ,dK , is given by

1
K

K∑
i=1
dTi Qdi. (3.70)

Amplification factor In Figure 3.7D, for each movement k we define the amplification factor

in the model as ‖(x(t)− xsp)‖/‖x?k − xsp‖, where x(t) is the movement-epoch activity evolving

according to Equation (3.7) with h(t) = 0, u(t) = 0, and x(0) = x?k. Description of how we

define the amplification factor for the monkeys can be found below.
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3.5.2 Neural data analysis

We analyzed neural recordings of two monkeys (J and N) performing a delayed reaching task (data

courtesy of Mark Churchland, Matt Kaufman and Krishna Shenoy). Both the task and dataset

have been described in detail previously [22]. Briefly, the two monkeys performed center-out

reaches on a fronto-parallel screen. At the beginning of each trial, they fixated on the centre of

the screen for some time, after which a target appeared on the screen. A variable delay period

(0–1000 ms) ensued, followed by a go cue instructing the monkeys to reach towards the target.

In this paper, we analyzed nine movement conditions, corresponding to the straight reaches that

were most similar to the ones we modelled (Figure 3.2B). Moreover, we restricted our analysis to

the trials with delay periods longer than 400 ms.

Recordings were made in the dorsal premotor and primary motor areas. We preprocessed the

spike trains of 123 neurons for monkey J and 221 neurons for monkey N, following the same

procedure outlined in Churchland et al. [21]. Briefly, we computed the average firing rates for

each movement condition, further smoothed using a 20 ms Gaussian filter. Firing rates were

computed separately for the delay and movement periods, time-locked to target and movement

onset respectively; this is necessary because of variable delay periods and reaction times.

There is some subtletly in our definition of the time of movement onset in the model, when we

compare its activity to monkey data. In the model, movement begins at the same time neural

activity begins to undergo rapid changes, i.e. as soon as control inputs are removed. However, in

the two monkeys, such rapid changes in neural activity occur roughly 100 ms before movement

begins. We attribute such delays in movement to delays in downstream motor processes not

considered in our model. Therefore, to align the temporal profile of neural activity in the model

and the data, we define the time of “movement onset” in the model to be 100 ms after the control

inputs are removed. We perform such temporal alignment in all the data and model comparisons

shown in Figure 3.2, Figure 3.4, and Figure 3.7.

Overlap between preparatory end-states

We calculated the Pearson correlation across neurons between the preparatory end-states in both

model and monkey data for all reaches. Preparatory end-states are defined as the activity states

reached at the end of movement preparation (monkey activity aligned to the go cue). In both

model and monkey data, preparatory end-states are similar (Figure 3.2B, bottom) for reaches

with similar hand trajectories (hand trajectories Figure 3.2B, top), but negatively correlated for

more distant movements.
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Amplification factor

To compute the amplification factor for the two monkeys in Figure 3.7D, we consider firing rates

in a 400 ms window starting 250 ms prior to movement onset. We remove the mean across

conditions and compute for each reach condition, the manitude of the population activity vector,

normalized by its magnitude at the start of this epoch. We then average this across all reach

conditions. The amplification factor quantifies the expansion of the population activity across

neurons during the movement epoch.

jPCA

We used the method described in Churchland et al. [21] to identify state-space directions in

which activity trajectories rotate most strongly. Briefly, we used numerical optimization to fit a

skew-symmetric linear dynamical system of the form ẋ = Sx that best captures the population

activity in a 400 ms window starting 220 ms before movement onset. We projected population

activity in this window onto a plane spanned by the top two eigenvectors of S (Figure 3.2B).

Alignment index

To calculate the alignment index, we closely followed the methods described in Elsayed et al.

[37]. The alignment index is defined as the (normalized) percentage of across-condition variance

during movement captured by the top K principal components (PCs) of the preparatory activity:

Tr
(
DT

moveCprepDmove∑K
i=1 σ

2
i,prep

)
(3.71)

where the K columns of Dmove are the top K principal components of move. activity (“move-

PCs”), Cprep is the covariance matrix of prep. activity, and σ2
i,prep is the prep. activity variance

captured by the ith prep-PC. We choose K such that K prep-PCs captures 80% of the variance

in prep. activity. Here, we define prep. activity as the delay-period activity during a 300 ms

window starting 150 ms after target onset; the activity is calculated time-locked to target onset.

Similarly, move. activity is defined as activity during a 300 ms window starting 50 ms prior to

movement onset; the activity is calculated using firing rates time-locked to movement onset.

Methods for calculating the control of the alignment index are described in detail in the

Supplementary Material of Elsayed et al. [37] and are not reproduced here. For the model, the

alignment index is calculated in the same way as for the neural data.
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Canonical-correlation analysis

To compare model and monkey activity, we performed canonical-correlation analysis (CCA) on

activity in a time window starting 400 ms before and ending 400 ms after movement onset (see

discussion above for nuance in defining the time of movement onset in the model). To avoid

overfitting to noise in CCA [142, 178], we first reduced the dimensionality of the two data sets,

by projecting activity onto the top 21 (monkey J), 21 (monkey N), and 14 (model) principal

components; the number of principal components are chosen to capture 95% of the across-

condition activity variance in the two datasets. We then calculated the canonical correlations

between the two reduced data sets, using the numerically stable algorithm described in Press

[141]. We found that monkey and model activity are similar across time and reaches, with a high

average canonical correlation (Figure 3.2C-E). We obtained similar results when we varied the

number of principal components kept in the two data sets, which in turn varied the number of

canonical variables.
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Chapter 4

Automatic differentiation of

Sylvester, Lyapunov, and algebraic

Riccati equations

Summary

Sylvester, Lyapunov, and algebraic Riccati equations are the bread and butter of control theorists.

They are used to compute infinite-horizon Gramians, solve optimal control problems in continuous

or discrete time, and design observers. While popular numerical computing frameworks (e.g.,

scipy) provide efficient solvers for these equations, these solvers are still largely missing from most

automatic differentiation libraries. Here, we derive the forward and reverse-mode derivatives of

the solutions to all three types of equations, and showcase their application on an inverse control

problem.

4.1 Introduction

In recent years, automatic differentiation (AD) has become the backbone of most modern

machine learning applications and an important tool for scientific enquiry [10]. The success of

AD owes in part to the myriad of forward and reverse-mode derivatives that have been derived for

matrix/tensor operations including most known linear operators and factorizations [56]. These

are commonly available in popular automatic differentiation libraries such as PyTorch [136],

Tensorflow [136], Jax [11], Diffsharp [10], and Zygote [77].

77
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In this technical note, we derive the forward and reverse-mode gradients for solutions to three

important types of matrix equations used extensively in control theory: Sylvester, Lyapunov, and

algebraic Riccati equations. Although efficient solvers are readily available in popular scientific

programming libraries, to the best of our knowledge they remain missing from most automatic

differentiation packages (though CasADi seems to provide Lyapunov solvers; 5, 57). We have

added these solvers to Owl [198], a numerical library written in OCaml with a full-featured AD

module, and we hope that this technical note will enable rapid integration in other popular AD

packages.

4.2 Preliminaries

We use bold upper-case letters to denote matrices and bold lower-case letters to denote vectors.

We use XT , X−1 and tr(X) to denote the transpose, inverse, and trace of a matrix X ∈ Rn×n.

Following Giles [56], we use X to denote the adjoint of matrix X w.r.t. a scalar output `, i.e.

∂`/∂X. We also use Ẋ to denote the tangent of a matrix X w.r.t. some scalar input s, i.e.

∂X/∂s.

Consider a differentiable solver P = f(A,B, . . .). In forward mode, the input tangents (Ȧ, Ḃ, . . .)

are known and used to calculate Ṗ . In reverse mode, the solution’s adjoint P is known and

used to update the input’s adjoints (A,B, . . .). This note consists mainly in deriving the rules

by which these tangents and adjoints should be computed for various types of matrix equation

solvers. All our results are summarized in Tables 4.1 and 4.2.

4.3 Sylvester equations

4.3.1 Continuous time Sylvester equation

The continuous time Sylvester equation takes the form

AP + PB +C = 0, (4.1)

where A, P , B, and C are all square matrices that have the same dimensions. There is a unique

solution P that satisfies Equation (4.1) for a given A, B, and C if and only if A and B have no

common eigenvalue. As we shall see in the following, the matrix derivatives for the solution to

the Sylvester equation is also unique under the same condition on the spectrum of A and B.
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Forward mode Taking the differential on both sides of Equation (4.1), we have

AdP + dP B +
(
dAP + P dB + dC

)
= 0. (4.2)

The forward mode derivative Ṗ can thus be computed by solving another continuous time

Sylvester equation involving the tangents Ȧ, Ḃ, and Ċ:

AṖ + Ṗ B +
(
ȦP + P Ḃ + Ċ

)
= 0. (4.3)

Reverse mode To derive the adjoints A,B,C, we consider the Lagrangian

L(A,B,C,P ) = `(P ) + tr
(
ST (AP + PB +C)

)
, (4.4)

where `(P ) is the scalar output w.r.t. which we wish to compute adjoints, and S is a matrix of

Lagrange multipliers used to enforce Equation (4.1). Taking partial derivatives on both sides of

the Lagrangian and setting them to zero, we obtain:

0 = ∂L
∂P

= ∂`(P )
∂P

+ATS + SBT , (4.5)

0 = ∂L
∂S

= AP + PB +C, (4.6)

0 = ∂L
∂A

= SP T , (4.7)

0 = ∂L
∂B

= P TS, (4.8)

0 = ∂L
∂C

= S. (4.9)

Note that Equation (4.6) does indeed enforce that P be the solution of Equation (4.1). Identifying

P = ∂`/∂P , we find that the Lagrange multiplier S satisfies another Sylvester equation

ATS + SBT + P = 0. (4.10)

After computing S, and noting that when P solves Equation (4.6) then L = `, it is straightforward

to compute the rest of the adjoints1 :

A = SP T , B = P TS, C = S. (4.11)

4.3.2 Discrete time Sylvester equation

We follow a similar approach as above to differentiate through the discrete time Sylvester equation,

which takes the form

APB − P +C = 0, (4.12)

1One can formally show that X = ∂L/∂X for X ∈ {A,B,C} by applying the implicit function theorem (see

144 and references therein).
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where A, P , B, and C are all square matrices that have the same dimensions. There is a unique

solution to Equation (4.12) if and only if σi(A)σj(B) 6= 1 for all i, j, where {σi(X)} denotes the

eigenvalue spectrum of a matrix X.

Forward mode Taking the differential on both sides of Equation (4.12), we have

AdP B − dP +
(
dAPB +AP dB + dC

)
= 0. (4.13)

The tangent of P is thus computed by solving another discrete time Sylvester equation:

AṖ B − Ṗ +
(
ȦPB +AP Ḃ + Ċ

)
= 0. (4.14)

Reverse mode To derive the adjoints A, B and C, we consider the Lagrangian

L(A,B,C,P ,S) = `(P ) + tr
(
ST (APB − P +C)

)
. (4.15)

Taking partial derivatives on both sides of the Lagrangian and setting them to zero, we get:

0 = ∂L
∂P

= ∂f(P )
∂P

+ATSBT − S, (4.16)

0 = ∂L
∂S

= APB − P +C, (4.17)

0 = ∂L
∂A

= SBTP T , (4.18)

0 = ∂L
∂B

= P TATS, (4.19)

0 = ∂L
∂C

= S. (4.20)

Identifying P = ∂f(P )/∂P , we find that the Lagrange multiplier S satisfies another discrete

time Sylvester equation

ATSBT − S + P = 0. (4.21)

The adjoints are given by

A = SBTP T , B = P TATS, C = S. (4.22)

4.4 Lyapunov equations

4.4.1 Continuous time Lyapunov equation

The continuous time Lyapunov equation is given by

AP + PAT +Q = 0, (4.23)
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where A, P , and Q are square matrices that have the same dimensions. Note that the Lyapunov

equation is a special case of the Sylvester equation in Equation (4.1), with B = AT and C = Q.

In control theory, we are most commonly concerned with solutions to the Lyapunov equation

when Q is a symmetric matrix, which also results in a symmetric P . Below, we derive P and Ṗ

in the general case, and specialize to the case where Q is symmetric afterwards.

Forward mode Taking the differential on both sides of Equation (4.23), we get

AdP + dP AT +
(
dAP + P dAT + dQ

)
= 0. (4.24)

Thus, Ṗ satisfies the continuous time Lyapunov equation:

AṖ + ṖAT +
(
ȦP + PȦT + Q̇

)
= 0. (4.25)

Reverse mode In reverse-mode, we consider the Lagrangian

L(A,Q,P ,S) = `(P ) + tr
(
ST (AP + PAT +Q)

)
, (4.26)

where S is the Lagrange multiplier and `(P ) is some loss downstream that is a function of P .

Taking partial derivatives and setting them to zero, we get the following equations

0 = ∂L
∂P

= ∂`(P )
∂P

+ATS + SA (4.27)

0 = ∂L
∂S

= AP + PAT +Q (4.28)

0 = ∂L
∂Q

= S (4.29)

0 = ∂L
∂A

= SP T + STP . (4.30)

In reverse-mode, ∂`(P )/∂P = P , which is known in the reverse pass. We can thus compute S,

by solving the Lyapunov equation

P +ATS + SA = 0. (4.31)

This then gives:

A = SP T + STP and Q = S (4.32)

using the equations above. If Q is a symmetric matrix, as is the case in most control applications,

then P and S are also symmetric. In addition, if Q is positive semi-definite and all eigenvalues

of A have negative real parts, then P and S are positive semi-definite.



82 CHAPTER 4. AUTOMATIC DIFFERENTIATION OF MATRIX EQUATIONS

4.4.2 Discrete time Lyapunov equation

The discrete time Lyapunov equation is given by

APAT − P +Q = 0, (4.33)

Forward mode Taking the differential on both sides of Equation (4.33), we get another

discrete time Lyapunov equation:

AdP AT − dP +
(
dAPAT +AP dAT + dQ

)
= 0. (4.34)

Thus, we can compute Ṗ by solving:

AṖAT − Ṗ +
(
ȦPAT +APȦT + Q̇

)
= 0. (4.35)

Reverse mode In reverse-mode, we consider the following Lagrangian:

L(A,Q,P ,S) = `(P ) + tr
(
ST (APAT − P +Q)

)
. (4.36)

Taking partial derivatives and setting them to zero, we get:

0 = ∂L
∂P

= ∂`(P )
∂P

+ATSA− S (4.37)

0 = ∂L
∂S

= APAT − P +Q (4.38)

0 = ∂L
∂Q

= S (4.39)

0 = ∂L
∂A

= SAP T + STAP . (4.40)

In reverse-mode, ∂`(P )/∂P = P . We can thus compute S, by solving the discrete time Lyapunov

equation

P +ATSA− S = 0. (4.41)

This then gives:

A = SAP T + STAP and Q = S. (4.42)

If Q is symmetric, then so are P and S, leading to A = 2SPA.

4.5 Algebraic Riccati equations

4.5.1 Continuous time algebraic Riccati equation

The continuous time algebraic Riccati equation (CARE) is given by

ATP + PA− PBR−1BTP +Q = 0, (4.43)
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where Q and R are symmetric matrices and R is positive-definite. In most applications, the

parameters of this equation will satisfy the conditions that guarantee the existence of a unique

(symmetric) solution P . Here, we derive Ṗ and P assuming that these conditions are met, so

that P = P T .

Forward mode Taking the differential on both sides of Equation (4.43), we obtain a Lyapunov

equation:

dP Ã+ ÃT dP +
(
dZ + dZT + dQ+KT dRK

)
= 0, (4.44)

where Ã = A−BK, K = R−1BTP , and dZ = P (dA− dBK). We can thus compute Ṗ by

solving the continuous time Lyapunov equation:

Ṗ Ã+ ÃT Ṗ +
(
Ż + ŻT + Q̇+KT ṘK

)
= 0 (4.45)

where Ż = P (Ȧ− Ḃ K).

Reverse mode We consider the Lagrangian

L(A,B,Q,R,P ,S) = `(P ) + tr
(
ST (ATP + PA− PBR−1BTP +Q)

)
, (4.46)

where `(P ) is a scalar objective function that depends on P and S is a Lagrange multiplier. We

are interested in computing the adjoints A, B, Q, and R. Taking partial derivatives on both

sides of the Lagrangian and setting them to zero, we get

0 = ∂L
∂P

= ∂`(P )
∂P

+ ÃS + SÃT (4.47)

0 = ∂L
∂S

= ATP + PA− PBR−1BTP +Q (4.48)

0 = ∂L
∂Q

= S (4.49)

0 = ∂L
∂R

= KSKT (4.50)

0 = ∂L
∂A

= PST + PS (4.51)

0 = ∂L
∂B

= −PSKT − PSTKT . (4.52)

The Lagrange multiplier S satisfies the Lyapunov equation

0 = 1
2
(
P + P T

)
+ ÃS + SÃT (4.53)
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where we have enforced symmetry of P because P itself is symmetric – this ensures that S is

also symmetric. The adjoints are given by:

A = 2PS (4.54)

B = −2PSK (4.55)

Q = S (4.56)

R = KSKT . (4.57)

4.5.2 Discrete time algebraic Riccati equation

The discrete time algebraic Riccati equation (DARE) is given by

ATPA− P − (ATPB)(R+BTPB)−1(ATPB)T +Q = 0. (4.58)

Here, we derive Ṗ and P assuming that all conditions are satisfied that ensure the existence of a

unique, symmetric solution P .

Forward mode Taking the differential on both sides of Equation (4.43) and simplifying, we

get:

ÃTdP Ã− dP +
(
dZ + dZT + dQ+KT dRK

)
= 0 (4.59)

where Ã = A−BK and K = (R+BTPB)−1BTPA, and dZ = ÃTP (dA− dBK). Thus,

in forward mode, we have the discrete time Lyapunov equation:

ÃT Ṗ Ã− Ṗ +
(
Ż + ŻT + Q̇+KT ṘK

)
= 0. (4.60)

where Ż = ÃTP (Ȧ− ḂK).

Reverse mode We consider the Lagrangian

L(A,B,Q,R,P ,S) =

f(P ) + tr
(
ST (ATPA− P − (ATPB)(R+BTPB)−1(ATPB)T +Q)

)
.

(4.61)
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Taking partial derivatives on both sides of the Lagrangian and setting them to zero, we get

0 = ∂L
∂P

= ∂f(P )
∂P

+ ÃSÃT − S (4.62)

0 = ∂L
∂S

= ATPA− P − (ATPB)(R+BTPB)−1(ATPB)T +Q (4.63)

0 = ∂L
∂Q

= S (4.64)

0 = ∂L
∂R

= KSKT (4.65)

0 = ∂L
∂A

= PÃST + PÃS (4.66)

0 = ∂L
∂B

= −PÃSKT − PÃSTKT (4.67)

The Lagrange multiplier S satisfies the Lyapunov equation

0 = 1
2(P + P T ) + ÃSÃT − S (4.68)

where we have enforced the symmetry of P because P is symmetric. This ensures that S is also

symmetric and the adjoints are given by:

A = 2PÃS (4.69)

B = −2PÃSKT (4.70)

Q = S (4.71)

R = KSKT . (4.72)

4.6 Example application: inverse LQR

To show a concrete application of automatic differentiation through these algebraic matrix

equations, we consider a discrete time linear system that evolves according to the equations

xt+1 = Axt +But, x0 = xinit (4.73)

where xt is the state of the system, ut is some input that enters the system through some

matrix B, and A is the state transition matrix. The infinite-horizon, discrete-time LQR problem

involves finding the optimal inputs {u0,u1, . . .} that minimise [4]

J [u0,u1, · · · ] =
∞∑
t=0
xTt Qxt + uTt Rut (4.74)

for some symmetric positive semi-definite matrices Q and R. It is well-known that the optimal

solution is linear state-feedback:

ut = −Kxt, (4.75)
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where K = (R+BTPB)−1BTPA and P satisfies a DARE (c.f. Equation (4.58)):

ATP + PA− PBR−1BTP +Q = 0. (4.76)

We consider the following inverse LQR problem: can we infer Q, i.e. the way state deviations

from zero are penalized in various state space directions, given sample state trajectories generated

by the optimally controlled system, and given knowledge of A, B, and R? More formally, given

K trajectories of the system under optimal LQR control sampled at T time points:

x
(k)
0 ,x

(k)
1 , · · ·x(k)

T−1 for k = 1, · · · ,K, (4.77)

can we determine the matrix Q used in the LQR algorithm’s objective function (Equation (4.74))?

Assuming that this problem is well-posed (i.e., Q is identifiable; 215), we can solve this problem

by differentiating through DARE (Section 4.5.2). More specifically, we start with an initial

guess of Q, which we denote as Q̂. Next, we solve the LQR problem and find the corresponding

optimal inputs ût and trajectories x̂t. We then minimize the objective

`(Q̂) = 1
KT

K∑
k=1

T−1∑
t=0

(x(k)
t − x̂

(k)
t )2. (4.78)

with respect to Q̂. To illustrate our solution, we consider the following example system:

A =

1 1

0 1

 B =

1 0

0 1


Q =

1 0

0 0

 R =

0.1 0

0 0.3

 .
(4.79)

We created a synthetic data set by sampling K = 30 initial states xinit from N (0, I) and for

each sample, we simulated the activity trajectories under optimal control for T = 30 steps. We

then optimized `(Q̂) for the synthetic data set using L-BFGS [102]. After 7 iterations, we were

able to recover the true Q to a good degree of accuracy (Figure 4.1). Code for this example is

available at https://github.com/tachukao/autodiff-inverse-lqr.

4.7 Conclusion

In this note, we derived the forward and reverse mode derivatives for the solutions to the discrete

time and continuous time variants of the Sylvester, Lyapunov, and Riccati equations (summarized

in Tables 4.1 and 4.2). These equations are widely-used in control theory and other branches of

applied mathematics. We demonstrate the usefulness of these derivatives on an inverse LQR

https://github.com/tachukao/autodiff-inverse-lqr
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Figure 4.1: Evolution of `(Q̂) (left) and ‖Q̂‖ (right) duing optimization (see text).

Equation Tangents

continuous time Sylvester Equation (4.1)

AP +P B+C=0 A Ṗ +Ṗ B+
(

Ȧ P +P Ḃ+Ċ
)

=0

discrete time Sylvester Equation (4.12)

AP B−P +C=0 A Ṗ B−Ṗ +
(

Ȧ P B+AP Ḃ+Ċ
)

=0

continuous time Lyapunov Equation (4.23)

AP +P AT +C=0 A Ṗ +Ṗ AT +
(

Ȧ P +P ȦT +Ċ
)

=0

discrete time Lyapunov Equation (4.33)

AP AT−P +C=0 A Ṗ AT−Ṗ +
(

Ȧ P AT +AP ȦT +Ċ
)

=0

continuous time algebraic Riccati Equation (4.43)

AT P +P A−P BR−1BT P +Q=0
Ṗ Ã+ÃT Ṗ +

(
ȦT P +P Ȧ−P ḂK−KT ḂT P

+Q̇+KT ṘK
)

=0

discrete time algebriac Riccati Equation (4.58)

AT P A−P

−(AT P B)(R+BT P B)−1(BT P A)+Q=0

ÃT Ṗ Ã−Ṗ +
(

ȦT P Ã+ÃT P Ȧ

−KT ḂT P Ã−ÃT P ḂK+Q̇+KT ṘK
)

=0

Table 4.1: Summary of forward-mode derivatives

problem, where parameters of the optimal control problem are inferred from observations of state

trajectories by differentiating through the discrete time Riccati equation (Section 4.5.2). These

derivatives (with the exception of the discrete time Sylvester equation, of more limited use), have

been implemented and numerically tested in Owl, a numerical library written in OCaml with a

full-featured automatic differentiation module.
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Equation Adjoints

continuous time Sylvester Equation (4.1)

AP +P B+C=0
0=AT S+SBT +P

A=SP T B=P T S C=S

discrete time Sylvester Equation (4.12)

AP B−P +C=0
0=AT SBT−S+P

A=SBT P T B=P T AT S C=S

continuous time Lyapunov Equation (4.23)

AP +P AT +C=0
0=P +AT S+SA

A=SP T +ST P Q=S

discrete time Lyapunov Equation (4.33)

AP AT−P +C=0
0=P +AT SA−S

A=SAP T +ST AP Q=S.

continuous time algebraic Riccati Equation (4.43)

AT P +P A−P BR−1BT P +Q=0

0= 1
2 (P +P

T )+ÃS+SÃT

A=2P S B=−2P SK

Q=S R=KSKT .

discrete time algebriac Riccati Equation (4.58)

AT P A−P

−(AT P B)(R+BT P B)−1(BT P A)+Q=0

0= 1
2 (P +P

T )+ÃSÃT−S

A=2P ÃS B=−2P ÃSKT

Q=S R=KSKT

Table 4.2: Summary of reverse-mode derivatives



Chapter 5

Manifold GPLVMs for discovering

non-Euclidean latent structure in

neural data

Summary

This chapter presents the following article:

Manifold GPLVMs for discovering non-Euclidean latent structure in neural data.

Kristopher T. Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin

(2020). Advances in Neural Information Processing Systems, 33, 22580–22592.

A common problem in neuroscience is to elucidate the collective neural representations of

behaviorally important variables such as head direction, spatial location, upcoming movements,

or mental spatial transformations. Often, these latent variables are internal constructs not directly

accessible to the experimenter. Here, we propose a new probabilistic latent variable model to

simultaneously identify the latent state and the way each neuron contributes to its representation

in an unsupervised way. In contrast to previous models which assume Euclidean latent spaces,

we embrace the fact that latent states often belong to symmetric manifolds such as spheres,

tori, or rotation groups of various dimensions. We therefore propose the manifold Gaussian

process latent variable model (mGPLVM), where neural responses arise from (i) a shared latent

variable living on a specific manifold, and (ii) a set of non-parametric tuning curves determining

how each neuron contributes to the representation. Cross-validated comparisons of models with

different topologies can be used to distinguish between candidate manifolds, and variational

89
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Generative Model

latent states onM
gj ∼ pM(g)

tuning curves

N neurons

M conditions

fi (g) ∼ GP(0, kM
i (g, g′))

neural activity

yij |gj ∼ N (fi (gj ),σ2
i )

Inference

inferred latent states

condition j

inferred tuning curves

neuron i

neural activity

Figure 5.1: Schematic illustration of the manifold Gaussian process latent variable

model (mGPLVM). In the generative model (left), neural activity arises from (i) M latent

states {gj} on a manifoldM, each corresponding to a different condition j (e.g. time or stimulus),

and (ii) the tuning curves of N neurons, modelled as Gaussian processes and sharing the same

latent states {gj} as inputs. Using variational inference, mGPLVM jointly infers the global latent

states and the tuning curve of each neuron on the manifold (right).

inference enables quantification of uncertainty. We demonstrate the validity of the approach on

several synthetic datasets, as well as on calcium recordings from the ellipsoid body of Drosophila

melanogaster and extracellular recordings from the mouse anterodorsal thalamic nucleus. These

circuits are both known to encode head direction, and mGPLVM correctly recovers the ring

topology expected from neural populations representing a single angular variable.

5.1 Introduction

The brain uses large neural populations to represent low-dimensional quantities of behavioural

relevance such as location in physical or mental spaces, orientation of the body, or motor plans.

It is therefore common to project neural data into smaller latent spaces as a first step towards

linking neural activity to behaviour [27]. This can be done using a variety of linear methods

such as PCA or factor analysis [26], or non-linear dimensionality reduction techniques such as

tSNE [106]. Many of these methods are explicitly probabilistic, with notable examples including

GPFA [213] and LFADS [131]. However, all these models project data into Euclidean latent

spaces, thus failing to capture the inherent non-Euclidean nature of variables such as head

direction or rotational motor plans [17, 45, 162, 204].

Most models in neuroscience justifiably assume that neurons are smoothly tuned [172]. As an

example, a population of neurons representing an angular variable θ would respond similarly



5.2. MANIFOLD GAUSSIAN PROCESS LATENT VARIABLE MODEL 91

to some θ and to θ + ε (for small ε). While it is straightforward to model such smoothness

by introducing smooth priors for response functions defined over R, the activity of neurons

modelled this way would exhibit a spurious discontinuity as the latent angle changes from 2π to

0 + ε. We see that appropriately modelling smooth neuronal representations requires keeping

the latent variables of interest on their natural manifold (here, the circle), instead of an ad-hoc

Euclidean space. While periodic kernels have commonly been used to address such problems

in GP regression [107], topological structure has not been incorporated into GP-based latent

variable models due to the difficulty of doing inference in such spaces.

Here, we build on recent advances in non-Euclidean variational inference [41] to develop the

manifold Gaussian process latent variable model (mGPLVM), an extension of the GPLVM

framework [96, 182, 209, 210] to non-Euclidean latent spaces including tori, spheres and SO(3)

(Figure 5.1). mGPLVM jointly learns the fluctuations of an underlying latent variable g and

a probabilistic “tuning curve” p(fi|g) for each neuron i. The model therefore provides a fully

unsupervised way of querying how the brain represents its surroundings and a readout of the

relevant latent quantities. Importantly, the probabilistic nature of the model enables principled

model selection between candidate manifolds. We provide a framework for scalable inference and

validate the model on both synthetic and experimental datasets.

5.2 Manifold Gaussian process latent variable model

The main contribution of this paper is mGPLVM, a Gaussian process latent variable model

[182, 209] defined for non-Euclidean latent spaces. We first present the generative model

(Section 5.2.1), then explain how we perform approximate inference using reparameterizations on

Lie groups (41; Section 5.2.2). Lie groups include Euclidean vector spaces Rn as well as other

manifolds of interests to neuroscience such as tori Tn [17, 152] and the special orthogonal group

SO(3) (45, 204; extensions to non-Lie groups are discussed in Section 5.5.5). We then provide

specific forms for variational densities and kernels on tori, spheres, and SO(3) (Section 5.2.3).

Finally we validate the method on both synthetic data (Section 5.3.1), calcium recordings from

the fruit fly head direction system (Section 5.3.2), and extracellular recordings from the mouse

anterodorsal thalamic nucleus (Section 5.5.1).
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5.2.1 Generative model

We use xij to denote the individual elements of a matrix X. Let Y ∈ RN×M be the activity of N

neurons recorded in each of M conditions. Examples of “conditions” include time within a trial,

stimulus identity, or motor output. We assume that all neuronal responses collectively encode

a shared, condition-specific latent variable gj ∈ M, where M is some manifold. We further

assume that each neuron i is tuned to the latent state g with a “tuning curve” fi(g), describing

its average response conditioned on g. Rather than assuming a specific parametric form for these

tuning curves, we place a Gaussian process prior on fi(·) to capture the heterogeneity widely

observed in biological systems [23, 68]. The model is depicted in Figure 5.1 and can be formally

described as:

gj ∼ pM(g) (prior over latents) (5.1)

fi ∼ GP(0, kMi (·, ·)) (prior over tuning curves) (5.2)

yij |gj ∼ N (fi(gj), σ2
i ) (noise model) (5.3)

In Equation (5.1), we use a uniform prior pM(g) inversely proportional to the volume of the

manifold for bounded manifolds (Section 5.5.2), and a Gaussian prior on Euclidean spaces to set

a basic lengthscale. In Equation (5.2), kMi (·, ·) :M×M→ R is a covariance function defined

on manifold M – manifold-specific details are discussed in Section 5.2.3. In the special case

where M is a Euclidean space, this model is equivalent to the standard Bayesian GPLVM [182].

While Equation (5.3) assumes independent noise across neurons, noise correlations can also be

introduced as in [209] and Poisson noise as in [210].

This probabilistic model can be fitted by maximizing the log marginal likelihood

log p(Y ) = log
∫
p(Y |{fi}, {gj}) p({fi}) pM({gj}) d{fi}d{gj}. (5.4)

Following optimization, we can query both the posterior over latent states p({gj}|Y ) and the

posterior predictive distribution p(Y ?|G?,Y ) at a set of query states G?. While it is possible to

marginalise out fi when the states {gj} are known, further marginalising out {gj} is intractable

and maximizing Equation (5.4) requires approximate inference.

5.2.2 Learning and inference

To maximize log p(Y ) in Equation (5.4), we use variational inference as previously proposed

for GPLVMs [182]. The true posterior over the latent states, p({gj}|Y), is approximated by

a variational distribution Qθ({gj}) with parameters θ that are optimized to minimize the KL
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divergence between Qθ({gj}) and p({gj}|Y ). This is equivalent to maximizing the evidence lower

bound (ELBO) on the log marginal likelihood:

L(θ) = H(Qθ) + EQθ [log pM({gj})] + EQθ [log p(Y |{gj})]. (5.5)

Here, EQθ [·] indicates averaging over the variational distribution and H(Qθ) is its entropy. For

simplicity, and because our model does not specify a priori statistical dependencies between

the individual elements of {gj}, we choose a variational distribution Qθ that factorizes over

conditions:

Qθ({gj}) =
M∏
j=1

qθj (gj). (5.6)

In the Euclidean case, the entropy and expectation terms in Equation (5.5) can be calculated

analytically for some kernels [182], and otherwise using the reparameterization trick [91, 147].

Briefly, the reparameterization trick involves first sampling from a fixed, easy-to-sample distri-

bution (e.g. a normal distribution with zero mean and unit variance), and applying a series of

differentiable transformations to obtain samples from Qθ. We can then use these samples to

estimate the entropy term and expectations in Equation (5.5).

For non-Euclidean manifolds, inference in mGPLVMs poses two major problems. Firstly, we can

no longer calculate the ELBO analytically nor evaluate it using the standard reparameterization

trick. Secondly, evaluating the Gaussian process log marginal likelihood log p(Y |{gj}) exactly

becomes computationally too expensive for large datasets. We address these issues in the

following.

Reparameterizing distributions on Lie groups

To estimate and optimize the ELBO in Equation (5.5) when Qθ is defined on a non-Euclidean

manifold, we use Falorsi et al.’s ReLie framework, an extension of the standard reparameterization

trick to variational distributions defined on Lie groups.

Sampling from Qθ Since we assume that Qθ factorizes (Equation (5.6)), sampling from Qθ

is performed by independently sampling from each qθj . We start from a differentiable base

distribution rθj (x) in Rn. Note that Rn is isomorphic to the tangent space at the identity element

of the group G, known as the Lie algebra. We can thus define a ‘capitalized’ exponential map

ExpG : Rn → G, which maps elements of Rn to elements in G (170; Section 5.5.3). Importantly,

ExpG maps a distribution centered at zero in Rn to a distribution q̃θj in the group centered at

the identity element. To obtain samples from a distribution qθj centered at an arbitrary gµj in
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the group, we can simply apply the group multiplication with gµj to samples from q̃θj . Therefore,

obtaining a sample gj from qθj involves the following steps: (i) sample from rθj (x), (ii) apply

ExpG to obtain a sample g̃j from q̃θj , and (iii) apply the group multiplication gj = gµj g̃j .

Estimating the entropy H(Qθ) Since H(qθj ) = H(q̃θj ) [41], we use K independent Monte

Carlo samples from Q̃θ(·) =
∏M
j=1 q̃θj (·) to calculate

H(Qθ) ≈ −
1
K

K∑
k=1

M∑
j=1

log q̃θj (g̃jk), (5.7)

where g̃jk = ExpGxjk and {xjk ∼ rθj (x)}Kk=1.

Evaluating the density q̃θ To evaluate log q̃θj (ExpGxjk), we use the result from Falorsi et al.

[41] that

q̃θ(g̃) =
∑

x∈Rn : ExpG(x)=g̃
rθ(x)|J(x)|−1 (5.8)

where J(x) is the Jacobian of ExpG at x. Thus, q̃θ(g̃) is the sum of the Jacobian-weighted

densities rθ(x) in Rn at all those points that are mapped to g̃ through ExpG This is an infinite

but converging sum, and following Falorsi et al. [41] we approximate it by its first few dominant

terms (Section 5.5.10).

Note that ExpG(·) and the group multiplication by gµ are both differentiable operations. There-

fore, as long as we choose a differentiable base distribution rθ(x), we can perform end-to-end

optimization of the ELBO. In this work we choose the reference distribution to be a multivariate

normal rθj (x) = N (x; 0,Σj) for each qθj . We variationally optimize both {Σj} and the mean

parameters {gµj } for all j, and together these define the variational distribution.

Sparse GP approximation

To efficiently evaluate the EQθ [log p(Y |{gj})] term in the ELBO for large datasets, we use the

variational sparse GP approximation [181] which has previously been applied to Euclidean

GPLVMs [182]. Specifically, we introduce a set of m inducing points Zi for each neuron i, and

use a lower bound on the GP log marginal likelihood:

log p(yi|{gj}) ≥ −
1
2y

T
i (Qi + σ2

i I)−1yi −
1
2 log |Qi + σ2

i I| −
1

2σ2 Tr(Ki −Qi) + const.︸ ︷︷ ︸
log p̃(yi|{gj})

(5.9)

with Qi = K{gj}ZiK
−1
ZiZiKZi{gj} (5.10)
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where KAB denotes the Gram matrix associated with any two input sets A and B. Note that

the latents {gj} are shared across all neurons. In this work we optimize the inducing points on

G directly, but they could equivalently be optimized in Rn and projected onto G via ExpG.

Using the sparse GP framework, the cost of computing the GP likelihood reduces to O(Mm2)

for each neuron and Monte Carlo sample. This leads to an overall complexity of O(KNMm2)

for approximating EQθ [log p(Y |{gj})] with K Monte Carlo samples, N neurons, M conditions

and m inducing points (see Section 5.5.10 for further details on complexity and implementation).

Optimization

We are now equipped to optimize the ELBO defined in Equation (5.5) using Monte Carlo samples

drawn from a variational distribution Qθ defined on a Lie group G. To train the model, we use

Adam [90] to perform stochastic gradient descent on the following loss function:

L(θ) = 1
K

K∑
k=1

 M∑
j=1

(
log pM(gjk)− log q̃θj (g̃jk)

)
−

N∑
i

log p̃(yi|{gjk})

 (5.11)

where a set of K Monte-Carlo samples {g̃jk}Kk=1 is drawn at each iteration from {q̃θj} as described

in Section 5.2.2. In Equation (5.11), gjk = gµj g̃jk, where gµj is a group element that is optimized

together with all other model parameters. Finally, log p̃(yi|{gj}) is the lower bound defined in

Equation (5.9) and pM(gjk) is the prior described in Section 5.2.1. The inner sums run over

conditions j and neurons i.

Posterior over tuning curves

We approximate the posterior predictive distribution over tuning curves by sampling from the

(approximate) posterior over latents. Specifically, for a given neuron i and a set of query states

G?, the posterior predictive over f?i is approximated by:

p(f?i |Y ,G?) = 1
K

K∑
k=1

p(f?i |G?, {Gk,Y }) (5.12)

where each Gk is a set of M latent states (one for each condition in Y ) independently drawn from

the variational posterior Qθ(·). In Equation (5.12), each term in the sum is a standard Gaussian

process posterior [143], which we approximate as described above (Section 5.2.2; Section 5.5.6;

181).
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5.2.3 Applying mGPLVM to tori, spheres and SO(3)

At this stage, we have yet to define the manifold-specific GP kernels kM described in Section 5.2.1.

These kernels ought to capture the topology of the latent space and express our prior assumptions

that the neuronal tuning curves, defined on the manifold, have certain properties such as

smoothness. Here we take inspiration from the common squared exponential covariance function

defined over Euclidean spaces and introduce analogous kernels on tori, spheres, and SO(3). This

leads to the following general form:

kM(g, g′) = α2 exp
(
−dM(g, g′)

2`2
)

g, g′ ∈M (5.13)

where α2 is a variance parameter, ` is a characteristic lengthscale, and dM(g, g′) is a manifold-

specific distance function. While squared geodesic distances might be intuitive choices for d(·, ·)

in Equation (5.13), they result in positive semi-definite (PSD) kernels only for Euclidean latent

spaces [43, 80]. Therefore, we build distance functions that automatically lead to valid covariance

functions by observing that (i) dot product kernels are PSD, and (ii) the exponential of a

PSD kernel is also PSD. Specifically, we use the following manifold-specific dot product-based

distances:

dRn(g, g′) = ||g − g′||22 g ∈ Rn (5.14)

dSn(g, g′) = 2(1− g · g′) g ∈ {x ∈ Rn+1; ‖x‖ = 1} (5.15)

dTn(g, g′) = 2
∑
k (1− gk · g′k) g ∈ {(g1, · · · , gn); ∀k : gk ∈ R2, ‖gk‖ = 1} (5.16)

dSO(3)(g, g′) = 4
[
1−

(
g · g′

)2]
g ∈ {x ∈ R4; ‖x‖ = 1} (5.17)

where we have slightly abused notation by directly using “g” to denote a convenient parameteri-

sation of the group elements which we define on the right of each equation. To build intuition,

we note that the distance metric on the torus gives rise to a multivariate von Mises function; the

distance metric on the sphere leads to an analogous von Mises Fisher function; and the distance

metric on SO(3) is 2(1 − cosϕrot) where ϕrot is the angle of rotation required to transform g

into g′. Notably, all these distance functions reduce to the Euclidean squared exponential kernel

in the small angle limit. Laplacian [43] and Matérn [12] kernels have previously been proposed

for modelling data on Riemannian manifolds, and these can also be incorporated in mGPLVM.

Finally, we provide expressions for the variational densities (Equation (5.8)) defined on tori, S3
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Figure 5.2: Applying mGPLVM

to synthetic data on the ring T 1.

Top left: neural activity of 100 neurons

at 100 different conditions (here, time

bins). Bottom: timecourse of the la-

tent states (left) and tuning curves for 12

representative neurons (right). Green:

ground truth; Black: posterior mean;

Grey shaded regions: ±2 posterior s.t.d.

Top right: data replotted from the top

left panel, with neurons reordered ac-

cording to their preferred angles as de-

termined by the inferred tuning curves.

and SO(3):

q̃θ(ExpTnx) =
∑
k∈Zn

rθ(x+ 2πk), (5.18)

q̃θ(ExpSO(3)x) =
∑
k∈Z

[
rθ(x+ πkx̂) 2‖x+ πkx̂‖2

1− cos (2‖x+ πkx̂‖)

]
, (5.19)

q̃θ(ExpS3x) =
∑
k∈Z

[
rθ(x+ 2πkx̂) 2‖x+ 2πkx̂‖2

1− cos (2‖x+ 2πkx̂‖)

]
, (5.20)

where x̂ = x/‖x‖. Further details and the corresponding exponential maps are given in

Section 5.5.3. Since spheres that are not S1 or S3 are not Lie groups, ReLie does not provide

a general framework for mGPLVM on these manifolds which we therefore treat separately in

Section 5.5.5.

5.3 Experiments and results

In this section, we start by demonstrating the ability of mGPLVM to correctly infer latent states

and tuning curves in non-Euclidean spaces using synthetic data generated on T 1, T 2 and SO(3).

We also verify that cross-validated model comparison correctly recovers the topology of the

underlying latent space, suggesting that mGPLVM can be used for model selection given a set

of candidate manifolds. Finally, we apply mGPLVM to a biological dataset to show that it is

robust to the noise and heterogeneity characteristic of experimental recordings.
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5.3.1 Synthetic data

To generate synthetic data Y, we specify a target manifold M, draw a set of M latent states

{gj} on M, and assign a tuning curve to each neuron i of the form

fi(g) = a2
i exp

(
−
d2

geo(g, gpref
i )

2b2
i

)
+ ci, (5.21)

yij |gj ∼ N (fi(gj), σ2
i ) (5.22)

with random parameters ai, bi and ci. Thus, the activity of each neuron is a noisy bell-shaped

function of the geodesic distance on M between the momentary latent state gj and the neuron’s

preferred state gpref
i (sampled uniformly). While this choice of tuning curves is inspired by the

common ‘Gaussian bump’ model of neural tuning, we emphasize that the non-parametric prior

over fi in mGPLVM can discover any smooth tuning curve on the manifold, not just Gaussian

bumps. For computational simplicity, here we constrain the mGPLVM parameters αi, `i and σi

to be identical across neurons. Note that we can only recover the latent space up to symmetries

which preserve pairwise distances. In all figures, we have therefore aligned model predictions and

ground truth for ease of visualization (Section 5.5.7).

We first generated data on the ring (T 1, Figure 5.2, top left), letting the true latent state be a

continuous random walk across conditions for ease of visualization. We then fitted T 1-mGPLVM

to the data and found that it correctly discovered the true latent states g as well as the ground

truth tuning curves (Figure 5.2, bottom right). Reordering the neurons according to their

preferred angles further exposed the population encoding of the angle (Figure 5.2, top right).

Next, we expanded the latent space to two dimensions with data now populating a 2-torus (T 2).

Despite the non-trivial topology of this space, T 2-mGPLVM provided accurate inference of both

latent states (Figure 5.3a) and tuning curves (Figure 5.3b). To show that mGPLVM can be used

to distinguish between candidate topologies, we compared T 2-mGPLVM to a standard Euclidean

GPLVM in R2 on the basis of both cross-validated prediction errors and importance-weighted

marginal likelihood estimates [14]. We simulated 10 different toroidal datasets; for each, we used

half the conditions to fit the GP hyperparameters, and half the neurons to predict the latent states

for the conditions not used to fit the GP parameters. Finally, we used the inferred GP parameters

and latent states to predict the activity of the held-out neurons at the held-out conditions. As

expected, the predictions of the toroidal model outperformed those of the standard Euclidean

GPLVM which cannot capture the periodic boundary conditions of the torus (Figure 5.3c).

Beyond toroidal spaces, SO(3) is of particular interest for the study of neural systems encod-

ing ‘yaw, pitch and roll’ in a variety of 3D rotational contexts [45, 167, 204]. We therefore
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Figure 5.3: Validating mGPLVM on synthetic data. (a-c) Torus dataset. (a) True latent

states {gj ∈ T 2} (dots) and posterior latent means {gµj } (crosses). The color scheme is chosen to

be smooth for the true latents. (b) Posterior tuning curves for two example neurons. Top: tuning

curves on the tori. Bottom: projections onto the periodic [0; 2π] plane. Black circles indicate

locations and widths of the true tuning curves. (c) Mean squared cross-validated prediction

error (left) and negative log likelihood (right) when fitting T 2 and R2 to data generated on T 2.

Dashed lines connect datapoints for the same synthetic dataset. (d-f) SO(3) dataset. (d) Axis

of the rotation represented by the true latent states {gj ∈ SO(3)} (dots) and the posterior latent

means {gµj } (crosses) projected onto the (ϕ, θ)-plane. (e) Magnitude of the rotations represented

by {gj} and {gµj }. (f) Same as (c), now comparing SO(3) to R3. (g) Test log likelihood ratio

for 10 synthetic datasets on T 2, SO(3), & S3, with mGPLVM fitted on each manifold (x-axis).

Solid lines indicate mean across datasets.

fitted an SO(3)-mGPLVM to synthetic data generated on SO(3) and found that it rendered

a faithful representation of the latent space and outperformed a Euclidean GPLVM on predic-

tions (Figure 5.3d-f). Finally we show that mGPLVM can also be used to select between multiple

non-Euclidean topologies. We generated 10 datasets on each of T 2, SO(3) and S3 and compared

cross-validated log likelihoods for T 2-, SO(3)- and S3-mGPLVM, noting that p(M|Y ) ∝ p(Y |M)

under a uniform prior over manifolds M. Here we found that the correct latent manifold was

consistently the most likely for all 30 datasets (Figure 5.3g). In summary, these results show

robust performance of mGPLVM across various manifolds of interest in neuroscience and beyond,

as well as a quantitative advantage over Euclidean GPLVMs which ignore the underlying topology
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Figure 5.4: The Drosophila

head direction circuit. (a) In-

put data overlaid with the poste-

rior variational distribution over

latent states of a T 1-mGPLVM.

(b) Mean cross-validated predic-

tion error (left) and negative log

likelihood (right) for models fitted

on T 1 and R1. Each datapoint cor-

responds to a different partition

of the timepoints into a training

set and a test set. (c-d) Pos-

terior tuning curves for eight ex-

ample neurons in T 1 (c) and R1

(d). Color encodes the position

of the maximum of each tuning

curve. Shadings in (a,c,d) indicate

±2 s.t.d.
of the latent space.

5.3.2 The Drosophila head direction circuit

Finally we applied mGPLVM to an experimental dataset to show that it is robust to biological

and measurement noise. Here, we used calcium imaging data recorded from the ellipsoid body

(EB) of Drosophila melanogaster [191], where the so-called E-PG neurons have recently been

shown to encode head direction [162]. The EB is divided into 16 ‘wedges’, each containing

2-3 E-PG neurons that are not distinguishable on the basis of calcium imaging data, and we

therefore treat each wedge as one ‘neuron’. Due to the physical shape of the EB, neurons come

‘pre-ordered’ since their joint activity resembles a bump rotating on a ring (Figure 5.4a, analogous

to Figure 5.2, “ordered data”). While the EB’s apparent ring topology obviates the need for

mGPLVM as an explorative tool for uncovering manifold representations, we emphasize that

head direction circuits in higher organisms are not so obviously structured (Chaudhuri et al. [17];

Section 5.5.1) – in fact, some brain areas such as the entorhinal cortex even embed concurrent

representations of multiple spaces [24, 64].

We fitted the full mGPLVM with a separate GP for each neuron and found that T 1-mGPLVM
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performed better than R1-mGPLVM on both cross-validated prediction errors and log marginal

likelihoods (Figure 5.4b). The model recovered latent angles that faithfully captured the visible

rotation of the activity bump around the EB, with larger uncertainty during periods where

the neurons were less active (Figure 5.4a, orange). When querying the posterior tuning curves

from a fit in R1, these were found to suffer from spurious boundary conditions with inflated

uncertainty at the edges of the latent representation – regions where R1-mGPLVM effectively

has less data than T 1-mGPLVM since R1 does not wrap around. In comparison, the tuning

curves were more uniform across angles in T 1 which correctly captures the continuity of the

underlying manifold. In Section 5.5.1, we describe similar results with mGPLVM applied to a

dataset from the mouse head-direction circuit with more heterogeneous neuronal tuning and no

obvious anatomical organization [140].

5.4 Discussion and future work

Conclusion We have presented an extension of the popular GPLVM model to incorporate

non-Euclidean latent spaces. This is achieved by combining a Bayesian GPLVM with recently

developed methods for approximate inference in non-Euclidean spaces and a new family of

manifold-specific kernels. Inference is performed using variational sparse GPs for computational

tractability with inducing points optimized directly on the manifold. We demonstrated that

mGPLVM correctly infers the latent states and GP parameters for synthetic data of various

dimensions and topologies, and that cross-validated model comparisons can recover the correct

topology of the space. Finally, we showed how mGPLVM can be used to infer latent topologies

and representations in biological circuits from calcium imaging data. We expect mGPLVM to be

particularly valuable to the neuroscience community because many quantities encoded in the

brain naturally live in non-Euclidean spaces [17, 45, 204].

Related work GP-based latent variable models with periodicity in the latent space have

previously been used for motion capture, tracking and animation [36, 193]. However, these

approaches are not easily generalized to other non-Euclidean topologies and do not provide

a tractable marginal likelihood which forms the basis of our Bayesian model comparisons.

Additionally, methods have been developed for analysing the geometry of the latent space of

GPLVMs [188] and other latent variable models [6] after initially learning the models with a

Euclidean latent. These approaches confer a degree of interpretability to the learned latent space

but do not explicitly incorporate priors and topological constraints on the manifold during learning.
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Furthermore, GPs and GPLVMs with non-Euclidean outputs have been developed [108, 109, 124].

These approaches are orthogonal to mGPLVM where the latent GP inputs, not outputs, live

on a non-Euclidean manifold. mGPLVM can potentially be combined with these approaches to

model non-Euclidean observations, and to incorporate more expressive GP priors over the latent

states than the independent prior we have used here.

Finally, several methods for inference in non-Euclidean spaces have been developed in the

machine learning literature. These have centered around methods based on VAEs [28, 146, 199],

normalizing flows [148], and neural ODEs [42, 104, 114]. While non-Euclidean VAEs are useful

for amortized inference, they constrain f(g) more than a GP does and do not naturally allow

expression of a prior over its smoothness. Normalizing flows and neural ODEs can potentially be

combined with mGPLVM to increase the expressiveness of the variational distributions [41]. This

would allow us to model complex distributions over latents, such as the multimodal distributions

that naturally arise in ambiguous environments with symmetries [78].

mGPLVM extensions Here, we have assumed statistical independence across latent states,

but prior dependencies could be introduced to incorporate e.g. temporal smoothness by placing

a GP prior on the latents as in GPFA [213]. To capture more statistical structure in the

latents, richer variational approximations of the posterior could be learned by using normalizing

flows on the base distribution (rθ). It would also be interesting to exploit automatic relevance

determination (ARD, 125) in mGPLVM to automatically select the latent manifold dimension.

We explored this approach by fitting a T 2-mGPLVM to the data from Figure 5.2 with separate

lengthscales for the two dimensions, where we found that T 2 shrunk to T 1, the true underlying

manifold (Section 5.5.8).

Furthermore, the mGPLVM framework can be extended to direct products of manifolds, enabling

the study of brain areas encoding non-Euclidean variables such as head direction jointly with

global modulation parameters such as attention or velocity. As an example, fitting a (T 1 × R1)-

mGPLVM to the Drosophila data captures both the angular heading in the T 1 dimension as well

as a variable correlated with global activity in the R1 dimension (Section 5.5.9).

Future applications mGPLVM not only infers the most likely latent states but also estimates

the associated uncertainty, which can be used as a proxy for the degree of momentary coherence

expressed in neural representations. It would be interesting to compare such posterior uncertainties

and tuning properties in animals across brain states. For example, uncertainty estimates could

be compared across sleep and wakefulness or environments with reliable and noisy spatial cues.
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In the motor domain, mGPLVM can help elucidate the neural encoding of motor plans for

movements naturally specified in rotational spaces. Examples include 3-dimensional head

rotations represented in the rodent superior colliculus [113, 204] as well as analogous circuits in

primates. Finally, it will be interesting to apply mGPLVM to artificial agents trained on tasks

that require them to form internal representations of non-Euclidean environmental variables [7].

Our framework could be used to dissect such representations, adding to a growing toolbox for

the analysis of artificial neural networks [177].

5.5 Supplementary

5.5.1 The mouse head direction circuit
Figure 5.5: The mouse head

direction circuit. (a) Popula-

tion activity recorded from mouse

ADn during foraging. (b) Vari-

ational mean inferred by T 1-

mGPLVM plotted against the true

mouse head direction. (c) Kernel

length scales for the 29 neurons

recorded. Dashed line: `2 = 4

(maximum d in the T 1-kernel). In-

sets: example neurons with low

and high `. (d) Tuning curves

for three example neurons inferred

during wake (black) and REM

sleep (red).
To highlight the importance of unsupervised non-Euclidean learning methods in neuroscience

and to illustrate the interpretability of the learned GP parameters, we consider a dataset from

Peyrache et al. [140] recorded from the mouse anterodorsal thalamic nucleus (ADn; Figure 5.5a).

This data has also been analyzed in Peyrache et al. [139], Chaudhuri et al. [17] and Rubin

et al. [152]. We consider the same example session shown in Figure 2 of Chaudhuri et al. [17]

(Mouse 28, session 140313) and bin spike counts in 500 ms time bins for analysis with mGPLVM.

When comparing cross-validated log likelihoods for T 1- and R1-mGPLVM fitted to the data, T 1

consistently outperformed R1 with a log likelihood ratio of 127 ± 30 (mean ± sem) across 10

partitions of the data.
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Fitting T 1-mGPLVM to the binned spike data, we found that the inferred latent state was highly

correlated with the true head direction (Figure 5.5b). However, in contrast to the data considered

in Section 5.3.1 and Section 5.3.2, this mouse dataset contains neurons with more heterogeneous

baseline activities and tuning properties. This is reflected in the learned GP parameters which

converge to small kernel length scales for neurons that contribute to the heading representation

(Figure 5.5c, ‘tuned’) and large length scales for those that do not (Figure 5.5c, ‘not tuned’).

Finally, since mGPLVM does not require knowledge of behaviour, we also fitted mGPLVM to

data recorded from the same neurons during a period of rapid eye movement (REM) sleep. Here

we found that the representation of subconscious heading during REM sleep was similar to the

representation of heading when the animal was awake after matching the offset between the two

sets of tuning curves (Figure 5.5d), similar to results by Peyrache et al. [139]. However, their

analyses relied on recordings from two separate brain regions to align the activity from neurons

in ADn to a subconscious head direction decoded from the postsubiculum and vice versa. In

contrast, mGPLVM allows for fully unsupervised Bayesian analyses across both wake and sleep

using recordings from a single brain area.

5.5.2 Priors on manifolds

For all manifolds, we use priors that factorize over conditions, pM({gj}) =
∏
j p
M(gj). As

described in Section 5.2.1, we use a Gaussian prior pRn(g) = N (g; 0, In) over latent states in Rn,

and uniform priors for the spheres, tori, and SO(3). These uniform priors have a density which

is the inverse volume of the manifold:

pS
n(g) =

 2π
n+1

2

Γ(n+1
2 )

−1

(5.23)

pT
n(g) = [2π]−n (5.24)

pSO(3)(g) =

 2π
4
2

2Γ(4
2)

−1

. (5.25)

Note that the volume of Sn is the surface area of the n-sphere, and the volume of SO(3) is half

the volume of S3.

5.5.3 Lie groups and their exponential maps

For simplicity of exposition, we have skimmed over the details of how the ‘capitalized’ Exponential

map ExpG : Rn → G is defined in Section 5.2.2, particularly in relation to the group’s Lie algebra

g. Here we make this connection more explicit. As described in the main text, the Lie algebra



5.5. SUPPLEMENTARY 105

g of a group G is a vector space tangent to G at its identity element. The exponential map

expG : g→ G maps elements from the Lie algebra to the group, and is conceptually distinct from

the “capitalised” Exponential map defined in Section 5.2.2 which maps from Rn to G. However,

because the Lie algebra is isomorphic to Rn, we have found it convenient in both our exposition

and our implementation to work directly with the pair (Rn,ExpG), instead of (g, expG). To

expand on the connection between the two, note that we can define as in Sola et al. [170] the

isomorphism Hat : Rn → g, which maps every element in Rn to a distinct element in the Lie

algebra g. Therefore, ExpG : Rn → G is in fact the composition expG ◦Hat.

Manifold-specific parameterizations

Here we provide some further justification for the forms of q̃θ(g̃) provided in Equations (5.18)

and (5.19) as well as the exponential maps which are used to derive these densities and are

needed for optimization in Equation (5.11). For both Tn and SO(3), we use Equation (5.8) from

Falorsi et al. [41], which we repeat here for reference:

q̃θ(g̃) =
∑

x∈Rn : ExpG(x)=g̃
rθ(x)|J(x)|−1. (5.26)

In what follows, we will use g to indicate a vector representation of group element g to avoid

conflicts of notation.

Note that the expressions in this section largely follow Falorsi et al. [41], but we re-write them in

a different basis for ease of computational implementation.

Tn

The n-Torus Tn is the direct product of n circles, such that we can parameterize members of this

group as g ∈ Rn whose elements are all angles between 0 and 2π. Note that this is equivalent to

the parameterization in Equation (5.16) except that here we denote an element on the circle

by its angle, while in Equation (5.16) we denote it by a unit 2-vector for notational consistency

with the other kernels. Because 1-dimensional rotations are commutative, the parameterization

of the torus as a list of angles allows us to perform group operations by simple addition modulo

2π. We therefore slightly abuse notation and write the exponential map ExpTn : Rn → Tn as an

element-wise modulo operation:

ExpTnx = x mod 2π. (5.27)

Equation (5.27) has inverse Jacobian |J(x)|−1 = 1. Moreover, since ExpTn(x) = ExpTn(x+ 2πk)

for any integer vector k ∈ Zn, the change-of-variable formula in Equation (5.26) yields the
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following density on Tn:

q̃θ(ExpTnx) =
∑
k∈Zn

rθ(x+ 2πk). (5.28)

For ease of implementation it is also convenient to rewrite the kernel distance function Equa-

tion (5.16) as

dTn(g, g′) = 2 · 1n · (1− cos(g − g′)) (5.29)

where 1n is the n-vector full of ones, and cos(·) is applied element-wise to g − g′.

5.5.4 SO(3)

We use quaternions g ∈ R4 to represent elements g ∈ SO(3) as indicated in Equation (5.17). For

a rotation of φ radians around axis u ∈ R3 with ‖u‖ = 1,

g =
(

cos φ2 ,u sin φ2

)
∈ R4. (5.30)

The exponential map ExpSO(3) : R3 → SO(3) is

ExpSO(3)x = (cos ‖x‖, x̂ sin ‖x‖), (5.31)

where x̂ = x/‖x‖ and φ = 2‖x‖ is the angle of rotation. This gives rise to an inverse Jacobian

|J(x)|−1 = φ2/(2(1− cosφ)). (5.32)

Using Equation (5.26) we get the density on the group

q̃θ(ExpSO(3)x) =
∑
k∈Z

[
rθ(x+ πkx̂) 2‖x+ πkx̂‖2

1− cos (2‖x+ πkx̂‖)

]
, (5.33)

where the sum over k stems from the fact that a rotation of φ+ 2kπ around axis x̂ is equivalent

to a rotation of φ around the same axis.

5.5.5 Sn

In this section, we discuss how to fit mGPLVMs on spheres. We first consider spheres which are

also Lie groups, and then discuss a general framework for all n-spheres.

S1,3

We begin by noting that Sn is not a Lie group unless n = 1 or n = 3, thus we can only apply

the ReLie framework to S1 and S3. S1 is equivalent to T 1 and is most easily treated using the

torus formalism above. For S3, we note that SO(3) is simply S3 with double coverage. This
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is because quaternions g and −g represent the same element of SO(3) while they correspond

to distinct elements of S3. The Jacobian and exponential maps of S3 are therefore identical to

those of SO(3). The expression for the density on S3 also mirrors Equation (5.33) except that

the sum is over x+ 2πkx̂ instead of x+ πkx̂:

q̃θ(ExpS3x) =
∑
k∈Z

[
rθ(x+ 2πkx̂) 2‖x+ 2πkx̂‖2

1− cos (2‖x+ 2πkx̂‖)

]
. (5.34)

We demonstrate S3-mGPLVM on synthetic data from S3 in Figure 5.6 (bottom).

Sn/∈{1,3}

The ReLie framework does not directly apply to distributions defined on non-Lie groups. Never-

theless, we can still apply mGPLVM to an n-sphere embedded in Rn+1 by taking each latent

variational distribution qθj to be a von Mises-Fisher distribution (VMF), whose entropy is known

analytically. Parameterizing group element g ∈ Sn by a unit-norm vector g ∈ Rn+1, ‖g‖ = 1,

this density is given by:

qθ(g; gµ, κ) = κn/2−1

(2π)n/2In/2−1(κ)
exp(κ gµ · g) (5.35)

where · denotes the dot product. Here, Iv is the modified Bessel function of the first kind at order

v, gµ is the mean direction of the distribution on the hypersphere, and κ ≥ 0 is a concentration

parameter – the larger κ, the more concentrated the distribution around gµ.

Using a VMF distribution as the latent distribution, we can easily evaluate the ELBO in

Equation (5.5) because (i) there are well-known algorithms for sampling from the distribution

using rejection-sampling [192] and (ii) both the entropy term H(qθ) and its gradient can be

derived analytically [28]. For details of how to differentiate through rejection sampling, please

refer to Naesseth et al. [122] and Davidson et al. [28].

In the following, we provide details for applying mGPLVM to S2 for which we do not need to use

rejection sampling and instead use inverse transform sampling [79]. For S2, the VMF distribution

simplifies to [171]

qθ(g; gµ, κ) = κ

2π(exp(κ)− exp(−κ)) exp(κ gµ · g), (5.36)

and its entropy is

H(qθ) = −
∫
S2
qθ(g; gµ, κ) log qθ(g; gµ, κ)dg (5.37)

= − log
(

κ

4π sinh κ

)
− κ

tanh κ + 1. (5.38)

These equations allow us to apply mGPLVM to S2 by optimizing the ELBO as described in the

main text; this is illustrated for synthetic data on S2 in Figure 5.6 (top).
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Figure 5.6: Applying mGPLVM to synthetic data on S2 (top) and S3 (bottom).

Pairwise distances between the variational means {gµj } are plotted against the corresponding

pairwise distances between the true latent states {gj} for S2 (top left) and S3 (bottom left). Since

the log likelihood is a function of these pairwise distances through the kernel (Equation (5.15)),

this illustrates that mGPLVM recovers the important features of the true latents. Inferred

(black) and true (green) latent states in spherical coordinates for S2 (top middle) and S3

(bottom middle and bottom right). For S2, we are showing the latent states in spherical

polar coordinates g = (sin θ cosϕ, sin θ sinϕ, cos θ) with θ ∈ [0, π] and ϕ ∈ [0, 2π]. For S3,

we use hyperspherical coordinates g = (sinψ sin θ cosϕ, sinψ sin θ sinϕ, sin θ cosψ, cos θ) with

θ, ψ ∈ [0, π] and ϕ ∈ [0, 2π].

5.5.6 Posterior over tuning curves

We can derive the posterior over tuning curves in Equation (5.12) as follows:

p(f?i |Y ,G?) =
∫
p(f?i ,G|G?,Y ) dG (5.39)

=
∫
p(f?i |G?, {G,Y })p(G|Y ) dG (5.40)

≈
∫
p(f?i |G?, {G,Y })Qθ(G) dG (5.41)

≈ 1
K

K∑
k=1

p(f?i |G?, {Gk,Y }) (5.42)

where each Gk is a set of M latents (one for each of the M conditions in the data Y ) sampled from

the variational posterior Qθ(G). The standard deviation around the mean tuning curves in all

figures are estimated from 1000 independent samples from this posterior, with each draw involving

the following two steps: (i) draw a sample Gk from Qθ and (ii) conditioned on this sample, draw
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from the predictive distribution p(f?i |G?, {Gk,Y }). Together, these two steps correspond to a

single draw from the posterior. Note that we make a variational sparse GP approximation (Sec-

tion 5.2.2) and therefore approximate the predictive distribution p(f?i |G?, {Gk,Y }) as described

in Titsias [181].

5.5.7 Alignment for visualization

The mGPLVM solutions for non-Euclidean spaces are degenerate because the ELBO depends

on the sampled latents through (i) their uniform prior density, (ii) their entropy, and (iii) the

GP marginal likelihood, and all three quantities are invariant to transformations that preserve

pairwise distances. For example, the application of a common group element g to all the

variational means leaves pairwise distances unaffected and therefore does not affect the ELBO.

Additionally, pairwise distances are invariant to reflections along any axis of the coordinate

system we have chosen to represent each group. Therefore, to plot comparisons between true and

fitted latents, we use numerical optimization to find a single distance-preserving transformation

that minimizes the average geodesic distance between the variational means {gµj } and the true

latents {gj}.

For the n-dimensional torus (Figures 5.2 and 5.3) which we parameterize as

g ∈ {(g1, · · · , gn);∀k : gk ∈ [0, 2π]},

the distance metric depends on cos(gk − g′k) and is invariant to any translation and reflection of

all latents along each dimension

gk → (αkgk + βk) mod 2π

where αk ∈ {1,−1} and βk ∈ [0, 2π]. We optimize discretely over the {αk} by trying every

possible combination, and continuously over βk for each combination of {αk}.

In the case of S2, S3 and SO(3) (Figures 5.3 and 5.6), the distance metrics are invariant to

unitary transformations g → Rg where RRT = RTR = I for the parameterizations used in this

work. For visualization of these groups, we align the inferred latents with the true latents by

optimizing over R on the manifold of orthogonal matrices.

5.5.8 Automatic relevance determination

As we mention in Section 5.4, it is possible to exploit automatic relevance determination (ARD)

for automatic selection of the dimensionality of groups with additive distance metrics such as
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Figure 5.7: Automatic relevance determination (ARD) in T 2-mGPLVM. A T 2 model

with ARD was fitted to the T 1 data in Figure 5.2. (a) Length scales along each of the two

dimensions for each neuron. (b) Posterior variational distributions. Shading indicates ±1 s.t.d.

around the posterior mean in each dimension. (c) Variational mean plotted against the true

latent state for each dimension.

the Tn-distance in Equation (5.29). While we have not investigated this in detail, we illustrate

the idea here on a simple example. We consider the same synthetic data as in Figure 5.2 and fit

a T 2-mGPLVM with a kernel on T 2 that has separate lengthscales `1 and `2 for each dimension:

kT 2
ARD

(g, g′) = α2 exp
(cos(g1 − g′1)− 1

`21

)
exp

(cos(g2 − g′2)− 1
`22

)
. (5.43)

Additionally, we assume the variational distribution to factorize across latent dimensions:

qθj (·) = qθ1
j
(·) qθ2

j
(·), (5.44)

such that their entropies add up to the total entropy:

H(qθj ) = H(qθ1
j
) +H(qθ2

j
). (5.45)

This corresponds to assuming that each variational covariance matrix Σj (Section 5.2.2) is

diagonal.

When fitting this model, we find that one length parameter goes to large values while the other

remains on the order of the size of the space (Figure 5.7a; note that dT 1 ∈ [0, 4]). This indicates

that neurons are only tuned to one of the two torus dimensions. Additionally, posterior variances

become very large in the non-contributing dimension, i.e. the data does not contain the other

angular dimension (Figure 5.7b). This further indicates that the model has effectively shrunk

from a 2-torus to a single circle. We note that the entropy of the factor in the variational posterior

that corresponds to the discarded dimension becomes log 2π as the variance goes to infinity in

this direction. This exactly offsets the increased complexity penalty of the prior for T 2 compared



5.5. SUPPLEMENTARY 111

to T 1, such that the two models have the same ELBO. The model thus reduces to a T 1 model,

demonstrating how ARD can be exploited to automatically infer the dimensionality of the latent

space.

5.5.9 Direct products of Lie groups

Here, we elaborate slightly on the extension of mGPLVM to direct products of Lie groups, briefly

mentioned in the discussion (Section 5.4). Assuming additive distance metrics and factorizable

variational distributions, direct product kernels become multiplicative and entropies become

additive – very much as in our illustration of ARD in Section 5.5.8. That is, for a group product

M =M1 × . . .×ML, we can write

kM(g, g′) =
∏
l

kMl(g, g′), (5.46)

H(qMθj ) =
∑
l

H(qMl
θj

). (5.47)

As a simple example, we consider a (T 1 × R1)-mGPLVM which we fit to the Drosophila data

from Section 5.3.2. Here we find that the T 1 dimension of the group product, which we denote

by θ(T 1×R1), captures the angular component of the data since it is very strongly correlated

with the latent state θT 1 inferred by the simpler T 1-mGPLVM (Figure 5.8a). It is somewhat

harder to predict what features of the data will be captured by the R1 dimension x(T 1×R1) of the

(T 1 × R1)-mGPLVM, but we hypothesize that it might capture a global temporal modulation of

the neural activity. We therefore plot the mean instantaneous activity y across neurons against

x(T 1×R1) and find that these quantities are indeed positively correlated (Figure 5.8b). This

exemplifies how an mGPLVM on a direct product of groups can capture qualitatively different

components of the data by combining representations with different topologies.

This direct product model is very closely related to the ARD model in Section 5.5.8, and the

two can also be combined in a direct product of ARD kernels. For example, we can imagine

constructing a (Tn×Rn) direct product ARD kernel which automatically selects the appropriate

number of both periodic and scalar dimensions that best, and most parsimoniously, explains the

data.

5.5.10 Implementation

Scaling As mentioned in Section 5.2.2, approximating the GP likelihood term EQθ [log p(Y |{gj})]

in the mGPLVM ELBO scales as O(m2MNK) with m inducing points, M latent states, N neu-

rons, and K Monte Carlo samples. Estimating the entropy term is O(MKd) for a d-dimensional
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Figure 5.8: (T 1×R1)-mGPLVM. (a) Latent

states inferred by T 1-mGPLVM (Figure 5.4a)

against the periodic coordinate of a (T 1 × R1)-

mGPLVM fitted to the Drosophila data. (b) Mo-

mentary average population activity yt against

the scalar Euclidean component of the (T 1×R1)

latent representation.

Euclidean latent space, O(MK(2kmax + 1)d) for a d-dimensional torus, and O(MK(2kmax + 1))

for SO(3) and S3, where kmax is the maximum value of k used in Equation (5.8). For all

manifolds considered in this work, we can compute a closed-form Exp(·) while for general matrix

Lie groups, approximating Exp as a power series is O(d3) [41], further increasing the complexity

of mGPLVM for such groups.

For our manifolds of interest, computing the likelihood term tends to be the main computational

bottleneck, although the entropy term can become prohibitive for high-dimensional periodic

latents [148]. When computing EQθ [log p(Y |{gj})], most of the complexity is due to inverting

NK matrices of size (Mm2)× (Mm2), which can be performed in parallel for each Monte Carlo

sample and neuron. Using PyTorch for parallelization across neurons and MC samples, we can

train T 1-mGPLVM with N = 300 and M = 1000 in ∼100 seconds on an NVIDIA GeForce RTX

2080 GPU with 8GB RAM.

Initialization For all simulations, we initialized the system with variational means at the

identity element of the manifold, but with large variational variances to reflect the lack of prior

information about the true latent states. Inducing points were initialized according to the prior

on each manifold (Equation (5.1)). To avoid variational distributions collapsing to the uniform

distribution early during learning, we ran a preliminary ‘warm up’ optimization phase during

which some of the parameters were held fixed. Specifically, we fixed the variational covariance

matrices as well as the kernel variance parameters (α in Equation (5.13)), and prioritized a better

data fit by setting the entropy term to zero in Equation (5.5). Learning proceeded as normal

thereafter.

Entropy approximation When evaluating Equation (5.8), we used values of kmax = 3 for

the tori and S3 as in Falorsi et al. [41] and kmax = 5 for SO(3) since the sum takes steps of π

instead of 2π. In theory, the finite kmax can lead to an overestimation of the ELBO for large
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variational uncertainties, as q̃ is systematically underestimated, leading to overestimation of the

entropy. To mitigate this, we capped the approximate entropy for non-Euclidean manifolds at

the maximum entropy corresponding to a uniform distribution on the manifold.
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