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Abstract

The classical random walk isomorphism theorems relate the local times of a continuous-
time random walk to the square of a Gaussian free field. The Gaussian free field is a spin system
(or sigma model) that takes values in Euclidean space; in this work, we generalise the classical
isomorphism theorems to spin systems taking values in hyperbolic and spherical geometries.
The corresponding random walks are no longer Markovian: they are the vertex-reinforced
and vertex-diminished jump processes. We also investigate supersymmetric versions of these
formulas, which give exact random walk representations.

The proofs are based on exploiting the continuous symmetries of the corresponding spin
systems. The classical isomorphism theorems use the translation symmetry of Euclidean space,
while in hyperbolic and spherical geometries the relevant symmetries are Lorentz boosts and
rotations, respectively. These very short proofs are new even in the Euclidean case.

To illustrate the utility of these new isomorphism theorems, we present several applications.
These include simple proofs of exponential decay for spin system correlations, exact formulas
for the resolvents of the joint processes of random walks together with their local times, and
a new derivation of the Sabot–Tarrès magic formula for the limiting local time of the vertex-
reinforced jump process.

The second ingredient is a new Mermin–Wagner theorem for hyperbolic sigma models.
This result is of intrinsic interest for the sigma models, and together with the aforementioned
isomorphism theorems, implies our main theorem on the VRJP, namely, that it is recurrent in
two dimensions for any translation invariant finite-range initial jump rates.

We also use supersymmetric hyperbolic sigma models to study the arboreal gas. This is a
model of unrooted random forests on a graph, where the probability of a forest F with |F |
edges is multiplicatively weighted by a parameter β|F | > 0. In simple terms, it can be defined
to be Bernoulli bond percolation with parameter p = β

1+β conditioned to be acyclic, or as the
q → 0 limit with p = βq of the random cluster model.

It is known that on the complete graph KN with β = α/N there is a phase transition
similar to that of the Erdős–Rényi random graph: a giant tree percolates for α > 1 and all trees
have bounded size for α < 1. In contrast to this, by exploiting an exact relationship with the
hyperbolic sigma model, we show that the forest constraint is significant in two dimensions:
trees do not percolate on Z2 for any finite β > 0. This result is again a consequence of our
hyperbolic Mermin–Wagner theorem, and is used in conjunction with a version of the principle
of dimensional reduction. To further illustrate our methods, we also give a spin-theoretic proof
of the phase transition on the complete graph.





Preface

This thesis consists five chapters, which I have further grouped into two parts. The second part,
entitled superprobability, consists of three papers. These are as follows:

• The geometry of random walk isomorphism theorems, Ann. Inst. Henri Poincaré Probab.
Stat., 57(1): 408-454, 2021, coauthored with Roland Bauerschmidt and Tyler Helmuth.

• Random spanning forests and hyperbolic symmetry, Commun. Math. Phys. 381 1223–1261,
2021, coauthored with Roland Bauerschmidt, Nicholas Crawford, and Tyler Helmuth.

• Dynkin isomorphism and Mermin–Wagner theorems for hyperbolic sigma models and re-
currence of the two-dimensional vertex-reinforced jump process, Ann. Probab., 47(5):3375–
3396, 2019, coauthored with Roland Bauerschmidt and Tyler Helmuth.

These three can be read in any order, but I would recommend reading “The geometry of random
walk isomorphism theorems” before the other two. The first part, entitled superanalysis, contains
the necessary background material on supermathematics that is required for the second part. It is
an expanded version of the appendix to [8], and as such, it can be used either as an introduction
or an appendix to the second part, being referred back to as needed.

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared above and specified in the text. It is not substantially
the same as any that I have submitted, or is being concurrently submitted, for a degree or diploma
or other qualification at the University of Cambridge or any other University or similar institution.
I further state that no substantial part of my dissertation has already been submitted, or is being
concurrently submitted, for any such degree, diploma or other qualification at the University of
Cambridge or any other University or similar institution.
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Part I

SUPERANALYSIS





Chapter 1

Superalgebra and Supergeometry

1.1 Supervector Spaces

Supervector Spaces
A supervector space is a vector space which carries the additional structure of a Z2-grading,
otherwise known as a supergrading. This means that it admits a decomposition into a direct sum
of two vector spaces which are labelled by distinct elements of Z2,

V = V0 ⊕ V1 = Veven ⊕ Vodd (1.1.1)

These subspaces are respectively called even and odd, or in physics parlance, bosonic and
fermionic. Supervector spaces are equipped with natural inclusion ιj : Vj → V and projec-
tion maps πj : V → Vj for each of their even and odd subspaces. By projecting, we can uniquely
represent each element u ∈ V as sum of its even and odd components:

u = u0 + u1 (1.1.2)

where u0 ∈ V0 and u1 ∈ V1. The parity of a homogeneous element is defined as

α(u) =

{
0 ∈ Z2, u ∈ V0

1 ∈ Z2, u ∈ V1

(1.1.3)

or simply α(ui) = i when we have a parity subscript.
We will also use the incredibly useful superbar notation to indicate parity. The convention is

that objects to the left/right of the bar should be considered even/odd. We will use the superbar
in a variety of ways, for instance, rather than writing V = V0 ⊕ V1, we will often write

V = V0|V1 (1.1.4)

or even
V =

V0

V1
(1.1.5)

to indicate parity on the supervector space; in the second case we have used a vertical superbar,
where even/odd objects appear above/below the bar. The superbar is particularly useful as it
helps avoid proliferation of subscripts (which can be an issue with modules over superalgebras, as
both the basis elements and coefficients are graded), and also in cases where explicit subscripts
add to confusion instead of clarity; this is prone to occur whenever we wish to a consider an object
that is normally considered even to be odd.

As a first example, we now define the standard Cartesian supervector space Rp|q, where

Rp|q := Rp
∣∣Rq. (1.1.6)

3



4 CHAPTER 1. SUPERALGEBRA AND SUPERGEOMETRY

An element of v ∈ Rp|q, represented as a column vector, is given as

v =



a1
...
ap
b1
...
bq


(1.1.7)

where are ai, bi ∈ R ordinary real coefficients.

Tensor Products, Direct Sums, and the Kozsul Sign Rule
For V and W supervector spaces, their direct sum is simply the ordinary direct sum with grading

V ⊕W = V0 ⊕W0

∣∣∣V1 ⊕W1. (1.1.8)

Their tensor product, is likewise defined as usual, but now carries the grading given by

V ⊗W = (V ⊗W )0

∣∣∣ (V ⊗W )1

= V0 ⊗W0 ⊕ V1 ⊗W1

∣∣∣V0 ⊗W1 ⊕ V1 ⊗W0.
(1.1.9)

i.e., so that for a simple tensor we have α(v ⊗ w) = α(v) + α(w), with the general case following
by linearity. The tensor product is associative in the usual way,

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)
(1.1.10)

but the braiding map which gives the natural isomorphism V ⊗ W ∼= W ⊗ V , which sends
v ⊗ w 7→ w ⊗ v in the ordinary case, is replaced by the superbraiding

τ : V ⊗W →W ⊗ V
v ⊗ w 7→ (−1)α(v)α(w)w ⊗ v.

(1.1.11)

This is known as the Kozsul sign rule, and it is this that distinguishes supervector spaces, superal-
gebras, etc. from those which are merely Z2-graded. It is for this reason that super is the preferred
terminology.

Remark 1.1.1. Many constructions in linear superalgebra are defined on homogeneous elements
and extended to the entire space by linearity; we will often omit this final step, as we have above,
and simply define expressions in terms of homogeneous elements, with the understanding that
one can linearly extend as required. Furthermore, as a general rule, if the parity of an object
appears in an expression, we assume that that object is homogeneous.

Linear and Multilinear Maps
Let V = V0|V1 and W = W0|W1 be two supervector spaces, and let T : V → W be a linear map
between them. By composing with the inclusion and projection operations,

Vi V W Wj ,
ιi T πj

(1.1.12)

we obtain linear maps defined on the subspaces Tij : Vj →Wi, with parity defined by

α(Tij) = α(Vj) + α(Wi) = i+ j. (1.1.13)
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Taking direct sums over maps with the same parity allows us to decompose T into its even and
odd parts,

T = T00 ⊕ T11

∣∣∣T01 ⊕ T10

= T0

∣∣∣T1.
(1.1.14)

Diagrammatically, we see that T0 and T1 are naturally represented by ribbons; even maps are flat
whilst odd maps have a half twist:

T =
V0 W0— —
V1 W1

∣∣∣∣∣ V0 W0— —
V1 W1

(1.1.15)

This ribbon decomposition a induces a supervector space structure on the space of linear maps
as

L(V,W ) = Lflat(V,W )
∣∣∣Ltwist(V,W ). (1.1.16)

Remark 1.1.2. By using both the vertical and horizontal superbars, we obtain a useful represen-
tation of linear maps as block operators:

T =

[
T00 T01

T10 T11

]
(1.1.17)

The effect of the bars is Z2-additive, giving T a chequerboard structure of even and odd.

Homomorphisms. Supervector space homomorphisms are required to preserve the Z2-grading in
addition to the linear structure, and hence correspond to only the even linear maps:

Hom(V,W ) := Lflat(V,W ). (1.1.18)

The importance of the odd maps will become clear when we examine supersymmetry.

Multilinear Maps. Multilinear maps are also graded. If T : V (1) × · · · × V (n) →W is a multilinear
map with subspace maps

T ij1...jn : Vj1 × · · · × Vjn →Wi, (1.1.19)

we define
α(T ji1...in) := α(Wj) +

∑
k

α(Vik) (1.1.20)

and set T = T0 + T1 with

T0 :=
⊕

α(TI)=0

TI ,

T1 :=
⊕

α(TI)=1

TI .
(1.1.21)

Multilinear maps out of products of supervector spaces correspond to linear maps out of their
associated tensor product spaces, just like the usual case.

Example 1.1.3. The tensor product, considered as a bilinear map

⊗ : V ×W → V ⊗W
(u, v) 7→ u⊗ v

(1.1.22)

is even, and satisfies the expected universal property: for any bilinear map T : V ×W → U , there
exists a unique linear map of the same parity T̃ : V ⊗W → U such that T = T̃ ◦ ⊗.
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Parity Reversal

The parity reversal of a supervector space V = V0|V1 is defined as the supervector space with the
same subspace decomposition as V , but with opposite labelling:

ΠV = V1|V0 (1.1.23)

The parity reversal operator Π, thought of as a map Π : V → ΠV , satisfies the universal property
that for any even/odd map T : V → W , there exists a unique map of the opposite parity
T̃ : ΠV → W such that T = T̃ ◦ Π. We also have a universal property in the opposite direction,
namely, that for any even/odd map S : W → V , we have a unique map of the opposite parity
S̃ : W → ΠV such that S̃ = Π ◦ S.

The parity reversal operator thus allows us to represent odd maps in terms of even maps into
(or out of) a parity reversed space, i.e.,

Ltwist(V,W ) ' Hom(ΠV,W ) ' Hom(V,ΠW ). (1.1.24)

This is easily seen by untwisting the ribbon:

V0 W0— —
V1 W1

' V1 W0— —
V0 W1

' V0 W1— —
V1 W0

(1.1.25)

Dimension and Bases

The dimension of a supervector space V = V0|V1 is defined as the pair of integers

dim(V ) = p|q (1.1.26)

where dim(V0) = p and dim(V1) = q are the usual dimensions of the even and odd subspaces. The
natural bases of supervector spaces are likewise graded, decomposing as B = B0|B1 where B0 is
a basis for V0 and B1 is a basis for V1. Choosing a basis e1, . . . , ep|ε1, . . . εq for a finite dimensional
supervector space gives an isomorphism with Rp|q.

Dual Space

The dual space V ∗ = V ∗0 |V ∗1 of a supervector space V is defined as the space of even and odd
linear maps from V → R1|0 with the ribbon grading:

V ∗ = Lflat(V,R)
∣∣∣Ltwist(V,R). (1.1.27)

Equivalently, this is

V ∗ = Hom(V0,R)
∣∣∣Hom(V1,ΠR) (1.1.28)

Choosing a basis e1, . . . , en | ε1, . . . , εm on V then defines a dual basis x1, . . . , xn | ξ1, . . . , ξm on V ∗

where
xi(ej) = ξi(εj) = δij . (1.1.29)

Example 1.1.4. Let V and W be supervector spaces. Then

L(V,W ) 'W ⊗ V ∗. (1.1.30)
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1.2 Superalgebras
A superalgebra is a supervector space A = A0⊕A1 equipped with an even bilinear multiplication
operation

m : A×A→ A

(u, v) 7→ m(u, v)
(1.2.1)

This means that for homogeneous elements u, v ∈ A we have

α(m(u, v)) = α(u) + α(v). (1.2.2)

We will often leave the multiplication map implicit, and simply write uv. Just as for regular
algebras, superalgebras may be unital or associative. However, as a consequence of the Koszul
braiding, the natural notion of commutativity is replaced by supercommutativity: in a supercom-
mutative algebra A, we have for all homogeneous elements u, v

uv = (−1)α(u)α(v)vu. (1.2.3)

This relation implies that elements in A0 commute with all others, whereas elements in A1 anti-
commute with each other. In particular, each odd element anti-commutes with itself, and therefore
squares to zero.

Supercommutative superalgebras form one of the two important classes of superalgebras, the
other being Lie superalgebras. For now, we defer the discussion of Lie superalgebras, and will
focus on supercommutative superalgebras. These arise as algebras of ‘functions’ on superspaces,
and will play the role of observables of our spin systems.

In the following, we only consider supercommutative superalgebras that are associative and
unital.

Homomorphisms and Superideals. All of the other concepts and constructions surrounding ordi-
nary algebras carry over to the super case too. For superalgebra homomorphisms and ideals, the
only differences are a result of the grading compatibility requirements: homomorphisms between
superalgebras correspond to even linear maps

T : A→ B (1.2.4)

that commute with multiplication

T (uv) = T (u)T (v). (1.2.5)

If A and B have units, then we further require T (1A) = 1B.
The natural ideals of a superalgebra, superideals, are defined as ordinary ideals with the

additional requirement that they are Z2-graded subspaces, splitting as1:

I = I0 ⊕ I1, Ii = I ∩Ai. (1.2.6)

Superideals come in the three standard flavours of left, right, and two-sided, all of which coincide
on supercommutative superalgebras. Two-sided superideals correspond to the kernels of superal-
gebra homomorphisms, and can be used to construct quotient superalgebras following the usual
procedure.

The (left) ideal generated by a collection of elements

(u1, . . . , uk)L := {a1u1 + · · ·+ akuk | ai ∈ A} (1.2.7)

generates a (left) superideal if and only if each ui is of definite parity; as such, we often write
(u1, . . . , un |ψ1, . . . , ψm)L. The same is true for right and two-sided ideals; these are written as
(u1, . . . , uk)R and (u1, . . . , uk), and likewise have their usual definitions. We will never need to
consider a non-super ideal in a superalgebra, so we just write ideal.

1One may want to check that this is non-trivial!
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Tensor Products. The tensor product of two superalgebras A ⊗ B has a natural superalgebra
structure with the induced multiplication map mA⊗B : A⊗B ×A⊗B → A⊗B,

mA⊗B(a1 ⊗ b1, a2 ⊗ b2) = (−1)|b1||a2|mA(a1, a2)⊗mB(b1, b2) (1.2.8)

where mA and mB are the multiplication maps of A and B. The minus factor again results from
the braiding.

When A and B are both supercommutative, we have natural inclusion maps iA : A→ A⊗B,
iB : B → A⊗B, which send

a 7→ a⊗ 1

b 7→ 1⊗ b
(1.2.9)

In the supercommutative case, it convenient to use the braiding a ⊗ b 7→ (−1)α(a)α(b)b ⊗ a to
‘incorporate’ the tensor product into the algebra product, allowing the elements of a and b to
freely supercommute. With this convention, we see that the rather complicated looking expression
above is actually very simple.

a1b1a2b2 = (−1)|b1||a2|a1a2b1b2. (1.2.10)

The inclusion map is now totally trivial: iA(a) = a, iB(b) = b, with the images considered as
elements of A ⊗ B. Following the usual arguments, we find homomorphisms out of A ⊗ B are
exactly pairs of homomorphisms (TA, TB) out of A and B.

Grassmann Algebras
The archetypal supercommutative superalgebras are the Grassmann algebras. These are thought
of as polynomial rings in odd variables, which anti-commute as a result of the sign rule. Formally,
we construct the real Grassmann algebra in N odd variables ξ1, . . . , ξN , by taking a quotient of
the free associative algebra R〈ξ1, . . . , ξN 〉 by the ideal generated by the N(N+1)

2 anti-commutation
relations

ξiξj = −ξjξi, 1 ≤ i ≤ j ≤ N. (1.2.11)

We denote the Grassmann algebra in N variables as ΩN , or sometimes in the polynomial ring style
R[ξ1, . . . , ξN ].

Like their commutative cousins, the Grassmann algebras are spanned by monomials, but the
anti-commutativity imposes a major difference: Grassmann algebras are finite dimensional, as
any monomial with a square term ξ2

i is automatically zero. A general element P ∈ ΩN is then a
linear combination of square free monomials2 ξI = ξi1ξi2 . . . ξik

P =
∑

I⊆{1,...,N}

pIξI , pI ∈ R. (1.2.12)

This also shows that dim(ΩN ) = 2N .
As a superalgebra, ΩN splits as ΩN

even ⊕ ΩN
odd with the even/odd parts being spanned by

monomials with an even/odd number of terms, i.e., α(ξI) = |I| mod 2. It is easy to see that the
product respects the grading, and furthermore, is supercommutative: for monomials ξI1 , ξI2 , one
can check (say, by pulling variables through one at a time) that

ξI1ξI2 = (−1)α(ξI)α(ξI)ξI2ξI1 , (1.2.13)

which implies supercommutativity for the entire algebra by linearity.
2It is sometimes said that a fixed ordering must be chosen on the Grassmann variables to obtain a valid Grassmann

polynomial due to the sign ambiguity, but this is only necessary if we require a unique representation. Ordinary
polynomials are really no different in this regard, just as 5x1x2 +x3 and 5x2x1 +x3 are two different representations of
the same polynomial, 5ξ1ξ2 + ξ3 and −5ξ2ξ1 + ξ3 are two different representations of the same Grassmann polynomial.
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Grassmann extensions

The importance of the Grassmann algebras stems from their ability to turn any commutative
algebra into a supercommutative one through the tensor product: if A is any commutative algebra,
then A⊗ΩN = A⊗ΩN

0 ⊕A⊗ΩN
1 is a supercommutative one3. A general element of A⊗ΩN can

be written as

F =
∑

I⊆{1,...,N}

fIξI , fI ∈ A. (1.2.14)

As we will need to make frequent use of this construction, we call A⊗ΩN a Grassmann extension
of A.

Example 1.2.1. The algebra of smooth differential forms on RN can be represented as the Grass-
mann extension C∞(RN ) ⊗ Λ(RN ). Here, Λ(RN ) ' R[dx1, . . . , dxN ] is the Grassmann algebra
generated by the coordinate differentials dx1, . . . , dxN together with the wedge product

dxi ∧ dxj = −dxj ∧ dxi, (1.2.15)

and a general differential form F ∈ C∞(RN )⊗ Λ(RN ) is written as

F =
∑

I⊆{1,...,N}

fI(x1, . . . , xN )dxi1 ∧ · · · ∧ dxip , fI ∈ C∞(RN ). (1.2.16)

The coefficient functions commute with the differentials fidxj = dxjfi and each other fifj = fjfi.

1.3 Superfunction algebras

A running theme across much of mathematics is the idea that algebra is dual to geometry. For
instance, maps between smooth manifolds can equally be seen as homomorphisms between their
algebras of functions, but in the opposite direction. This particular result is known as “Milnor’s
exercise”, or smooth Gelfand duality:

Theorem 1.3.1. For any two smooth manifolds M and N , there is a natural bijection between
smooth functions

ϕ : M → N (1.3.1)

and algebra homomorphisms in the opposite direction

ϕ∗ : C∞(N)→ C∞(M) (1.3.2)

where C∞(−) := C∞(− → R).

In the super world, this theme can be taken as definition: smooth supergeometry is defined as
the dual to smooth superalgebra. The basic object of study on the algebraic side is the smooth
superfunction algebra C∞(Rn|m).

3It is interesting to interpret this idea as ΩN (A) := A⊗ ΩN



10 CHAPTER 1. SUPERALGEBRA AND SUPERGEOMETRY

Definition 1.3.2 (Smooth Superfunction Algebra). The smooth superfunctions algebra
C∞(Rn|m) is defined as

C∞(Rn|m) := C∞(Rn)⊗ Ωm, (1.3.3)

It’s even and odd subspaces are then

C∞even(Rn|m) = C∞(Rn)⊗ Ωm
0

C∞odd(Rn|m) = C∞(Rn)⊗ Ωm
1

(1.3.4)

Its elements F ∈ C∞(Rn|m) are called superfunctions, and are represented in terms of
Cartesian supercoordinates x1, . . . , xn | ξ1, . . . , ξm as

F (x1, . . . , xn | ξ1, . . . , ξm) =
∑
I⊆JmK

fI(x1, . . . , xn)ξI (1.3.5)

where the fI ∈ C∞(Rn) are smooth functions and ξI ∈ Ωm are Grassmann monomials.
Even superfunctions are written with lowercase latin letters; odd superfunctions are written
with lowercase greek letters.

As the notation suggests, we will think of C∞(Rn|m) as the algebra of smooth functions on
Rn|m, but for technical reasons, can no longer think of it as the a set of points of a supervector
space. Instead, we view it as a formal superspace, defined through duality. Before we look at
the spaces themselves, we first explain how to compose superfunctions.

Grassmann Analytic Continuation
As superfunctions are not functions with a domain and codomain in a traditional sense, their
composition must be defined in a different manner with a procedure known as Grassmann
analytic continuation. The idea is as follows: consider a function g ∈ C∞(R), and an even
superfunction f ∈ C∞(R1|2), written in Cartesian coordinates as

g = g(y)

f = f(x | ξ1, ξ2) = fb(x) + f1(x)ξ1ξ2
(1.3.6)

Setting y = f(x | ξ1, ξ2), we obtain an apparently ill-formed composite function h = g ◦ f ,

h(x | ξ1, ξ2) = g(fb(x) + f1(x)ξ1ξ2), (1.3.7)

as we are now evaluating a smooth function on an expression involving Grassmann variables.
However, if we exploit the fact that g(y) can equivalently be represented using Taylor’s theorem
as

g(y) = g(yb) + g′(yb)(y − yb) + r(yb, y)(y − yb)2 (1.3.8)

and only now substitute y = fb(x) + f1(x)ξ1ξ2 with yb = fb(x), y − yb = f1(x)ξ1ξ2,

g(fb + f1ξ1ξ2) = g(fb) + g′(fb)f1ξ1ξ2 + r(fb, f)(f1ξ1ξ2)2

= g(fb) + g′(fb)f1ξ1ξ2,
(1.3.9)

we see that the remainder term r is annihilated by (ξ1ξ2)2 = 0, and we are left with a well defined
expression containing composition only with respect to ordinary smooth functions.

Grassmann analytic continuation is performed relative to the body and soul of a superfunction,
as above. For F a smooth superfunction in C∞(Rn|m), with

F (x1, . . . , xn | ξ1, . . . , ξm) =
∑
I⊆JmK

fI(x1, . . . , xn)ξip , (1.3.10)
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the body of F is defined as the ordinary smooth function obtained by formally setting all Grass-
mann variables to zero

Fb = F (x1, . . . , xn | 0, . . . , 0) = f∅(x1, . . . , xn). (1.3.11)

The remaining part is referred to as the soul:

Fs = F − Fb =
∑

I⊆JmK,I 6=∅

fI(x1, . . . , xn)ξI , (1.3.12)

Souls are always nilpotent, and for F ∈ C∞(Rn|m), the nilpotency is of order less than m, i.e.,
Fms = 0. More generally, collections of souls are mutually nilpotent: for Fs = (F 1

s . . . F
k
s ) any

collection of k souls, and α = (α1, . . . , αk) ∈ Nk a multi-index with |α| = a1 + · · ·+ αk ≥ m, we
have

Fαs = (F 1
s )α1 . . . (F ks )αk = 0 (1.3.13)

Using the body and soul decomposition F = Fb + Fs, we generalise the simple example
above to the composition of g ∈ C∞(Rk) with a collection of k even superfunctions f1, . . . , fk ∈
C∞even(Rn|m). Let f1

b , . . . , f
k
b be their real valued bodies, and let

g(α)(x) :=
∂

∂xα1
1

. . .
∂

∂xαkk
g(x), xα := xα1

1 · · ·x
αk
k . (1.3.14)

Then, using Taylor’s theorem, g(x) can be represented as

g(x) =
∑
|α|≤m

1

α!
g(α)(y)(x− y)α +

∑
|α|=m

rα(x, y)(x− y)α (1.3.15)

where rα are smooth remainder functions. Substituting x 7→ f = (f1, . . . , fk) and expanding
around around the body fb = (f1

b , . . . , f
k
b ) therefore gives

g(f) =
∑
|α|<∞

1

α!
g(α)(fb)(f − fb)α =

∑
|α|<∞

1

α!
g(α)(fb)f

α
s (1.3.16)

where the expansion is finite due to the nilpotence of the soul.
The procedure is simpler for odd Grassmann analytic continuation, as we can substitute

directly: if η1, . . . , ηk ∈ C∞odd(Rn|m), ηi = ηi(x1, . . . , xn | ξ1, . . . , ξm) are any odd superfunctions,
and G ∈ C∞(R0|k) with

G(ψ1, . . . , ψ1) =
∑
I⊆JkK

gIψI (1.3.17)

then

G(η1, . . . , ηk) =
∑
I⊆JkK

gIηI (1.3.18)

where

ηI = ηi1(x | ξ)ηi2(x | ξ) . . . ηip(x | ξ) (1.3.19)

if ξI = ξi1ξi2 . . . ξip . Combining the even and odd cases gives Grassmann analytic continuation in
the general case:
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Definition 1.3.3. Let f = (f1, . . . , fn), fi ∈ C∞even(Rp|q), and η = (η1, . . . , ηm) ηi ∈
C∞odd(Rp|q), be a collection of even/odd superfunctions, and let G ∈ C∞(Rn|m),

G(x1, . . . , xn | ξ1, . . . , ξm) =
∑
I⊆JmK

gI(x)ξI . (1.3.20)

Then the composition G(f | η) ∈ C∞(Rp|q) is defined as

G(f | η) :=
∑
I⊆JmK

 ∑
|α|<∞

1

α!
g

(α)
I (fb)(f − fb)α

ηI . (1.3.21)

Functions and algebra homomorphisms
Every smooth function f ∈ C∞(Rn)

f : Rn → R
(x1, . . . , xn) 7→ f(x1, . . . , xn)

(1.3.22)

defines an algebra homomorphism in the opposite direction

f∗ : C∞(R)→ C∞(Rn) (1.3.23)

by sending g ∈ C∞(R) to its composition with f , i.e.,

f∗[g] = g(f(x1, . . . , xn)). (1.3.24)

Inverting this idea allows us to think of superfunctions as functions between formal superspaces.
Every even superfunction f ∈ C∞even(Rn|m) defines a map

f∗ : C∞(R)→ C∞(Rn|m) (1.3.25)

which is again defined using composition, but now interpreted in the Grassmann analytic sense:

f∗[g] = g(f(x1, . . . , xn | ξ1, . . . , ξm)) (1.3.26)

Furthermore, this map is a superalgebra homomorphism. Clearly, f∗ preserves degree, and is
unital and linear

f∗[1] = 1(f) = 1, f∗[c1g + c2h] = c1f
∗[g] + c2f

∗[h], (1.3.27)

so one need only check f∗ commutes with multiplication. This follows from the C∞(Rn|2) case:
letting f = y(x) + q(x)ξ1ξ2, we have

f∗[gh] = [gh](y) + [gh]′(y)fs

= g(y)h(y) + (g′(y)h(y) + g(y)h′(y))fs

=
(
g(y) + g′(y)fs

)(
h(y) + h′(y)fs

)
= f∗[g]f∗[h]

(1.3.28)

where we have used that f2
s = 0 on the third line. Likewise, for every odd superfunction η ∈

C∞odd(Rn|m) we have a superalgebra homomorphism

η∗ : C∞(R0|1)→ C∞(Rn|m) (1.3.29)
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defined by odd Grassmann analytic continuation. Compared to the even case, this is rather trivial
as a general element ψ ∈ C∞odd(R0|1) is of the form ψ(ξ) = aξ, which gives

η∗[ψ] = ψ(η) = aη(x1, . . . , xn | ξ1, . . . , ξm). (1.3.30)

As above, η∗ degree preserving, unital and linear, and trivially commutes with multiplication

η∗[ψ1]η∗[ψ2] = a1a2η
2 = 0 = η∗[0] = η∗[ψ1ψ2], (1.3.31)

so it does indeed define a superalgebra homomorphism.
Superfunctions thus define superalgebra homomorphisms in exactly the same way as ordinary

functions, and we should therefore think of them as ‘maps’ between formal superspaces:

f : Rn|m → R1|0

η : Rn|m → R0|1 (1.3.32)

acting as
(x1, . . . , xn | ξ1, . . . , ξm) 7→ f(x1, . . . , xn | ξ1, . . . , ξm)

(x1, . . . , xn | ξ1, . . . , ξm) 7→ η(x1, . . . , xn | ξ1, . . . , ξm)
(1.3.33)

in the even/odd cases. More generally, just as how a map

f : Rn → Rm (1.3.34)

is represented in coordinates as an m-tuple of smooth functions f = (f1, . . . , fm), with fi ∈
C∞(Rn),

(x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)), (1.3.35)

a ‘map’ between two superspaces
F : Rn|m 7→ Rp|q (1.3.36)

is represented in coordinates by a p|q-tuple of smooth superfunctions F = (f1, . . . , fp|η1, . . . , ηq),
with fi ∈ C∞even(Rn|m), ηi ∈ C∞odd(Rn|m), so that

(x1, . . . , xn | ξ1, . . . , ξm) 7→
(
f1(x|ξ), . . . , fp(x|ξ)

∣∣ η1(x|ξ), . . . , ηq(x|ξ)
)
. (1.3.37)

On the algebraic side, every such map defines a superalgebra homomorphism in the reverse
direction

F ∗ : C∞(Rp|q)→ C∞(Rn|m), (1.3.38)

again defined using Grassmann analytic continuation:

F ∗[g] = g
(
f1(x|ξ), . . . , fp(x|ξ)

∣∣ η1(x|ξ), . . . , ηq(x|ξ)
)
,

F ∗[ψ] = ψ
(
f1(x|ξ), . . . , fp(x|ξ)

∣∣ η1(x|ξ), . . . , ηq(x|ξ)
)
.

(1.3.39)

Under their interpretation, superfunctions are composed using Grassmann analytic continuation;
this is of course compatible with their reversed composition as superalgebra homomorphisms, as
this is also defined using Grassmann analytic continuation, i.e., (G ◦ F )∗ = F ∗ ◦G∗.

Remark 1.3.4. In fact, every superalgebra homomorphism φ : C∞(Rp|q) → C∞(Rn|m) is repre-
sented by a superfunction F : Rn|m → Rp|q, so that φ = F ∗ for some F .
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Coordinate Transforms

Every automorphism of C∞(Rn|m)

F ∗ : C∞(Rn|m)→ C∞(Rn|m) (1.3.40)

defines a coordinate transformation. Geometrically, this corresponds to an invertible map

F : Rn|m → Rn|m

(x′1, . . . , x
′
n | ξ′1, . . . , ξ′m) 7→ (f1, . . . , fn |ψ1, · · ·ψm)

(1.3.41)

which represents the old coordinate functions (x, ξ) in terms of the new

xi = fi(x
′, ξ′) ξi = ψi(x

′, ξ′), (1.3.42)

or, more concisely as x|ξ = F (x′|ξ′). The corresponding homomorphism acts on superfunctions
as G(x, ξ) 7→ F ∗[G] = G(F (x′, ξ′)). As the sense of a coordinate transforms follows the algebraic
rather than the geometric direction, we write x | ξ 7→ x′ | ξ′, following the ordinary convention.

Example 1.3.5. Changes of coordinates do not need to preserve the bodies of superfunctions. For
instance, the change of coordinates (x |ξ, η) 7→ (x′ | ξ′, η′) given by

x = x′ + ξ′η′

η = η′

ξ = ξ′
(1.3.43)

is coordinate transform on R1|2. The inverse transform is simply

x′ = x− ξη
η′ = η

ξ′ = ξ

(1.3.44)

Both of these maps define superalgebra homomorphisms on C∞(R1|2),

G(x | ξ, η) 7→ G(x′ + ξ′η′ | ξ′, η′)
F (x′ |ξ′, η′) 7→ F (x− ξη | ξ, η)

(1.3.45)

and are clearly inverses of each one another in this sense too, and hence are automorphisms.

Supermanifolds
More generally, supermanifolds are defined using the following principle:

Theorem 1.3.6. Every smooth manifold M can be smoothly embedded into a Cartesian space Rn of
large enough dimension:

i : M → Rn (1.3.46)

Dually, this defines a surjective algebra homomorphism

i∗ : C∞(Rn)→ C∞(M). (1.3.47)

Furthermore, this embedding can be realised as the joint zero locus of a finite collection of functions
(f1, . . . , fk) ∈ C∞(Rn), so that

M ' {(x1, . . . , xn) ∈ Rn | f1(x) = · · · = fk(x) = 0}. (1.3.48)

Algebraically, this states that

C∞(M) ' C∞(Rn)/(f1, . . . , fk) (1.3.49)

i.e., the ideal defined by ker(i∗) is generated by f1, . . . , fk.



1.3. SUPERFUNCTION ALGEBRAS 15

We take the super-analogue of this statement as a definition:

Definition 1.3.7. A superalgebra C∞(M) is the algebra of functions on a formal superspace
M if it is isomorphic to a quotient superalgebra of the form

C∞(M) ' C∞(Rn|m)/(f1, . . . , fp | ρ1, . . . , ρq), (1.3.50)

where (f1, . . . , fp | ρ1, . . . , ρq) is a finitely generated ideal.

Functions between superspaces are defined as follows:

Definition 1.3.8. A smooth function between two formal superspaces M and N

f : M → N (1.3.51)

is defined as a superalgebra homomorphism

f∗ : C∞(N)→ C∞(M) (1.3.52)

where C∞(N) and C∞(M) are superalgebras of the form (1.3.50).

Remark 1.3.9. The superspaces defined according to the above definition can be quite singular,
and are closer to schemes than manifolds. For instance, C∞(R)/(x2) is not the algebra of functions
on any manifold, although it does arise as the algebra of global sections of a scheme. Later we will
give conditions on what sorts of ideals (f1, . . . , fp | ρ1, . . . , ρq) give rise to supermanifolds, which
are superspaces that are ‘locally isomorphic’ to Rp|q. But from the algebraic perspective, having
the extra flexibility can be quite useful, so we retain it.

Example 1.3.10. Let x, y, z be Cartesian coordinates on R3. Then the algebra of functions on the
sphere S2 is isomorphic to the quotient algebra

C∞(S2) ' C∞(R3)/(x2 + y2 + z2 − 1), (1.3.53)

as S2 can be represented as the zero locus of x2 + y2 + z2 − 1. In analogous way, the algebra of
functions on the supersphere S2|2 is isomorphic to

C∞(S2|2) ' C∞(R3|2)/(x2 + y2 + z2 − 2ξη − 1), (1.3.54)

where x2 + y2 + z2 − 2ξη − 1 is the zero locus representing the supersphere, written here in
Cartesian supercoordinates x, y, z | ξ, η on R3|2. The superfunction x2 + y2 + z2 − 2ξη is known as
the super-Euclidean quadratic form; we discuss this in further detail in section 1.6.

The algebra of functions on the hyperbolic superspace H2|2 is isomorphic to the quotient
algebra

C∞(H2|2) ' C∞(R3|2)/(x2 + y2 − z2 − 2ξη + 1, 1εz>0 − 1) (1.3.55)

where x2 + y2 − z2 − 2ξη is now the Minkowski quadratic form on R3|2, and 1z>0 is a smoothed
indicator function which picks out the upper of the two branches of the hyperboloid. As we can
explicitly solve z =

√
1 + x2 + y2 − 2ξη, we can write a general function on H2|2 as

F (x, y, z | ξ, η) 7→ F (x, y,
√

1 + x2 + y2 − 2ξη | ξ, η) = F̃ (x, y | ξ, η), (1.3.56)

so we have an isomorphism C∞(H2|2) ' C∞(R2|2).
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1.4 Further remarks on superspaces

Points in superspace

It worth making a few remarks about why superspaces cannot be regarded as spaces in the
ordinary sense. The fundamental difference between superspaces and ordinary ones is that maps
between superspaces are not uniquely determined by their values on the ‘points’ of the space.

The set of points underlying an ordinary manifold is equivalently realised as the set of maps
from an external point into the space. Taking, say, Rn, a point p ∈ Rn can be thought of as a map

p : • → Rn

• 7→ (c1, . . . , cn)
(1.4.1)

which sends a point to its coordinates (c1, . . . , cn) in the space. To be clear, (c1, . . . , cn) is an
n-tuple of real numbers, each of which can be thought of as a constant function ci ∈ C∞(•) ' R.
Dually, points in a space correspond to algebra homomorphisms in the other direction

p∗ : C∞(Rn)→ R
f(x1, . . . , xn) 7→ f(c1, . . . , cn),

(1.4.2)

corresponding to the evaluation of a function on the point itself, and clearly, if we know the value
of f for all (c1, . . . , cn) ∈ Rn, then we know f .

Pulling this idea over to the super case, we encounter a problem: a point again corresponds
to R0|0 (as there are no variables), and its set of smooth functions C∞(R0) is again isomorphic to
R, and so the set of points p ∈ Rn|m is defined as the set of superalgebra homomorphisms

p∗ : C∞(Rn|m)→ R (1.4.3)

as these are dual to formal maps p : • → Rn|m. However, because superalgebra homomorphisms
are required to preserve parity4, all odd superfunctions must map to zero as R has no odd
component. Hence, a general homomorphism is of the form

p∗(F ) = F (c1, . . . , cn | 0, . . . , 0). (1.4.4)

By knowing the value of a superfunction F ∈ C∞(Rn|m) on all points p ∈ Rn|m, we are able to
reconstruct the body Fb ∈ C∞(Rn) of F , but are unable to say anything about its soul. In this
sense, souls are ephemeral as they cannot be seen directly: superfunctions, when evaluated on
points, are indistinguishable from their bodies.

Visualising Superspaces

When dealing with geometric objects, it is often helpful to have a picture in mind. As the set of
ordinary points in a superspace is naturally equivalent to the set of points of its body, we can
imagine Rn|m looking like ordinary Rn, but with a certain ‘aura’ indicating the presence of the
soul. This is sometimes described as a ‘Grassmann cloud’ or ‘fuzz’, but I find it better to think of
it as a sort of metallic shimmer on the space; in my view, this better reflects the rigidity of the
Grassmann directions.

4Even removing the degree preservation requirement (like we did to obtain odd linear maps) does not resolve the
issue: the image of p∗[ξ] must always equal zero as if p∗[ξ] = c, then

c2 = p∗[ξ]2 = p∗[ξ2] = p∗[0] = 0,

which is impossible for c 6= 0.
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Body and Soul

Previously, we have discussed ‘body and soul’ in the context of Grassmann analytic continuation,
but it is useful to understand how the concept fits into the larger picture. Our original formulation
for C∞(Rn|m), although correct, paints a somewhat misleading picture as the decomposition of a
superfunction into its body and soul does not truly exist in an absolute sense, but only in a relative
one.

Definition 1.4.1. The soul of a superalgebra Aeven⊕Aodd is the ideal generated by the entire odd
subspace of A:

Asoul =
(
Aodd

)
(1.4.5)

The body of A is then defined as the quotient algebra

Abody = A/Asoul. (1.4.6)

We denote the associated superalgebra homomorphism by

i∗ : A→ Abody. (1.4.7)

Remark 1.4.2. The body of a superalgebra is an ordinary algebra, and if A is supercommutative,
then Abody is commutative. The notation i∗ : A → |A| is again here to suggest that we think of
this algebraic quotient as something that is induced by a geometric inclusion i : |M | →M in the
opposite direction.

Here are some examples of superalgebra bodies:

• The body of the Grassmann algebra ΩN is |ΩN | ' R. This is also true for any quotient
algebra of of a Grassmann algebra |ΩN/I| ' R.

• If A = B ⊗ ΩN is the Grassmann extension of a commutative algebra B, then |A| ' B.

• In particular, the body of the smooth superfunction algebra∣∣∣C∞(Rn|m)
∣∣∣ = C∞(Rn|m)/(ξ1, . . . , ξn) = C∞(Rn) (1.4.8)

is the ordinary algebra of smooth functions on Rn. It is useful to think of this in a geometric
fashion as ∣∣∣C∞(Rn|m)

∣∣∣ = C∞(|Rn|m|) = C∞(Rn), (1.4.9)

so that the body of Rn|m is Rn, and that C∞(−) preserves this relation.

This last example motivates the following definition:

Definition 1.4.3. The body of a superspace M is the formal space |M | associated to the
ordinary algebra of functions C∞(|M |) := C∞body(M). The geometric inclusion is denoted,

i : |M | →M (1.4.10)

and is defined as dual to the algebraic quotient map i∗ : C∞(M)→ C∞body(M).

When a superalgebra A = |A| ⊗ ΩN is defined as a Grassmann extension of a commutative
algebra |A|, we have a natural embedding of the body back into the superalgebra

p∗ : |A| → |A| ⊗ ΩN , (1.4.11)
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where p∗ = i|A| is the natural inclusion associated with the tensor product (again, now thought
of as the opposite of a geometric projection p : M → |M |). By composing with the quotient map
i∗ : |A| ⊗ ΩN → |A|, we obtain the body projection

Pbody = p∗ ◦ i∗ : B ⊗ ΩN → B → B ⊗ ΩN (1.4.12)

and, taking its complement, the soul projection:

Psoul = I − Pbody. (1.4.13)

The inclusion of the body back into a superfunction algebra designates a subspace of superfunc-
tions as ordinary real valued functions, much in the same way as how the inclusion of the reals
into any algebra iR : R → A indicates which elements are real numbers, that is im(iR) ' R. For
the smooth superfunction algebra C∞(Rn|m) = C∞(Rn)⊗Ωm, the body and soul projections give
the previously described decomposition of a superfunction

F (x1, . . . , xn | ξ1, . . . , ξm) =
∑
I⊆JmK

fI(x1, . . . , xn)ξI (1.4.14)

into its body and soul F = Fb + Fs, where again

Fb = Pbody(F ) = F (x1, . . . , xn | 0, . . . , 0) = f∅(x1, . . . , xn)

Fs = Psoul(F ) = F − Fb =
∑

I⊆JmK,I 6=∅

fI(x1, . . . , xn)ξI . (1.4.15)

This gives a decomposition of C∞(Rn|m) as

C∞(Rn|m) = C∞body(Rn|m)⊕ C∞soul(R
n|m). (1.4.16)

However, for a general superalgebra, there is no natural embedding

p∗ : |A| → A, (1.4.17)

and hence no natural splitting into body and soul A = Abody⊕Asoul. In particular, for a superfunc-
tion F ∈ C∞(M) on a superspace M , there is no absolute sense in which we have a decomposition

F = Fb + Fs (1.4.18)

into a ‘real valued’ body and nilpotent soul. It is only after choosing a particular embedding do
we obtain a splitting. This is true even for linear superspaces V , as although we have

C∞(V ) ' C∞(Rn|m), (1.4.19)

we still have to choose a specific isomorphism in order to identify them.

Remark 1.4.4. The body of a superspace sits inside it, but the soul is free to ‘tilt’ around it.

1.5 Supermodules and Supermatrices
Vector spaces generalise to modules by replacing the ground field of scalars by an arbitrary ring
or algebra. A left module over an algebra A is a vector space M equipped with a bilinear
map from A ×M → M , (a,m) 7→ am called left multiplication, such that (ab)m = a(bm) and
em = m. A right module over A is similarly defined, but multiplication taking place on the
right M × A → M , (m, a) 7→ ma. If M is both a left and right A-module such that for all
m ∈ M , a1, a2 ∈ A, a1(ma2) = (a1m)a2, then M is called a bimodule. Any left module over
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a commutative algebra can be considered as a bimodule by defining the right multiplication as
ma := am (and vice-versa for right modules).

When A is a superalgebra, the natural class of modules are supermodules, which are (left or
right) modules equipped with a Z2-grading

M = M0 ⊕M1 (1.5.1)

that is compatible with the superalgebra structure

AiMj ⊆Mi+j (left supermodule)

MjAi ⊆Mi+j (right supermodule).
(1.5.2)

Supermodules over supercommutative algebras can be considered as superbimodules by setting

AiMj = (−1)ijMjAi. (1.5.3)

As we are only interested in this case, we will just say supermodule.

Remark 1.5.1. By considering R as a purely even superalgebra, the definition of a supervector
space is identical to an R-superbimodule. Note that unlike supervector spaces (but like super-
algebras), supermodules do not in general split into a direct sum of ordinary modules because
multiplication by odd algebra elements exchanges parity.

Free Supermodules
A supermodule over a superalgebra A = A0 ⊕A1 is called free if it can be written in the form

M = M0 ⊕M1 = (Ap0 ×A
q
1)0 ⊕ (Ap1 ×A

q
0)1 = Ap|q. (1.5.4)

We define the rank of such a supermodule as the superpair of natural numbers p|q. Free super-
modules admit a Z2-graded basis

e1, . . . , ep ∈M0 ε1, . . . , εq ∈M1 (1.5.5)

with the ei labelled even and the εi labelled odd. Using this basis, every element v ∈M is uniquely
expressible as a linear combination v = v0 + v1,

v0 =

p∑
i=1

aiei +

q∑
i=1

αiεi

v1 =

p∑
i=1

αiei +

q∑
i=1

aiεi

(1.5.6)

with vi ∈ Mi, ai ∈ A0, αi ∈ A1. When M is a superbimodule, the basis elements satisfy the
supercommutativity relations

aei = eia αei = eiα

aεi = εia αεi = −εiα
(1.5.7)

Supermatrix Algebras
Linear maps between free supermodules over the same algebra are most easily described by
supermatrices. A supermatrix is a 2× 2 block matrix

R =
p
{
q
{[

r︷︸︸︷
R00

s︷︸︸︷
R01

R10 R11

]
(1.5.8)
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with entries in a supercommutative superalgebra. The dimension of a supermatrix is denoted
p|q× r|s where the dimension of each block is indicated above, and we denote the collection of all
such matrices over a superalgebra A by Matp|q,r|s(A). Under the usual matrix addition and scalar
multiplication Matp|q,r|s(A) is a supervector space with grading R = R0 +R1,

R0 =

[
even odd

odd even

]
, R1 =

[
odd even

even odd

]
(1.5.9)

where even/odd indicates the blocks of homogeneous elements. Furthermore, as we can multiply
matrices by elements of the algebra on the left

(F,R) 7→ FR =

[
FR00 FR01

(−1)α(F )FR10 (−1)α(F )FR11

]
(1.5.10)

and on the right

(R,F ) 7→ RF =

[
R00F (−1)α(F )R01F

R10F (−1)α(F )R11F

]
(1.5.11)

in a fashion compatible with the grading and supercommutativity

α(FR) = α(RF ) = α(F ) + α(R),

FR = (−1)α(F )α(R)RF,
(1.5.12)

Matp|q,r|s(A) carries the structure of a superbimodule over A. Notice that the signs are different
from ordinary matrix-scalar multiplication because the have implicitly used the graded basis with
the coefficients ‘in the middle’:

R =
∑
i,j

ei(R00)ije
j +

∑
i,j

ei(R01)ijε
j

∑
i,j

εi(R10)ije
j +

∑
i,j

εi(R11)ijε
j

(1.5.13)

Here, the ei, ej , εi, εj are even/odd basis vectors/covectors and which contract as ei(ej) = ej(e
i) =

δij and εi(εj) = −εj(εi) = δij , and these supercommute with elements of A.

Supermatrix Operations
Here we introduce the three fundamental matrix operations: the supertranspose, supertrace, and
the superdeterminant. The supertranspose of a supermatrix is defined as

RST =

[
RT00 (−1)α(R)RT10

−(−1)α(R)RT01 RT11

]
, (1.5.14)

where RTij is the usual matrix transpose, and satisfies5

(QR)ST = (−1)α(Q)α(R)RSTQST . (1.5.15)

The supertrace is defined for square supermatrices, and is given by

str(R) = tr(R00)− (−1)α(R)tr(R11). (1.5.16)
5Interestingly, the supertranspose is not an involution and requires 4 repeated applications to return to the initial

state (it behaves somewhat like the Fourier transform, or a spinor, in this regard).
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Like the usual trace, it is linear

str(aQ+ bR) = a str(Q) + b str(R), (1.5.17)

and satisfies the graded cyclic condition

str(QR) = (−1)α(Q)α(R) str(RQ). (1.5.18)

Finally, the superdeterminant, which is only defined for even invertible supermatrices, is given
by the Schur complement6 style expression

sdetR := det(R00 −R01R
−1
11 R10) det(R11)−1. (1.5.19)

This satisfies
sdet(QR) = sdet(Q)sdet(R) (1.5.20)

1.6 Superspins
Let us now refer to the collection of Cartesian coordinates as a superspin, which we denote with
the shorthand v = (x1, . . . , xn | ξ1, . . . , ξm). For the reasons discussed above, superspins do not
correspond to the topological points of Rn|m, however, it is extremely useful to pretend that they
are, as it allows us to think of Rn|m as a supervector space. For instance, the formal map

+ : Rn|m × Rn|m → Rn|m

(u, v) 7→ u+ v
(1.6.1)

where u = (x | ξ), v = (y |η) and u+ v = (x+ y | ξ + η) is a well defined map of superspaces, as it
corresponds to the superalgebra homomorphism

+∗ : C∞(Rn|m)→ C∞(Rn|m × Rn|m) ' C∞(R2n|2m)

+∗[F ] = F (x1 + y1, . . . , xn + yn | ξ1 + η1, . . . , ξm + ηm),
(1.6.2)

or, more compactly, +∗[F ] = F (u+ v). Using superspins, the superspace Rn|m has a ‘supervector
space structure’, as we furthermore have a scalar multiplication map,

R× Rn|m → Rn|m

(λ, u) 7→ λu = (λx1, . . . , λxn |λξ1, . . . , λξm)
(1.6.3)

which is compatible with the addition operation in the usual way; here λ should be interpreted
as the coordinate function on R, which now plays the role of a scalar. Each of the vector space
axioms now corresponds to a particular commutative diagram: for instance, associativity of
addition (u+ v) + w = u+ (v + w) corresponds to

Rn|m × Rn|m × Rn|m Rn|m × Rn|m

Rn|m × Rn|m Rn|m

(+,id)

(id,+) +

+

(1.6.4)

Writing out all such diagrams is a tedious distraction, so we will not do it. But the essence is that
superspins can be manipulated in exactly the same way as supervectors.

6For comparison, the Schur complement formula for the determinant of an ordinary matrix R is

detR = det(R00 −R01R
−1
11 R10) det(R11)
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Bold Notation

Let Λ = {1, 2, . . . , N} denote a finite set. Given a copy of Rn|m, let us write

(Rn|m)Λ :=
∏
i∈Λ

Rn|m ' RNn|Nm (1.6.5)

to denote a Λ-indexed product. Given coordinates (x | ξ) on Rn|m, we denote the associated
coordinates on (Rn|m)Λ with an additional index (xa | ξa)a∈Λ. Thinking of coordinates as super-
spins, (Rn|m)Λ is the configuration space for a collection of |Λ| superspins (ua)a∈Λ := (xa | ξa)a∈Λ.
To avoid an explosion of sub/superscripts, we use bolded terms to denote collections of objects
indexed by Λ. Thus, we write

u := (ua)a∈Λ (1.6.6)

to denote the collection of all superspins, xi := (xia)a∈Λ to denote the collection of all i-th
coordinates functions etc. A superfunction on (Rn|m)Λ is then written in compact form as

F (u) := F (x1
1, . . . , x

n
1 , . . . , x

1
N , . . . , x

n
N | ξ1

1 , . . . , ξ
m
1 , . . . , ξ

1
N , . . . , ξ

m
N ). (1.6.7)

We sometimes use primes for the same effect when Λ is small, say writing F (u, u′) on Rn|m×Rn|m
as we have above.

Norms and Forms

An even bilinear form on Rn|m is superfunction

B : Rn|m × Rn|m → R (1.6.8)

which is bilinear with respect to superspin addition

B(u+ v, w) = B(u,w) +B(v, u)

B(u, v + w) = B(u, v) +B(u,w)
(1.6.9)

and scalar multiplication

B(λu, v) = λB(u, v) = B(u, λv). (1.6.10)

The bilinearity implies that every bilinear form is represented by a quadratic superpolynomial of
the form

B(u, u′) =

n∑
i,j=1

Aijxix
′
j +

m∑
i,j=1

Dijξiξ
′
j . (1.6.11)

The real coefficients Aij , Dij are conveniently represented by a real valued, even supermatrix,

B =

[
A 0

0 D

]
(1.6.12)

which we can identify with the bilinear form itself. Here, A is an n×n matrix, and D is an m×m
matrix7.

7The off diagonal entries are zero because we are considering even bilinear forms. Allowing the off diagonal entries
to be non-zero, and taking A = D = 0 gives an odd bilinear form, and would correspond to a superfunction into R0|1.
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Orthosymplectic Forms
We are interested in the special case of orthosymplectic forms. These are even bilinear forms
that are symmetric in the superspins,

B(u, v) = B(v, u) (1.6.13)

and are non-degenerate
det(A) 6= 0, detD 6= 0. (1.6.14)

The anti-commutativity interacts with the symmetry condition in an interesting way. Expanding
out the symmetry condition B(u, u′)−B(u′, u) = 0,

n∑
i,j=1

Aijxix
′
j +

m∑
i,j=1

Dijξiξ
′
j −

n∑
i,j=1

Aijx
′
ixj −

m∑
i,j=1

Dijξ
′
iξj

=

n∑
i,j=1

Aijxix
′
j +

m∑
i,j=1

Dijξiξ
′
j −

n∑
i,j=1

Aijxjx
′
i +

m∑
i,j=1

Dijξjξ
′
i

=

n∑
i,j=1

(Aij −Aji)xix′j +

m∑
i,j=1

(Dij +Dji)ξiξ
′
j = 0,

(1.6.15)

we see that A is required to be a symmetric matrix (as would be usual for a symmetric bilinear
form), but D is required to be skew-symmetric due to the anti-commutativity of the Grassmann
variables. Together with the non-degeneracy condition, this implies that A is represented by
a (possibly Lorentzian) inner product, whilst D is represented by a symplectic form. The non-
degeneracy of the symplectic form implies that the fermionic dimension of our superspace must
be even, so only the Cartesian superspaces Rn|2m admit an orthosymplectic structure.

By performing a linear change of basis, every orthosymplectic form can be represented as

B =


−Ip 0 0 0

0 In−p 0 0

0 0 0 −Im
0 0 Im 0

 (1.6.16)

where p is the number of ‘time-like’ dimensions defined by A. We will be interested in two cases:
p = 0, which corresponds to the super-Euclidean inner product, and p = 1, corresponding to
the super-Minkowski inner product. We will mostly denote these in a dot product style as

u · u′ =
n∑
i=1

xix
′
i −

m∑
i=1

ξiη
′
i − ηiξ′i (Euclidean)

u · u′ = −zz′ +
n∑
i=1

xix
′
i −

m∑
i=1

ξiη
′
i − ηiξ′i (Minkowski)

(1.6.17)

but will sometimes write 〈u, u′〉 or (u, u′) to denote these, just as we would an ordinary inner prod-
uct. When equipped with the appropriate inner product, we call Rn|2m a Euclidean superspace,
and call Rn,1|2m a Minkowski superspace; we have used coordinates (x1, . . . , xn | ξ1, . . . , ξm, η1, . . . , ηm)
on Rn|2m, and (z, x1, . . . , xn | ξ1, . . . , ξm, η1, . . . , ηm) on Rn,1|2m.

In both cases, we have written the fermionic coordinates in terms of ‘symplectic conjugates’,
so that ξi is paired with ηi for i = 1, . . . ,m; on Minkowski superspace, the time-like coordinate z
will usually appear as the first entry of the superspin as above, but will sometimes appear at the
end if it is convenient. In any case, we reserve the variable z explicitly for this purpose. Further,
we opt for the ‘mostly plus’ metric signature of gravitational physics rather than the ‘mostly minus’
signature of particle physics.
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Quadratic Forms and Energy Functionals

Every orthosymplectic form B gives rise to a quadratic form on Rn|2m, represented as a superfunc-
tion

qB : Rn|2m → R (1.6.18)

with qB(u) = B(u, u). For the Euclidean and Minkowski products, the corresponding quadratic
forms are denoted

||u||2Euc =
∑
i

x2
i −

m∑
i=1

2ξiηi,

||u||2Min = −z2 +
∑
i

x2
i −

m∑
i=1

2ξiηi.

(1.6.19)

or just by ||u||2 when the context is clear. Here, we are tempted to take a square root in order to
define a ‘metric superfunction’ d(u, u′) =

√
||u− u′||2. Sadly, this is not quite possible due to the

lack of smoothness at the origin; on R1|2, we would for instance have

d(u, u′) =
√

(x− x′)2 − 2(ξ − ξ′)(η − η′) = |x− x′| − (ξ − ξ′)(η − η′)
|x− x′|

, (1.6.20)

which is not a well defined map of superspaces. On the other hand, as long as we do not take the
square root, there is no issue in defining

||u− u′||2Euc =
∑
i

(xi − x′i)2 −
m∑
i=1

2(ξi − ξ′i)(ηi − η′i)

||u− u′||2Min = −(z − z′)2 +
∑
i

(xi − x′i)2 −
m∑
i=1

2(ξi − ξ′i)(ηi − η′i).
(1.6.21)

The utility of these ‘quadratic metrics’ is that they allow us to define natural energy functionals
on collections of superspins, that is, on spin systems. In all models we examine, the pair interaction
between spins ua, ub is given by

H(ua, ub) =
βab
2
||ua − ub||2 (1.6.22)

for some constant βab. The interpretation here is that the two superspins are thought of as
connected by a spring with stiffness βab, with the Hamiltonian functional above defining Hooke’s’
law (or a sort of Minkowskian analogue).



Chapter 2

Supercalculus and Supersymmetries

2.1 Derivatives and Derivations
On a smooth manifold M , functions are differentiated by vector fields through the Lie derivative.
This associates to every vector field X ∈ Vect(M) a derivation on C∞(M), which we recall is a
linear map

TX : C∞(M)→ C∞(M) (2.1.1)

obeying the Leibniz rule
TX(fg) = TX(f)g + fTX(g). (2.1.2)

Concretely, if M is n-dimensional and X is represented in local coordinates as

X =

n∑
j=1

gj(x1, . . . , xn)
∂

∂xj
, (2.1.3)

then its associated derivation acts on functions as

TX(f) =
n∑
j=1

gj(x1, . . . , xn)
∂f

∂xj
. (2.1.4)

In fact, every derivation on C∞(M) arises from a vector field giving a natural isomorphism
Vect(M) ' Der(C∞(M)). Thus, we can replace geometric objects (vector fields) with algebraic
objects (derivations). The perspective is useful for superspaces, as their definition is fundamentally
algebraic rather than geometric.

Superderivations
Let A = A0 ⊕ A1 be a supercommutative superalgebra. Recall that a linear map T : A → A is
written in block form as

T =

[
T00 T01

T10 T11

]
, (2.1.5)

and is even if T01 = T10 = 0, and odd if T00 = T11 = 0. A homogeneous linear map is one that is
even or odd, and the parity map is again denoted

α(T ) =

{
0 ∈ Z2, T is even
1 ∈ Z2, T is odd

, (2.1.6)

and for homogeneous F ∈ A we have α(TF ) = α(T ) + α(F ). A homogeneous superderivation
is then defined as a homogeneous linear map T : A→ A that obeys the super-Leibniz rule

T (FG) = (TF )G+ (−1)α(T )α(F )F (TG). (2.1.7)

25
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Thus even and odd superderivations are derivations and antiderivations, respectively. A gen-
eral superderivation is a sum of an even and an odd superderivation. We denote the collection of
derivations of a superalgebra A by Der(A).

Euclidean Superspace Rn|m

Consider the superalgebra C∞(R0|m). For each Grassmann variable ξ1, . . . , ξm, define the left
Grassmann derivatives ∂

∂ξi
: C∞(R0|m)→ C∞(R0|m) as the unique linear maps determined by

∂

∂ξi
(ξiξI) = ξI if ξiξI 6= 0,

∂

∂ξi
1 = 0 (2.1.8)

for ξI a Grassmann monomial. One can check that these define odd superderivations on C∞(R0|m):
if F is a homogeneous Grassmann polynomial, then the above conditions imply

∂ξi(FG) = (∂ξiF )G+ (−1)α(F )F (∂ξiG). (2.1.9)

The super-Leibniz rule implies that Grassmann derivatives behave exactly as the usual com-
mutative coordinate partial derivatives ∂

∂x , except they anti-commute with each other and the
Grassmann variables:

∂

∂ξ1

∂

∂ξ2
F = − ∂

∂ξ2

∂

∂ξ1
F,

∂

∂ξ1
(ξ2F ) = −ξ2

∂

∂ξ1
F. (2.1.10)

The left Grassmann derivatives form a basis for Der(C∞(R0|m)) as a rank 0|m C∞(R0|m) super-
module, with a general superderivation T having a unique representation as

T =
m∑
α=1

Fα
∂

∂ξα
(2.1.11)

with Fα ∈ C∞(R0|m). If all Fα are even/odd, then T is odd/even.
More generally, every superderivation T ∈ Der(C∞(Rn|m)) can be realised in Cartesian coor-

dinates (x1, . . . , xn | ξ1, . . . , ξm) as

T =
n∑

α=1

Fα
∂

∂xα
+

m∑
α=1

Gα
∂

∂ξα
(2.1.12)

where Fα, Gα ∈ C∞(Rn|m) are superfunctions, ∂
∂xα

are the usual coordinate partial derivatives on
Rn, and ∂

∂ξi
are the Grassmann derivatives defined above. If T is an even/odd superderivation,

then Fα are even/odd superfunctions and Gα are odd/even superfunctions. We also see that
Der(C∞(Rn|m)) is a free rank n|m C∞(Rn|m)-supermodule.

Chain rule
There is an analogue of the chain rule in the super setting which describes the action of derivations
on composite superfunctions.

Theorem 2.1.1. For f = (f1, . . . , fn), fi ∈ C∞even(Rp|q), and η = (η1, . . . , ηm), ηi ∈ C∞odd(Rp|q), a
collection of even/odd superfunctions on Rp|q, and T ∈ Der(C∞(Rp|q)) a superderivation, the action
of T on the composite function g(f |η) for g ∈ C∞(Rn|m) is described by the chain rule

T (g(f |η)) =

n∑
j=1

T (fj)
∂

∂xj
g(f |η) +

m∑
j=1

T (ηj)
∂

∂ξj
g(f |η) (2.1.13)

where ∂g
∂xj

and ∂g
∂ξj

are the derivatives of g(x1, . . . , xn | ξ1, . . . , ξm) with respect to its j-th even/odd
component.
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Remark 2.1.2. Care must be taken with the order of the factors in (2.1.13) due to the potential
presence of odd quantities.

Proof. See [79, p.59].

2.2 Berezin Integration
In the same way that derivations are an algebraic abstraction of differentiation, spaces of linear
functionals on algebras give a model of integration. Indeed, using a functional analytic approach,
measure theory can be developed this way, with the Riesz–Markov theorem and its ilk providing
the bridge between spaces of measures and dual spaces of functions. It is in this style that we
define integration over Rn|m: the space of measures (or rather, distributions) on superspace Rn|m
is defined as the continuous dual of C∞(Rn|m). We denote these functionals using an integral-style
notation ∫

Rn|m
· dµ : C∞(Rn|m)→ R (2.2.1)

and refer to them as Berezin integrals or Berezin measures.

Superfunction Spaces

Actually, the space of linear functionals on C∞(Rn|m) is not entirely suitable because the associated
distributions have compact support. In particular, the super-analogue of the Lebesgue measure is
not contained in C∞(Rn|m)∗. By starting with a smaller space of test functions, we gain access
to a larger dual; following the ordinary case, we focus on the space of compactly supported
smooth superfunctions, defined as the Grassmann extension

C∞c (Rn|m) := C∞c (Rn)⊗ Ωm. (2.2.2)

Lying between C∞(Rn|m) and C∞c (Rn|m) are a multitude of intermediate spaces that one
could consider. We list a few here, all of which are defined as Grassmann extensions of ordinary
function algebras:

• Schwartz superfunctions: S(Rn|m) := S(Rn)⊗ Ωm

• Superfunctions vanishing at infinity: C∞0 (Rn|m) := C∞0 (Rn)⊗ Ωm

• Bounded superfunctions: C∞b (Rn|m) := C∞b (Rn)⊗ Ωm

• Slowly growing superfunctions: C∞slow(Rn|m) := C∞slow(Rn)⊗ Ωm, where

C∞slow(Rn) :=

{
f ∈ C∞(Rn)

∣∣∣∣There exists β ∈ N s.t. sup
x∈Rn

|∂αx f |
(1 + ||x||β)

<∞, for all α ∈ Nn
}

(2.2.3)

These spaces fit together in the following chain of inclusions:

C∞c (Rn|m) ⊆ S(Rn|m) ⊆ C∞0 (Rn|m) ⊆ C∞b (Rn|m) ⊆ C∞slow(Rn|m) ⊆ C∞(Rn|m) (2.2.4)

Their dual spaces are nested in the reverse order. We present the general framework using
C∞c (Rn|m)∗, i.e., the most general class of distributions. Later, we will work with some of the
other classes, particular Schwartz superfunctions (i.e., those with rapid decay), and also those that
have slow growth. The framework we present here transfers to this setting essentially unchanged,
as long as one is careful with the usual convergence issues.
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Integration on R0|m

Let us first examine the fermionic superspaces, R0|m. As their underlying topological space is a
single point, all superfunctions are compactly supported C∞c (R0|m) = C∞(R0|m). Berezin integrals
on fermionic spaces are completely determined by their values on Grassmann monomials as these
form a basis for C∞(R0|m): ∫

R0|m
F dµ =

∫
R0|m

∑
I⊆JmK

fIξI dµ

=
∑
I⊆JmK

fI

∫
R0|m

ξI dµ.

(2.2.5)

Choosing the Berezin measure defined by∫
R0|m

ξI dξ =

{
1 ξI = ξ1ξ2 . . . ξm

0 otherwise
, (2.2.6)

we obtain Berezin’s remarkable definition of integration as iterated differentiation:∫
R0|m

F dξ :=
∂

∂ξm
. . .

∂

∂ξ2

∂

∂ξ1
F (2.2.7)

We call this the Berezin–Lebesgue measure, as it is uniquely singled out by its infinitesimal
symmetry under ‘fermionic translations’: for all ∂

∂ξi
and F ∈ C∞(R0|m), we have∫

R0|m

∂

∂ξi
F dξ = 0. (2.2.8)

Every Berezin measure can be written as a density with respect to the Berezin–Lebesgue
measure by precomposing on the right with a function ρ ∈ C∞(R0|m):∫

R0|m
F (ξ) dµ(ξ) =

∫
R0|m

F (ξ) ρ(ξ)dξ :=
∂

∂ξm
. . .

∂

∂ξ2

∂

∂ξ1
(F (ξ)ρ(ξ)) (2.2.9)

This function ρ is called the density of the Berezin measure.
The parity of the Berezin–Lebesgue measure on R0|m is defined as

α(dξ) =

{
0 ∈ Z2, m is even
1 ∈ Z2, m is odd

, (2.2.10)

and the parity of a general Berezin measure dµ = ρ dξ with ρ homogeneous is

α(dµ) = α(ρ) + α(dξ) (2.2.11)

Integration on Rn|m

Continuous linear functionals on C∞c (Rn|m) correspond to Berezin distributions on Rn|m, and
are of the form

T (x, ξ) =
∑
I

TI(x)ξIdξ (2.2.12)

where the TI ∈ C∞c (Rn)∗ are distributions on Rn|0 = Rn and dξ is the Berezin–Lebesgue measure
on R0|m. If each distribution TI is an actual measure, then we obtain a Berezin measure on Rn|m,
which we write

dµ(x, ξ) =
∑
I

dνI(x)ξIdξ. (2.2.13)
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The integral of such a measure is defined as∫
Rn|m

Fdµ(x, ξ) :=
∑
I

∫
Rn

∂

∂ξm
. . .

∂

∂ξ2

∂

∂ξ1
(FξI) dνI(x). (2.2.14)

Taking dν∅(x) = dx the Lebesgue measure on Rn and dνI = 0 otherwise gives the Berezin–
Lebesgue measure dx dξ on Rn|m. This is the essentially unique super-translation invariant
measure on Rn|m, i.e., ∫

Rn|m

∂

∂xi
F dx dξ =

∫
Rn|m

∂

∂ξi
F dx dξ = 0 (2.2.15)

for all F ∈ C∞c (Rn|m).
Finally, we have the super Fubini theorem: for dµ and dν homogenous Berezin measures on

Rn|m and Rp|q, we have for all F ∈ C∞c (Rn+p|m+q)∫
Rp|q

∫
Rn|m

F dµdν = (−1)α(dµ)α(dν)

∫
Rn|m

∫
Rp|q

F dν dµ. (2.2.16)

Changes of variables

Under a change of coordinates x|ξ 7→ y|η, i.e., so that xi = xi(y,η) ∈ C∞even(Rn|m) and ξi =
ξi(y,η) ∈ C∞odd(Rn|m), a Berezin measure transforms according a superanalogue of the Jacobian
known as the Berezinian:

dx dξ 7→ Ber(y|η)dy dη. (2.2.17)

The Berezinian, which is an even superfunction, is expressed as a superdeterminant of the
Berezinian supermatrix of partial derivatives1

Ber(y|η) = sdet(M), M =

[
A B

C D

]
(2.2.18)

where

Aij =
∂xj
∂yi

, Bij =
∂ξj
∂yi

,

Cij =
∂xj
∂ηi

, Dij =
∂ξj
∂ηi

.

(2.2.19)

This gives the change of variables formula for the Berezin–Lebesgue integral as∫
Rn|m

F (x, ξ) dx dξ =

∫
Rn|m

F (x(y,η), ξ(y,η)) Ber(y|η)dy dη, (2.2.20)

and more generally,∫
Rn|m

F (x, ξ) ρ(x|ξ)dx dξ =

∫
Rn|m

F (x, ξ) ρ(x|ξ) Ber(y|η)dy dη (2.2.21)

for Berezin integration against ρ(x|ξ)dx dξ (the dependence of x and ξ on y and η is not shown
for clarity). See [13] for a proof of this.

1Note that this gives the transpose of the usual way of writing the Jacobian; we have written it this way to avoid
having to take derivatives on the right.
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2.3 Supersymmetries and Lie Superalgebras
Under the supercommutator map

[T1, T2] = T1 ◦ T2 − (−1)α(T1)α(T2)T2 ◦ T1, (2.3.1)

superderivations form a Lie superalgebra. The general definition is as follows:

Definition 2.3.1. A Lie superalgebra is a supervector space g = g0 ⊕ g1 equipped with an
even bilinear operation

[−,−] : g× g→ g, (2.3.2)

called the Lie superbracket, which is skew-supercommutative

[u, v] = −(−1)α(u)α(v)[v, u] (2.3.3)

and satisfies the super Jacobi identity:

(−1)α(u)α(w)[u, [v, w]] + (−1)α(w)α(v)[w, [u, v]] + (−1)α(v)α(u)[v, [w, u]] = 0 (2.3.4)

The primary Lie superalgebra of interest is Der(C∞(Rn|m)), which describes the complete
set of infinitesimal symmetries of Cartesian superspace, i.e., infinitesimal superdiffeomorphisms.
Rather than examining all such symmetries, it is often useful to consider various sub-algebras of
Der(C∞(Rn|m)) which preserve some additional structure on the superspace. We begin with what
we call integral symmetries, before discussing the orthosymplectic superalgebras.

Integral Symmetries and Ward Identities
Infinitesimal integral symmetries are defined as follows:

Definition 2.3.2. Let
∫
Rn|m · dµ be a Berezin integral on Rn|m. A superderivation T ∈ Der(C∞(Rn|m))

is an infinitesimal symmetry of
∫
Rn|m · dµ if for all F ∈ C∞c (Rn|m)∫

Rn|m
T [F ] dµ = 0. (2.3.5)

Infinitesimal symmetries lead to integration by parts formulas, otherwise known as Ward
identities: suppose T is a symmetry of

∫
Rn|m · dµ, and that F,G ∈ C∞c (Rn|m) have compact

support. Then ∫
Rn|m

T [FG] dµ = 0, (2.3.6)

since FG is compactly supported. Since T acts as a superderivation, we obtain the Ward identity∫
Rn|m

T [F ]Gdµ = −(−1)α(T )α(F )

∫
Rn|m

FT [G] dµ. (2.3.7)

If either T or F is even, this is the usual integration by parts formula.

Remark 2.3.3. It is difficult to overstate the importance the above identity. Without doubt,
it is the existence of Ward identities which gives the spin system approach its power.

Example 2.3.4. As previously mentioned, infinitesimal super-translations are symmetries of the
Berezin–Lebesgue measure: for all F ∈ C∞c (Rn|m), we have∫

Rn|m

∂

∂xi
F dx dξ =

∫
Rn|m

∂

∂ξi
F dx dξ = 0. (2.3.8)
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One can check, this property uniquely characterises the Berezin–Lebesgue measure (up to an
overall scaling factor). The Berezin–Lebesgue measure has many more symmetries: if

T =
∑
i

Fi
∂

∂xi
+
∑
i

Gi
∂

∂ξi
(2.3.9)

is any superderivation satisfying the zero divergence condition

div(T ) =
∑
i

∂Fi
∂xi

+
∑
i

(−1)α(Gi)
∂Gi
∂ξi

= 0, (2.3.10)

then T is a symmetry of
∫
Rn|m · dx dξ.

Anomalous Ward Identities
Let

∫
Rn|m · dµ and

∫
Rn|m · dν be two Berezin integrals which are related as

dν = ρ dµ, dµ = ρ−1dν (2.3.11)

for some ρ ∈ C∞even(Rn|m) an even invertible superfunction2 , and let T be a symmetry of dµ. Then,
as the product of ρ with any compactly supported superfunction F is also compactly supported,
Fρ ∈ C∞c (Rn|m), we have ∫

Rn|m
T [Fρ]dµ = 0. (2.3.13)

Expanding out the associated Ward identity for dµ,∫
Rn|m

T [F ]ρdµ = −
∫
Rn|m

(−1)α(T )α(F )FT [ρ]dµ (2.3.14)

and absorbing ρ back into the measure gives an anomalous symmetry for dν,∫
Rn|m

T [F ] dν = −(−1)α(T )α(F )

∫
Rn|m

F
T [ρ]

ρ
dν, (2.3.15)

which in turn, gives rise to an anomalous Ward identity:∫
Rn|m

T [F ]Gdν = (−1)|T ||F |+1

∫
Rn|m

FT [G] dν + (−1)|T |(|F |+|G|)+1

∫
Rn|m

FG
T [ρ]

ρ
dν (2.3.16)

Here it is convenient to rewrite the relative density as ρ = ±elog ρ with the choice of sign
indicated by the sign of the body. For clarity, let us suppose that ρb is positive, so we can write3

ρ = elog ρ. Defining H = − log ρ, so that ρ = e−H , we see that

T [ρ]

ρ
= −T [H] (2.3.18)

and so the anomalous Ward identity for dν = e−Hdµ can now be written as∫
Rn|m

T [F ]Gdν = (−1)|T ||F |+1

∫
Rn|m

FT [G] dν − (−1)|T |(|F |+|G|)+1

∫
Rn|m

FGT [H] dν. (2.3.19)

As the e−Hdµ notation suggests, the Berezin measures presented in this form arise as Berezin–
Gibbs measures in the super-analogue of statistical mechanics.

2Recall that the multiplicative inverse of a superfunction F = Feven + Fodd, should it exist, is of the form

1

F
=

1

Feven
− 1

F 2
even

Fodd, (2.3.12)

with 1
Feven

and 1
F2

even
understood in the Grassmann analytic sense. This inverse will indeed exist if and only if the body

of F is nowhere 0, i.e., so that 1
Fb

is a smooth function.
3Explicitly, the logarithm of ρ = ρb + ρs is defined using Grassmann analytic continuation as

log(ρ) = log(ρb) +
ρs
ρb
− ρ2

s

2ρ2
b

+
ρ3
s

3ρ3
b

− . . . (2.3.17)
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Orthosymplectic Symmetries
The infinitesimal symmetries of the ordinary dot product on Rn are described by the (special)
orthogonal Lie algebra so(n). Usually, this is defined as the n(n−1)

2 dimensional vector space of
n×n skew-symmetric matrices, equipped with the matrix commutator [A,B] = AB−BA. For us,
however, a more useful characterisation is given by the derivation representation, which expresses
so(n) as a Lie subalgebra of Der(C∞(Rn)). Here it is convenient to use the diagonal embedding

∆̃ : Der(C∞(Rn))→ Der(C∞(Rn × Rn)) (2.3.20)

of Der(C∞(Rn)) into C∞(Der(C∞(Rn × Rn)), which sends a derivation T =
∑n

i=1 Fi(x
i) ∂
∂xi

to
∆̃(T ) = Ta+Tb =

∑n
i=1 Fi(x

i
a)

∂
∂xia

+
∑n

i=1 Fi(x
i
b)

∂
∂xib

where (x1
a, . . . , x

n
a , x

1
b , . . . , x

n
b ) are coordinates

on Rn × Rn. Then, a derivation T is contained in the so(n) subalgebra of Der(C∞(Rn)) if the
image of T under the diagonal map annihilates the dot product

∆̃(T )(ua · ub) = 0, (2.3.21)

where ua ·ub = x1
ax

1
b + · · ·+xnaxnb ∈ C∞(Rn×Rn). One may then check that every such derivations

are closed under the derivation supercommutator, and they are all of the form

TA =
∑
i,j

Aijx
i ∂

∂xj
, (2.3.22)

for some skew-symmetric matrix A. This does indeed define a representation of so(n) as the
map A 7→ TA preserves the Lie bracket [TA, TB] = T[A,B], and furthermore, this representation is
faithful. Similarly, the derivations T ∈ C∞(Rn,1) which annihilate the Minkowski inner product
ua · ub = −zazb + x1

ax
1
b + · · ·+ xnax

n
b , form a representation of the Lorentzian Lie algebra so(n, 1).

Such derivations are of the same form as (2.3.22), but A is now skew-symmetric with respect to
the Minkowski inner product, i.e.,

ATJn,1 + Jn,1A = 0, Jn,1 = diag(−1, 1, . . . , 1). (2.3.23)

Orthosymplectic Lie Superalgebras. Extending this idea to the super setting leads us to the or-
thosymplectic Lie superalgebras, denoted osp(n, p|2m) in the general case. This can be defined
as a matrix Lie superalgebra, but here we opt for an equivalent characterisation using its super-
derivation representation, as this is ultimately what we are interested in.

The cases p = 0 and p = 1 describe the symmetries of the super-Euclidean and super-
Minkowski inner products, which we recall are given by

ua · ub =
n∑
i=1

xiax
i
b −

m∑
i=1

ξiaη
i
b − ηiaξib (Euclidean)

ua · ub = −zazb +
n∑
i=1

xiax
i
b −

m∑
i=1

ξiaη
i
b − ηiaξib (Minkowski).

(2.3.24)

In each case, let us denote the coordinates of a superspin by (u1, . . . , un+2m) = (x1, . . . xn | ξ1, . . . , ξm, η1 . . . , ηm)
and (u0, u1, . . . , un+2m) = (z, x1, . . . xn | ξ1, . . . , ξm, η1 . . . , ηm).

As in the ordinary case, we define the diagonal map

∆̃ : Der(C∞(Rn+p|2m))→ Der(C∞(Rn+p|2m × Rn+p|2m)) (2.3.25)

and define a symmetry of an inner product ua ·ub ∈ C∞(Rn+p|2m×Rn+p|2m) as a super-derivation
T ∈ Der(C∞(Rn+p|2m)) such that

∆̃(T )(ua · ub) = 0. (2.3.26)
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Such superderivations are then of the form

T =
∑
i,j

Riju
i ∂

∂uj
(2.3.27)

where R is a real n+ p|2m× n+ p|2m supermatrix satisfying

RSTJ + JR = 0, (2.3.28)

where RST , the supertranspose of R, and J are given by

RST =

[
A B
C D

]ST
=

[
AT CT

−BT DT

]
, J =


Jn,p 0 0

0 0 −Im
0 Im 0

, (2.3.29)

and Jn,p = diag(−Ip, In).
It is convenient to represent the coefficient matrix R in 3 × 3 block form, in which case one

can check that it is of the form

R =


A B1 B2

BT
2 D11 D12

−BT
1 D21 −DT

11

, (2.3.30)

where ATJn,p + Jn,pA = 0, D12 = DT
12, and D21 = DT

21. The coefficient matrices in the even/odd
cases are then

Reven =

 A 0 0

0 D11 D12

0 D21 −DT
11

, Rodd =

 0 B1 B2

BT
2 0 0

−BT
1 0 0

, (2.3.31)

and the constraints imply that the dimension of the underlying supervector space is 1
2(n+ p)(n+

p− 1) +m(2m+ 1) | 2(n+ p)m. The even symmetries take on a familiar form: they are the direct
sum of an orthogonal symmetry A ∈ so(n, p) and a symplectic symmetry D ∈ sp(2m). The odd
symmetries, otherwise known as supersymmetries have no classical analogue.

2.4 Supersymmetric Localisation

Given a collection of superspins u = (ua)a∈Λ ∈ Rn|2m indexed by a set Λ, and A ∈ RΛ×Λ a real
valued matrix indexed by Λ, we define the product Au as the superspin with entries

[Au]a =
∑
b∈Λ

Aabub. (2.4.1)

For example, if u = (u1, u2) and A =

[
1 2
3 4

]
, then Au = (u1 + 2u2, 3u1 + 4u2). Let us also define

the Λ-indexed super-Euclidean and super-Minkowski inner products as the sum

(u,u) =
∑
a∈Λ

ua · ua. (2.4.2)

Given a matrix A ∈ RΛ×Λ, we then have

(u, Au) =
∑
a∈Λ

ua · [Au]a =
∑
a,b∈Λ

Aabua · ub. (2.4.3)



34 CHAPTER 2. SUPERCALCULUS AND SUPERSYMMETRIES

This notation is useful for defining high dimensional Gaussian measures which are invariant under
the action of a lower dimensional Lie group (or rather, algebra). For instance, let A ∈ RN×N
be symmetric and positive definite. Then we can associate to A the so(n)-invariant4 Gaussian
measure on RnN

e−
1
2

(u,Au)du = e−
1
2

∑
a,b Aab(x

1
ax

1
b+···+x

n
ax

n
b )

N∏
i=1

dx1
i . . . dx

n
i√

2π
n , (2.4.4)

where we have used the superspin notation ua = (x1
a, . . . , x

n
a) on the left hand side. As is well

known, the integral of this measure is∫
RnN

e−
1
2

(u,Au)du =
1√

det(A)
n (2.4.5)

In physics parlance, this is a bosonic Gaussian integral. We can also associate to A the sp(2m)-
invariant fermionic Gaussian Berezin measure on R0|2mN

e−
1
2

(u,Au)du = e
1
2

∑
a,b Aab(ξ

1
aη

1
b−η

1
aξ

1
b+···+ξma ηmb −η

m
a ξ

m
b )

N∏
i=1

dξ1
i dη

1
i . . . dξ

m
i dη

m
i , (2.4.6)

where we have used superspins ua = (ξ1
a, . . . , ξ

m
a , η

1
a, . . . , η

m
a ). A computation shows that the

Berezin integral of the fermionic Gaussian is given by a positive rather than negative power of the
determinant: ∫

(R0|2m)N
e−

1
2

(u,Au)du = det(A)m. (2.4.7)

Combining these two cases, we obtain the super-Gaussian measure on (Rn|2m)N :

e−
1
2

(u,Au)du = e−
1
2

∑
a,b Aab(

∑n
i=1 x

i
ax
i
b−

∑m
i=1 ξ

i
aη
i
b−η

i
aξ
i
b)

N∏
i=1

dx1
i . . . dx

n
i dξ

1
i dη

1
i . . . dξ

m
i dη

m
i√

2π
n . (2.4.8)

This is invariant under osp(n|2m) under its diagonal representation, and has Berezin integral∫
(Rn|2m)N

e−
1
2

(u,Au)du = det(A)
2m−n

2 . (2.4.9)

When the bosonic and fermionic dimensions are equal, that is, when n = 2m, we see that the
value of this integral is independent of A!∫

(R2m|2m)N
e−

1
2

(u,Au)du = 1. (2.4.10)

This most surprising result is a simple example of supersymmetric localisation. The rest of this
section describes this phenomenon; as we shall see, this is the result of a Ward identity coming
from an odd symmetry of the underlying Berezin-Lebesgue measure. For ease of exposition, we
focus on the simplest case, with n = 2m = 2.

The odd symmetry Q ∈ osp(2|2),

Q = ξ
∂

∂x
+ η

∂

∂y
− x ∂

∂η
+ y

∂

∂ξ
, (2.4.11)

4By this we mean invariant under the diagonal action T 7→
∑N
a=1 Ta for T ∈ so(n).
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is the supersymmetry generator associated to this localisation result. Unlike an ordinary sym-
metry, it has the property that Q2 ∈ osp(2|2) is also a derivation5. Let us denote the image of Q
under the diagonal map by the same letter,

Q ≡
N∑
i=1

Qi , Qi ≡ ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
. (2.4.12)

so thatQ is now considered as an element of Der(C∞((R2|2)N )). In terms of superspin coordinates,
Q acts as

Qxi = ξi, Qyi = ηi, Qξi = −yi, Qηi = xi. (2.4.13)

A superfunction F ∈ C∞((R2|2)N ) is defined to be supersymmetric if QF = 0.
Note that if G ∈ C∞(Rp|q) is any superfunction and (f1, . . . , fp|ψ1, . . . , ψq) are any collection

of supersymmetric superfunctions, then the composite is supersymmetric by the chain rule:

Q(G(f |ψ)) =
∑
i

Q(fi)
∂G

∂xi
+
∑
j

Q(ψj)
∂G

∂ξj
= 0. (2.4.14)

As a corollary to this, we find that supersymmetric superfunctions form a subalgebra ofC∞((R2|2)N ),
which we see by taking G(x, y) = ax+ by, G(x, y) = xy etc.

Example 2.4.1. By definition, Q annihilates the super-Euclidean inner product, and so

ui · uj = xixj + yiyj − ξiηj + ηiξj (2.4.15)

is supersymmetric.

Much of the magic of supersymmetry is due to the fundamental localisation theorem:

Theorem 2.4.2. Suppose F ∈ C∞((R2|2)N ) is supersymmetric and integrable against the Berezin-
Lebesgue measure du on (R2|2)N . Then∫

(R2|2)N
Fdu = Fb(0) (2.4.16)

where the right-hand side is the body of F evaluated at 0.

For a proof of this, see the Appendix of Chapter 3.

Example 2.4.3. Let f ∈ C∞c (RN×N ), and let (ui ·uj)Ni,j=1, be a collection of super-Euclidean inner
products ui · uj ∈ C∞((R2|2)N ). Then, by (2.4.14) and (2.4.15), the composite superfunction
f(uuT ) ∈ C∞c ((R2|2)N ) is supersymmetric, and so by Theorem 2.4.2 we have∫

(R2|2)N
f(uuT )du = f(0) (2.4.17)

5Technically, any odd symmetry has this property as the Lie super-bracket acts as an anti-commutator on odd
elements [Q,Q] = 2Q2. However, the super-bracket can be trivial Q2 = 0. Consider, say, Q = ξ ∂

∂x
− x ∂

∂η
.
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Chapter 3

The geometry of random walk
isomorphism theorems

3.1 Introduction

Random walk isomorphism theorems refer to a class of distributional identities that relate the
local times of Markov processes to the squares of Gaussian fields. These theorems, which connect
two different types of probabilistic objects, have their origins in the work of the physicist K.
Symanzik [101]. Isomorphism theorems have been useful in the investigation of a variety of
phenomena, and they can be used in two directions: to study field theoretic questions in terms of
random walks, and to study random walks in terms of field theory. An incomplete list of topics
investigated via isomorphism theorems includes: local times of Markov processes [69] and their
large deviations [17, 22]; cover times and thick points of the simple random walk [1, 34, 57];
four-dimensional self-avoiding walk [6, 15]; φ4 field theory [18,19, 49]; and random walk loop
soups [63,102].

The purpose of this article is to expand the scope of isomorphism theorems beyond Gaussian
fields. Namely, we describe, and make use of, isomorphism theorems that relate non-Markovian
stochastic processes to non-Gaussian spin systems. Our proofs also provide a new perspective on
isomorphism theorems: they are consequences of the symmetries of the underlying spin systems.

In Section 3.1 below we give an introduction to isomorphism theorems and the processes this
article is concerned with. Before doing this, we briefly summarise the new results contained in
this article:

• New and efficient proofs of the Brydges–Fröhlich–Spencer–Dynkin (BFS–Dynkin), Eisen-
baum, and second generalised Ray–Knight isomorphism theorems for the simple random
walk (SRW). These results are all derived in a few pages from a more general Ward identity
for the Gaussian free field.

• New and efficient proofs of supersymmetric versions of the isomorphism theorems for the
SRW. In particular, we prove a previously unknown supersymmetric version of the gener-
alised second Ray–Knight isomorphism. For the reader’s convenience we also present an
introduction to supersymmetry directed towards probabilists in an appendix.

• New isomorphism theorems connecting the vertex-reinforced jump process (VRJP) with hy-
perbolic sigma models, and supersymmetric versions of these theorems. The analogue of the
BFS–Dynkin isomorphism previously appeared in [9], and here we also establish analogues
of the Eisenbaum and Ray–Knight isomorphism theorems. Our proofs are geometric and
do not rely on any particular set of coordinates. In particular, we do not use horospherical
coordinates.

39
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• New isomorphism theorems for the vertex-diminished jump process (VDJP). The VDJP is
connected to a spin model taking values in the hemisphere. It previously appeared in the
context of the Ray–Knight isomorphism theorem for SRW in [90].

We also give several applications of these isomorphism theorems. In Section 3.6 we show that
the Sabot–Tarrès limit formula for the local time of the VRJP [89] is a direct consequence of our
supersymmetric Ray–Knight theorem for the H2|2 model. In Section 3.7 we show how isomorphism
theorems yield fixed-time formulas and representations of the resolvents for the joint processes
of the random walks together with their local times. Lastly, we prove some results concerning
exponential decay of correlation functions for the associated spin models in Section 3.8.

Isomorphism theorems for hyperbolic and spherical geometries

Let Xt be a continuous-time stochastic process on a finite state space Λ with associated local times
Lt = (Lit)i∈Λ. The processes considered in this paper are all of the form

P[Xt+dt = j | (Xs)s6t, Xt = i] = βij(1 + εLjt ) dt, ε ∈ {−1, 0, 1}, (3.1.1)

where βij > 0 and βij = βji for all i, j ∈ Λ.
The random walk models defined by (3.1.1) are defined more precisely below. The models

have all appeared previously, though they have received varying amounts of attention. When ε = 0
the model is the continuous-time simple random walk; for ε = 1 it is the vertex-reinforced jump
process (VRJP) first studied in [30,31]; for ε = −1 it is the vertex-diminished jump process (VDJP)
which appeared in [90]. As the names suggest, the VRJP is a random walk that is encouraged to
revisit vertices it has visited in the past, while the VDJP is discouraged from doing so.

Let Rn denote n-dimensional Euclidean space, Hn denote n-dimensional hyperbolic space,
and let Sn+ denote the upper hemisphere of the n-dimensional sphere. Below we will introduce
spin systems that take values in these spaces, and then link these to the aforementioned random
walks. The spin systems are the Rn-valued Gaussian free field (GFF), corresponding to the SRW;
the Hn-valued hyperbolic spin model, corresponding to the VRJP; and the Sn+-valued hemispherical
spin model, corresponding to the VDJP.

To give a flavour of the relationships that we will establish, recall Dynkin’s formulation of
an isomorphism linking the SRW and the R-valued GFF [44]. Let G = (Λ, E) be a finite graph
with Laplacian ∆, h > 0, and let 〈·〉 denote the expectation of a GFF (ui)i∈Λ with covariance
(−∆+h)−1. This is often called the massive GFF with mass m =

√
h. Let Ei denote the expectation

of a continuous-time SRW Xt with associated local time field Lt = (Lit)i∈Λ, started from i ∈ Λ,
with Xt independent of the GFF. Then for all bounded g : RΛ → R,〈

uiujg(
1

2
u2)

〉
=

〈∫ ∞
0

Ei(g(
1

2
u2 +Lt)1Xt=j) e

−ht dt

〉
, u2 ≡ (u2

i )i∈Λ. (3.1.2)

The left-hand side is a generalization of the spin-spin correlation between the spins ui and uj
of the GFF. In particular, taking g = 1 in (3.1.2) reveals the well-known fact that the second
moments of the massive GFF are given by the Green’s function of a SRW killed at rate h.

In Theorems 3.3.3 and 3.4.4 we establish analogues of (3.1.2) for the hyperbolic and hemi-
spherical spin models; the hyperbolic case first appeared in [9]. Our methods also allow us
to establish other isomorphism theorems. In particular, we give new proofs of the Eisenbaum
isomorphism theorem [46] and of the generalised second Ray–Knight theorem [47] for the GFF,
and we establish analogues of these results for hyperbolic and hemispherical spin models. Our
proofs apply to n-component spin systems for general n ∈ N = {1, 2, . . . } in all cases, and even
for the GFF some of these results are new when n > 1. To ease our exposition we will refer to the
generalised second Ray–Knight theorem as the Ray–Knight isomorphism in what follows.
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Supersymmetric isomorphism theorems

There is another type of isomorphism that relates the simple random walk to a spin system, in
which the GFF is replaced by the supersymmetric Gaussian free field (SUSY GFF). These isomor-
phisms originated in work of McKane [72] and Parisi and Sourlas [83]. Supersymmetry has played
a role in several interesting probabilistic problems [20,21,28,40], and several of the applications
we mentioned in the opening paragraph of this article involve the SUSY GFF [6,15,17,22,63].

The most important aspect of the SUSY isomorphism for the SRW is immediately apparent from
the statement of the result, and hence we defer a careful definition of the SUSY GFF to Section 3.5.
Let 〈·〉 now denote the expectation with respect to the SUSY GFF. The SUSY isomorphism theorem
is that for all smooth and bounded g : RΛ → R,

〈
u1
iu

1
jg(

1

2
|u|2)

〉
=

∫ ∞
0

Ei(g(Lt)1Xt=j) e
−ht dt, |u|2 ≡ (|ui|2)i∈Λ. (3.1.3)

The key point of (3.1.3) is that the right-hand side only involves the simple random walk, while
the left-hand side involves only the components (ui)i∈Λ of the SUSY GFF. Thus questions about
the local time of random walk can be rephrased purely in terms of the SUSY GFF.

The viewpoint that isomorphism theorems arise as a consequence of continuous symmetries
applies equally well to supersymmetric spin systems. Beyond proving (3.1.3), Section 3.5 also es-
tablishes results analogous to (3.1.3) for the supersymmetric H2|2 and S2|2

+ models, and moreover
we prove a SUSY variant of the Ray–Knight isomorphism. This is new even for the simple random
walk. We emphasise that these theorems give direct access to the local times of the non-Markovian
VRJP and VDJP in terms of the spin models. The analogue of (3.1.3) for H2|2 first appeared in [9].

Proof ideas

Our proofs of isomorphism theorems all follow a common strategy. The spin systems we consider
possess continuous symmetries, and as a result satisfy integration by parts formulas that are called
Ward identities in the physics literature. Isomorphism theorems are a direct consequence of these
Ward identities.

A key step is to consider a random walk Xt to be a marginal of the joint process (Xt,Lt)
of the walk and its local times together. Our Ward identities can be rephrased in terms of the
infinitesimal generator of this joint process, and all of our isomorphism theorems follow quite
quickly by choosing appropriate specializations of the Ward identities. In particular, this gives a
unified set of proofs of the BFS–Dynkin, Eisenbaum, and Ray–Knight isomorphism theorems for
the SRW.

Structure of this article

Section 3.2 gives our new proofs of the classical isomorphism theorems that link random walks to
Gaussian fields. We present our arguments in detail in this familiar context as very similar ideas
are used in Sections 3.3 and 3.4, which derive isomorphism theorems for the VRJP and VDJP. We
derive supersymmetric isomorphisms for the SRW, the VRJP, and the VDJP in Section 3.5, and
Sections 3.6 through 3.8 concern applications of our new isomorphisms.

To keep this article self-contained, Appendix 3.A contains an introduction to the parts of
supersymmetry needed to understand our supersymmetric isomorphisms and their applications.
In Appendix 3.B we discuss some further aspects of symmetries and supersymmetries that are not
needed for our results, but that help place the results of this article in context.
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Related literature and future directions
Related literature. For monograph-length treatments of isomorphism theorems and related topics,
e.g., loop soups, see [69,102]. Many proofs of various isomorphism theorems have been given;
here we mention only the recent [60,90]. The major innovation in the present work is that we do
not rely on Gaussian calculations. This is important both for obtaining results for Hn and Sn+, and
for obtaining supersymmetric variants.

Future directions. This article describes isomorphism theorems that link spin systems on Rn, Hn,
and Sn+ (and the supersymmetric versions when n = 2) to random walks. This provides a partial
answer to a question of Kozma [61], who asked if there are other spin models (beyond the H2|2

model) with associated random walks. The development of a more systematic connection between
spin models and random walks would be very interesting. In particular, it is natural to wonder if
there are geometric spaces beyond Rn, Hn, and Sn+ that have associated isomorphism theorems.

Another interesting future direction would be to clarify the relation between our new isomor-
phism theorems and loop soups. In the setting of the SRW this connection is well-developed [69,
102] — do these connections extend to the VRJP and VDJP? Similar questions can be asked about
random interlacements; for recent progress in this direction see [76].

Notation and conventions
Λ will be a finite set and β = (βij)i,j∈Λ will be a set of edge weights, i.e., βij = βji > 0. The edge
weights induce a graph with vertices Λ and edge set {{i, j} | βij > 0}, and we will assume that
this graph is connected. We also let h = (hi)i∈Λ denote a set of non-negative vertex weights; here
we are setting a convention that bold symbols denote objects indexed by Λ. Both β and h will
play the role of parameters in our models. For typographical reasons we will sometimes write h
in place of h when there is no risk of confusion.

Suppose V is a set equipped with a binary operation (x, y) 7→ x · y. We write V Λ for the
set of maps from Λ to V , denote elements of this set by u = (ui)i∈Λ, and let |u|2 = (ui · ui)i∈Λ.
If elements of V are vectors, e.g., ui = (u1

i , . . . , u
n
i ) ∈ Rn, then we write uα = (uαi )i∈Λ for the

collection of αth components.
For a function f : R → R we often impose that f is smooth and has rapid decay. A sufficient

condition is that f and its derivatives decay faster than any polynomial: for every p and k, there
are constants Cp,k such that the kth derivative satisfies |f (k)(u)| 6 Cp,k|u|−p. If f : Rn → R,
(u1, . . . , un) 7→ f(u1, . . . , un), then we say f has rapid decay in u1 if f(·, u2, . . . , un) has rapid
decay with constants uniform in u2, . . . , un. Rapid decay in uj is defined analogously, and we say
such an f has rapid decay if it has rapid decay in some coordinate. For a non-smooth function f ,
we say that f has rapid decay if the the above holds with k = 0.

Similarly, we often impose that f : Rn → Rm has moderate growth. A sufficient condition is
that f has at most polynomial growth, i.e., there exists q and Ck such that |∇kf(u)| 6 Ck|u|q for
all k.

Given a function f : Λ×RΛ → R, (i, `) 7→ f(i, `) we say f is smooth, rapidly decaying, etc. if it
has this property with respect to its second coordinate `. Throughout we will assume functions
are Borel measurable without making this explicit.

3.2 Isomorphism theorems for flat geometry
In this section we introduce the simple random walk, the corresponding Gaussian free field, and
several well-known isomorphism theorems relating these objects. The method of proof will be
used repeatedly in the remainder of the paper when we consider other spin systems. An important
aspect of the proofs is that they do not rely on explicit Gaussian computations; this is essential
for the generalization of these theorems to non-Gaussian spin systems. Our proofs also show that
these results are true for GFFs with any number of components.
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Simple random walk and Gaussian free field
Simple random walk. The continuous-time simple random walk (SRW) on Λ with symmetric edge
weights β ≡ (βij)i,j∈Λ, i.e., βij = βji > 0, is the Markov jump process (Xt)t>0 with transition rates

P[Xt+dt = i | Xt = j] = βij dt. (3.2.1)

We write Pi and Ei for the law and expectation of Xt when it is started from the vertex i. Formally,
Xt is a continuous-time Markov process with generator ∆β , where the Laplacian ∆β is the matrix
indexed by Λ that acts on f : Λ→ R by

(∆βf)(i) ≡
∑
j∈Λ

βij(f(j)− f(i)). (3.2.2)

In what follows it will be useful to view Xt as a marginal of the Markov process (Xt,Lt)t>0

consisting of Xt and its local times Lt ≡ (Lit)i∈Λ, which are defined by

Lit ≡ Li0 +

∫ t

0
1Xs=i ds, i ∈ Λ, (3.2.3)

where the vector L0 is a collection of free parameters called the initial local time. A short compu-
tation shows that the generator of (Xt,Lt) acts on smooth functions f : Λ× RΛ → R by

(Lf)(i, `) = (∆βf)(i, `) +
∂f(i, `)

∂`i
, i.e., Lf = ∆βf + ∂f , (3.2.4)

where ∆β only acts on the first argument and the last equation uses the vector notation

f ≡ (f(i, `))i∈Λ, ∂f ≡ (
∂f(i, `)

∂`i
)i∈Λ. (3.2.5)

We write Pi,` for the law of (X,L) started at (i, `) ∈ Λ × RΛ, and Ei,` for its expectation. Note
that Ei,`f(Xt,Lt) = Ei,0f(Xt, ` + Lt), and in particular that ft(i, `) ≡ Ei,`f(Xt,Lt) is a smooth
function with rapid decay in ` if f is smooth with rapid decay.

Gaussian free field. The (n-component) Gaussian free field (GFF or Rn model) is a spin system
taking values in Rn. Its configurations are elements u ∈ (Rn)Λ; by an abuse of notation we will
write RnΛ in place of (Rn)Λ. Let h = (hi)i∈Λ, and assume hi > 0. To define the probability of a
configuration, let

Hβ(u) ≡ 1

2
(u,−∆βu), Hβ,h(u) ≡ Hβ(u) +

1

2
(h, |u|2), (3.2.6)

where (f , g) ≡
∑

i∈Λ figi, |u|2 ≡ (ui · ui)i∈Λ, and · is the Euclidean inner product. In (3.2.6) the
Laplacian acts diagonally on the n components of u, i.e., ∆βu = (∆βu

α)nα=1, and hence (3.2.6)
can be rewritten using

(u,−∆βu) =
1

2

∑
i,j∈Λ

βij(ui − uj)2, (h, |u|2) =
∑
i∈Λ

hiui · ui, (3.2.7)

where (ui − uj)2 is shorthand for (ui − uj) · (ui − uj). Note that another common notation is
hi = m2

i > 0, and mi is called the mass at the vertex i. Define the unnormalised expectation [·]β,h
on functions F : RnΛ → R by

[F ]β,h ≡
∫
RnΛ

F (u)e−Hβ,h(u)du, (3.2.8)

where the integral is with respect to Lebesgue measure du on RnΛ. We set [·]β ≡ [·]β,0.
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The Gaussian free field is the probability measure on RnΛ defined by the normalised expectation

〈F 〉β,h ≡
1

Zβ,h
[F ]β,h =

[Fe−
1
2

(h,|u|2)]β

[e−
1
2

(h,|u|2)]β
, Zβ,h ≡ [1]β,h. (3.2.9)

Note that for the expectation in (3.2.9) to be well-defined we must have Zβ,h < ∞; this is the
case if and only if hi > 0 for some i. The divergence if h = 0 is due to the invariance of Hβ(u)
under the simultaneous translation ui 7→ ui + s for any s ∈ Rn.

Fundamental integration by parts identity

For any differentiable f : RnΛ → R we write

Tjf ≡
∂f

∂u1
j

, T f ≡ (Tif)i∈Λ. (3.2.10)

Thus Tj is the infinitesimal generator of translations of the jth coordinate in the direction e1 =
(1, 0, . . . , 0) ∈ Rn. The following lemma is a consequence of the translation invariance of Lebesgue
measure, and we will derive all of our isomorphism theorems from this identity. In later sections
of this paper we will derive analogous results by replacing the translation symmetry by different
symmetries.

Lemma 3.2.1. Let [·]β be the unnormalised expectation of the Rn model, and let Ei,` be the expecta-
tion of the SRW. Let f : Λ × RΛ → R be smooth with rapid decay, and let ρ : RnΛ → R be smooth
with moderate growth. Then:

−
∑
j∈Λ

[
ρ(u)u1

jLf(j,
1

2
|u|2)

]
β

=
∑
j∈Λ

[
(Tjρ)(u)f(j,

1

2
|u|2)

]
β

. (3.2.11)

In particular, the following integrated version holds for all f : Λ× RΛ → R with rapid decay:

∑
j∈Λ

[
ρ(u)u1

jf(j,
1

2
|u|2)

]
β

=
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej, 1
2
|u|2(f(Xt,Lt)) dt

]
β

. (3.2.12)

Remark 3.2.2. Using (3.2.5) and with (T ,f) ≡
∑

i∈Λ Tifi, (3.2.11) can be restated compactly as

−
[
(ρ(u)u1, (Lf)(

1

2
|u|2))

]
β

=

[
(T ρ(u),f(

1

2
|u|2))

]
β

. (3.2.13)

Proof. We first prove (3.2.11) by integration by parts. If f1, f2 : RnΛ → R are differentiable and
have rapid decay, then integration by parts implies

[(Tjf1)f2]β =
[
f1(T ?j f2)

]
β
, (3.2.14)

where, for f : RnΛ → R differentiable,

T ?j f(u) ≡ −Tjf(u) + (TjHβ(u))f(u). (3.2.15)

We now compute the right-hand side of (3.2.15). To simplify notation, let xi ≡ u1
i and

x ≡ (xi)i∈Λ. By (3.2.6), (3.2.2), and using that Tj is the derivative in the x-component,

TjHβ(u) =
1

2
Tj
∑
i∈Λ

ui · (−∆u)i = (−∆βx)j , (3.2.16)
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so that for a function of the form f(1
2 |u|

2),

−T ?j f(
1

2
|u|2) = (∆βx)jf(

1

2
|u|2) + xj

∂f(1
2 |u|

2)

∂`j
, (3.2.17)

where the last term denotes a partial derivative with respect to the jth coordinate of the function
f . By applying (3.2.17) to each of the functions f(j, 1

2 |u|
2) and using (f1,∆βf2) = (∆βf1,f2),

−
∑
j∈Λ

T ?j f(j,
1

2
|u|2) =

∑
j∈Λ

xj

[
∆βf(j,

1

2
|u|2) +

∂f(j, 1
2 |u|

2)

∂`j

]
=
∑
j∈Λ

xj(Lf)(j,
1

2
|u|2). (3.2.18)

To verify (3.2.11), multiply (3.2.18) by ρ and use the result to rewrite the left-hand side of
(3.2.11). The desired equation then follows by applying (3.2.14):

−
∑
j∈Λ

[
ρxjLf(j,

1

2
|u|2)

]
β

=
∑
j∈Λ

[
ρT ?j f(j,

1

2
|u|2)

]
β

=
∑
j∈Λ

[
(Tjρ)f(j,

1

2
|u|2)

]
β

.

We now prove (3.2.12); it suffices to consider f smooth with rapid decay. Indeed, if fε is the
convolution of f with a smooth mollifier in the second argument, one has fε → f pointwise and
the fε are bounded uniformly in ε by a function with rapid decay, so by dominated convergence
the result for f follows from the result for the fε. Let ft(i, `) ≡ Ei,`(f(Xt,Lt)), and note that ft is
a smooth function with rapid decay since f has this property (see below (3.2.5)). Apply (3.2.11)
to ft and rewrite the left-hand side using Kolmogorov’s backward equation, i.e., Lft = ∂tft. The
result is

− ∂

∂t

∑
j∈Λ

[
ρ(u)u1

jEj, 1
2
|u|2(f(Xt,Lt))

]
β

=
∑
j∈Λ

[
(Tjρ)(u)Ej, 1

2
|u|2f(Xt,Lt)

]
β
. (3.2.19)

To conclude, integrate (3.2.19) over (0,∞). The result follows since the boundary term at infinity
on the left-hand side vanishes. To see this last claim, recall that the graph induced by β is finite
and connected, so Lit →∞ in probability for all vertices i ∈ Λ. When f has sufficient decay this
implies

lim
T→∞

Ej, 1
2
|u|2f(XT ,LT ) = 0 (3.2.20)

for all u. If f has sufficient decay and ρ has moderate growth then (3.2.20) implies

lim
T→∞

[ρ(u)Ej, 1
2
|u|2f(XT ,LT )]β = 0 (3.2.21)

by dominated convergence, as desired. This completes the proof of (3.2.12).

Our proofs of the classical isomorphism theorems will apply Lemma 3.2.1 with the following
choices of ρ and f ; further details will be given in the proofs.

• BFS–Dynkin isomorphism: ρ(u) = ua and f(j, `) = g(`)1j=b with a, b ∈ Λ;

• Ray–Knight isomorphism: Taρ(u)→ δ(ua)− δ(ua − s) and f(j, `)→ g(`)δ(`a − s2

2 )1j=a;

• Eisenbaum isomorphism: ρ(u) = exp(s(h,u)− s2

2 (h,1)) and f(j, `) = g(`)e−(h,`)1j=a.

BFS–Dynkin isomorphism theorem

We now prove the BFS–Dynkin isomorphism theorem.
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Theorem 3.2.3. Let [·]β be the unnormalised expectation of the Rn model, and let Ei,` be the
expectation of the SRW. Let g : RΛ → R have rapid decay, and let a, b ∈ Λ. Then:[

u1
au

1
b g(

1

2
|u|2)

]
β

=

[∫ ∞
0

Ea, 1
2
|u|2(g(Lt))1Xt=b dt

]
β

. (3.2.22)

Proof. Apply Lemma 3.2.1 with ρ(u) = u1
a, f(j, `) = g(`)1j=b, and use Tjρ(u) = 1j=a.

If h 6= 0, after replacing g(`) by g(`)e−(h,`) in (3.2.22) the unnormalised expectation can be
normalised using (3.2.9). Since Ea,`(g(Lt)) = Ea(g(Lt + `)) for the simple random walk, we
immediately obtain Dynkin’s formulation of this theorem as stated, e.g., in [102, Theorem 2.8].

Corollary 3.2.4. Let 〈·〉β be the expectation of the Rn model, and let Ei,` be the expectation of the
SRW. Let g : RΛ → R be bounded, a, b ∈ Λ, and suppose h 6= 0. Then〈

u1
au

1
b g(

1

2
|u|2)

〉
β,h

=

〈∫ ∞
0

Ea
(
g(Lt +

1

2
|u|2)e−(h,Lt)1Xt=b

)
dt

〉
β,h

. (3.2.23)

We have rebranded this the BFS–Dynkin isomorphism because a version of Corollary 3.2.4 first
appeared in the work of Brydges, Fröhlich, and Spencer [16, Theorem 2.2].

Ray–Knight isomorphism
The Ray–Knight isomorphism (i.e., the generalised second Ray–Knight theorem) is also a quick
consequence of Lemma 3.2.1. Several other proofs of this identity exist for the 1-component GFF,
see [47,90] and references therein. For an explanation of the name, see [102, Remark 2.19].

We introduce the following notation for translations to emphasise the analogy between the
classical Ray–Knight isomorphism and its hyperbolic and spherical versions. Let θs be the transla-
tion of all coordinates by s ∈ R in the direction e1 = (1, 0, . . . , 0) ∈ Rn, i.e., θsf(u) ≡ f(u+ se1)
for e1 = (e1, . . . , e1) ∈ RnΛ. In particular, θsu = u + se1. Note that θs is the group action
associated to the diagonal translation symmetry, which has infinitesimal generator

∑
j∈Λ Tj .

We will write
[δu0(ua)F ]β (3.2.24)

for the expectation of the spin model in which the spin at vertex a is fixed to u0 = (0, . . . , 0) ∈ Rn.

Theorem 3.2.5. Let [·]β be the unnormalised expectation of the Rn model, and let Ei,` be the
expectation of the SRW. Let g : RΛ → R be a smooth compactly supported function, let a ∈ Λ, and let
s ∈ R. Then [

g(
1

2
|θsu|2)δu0(ua)

]
β

=

[
Ea, 1

2
|u|2g(L

τ( s
2

2
)
)δu0(ua)

]
β

(3.2.25)

where τ(γ) ≡ inf{t |Lta ≥ γ} and u0 = (0, . . . , 0) ∈ Rn.

Proof of Theorem 3.2.5. Since the identity is trivial if s = 0, assume s 6= 0. The proof is by applying
Lemma 3.2.1 with ρε(u) ≡ ρε(ua), f(j, `) ≡ g(`)ηε(`a)1j=a, and the functions ρε : Rn → R and
ηε : R → R chosen such that Taρε and ηε are smooth compactly supported approximations to
δu0 − δθsu0 and δ 1

2
s2 subject to ρε(v)ηε(

1
2 |v|

2) = 0 for all v ∈ Rn. Explicitly, with δ(k)
ũ,ε(x) denoting

a smooth approximation to a delta function at ũ ∈ Rk with support in the ball |x− ũ| < ε/2, we
may take

ρε(ua) =

∫ s−ε

0
δ(n)
u0,ε(θ−rua) dr, ηε(`) = δ

(1)
0,ε

(
`− 1

2
s2 − ε

2

)
. (3.2.26)

By Lemma 3.2.1, since ρε(ua)ηε(1
2 |ua|

2) = 0,[
Taρε(ua)

∫ ∞
0

Ea, 1
2
|u|2(g(Lt)ηε(L

a
t )1Xt=a) dt

]
β

=

[
ρε(ua)u

1
ag(

1

2
|u|2)ηε(

1

2
|ua|2)

]
β

= 0. (3.2.27)
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Let dLa = 1Xt=a dt. By the continuity1 of s 7→ Ea,`g(Lτ( 1
2
s2)) and the definition of ηε,

lim
ε→0

Ea,`
∫ ∞

0
g(Lt)ηε(L

a
t )1Xt=a dt = lim

ε→0
Ea,`

∫ ∞
0

g(Lτ(La))ηε(L
a) dLa

= lim
ε→0

∫ ∞
0

Ea,`(g(Lτ(γ)))ηε(γ) dγ = Ea,`g(Lτ( 1
2
s2)), (3.2.28)

uniformly in ` with `a 6 1
2s

2. Since Taρε(ua) = δ
(n)
u0,ε(ua)− δ

(n)
u0,ε(θ−(s−ε)ua), taking the limit ε→ 0

in (3.2.27) yields, by (3.2.28),[
Ea, 1

2
|u|2(g(L

τ( s
2

2
)
))δu0(ua)

]
β

=

[
Ea, 1

2
|θsu|2(g(L

τ( s
2

2
)
))δu0(ua)

]
β

(3.2.29)

where we have used the invariance of [·]β under θs, i.e., [F ]β = [θsF ]β. To conclude, observe[
Ea, 1

2
|θsu|2(g(L

τ( s
2

2
)
))δu0(ua)

]
β

=

[
g(

1

2
|θsu|2)δu0(ua)

]
β

(3.2.30)

since τ(1
2s

2) = 0 if La0 = s2

2 .

Eisenbaum isomorphism theorem
The Eisenbaum isomorphism theorem involves a continuous-time random walk with killing. Thus
let Xt be a killed random walk with killing rates h, and let Lt be its local times. To be precise, the
generator of the joint process (Xt,Lt)t>0 is given by

(Lhf)(i, `) ≡ Lf(i, `)− hif(i, `), i.e., Lh = L − h. (3.2.31)

for f : Λ × RΛ → R smooth. We let Ehi,` denote the corresponding (deficient) expectation, i.e.,
integration with respect to the density of the killed random walk, which may have measure less
than 1. Note that the killing does not depend on the initial local times, i.e.,

Ehi,`
(
g(Xt,Lt)

)
= Ei,`

(
g(Xt,Lt)e

−
∑
j∈Λ hj(L

j
t−`j)

)
, (3.2.32)

and we can hence write

Ei,`(g(Xt,Lt)e
−

∑
j∈Λ hjL

j
t ) = Ehi,`(g(Xt,Lt))e

−
∑
j∈Λ hj`j . (3.2.33)

Probabilistically, the deficient law can be realised as a Markov process with state space (Λ ∪
{†})× RΛ∪{†}, where † /∈ Λ is an absorbing ‘cemetery’ state. The walk jumps from i to † with rate
hi. The generator acts on functions that are identically zero at †, and we identify such functions
with functions on Λ× RΛ. We denote the time of the one and only jump to † by ζ.

The following theorem is a version of Eisenbaum’s isomorphism [46].

Theorem 3.2.6. Suppose h 6= 0. Let 〈·〉β,h be the expectation of the Rn model, and let Ehi,` be the
expectation of the killed SRW. Let g : RΛ → R have moderate growth, let a ∈ Λ, and let s ∈ R. Then〈

(θsu
1
a)g(

1

2
|θsu|2)

〉
β,h

= s
∑
i∈Λ

hi

〈∫ ∞
0

Eh
i, 1

2
|θsu|2(g(Lt)1Xt=a) dt

〉
β,h

. (3.2.34)

1To see continuity, since g is compactly supported, it suffices to show that for a sufficiently large T , s 7→
Ea,`g(Lτ( 1

2
s2)∧T ) is continuous. Since g is Lipschitz, it suffices to show Ea,`|Lτ( 1

2
s2−δ)∧T − Lτ( 1

2
s2+δ)∧T |1 → 0

as δ → 0, | · |1 the 1-norm. Let Jδ be the event that a jump occurs in the interval [ 1
2
s2 − δ, 1

2
s2 + δ]. Then

Ea,`|Lτ( 1
2
s2−δ)∧T −Lτ( 1

2
s2+δ)∧T |1 6 δ + TPa,`(Jδ) = OT (δ).
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Proof. We apply Lemma 3.2.1 with

ρ(u) ≡ es(h,u)− s
2

2
(h,1) = e

1
2

(h,|u|2)(e−
1
2

(h,|θ−su|2)), (3.2.35)

f(j, `) ≡ g(`)e−(h,`)1j=a. (3.2.36)

While ρ does not have moderate growth in the sense of our conventions, the very rapid (Gaussian)
decay of f is sufficient for the lemma to hold. We then use that (Tjρ)(u) = shjρ(u) to obtain

s
∑
j∈Λ

hj

[
ρ(u)

∫ ∞
0

Ej, 1
2
|u|2(g(Lt)1Xt=ae

−(h,Lt)) dt

]
β

=
∑
j∈Λ

[
ρ(u)u1

jg(
1

2
|u|2)1j=ae

− 1
2

(h,|u|2)

]
β

=

[
u1
ag(

1

2
|u|2)e−

1
2

(h,|θ−su|2)

]
β

, (3.2.37)

by inserting the definition (3.2.35). Using (3.2.33) to substitute

ρ(u)Ej, 1
2
|u|2(g(Lt)e

(−h,Lt)) = Eh
j, 1

2
|u|2(g(Lt))e

− 1
2

(h,|θ−su|2) (3.2.38)

and by the translation invariance of [·]β, i.e., [θsF ]β = [F ]β, we can rewrite (3.2.37) as

s
∑
j∈Λ

hj

[(∫ ∞
0

Eh
j, 1

2
|θsu|2(g(Lt)1Xt=a) dt

)
e−

1
2

(h,|u|2)

]
β

=

[
(θsu

1
a)g(

1

2
|θsu|2)e−

1
2

(h,|u|2)

]
β

.

(3.2.39)
This can be re-written in terms of [·]β,h as

s
∑
j∈Λ

hj

[∫ ∞
0

Eh
j, 1

2
|θsu|2(g(Lt)1Xt=a) dt

]
β,h

=

[
(θsu

1
a)g(

1

2
|θsu|2)

]
β,h

, (3.2.40)

and normalising gives (3.2.34).

We will now derive the usual formulation of the Eisenbaum isomorphism as a corollary. For
notational simplicity, suppose n = 1, and let ui = u1

i . Writing the translations explicitly, Theo-
rem 3.2.6 yields, for s = (s, s, . . . , s) ∈ RΛ, s 6= 0,〈

ua + s

s
g(

1

2
|u+ s|2)

〉
β,h

=
∑
i∈Λ

hi

〈
Eh
i, 1

2
|u+s|2

∫ ∞
0

g(Lt)1Xt=a dt

〉
β,h

=
∑
i∈Λ

hi

〈
Ei
∫ ∞

0
g(

1

2
|u+ s|2 +Lt)1Xt=ae

−
∑
j∈Λ hjL

j
t dt

〉
β,h

=
∑
i∈Λ

hi

〈
Ea
∫ ∞

0
g(

1

2
|u+ s|2 +Lt)1Xt=ie

−
∑
j∈Λ hjL

j
t dt

〉
β,h

(3.2.41)

where in the last line we have used the reversibility of the killed random walk, i.e., the probability
of a path Pi→a is the same as its reversal Pa→i. Bringing the sum inside the Gaussian expectation,
we recognise the conditional density that X jumps from i to † at time t, proving the following
corollary. Recall ζ is the time of the jump to the cemetery state.

Corollary 3.2.7. Suppose h 6= 0. Let 〈·〉β,h be the expectation of the Rn model, and let Ehi,` be
the expectation of the killed SRW. Suppose g : RΛ → R has moderate growth, a ∈ Λ, and s =
(s, s, . . . , s) ∈ RΛ with s 6= 0. Then〈

ua + s

s
g(

1

2
|u+ s|2)

〉
β,h

=

〈
Eha
(
g(

1

2
|u+ s|2 +Lζ)

)〉
β,h

. (3.2.42)
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Rn

R

Figure 3.1. Minkowski space Rn,1. The shaded area is the causal future and the hyperboloid is Hn.

3.3 Isomorphism theorems for hyperbolic geometry

In this section we describe spin models with hyperbolic symmetry, the associated vertex-reinforced
jump processes, and isomorphism theorems that link these objects. The proofs follow closely those
of Section 3.2, but with the translation symmetry of Rn replaced by the boost symmetry of Hn.

The vertex-reinforced jump process

The vertex-reinforced jump process (VRJP) Xt with initial local time L0 ∈ (0,∞)Λ and initial vertex
v ∈ Λ is the process Xt with X0 = v and jump rates

Pv,L0 [Xt+dt = j | (Xs)s6t, Xt = i] = βijL
j
t dt, (3.3.1)

where the local times Lt of Xt are defined as in (3.2.3). Note that (3.1.1) with ε = 1 is the special
case of (3.3.1) in which L0 = 1. The construction of a VRJP with given initial local times is
straightforward, see [31, Section 2]. Our assumption that the graph induced by the edge weights
β is connected implies that Ljt → ∞ as t → ∞ in probability for all j and all sets of initial local
times, see [31, Lemma 1].

As in Section 3.2, it will be helpful to view Xt as the marginal of the process (Xt,Lt) that
includes the local times Lt. For convenience we will also call this joint process a VRJP. Unlike
Xt, the joint process (Xt,Lt) is a Markov process. The generator L of the joint process acts on
smooth functions g : Λ× RΛ → R by

(Lg)(i, `) =
∑
j∈Λ

βij`j(g(j, `)− g(i, `)) +
∂g(i, `)

∂`i
. (3.3.2)

We note that gt(i, `) = Ei,` g(Xt,Lt) is smooth in ` for any t > 0 if g is smooth. This can be seen,
for example, from the explicit construction of the VRJP in [31, Section 2].

Hyperbolic symmetry

The VRJP will be seen to be closely related with hyperbolic symmetry, i.e., the Lorentz group
O(n, 1). In this subsection we discuss the relevant aspects of this group and its action on
Minkowski and hyperbolic space.
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Minkowski space. Minkowski space Rn,1 is the vector space Rn+1 equipped with the indefinite
Minkowski inner product

u1 · u2 ≡ −u0
1u

0
2 +

n∑
α=1

uα1u
α
2 , (3.3.3)

where each ui = (u0
i , u

1
i , . . . , u

n
i ) ∈ Rn,1. The points u ∈ Rn,1 with u · u < 0 are called time-like.

The set of time-like vectors with u0 > 0 is called the causal future; schematically this is the shaded
area in Figure 3.1. In what follows, for u ∈ Rn,1 it will be notationally convenient to write z = u0

and x = u1.
The group preserving the quadratic form u · u given by (3.3.3) is the Lorentz group O(n, 1).

The restricted Lorentz group SO+(n, 1) is the subgroup of T ∈ O(n, 1) with detT = 1 and T00 > 0.
SO+(n, 1) preserves the causal future, see Figure 3.1. The elements of SO+(n, 1) can be written
as compositions of rotations and boosts. We briefly review the aspects of these transformations
needed for what follows. Rotations act on the coordinates u1, . . . , un exactly as in Euclidean space,
while a boost θs by s ∈ R in the xz-plane acts by

θsz = x sinh s+ z cosh s, θsx = x cosh s+ z sinh s, θsu
α = uα, (α = 2, . . . , n), (3.3.4)

and similarly for boosts in other planes. From (3.3.4) it follows that the infinitesimal generator T
of boosts in the xz-plane is the linear differential operator satisfying

Tz = x, Tx = z, Tuα = 0, (α = 2, . . . , n), (3.3.5)

i.e.,

T ≡ z ∂
∂x

+ x
∂

∂z
. (3.3.6)

Hyperbolic space. When given the metric induced by the Minkowski inner product, the set

Hn ≡ {u ∈ Rn,1 | u · u = −1, z > 0} (3.3.7)

is a model for n-dimensional hyperbolic space. Note that (3.3.7) implies z > 1. For u, v ∈ Hn,
−u · v = cosh(d(u, v)), where d(u, v) is the geodesic distance from u to v. In particular, −u · v > 1.
For details on why this is indeed hyperbolic space see, e.g. [24].

Hn is the orbit under SO+(n, 1) of the point u0 = (1, 0, . . . , 0), and the stabiliser of u0 is
the subgroup SO(n). Thus Hn can be identified with SO+(n, 1)/SO(n). It is parameterised by
(u1, . . . , un) ∈ Rn:

Hn = {u ∈ Rn,1 | (u1, . . . , un) ∈ Rn, z =
√

1 + (u1)2 + . . . (un)2}. (3.3.8)

In these coordinates, the SO+(n, 1)-invariant Haar measure on Hn can be written as

du =
du1 . . . dun

z(u)
, z(u) ≡

√
1 + (u1)2 + · · ·+ (un)2. (3.3.9)

Note that the Lorentz boost (3.3.4) maps Hn to Hn, and that in the parameterization of Hn by
(u1, . . . , un), the infinitesimal Lorentz boost in the xz-plane is given by

T ≡ z ∂
∂x
. (3.3.10)

This is because T satisfies the defining equations (3.3.5): Tz = x, Tx = z, and Tuα = 0 for α > 2.
In the last calculation we have used the definition (3.3.8) of z(u). The invariance of the measure
du under Lorentz boosts implies that for differentiable f : Hn → R with sufficient decay,∫

Hn
Tf du = 0. (3.3.11)
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Hyperbolic sigma model
Hyperbolic spin models are analogues of the Gaussian free field defined in terms of the Minkowski
inner product instead of the Euclidean inner product. While it is possible to define a spin model
associated to the entire causal future of Minkowski space, see Figure 3.1, for now we restrict
ourselves to the sigma model version of this model in which spins are constrained to lie in Hn. We
will later consider (the supersymmetric version of) a spin model taking values in the causal future
in Section 3.7.

In the Hn sigma model there is a spin ui ∈ Hn for each i ∈ Λ. We again let β be a non-negative
collection of edge weights and h > 0 be a collection of non-negative vertex weights. For a spin
configuration u we consider the energy

Hβ(u) ≡ 1

2
(u,−∆βu) =

1

4

∑
i,j∈Λ

βij(ui − uj)2, Hβ,h(u) = Hβ(u) + (h, z − 1), (3.3.12)

analogous to (3.2.6), except that the inner product in (ui−uj)2 = (ui−uj) · (ui−uj) is now given
by the Minkowski inner product. The mass term has also been replaced by the term (h, z − 1)
since zi > 1 for all i.

Note that Hβ(u) is invariant under the diagonal action of SO+(n, 1), analogous to the in-
variance of (3.2.6) by the Euclidean group. Moreover, since ui · ui = −1, we have (ui − uj)2 =
−2− 2ui · uj , we can thus rewrite Hβ(u) in terms of ũ ≡ (u1, . . . , un) ∈ Rn as

Hβ(u) = −1

2

∑
i,j∈Λ

βij

(
n∑

α=1

uαi u
α
j − zizj + 1

)
, (3.3.13)

where we recall that zi = zi(ũi) is given by (3.3.8). Define an unnormalised expectation [·]β,h on
functions F : HnΛ → R by

[F ]β,h ≡
∫
HnΛ

F (u)e−Hβ,h(u) du =

∫
RnΛ

F (u)e−Hβ,h(u)
∏
i∈Λ

dũi
z(ũi)

, (3.3.14)

where du is the Λ-fold product of the invariant measure on Hn. In the second equality we have
written this integral using the parametrization by Rn in (3.3.9). When h = 0 we set [·]β ≡ [·]β,h.

The Hn-model is the probability measure on HnΛ defined by the normalised expectation

〈F 〉β,h ≡
1

Zβ,h
[F ]β,h, Zβ,h ≡ [1]β,h. (3.3.15)

Note that for (3.3.15) to be well-defined we must have Zβ,h < ∞. This is the case if and only if
hi > 0 for some i due to the invariance of Hβ(u) under the non-compact boost symmetry of Hn.

Remark 3.3.1. This model was studied in [99] as a toy model for some aspects of random band
matrices. See Remark 3.5.8 below for further details on this connection.

Fundamental integration by parts identity
The statement of the following lemma is formally identical to that of Lemma 3.2.1. However, the
objects in its statement are now hyperbolic versions: L is the generator of the VRJP, [·]β is the
unnormalised expectation from (3.3.14), Tj is the infinitesimal Lorentz boost in the xz-plane in
the jth coordinate specified by (3.3.5), and 1

2 |u|
2 is replaced by z.

Lemma 3.3.2. Let [·]β be the unnormalised expectation of the Hn model, and let Ei,` be the expecta-
tion of the VRJP. Let f : Λ× RΛ → R be a smooth function with rapid decay, and let ρ : HnΛ → R be
smooth with moderate growth. Then:

−
∑
j∈Λ

[ρ(u)xjLf(j,z)]β =
∑
j∈Λ

[(Tjρ)(u)f(j,z)]β. (3.3.16)
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In particular, the following integrated version holds for all f : Λ× RΛ → R with rapid decay:∑
j∈Λ

[ρ(u)xjf(j,z)]β =
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt

]
β

. (3.3.17)

Proof. The proof is again by integration by parts and closely follows that of Lemma 3.2.1. In-
deed, using that [·]β has density e−Hβ with respect to the Lorentz invariant measure on HnΛ, the
identity (3.3.11) implies that for f1, f2 : HnΛ → R smooth and with sufficient decay,

[(Tif1)f2]β = [f1(T ?i f2)]β, (3.3.18)

where
T ?i f(u) = −Tif(u) + (TiHβ(u))f(u). (3.3.19)

Using (3.3.13) and (3.3.5) yields

TiHβ(u) = −1

2

∑
j,k∈Λ

βjkTi(xjxk − zjzk) =
∑
j∈Λ

βij(xizj − xjzi) (3.3.20)

and hence, using (3.3.5) and the chain rule to compute Tif ,

−T ?i f(z) =
∑
j∈Λ

βij(xjzi − xizj)f(z) + xi
∂f(z)

∂`i
. (3.3.21)

Applying (3.3.21) to each function f(i, z) and summing over i yields

−
∑
i∈Λ

T ?i f(i, z) =
∑
i∈Λ

xi
(∑
j∈Λ

βijzj(f(j,z)− f(i, z)) +
∂f(i, z)

∂`i

)
=
∑
i∈Λ

xi(Lf)(i, z) (3.3.22)

by the formula (3.3.2) for L. The remainder of the proof follows the proof of Lemma 3.2.1.

Hyperbolic isomorphism theorems
The following theorems are analogues of the BFS–Dynkin, Ray–Knight, and Eisenbaum isomor-
phism theorems. Their proofs are analogous to those in Section 3.2, using Lemma 3.3.2 in place
of Lemma 3.2.1, and using hyperbolic versions of ρ and f . We begin with the hyperbolic version
of the BFS–Dynkin isomorphism, i.e., Theorem 3.2.3. It first appeared in [9] and was proven there
using horospherical coordinates. Here we give a more intrinsic proof that avoids horospherical
coordinates.

Theorem 3.3.3. Let [·]β be the unnormalised expectation of the Hn model, and let Ei,` be the
expectation of the VRJP. Let g : RΛ → R have rapid decay, and let a, b ∈ Λ. Then

[xaxbg(z)]β =

[
za

∫ ∞
0

Ea,z(g(Lt)1Xt=b) dt

]
β

. (3.3.23)

Proof. Apply Lemma 3.3.2 with ρ(u) = xa, f(j, `) = g(`)1j=b, and use Tjρ(u) = 1j=azj .

The next theorem is a hyperbolic version of the Ray–Knight isomorphism, i.e., Theorem 3.2.5.
Recall the definition of a boost θs by s ∈ R in the xz-plane from (3.3.4). In what follows we let θs
act diagonally on u ∈ HnΛ, and we write θsz to denote the first component of θsu. We also write
[fδu0(ua)]β for the expectation of the spin model in which the spin ua is fixed at u0 ∈ Hn.

Theorem 3.3.4. Let [·]β be the unnormalised expectation of the Hn model, and let Ei,` be the
expectation of the VRJP. Let g : RΛ → R be a smooth compactly supported function, let a ∈ Λ, and let
s ∈ R. Then

[g(θsz)δu0(ua)]β =
[
Ea,zg(Lτ(cosh s))δu0(ua)

]
β

(3.3.24)

where τ(γ) = inf{t |Lta ≥ γ} and u0 = (1, 0, . . . , 0) ∈ Hn.
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Proof of Theorem 3.3.4. Since the identity is trivial if s = 0, assume s 6= 0. We begin by applying
Lemma 3.3.2 with ρε(u) = ρε(ua), f(j, `) = g(`)ηε(`a)1j=a, with the functions ρε : Hn → R and
ηε : R → R chosen such that Taρε and ηε are smooth compactly supported approximations to
δu0(ua) − δθsu0(ua) and δcosh s(`a) subject to ρε(ua)ηε(za) = 0 for all ua ∈ Hn. Since s 6= 0, these
conditions can be shown to be satisfiable by explicit construction. Exactly as in the proof of
Theorem 3.2.5 this yields[

Taρε(ua)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a) dt

]
β

= 0, (3.3.25)

i.e.,[
δθs−εu0,ε(u0)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a dt

]
β

=

[
δu0,ε(u0)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a) dt

]
β

.

(3.3.26)
As in (3.2.28), by the continuity2 of s 7→ Ea,`g(Lτ(cosh s)) and the definition of ηε,

lim
ε→0

Ea,`
∫ ∞

0
g(Lt)ηε(L

a
t )1Xt=a dt = lim

ε→0

∫ ∞
0

Ea,`(g(Lτ(γ))ηε(γ) dγ = Ea,`g(Lτ(cosh s)), (3.3.27)

uniformly in ` with `a 6 cosh s.
To conclude, we use (3.3.27) to take ε → 0 in (3.3.26). More precisely, we use that δθsu0

concentrates the ua integral at za = cosh s on the left-hand side, and hence the time integral at
t = 0. By the boost invariance of [·]β, this term produces the left-hand side of (3.3.24):[

δθsu0(ua)Ea,z(g(Lτ(cosh s)))
]
β

=
[
δu0(ua)Ea,θsz(g(Lτ(cosh s)))

]
β

= [δu0(ua)g(θsz)]β. (3.3.28)

Again by (3.3.27), the δu0 on the right-hand side of (3.3.26) concentrates the time integral at
τ(cosh s), which gives the right-hand side of (3.3.24).

Finally, we prove a hyperbolic version of the Eisenbaum isomorphism theorem, i.e., Theo-
rem 3.2.6. This concerns a killed VRJP. The generator of this killed process (Xt,Lt)t>0 acts on
smooth functions f : Λ× RΛ → R as

(Lhf)(i, `) ≡ Lf(i, `)− hif(i, `), i.e., Lh = L − h, (3.3.29)

where L is now the generator of the VRJP and hi are the killing rates. We let Ehi,` denote the
corresponding deficient expectation. As for the SRW, the killing does not depend on the initial
local times, i.e.,

Ehi,`
(
g(Xt,Lt)

)
= Ei,`

(
g(Xt,Lt)e

−
∑
j∈Λ hj(L

j
t−`j)

)
, (3.3.30)

and we can thus write

Ei,`(g(Xt,Lt)e
−

∑
j∈Λ hj(L

j
t−1)) = Ehi,`(g(Xt,Lt))e

−
∑
j∈Λ hj(`j−1) = Ehi,`(g(Xt,Lt))e

−(h,`−1).
(3.3.31)

Theorem 3.3.5. Let 〈·〉β,h be the expectation of the Hn model, and let Ehi,` be the expectation of the
killed VRJP with h 6= 0. Let g : Λ× RΛ → R be of moderate growth, and let s ∈ R. Then

∑
i∈Λ

〈(θsxi)g(i, θsz)〉β,h =
∑
i∈Λ

hi

〈
(θsxi − xi)

∫ ∞
0

Ehi,θsz(g(Xt,Lt)) dt

〉
β,h

. (3.3.32)

2Continuity can be proven by an argument similar to the one we gave for simple random walk near (3.2.28): after
restricting to times at most T using compact support, the claim follow from the fact that P(Jδ) = OT (δ) since the jump
rates up to time T are bounded by O(T ).
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Rn

R

Figure 3.1. The upper half-plane in Euclidean space Rn+1 (shaded) and the upper hemisphere Sn+.

Proof. Analogously to the proof of Theorem 3.2.6, we apply Lemma 3.3.2 with

ρ(u) ≡ e(h,z−θ−sz) = e(h,z−1)(e−(h,θ−sz−1)) (3.3.33)

f(j, `) ≡ g(`)e−(h,`−1)1j=a, (3.3.34)

and use that (Tjρ)(u) = hj(xj − θ−sxj)ρ(u) to obtain

∑
j∈Λ

hj

[
(xj − θ−sxj)ρ(u)

∫ ∞
0

Ej,z(g(Lt)1Xt=ae
−(h,Lt−1)) dt

]
β

=
∑
j∈Λ

[
ρ(u)xjg(z)1j=ae

−(h,z−1)
]
β

=
[
x1
ag(z)e−(h,θ−sz−1)

]
β
. (3.3.35)

Using (3.3.31) to substitute

ρ(u)Ej,z(g(Lt)1Xt=ae
−(h,Lt−1)) = Ehj,z(g(Lt)1Xt=a)e

−(h,θ−sz−1), (3.3.36)

and the boost invariance of the spin expectation [θs·]β = [·]β, we can rewrite (3.3.35) as∑
j∈Λ

hj

[
(θsxj − xj)

∫ ∞
0

Ehj,θsz(g(Lt)1Xt=a) dt

]
β,h

= [(θsxa)g(θsz)]β,h (3.3.37)

where we have absorbed the magnetic terms e−(h,z−1) into the measures. Normalising gives
(3.3.32).

3.4 Isomorphism theorems for spherical geometry
In this section we describe analogues of the theorems of Sections 3.2 and 3.3 for spherical
geometry.

The vertex-diminished jump process
The vertex-diminished jump process (VDJP) (Xt,Lt) with initial conditions (v,L0) ∈ Λ× (0, 1]Λ is
the Markov process with conditional jump rates

Pv,L0 [Xt+dt = j | (Xs)s6t, Xt = i] = βijL
j
t dt (3.4.1)

that is stopped at the time ζ ≡ inf{s | exists j ∈ Λ s.t. Ljs 6 0}. Here Lt is the collection of local
times of Xt defined by

Ljt ≡ L
j
0 −

∫ t

0
1Xs=j ds, (3.4.2)
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and Lj0 > 0 is the initial local time at j. It is straightforward to see that (Xt,Lt) is well-defined up
to ζ by a step-by-step construction as is done for the VRJP in [31]. Note that (3.1.1) with ε = −1
describes the VDJP with L0 = 1.

The generator L of the VDJP acts on smooth functions g : Λ× (0, 1]Λ → R by

(Lg)(i, `) =
∑
j∈Λ

βij`j(g(j, `)− g(i, `))− ∂g(i, `)

∂`i
. (3.4.3)

We write Pi,L0 and Ei,L0 for the law and expectation of the VDJP with initial condition (i,L0).

Rotational symmetry
We consider the space Rn+1 equipped with the Euclidean inner product u · v = u0v0 + · · ·+ unvn,
which is preserved by the orthogonal group O(n + 1). In the next section we will define an
unnormalised expectation exactly as in Section 3.2, but we will investigate the consequences of
rotational symmetries instead of translational symmetries.

The hemispherical spin model Sn+
Hemispherical space. In this section we discuss a spin system that takes values in Sn+, the open
upper hemisphere of the sphere Sn ⊂ Rn+1. See Figure 3.1. For notational convenience we write
u = (u0, . . . , un) ∈ Rn+1 and let z = u0, and we will also often write x = u1. Then

Sn+ ≡ {u ∈ Rn+1 | u · u = 1, z > 0}, (3.4.4)

where the inner product is Euclidean. Sn+ is parametrised by the open unit ball in Rn, i.e., by

Bn = {(u1, . . . , un) ∈ Rn | (u1)2 + · · ·+ (un)2 < 1}. (3.4.5)

Symmetries. In the flat and hyperbolic settings we considered the Euclidean group O(n) n Rn
and the restricted Lorentz group SO+(n, 1). Unlike in these settings, the orthogonal group
O(n+ 1) does not preserve the hemisphere. Our results, however, were based on the infinitesimal
symmetries of flat and hyperbolic space, and the hemisphere still possesses useful infinitesimal
symmetries. This section briefly explains this; the key identity is (3.4.9).

The infinitesimal symmetries of the hemisphere form a representation of the Lie algebra so(n+
1), see Appendix 3.B. The associated invariant measure du on Sn+ can be written in coordinates as

du =
du1 . . . dun

z(u)
, z(u) =

√
1− (u1)2 − · · · − (un)2. (3.4.6)

This is the invariant measure on the full sphere restricted to Sn+. We let θs denote a rotation by
s ∈ R in the xz-plane. Note that in the coordinates (x, u2, . . . , un) the infinitesimal generator of
rotations in the xz-plane is

T ≡ z ∂
∂x
, (3.4.7)

which acts on the coordinate functions as

Tz = −x, Tx = z, Tuα = 0, (α = 2, . . . , n). (3.4.8)

A consequence of T being an infinitesimal symmetry of the hemisphere is that for compactly
supported smooth f : Sn+ → R, ∫

Sn+
Tf du = 0, (3.4.9)

an identity which is also easily proven by rewriting the integral as an integral over Sn and using
the rotational invariance of the full sphere.
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The Sn+ model. By a by now familiar abuse of notation, we write SnΛ
+ in place of (Sn+)Λ. Define, for

u ∈ SnΛ
+ ,

Hβ(u) ≡ 1

2
(u,−∆βu), Hβ,h(u) ≡ Hβ(u) + (h,1− z), (3.4.10)

where as before β and h are collections of non-negative edge and vertex weights, respectively. For
F : SnΛ

+ → R define the unnormalised expectation

[F ]β,h ≡
∫
SnΛ

+

F (u)e−Hβ,h(u) du =

∫
BnΛ

F (u)e−Hβ,h(u)
∏
i∈Λ

du1
i . . . du

n
i

z(ui)
(3.4.11)

where du ≡
∏
i∈Λ dui, and each dui is a copy of the invariant measure on Sn+. The Sn+ model is the

probability measure defined by the normalised expectation

〈F 〉β,h ≡
[F ]β,h
Zβ,h

, Zβ,h ≡ [1]β,h. (3.4.12)

Unlike the GFF and Hn-model, the Sn+ model is well-defined if h = 0, and we will omit the
subscripts h to indicate h = 0.

Remark 3.4.1. The spherical O(n) models are obtained by removing the restriction that spins lie
in the upper hemisphere in (3.4.11). See Remark 3.4.3 below.

Isomorphism theorems
The following isomorphism theorems are analogues of those in Section 3.2 and 3.3. We again
start with a fundamental integration by parts identity, with the change that now L is the generator
of the VDJP, [·]β is the unnormalised expectation of (3.4.11), and Tj is the infinitesimal rotation
in the xz-plane in the jth coordinate specified by (3.4.7).

Lemma 3.4.2. Let [·]β be the unnormalised expectation of the Sn+ model, and let Ei,` be the ex-
pectation of the VDJP. Let f : Λ × (0, 1]Λ → R be a smooth compactly supported function and let
ρ : SnΛ

+ → R be smooth. Then:

−
∑
j∈Λ

[ρ(u)xjLf(j,z)]β =
∑
j∈Λ

[(Tjρ)(u)f(j,z)]β. (3.4.13)

In particular, the following integrated version holds for compactly supported f : Λ× (0, 1]Λ → R:∑
j∈Λ

[ρ(u)xjf(j,z)]β =
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt

]
β

. (3.4.14)

Proof. By (3.4.9) we can integrate by parts. The proof is almost identical to that of Lemma 3.3.2,
the only differences being HnΛ is replaced SnΛ, and Ti = zi

∂
∂xi

is the infinitesimal generator of a
rotation in the xz-plane at i instead of a Lorentz boost. This introduces a sign, i.e.,

Tif(z) = −xi
∂f(z)

∂`i
(3.4.15)

where the hyperbolic model had a factor of +1 in (3.3.21), producing the VDJP generator instead
of the VRJP generator. The remainder of the proof is essentially unchanged.

Remark 3.4.3. Analytically, (3.4.13) holds for the spherical O(n) model, although it is no longer
obvious how to interpret L as the generator of a Markov process since ‘jump rates’ become negative.
In particular, it is unclear how to obtain a formula like (3.4.14). A probabilistic interpretation of
L for the O(n) model, without restricting to the hemisphere, would be very interesting.
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The hemispherical BFS–Dynkin isomorphism theorem for the VDJP is as follows:

Theorem 3.4.4. Let [·]β be the unnormalised expectation of the Sn+ model, and let Ei,` be the
expectation of the VDJP. Suppose g : (0, 1]Λ → R is compactly supported. Then for a, b ∈ Λ,

[xaxbg(z)]β =

[
za

∫ ∞
0

Ea,z(g(Lt)1Xt=b) dt

]
β

. (3.4.16)

Proof. Apply Lemma 3.4.2 with ρ(u) = xa, f(j, `) = g(`)1j=b, and use Tjρ(u) = 1j=azj .

The fact that finite symmetries do not preserve the hemisphere leads to slightly different
formulations of the Eisenbaum and Ray–Knight isomorphism theorems as compared to the GFF
and Hn models. We let [F (u)δu0(ua)]β denote the unnormalised expectation for the spin model
in which the spin at ua is fixed to be u0 ∈ Sn+.

Theorem 3.4.5. Let [·]β be the unnormalised expectation of the Sn+ model, and let Ei,` be the
expectation of the VDJP. Let g : (0, 1]Λ → R be a smooth compactly supported function, let a ∈ Λ, and
let s ∈ (−π

2 ,
π
2 ). Then[

Ea,z(g(Lτ(cos s))1{τ(cos s)<ζ})δu0(ua)
]
β

= [g(z)δθsu0(ua)]β (3.4.17)

where τ(γ) = inf{t |Lat ≤ γ} and u0 = (1, 0, . . . , 0) ∈ Sn+.

Proof. The proof is analogous to the proof of Theorem 3.2.5. Since the identity is trivial if s = 0,
assume s 6= 0. We begin by applying Lemma 3.4.2 with ρ(u) ≡ ρε(ua), f(j, `) ≡ g(`)ηε(`a)1j=a,
with the functions ρε : Sn+ → R and ηε : (0, 1] → R chosen such that Taρ and η are smooth
compactly supported approximations to δu0(ua)−δθsu0(ua) and δcos s(`a) subject to ρε(ua)ηε(za) =
0 for all ua ∈ Sn+. Since s 6= 0, these conditions can be shown to be satisfiable by explicit
construction. Exactly as in the proof of Theorem 3.2.5 this yields[

Taρε(ua)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a) dt

]
β

= 0. (3.4.18)

To conclude, we use that θsu0 has z-coordinate cos s, so the term with δθsu0(ua) concentrates the
ua integral at za = cos s, and hence the time integral at t = 0. This gives the right-hand side of
(3.3.24). The term with δu0(ua) concentrates the time integral at τ(cos s) and gives the left-hand
side of (3.3.24) as the integrand is non-zero only if τ(cos s) < ζ.

The hemispherical Eisenbaum isomorphism theorem concerns a killed VDJP. The generator of
this killed process (Xt,Lt)t>0 acts on smooth compactly supported f : Λ× (0, 1]Λ → R by

(Lhf)(i, `) ≡ Lf(i, `)− hif(i, `), i.e., Lh = L − h, (3.4.19)

where L is the generator of the VDJP and hi > 0 are the killing rates. We let Ehi,` denote the
corresponding deficient expectation. As for the SRW, the killing does not depend on the initial
local times, i.e.,

Ehi,`
(
g(Xt,Lt)

)
= Ei,`

(
g(Xt,Lt)e

−
∑
j∈Λ hj(`j−L

j
t )
)
. (3.4.20)

Notice that the sign in the killing term e−
∑
j∈Λ hj(`j−L

j
t ) is reversed: this because the local times

of the VDJP are decreasing rather than increasing by (3.4.2). We can rewrite (3.4.20) as

Ei,`(g(Xt,Lt)e
−

∑
j∈Λ hj(1−L

j
t ))) = Ehi,`(g(Xt,Lt))e

−
∑
j∈Λ hj(1−`j). (3.4.21)

Theorem 3.4.6. Let [·]β be the unnormalised expectation of the Sn+ model, and let Ei,` be the
expectation of the killed VDJP. Suppose that g : (0, 1]Λ → R is compactly supported, and s ∈ (−π

2 ,
π
2 ).

Then[
xag(z)e−(h,1−θ−sz)

]
β

=
∑
i∈Λ

hi

[
(xi − θ−sxi)

∫ ∞
0

Ehi,z(g(Xt,Lt)) dt e
(h,1−θ−sz)

]
β

. (3.4.22)
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Proof. We apply Lemma 3.4.2 with

ρ(u) ≡ e(h,θ−sz−z) = e(h,1−z)(e−(h,1−θ−sz)) (3.4.23)

f(j, `) ≡ g(`)e−(h,1−`)1j=a, (3.4.24)

and use that (Tjρ)(u) = hj(xj − θ−sxj)ρ(u) to obtain∑
j∈Λ

hj

[
(xj − θ−sxj)ρ(u)

∫ ∞
0

Ej,z(g(Lt)1Xt=ae
−(h,1−Lt)) dt

]
β

=
∑
j∈Λ

[
ρ(u)xjg(z)1j=ae

−(h,1−z)
]
β

=
[
xag(z)e−(h,1−θ−sz)

]
β
.

(3.4.25)

Using (3.4.21) to substitute

ρ(u)Ej,z(g(Lt)1Xt=ae
−(h,1−Lt)) = Ehj,z(g(Lt)1Xt=a)e

−(h,1−θ−sz) (3.4.26)

on the left hand side of (3.4.25) gives the desired result.

3.5 Isomorphism theorems for supersymmetric spin models

In this section we introduce the supersymmetric R2|2, H2|2, and S2|2
+ spin models and derive

isomorphism theorems that relate them to the SRW, the VRJP, and the VDJP. Readers who are not
familiar with the mathematics of supersymmetry may consult Appendix 3.A, which contains an
introduction to supersymmetry as used in this article, before reading this section.

Supersymmetric Gaussian free field

Super-Euclidean space and the SUSY GFF. The supersymmetric Gaussian free field (SUSY GFF or R2|2

model) is defined in terms of the algebra of observables Ω2Λ(R2Λ) ≡ Ω2|Λ|(R2|Λ|), see Appendix 3.A.
This algebra replaces the algebra of observables C∞(RnΛ) of the usual n-component Gaussian
free field.

Concretely, let (ξi)i∈Λ and (ηi)i∈Λ be the generators of the Grassmann algebra Ω2Λ, let
(xi, yi)i∈Λ be coordinates for R2Λ, and let Ω2Λ(R2Λ) be the algebra with coefficients in C∞(R2Λ)
generated by (ξi)i∈Λ and (ηi)i∈Λ as in Appendix 3.A. We call elements F of Ω2Λ(R2Λ) forms, and
say that a form is smooth, rapidly decaying, compactly supported, etc., if all of its coefficient
functions have this property.

We think of Ω2Λ(R2Λ) as the smooth functions on a putative superspace (R2|2)Λ, though (R2|2)Λ

has no formal meaning, i.e., we will only work with the algebra Ω2Λ(R2Λ). There are two ordinary
(even) coordinates and two anticommuting (odd) coordinates for each element i ∈ Λ, and by
analogy with the familiar representation of a vector ui ∈ R2 in terms of its coordinate functions
ui = (xi, yi), we will abuse notation and write ui ∈ R2|2 to refer to a supervector ui = (xi, yi, ξi, ηi),
i.e., a tuple of of even and odd coordinates. Further, we define the super-Euclidean ‘inner product’
on R2|2 by

ui · uj ≡ xixj + yiyj − ξiηj + ηiξj . (3.5.1)

Note that the ‘inner product’ (3.5.1) defines a form, and is not an inner product in the standard
sense of the term. Similarly, we write u = (ui)i∈Λ to denote the collection of the ui, and define
(u,−∆βu) analogously, i.e., by

(u,−∆βu) ≡
∑
i∈Λ

∑
j∈Λ

βij(xi(xi − xj) + yi(yi − yj)− ξi(ηi − ηj) + ηi(ξi − ξj)) (3.5.2)

=
1

2

∑
i,j∈Λ

βij(ui · ui + uj · uj − ui · uj − uj · ui), (3.5.3)
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where the second equality is a calculation. The formal rules introduced above imply the last
quantity is 1

4

∑
i,j∈Λ βij(ui − uj)2 if we interpret ui − uj as (xi − xj , yi − yj , ξi − ξj , ηi − ηj) and

use (3.5.1) to compute (ui − uj)2 ≡ (ui − uj) · (ui − uj).
For F ∈ Ω2Λ(R2Λ), the normalised Berezin integral is denoted∫

(R2|2)Λ

F ≡ 1

(2π)|Λ|

∫
dx dy ∂η ∂ξ F, (3.5.4)

where ∂η∂ξ is defined by ∂η|Λ|∂ξ|Λ| . . . ∂η1∂ξ1 , dx = dx|Λ| . . . dx1, and dy = dy|Λ| . . . dy1 for some
fixed ordering of the i ∈ Λ from 1 to |Λ|.

To define the supersymmetric GFF, suppose h > 0 and let

Hβ(u) ≡ 1

2
(u,−∆βu), Hβ,h(u) ≡ Hβ(u) +

1

2
(h, |u|2), (3.5.5)

where |u|2 ≡ (ui · ui)i∈Λ, and hence (h, |u|2) =
∑

i∈Λ hiui · ui. Both Hβ and Hβ,h are elements of
Ω2Λ(R2Λ). The superexpectation of the supersymmetric Gaussian free field is the linear map that
assigns to each F ∈ Ω2Λ(R2Λ) the value

[F ]β,h ≡
∫

(R2|2)Λ

Fe−Hβ,h , (3.5.6)

and we write [F ]β when h = 0. For h 6= 0, this superexpectation is indeed normalised; see the
paragraph below (3.5.13).

Symmetries. In this section we describe the two aspects of the symmetries of the SUSY GFF that
we require. Further details about these symmetries, which form a Lie superalgebra, can be found
in Appendix 3.B.

As for the GFF, the infinitesimal generator of translation in the x-direction at i ∈ Λ is

Ti ≡
∂

∂xi
, (3.5.7)

and Ti acts on coordinates as

Tixj = 1i=j , Tiyj = 0, Tiηj = 0, Tiξj = 0, i, j ∈ Λ. (3.5.8)

Thus it is analogous to the operators Ti for the ordinary GFF, and it leads to analogous Ward
identities, i.e., for forms F with sufficient decay,∫

(R2|2)Λ

(TiF ) = 0. (3.5.9)

For s ∈ R the finite symmetry associated to
∑

i∈Λ Ti will be denoted θs, which acts by

θsxi = xi + s, θsyi = yi, θsηi = ηi, θsξi = ξi, i ∈ Λ. (3.5.10)

The second symmetry of importance is the supersymmetry generator

Q ≡
∑
i∈Λ

Qi Qi ≡ ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
, (3.5.11)

which acts on coordinates as

Qxi = ξi, Qyi = ηi, Qξi = −yi, Qηi = xi, i ∈ Λ. (3.5.12)

This supersymmetry generator is responsible for a very powerful Ward identity known as the
localisation lemma: for any smooth function f : RΛ×Λ → R with sufficient decay,∫

(R2|2)Λ

f(uuT ) = f(0), (3.5.13)

where uuT denotes the collection of forms (ui · uj)i,j∈Λ; see Theorem 3.A.8 and Corollary 3.A.10.
In particular, the expectation (3.5.6) is normalised if h 6= 0, i.e., [1]β,h = 1.
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Isomorphism theorems for the SUSY GFF. This section presents isomorphism theorems for the SUSY
GFF. The statement of the following fundamental Ward identity is formally identical to that of
Lemma 3.2.1, but now the expectation [·]β is that of a SUSY GFF.

Lemma 3.5.1. Let [·]β be the superexpectation of the R2|2 model, and let Ei,` be the expectation of
the SRW. Let f : Λ × RΛ → R be a smooth function with rapid decay, and let ρ ∈ Ω2Λ(R2Λ) have
moderate growth. Then:

−
∑
j∈Λ

[
ρ(u)xjLf(j,

1

2
|u|2)

]
β

=
∑
j∈Λ

[
(Tjρ)(u)f(j,

1

2
|u|2)

]
β

. (3.5.14)

In particular, the following integrated version holds for all smooth f : Λ×RΛ → R with rapid decay:

∑
j∈Λ

[
ρ(u)xjf(j,

1

2
|u|2)

]
β

=
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej, 1
2
|u|2(f(Xt,Lt)) dt

]
β

. (3.5.15)

Proof. Starting from (3.5.9), the proof is identical to that of Lemma 3.2.1.

As a consequence, we obtain the same isomorphism theorems for the supersymmetric GFF as
for the non-supersymmetric one. However, for the supersymmetric model, we may in addition
use localisation to greatly simplify the right-hand side of (3.5.15) when Tjρ(u) is supersymmetric.

Theorem 3.5.2. Let [·]β be the superexpectation of the R2|2 model, and let Ei,` be the expectation of
the SRW. Let g : RΛ → R be a smooth function with rapid decay, and let a, b ∈ Λ. Then[

xaxbg(
1

2
|u|2)

]
β

=

∫ ∞
0

Ea,0(g(Lt)1Xt=b) dt. (3.5.16)

Proof. Apply Lemma 3.5.1 with ρ(u) = xa, f(j, `) = g(`)1j=b, and note Tjρ(u) = 1j=a. Thus the
integrand on the right-hand side of (3.5.15) is a function of |u|2, and hence is supersymmetric.
By applying localisation, i.e., (3.5.13), we conclude[∫ ∞

0
Ea, 1

2
|u|2(1Xt=bg(Lt)) dt

]
β

=

∫ ∞
0

Ea,0(1Xt=bg(Lt)) dt.

Remark 3.5.3. Theorem 3.5.2 has its origins in physics [66,67,72,83]. A formulation similar to
the one presented here was given in [22], see also [63].

The Ray–Knight isomorphism theorem applies to spin models in which the spin at vertex
a is fixed; in the supersymmetric version the constraint is now ua = (0, 0, 0, 0). We write the
corresponding unnormalised expectation of an observable F as

[Fδu0(ua)]β, (3.5.17)

where we have defined the pinning using a formal delta function δu0(ua). The precise meaning of
δu0(ua), and of its smooth approximations used below, may be found in Appendix 3.B.

Theorem 3.5.4. Let [·]β be the superexpectation of the R2|2 model, and let Ei,` be the expectation of
the SRW. Let g : RΛ → R be smooth and compactly supported, let a ∈ Λ, and let s ∈ R. Then[

g(
1

2
|θsu|2)δu0(ua)

]
β

= Ea,0g(L
τ( s

2

2
)
) (3.5.18)

where τ(γ) ≡ inf{t |Lta ≥ γ} and u0 = (0, 0, 0, 0).
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Proof. The proof is by applying Lemma 3.5.1 with ρ(u) ≡ ρε(ua), f(j, `) ≡ g(`)ηε(`a)1j=a, and
the form ρε ∈ Ω2(R2) and function ηε : R→ R chosen such that Taρε and ηε are smooth compactly
supported approximations to δu0(ua)− δu0(θ−sua) and δ 1

2
s2 subject to ρε(ua)ηε(1

2 |ua|
2) = 0.

An argument identical to the one in the proof of Theorem 3.2.5 shows[
δu0,ε(θ−(s−ε)ua)

∫ ∞
0

Ea, 1
2
|u|2(g(Lt)ηε(L

a
t )1Xt=a dt

]
β

=

[
δu0,ε(ua)

∫ ∞
0

Ea, 1
2
|u|2(g(Lt)ηε(L

a
t )1Xt=a) dt

]
β

. (3.5.19)

By choosing δu0,ε(ua) to be supersymmetric, i.e., Qδu0,ε = 0, the integrand on the right-hand side
is a product of supersymmetric forms and is therefore supersymmetric. Applying supersymmetric
localisation (i.e., (3.5.13)) hence shows[

δu0,ε(θ−(s−ε)ua)

∫ ∞
0

Ea, 1
2
|u|2(g(Lt)ηε(L

a
t )1Xt=a) dt

]
β

=

∫ ∞
0

Ea,0(g(Lt)ηε(L
a
t )1Xt=a) dt.

(3.5.20)
Applying a global translation θs−ε on the left-hand side and then taking ε→ 0 as in the proof of
Theorem 3.2.5 gives the desired result[

g(
1

2
|θsu|2)δu0(ua)

]
β

= Ea,0g(L
τ( s

2

2
)
).

The preceding two theorems are analogues of the BFS–Dynkin and Ray–Knight isomorphisms
for the SUSY GFF. While calculations analogous to those leading to the Eisenbaum isomorphism
can be carried out for the SUSY GFF, it is not possible to apply localisation, because the form
1
2 |θsu|

2 that arises (recall (3.2.34)) is not supersymmetric.

SUSY hyperbolic model H2|2

In this section we introduce the supersymmetric analogue of the H2 model, and then obtain the
associated isomorphism theorems.

Super-Minkowski space R3|2 and the super-Minkowski model. Let (ξi, ηi)i∈Λ be the generators of
the Grassmann algebra Ω2Λ. The algebra of observables Ω2Λ(R3Λ) is the algebra generated by
(ξi, ηi)i∈Λ with coefficients in C∞(R3Λ). Choosing orthonormal coordinates (zi, xi, yi)i∈Λ for R3Λ,
a supervector ui ∈ R3|2 is a tuple of even and odd coordinates ui = (zi, xi, yi, ξi, ηi), and we say
that R3|2 is a super-Minkowski space when equipped with the ‘inner product’

ui · uj ≡ −zizj + xixj + yiyj − ξiηj + ηiξj . (3.5.21)

We have written ‘inner product’ to emphasise that ui · uj is a form, and hence this is not an inner
product in the standard sense of the term.

H2|2 sigma model. To define a supersymmetric analogue of H2, define the even form

z = z(x, y, ξ, η) ≡
√

1 + x2 + y2 − 2ξη =
√

1 + x2 + y2 − ξη√
1 + x2 + y2

. (3.5.22)

Using the definition (3.5.21), a short calculation shows that ui · ui = −1, just as for H2. The
algebra of forms Ω2(H2) is the algebra over C∞(H2) generated by two Grassmann generators ξ
and η. In coordinates, we have F (u) = F (z, x, y, ξ, η) = F (

√
1 + x2 + y2 − 2ξη, x, y, ξ, η), and

hence every form F ∈ Ω2(H2) can be identified with a form in Ω2(R2). Using this correspondence
we define the Berezin integral for F ∈ Ω2(H2) as∫

H2|2
F ≡

∫
R2|2

1

z
F =

1

2π

∫
dx dy ∂ξ ∂η

1

z
F (3.5.23)
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where on the right-hand side we are viewing F as a form in Ω2(R2). Similarly,∫
(H2|2)Λ

F ≡
∫

(R2|2)Λ

1∏
i∈Λ zi

F =
1

(2π)|Λ|

∫
dx dy ∂η ∂ξ

1∏
i∈Λ zi

F (3.5.24)

where we note there is no ambiguity in the product of the zi as they are even forms.
Define, for h > 0,

Hβ(u) ≡ 1

2
(u,−∆βu), Hβ,h(u) ≡ Hβ(u) + (h, z − 1), (3.5.25)

where

(u,−∆βu) ≡ 1

2

∑
i,j∈Λ

βij(ui · ui + uj · uj − ui · uj − uj · ui) =
1

2

∑
i,j∈Λ

βij(−2− 2ui · uj),

(h, z − 1) ≡
∑
i∈Λ

hi(zi − 1),
(3.5.26)

and each ui · uj is defined as in (3.5.21). The equality in the first line holds because ui · ui = −1.
We define the H2|2 model superexpectation for F ∈ Ω2Λ(H2Λ) by

[F ]β,h ≡
∫

(H2|2)Λ

Fe−Hβ,h , (3.5.27)

and we write [F ]β in the case h = 0. For h 6= 0, the superexpectation is normalised, i.e., [1]β,h = 1.
This is a consequence of supersymmetry, see (3.5.32) below.

Symmetries. There are two symmetries necessary for what follows, and we introduce them in
this section. For a further discussion of the Lie superalgebra of symmetries associated to the H2|2

model see Appendix 3.B.
The first relevant symmetry is the infinitesimal Lorentz boost in the xz plane at i ∈ Λ:

Ti ≡ zi
∂

∂xi
=
√

1 + x2 + y2 − 2ξη
∂

∂xi
, (3.5.28)

which acts on coordinates as

Tizj = xj1i=j , Tixj = zj1i=j , Tiyj = 0, Tiξj = 0, Tiηj = 0 i, j ∈ Λ. (3.5.29)

As for the SUSY GFF, this leads to a Ward identity for forms F with rapid decay:∫
(H2|2)Λ

(TiF ) = 0. (3.5.30)

For s ∈ R the finite symmetry associated to
∑

i∈Λ Ti will be denoted θs, and acts as (for j ∈ Λ)

θszj = zj cosh s+ xj sinh s, θsxj = xj cosh s+ zj sinh s, θsyj = yj , θsξj = ξj , θsηj = ηj .
(3.5.31)

The second relevant symmetry is the supersymmetry generator Q, which is defined by (3.5.11).
Note that zi can be written as zi =

√
1 + |ũi|2, where ũi ≡ (xi, yi, ξi, ηi) ∈ R2|2. Thus, zi is

supersymmetric, i.e., Qzi = 0. This implies the same localisation Ward identity applies for H2|2 as
for R2|2, i.e., for smooth functions f : RΛ × RΛ×Λ → R with sufficient decay,∫

(H2|2)Λ

f(z, ũũT ) = f(1,0) (3.5.32)

where 0 is the matrix indexed by Λ with all entries 0, and we have written ũũT to denote the set
of forms (ũi · ũj)i,j∈Λ.
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Isomorphism theorems for the H2|2 model. Let Ei,` denote the expectation for a VRJP started from
initial conditions (i, `). We begin with the SUSY analogue of Lemma 3.3.2.

Lemma 3.5.5. Let [·]β be the superexpectation of the H2|2 model, and let Ei,` be the expectation of
the VRJP. Let f : Λ × RΛ → R be a smooth function with rapid decay, and let ρ ∈ Ω2Λ(H2Λ) have
moderate growth. Then:

−
∑
j∈Λ

[ρ(u)xjLf(j,z)]β =
∑
j∈Λ

[(Tjρ)(u)f(j,z)]β. (3.5.33)

In particular, the following integrated version holds for all smooth f : Λ×RΛ → R with rapid decay:∑
j∈Λ

[ρ(u)xjf(j,z)]β =
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt

]
β

. (3.5.34)

Proof. The proof is identical to that of Lemma 3.3.2.

The SUSY analogue of Theorem 3.3.3 is the following.

Theorem 3.5.6. Let [·]β be the superexpectation of the H2|2 model, and let Ei,` be the expectation of
the VRJP. Let g : Λ× RΛ → R be a smooth function with rapid decay, and let a, b ∈ Λ. Then

[xaxbg(z)]β =

∫ ∞
0

Ea,1(g(Lt)1Xt=b) dt. (3.5.35)

Proof. Apply Lemma 3.5.5 with ρ(u) = xa and f(j, `) = g(`)1j=b. Thus Tjρ(u) = 1j=aza. By
applying localisation, i.e., (3.5.32), we obtain

[xaxbg(z)]β =

[
za

∫ ∞
0

Ea,z(g(Lt)1Xt=b) dt

]
β

=

∫ ∞
0

Ea,1(g(Lt)1Xt=b) dt.

Theorem 3.5.7. Let [·]β be the superexpectation of the H2|2 model, and let Ei,` be the expectation of
the VRJP. Let g : RΛ → R be a smooth compactly supported function, let a ∈ Λ, and let s ∈ R. Then

[g(θsz)δu0(ua)]β = Ea,1g(Lτ(cosh s)) (3.5.36)

where τ(γ) = inf{t |Lta ≥ γ} and u0 = (1, 0, 0, 0, 0).

Proof. Applying Lemma 3.5.5 with ρ(u) ≡ ρε(ua), f(j, `) ≡ g(`)ηε(`a)1j=a, and the form ρε ∈
Ω2(H2) and function ηε : R+ → R chosen such that Taρε and ηε are smooth compactly supported
approximations to δu0(ua)−δθsu0(ua) and δcosh s subject to ρε(ua)ηε(za) = 0, an argument identical
to the proof of Theorem 3.3.4 shows

[
δu0,ε(θ−(s−ε)ua)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a) dt

]
β

=

[
δu0,ε(ua)

∫ ∞
0

Ea,z(g(Lt)ηε(L
a
t )1Xt=a) dt

]
β

.

(3.5.37)
As in the proof of Theorem 3.5.4, δu0,ε(ua) is chosen to be supersymmetric. The claim follows by
applying localisation to the right-hand side, boosting the left-hand side by θs−ε, and then taking
ε→ 0 as in the proof of Theorem 3.3.4:[

Ea,zg(Lτ(cosh s))δu0(ua)
]
β

= Ea,1g(Lτ(cosh s)).

Remark 3.5.8. The H2|2 model was introduced in [105]; it serves as a toy model for Efetov’s
supersymmetric approach to studying random band matrices [45]. The connection between
random band matrices and hyperbolic symmetry goes back to Wegner and Schäfer [93,103], and
Efetov made use of supersymmetry to avoid the use of the replica trick. For further discussion
see [40], and for other uses of supersymmetry in the study of random matrices see, e.g., [35,36,
96].
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Remark 3.5.9. Unlike the Hn models, the H2|2 model captures the phenomenology of a localisa-
tion/delocalisation transition [40, 97]. Probabilistically, this is captured by the recurrence/tran-
sience of the VRJP.

SUSY hemispherical model S2|2
+

In this section we introduce the supersymmetric analogue of the S2
+ model, and then obtain the

associated isomorphism theorems.

Integrals over S2|2
+ . In this subsection we work with smooth compactly supported forms in Ω2Λ(S2Λ

+ ),
which we denote Ω2Λ

c (S2Λ
+ ). Concretely, we will identify such forms with compactly supported

forms in Ω2Λ(B2Λ), where B2 is the open unit ball, by setting

z = z(x, y, ξ, η) ≡
√

1− x2 − y2 + 2ξη =
√

1− x2 − y2 +
ξη√

1− x2 − y2
, (3.5.38)

By considering B2 as a subset of R2, a compactly supported form in Ω2Λ(B2Λ) can be trivially
extended to a form in Ω2Λ(R2Λ), and we may therefore apply the results of Appendix 3.A.

Similarly to the notation introduced in Section 3.5, let ui = (zi, xi, yi, ξi, ηi), and let

ui · uj ≡ zizj + xixj + yiyj − ξiηj + ηiξj , i, j ∈ Λ. (3.5.39)

With these definitions, ui · ui = 1, just as for S2
+. We define, for F ∈ Ω2

c(S2
+),∫

S2|2
+

F ≡ 1

2π

∫
dx dy ∂ξ ∂η

1

z
F, (3.5.40)

and similarly, for F ∈ Ω2Λ
c (S2Λ

+ ),∫
(S2|2

+ )Λ

F ≡ 1

(2π)|Λ|

∫
dx dy ∂ξ ∂η

1∏
i∈Λ zi

F, (3.5.41)

where we note there is no ambiguity in the product of the zi as they are even forms.

S2|2
+ model. Define, for h > 0,

Hβ(u) ≡ 1

2
(u,−∆βu), Hβ,h(u) ≡ Hβ(u) + (h,1− z), (3.5.42)

where

(u,−∆βu) ≡ 1

2

∑
i,j∈Λ

βij(ui · ui + uj · uj − ui · uj − uj · ui) =
1

2

∑
i,j∈Λ

βij(2− 2ui · uj),

(h,1− z) ≡
∑
i∈Λ

hi(1− zi)
(3.5.43)

and ui · uj is defined as in (3.5.39). We define the S2|2
+ model superexpectation of F ∈ Ω2Λ

c (S2Λ
+ )

by

[F ]β ≡
∫

(S2|2
+ )Λ

Fe−Hβ , [F ]β,h ≡
∫

(S2|2
+ )Λ

Fe−Hβ,h . (3.5.44)

Symmetries. As in the previous sections, there are two symmetries of relevance to the following
discussion. For details on the Lie superalgebra associated to S2|2

+ , see Appendix 3.B. The first
symmetry of relevance is an infinitesimal rotation in the xz-plane at i ∈ Λ, which has generator

Ti ≡ zi
∂

∂xi
=
√

1− x2
i − y2

i + 2ξiηi
∂

∂xi
, (3.5.45)
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and acts on coordinates as

Tizj = −xj1i=j , Tixj = zj1i=j , Tiyj = 0, Tiξj = 0, Tiηj = 0, i, j ∈ Λ. (3.5.46)

As for the SUSY GFF, this leads to a Ward identity for all sufficiently rapidly decaying forms F :∫
(S2|2

+ )Λ

(TiF ) = 0. (3.5.47)

For s ∈ R the finite rotation associated to
∑

i∈Λ Ti is denoted θs, and acts as, for j ∈ Λ,

θszj = zj cos s− xj sin s, θsxj = xj cos s+ zj sin s, θsyj = yj , θsξj = ξj , θsηj = ηj .
(3.5.48)

The second symmetry of importance is the supersymmetry generator Q defined by (3.5.11).
Note that zi can be written as zi =

√
1− |ũi|2, where ũi ≡ (xi, yi, ξi, ηi) ∈ R2|2. It follows that zi

is supersymmetric, i.e., Qzi = 0. This implies the same localisation Ward identity applies for S2|2
+

as for R2|2, i.e., for f : (0, 1]Λ × [−1, 1]Λ×Λ → R that are smooth and compactly supported,∫
(S2|2

+ )Λ

f(z, ũũT ) = f(1,0), (3.5.49)

where 0 is the matrix indexed by Λ with all entries 0 and ũũT ≡ (ũi · ũj)i,j∈Λ.

Isomorphism theorems for the S2|2
+ model. Let Ei,` denote the expectation for a VDJP started from

initial conditions (i, `) ∈ Λ× (0, 1]Λ.

Lemma 3.5.10. Let [·]β be the superexpectation of the S2|2
+ model, and let Ei,` be the expectation of

the VDJP. Let f : Λ × (0, 1]Λ → R be a smooth compactly supported function and let ρ ∈ Ω2Λ
c (S2Λ

+ ).
Then:

−
∑
j∈Λ

[ρ(u)xjLf(j,z)]β =
∑
j∈Λ

[(Tjρ)(u)f(j,z)]β. (3.5.50)

In particular, the following integrated version holds for smooth and compactly supported f : Λ ×
(0, 1]Λ → R: ∑

j∈Λ

[ρ(u)xjf(j,z)]β =
∑
j∈Λ

[
(Tjρ)(u)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt

]
β

. (3.5.51)

Proof. The proof is identical to that of Lemma 3.4.2.

The SUSY analogue of Theorem 3.4.4 is the following.

Theorem 3.5.11. Let [·]β be the superexpectation of the S2|2
+ model, and let Ei,` be the expectation

of the VDJP. Let g : (0, 1]Λ → R be a smooth compactly supported function, and let a, b ∈ Λ. Then

[xaxbg(z)]β =

∫ ∞
0

Ea,1(g(Lt)1Xt=b) dt. (3.5.52)

Proof. The proof is essentially identical to that of Theorem 3.5.6.

Theorem 3.5.12. Let [·]β be the superexpectation of the S2|2
+ model, and let Ei,` be the expectation

of the VDJP. Let g : (0, 1]Λ → R be a smooth compactly supported function, let a ∈ Λ, and let
s ∈ (−π

2 ,
π
2 ). Then

[g(z)δθsu0(ua)]β = Ea,1(g(Lτ(cos s))1τ(cos s)<ζ) (3.5.53)

where τ(γ) = inf{t |Lat ≤ γ} and θsu0 = (cos s, sin s, 0, 0, 0) ∈ S2|2
+ .

Proof. The proof is, mutatis mutandis, identical to that of Theorem 3.5.7.
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3.6 Application to limiting local times: the Sabot–Tarrès limit
In [89], Sabot and Tarrès established the first connection between the vertex-reinforced jump
process and the SUSY hyperbolic sigma model. Their result relates the asymptotic local time
distribution of a time-changed VRJP to a certain horospherical marginal of the H2|2 model. In this
section we derive their result (as stated in [91, Appendix B]) from the Ray–Knight isomorphism
for the H2|2 model. The essence of the result is the following corollary of Theorem 3.5.7. Recall
that we write (z, x, y, ξ, η) ∈ R3|2.

Corollary 3.6.1. Let [·]β be the superexpectation of the H2|2 model, and let Ei,` be the expectation of
the VRJP. For g : RΛ → R smooth and compactly supported,

lim
γ→∞

Ea,1
(
g(

1

γ
Lτ(γ))

)
= [g(z + x)δu0(ua)]β (3.6.1)

where τ(γ) = inf{t|Lta > γ} and u0 = (1, 0, 0, 0, 0).

Proof. We write γ = cosh s. Then by Theorem 3.5.7 applied to g(Lτ(cosh s)/ cosh s),

Ea,1
(
g(

1

cosh s
Lτ(cosh s))

)
=

[
g(

1

cosh s
θsz)δu0(ua)

]
β

= [g(z + x tanh s)δu0(ua)]β, (3.6.2)

by using (3.5.31) to compute θsz = cosh sz + sinh sx. Since tanh s→ 1 as s→∞, by dominated
convergence we obtain

lim
s→∞

Ea,1
(
g(

1

cosh s
Lτ(cosh s))

)
= [g(z + x)δu0(ua)]β.

We now recover [89, Theorem 2] as stated in [92, Theorem B]. Write log(v) = (log(vi))i∈Λ.
Applying Corollary 3.6.1 to a function g ◦ log yields

lim
γ→∞

Ea,1
(
g(log(Lτ(γ))− log γ)

)
= [g(log(z + x))δu0(ua)]β (3.6.3)

where log γ = (log γ)i∈Λ. To recover [89, Theorem 2] we rewrite the right-hand side of (3.6.3).
To do this, recall, e.g., from [40, Section 2.2], that horospherical coordinates for the H2|2 model
are given by the change of generators from (x, y, ξ, η) to (s, t, ψ, ψ̄), where

x ≡ sinh t− 1

2
(s2 + 2ψψ̄)et, y ≡ set, z ≡ cosh t+

1

2
(s2 + 2ψψ̄)et,

ξ ≡ ψet, η ≡ ψ̄et.
(3.6.4)

Let
H1(t) ≡ 1

2

∑
i,j∈Λ

βij(cosh(ti − tj)− 1). (3.6.5)

The right-hand side of (3.6.3) can be written explicitly in horospherical coordinates as

[g(log(z + x))δ(ua)]β =
1

√
2π
|Λ|−1

∫
R|Λ|−1

g(t)e−H1(t)
√

detD(β, t)
∏
i 6=a

e−ti dti, (3.6.6)

where D(β, t) is the (|Λ| − 1)× (|Λ| − 1) matrix with entries

Dij(β, t) ≡

{
−βijeti+tj , i 6= j∑

k 6=a βike
ti+tk + βaie

ti i = j
(3.6.7)

indexed by i, j ∈ Λ\{a}. This is [89, Theorem 2] as stated in [92, Theorem B]. In obtaining this
formula we have used Theorem 3.A.12 to perform the change of generators and then integrated
out s, ψ and ψ̄, which can be done explicitly as conditioned on the t-variables these are Gaussian
integrals, see [40, Section 2.3].
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Remark 3.6.2. Qualitatively, the appearance of horospherical coordinates can be explained as
follows. The hyperbolic Ray–Knight isomorphism relates the time evolution of the VRJP by cosh s
to the Lorentz boost by s in the xz-plane. Since the asymptotics of Lorentz boosts in the xz-plane
are captured by the t marginal in horospherical coordinates, the formulation of the asymptotic
local time distribution in terms of the t marginal is quite geometrically natural.

The Sabot–Tarrès limit formula [89, Theorem 2] can also be derived from the hyperbolic BFS–
Dynkin isomorphism, see 3.C. More precisely, this can be done by using Corollary 3.7.2 below. In
this derivation the role of horospherical coordinates can be seen even more explicitly.

For another explanation of the relation of horospherical coordinates to the VRJP, see [73].

3.7 Time changes and resolvent formulas
In this section we describe some useful variations and reformulations of our theorems. For the
sake of simplicity we only consider the VRJP, but analogous results also hold for the SRW and the
VDJP.

Time-changed and fixed-time formulas
In the literature on the VRJP time changes have played an important role; see, for example, [89].
For comparision with these references, this section briefly explains how isomorphism theorems
can be translated to these time-changes.

For a Markov process (Xs,Ls) on Λ × RΛ, let V : [mini∈Λ L
i
0,∞) → [mini∈Λ V (Li0),∞) be an

increasing diffeomorphism and define a random function A : [0,∞)→ [0,∞) by

A(s) ≡
∫ s

0
V ′(LXuu ) du =

∑
i∈Λ

V (Lis)− V (Li0). (3.7.1)

We define (X̃t, L̃t), the time-change by V of (Xt,Lt), by

X̃t ≡ XA−1(t), L̃it ≡ V (LiA−1(t)) = V (Li0) +

∫ t

0
1X̃u=i du . (3.7.2)

Note that A(0) = A−1(0) = 0, X̃0 = X0 and L̃i0 = V (Li0).
In this section we will write V (1) ≡ (V (1))i∈Λ. The next corollary is an example of an

isomorphism theorem for a time-changed process.

Corollary 3.7.1. Let [·]β be the superexpectation of the H2|2 model, and let (X̃t, L̃t) be the time-
change by V of the VRJP with expectation Ei,`. Then∫ ∞

0
Ea,V (1)(g(X̃t, L̃t)) dt =

∑
i∈Λ

[xaxiV
′(zi) g(i, V (z))]β. (3.7.3)

Proof. By (3.7.2) and the change of variable s = A−1(t),∫ ∞
0

EX̃0,L̃0
(g(X̃t, L̃t)) dt =

∫ ∞
0

EX0,L0

(
g(XA−1(t), V (LA−1(t)))

)
dt

=

∫ A−1(∞)

A−1(0)
EX0,L0

(
g(Xs, V (Ls))A

′(s)
)
ds

=

∫ ∞
0

EX0,L0

(
g(Xs, V (Ls))V

′(LXss )) ds. (3.7.4)

The claim now follows from Theorem 3.5.6 in the case that g(i, `) is of the form δi,jf(`). The result
for more general functions follows by summing (or by using the second part of Lemma 3.5.5).
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The next corollary shows that supersymmetric isomorphism theorems also give formulas for
the local time distribution at fixed times.

Corollary 3.7.2. Let [·]β be the superexpectation of the H2|2 model, and let (X̃t, L̃t) be the time-
change by V of the VRJP with expectation Ei,`. Let δε : R→ R be a smooth and compactly supported
approximation to δ0. Then for g : RΛ → R smooth and rapidly decaying and any T > 0,

Ea,V (1)g

(
L̃T −

T

N

)
= lim

ε→0

∑
i∈Λ

[
xaxiV

′(zi)g

(
V (z)− T

N

)
δε

(∑
i∈Λ

(
V (zi)− V (1)− T

N

))]
β

.

Proof. The left-hand side can be written as

Ea,V (1)(g(L̃T −
T

N
)) =

∑
i∈Λ

Ea,V (1)(g(L̃T −
T

N
)1XT=i)

= lim
ε→0

∑
i∈Λ

∫ ∞
0

dtEa,V (1)

(
g(L̃t −

T

N
)1Xt=i

)
δε(t− T )

= lim
ε→0

∑
i∈Λ

∫ ∞
0

dtEa,V (1)

(
g(L̃t −

T

N
)1Xt=iδε(

∑
i∈Λ

(L̃it − V (1))− T )
)

= lim
ε→0

∑
i∈Λ

[
xaxiV

′(zi)g

(
V (z)− T

N

)
δε

(∑
i∈Λ

(V (zi)− V (1)− T

N
)

)]
β

.

(3.7.5)

The second equality used that t 7→ Ea,V (1)(g(L̃t − T/N)1Xt=i) is continuous, the third equality
used that

∑
i∈Λ(Lit − V (1)) = t for any t > 0, and the fourth equality is Corollary 3.7.1.

By making use of an appropriate time-change, Corollary 3.7.2 is the starting point for an
alternative derivation of the Sabot–Tarrès limit formula (3.6.6), see Remark 3.6.2. Similar results
have also been used as the starting point for the study of large deviations of the local time of the
SRW [17, Theorem 1].

Resolvent of the joint local time process
The supersymmetric isomorphism theorems for the VRJP in Section 3.5 concern fixed initial local
times for the joint process (Xt,Lt), i.e., L0 = 1. This initial condition arises from supersymmetric
localisation at (z, x, y, ξ, η) = (1, 0, 0, 0, 0) due to the sigma model constraint u · u = −1. A more
general and geometrically instructive formulation can be obtained by considering the joint process
(Xt,Lt) with a general initial condition. This formulation involves the super-Minkowski space
from Section 3.5 as opposed to the space H2|2.

Super-Minkowski model. Recall super-Minkowski space R3|2 from Section 3.5. We define the
Berezin integral for an observable F ∈ Ω2Λ(R3Λ) by∫

(R3|2)Λ

F ≡ 1

(2π)|Λ|

∫
dx dy dz ∂η ∂ξ F, (3.7.6)

where ∂η ∂ξ is defined by ∂η|Λ|∂ξ|Λ| . . . ∂η1∂ξ1 , dx = dx|Λ| . . . dx1, dy = dy|Λ| . . . dy1, and dz =
dz|Λ| . . . dz1 for some fixed ordering of the i ∈ Λ from 1 to |Λ|.

For u ∈ R3|2, we write u · u < 0 if the degree 0 part of the form u · u is negative, where here
u · u denotes the super-Minkowski inner product (3.5.21). For a spin configuration u ∈ (R3|2)Λ

we write u · u < 0 if ui · ui < 0 for all i ∈ Λ and we then define

ri≡
√
−ui · ui, (3.7.7)
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and let r = (ri)i∈Λ. For such a spin configuration we consider the Hamiltonian

Hβ(u) ≡ 1

2
(u,−∆βu) +

1

2
(r,−∆βr), (3.7.8)

where the inner product for the ui is the one from (3.5.21) and the ri are forms that are multiplied
in the ordinary way: (r,−∆βr) =

∑
i∈Λ ri(−∆βr)i. Let F ∈ Ω2Λ(R3Λ) be a smooth form com-

pactly supported on {u · u < 0, z > 0}, i.e., whose coefficient functions vanish when the degree
0 part of any form ui · ui is non-negative or when zi 6 0 for any i. We define an unnormalised
superexpectation by

[F ]β ≡
∫

(R3|2)Λ

F (u)e−Hβ(u)1u·u<01z>0, (3.7.9)

with u·u < 0 as defined above. The assumption that F has compact support ensures the integrand
is smooth. We call this the super-Minkowski model. Note that {u · u < 0, z > 0} is a version of the
causal future for super-Minkowski space; see Figure 3.1.

Symmetries and localisation. Let

T = x
∂

∂z
+ z

∂

∂x
. (3.7.10)

Then T represents an infinitesimal Lorentz boost in the xz-plane since

Tx = z, Tz = x, (3.7.11)

and Ty = Tξ = Tη = 0. Note also that Tr = 0.
The Hamiltonian Hβ is invariant under T , i.e.,

∑
i∈Λ TiHβ(u) = 0. Here we have written Ti for

the version of T applying to the i-th coordinate. Moreover the integral (3.7.6) is invariant under
T . In addition, the model is supersymmetric with supersymmetry generator Q as in (3.5.11), and
the following localisation statement holds for all smooth f : (0,∞)2Λ → R with compact support:

[f(z, r)]β =

∫
(0,∞)Λ

dz f(z, z). (3.7.12)

This can be seen by integrating over z last when computing the superexpectation, and using
localisation for (x, y, η, ξ), i.e., Corollary 3.A.10.

Resolvent formula. The super-Minkowski model is related to the resolvent of the VRJP.

Theorem 3.7.3. Let [·]β be the superexpectation of the super-Minkowski model, and let π = (π(i, r))
be a smooth compactly support probability measure on Λ× (0,∞)Λ. For all smooth f : Λ× RΛ → R
with rapid decay, ∫ ∞

0
Eπf(Xt,Lt) dt =

∑
i,j∈Λ

[
π(i, r)

ri
xixjf(j,z)

]
β

(3.7.13)

where we have written Eπ to denote the expectation of a VRJP with initial condition (X0,L0) dis-
tributed according to π.

Remark 3.7.4. In the notation of Remark 3.2.2, Theorem 3.7.3 can be compactly rewritten as∫ ∞
0

Eπf(Xt,Lt) dt =

[
(x,

π(r)

r
)(x,f(z))

]
β

. (3.7.14)

The proof of Theorem 3.7.3 uses that Lemma 3.5.5 remains true if [·]β is interpreted as the
expectation of the super-Minkowski model, and then follows the standard route as follows.
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Proof. Let ρ(u) ≡
∑

i∈Λ π(i, r)xi/ri, and let Ti be the infinitesimal boost given by (3.5.28). Since
Tiri = 0 and Tixi = zi we have Tjρ = π(j, r)zj/rj . Since Lemma 3.5.5 holds for the super-
Minkowski model, we apply (3.5.34) to obtain∑

i,j∈Λ

[
π(i, r)

ri
xixjf(j,z)

]
β

=
∑
j∈Λ

[
zj
rj
π(j, r)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt

]
β

. (3.7.15)

By localisation, i.e., (3.7.12), the right-hand side equals∫
RΛ

+

dz
∑
j∈Λ

π(j,z)

∫ ∞
0

Ej,z(f(Xt,Lt)) dt =

∫ ∞
0

Eπ(f(Xt,Lt)) dt.

3.8 Application to exponential decay of correlations in spin systems
In this section we prove theorems about the exponential decay of spin-spin correlations. Let d(i, j)
denote the graph distance between vertices i and j in the graph induced by the edge weights β;
this distance is finite since the induced graph is finite and connected by assumption.

We first consider the H2|2 model with constant and non-zero external field.

Theorem 3.8.1. Consider the H2|2 model with supi∈Λ

∑
j∈Λ βij 6 β∗ and hi = h > 0 for all i ∈ Λ.

Let c(β∗, h) ≡ log(1 + h/β∗). Then for all i, j ∈ Λ,

[xixj ]β,h 6
1

h
e−c(β∗,h)d(i,j). (3.8.1)

Proof. Let τj be the hitting time of j, i.e., τj ≡ inf{s > 0 | Xs = j}. Then by choosing g an
exponential in Theorem 3.5.6, and using the killed representation of (3.3.31),

[xixj ]β,h = Ehi,1
∫ ∞

0
1Xs=j ds = Ehi,1

(
(Lj∞ − 1)1τj<∞

)
= Ehi,1

(
(Lj∞ − 1) | 1τj<∞

)
Phi,1(τj <∞)

≤ 1

h
Phi,1(τj <∞)

(3.8.2)

The inequality follows because the expected remaining lifetime of the conditioned walk after
hitting j is h−1 (by memorylessness of the killing), and that Ljτj − 1 = 0.

If τj <∞ then there are at least d(i, j) times at which a rate h exponential clock does not ring
before a rate β∗ clock, as there are at least d(i, j) jumps to previously unvisited vertices on any
path from i to j. The probability of a rate h clock ringing only after some rate βij clock is at most
β∗/(β∗ + h). Each of these events are independent by the memorylessness of the exponential, and
hence

Phi,1(τj <∞) 6

(
β∗

β∗ + h

)d(i,j)

= e−c(β∗,h)d(i,j) (3.8.3)

Combined with (3.8.2) this proves the theorem.

Remark 3.8.2. Theorem 3.8.1 gives a positive rate log(1 + h/β∗) ∼ ch of exponential decay for
some c > 0 for any value of β. For small β, i.e., high temperatures, it is known that the rate stays
uniformly bounded away from 0 as h ↓ 0 [5,39]. The rate is expected to be bounded away from 0
for any β when the graph Λ tends to Z2. On the other hand, for Λ ↑ Zd with d > 3 it is conjectured
that the rate behaves asymptotically as ∼ c

√
h as h ↓ 0.

It would be interesting to obtain an analogue of Theorem 3.8.1 for the Hn model by using
Theorem 3.3.3. This would require an appropriate estimate on the z-field to control the initial
local times of the VRJP. We do not pursue this direction here.
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For the hemispherical spin models, the estimates on the z-field are trivial because |zi| 6 1,
and we thus consider both the Sn+ model and the S2|2

+ model. For S2|2
+ we have only defined the

superexpectation of compactly supported observables. To define the superexpectation of non-
compactly supported observables requires a treatment of superintegrals with boundaries; since
we do not need this general treatment we instead define the two-point function [xixj ]β,h for the

S2|2
+ model by [xixj ]β,h ≡ limn→∞[xixjfn(z)]β,h where fn is a sequence of smooth and bounded

approximations to 1z>0. The proof of the following theorem shows that this limit exists.

Theorem 3.8.3. Consider the Sn+ model with supi∈Λ

∑
j∈Λ βij 6 β∗, and let c(β∗) = log(1− e−β∗).

Then for all i, j ∈ Λ,
〈xixj〉β,h 6 e−c(β∗)d(i,j). (3.8.4)

The same result holds for the superexpectation [xixj ]β,h of the S2|2
+ model.

Proof. We first consider S2|2
+ . Let fn be a sequence of smooth and bounded approximations to

1z>0. Letting Ei,1 be the expectation for a VDJP with initial local time 1, Theorem 3.5.11 implies

[xixj ]β,h = lim
n→∞

[xixjfn(z)]β,h = lim
n→∞

Ei,1
∫ ∞

0
fn(L)1Xt=je

−
∑
v hvL

t
v dt. (3.8.5)

To obtain upper bounds we may assume, without loss of generality, that h = 0. By definition, Xt

dies once the local time at any vertex reaches 0. Since fn is asymptotically bounded above by one,
it therefore suffices to bound the probability that Xt reaches j.

By the definition of the VDJP, for each r ∈ Λ the jump rate out of r is bounded above by β∗.
Thus for each k ∈ N there is probability at least e−β∗ the walk Xt dies after its kth jump and
before its (k + 1)st jump. The probability Xt reaches j is at most the probability that Xt does not
die before taking d(i, j) steps, and hence

[xixj ]β,h 6 (1− e−β∗)d(i,j) = e−c(β∗)d(i,j). (3.8.6)

This completes the proof for S2|2
+ . For Sn+, we use (the normalised form of) Theorem 3.4.4 in

place of Theorem 3.5.11. The argument above applies pointwise in the initial local time, so using
0 6 zi 6 1 we obtain the same conclusion.

Remark 3.8.4. A result closely related to Theorem 3.8.3 is given in [71, Theorem 2].





Appendices

3.A Introduction to supersymmetric integration
This appendix gives a self-contained introduction to the mathematics of supersymmetry that
is relevant for this article. For complementary treatments, see in particular [13, 21, 79]. In
Appendix 3.B we discuss some further aspects of supersymmetry that are relevant to this article,
but that are not needed to understand the main text.

Integration of differential forms
We begin by reviewing the important example of integration of differential forms on Euclidean
space RN . Let x1, . . . , xN be coordinates on RN . A differential form on RN can be written as

F = F0 + · · ·+ FN (3.A.1)

where F0 ∈ C∞(RN ) is a 0-form, i.e., an ordinary function, and Fp is a p-form, i.e., a nonzero sum
of terms of the form

fi1,...,ip(x1, . . . , xN ) dxi1 ∧ · · · ∧ dxip , 1 6 ij 6 N, 1 6 j 6 p, (3.A.2)

where fi1,...,ip ∈ C∞(RN ), the coordinates are viewed as functions xi : RN → R in C∞(RN ), and
the differentials dxi are the generators of a Grassmann algebra. This means that the dxi are formal
variables that are multiplied with the anti-commuting wedge product:

dxi ∧ dxj = −dxj ∧ dxi. (3.A.3)

In particular, dxi ∧ dxi = 0. Later, the ∧ will often be omitted. By extending the wedge product
to differential forms by linearity, we obtain a unital associative algebra over C∞(RN ). This is the
exterior algebra of differential forms on RN , which we denote Ω(RN ).

Example 3.A.1 (Change of variables). The differential notation and the use of the wedge product
is consistent with, and motivated by, the following change of variable formula. Let Φ: RN → RN
be an orientation preserving diffeomorphism. Then by the change of variables formula from
calculus∫

f(x1, . . . , xN ) dx1 ∧ · · · ∧ dxN =

∫
f(Φ1(x), . . . ,ΦN (x))(detDΦ) dx1 ∧ · · · ∧ dxN

=

∫
f(Φ1(x), . . . ,ΦN (x)) dΦ1(x) ∧ · · · ∧ dΦN (x) (3.A.4)

where DΦ is the Jacobian matrix of Φ and the second equality has made use of the definition

dΦi(x) =

N∑
j=1

∂Φi(x)

∂xj
dxj , (3.A.5)

which leads, by a calculation, to the identity

dΦ1(x) ∧ · · · ∧ dΦN (x) = (detDΦ) dx1 ∧ · · · ∧ dxN . (3.A.6)

73
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Odd and even forms
A differential form is even if it is a sum of p-forms with all p even and it is odd if it is a sum of
p-forms with all p odd. We say a form is homogeneous if it is either even or odd. We can decompose
a general form F as

F = Feven + Fodd, Ω(RN ) = Ωeven(RN )⊕ Ωodd(RN ), (3.A.7)

where Feven is the sum of the degree p parts of F with p even, and similarly for Fodd. As the wedge
product of a p-form with a q-form is either 0 or a (p + q)-form, the exterior algebra equipped
with the wedge product is a Z2-graded algebra. Z2-graded algebras are also called superalgebras.
Formally, this means that if we define the parity of a homogeneous form as

α(F ) ≡

{
0 ∈ Z2, F = Feven

1 ∈ Z2, F = Fodd

(3.A.8)

then α(F ∧G) = α(F ) + α(G) mod 2. A calculation shows that for homogeneous F,G

F ∧G = (−1)α(F )α(G)G ∧ F, (3.A.9)

and in particular, even elements commute with all other elements by linearity.

Berezin integral
In this section we introduce Grassmann algebras and the Berezin integral. Integration of differen-
tial forms as introduced in the previous sections constitute a special case.

Grassmann algebras. Let ΩM be a Grassmann algebra with generators ξ1, . . . , ξM ; as the subscripts
suggest we will always assume there is a fixed (but arbitrary) order on the generators. Thus ΩM

is the unital associative algebra generated by the (ξi)
M
i=1 subject to the anticommutation relations

ξiξj + ξjξi = 0, 1 6 i 6 j 6M. (3.A.10)

Let ΩM (RN ) be the algebra over C∞(RN ) generated by the (ξi)
M
i=1. Elements of this algebra can

be written as ∑
I⊂{1,...,M}
I={i1,...,ip}

fI(x) ξi1 · · · ξip (3.A.11)

where fI ∈ C∞(RN ) for each I ⊂ {1, . . . ,M}, and we have arranged the product of generators
according to the given fixed order: i1 < i2 < · · · < ip.

Example 3.A.2. The differentials ξi = dxi are an instance of a Grassmann algebra, and the algebra
of differential forms on RN can be identified with ΩN (RN ).

We continue to use the term form for elements of ΩM (RN ) when N 6= M . The notion of the
degree of a form and the Z2-grading that we defined for differential forms extends to this more
general context.

Integration. For i ∈ {1, 2, . . . ,M} the left-derivative ∂
∂ξi

: ΩM → ΩM is the unique linear map
determined by

∂

∂ξi
(ξiF ) = F if ξiF 6= 0,

∂

∂ξi
1 = 0. (3.A.12)

We sometimes write ∂ξi = ∂
∂ξi

. Note that ∂ξi is an anti-derivation: if F is a homogeneous form,
then

∂ξi(FG) = (∂ξiF )G+ (−1)α(F )F (∂ξiG). (3.A.13)

The left-derivative extends naturally to an anti-derivation on ΩM (RN ) by defining

∂ξi(f(x)ξi1 . . . ξip) = f(x)∂ξi(ξi1 . . . ξip). (3.A.14)
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Example 3.A.3. The left-derivative gives a convenient formulation of the integral of a differential
form. Let F ∈ ΩN (RN ) be a differential form and write ξi = dxi. Then∫

F =

∫
RN

dx1 · · · dxN ∂ξN · · · ∂ξ1 F =

∫
RN

dx ∂ξ F (3.A.15)

where the left-hand side is the integral as a differential form in the sense of Section 3.A, and the
last equality made use of the definition ∂ξ ≡ ∂ξN . . . ∂ξ1 . Note that the order used in defining ∂ξ
matters.

The notation on the right-hand side of (3.A.15) is called the Berezin integral. This is a useful
notion because it is possible to change variables in x and ξ separately, as will be discussed below
in Section 3.A. The Berezin integral generalises to N 6= M as follows.

Definition 3.A.4. For F ∈ ΩM (RN ), the Berezin integral of F is∫
F ≡

∫
RN

dx1 · · · dxN ∂ξM · · · ∂ξ1 F =

∫
RN

dx ∂ξ F, (3.A.16)

where the last equality is by the definitions dx = dx1 . . . dxN and ∂ξ ≡ ∂ξM . . . ∂ξ1 . We say a
form F is integrable if it can be written as a finite sum of forms of the type f(x) ξi1 . . . ξip with f
integrable on RN .

The expression dx ∂ξ on the right-hand side of (3.A.16) is an example of a superintegration
form. More generally a superintegration form is given by dx ∂ξ F for F an even integrable form,
and integration with respect to this superintegration form is defined by

∫
G =

∫
RN dx ∂ξ FG.

Functions of forms. Suppose g ∈ C∞(Rk). We will use α = (α1, . . . , αk) to denote multiindices,
and we will also use the notation

g(α)(x) ≡ ∂

∂xα1
1

. . .
∂

∂xαkk
g(x), xα ≡ xα1

1 · · ·x
αk
k .

Definition 3.A.5. Let g ∈ C∞(Rk) and F 1, . . . F k ∈ ΩM (RN ) be even forms. Then g(F 1, . . . , F k) ∈
ΩM (RN ) is defined by the following formula, where the sum runs over all multiindices α:

g(F 1, . . . , F k) ≡
∑
α

1

α!
g(α)(F 1

0 , . . . , F
k
0 )(F − F0)α. (3.A.17)

Note that the product defining (F − F0)α is the wedge product, i.e., this is shorthand for
(F 1 − F 1

0 )α1 ∧ · · · ∧ (F k − F k0 )αk , and (F 1 − F 1
0 )α1 is the α1-fold wedge product of this form with

itself. There is no ambiguity in the ordering since all forms are assumed even. The formal Taylor
expansion in (3.A.17) is finite because forms of degree greater than N do not exist. As a simple
example of a function of a form, the reader may wish to verify that

e−x
2
1−ξ1ξ2 = e−x

2
1(1− ξ1ξ2). (3.A.18)

Gaussian integrals and localisation
Let A ∈ RN×N be positive definite. The O(2)-invariant Gaussian measure on R2N associated to
the matrix A has density

e−
1
2

(x,Ax)− 1
2

(y,Ay)(detA)
N∏
i=1

dxi dyi
2π

. (3.A.19)

Let ξ1, . . . , ξN , η1, . . . , ηN be generators of the Grassmann algebra Ω2N , and define

∂η∂ξ ≡ ∂ηN∂ξN · · · ∂η1∂ξ1 (ξ, Aη) ≡
N∑
i=1

Aijξiηj . (3.A.20)
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A computation shows that

∂η∂ξe
(ξ,Aη) = ∂η∂ξ

1

N !
(

N∑
i=1

Aijξiηj)
N = detA. (3.A.21)

Remark 3.A.6. The form e(ξ,Aη) = e
1
2

(ξ,Aη)− 1
2

(η,Aξ) ∈ Ω2N is called a Grassmann Gaussian. The
corresponding Grassmann Gaussian expectation 〈F 〉 ≡ [F ]/[1] where [F ] ≡ ∂η∂ξ(e

(ξ,Aη)F ) ∈ R
for F ∈ Ω2N , and hence [1] = detA by (3.A.21), behaves in many ways like a Gaussian integral.

Using (3.A.21), the Gaussian density (3.A.19) can be written as

N∏
i=1

dxi dyi ∂ηi∂ξi
2π

e−
1
2

(x,Ax)− 1
2

(y,Ay)+ 1
2

(ξ,Aη)− 1
2

(η,Aξ). (3.A.22)

The form given by (2π)−N times the exponential in (3.A.22) is called the super-Gaussian form.
Thus the Gaussian density is the coefficient of the top degree part of the super-Gaussian form.

To lighten the notation, we will now write ui ≡ (xi, yi, ξi, ηi) and call ui a supervector. For
supervectors ui and uj define a form

ui · uj ≡ xixj + yiyj − ξiηj + ηiξj . (3.A.23)

We unite the supervectors ui into u ≡ (ui)
N
i=1 and introduce the following shorthand notation for

the form that occurs in the exponent of (3.A.22):

(u, Au) ≡
N∑

i,j=1

Aijui · uj . (3.A.24)

For a form F we define the superintegral of F by∫
(R2|2)N

F ≡ 1

(2π)N

∫
R2N

dx dy ∂η ∂ξ F, (3.A.25)

where dx ≡ dxN . . . dx1 and similarly for dy. Then, since the coefficient of the top degree part of
(3.A.22) is the density of a Gaussian,∫

(R2|2)N
e−

1
2

(u,Au) = 1. (3.A.26)

The fact that this superintegral is one is a simple example of localisation for superintegrals of
supersymmetric forms. The rest of this section describes this phenomenon.

The supersymmetry generator Q : Ω2N (R2N )→ Ω2N (R2N ) is defined as

Q ≡
N∑
i=1

Qi , Qi ≡ ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
. (3.A.27)

Thus Q formally exchanges the even and odd generators of Ω2N (R2N ):

Qxi = ξi, Qyi = ηi, Qξi = −yi, Qηi = xi. (3.A.28)

A form F ∈ Ω2N (R2N ) is defined to be supersymmetric if QF = 0. Note that Q is an anti-derivation,
and hence Q(F1F2) = 0 if F1 and F2 are both supersymmetric forms.

Example 3.A.7. The following forms are supersymmetric:

ui · uj = xixj + yiyj − ξiηj + ηiξj . (3.A.29)
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Much of the magic of supersymmetry is due to the fundamental localisation theorem:

Theorem 3.A.8. Suppose F ∈ Ω2N (R2N ) is supersymmetric and integrable. Then∫
(R2|2)N

F = F0(0) (3.A.30)

where the right-hand side is the degree-0 part of F evaluated at 0.

To keep this introduction to supersymmetry self-contained, we provide the beautiful and
instructive proof of this theorem in Appendix 3.B. To prove an important corollary of the theorem
we need the following chain rule, proven in [79, p.59] or [7, Solution to Exercise 11.4.3].

Lemma 3.A.9. The supersymmetry generator Q obeys the chain rule for even forms, in the sense that
if K = (Kj)

J
j=1 is a finite collection of even forms, and if f : RJ → C is C∞, then

Q(f(K)) =
J∑
j=1

fj(K)QKj , (3.A.31)

where fj denotes the partial derivative of f with respect to the jth coordinate.

Let uuT denote the collection (ui · uj)Ni,j=1 of forms defined in (3.A.29).

Corollary 3.A.10. For any smooth function f : RN×N → R with sufficient decay,∫
(R2|2)N

f(uuT ) = f(0). (3.A.32)

Proof. Let F = f(uuT ). Then F0(0) = f(0) and QF =
∑

ij fij(uu
T )Q(ui · uj) = 0 by the

chain rule of Lemma 3.A.9, where fij denotes the partial derivative of f with respect to the ij-th
coordinate. The claim follows from Theorem 3.A.8.

Change of generators
Recall the general expression (3.A.11) for a form F ∈ ΩM (RN ). We will sometimes write F (x, ξ)
or F (x1, . . . , xN , ξ1, . . . , ξM ) to denote a form written in this way.

Definition 3.A.11. A collection of even elements (xi)
N
i=1 and odd elements (ξj)

M
j=1 is a set of

generators for ΩM (RN ) if every F ∈ ΩM (RN ) can be written in the form (3.A.11).

Note that Example 3.A.1 provided an example of a change of generators

yi = Φi(x1, . . . , xN ), ηi = dyi =
N∑
j=1

∂Φi

∂xj
(x1, . . . , xN ) dxj (3.A.33)

along with a corresponding change of variables formula.
It is both possible and useful to change between sets of generators in the sense of Defi-

nition 3.A.11 without the even and odd generators changing together. Moreover, there is an
extension of the usual change of variables formula that applies in this setting. This formula relies
on the notion of superdeterminant (or Berezinian) of a supermatrix M :

sdetM ≡ det(A−BD−1C) detD−1 for M =

(
A B
C D

)
, (3.A.34)

where the entries of M are elements of a Grassmann algebra, the entries of the blocks A and
D are even, the entries of the blocks B and C are odd, and D is invertible. Invertibility means
invertibility in the (commutative) algebra of even elements of the Grassmann algebra. The next
result is [13, Theorem 2.1]. In the theorem rapid decay means each of the coefficient functions of
F have rapid decay.
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Theorem 3.A.12. Suppose yi = yi(x, ξ) and ηi = ηi(x, ξ) are a set of generators. Then for any F
with sufficiently rapid decay,∫

dy ∂η F (y,η) sdet(M) =

∫
dx ∂ξ F (x, ξ), (3.A.35)

where M is of the form in (3.A.34) with entries Aij = ∂yi
∂xj

, Bij = ∂yi
∂ξj

, Cij = ∂ηi
∂xj

, Dij = ∂ηi
∂ξj

.

Implicit in Theorem 3.A.12 is that a change of generators always results in an invertible D, so
the superdeterminant is well-defined.

Example 3.A.13. Let x, ξ1, ξ2 be generators for Ω2(R). Then the set of forms {x+ g(x)ξ1ξ2, ξ1, ξ2}
is also a set of generators, and∫

dx ∂ξ1∂ξ2 F (x, ξ1, ξ2) =

∫
dx ∂ξ1∂ξ2 F (x+ g(x)ξ1ξ2, ξ1, ξ2)(1 + g′(x)ξ1ξ2). (3.A.36)

It is instructive to verify the claims of the previous example by hand, and we briefly do so. To
see the claim that these forms are a set of generators, recall that by definition

F (x+ g(x)ξ1ξ2, ξ1, ξ2) = F (x, ξ1, ξ2) + F ′(x, ξ1, ξ2)g(x)ξ1ξ2. (3.A.37)

Letting y ≡ g(x)ξ1ξ2, a general form of {x+ g(x)ξ1ξ2, ξ1, ξ2} is thus, for some functions a, b, c, d,

a(x+ y) + b(x+ y)ξ1 + c(x+ y)ξ2 + d(x+ y)ξ1ξ2 = a(x) + b(x)ξ1 + c(x)ξ2 + (d(x) +a′(x)g(x))ξ1ξ2,

which clearly shows a general form in {x, ξ1, ξ2} can be expressed as a form in {x+g(x)ξ1ξ2, ξ1, ξ2}.
To verify (3.A.36) integrate (3.A.37). Integrating the term containing F ′ by parts yields∫

dx ∂ξ1∂ξ2 F (x+ g(x)ξ1ξ2, ξ1, ξ2) =

∫
dx ∂ξ1∂ξ2 F (x, ξ1, ξ2)(1− g′(x)ξ1ξ2). (3.A.38)

Since F (x+g(x)ξ1ξ2, ξ1, ξ2)g′(x)ξ1ξ2 = F (x, ξ1, ξ2)g′(x)ξ1ξ2, (3.A.36) follows. This can alternately
be verified by computing the superdeterminant of

M =

1 + g′(x)ξ1ξ2 ξ2 −ξ1

0 1 0
0 0 1

. (3.A.39)

3.B Further aspects of symmetries and supersymmetry
This appendix discusses some additional aspects of supersymmetry. First, we briefly introduce
complex coordinates, which have often been used in the literature (see, e.g., [21]). Second,
we prove Theorem 3.A.8. The remaining sections discuss symmetries and Ward identities, and
in particular, highlight how Theorem 3.A.8 is an example of a Ward identity arising from an
infinitesimal supersymmetry.

Complex coordinates

In Appendix 3.A we introduced Grassmann algebras over R and forms given by smooth functions
with values in R. Sometimes it is convenient to work with Grassmann algebras over C and
complex-valued functions, and many discussions of supersymmetry do so, see [21] and references
therein. To facilitate comparisons with the literature we briefly introduce complex coordinates
and relate them to the presentation of Appendix 3.A.
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To introduce complex coordinates we set

z =
1√
2

(x+ iy), z̄ =
1√
2

(x− iy), ζ =
1√
2i

(ξ + iη), ζ̄ =
1√
2i

(ξ − iη). (3.B.1)

Correspondingly, define

∂

∂zi
=

1√
2

(
∂

∂xi
− i ∂

∂yi

)
,

∂

∂z̄i
=

1√
2

(
∂

∂xi
+ i

∂

∂yi

)
, (3.B.2)

and define ∂ζi and ∂ζ̄i to be the antiderivations on Ω2N such that

∂

∂ζi
ζj =

∂

∂ζ̄i
ζ̄j = δij ,

∂

∂ζi
ζ̄j =

∂

∂ζ̄i
ζj = 0. (3.B.3)

Up to an irrelevant factor of
√
i ( a constant factor plays no role in determining if a form is

supersymmetric), the supersymmetry generator can be written in complex coordinates as

Q =

N∑
i=1

Qi, Qi = ζi
∂

∂zi
+ ζ̄i

∂

∂z̄i
− zi

∂

∂ζi
+ z̄i

∂

∂ζ̄i
. (3.B.4)

Hence it acts on the complex generators by

Qzi = ζi, Qz̄i = ζ̄i, Qζi = −zi, Qζ̄i = z̄i. (3.B.5)

Writing ui = (zi, ζi) for i = 1, . . . , N , the following forms are supersymmetric:

ui · ūj ≡ ziz̄j + ζiζ̄j . (3.B.6)

Realisation by differential forms. Complex coordinates can be realised in terms of differential forms
as follows. Denote the coordinates of R2 by x and y with differentials dx and dy, and set

z =
1√
2

(x+ iy), z̄ =
1√
2

(x− iy), dz =
1√
2i

(dx+ idy), dz̄ =
1√
2i

(dx− idy). (3.B.7)

Proof of Theorem 3.A.8
The proof of Theorem 3.A.8 will use the complex coordinates introduced in Appendix 3.B, and will
also make use of the following terminology and facts. A form is called Q-closed (supersymmetric)
if QF = 0 and it is called Q-exact if F = QG for some form G ∈ Ω2N (R2N ). The Q-closed forms
ui · uj from Example 3.A.7 are also Q-exact, as can be verified by checking

ziz̄j + zj z̄i + ζiζ̄j − ζ̄iζj = Qλij , λij ≡ ziζ̄j + zj ζ̄i. (3.B.8)

Proof of Theorem 3.A.8. Any integrable form F can be written as K =
∑

α F
αζα with (i) ζα a

monomial in {ζi, ζ̄i}Ni=1 and (ii) Fα an integrable function of {zi, z̄i}Ni=1. To emphasise this, we
write K = K(z, z̄, ζ, ζ̄). To simplify notation we write

∫
in place of

∫
(R2|2)N .

Step 1. Let S =
∑N

i=1(ziz̄i + ζiζ̄i). We prove the following version of Laplace’s Principle:

lim
t→∞

∫
e−tSF = F0(0). (3.B.9)

Let t > 0. We make the change of generators zi = 1√
t
z′i and ζi = 1√

t
ζ ′i. This transformation has

unit Berezinian. Let ω ≡ −
∑N

i=1 ζiζ̄i. After dropping the primes, we obtain∫
e−tSF =

∫
e−

∑N
i=1 ziz̄i+ωF ( 1√

t
z, 1√

t
z̄, 1√

t
ζ, 1√

t
ζ̄), (3.B.10)
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where 1√
t
z ≡ { 1√

t
zi}Ni=1, and similarly for the other generators. To evaluate the right-hand side,

we expand eω and and obtain∫
e−tSF =

N∑
n=0

∫
e−

∑N
i=1 ziz̄i

1

n!
ωnF ( 1√

t
z, 1√

t
z̄, 1√

t
ζ, 1√

t
ζ̄). (3.B.11)

We write K = K0 +G, where K0 is the degree zero part of K. The contribution of K0 to (3.B.11)
involves only the n = N term and equals∫

e−tSF 0 =

∫
e−

∑N
i=1 ziz̄i

1

N !
ωNF 0( 1√

t
z, 1√

t
z̄), (3.B.12)

so by the continuity of F0,

lim
t→∞

∫
e−tSF0 = F0(0)

∫
e−

∑N
i=1 ziz̄i

1

N !
ωN = F0(0)

∫
e−S . (3.B.13)

By (3.A.26) with A the identity matrix, this proves that

lim
t→∞

∫
e−tSF0 = F0(0). (3.B.14)

To complete the proof of (3.B.9), it remains to show that limt→∞
∫
e−tSG = 0. As above,

∫
e−tSG =

N∑
n=0

∫
e−

∑N
i=1 ziz̄i

1

n!
ωnG

(
1√
t
z, 1√

t
z̄, 1√

t
ζ, 1√

t
ζ̄
)
. (3.B.15)

Since G has no degree-zero part, the term with n = N is zero. Terms with smaller values of n
require factors ζiζ̄i for some i from G, and these factors carry inverse powers of t. They therefore
vanish in the limit, and the proof of (3.B.9) is complete.

Step 2. The Laplace approximation is exact:∫
e−tSF is independent of t ≥ 0. (3.B.16)

To prove this, recall that S = Qλ. Also, Qe−S = 0 by the chain rule of Lemma 3.A.9, and QF = 0
by assumption. Therefore,

d

dt

∫
e−tSF = −

∫
e−tSSF = −

∫
e−tS(Qλ)F = −

∫
Q
(
e−tSλF

)
= 0, (3.B.17)

since the integral of any Q-exact form is zero, because it can be written as a sum of derivatives
(whose integral vanishes due to the assumption of rapid decay) and a form of degree lower than
the top degree (whose integral vanishes by definition).

Step 3. Finally, we combine Laplace’s Principle (3.B.9) and the exactness of the Laplace approxi-
mation (3.B.16), to obtain the desired result∫

F = lim
t→∞

∫
e−tSF = F0(0).

Symmetries
This appendix briefly reviews symmetries in the context of smooth manifolds, to prepare the way
for a discussion of symmetries of superalgebras.
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Infinitesimal symmetries. For a smooth manifold M , infinitesimal symmetries are described by the
infinite-dimensional Lie algebra of smooth vector fields, Vect(M). Vector fields act on functions
through the Lie derivative, which associates to every vector field X ∈ Vect(M) a derivation
TX : C∞(M) → C∞(M). We recall that a derivation is a linear map that obeys the Leibniz rule
TX(fg) = TX(f)g + fTX(g). Concretely, if M is n-dimensional and X is represented in local
coordinates as X =

∑n
α=1 g(u1, . . . , un) ∂

∂uα , then TX(f) =
∑n

α=1 g(u1, . . . , un) ∂f
∂uα .

In fact, every derivation on C∞(M) arises from a vector field, and hence there is an isomor-
phism Vect(M) ' Der(C∞(M)). Thus we can replace geometric objects (vector fields) with
algebraic objects (derivations). The perspective will be useful for superspaces, as their definition
is fundamentally algebraic rather than geometric.

Integral symmetries. Rather than examining the entire Lie algebra Der(C∞(M)), it is often useful
to consider subalgebras that respect additional structures on the manifold. We will be interested
in the following case where M carries a measure µ. Let

∫
M f denote the integral of a function

f : M → R with respect to the measure µ. We call
∫
M an integral on M .

Definition 3.B.1. Let
∫
M be an integral on a smooth manifold M . A derivation T ∈ Der(C∞(M))

is an infinitesimal symmetry of the integral if for all f ∈ C∞(M) with rapid decay∫
M
Tf = 0. (3.B.18)

Infinitesimal symmetries lead to integration by parts formulas, otherwise known as Ward
identities: suppose T is a symmetry of

∫
M , and that f, g ∈ C∞(M) have rapid decay. Then∫

M
T (fg) = 0, (3.B.19)

since fg has rapid decay. Since T acts as a derivation, we obtain the Ward identity∫
M

(Tf)g = −
∫
M
f(Tg). (3.B.20)

For spin systems, different infinitesimal symmetries are obtained depending on whether we
examine the Gibbs measure e−Hβ du or the underlying measure du. Ward identities for one lead
to (anomalous) Ward identities for the other. For instance, letting [f ]β =

∫
MΛ fe

−Hβ du denote
an unnormalised expectation, and letting T be an infinitesimal symmetry of du,∫

MΛ

T (fe−Hβ ) = 0, i.e.,
∫
MΛ

(Tf − f(THβ))e−Hβ = 0 (3.B.21)

and hence
[Tf ]β = [f(THβ)]β. (3.B.22)

Global symmetries. For spin system Gibbs measures [F ]β =
∫
MΛ F e

−Hβdu, an important role is
played by derivations T ∈ Der(C∞(MΛ)) which can be written in the form

T ≡
∑
i∈Λ

Ti, (3.B.23)

where each Ti is a copy of a single site derivation

Ti =
n∑

α=1

fα(ui)
∂

∂uαi
(3.B.24)

with fα independent of i ∈ Λ. We call these diagonal derivations. If a diagonal derivation is
an infinitesimal symmetry of the Gibbs measure, then we say that it is a global symmetry. The
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spin system Hamiltonians in this paper are of the form Hβ(u) = 1
4

∑
i,j∈Λ βij(ui − uj)

2 with
(ui − uj)

2 ≡ (ui − uj) · (ui − uj) for some inner product. Hence the global symmetries are
equivalently those diagonal derivations which satisfy

T (ui − uj)2 = 0 (3.B.25)

for all i, j ∈ Λ. These correspond to the infinitesimal isometries of the target space, and form a
representation of a finite dimensional Lie algebra.

For the GFF on Rn, the global symmetries are of the form

T ≡
∑
i∈Λ

Ti, Ti =
n∑

α,β=1

Rαβu
α
i

∂

∂uβi
+

n∑
γ=1

Sγ
∂

∂uγi
, (3.B.26)

whereR is an n×n real skew-symmetric matrix and S is a real vector in Rn. The global symmetries
of Rn hence form a representation of the Euclidean Lie algebra so(n) nRn under the Lie bracket
of derivations. Global symmetries of Minkowski space Rn,1 are of the same form as (3.B.26), but
R is now skew-symmetric with respect to the Minkowski inner product, i.e.,

RTJ + JR = 0, J = diag(−1, 1, . . . , 1). (3.B.27)

This gives a representation of the Poincare Lie algbera so(n, 1) nRn,1.
Global symmetries of the Hn and Sn+ spin models are induced from Lorentz/orthogonal sym-

metries of Rn,1 and Rn+1 respectively, i.e., global symmetries have the form

T ≡
∑
i∈Λ

Ti, Ti =
∑
α,β

Rαβu
α
i

∂

∂uβi
. (3.B.28)

For the Hn model these form a representation of the Lorentzian Lie algebra so(n, 1), and for the
Sn+ model these form a representation of the orthogonal Lie algebra so(n + 1). In coordinates,
these symmetries can be written as

T ≡
∑
i∈Λ

Ti, Ti =

n∑
α,β=1

Rαβu
α
i

∂

∂uβi
+

n∑
γ=1

Sγzi
∂

∂uγi
(3.B.29)

where Sγ = R0γ and z =
√

1 + (u1)2 + · · ·+ (un)2 for Hn, while Sγ = R(n+1)γ and z =√
1− (u1)2 − · · · − (un)2 for Sn+ .

Symmetries of supersymmetric spaces
Infinitesimal symmetries of Berezin integrals and the global symmetries of supersymmetric spaces
have descriptions similar to those of the previous section. The primary difference is that all objects
are graded.

Superderivations and supersymmetries. Let A be a Z2-graded algebra (or superalgebra) such as
A = Ωn(Rm). Thus A = A0 ⊕ A1 where elements in A0 are even and elements in A1 are odd.
Using this decomposition, a linear map T : A→ A can be written in blocks as

Tf =

[
T00 T01

T10 T11

][
f0

f1

]
. (3.B.30)

A linear map is even if T01 = T10 = 0, and odd if T00 = T11 = 0. As for functions, a homogeneous
linear map is one that is even or odd. We extend the parity function to homogeneous maps by

α(T ) =

{
0 ∈ Z2, T is even
1 ∈ Z2, T is odd

, (3.B.31)
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and for homogeneous f we have α(Tf) = α(T ) + α(f). A homogeneous superderivation is then
defined as a homogeneous linear map T : A→ A that obeys the super-Leibniz rule

T (fg) = (Tf)g + (−1)α(T )α(f)f(Tg). (3.B.32)

Thus even and odd superderivations are derivations and antiderivations, respectively. A gen-
eral superderivation is a sum of an even and an odd superderivation. The collection of superderiva-
tions on A forms a Lie superalgebra SDer(A) with the supercommutator defined on homogeneous
superderivations by

[T1, T2] = T1 ◦ T2 − (−1)α(T1)α(T2)T2 ◦ T1, (3.B.33)

and extended to all superderivations by linearity. If A = Ωn(M) is a superalgebra of forms
on an m-dimensional manifold M , then every superderivation T ∈ SDer(A) can be realised in
coordinates (x1, . . . , xm, ξ1, . . . , ξn) as

T =
m∑
α=1

Fα
∂

∂xα
+

n∑
α=1

Gα
∂

∂ξα
(3.B.34)

where Fα, Gα ∈ A. If T is an even/odd superderivation then Fα are even/odd forms and Gα are
odd/even forms.

Berezin integral symmetries and global symmetries. We define a Berezin integral
∫
M on a superal-

gebra Ωn(M) to be a linear map defined by integrating forms F against an even Berezin integral
form dx ∂ξ ρ(x, ξ), i.e., ∫

M
F ≡

∫
Rm|n

dx ∂ξ ρ(x, ξ)F (x, ξ). (3.B.35)

Definition 3.B.2. Let
∫
M be a Berezin integral on a superalgebra Ωn(M). A superderivation

T ∈ SDer(Ωn(M)) is an infinitesimal symmetry of
∫
M if for all F ∈ Ωn(M) with rapid decay∫

M
TF = 0. (3.B.36)

This leads to Ward identities in the same manner as the non-supersymmetric case, the only dif-
ference coming from the super-Leibniz rule: for homogeneous superderivations T ∈ SDer(Ωn(M))
and forms F,G ∈ Ωn(M) we have∫

M
TF = (−1)α(T )α(F )+1

∫
M
TG. (3.B.37)

Global symmetries of supersymmetric spin systems are infinitesimal symmetries of the form

T ≡
∑
i∈Λ

Ti, (3.B.38)

i.e., they are diagonal infinitesimal symmetries. For the spin systems considered in this paper,
which are defined in terms of quadratic Hamiltonians 1

4

∑
i,j∈Λ βij(ui − uj)2, global symmetries

are those that annihilate the appropriate super-Euclidean or super-Minkowski inner product

T (ui − uj)2 = 0 (3.B.39)

for all i, j ∈ Λ. Here we have written (ui − uj)2 for the form (ui − uj) · (ui − uj). The following
subsections briefly discuss this condition for the R2|2,H2|2, and S2|2

+ models.
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R2|2 model. The inner product associated to the SUSY GFF is

ui · uj = xixj + yiyj − ξiηj + ηiξj , (3.B.40)

giving the global symmetries as diagonal superderivations T ∈ SDer(Ω2Λ(R2Λ)) satisfying

T (ui − uj)2 = T
(
(xi − xj)2 + (yi − yj)2 − 2(ξi − ξj)(ηi − ηj)

)
= 0 (3.B.41)

for all i, j ∈ Λ.
Concretely, letting ui = (u1

i , . . . , u
4
i ) = (xi, yi, ξi, ηi), these are derivations of the form

T ≡
∑
i∈Λ

Ti, Ti =
4∑

α,β=1

Rαβu
α
i

∂

∂uβi
+

4∑
γ=1

Sγ
∂

∂uγi
(3.B.42)

where R is a real 4× 4 matrix (independent of i ∈ Λ) such that

RSTJ + JR = 0, (3.B.43)

where RST , the supertranspose of R, and J are given by

RST ≡
[
A B
C D

]ST
=

[
AT CT

−BT DT

]
, J ≡


1 0 0 0
0 1 0 0

0 0 0 −1
0 0 1 0

, (3.B.44)

and S is a real vector. With the supercommutator of superderivations, these form a representa-
tion of the super-Euclidean Lie superalgebra osp(2|2) n R2|2 . In particular, the supersymmetry
generator

Q ≡
∑
i∈Λ

Qi =
∑
i∈Λ

ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
(3.B.45)

and the infinitesimal global translation

T ≡
∑
i∈Λ

Ti =
∑
i∈Λ

∂

∂xi
(3.B.46)

are global symmetries.
A short computation shows that the individual Ti and Qi are symmetries of the flat Berezin–

Lebesgue measure dx dy ∂ξ ∂η. For instance, if F is a compactly supported form with top degree
component F2Λ(x,y)ξη,∫

(R2|2)Λ

(TiF ) =

∫
R2Λ

dx dy ∂ξ ∂η(TiF ) =

∫
R2Λ

dx dy
∂

∂xi
F2Λ(x,y) = 0 (3.B.47)

where in the last step we have used the translation invariance of the usual Lebesgue measure. A
particular case of this is formula (3.5.9).

Super-Minkowski space R3|2. The inner product associated to the super-Minkowski model is the
super-Minkowski inner product

ui · uj = −zizj + xixj + yiyj − ξiηj + ηiξj , (3.B.48)

giving the global symmetries as diagonal superderivations T ∈ SDer(Ω2Λ(R3Λ)) satisfying

T (ui − uj)2 = T
(
−(zi − zj)2 + (xi − xj)2 + (yi − yj)2 − 2(ξi − ξj)(ηi − ηj)

)
= 0 (3.B.49)
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for all i, j ∈ Λ. Concretely, letting ui = (u0
i , u

1
i , u

2
i , u

3
i , u

4
i ) = (zi, xi, yi, ξi, ηi), these are derivations

of the form

T ≡
∑
i∈Λ

Ti, Ti =
4∑

α,β=0

Rαβu
α
i

∂

∂uβi
+

5∑
γ=1

Sγ
∂

∂uγi
(3.B.50)

where R is a real 5× 5 matrix such that

RSTJ + JR = 0 (3.B.51)

with J now the 5× 5 matrix

J =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 0 −1
0 0 0 1 0

, (3.B.52)

and S a real vector. These global symmetries form a representation of the super-Poincare Lie
superalgebra osp(2, 1|2) nR3|2 with the supercommutator of superderivations. In particular, the
supersymmetry generator

Q ≡
∑
i∈Λ

Qi =
∑
i∈Λ

(
ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi

)
(3.B.53)

and the global Lorentz boost

T ≡
∑
i∈Λ

Ti =
∑
i∈Λ

(
zi

∂

∂xi
+ xi

∂

∂zi

)
. (3.B.54)

are global symmetries of the super-Minkowski spin model. As for the R2|2 model, the individual
Ti and Qi are symmetries of the Berezin–Lebesgue measure dx dy dz ∂ξ ∂η.

S2|2
+ and H2|2 models. As for their standard counterparts, the global symmetries of the S2|2

+ and
H2|2 models are induced from the ambient super-Euclidean and super-Minkowski spaces. In both
cases, the global symmetries in ambient coordinates are

T ≡
∑
i∈Λ

Ti, Ti =

4∑
α,β=0

Rαβu
α
i

∂

∂uβi
, (3.B.55)

which form a representation of osp(2, 1|2) for the H2|2 model, and a representation of osp(3|2) for
S2|2

+ . In coordinates, the Ti are written

Ti =

4∑
α,β=1

Rαβu
α
i

∂

∂uβi
+

4∑
γ=1

Sγzi
∂

∂uγi
(3.B.56)

with zi =
√

1 + x2
i + y2

i − 2ξη for H2|2 and zi =
√

1− x2
i − y2

i + 2ξη for S2|2
+ and Sγ = R3γ in both

cases. As before, the supersymmetry generator

Q ≡
∑
i∈Λ

Qi =
∑
i∈Λ

ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
(3.B.57)

is a global symmetry of both the H2|2 and S2|2
+ models, as is the global Lorentz boost/rotation

T ≡
∑
i∈Λ

Ti =
∑
i∈Λ

zi
∂

∂xi
. (3.B.58)

A short computation also shows that the individual Ti and Qi are symmetries of the Berezin–Haar
measure dx dy ∂ξ ∂η 1∏

i∈Λ zi
.
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SUSY delta functions
We begin by defining Dirac delta functions to integrate against forms F in Ω2(R2). We will assume
F is given by a smooth function of an even form. Let u0 = (0, 0, 0, 0) ∈ R2|2, and let G ∈ Ω2(R2)
be a smooth compactly supported form with

∫
R2|2 G = 1. For ε > 0 define smooth forms

δ(ε)
u0

(u) ≡ G(
1

ε
u),

1

ε
u = (

x

ε
,
y

ε
,
ξ

ε
,
η

ε
). (3.B.59)

We then define ∫
R2|2

F (u)δu0 ≡ lim
ε→0

∫
R2|2

F (u)δ(ε)
u0

(u). (3.B.60)

The change of generators that rescales each generator by ε−1 has unit Berezinian, and hence∫
R2|2

F (u)δu0 = lim
ε→0

∫
R2|2

F (εu)δ(1)
u0

(u) = F0(0)

∫
R2|2

δ(1)
u0

(u) = F0(0), (3.B.61)

where we recall F0 is the degree zero part of F . In the second equality we have used that the
degree p parts of F for p > 1 carry factors of ε, and hence vanish in the limit. The last equality
follows since

∫
R2|2 δ

(1)
u0 =

∫
R2|2 G = 1.

Suppose θs : (x, y, ξ, η) 7→ (θsx, θsy, θsξ, θsη) is invertible with inverse θ−s, and that θsu0 only
has non-zero even components. In this setting we define δθsu0(u) by δu0(θ−su). If the transforma-
tion θs has unit Berezinian, then we obtain∫

R2|2
F (u)δθsu0(u) =

∫
R2|2

F (u)δu0(θ−su) =

∫
R2|2

F (θsu)δu0(u) = F0(θsu0). (3.B.62)

It is often convenient to choose G as a supersymmetric form. For R2|2, this can be achieved
by choosing any smooth compactly supported function g : R → R with g(0) = 1, and setting
G = g(|u|2).

The definition of delta functions on Ω2N (R2N ) is analogous, but now based on a smooth
compact form G ∈ Ω2N (R2N ).

For H2|2 and S2|2
+ , we define delta functions by making using of the definition on R2|2. Namely,

for H2|2 in the coordinates ũ = (x, y, ξ, η) with z(ũ) =
√

1 + x2 + y2 − 2ξη, we set

δ(ε,H2|2)
u0

(u) = z(ũ)δ
(ε)
ũ0

(ũ) (3.B.63)

where u0 = (1, 0, 0, 0, 0) ∈ H2|2, δ(ε)
ũ0

(ũ) is a delta function for R2|2 as constructed above, and
ũ0 = (0, 0, 0, 0) ∈ R2|2. Then

lim
ε→0

∫
H2|2

Fδ(ε,H2|2)
u0

= lim
ε→0

∫
R2|2

F (z(ũ), x, y, ξ, η)δ
(ε)
ũ0

(ũ) = F0(1, 0, 0), (3.B.64)

i.e., the zero-degree part of F evaluated at the point (z, x, y) = (1, 0, 0) ∈ H2. The construction
for S2|2

+ is analogous.

3.C Sabot–Tarrès limit and the BFS–Dynkin Isomorphism Theorem
Here we show how to derive the Sabot–Tarrès limit from the hyperbolic BFS–Dynkin isomorphism
theorem. As will be evidenced by the length of the proof, using the BFS–Dynkin isomorphism as
a starting point is somewhat unnatural compared to the proof beginning with Ray–Knight, but it
nevertheless interesting to see how the initially complicated expression magically simplifies in the
limit.

In this section, we will use the mean 0 version of the Sabot–Tarrés limit.
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Theorem 3.C.1 (Sabot–Tarres [89, Theorem 2]). Let (Xt, Lt) be a time-changed VRJP with V (`) =
log(1 + `). Then for any smooth compactly supported function g : R|Λ| → R

lim
T→∞

Ea,0
(
g

(
LT −

T

|Λ|

))
=

√
|Λ|

√
2π
|Λ|−1

∫
∑
t=0

etag(t)e−H1(t)
√

detD(β, t)e−t dt (3.C.1)

where

H1(t) =
1

2

∑
ij

βij(cosh(ti − tj)− 1)

is the horospherical t marginal of the H2|2 Hamiltonian and D(β, t) is any diagonal minor of the
t-Laplacian ∆̃β,t with entries

(∆̃β,t)ij =

{
−βijeti+tj , i 6= j∑

k 6=i βike
ti+tk i = j

(3.C.2)

indexed by i, j ∈ Λ.

Before we present the proof in detail, we would like to give some intuition as to how the
horospherical-t marginal arises in the limit. The starting point of our proof is Corollary 3.7.2 of
the hyperbolic BFS–Dynkin isomorphism; taking the T →∞ limit of (3.7.2) gives

lim
T→∞

Ea
(
g

(
LT −

T

|Λ|

))
= lim

T→∞
lim
ε→0

∑
b

∫
(H2|2)Λ

xa
xb
zb
g

(
log z − 1

|Λ|
∑
i

log zi

)
δε

(∑
i

log zi − T

)
e−Hdµ

(3.C.3)
provided the limits exist. It is in fact convenient to exchange the order of the limits on the
right-hand side. This is justified by the following elementary lemma.

Lemma 3.C.2. Let Gε,T =
∫∞

0 Ea,0(g(Lt − t
|Λ|))δε(t − T )dt, supp(δε) ⊆ [0, ε], and g ∈ S(R|Λ|).

Then

lim
T→∞

lim
ε→0

Gε,T = lim
ε→0

lim
T→∞

Gε,T (3.C.4)

provided the limit on the right-hand side exists.

Proof. In order to exchange the limits, it suffices to show that i) limT→∞Gε,T exists pointwise for
all ε 6= 0 and ii) limε→0Gε,T converges uniformly. By assumption, i) holds. To show ii), we Taylor
expand g as

g

(
Lt −

t

|Λ|

)
= g

(
LT −

T

|Λ|

)
+

(∑
i

∂g

∂`i
(LT −

T

|Λ|
)(1XT=i −

1

|Λ|
)

)
(t− T ) + o(t− T ), (3.C.5)

to give

Gε,T = Ea,0g
(
LT −

T

|Λ|

)
+ Ea,0

(∑
i

∂g

∂`i
(LT −

T

|Λ|
)(1XT=i −

1

|Λ|
)

)∫ T+ε

T
(t− T )δε(t− T )dt

+

∫ T+ε

T
o(t− T )δε(t− T )dt.

(3.C.6)
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Then, G0,T = g
(
LT − T

|Λ|

)
, and hence

|Gε,T −G0,T | ≤ sup
T
|Gε,T −G0,T |

≤
∣∣∣∣Ea,0

(∑
i

∂g

∂`i
(LT −

T

|Λ|
)(1XT=i −

1

|Λ|
)

)∫ T+ε

T
(t− T )δε(t− T )dt+

∫ T+ε

T
o(t− T )δε(t− T )dt

∣∣∣∣
≤ sup

T
|∇g|ε+ o(ε)

= Og(ε)→ 0

(3.C.7)

gives the desired uniform convergence.

To evaluate (3.C.3), the physical picture on the right hand side is that the spin ‘centre of mass’
is pinned by the delta function; sending T →∞ pulls the spins off to infinity. This suggests that
we should adopt a moving reference frame, boosting all coordinates in the xz-plane by a hyperbolic
angle σ. This is best done in horospherical coordinates

x ≡ sinh t− 1

2
(s2 − 2ψψ̄)et, y ≡ set, z ≡ cosh t+

1

2
(s2 − 2ψψ̄)et,

ξ ≡ ψet, η ≡ ψ̄et.
(3.C.8)

Then, setting

ν±i =
1± e−σ(e−2ti + s2

i − 2ψiψ̄i)

2
(3.C.9)

and boosting by σ = T
|Λ| , we have

θσxa = eta+σν−a

θσ
xb
zb

=
ν−b
ν+
b

θσ log zi = ti + σ + log ν+
i ,

(3.C.10)

giving the integral in horospherical coordinates as

lim
σ→∞

lim
ε→0

∑
b

∫
eta+σ ν

−
a ν
−
b

ν+
b

g

(
t+ log ν+ − 1

|Λ|
∑
i

(
ti + log ν+

i

))

×δε

(∑
i

(
ti + log ν+

i

))
e−H1(t)−H2(t,s,ψ,ψ̄)e−tdtDq,

(3.C.11)

where the Hamiltonian H = H1 +H2 is now

H1(t) =
1

2

∑
ij

βij(cosh(ti − tj)− 1),

H2(t, s, ψ, ψ̄) =
1

2

∑
ij

βije
ti+tj

(
(si − sj)2 − 2(ψi − ψj)(ψ̄i − ψ̄j)

)
,

(3.C.12)

and q = (s, ψ, ψ̄) are the quadratic coordinates.
As currently stated, we cannot take the limit σ →∞ due to the eta+σ term. Let us ignore this

for now, and consider what happens to the other terms. We would then have

lim
σ→∞

ν±i =
1

2
, (3.C.13)
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and, after shifting ti 7→ ti + log 2, would obtain

lim
ε→0

∑
b

∫
etag

(
t− 1

|Λ|
∑
i

ti

)
δε

(∑
i

ti

)
e−H1(t)e−t

[
lim
σ→∞

2−|Λ|eσ
∫
e−H2(t+log 2,s,ψ,ψ̄)Dq

]
dt.

(3.C.14)
The dependence on the quadratic coordinates is now only through H2; integrating this out would
give a square root determinant factor, albeit, one which includes the zero eigenvalue of the t-
Laplacian. A more careful analysis used in the proof below will involve rescaling the corresponding
eigenmode (i.e., the quadratic variable means), and will show that this zero eigenvalue exactly
cancels the infinite prefactor; this leaves a matrix minor term, and hence, the Sabot–Tarres limit
distribution.

There is one additional subtlety glossed over in the above discussion, namely, that dominant

terms in the integral are contributed not just when x ≈ e
T
|Λ| , but also when x ≈ −e

T
|Λ| . Thus, if

we simply boost in the positive x direction, a significant fraction of mass still escapes in the other
direction. The problem is avoided by using the x 7→ −x symmetry to restrict ourselves to the
positive side, rewriting (3.C.3) as

lim
T→∞

Ea
(
g

(
LT −

T

|Λ|

))
= lim

ε→0
lim
T→∞

lim
ε′→0

∑
b

2

∫
χε′(xa)xa

xb
zb
g

(
log z − 1

|Λ|
∑
i

log zi

)

×δε

(∑
i

log zi − T

)
e−Hdµ,

(3.C.15)

where χε′(xa) = 1
2(1 + tanh xa

ε′ ) is a smooth step function with χε′(x) + χε′(−x) = 1, and we
have used Lemma 3.C.2 to exchange the order of the outer two limits. This expression will be the
starting point of our proof.

Proof. We proceed along the same lines as above, but now starting from the reformulation of
Corollary 3.7.2 given in (3.C.15). Once again, we transform to horospherical coordinates and
boost by σ = T

|Λ| , now giving the right hand side as (dropping sums and limits for now)

2

∫
χε′(e

ta+σν−a )eta+σν−a
ν−b
ν+
b

g

(
t+ log ν+ − 1

|Λ|
∑
i

ti + log ν+
i

)
δε

(∑
i

ti + log ν+
i

)
e−H1(t)−H2(t,s,ψ,ψ̄)e−tdµ.

(3.C.16)
Here, dµ is the is the Berezin-Lebesgue measure, normalised with a factor of 1√

2π
for each bosonic

coordinate:

dµ =
∏
i

dti√
2π

dsi√
2π
dψidψ̄i. (3.C.17)

For readability, we will suppress these extra factors below.
As discussed, in order to take the limit σ →∞, we need to separate out and then rescale the

zero eigenmode of the t-Laplacian. This is achieved by shifting to ‘mean 0’ coordinates in the
quadratic variables q = (s, ψ, ψ̄). We now change variables as

s′i = si −
1

|Λ|
∑
i

si, ψ′i = ψi −
1

|Λ|
∑
i

ψi, ψ̄′i = ψ̄i −
1

|Λ|
∑
i

ψ̄i, (3.C.18)

but further rescale the means as

s′0 =
e−σ

|Λ|
∑
i

si, ψ′0 =
e−σ

|Λ|
∑
i

ψi, ψ̄′0 =
e−σ

|Λ|
∑
i

ψ̄i. (3.C.19)
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This transforms the Berezin measure as

e−
∑
i tidµ 7→ e−σe−

∑
i ti

|Λ|
dt dq0 dq⊥ (3.C.20)

and hence gives the integral as (dropping primes)

2

|Λ|

∫
χε′(e

ta+σν̃−a )eta ν̃−a
ν̃−b
ν̃+
b

g

(
t− 1

|Λ|
∑
i

ti + log ν̃+ − 1

|Λ|
∑
i

log ν̃+
i

)

×δε

(∑
i

ti + log ν̃+
i

)
e−H1(t)−H2(t,s,ψ,ψ̄)e−tdt dq0 dq⊥

(3.C.21)

where

ν̃±i =
1±

(
e−2ti−2σ + (sie

−σ + s0)2 − 2(ψie
−σ + ψ0)(ψ̄ie

−σ + ψ̄0)
)

2
. (3.C.22)

We now Grassmann-Taylor expand the indicator function and take the limit ε′ → 0 to give

lim
ε′→0

χε′(e
ta+σν̃−a ) = lim

ε′→0
χε′(e

ta+σb(ν−a )) + χ′ε′(e
ta+σb(ν−a ))eta+σs(ν−a )

= χ(eta+σb(ν−a )) + δ(eta+σb(ν−a ))eta+σs(ν−a )

= χ(b(ν−a )) + δ(b(ν−a ))s(ν−a ),

(3.C.23)

where in the third line we have made use of the indicator and delta function scaling properties,
and

b(ν−a ) =
1− (e−2ta−2σ + (sae

−σ + s0)2)

2
,

s(ν−a ) = (ψae
−σ + ψ0)(ψ̄ae

−σ + ψ̄0)

(3.C.24)

are the body and soul of ν̃−a . This gives the integral as

lim
ε→0

∑
b

2

|Λ|

∫ (
χ(b(ν−a )) + δ(b(ν−a ))s(ν−a )

)
eta ν̃−a

ν̃−b
ν̃+
b

g

(
t− 1

|Λ|
∑
i

ti + log ν̃+ − 1

|Λ|
∑
i

log ν̃+
i

)

×δε

(∑
i

ti + log ν̃+
i

)
e−H1(t)−H2(t,s,ψ,ψ̄)e−tdt dq0 dq⊥

(3.C.25)

We are now free to take the limit σ →∞. Setting

lim
σ→∞

ν̃±i =
1± (s2

0 − 2ψ0ψ̄0)

2
=: η±0 , (3.C.26)

we obtain the σ →∞ limit as∑
b

2

|Λ|

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)
eta

(η−0 )2

η+
0

g

(
t− 1

|Λ|
∑
i

ti

)
δε

(∑
i

ti + log η+
0

)
e−H1(t)−H2(t,s,ψ,ψ̄)e−tdt dq0 dq⊥.

(3.C.27)
Noting that the s⊥,ψ⊥,ψ̄⊥ variables only enter through H2, we can write

∑
b

2

|Λ|

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)
eta

(η−0 )2

η+
0

g

(
t− 1

|Λ|
∑
i

ti

)

× δε

(∑
i

ti + log η+
0

)
e−H1(t)

[ ∫
e−H2(t,s,ψ,ψ̄) dq⊥

]
e−tdt dq0,

(3.C.28)
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and integrate them out directly as Gaussian integral∫
e−H2(t,s,ψ,ψ̄)dq⊥ =

√
det
(

∆̃β,t

∣∣
⊥

)
. (3.C.29)

As all terms in the sum are the same, we are thus left with

lim
ε→0

2

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)
eta

(η−0 )2

η+
0

g

(
t− 1

|Λ|
∑
i

ti

)
δε

(∑
i

ti + log η+
0

)
e−H1(t)

√
det
(

∆̃β,t

∣∣
⊥

)
e−tdt dq0.

(3.C.30)
We now shift to mean 0 coordinates for the t field,

t′i = ti −
1

|Λ|
∑
i

ti (3.C.31)

rescaling and shifting the mean as

t0 =
∑
i

(ti + log η+
0 ). (3.C.32)

This transforms the Berezin measure as

e−
∑
i tidt 7→ (η+

0 )|Λ|e−t0dt0 dt⊥, (3.C.33)

the eta factor as
eta 7→ (η+

0 )−1e
t0
|Λ| et

′
a , (3.C.34)

the t-Laplacian as

(∆̃β,t)ij 7→ (η+
0 )−2e

2t0
|Λ| (∆̃β,t′)ij , (3.C.35)

and hence the determinant factor as√
det
(

∆̃β,t

∣∣
⊥

)
7→ (η+

0 )−(|Λ|−1)e
(|Λ|−1)t0
|Λ|

√
det
(

∆̃β,t′
∣∣
⊥

)
(3.C.36)

by multilinearity. These additional terms cancel out, giving the integral as (dropping primes)

lim
ε→0

2

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)
eta

(η−0 )2

η+
0

g(t)δε(t0)e−H1(t)

√
det
(

∆̃β,t

∣∣
⊥

)
dt0 dt⊥dq0,

(3.C.37)
splitting into three terms as

lim
ε→0

2

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)(η−0 )2

η+
0

dq0

∫
δε(t0) dt0

∫
etag(t)e−H1(t)

√
det
(

∆̃β,t
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⊥

)
dt⊥.

(3.C.38)
As there are implicit factors of 1√

2π
in the measure for all bosonic coordinates (which we now

explicitly write), the integral of the second term is
∫
δε(t0) dt0√

2π
= 1√

2π
, and a short calculation

shows

2

∫ (
χ(b(η−0 )) + δ(b(η−0 ))s(η−0 )

)(η−0 )2

η+
0

dq0

=

∫ (
1
(

1− s2
0

2
> 0

)
− δ
(

1− s2
0

2

)
ψ0ψ̄0

)
(1− s2

0 − 2ψ0ψ̄0)2

1 + s2
0 + 2ψ0ψ̄0

ds0√
2π

dψ0 dψ̄0

=
√

2π,

(3.C.39)
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and so the product of the first and second terms is identically 1. The remaining term is the
Sabot–Tarrès limit distribution∫

etag(t)e−H1(t)

√
det
(

∆̃β,t

∣∣
⊥

) dt⊥
√

2π
|Λ|−1

. (3.C.40)

Applying the matrix tree theorem√
det
(

∆̃β,t

∣∣
⊥

)
=
√
|Λ|
√
D(β, t), (3.C.41)

with D(β, t) any diagonal matrix minor of ∆̃β,t, (3.C.40) can also be written as√
|Λ|

√
2π
|Λ|−1

∫
etag(t)e−H1(t)

√
D(β, t)dt⊥ (3.C.42)

which is the claim.



Chapter 4

Random spanning forests and
hyperbolic symmetry

4.1 The arboreal gas and uniform forest model

Definition and main results
Let G = (Λ, E) be a finite (undirected) graph. A forest is a subgraph F = (Λ, E′) that does not
contain any cycles. We write F for the set of all forests. For β > 0 the arboreal gas (or weighted
uniform forest model) is the measure on forests F defined by

Pβ[F ] ≡ 1

Zβ
β|F |, Zβ ≡

∑
F∈F

β|F |, (4.1.1)

where |F | denotes the number of edges in F . It is an elementary observation that the arboreal
gas with parameter β is precisely Bernoulli bond percolation with parameter pβ = β/(1 + β)
conditioned to be acyclic:

Pperc
pβ

[F | acyclic] ≡
p
|F |
β (1− pβ)|E|−|F |∑
F p
|F |
β (1− pβ)|E|−|F |

=
β|F |∑
F β
|F | = Pβ[F ]. (4.1.2)

The arboreal gas model is also the limit, as q → 0 with p = βq, of the q-state random cluster model,
see [84]. The particular case β = 1 is the uniform forest model mentioned in, e.g., [52,53,59,84].
We emphasize that the uniform forest model is not the weak limit of a uniformly chosen spanning
tree; emphasis is needed since the latter model is called the ‘uniform spanning forest’ (USF) in the
probability literature. We will shortly see that the arboreal gas has a richer phenomenology than
the USF. In fact, in finite volume, the uniform spanning tree is the β → ∞ limit of the arboreal
gas.

Given that the arboreal gas arises from bond percolation, it is natural to ask about the percola-
tive properties of the arboreal gas. It is straightforward to rule out the occurrence of percolation
for small values of β via the following proposition, see Appendix 4.A.

Proposition 4.1.1. On any finite graph, the arboreal gas with parameter β is stochastically domi-
nated by Bernoulli bond percolation with parameter pβ.

In particular, all subgraphs of Zd, all trees have uniformly bounded expectation if pβ < pc(d)
where pc(d) is the critical parameter for Bernoulli bond percolation on Zd.

In the infinite-volume limit, the arboreal gas is a singular conditioning of bond percolation,
and hence the existence of a percolation transition as β varies is non-obvious. However, on the
complete graph it is known that there is a phase transition, see [11,65,70]. To illustrate some of
our methods we will give a new proof of the existence of a transition.

93
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Proposition 4.1.2. Let EN,α denote the expectation of the arboreal gas on the complete graph KN

with β = α/N , and let T0 be the tree containing a fixed vertex 0. Then

EN,α|T0| = (1 + o(1))


α

1−α α < 1

cN1/3 α = 1

(α−1
α )2N α > 1.

(4.1.3)

where c = 32/3Γ(4/3)/Γ(2/3) and Γ denotes the Euler Gamma function.

Thus there is a transition for the arboreal gas exactly as for the Erdős–Rényi random graph
with edge probability α/N . To compare the arboreal gas directly with the Erdős–Rényi graph,
recall that Proposition 4.1.1 shows the arboreal gas is stochastically dominated by the Erdős–
Rényi graph with edge probability pβ = β − β2/(1 + β). The fact that the Erdős–Rényi graph
asymptotically has all components trees in the subcritical regime α < 1 makes the behaviour of
the arboreal gas when α < 1 unsurprising. On the other hand, the conditioning plays a role when
α > 1, as can be seen at the level of the expected tree size. For the supercritical Erdős–Rényi graph
the expected size is 4(α− 1)2N as α ↓ 1 — this follows from the fact that the largest component
for the Erdős–Rényi graph with α > 1 has size yN where y solves e−αy = 1− y, see, e.g., [4]. For
further discussion, see Section 4.1.

On Z2, the singular conditioning that defines the arboreal gas has a profound effect. In the
next theorem statement and henceforth, for finite subgraphs Λ of Z2 we write PΛ,β for the arboreal
gas on Λ.

Theorem 4.1.3. For all β > 0 there is a universal constant cβ > 0 such that the connection
probabilities satisfy

PΛ,β[0↔ j] 6 |j|−cβ for j ∈ Λ ⊂ Z2, (4.1.4)

for all Λ ⊂ Z2, where ‘i↔ j’ denotes the event that the vertices i and j are in the same tree.

This theorem, together with classical techniques from percolation theory, imply the following
corollary for the infinite volume limit, see Appendix 4.A.

Corollary 4.1.4. Suppose Pβ is a translation-invariant weak limit of PΛn,β for an increasing exhaus-
tion of finite volumes Λn ↑ Z2. Then all trees are finite Pβ-almost surely.

Thus on Z2 the behaviour of the arboreal gas is completely different from that of Bernoulli
percolation. The absence of a phase transition can be non-rigorously predicted from the repre-
sentation of the arboreal gas as the q → 0 limit (with p = βq fixed) of the random cluster model
with q > 0 [33]. We briefly describe how this prediction can be made. The critical point of the
random cluster model for q > 1 on Z2 is known to be pc(q) =

√
q/(1+

√
q) [12]. Conjecturally, this

formula holds for q > 0. Thus pc(q) ∼
√
q as q ↓ 0, and by assuming continuity in q one obtains

βc = ∞ for the arboreal gas. This heuristic applies also to the triangular and hexagonal lattices.
Our proof is in fact quite robust, and applies to much more general recurrent two-dimensional
graphs. We have focused on Z2 for the sake of concreteness.

This absence of percolation is not believed to persist in dimensions d > 3: we expect that there
is a percolative transition on Zd with d > 3. In the next section we will discuss the conjectural
behaviour of the arboreal gas on Zd for all d > 2. Before this, we outline how we obtain the above
results. Our starting point is an alternate formulation of the arboreal gas. Namely, in [25,26,28]
it was noticed that the arboreal gas can be represented in terms of a model of fermions, and
that this fermionic model can be extended to a sigma model with values in the superhemisphere.
We also use this fermionic representation, but our results rely in an essential way on the new
observation that this model is most naturally connected to a sigma model taking values in a
hyperbolic superspace. Similar sigma models have recently received a great deal of attention due
to their relationship with random band matrices and reinforced random walks [9,40,88,89]. We
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will discuss the connection between our techniques and these papers after introducing the sigma
models relevant to the present paper. A key step in our proof is the following integral formula for
connection probabilities in the arboreal gas (see Corollary 4.2.14 for a version with general edge
weights):

PΛ,β[0↔ j] =
1

Zβ

∫
RΛ

etje−
∑
i∼j β(cosh(ti−tj)−1)

(
e−2

∑
i ti det(−∆β(t))

)3/2
δ0(dt0)

∏
i 6=0

dti√
2π

(4.1.5)
where ∆β(t) is the graph Laplacian with edge weights βeti+tj , understood as acting on Λ \ 0. This
formula is a consequence of the hyperbolic sigma model representation of the arboreal gas.

Surprisingly, if the exponent 3/2 in (4.1.5) is replaced by 1/2, then the integrand on the
right-hand side is the mixing measure of the vertex-reinforced jump process found by Sabot
and Tarrès [89]. The Sabot–Tarrès formula (along with a closely related version for the edge-
reinforced random walk) is known as the magic formula [61]. It seems even more magical
to us that the same formula, with only a change of exponent, describes the arboreal gas. We
will explain in Section 4.2 that there are in fact three ingredients to this magic: a ‘non-linear’
version of the matrix-tree theorem, supersymmetric localisation, and horospherical coordinates
for (super-)hyperbolic space.

We remark that the whole family of sigma models taking values in hyperbolic superspaces
has interesting behaviour, but for the present paper we restrict our attention to those related to
the arboreal gas. A more general discussion of such models can be found in [29] by the second
author.

Context and conjectured behaviour
Recall that ‘i↔ j’ denotes the event that the vertices i and j are in the same tree. We also write
Pβ[ij] for the probability an edge ij is in the forest.

The following conjecture asserts that the arboreal gas has a phase transition in dimensions
d > 3, just as in mean-field theory (Proposition 4.1.2). Numerical evidence for this transition can
be found in [33].

Conjecture 4.1.5. For d > 3 there exists βc > 0 such that

lim
n→∞

lim
Λ↑Zd

EΛ,β
|T0 ∩Bn|
|Bn|

{
= 0 (β < βc)

> 0 (β > βc)
(4.1.6)

where T0 is the tree containing 0 and Bn is the ball of radius n centred at 0. Moreover, when β < βc
there is a universal constant cβ > 0 such that

PΛ,β[i↔ j] 6 Ce−cβ |i−j|, (i, j ∈ Zd). (4.1.7)

When β > βc there is a universal constant c′β > 0 such that

lim
Λ↑Zd

PΛ,β[i↔ j] > c′β. (4.1.8)

As indicated in the previous section, it is straightforward to prove the first equality of (4.1.6)
when β is sufficiently small. The existence of a transition, i.e., a percolating phase for β large, is
open. However, a promising approach to proving the existence of a percolation transition when
d > 3 and β � 1 is to adapt the methods of [40]; we are currently pursuing this direction.
Obviously, the existence of a sharp transition, i.e., a precise βc separating the two behaviours
in (4.1.6) is also open. The next conjecture distinguishes the supercritical behaviour of the
arboreal gas from that of percolation for which the (centered) connection probabilities have
exponential decay.
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Conjecture 4.1.6. For d > 3, when β > βc

lim
Λ↑Zd

PΛ,β[i↔ j]− c′β ≈ |i− j|−(d−2), as |i− j| → ∞, (4.1.9)

where c′β is the optimal constant for which (4.1.8) holds.

Assuming the existence of a phase transition, one can also ask about the critical behaviour of
the arboreal gas. One intriguing aspect of this question is that the upper critical dimension is not
clear, even heuristically. There is some evidence that the critical dimension of the arboreal gas
should be d = 6, as for percolation, and opposed to d = 4 for the Heisenberg model. For further
details, and for other related conjectures, see [28, Section 12].

Theorem 4.1.3 shows that the behaviour of the arboreal gas in two dimensions is different
from that of percolation. This difference would be considerably strengthened by the following
conjecture, which first appeared in [25].

Conjecture 4.1.7. For Λ ⊂ Z2, for any β > 0 there exists a universal constant cβ > 0 such that

lim
Λ↑Z2

PΛ,β[i↔ j] ≈ e−cβ |i−j|, (i, j ∈ Z2). (4.1.10)

As β →∞, the constant cβ is exponentially small in β:

cβ ≈ e−cβ. (4.1.11)

In particular, Eβ|T0| ≈ ecβ <∞ (with a different c) where T0 is the tree containing 0.

This conjecture is much stronger than the main result of the present paper, Theorem 4.1.3,
which establishes only that all trees are finite almost surely, a significantly weaker property than
having finite expectation.

Conjecture 4.1.7 is a version of the mass gap conjecture for ultraviolet asymptotically free field
theories. The conjecture is based on the field theory representation discussed in Section 4.2, and
supporting heuristics can be found in, e.g., [25]. Other models with the same conjectural feature
include the two-dimensional Heisenberg model [85], the two-dimensional vertex-reinforced jump
process [40] (and other Hn|2m models with 2m−n 6 0, see [29]), the two-dimensional Anderson
model [2], and most prominently four-dimensional Yang–Mills Theories [56,85].

Let us briefly indicate discuss why Conjecture 4.1.7 seems challenging. Note that in finite
volume the (properly normalized) arboreal gas converges weakly to the uniform spanning tree as
1/β → 0, see Appendix 4.B. For the uniform spanning tree it is a triviality that cβ = 0, and this is
consistent with the conjecture cβ ≈ e−cβ as β →∞. On the other hand cβ ≈ e−cβ suggests a subtle
effect, not approachable via perturbative methods such as using 1/β > 0 as a small parameter for
a low-temperature expansion as can be done for, e.g., the Ising model. Indeed, since t 7→ e−c/t

has an essential singularity at t = 0, its behaviour as t = 1/β → 0 cannot be detected at any finite
order in t = 1/β. The same difficulty applies to the other models mentioned above for which
analogous behaviour is conjectured.

The last conjecture we mention is the negative correlation conjecture stated in [53, 59, 84]
and recently in [14,54]. This conjecture is also expected to hold true for general (positive) edge
weights, see Section 4.2.

Conjecture 4.1.8. For any finite graph and any β > 0 negative correlation holds: for distinct edges
ij and kl,

Pβ[ij, kl] 6 Pβ[ij]Pβ[kl]. (4.1.12)

More generally, for all distinct edges i1j1, . . . , injn and m < n,

Pβ[i1j1, . . . , injn] 6 Pβ[i1j1, . . . , imjm]Pβ[im+1jm+1, . . . , injn]. (4.1.13)
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The weaker inequality Pβ[ij, kl] 6 2Pβ[ij]Pβ[kl] was recently proved in [14]. It is intriguing
that the Lorentzian signature plays an important role in both [14] and the present work, but
we are not aware of a direct relation. An important consequence of the full conjecture (with
factor 1) is the existence of translation invariant arboreal gas measures on Zd; we prove this in
Appendix 4.A.

Proposition 4.1.9. Assume Conjecture 4.1.8 is true. Suppose Λn is an increasing family of subgraphs
such that Λn ↑ Zd, and let Pβ,n be the arboreal gas on the finite graph Λn. Then the weak limit
limn Pβ,n exists and is translation invariant.

Remark 4.1.10. The conjectured inequality (4.1.12) can be recast as a reversed second Griffiths
inequality. More precisely, (4.1.12) can be rewritten in terms of the H0|2 spin model introduced
below in Section 4.2 as

〈(ui · uj)(uk · ul)〉β − 〈ui · uj〉β 〈uk · ul〉β 6 0. (4.1.14)

This equivalence follows immediately from the results in Section 4.2.

Related literature

The arboreal gas has received attention under various names. An important reference for our work
is [25], along with subsequent works by subsets of these authors and collaborators [10,11,26–28,
55]. These authors considered the connection of the arboreal gas with the antiferromagnetic S0|2

model.
Our results are in part based on a re-interpretation of the S0|2 formulation in terms of the

hyperbolic H0|2 model. At the level of infinitesimal symmetries these models are equivalent. The
power behind the hyperbolic language is that it allows for a further reformulation in terms of
the H2|4 model, which is analytically useful. The H2|4 representation arises from a dimensional
reduction formula, which in turn is a consequence of supersymmetric localization [3,20,83]. Much
of Section 4.2 is devoted to explaining this. The upshot is that this representation allows us to
make use of techniques originally developed for the non-linear H2|2 sigma model [39,40,104–106]
and the vertex-reinforced jump process [5,89]. In particular, our proof of Theorem 4.1.3 makes
use of an adaptation of a Mermin–Wagner argument for the H2|2 model [9,62,88]; the particular
argument we adapt is due to Sabot [88]. For more on the connections between these models,
see [9,89].

Conjecture 4.1.8 seems to have first appeared in print in [58]. Subsequent related works,
including proofs for some special subclasses of graphs, include [14,53,95,100].

As mentioned before, considerably stronger results are known for the arboreal gas on the com-
plete graph. The first result in this direction concerned forests with a fixed number of edges [65],
and later a fixed number of trees was considered [11]. Later in [70] the arboreal gas itself was
considered, in the guise of the Erdős–Rényi graph conditioned to be acyclic. In [65] it was un-
derstood that the scaling window is of size N−1/3, and results on the behaviour of the ordered
component sizes when α = 1 + λN−1/3 were obtained. In particular, the large components in
the scaling window are of size N2/3. A very complete description of the component sizes in the
critical window was obtained in [70].

We remark on an interesting aspect of the arboreal gas that was first observed in [65] and
is consistent with Conjecture 4.1.6. Namely, in the supercritical regime, the component sizes of
the k largest non-giant components are of order N2/3 [65, Theorem 5.2]. This is in contrast to
the Erdős–Rényi graph, where the non-giant components are of logarithmic size. The critical size
of the non-giant components is reminiscent of self-organised criticality, see [86] for example. A
clearer understanding of the mechanism behind this behaviour for the arboreal gas would be
interesting.
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Outline

In the next section we introduce the H0|2 and H2|4 sigma models, relate them to the arboreal
gas, and derive several useful facts. In Section 4.3 we use the H0|2 representation and Hubbard–
Stratonovich type transformations to prove Theorem 4.3.1 by a stationary phase argument. In
Section 4.4 we prove the quantitative part of Theorem 4.1.3, i.e., (4.1.4). The deduction that
all trees are finite almost surely follows from adaptions of well-known arguments and is given in
Appendix 4.A. For the convenience of readers, we briefly discuss the fermionic representation of
rooted spanning forests and spanning trees in Appendix 4.B.

4.2 Hyperbolic sigma model representation
In [25], it was noticed that the arboreal gas has a formulation in terms of fermionic variables,
which in turn can be related to a supersymmetric spin model with values in the superhemisphere
and negative (i.e., antiferromagnetic) spin couplings. In Section 4.2, we reinterpret this fermionic
model as the H0|2 model (defined there) with positive (i.e., ferromagnetic) spin couplings. This
reinterpretation has important consequences: in Section 4.2, we relate the H0|2 model to the H2|4

model (defined there) by a form of dimensional reduction applied to the target space. Technically
this amounts to exploiting supersymmetric localisation associated to an additional set of fields.
The H2|4 model allows the introduction of horospherical coordinates, which leads to an analytically
useful probabilistic representation of the model as a gradient model with a non-local and non-
convex potential. This gradient model is very similar to gradient models that arise in the study of
linearly-reinforced random walks. In fact, up to the power of a determinant, this representation
is in terms of a measure that is identical to the magic formula describing the mixing measure of
the vertex-reinforced jump process, see (4.1.5).

H0|2 model and arboreal gas
Let Λ be a finite set, let β = (βij)i,j∈Λ be real-valued symmetric edge weights, and let h = (hi)i∈Λ

be real-valued vertex weights. Throughout we will use this bold notation to denote tuples indexed
by vertices or edges. For f : Λ→ R, we define the Laplacian associated with the edge weights by

∆βf(i) ≡
∑
j∈Λ

βij(f(j)− f(i)). (4.2.1)

The non-zero edge weights induce a graph G = (Λ, E), i.e., ij ∈ E if and only if βij 6= 0.
Let Ω2Λ be a (real) Grassmann algebra (or exterior algebra) with generators (ξi, ηi)i∈Λ, i.e., all

of the ξi and ηi anticommute with each other. For i, j ∈ Λ, define the even elements

zi ≡
√

1− 2ξiηi ≡ 1− ξiηi (4.2.2)

ui · uj ≡ −ξiηj − ξjηi − zizj = −1− ξiηj − ξjηi + ξiηi + ξjηj − ξiηiξjηj . (4.2.3)

Note that ui ·ui = −1 which we formally interpret as meaning that ui = (ξ, η, z) ∈ H0|2 by analogy
with the hyperboloid model for hyperbolic space. However, we emphasize that ‘∈ H0|2’ does not
have any literal sense. Similarly we write u = (ui)i∈Λ ∈ (H0|2)Λ. The fermionic derivative ∂ξi is
defined in the natural way, i.e., as the odd derivation on that acts on Ω2Λ by

∂ξi(ξiF ) ≡ F, ∂ξiF ≡ 0 (4.2.4)

for any form F that does not contain ξi. An analogous definition applies to ∂ηi . The hyperbolic
fermionic integral is defined in terms of the fermionic derivative by

[F ]0 ≡
∫

(H0|2)Λ

F ≡
∏
i∈Λ

(
∂ηi∂ξi

1

zi

)
F = ∂ηN∂ξN · · · ∂η1∂ξ1

(
1

z1 · · · zN
F

)
∈ R (4.2.5)
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if Λ = {1, . . . , N}. It is well-known that while the fermionic integral is formally equivalent to a
fermionic derivative, it behaves in many ways like an ordinary integral. The factors of 1/z make
the hyperbolic fermionic integral invariant under a fermionic version of the Lorentz group; see
(4.2.18).

The H0|2 sigma model action is the even form Hβ,h(u) in Ω2Λ given by

Hβ,h(u) ≡ 1

2
(u,−∆βu) + (h, z − 1) =

1

4

∑
i,j

βij(ui − uj)2 +
∑
i

hi(zi − 1) (4.2.6)

where (a, b) ≡
∑

i ai · bi, with ai · bi interpreted as the H0|2 inner product defined by (4.2.3). The
corresponding unnormalised expectation [·]β,h and normalised expectation 〈·〉β,h are defined by

[F ]β,h ≡ [Fe−Hβ,h ]0, 〈F 〉β,h ≡
[F ]β,h
[1]β,h

, (4.2.7)

the latter definition holding when [1]β,h 6= 0. In (4.2.7) the exponential of the even form Hβ,h is
defined by the formal power series expansion, which truncates at finite order since Λ is finite. For
an introduction to Grassmann algebras and integration as used in this paper, see [8, Appendix A].

Note that the unnormalised expectation [·]β,h is well-defined for all real values of the βij and
hi, including negative values, and in particular h = 0, β = 0, or both, are permitted. We will use
the abbreviations [·]β ≡ [·]β,0 and 〈·〉β ≡ 〈·〉β,0.

The following theorem shows that the partition function [1]β,h of the H0|2 model is exactly
the partition function of the arboreal gas Zβ defined in (4.1.1) when h = 0, and that it is a
generalization the partition function when h 6= 0 which we will subsequently denote by Zβ,h. This
connection between spanning forests and the antiferromagnetic S0|2 model, which is equivalent
to our ferromagnetic H0|2 model, was previously observed in [25]. As mentioned earlier, our
hyperbolic interpretation will have important consequences in what follows.

Theorem 4.2.1. For any real-valued weights β and h,

[1]β,h =
∑
F∈F

∏
ij∈F

βij
∏
T∈F

(1 +
∑
i∈T

hi) (4.2.8)

where the inner product runs over the trees T that make up the forest F .

For the reader’s convenience and to keep our exposition self contained, we provide a concise
proof of Theorem 4.2.1 below. The interested reader may consult the original paper [25], where
they can also find generalizations to hyperforests. The h = 0 case of Theorem 4.2.1 also implies
the following useful representations of probabilities for the arboreal gas.

Corollary 4.2.2. Let h = 0 and assume the edge weights β are non-negative. Then for all edges ab,

Pβ[ab] = βab〈ua · ub + 1〉β, (4.2.9)

and more generally, for all sets of edges S,

Pβ[S] = 〈
∏
ij∈S

βij(ui · uj + 1)〉β. (4.2.10)

Moreover, for all vertices a, b ∈ Λ,

Pβ[a↔ b] = −〈zazb〉β = −〈ua · ub〉β = 〈ξaηb〉β = 1− 〈ηaξaηbξb〉β, (4.2.11)

and also
〈za〉β = 0. (4.2.12)

We will prove Theorem 4.2.1 and Corollary 4.2.2 in Section 4.2, but first we establish some
integration identities associated with the symmetries of H0|2.
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Ward Identities for H0|2

Define the operators

L ≡
∑
i∈Λ

Li ≡
∑
i∈Λ

zi∂ξi , L̄ ≡
∑
i∈Λ

L̄i ≡
∑
i∈Λ

zi∂ηi , S ≡
∑
i∈Λ

Si ≡
∑
i∈Λ

(ηi∂ξi + ξi∂ηi). (4.2.13)

Using (4.2.2), one computes that these act on coordinates as

Lξa = za, Lηa = 0, Lza = −ηa, (4.2.14)

L̄ξa = 0, L̄ηa = za, L̄za = ξa, (4.2.15)

Sξa = ηa, Sηa = ξa, Sza = 0. (4.2.16)

The operator S is an even derivation on Ω2Λ, meaning that it obeys the usual Leibniz rule S(FG) =
S(F )G+FS(G) for any forms F,G. On the other hand, the operators L and L̄ are odd derivations
on Ω2Λ, also called supersymmetries. This means that if F is an even or odd form, then L(FG) =
(LF )G± F (TG), with ‘+’ for F even and ‘−’ for F odd. We remark that L and L̄ can be regarded
as analogues of the infinitesimal Lorentz boost symmetries of Hn, while S is an infinitesimal
symplectic symmetry. In particular, the inner product (4.2.3) is invariant with respect to these
symmetries, in the sense that

L(ua · ub) = L̄(ua · ub) = S(ua · ub) = 0. (4.2.17)

For L, this follows from L(ua · ub) = L(−ξaηb − ξbηa − zazb) = −zaηb − zbηa + ηazb + ηbza = 0
since the zi are even. Analogous computations apply to L̄ and S.

A complete description of the infinitesimal symmetries of H0|2 is given by the orthosymplectic
Lie superalgebra osp(1|2), which is spanned by the three operators described above, together with
a further two symplectic symmetries; see [25, Section 7] for details.

Lemma 4.2.3. For any a ∈ Λ, the operators La, L̄a and S are symmetries of the non-interacting
expectation [·]0 in the sense that, for any form F ,

[LaF ]0 = [L̄aF ]0 = [SaF ]0 = 0. (4.2.18)

Moreover, for any β = (βij) and h = 0, also L =
∑

i∈Λ Li and L̄ =
∑

i∈Λ L̄i are symmetries of the
interacting expectation [·]β:

[LF ]β = [L̄F ]β = 0, (4.2.19)

and similarly S =
∑

i∈Λ Si is a symmetry of [·]β,h for any β and h.

Proof. First assume that β = 0. Then by (4.2.13),

[LaF ]0 =

∫ ∏
i

∂ηi∂ξi
1

zi
(LaF ) =

∫ ∏
i 6=a

∂ηi∂ξi
1

zi

∂ηa∂ξa∂ξaF = 0 (4.2.20)

since (∂ξa)2 acts as 0 since any form can have at most one factor of ξa. The same argument applies
to T̄ , and a similar argument applies to S.

We now show that this implies L and L̄ are also symmetries of [·]β . Indeed, for any form F that
is even (respectively odd), the fact that L is an odd derivation and the fact that [·]0 is invariant
implies the integration by parts formula

[LF ]β = ±[F (LHβ)]β, Hβ = Hβ,0 =
1

4

∑
i,j∈Λ

βij(ui − uj)2. (4.2.21)

For any β the right-hand side vanishes since LHβ = 0 by (4.2.17). A similar argument applies for
L̄. Since every form F can be written as a sum of an even and an odd form, (4.2.19) follows.

The argument for S being a symmetry of [·]β,h is similar.
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To illustrate the use of these operators, we give a proof of the identities on the right-hand side
of (4.2.11) and a proof of (4.2.12). Define

λab ≡ zbξa, λ̄ab ≡ zbηa, (4.2.22)

and note Lλab = ξaηb + zazb and L̄λ̄ab = ξbηa + zazb. Hence

〈ua · ub〉β = 〈zazb − Lλab − L̄λ̄ab〉β = 〈zazb〉β, (4.2.23)

where the final equality is by linearity and Lemma 4.2.3. In particular, 〈z2
a〉β = −1. Reasoning

similarly, we obtain

〈za〉β = 〈Lξa〉β = 0, (4.2.24)

〈zazb〉β = 〈Lλab〉β − 〈ξaηb〉β = −〈ξaηb〉β, (4.2.25)

which proves (4.2.12), and implies 〈ξaηa〉β = 1. Since zazb = (1 − ξaηa)(1 − ξbηb) = 1 − ξaηa −
ξbηb + ξaηaξbηb this also gives

−〈zazb〉β = 1− 〈ξaηaξbηb〉β. (4.2.26)

Finally, we note that the symplectic symmetry and S(ξaξb) = ξaηb − ξbηa imply

〈ξaηb〉β,h = 〈ξbηa〉β,h. (4.2.27)

Proofs of Theorem 4.2.1 and Corollary 4.2.2
Our first lemma relies on the identities of the previous section.

Lemma 4.2.4. For any forest F , ∏
ij∈F

(ui · uj + 1)


0

= 1. (4.2.28)

Proof. By factorization for fermionic integrals, it suffices to prove (4.2.28) when F is in fact a
tree, which we call T . We recall the definition of the non-interacting expectation of a form G,

[G]0 =
∏
i

∂ηi∂ξi
1

zi
G =

∏
i

∂ηi∂ξi(1 + ξiηi)G. (4.2.29)

Hence, if T contains no edges then we have [1]0 = 1. We complete the proof by induction, with
the inductive assumption that the claim holds for all trees on k or fewer vertices. To advance the
induction, let T be a tree on k+ 1 > 2 vertices and choose a leaf edge {a, b} of T . We will advance
the induction by considering the sum of the integrals that result from expanding (ua · ub + 1)
in (4.2.28).

Note that by Lemma 4.2.3, if G1 is even (resp. odd), then

[(LG1)G]0 = ∓[G1(LG)]0 (4.2.30)

and similarly for L̄. Recalling the definition (4.2.22) of λab and λ̄ab, and furthermore suppose that
LG = L̄G = 0, then

[(ua · ub)G]0 = [(zazb − Lλab − L̄λ̄ab)G]0 = [zazbG]0 =
1

2
[((Lξa)zb + (L̄ηa)zb)G]0

=
1

2
[(−ξaηb + ηaξb)G]0, (4.2.31)
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where we have used the assumption that LG = L̄G = 0 in the second and final equalities.
Applying this identity with G =

∏
ij∈T\{a,b}(ui · uj + 1), the right-hand side is 0 since the product

does not contain the missing generator at a to give a non-vanishing expectation. The inductive
assumption and factorization for fermionic integrals implies [G]0 = 1, and thus

[
∏
ij∈T

(ui · uj + 1)]0 = [(ua · ub + 1)G]0 = [G]0 = 1, (4.2.32)

advancing the induction.

Lemma 4.2.5. For any i, j ∈ Λ we have (ui ·uj + 1)2 = 0, and for any graph C that contains a cycle,∏
ij∈C

(ui · uj + 1) = 0. (4.2.33)

Proof. It suffices to consider when C is a cycle or doubled edge. Orienting C, the oriented edges
of C are (1, 2), . . . , (k − 1, k), (k, 1) for some k > 2. Then, with the convention k + 1 = 1,

k∏
i=1

(ui · ui+1 + 1) =
k∏
i=1

(−ξiηi+1 + ηiξi+1 + ξiηi + ξi+1ηi+1 − ξiηiξi+1ηi+1)

=

k∏
i=1

(−ξiηi+1 + ηiξi+1 + ξiηi + ξi+1ηi+1), (4.2.34)

the second equality by nilpotency of the generators and k > 2. To complete the proof of the
claim we consider which terms are non-zero in the expansion of this product. First consider the
term that arises when choosing ξ1η1 in the first term in the product: then for the second term any
choice other than ξ2η2 results in zero. Continuing in this manner, the only non-zero contribution is∏k
i=1 ξiηi. Similar arguments apply to the other three choices possible in the first product, leading

to

k∏
i=1

(−ξiηi+1 + ηiξi+1 + ξiηi + ξi+1ηi+1) =
k∏
i=1

ξiηi +
k∏
i=1

ξi+1ηi+1 +
k∏
i=1

(−ξiηi+1) +
k∏
i=1

ηiξi+1

= (1 + (−1)k + (−1)2k−1 + (−1)k−1)
k∏
i=1

ξiηi (4.2.35)

which is zero for all k. The signs arise from re-ordering the generators. We have used that C is a
cycle for the third and fourth terms.

Proof of Theorem 4.2.1 when h = 0. By Lemma 4.2.5,

e
1
2

(u,∆βu) =
∑
S

∏
ij∈S

βij(ui · uj + 1) =
∑
F

∏
ij∈F

βij(ui · uj + 1), (4.2.36)

where the sum runs over sets S of edges and that over F is over forests. By taking the unnormalised
expectation [·]0 we conclude from Lemma 4.2.4 that

Zβ,0 = [e
1
2

(u,∆βu)]0 =
∑
F

∏
ij∈F

βij . (4.2.37)

To establish the theorem for h 6= 0 requires one further preliminary, which uses the idea of
pinning the spin u0 at a chosen vertex 0 ∈ Λ. Informally, this means that u0 always evaluates to
(ξ, η, z) = (0, 0, 1). Formally, this means the following. To compute the pinned expectation of a
function F of the forms (ui · uj)i,j∈Λ, we replace Λ by Λ0 = Λ \ {0}, set

hj = β0j , (4.2.38)
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in Hβ , and replace all instances of u0 ·uj by −zj in both F and e−Hβ . The pinned expectation of F
is the hyperbolic fermionic integral (4.2.5) of this form with respect to the generators (ξi, ηi)i∈Λ0 .
We denote this expectation by

[·]0β, 〈·〉0β. (4.2.39)

This procedure gives a way to identify any function of the forms (ui · uj)i,j∈Λ with a function of
the forms (ui · uj)i,j∈Λ0 and (zi)i∈Λ0 . To minimize the notation, we will implicitly identify u0 · uj
with −zj when taking pinned expectations of functions F of the (ui · uj).

The following proposition relates the pinned and unpinned models.

Proposition 4.2.6. For any polynomial F in (ui · uj)i,j∈Λ,

[F ]0β = [(1− z0)F ]β, 〈F 〉0β = 〈(1− z0)F 〉β. (4.2.40)

Proof. It suffices to prove the first equation of (4.2.40), as this implies [1]0β = [1− z0]β = [1]β since
[z0]β = 0 by (4.2.24).

Since 1− z0 = ξ0η0, for any form F that contains a factor of ξ0 or η0, we have (1− z0)F = 0.
Thus the expectation [(1− z0)F ]β amounts to the expectation with respect to [·]0 of Fe−Hβ with
all terms containing factors ξ0 and η0 removed. The claim thus follows from by computing the
right-hand side using the observations that (i) removing all terms with factors of ξ0 and η0 from
u0 · ui yields −zi, and (ii) ∂η0∂ξ0ξ0η0z

−1
0 = 1.

There is a correspondence between pinning and external fields. If one first chooses Λ and then
pins at 0 ∈ Λ, the result is that there is an external field hj for all j ∈ Λ \ 0. One can also view
this the other way around, by beginning with Λ and an external field hj for all j ∈ Λ, and then
realizing this as due to pinning at an ‘external’ vertex δ /∈ Λ. This idea shows that Theorem 4.2.1
with h 6= 0 follows from the case h = 0; for the reader who is not familiar with arguments of this
type, we provide the details below.

Proof of Theorem 4.2.1 when h 6= 0. The partition function of the arboreal gas with h 6= 0 can be
interpreted as that of the arboreal gas with h ≡ 0 on a graph G̃ augmented by an additional
vertex δ and with weights β̃ given by β̃ij = βij for all i, j ∈ G and β̃iδ = β̃δi = hi. Each F ′ ∈ F(G̃)
is a union of F ∈ F(G) with a collection of edges {irδ}r∈R for some R ⊂ V (G). Since F ′ is a
forest, |T ∩R| 6 1 for each tree T in F . Moreover, for any F ∈ F(G) and any R ⊂ V (G) satisfying
|V (T ) ∩R| 6 1 for each T in F , F ∪ {irδ}r∈R ∈ F(G̃). Thus

ZG̃
β̃,0

=
∑

F∈F(Gδ)

∏
ij∈F ′

βij =
∑

F∈F(G)

∏
ij∈F ′

βij
∏
T∈F

(1 +
∑
i∈T

hi) = ZGβ,h. (4.2.41)

To conclude, note that [(1 − zδ)F ]β̃ = [F ]β̃ for any function F with TF = 0; this follows from
[zaF ] = [(Tξa)F ] = −[ξa(TF )] = 0. The conclusion now follows from Proposition 4.2.6 (where δ
takes the role of 0 in that proposition), which shows [(1− zδ)F ]β̃ = [F ]β,h.

Proof of Corollary 4.2.2. Since Pβ[ab] = βab
d

dβab
logZ, we have

Pβ[ab] = −1

2
βab〈(ua − ub)2〉β, (4.2.42)

and expanding the right-hand side yields (4.2.9). Alternatively, multiplying (4.2.36) by βij(1+ui ·
uj), using Lemma 4.2.5, and then applying Lemma 4.2.4 yields the result. Similar considerations
yield (4.2.10), and also show that

Pβ[i= j] = 〈1 + ui · uj〉β. (4.2.43)

Therefore Pβ[i ↔ j] = −〈ui · uj〉β. Together with the identities (4.2.23)–(4.2.26), this proves
(4.2.11). We already established (4.2.12) in Section 4.2.
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H2|4 model and dimensional reduction

In this section we define the H2|4 model, and show that for a class of ‘supersymmetric observables’
expectations with respect to the H2|4 model can be reduced to expectations with respect to the
H0|2 model. To study the arboreal gas we will use this reduction in reverse: first we express
arboreal gas quantities as H0|2 expectations, and in turn as H2|4 expectations. The utility of this
rewriting will be explained in the next section, but in short, H2|4 expectations can be rewritten as
ordinary integrals, and this carries analytic advantages.

The H2|4 model is a special case of the following more general Hn|2m model. These models
originate with Zirnbauer’s H2|2 model [40,106], but makes sense for all n,m ∈ N. For fixed n and
m with n+m > 0, the Hn|2m model is defined as follows.

Let φ1, . . . , φn be n real variables, and let ξ1, η1, . . . , ξm, ηm be 2m generators of a Grassmann
algebra (i.e., they anticommute pairwise and are nilpotent of order 2). Note that we are using
superscripts to distinguish variables. Forms, sometimes called superfunctions, are elements of
Ω2m(Rn), where Ω2m(Rn) is the Grassmann algebra generated by (ξk, ηk)mk=1 over C∞(Rn). See [8,
Appendix A] for details. We define a distinguished even element z of Ω2m(Rn) by

z ≡

√√√√1 +
n∑
`=1

(φ`)2 +
m∑
`=1

(−2ξ`η`) (4.2.44)

and let u = (φ, ξ, η, z). Given a finite set Λ, we write u = (ui)i∈Λ, where ui = (φi, ξi, ηi, zi) with
φi ∈ Rn and ξi = (ξ1

i , . . . , ξ
m
i ) and ηi = (η1

i , . . . , η
m
i ), each ξji (resp. ηji ) a generator of Ω2mΛ(RnΛ).

We define the ‘inner product’

ui · uj ≡
n∑
`=1

φ`iφ
`
j +

m∑
`=1

(η`i ξ
`
j − ξ`iη`j)− zizj . (4.2.45)

Note that these definitions imply ui · ui = −1. If m = 0, the constraint ui · ui = −1 defines the
hyperboloid model for hyperbolic space Hn, as in this case ui · uj reduces to the Minkowski inner
product on Rn+1. For this reason we write ui ∈ Hn|2m and u ∈ (Hn|2m)Λ and think of Hn|2m as
a hyperbolic supermanifold. As we do not need to enter into the details of this mathematical
object, we shall not discuss it further (see [106] for further details). We remark, however, that the
expression

∑m
`=1(−ξ`iη`j + η`i ξ

`
j) is the natural fermionic analogue of the Euclidean inner product∑n

`=1 φ
`
iφ
`
j and motivates the supermanifold terminology.

The general class of models of interest are defined analogously to the H0|2 model by the action

Hβ,h(u) ≡ 1

2
(u,−∆βu) + (h, z − 1), (4.2.46)

where we now require β > 0 and h > 0, i.e., β = (βij)i,j∈Λ and h = (hi)i∈Λ satisfy βij > 0 and
hi > 0 for all i, j ∈ Λ. We have again used the notation (a, b) =

∑
i∈Λ ai · bi but where · now refers

to (4.2.45). For a form F ∈ Ω2mΛ(Hn), the corresponding unnormalised expectation is

[F ]H
n|2m
≡
∫

(Hn|2m)Λ

Fe−Hβ,h (4.2.47)

where the superintegral of a form G is∫
(Hn|2m)Λ

G ≡
∫
RnΛ

∏
i∈Λ

dφ1
i . . . dφ

n
i

(2π)n/2
∂η1

i
∂ξ1
i
· · · ∂ηmi ∂ξmi

(∏
i∈Λ

1

zi

)
G, (4.2.48)

where the zi are defined by (4.2.44).
Henceforth we will only consider the H0|2 and H2|4 models, and hence we will write xi = φ1

i

and yi = φ2
i for notational convenience. We will also assume β > 0 and h > 0 to ensure both

models are well-defined.
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Dimensional reduction. The following proposition shows that, due to an internal supersymmetry,
all observables F that are functions of ui · uj have the same expectations under the H0|2 and the
H2|4 expectation. Here ui ·uj is defined as in (4.2.3) for H0|2, respectively as in (4.2.45) for H2|4. In
this section and henceforth we work under the convention that zi = uδ · ui with uδ = (0, . . . , 0, 1),
and that (ui · uj)i,j refers to the collection of forms indexed by i, j ∈ Λ̃ ≡ Λ ∪ {δ}. In other words,
functions of (ui · uj)i,j are also permitted to depend on (zi)i.

Proposition 4.2.7. For any F : RΛ̃×Λ̃ → R smooth with enough decay that the integrals exist,

[F ((ui · uj)i,j)]H
0|2

β,h = [F ((ui · uj)i,j)]H
2|4

β,h . (4.2.49)

In view of this proposition we will subsequently drop the superscript Hn|2m for expectations
of observables F that are functions of (ui · uj)i,j . That is, we will simply write [F ]β,h for

[F ]β,h = [F ]H
0|2

β,h = [F ]H
2|4

β,h . (4.2.50)

We will similarly write 〈F 〉β,h = 〈F 〉H0|2
β,h = 〈F 〉H2|4

β,h whenever [1]H
2|4

β,h positive and finite.
The proof of Proposition 4.2.7 uses the following fundamental localisation theorem. To state

the theorem, consider forms in Ω2N (R2N ) and denote the even generators of this algebra by (xi, yi)
and the odd generators by (ξi, ηi). Then we define

Q ≡
N∑
i=1

Qi , Qi ≡ ξi
∂

∂xi
+ ηi

∂

∂yi
− xi

∂

∂ηi
+ yi

∂

∂ξi
. (4.2.51)

Theorem 4.2.8. Suppose F ∈ Ω2N (R2N ) is integrable and satisfies QF = 0. Then∫
R2N

dx dy ∂η ∂ξ
2π

F = F0(0) (4.2.52)

where the right-hand side is the degree-0 part of F evaluated at 0.

A proof of this theorem can be found, for example, in [8, Appendix B].

Proof of Proposition 4.2.7. To distinguish H0|2 and H2|4 variables, we write the latter as u′i, i.e.,

ui · uj = −ξ1
i η

1
j − ξ1

j η
1
i − zizj (4.2.53)

u′i · u′j = xixj + yiyj − ξ1
i η

1
j − ξ1

j η
1
i − ξ2

i η
2
j − ξ2

j η
2
i − z′iz′j . (4.2.54)

We begin by considering the case N = 1, i.e., a graph with a single vertex. Since e−Hβ,h(u) is a
function of (ui · uj)i,j , we will absorb the factor of e−Hβ,h(u) into the observable F to ease the
notation. The H2|4 integral can be written as∫

H2|4
F =

∫
R2

dx dy

2π
∂η1∂ξ1 ∂η2∂ξ2

1

z′
F = ∂η1∂ξ1

∫
R2

dx dy

2π
∂η2∂ξ2

1

z′
F (4.2.55)

where
z′ =

√
1 + x2 + y2 − 2ξ1η1 − 2ξ2η2 (4.2.56)

and
∫
R2 dx dy ∂η2∂ξ2

1
z′F is the form in (ξ1, η1) obtained by integrating the coefficient functions

term-by-term. Applying the localisation theorem (Theorem 4.2.8) to the variables (x, y, ξ2, η2)
gives, after noting z′ localises to z =

√
1− 2ξ1η1,∫

R2

dx dy

2π
∂η2∂ξ2

1

z′
F ((u′i · u′j)) =

1

z
F ((ui · uj)i,j). (4.2.57)

Therefore ∫
H2|4

F ((u′i · u′j)i,j) =

∫
H0|2

F ((ui · uj)i,j) (4.2.58)

which is the claim. The argument for the case of general N is exactly analogous.
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Horospherical coordinates

Proposition 4.2.7 showed that ‘supersymmetric observables’ have the same expectations in the
H0|2 and the H2|4 model. This is useful because the richer structure of the H2|4 model allows the
introduction of horospherical coordinates, whose importance was recognised in [40,99]. We will
shortly define horospherical coordinates, but before doing this we state the result that we will
deduce using them.

For the statement of the proposition, we require the following definitions. Let−∆β(t),h(t) be the
matrix with (i, j)th element βijeti+tj for i 6= j and ith diagonal element −

∑
j∈Λ βije

ti+tj − hieti .
Let

H̃β,h(t, s) ≡
∑
ij

βij(cosh(ti − tj) +
1

2
eti+tj (si − sj)2 − 1)

+
∑
i

hi(cosh(ti) +
1

2
etisi − 1)− 2 log det(−∆β(t),h(t)) + 3

∑
i

ti (4.2.59)

H̃β,h(t) ≡
∑
ij

βij(cosh(ti − tj)− 1) +
∑
i

hi(cosh(ti)− 1)− 3

2
log det(−∆β(t),h(t)) + 3

∑
i

ti

(4.2.60)

where we abuse notation by using the symbol H̃β,h both for the function H̃β,h(t, s) and H̃β,h(t).
Below we will assume that β is irreducible, by which we mean that β induces a connected graph.

Proposition 4.2.9. Assume β > 0 and h > 0 with β irreducible and hi > 0 for at least one i ∈ Λ.
For all smooth functions F : R2Λ → R, respectively F : RΛ → R, such that the integrals on the left-
and right-hand sides converge absolutely,

[F ((xi + zi)i, (yi)i)]
H2|4

β,h =

∫
R2Λ

F ((eti)i, (e
tisi)i)e

−H̃β,h(t,s)
∏
i

dti dsi
2π

(4.2.61)

[F ((xi + zi)i)]
H2|4

β,h =

∫
RΛ

F ((eti)i)e
−H̃β,h(t)

∏
i

dti√
2π
. (4.2.62)

In particular, the normalising constant [1]H
2|4

β,h is the partition function Zβ,h of the arboreal gas.

Abusing notation further, we will denote either of the expectations on the right-hand sides
of (4.2.61) and (4.2.62) by [·]β,h, and we will write 〈·〉β,h for the normalised versions. Before
giving the proof of the proposition, which is essentially standard, we collect some resulting
identities that will be used later.

Corollary 4.2.10. For all β and h as in Proposition 4.2.9,

〈eti〉β,h = 〈e2ti〉β,h = 〈zi〉β,h, 〈e3ti〉β,h = 1 (4.2.63)

and
〈sisjeti+tj 〉β,h = 〈ξiηj〉β,h, (4.2.64)

where the left-hand sides are evaluated as on the right-hand side of (4.2.61), and the right-hand
sides are given by the H0|2 expectation (4.2.7).

Proof. To lighten notation, we write 〈·〉 ≡ 〈·〉β,h. For the H2|4 expectation (4.2.47), we have
〈xqi z

p
i 〉 = 0 whenever q > 0 is an odd integer by the symmetry x 7→ −x (recall that x = φ1). Also

note that
〈x2
i 〉 = 〈y2

i 〉 = 〈ξ1
i η

1
i 〉 = 〈ξ2

i η
2
i 〉, (4.2.65)
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where we emphasize that the superscript of x2
i denotes the square and the superscript of ξ2

i denotes
the second component. These identies follow from the x↔ y and ξ1

i η
1
i ↔ ξ2

i η
2
i symmetries of the

H2|4 model and 〈x2
i + y2

i − 2ξ1
i η

1
i 〉 = 0 by supersymmetric localisation, i.e., Theorem 4.2.8. Since

〈z2
i 〉 = 1− 2〈ξiηi〉 in H0|2, (4.2.66)

〈z2
i 〉 = 1 + 〈x2

i + y2
i − 2ξ1

i η
1
i − 2ξ2

i ξ
2
i 〉 = 1− 2〈ξ2

i η
2
i 〉 in H2|4, (4.2.67)

and since the left-hand sides are equal by Proposition 4.2.7, we further see that the H2|4 expecta-
tion (4.2.65) equals the H0|2 expectation 〈ξiηi〉. Similarly, 〈x2

i zi〉 = 〈y2
i zi〉 = 〈ξ1

i η
1
i zi〉 = 〈ξ2

i η
2
i zi〉.

By using the preceding equalities and by expanding 〈(−1 + z2
i )zi〉 = 〈(ui · ui + z2

i )zi〉 in both H0|2

and H2|4, one obtains
−2〈x2

i zi〉 = −〈zi〉+ 〈z3
i 〉 = −2〈ξiηi〉, (4.2.68)

where the first expectation is with respect to H2|4 and the others are with respect to H0|2. Using
these identities and (4.2.61), we then find

〈eti〉 = 〈xi + zi〉 = 〈zi〉 (4.2.69)

〈e2ti〉 = 〈(xi + zi)
2〉 = 〈x2

i 〉+ 〈z2
i 〉 = 〈ξiηi〉+ 〈1− 2ξiηi〉 = 〈1− ξiηi〉 = 〈zi〉 (4.2.70)

〈e3ti〉 = 〈(xi + zi)
3〉 = 〈3x2

i zi〉+ 〈z3
i 〉 = 3〈ξiηi〉+ 〈1− 3ξiηi〉 = 1. (4.2.71)

The identity (4.2.64) follows analogously:

〈sisjeti+tj 〉 = 〈yiyj〉 =
1

2
〈ξiηj + ξjηi〉 = 〈ξiηj〉 (4.2.72)

where we used the generalisation of (4.2.65) for the mixed expectation 〈xixj〉 and that 〈ξiηj〉 =
〈ξjηi〉, see (4.2.27).

To describe the proof of Proposition 4.2.9 we now define horospherical coordinates for H2|4.
These are a change of generators from the variables (x, y, ξγ , ηγ) with γ = 1, 2 to (t, s, ψγ , ψ̄γ),
where

x = sinh t− et(1

2
s2 + ψ̄1ψ1 + ψ̄2ψ2), y = ets, ηi = etψ̄i, ξi = etψi. (4.2.73)

We note that ψ̄i is simply notation to indicate a generator distinct from ψi, i.e., the bar does not
denote complex conjugation, which would not make sense. In these coordinates the action is
quadratic in s, ψ̄1, ψ1, ψ̄2, ψ2. This leads to a proof of Proposition 4.2.9 by explicitly integrating
out these variables when t is fixed via the following standard lemma, whose proof we omit.

Lemma 4.2.11. For any N ×N matrix A,(∏
i

∂ηi∂ξi

)
e(ξ,Aη) = detA, (4.2.74)

and, for a positive definite N ×N matrix A,∫
RN

e−
1
2

(s,As) ds√
2π

= (detA)−1/2. (4.2.75)

Proof of Proposition 4.2.9. The first step is to compute the Berezinian for the horospherical change
of coordinates. This can be done as in [9, Appendix A]. There is an et for the s-variables and an
e−t for each fermionic variable, leading to a Berezinian ze−3t, i.e.,

[F ]H
2|4

β,h =

∫ (∏
i

dsidti∂ψ1
i
∂ψ̄1

i
∂ψ2

i
∂ψ̄2

i

)
Fe−H̄β,h(s,t,ψ,ψ̄)

∏
i

e−3ti

2π
. (4.2.76)



108 CHAPTER 4. RANDOM SPANNING FORESTS AND HYPERBOLIC SYMMETRY

where H̄β,h(s, t, ψ, ψ̄) is Hβ,h expressed in horospherical coordinates.
The second step is to apply Lemma 4.2.11 repeatedly. To prove (4.2.62), we apply it twice,

once for (ψ̄1, ψ1) and once for (ψ̄2, ψ2). The lemma applies since F does not depend on ψ1, ψ̄1, ψ2, ψ̄2

by assumption. To prove (4.2.62), we apply it three times, once for (ψ̄1, ψ1), once for (ψ̄2, ψ2), and
once for s. Each integral contributes a power of det(−∆β(t),h(t)), namely −1/2 for the Gaussian
and +1 for each fermionic Gaussian. This explains the coefficient 2 in (4.2.61) and the coefficient
3/2 = 2− 1/2 in (4.2.62).

The final claim follows as the conditions that β induces a connected graph and some hi > 0

implies [1]H
2|4

β,h is finite. The claim thus follows from Theorems 4.2.7 and 4.2.1.

Pinned measure for the H2|4 model

This section introduces a pinned version of the H2|4 model and relates it to the pinned H0|2

model that was introduced in Section 4.2. For the H2|4 pinning means u0 always evaluates
to (x, y, ξ1, η1, ξ2, η2, z) = (0, 0, 0, 0, 0, 0, 1). As before, we implement this by replacing Λ by
Λ0 = Λ \ {0} and setting

hj = β0j , (4.2.77)

and replacing u0 · uj by −zj . We denote the corresponding expectations by

[·]0β, 〈·〉0β. (4.2.78)

We can relate the pinned and unpinned measures exactly as for the H0|2 model.

Proposition 4.2.12. For any polynomial F in (ui · uj)i,j∈Λ,

[F ]0β = [(1− z0)F ]β, 〈F 〉0β = 〈(1− z0)F 〉β. (4.2.79)

Moreover, [1]0β = [1]β and hence for any pairs of vertices ikjk,

〈
∏
k

(uik · ujk + 1)〉0β = 〈
∏
k

(uik · ujk + 1)〉β. (4.2.80)

Proof. The first equality in (4.2.79) follows by reducing the H2|4 expectation to a H0|2 expectation
by Proposition 4.2.7 (recall the convention that z0 = uδ · u0), then applying Proposition 4.2.6 for
the H0|2 expectation, and finally applying Proposition 4.2.7 again (in reverse). The second equality
in (4.2.79) then follows by normalising using that [1]0β = [1− z0]β = [1]β (as in Proposition 4.2.6).
The equalities (4.2.80) follow from [1]0β = [1]β by differentiating with respect to the βikjk .

The next corollary expresses the pinned model in horospherical coordinates. For i, j ∈ Λ, set

βij(t) ≡ βijeti+tj , (4.2.81)

and let D̃β(t) be the determinant of −∆β(t) restricted to Λ0 = Λ \ {0}, i.e., the determinant of
submatrix of −∆β(t) indexed by Λ0. When β induces a connected graph, this determinant is
non-zero, and by the matrix-tree theorem it can be written as

D̃β(t) =
∑
T

∏
ij

βije
ti+tj (4.2.82)

where the sum is over all spanning trees on Λ. For t ∈ RΛ, then define

H̃0
β(t) ≡ 1

2

∑
i,j

βij(cosh(ti − tj)− 1)− 3

2
log D̃β(t)− 3

∑
i

ti. (4.2.83)

By combining Proposition 4.2.12 with Proposition 4.2.9, we have the following representation
of the pinned measure in horospherical coordinates:
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Corollary 4.2.13. For any smooth function F : RΛ → R with sufficient decay,

[F ((x+ z)i)]
0
β =

∫
F ((eti)i)e

−H̃0
β(t) δ0(dt0)

∏
i 6=0

dti√
2π
. (4.2.84)

Proof. We recall the definition of the left-hand side, i.e., that the expectation [·]0β is defined in
(4.2.77)–(4.2.78) as the expectation on Λ0 given by [·]0β = [·]β̃,h̃ with β̃ij = βij and h̃i = β0i for
i, j ∈ Λ0. The equality now follows from (4.2.62), together with the observation that ∆β(t)|Λ0 is
∆β̃(t),h̃(t) if t0 = 0.

In view of (4.2.84) and since [1]0β = Zβ by Proposition 4.2.12, we again abuse notation
somewhat and write the normalised expectation of a function of t = (ti)i∈Λ as

〈F 〉0β =
1

Zβ

∫
RΛ

F ((ti)i)e
−H̃0

β(t)δ0(dt0)
∏
i 6=0

dti√
2π
. (4.2.85)

Corollary 4.2.14. The connection probabilities can be written as in terms of the pinned H2|4 measure:

Pβ[0↔ i] = 〈eti〉0β. (4.2.86)

Moreover, for any vertex i,
〈e3ti〉0β = 1. (4.2.87)

Proof. (4.2.86) follows by applying first (4.2.11), then (4.2.80), then using the fact that u0 · ui =
−zi under 〈·〉0β, then using that 〈xi〉β = 0 by symmetry, and finally applying (4.2.84):

Pβ[0↔ i] = −〈u0 · ui〉β = 〈zi〉0β = 〈zi + xi〉0β = 〈eti〉0β. (4.2.88)

The argument that 〈e3ti〉0β = 1 is identical to (4.2.71) with 〈·〉β replaced by 〈·〉0β.

4.3 Phase transition on the complete graph
The following theorem shows that on the complete graph the arboreal gas undergoes a transition
very similar to the percolation transition, i.e., the Erdős–Rényi graph. As mentioned in the
introduction, this result has been obtained previously [11,65,70]. We have included a proof only
to illustrate the utility of the H0|2 representation. The study of spanning forests of the complete
graph goes back to (at least) Rényi [87] who obtained a formula which can be seen to imply that
their asymptotic number grows like

√
enn−2, see [80].

Throughout this section we consider G = KN , the complete graph on N vertices with vertex
set {0, 1, 2, . . . , N − 1}, and we choose βij = α/N with α > 0 fixed for all edges ij. For notational
simplicity we write Zβ and Pβ, i.e., we leave the dependence on N implicit.

Theorem 4.3.1. In the high temperature phase α < 1,

Zβ ∼ e(N+1)α/2
√

1− α, Pβ[0↔ 1] ∼
[

α

1− α

]
1

N
. (4.3.1)

In the low temperature phase α > 1,

Zβ ∼
aN+3/2e(a2+N)/(2a)

(a− 1)5/2N
, Pβ[0↔ 1] ∼

[
α− 1

α

]2

. (4.3.2)

In the critical case α = 1,

Zβ ∼
31/6Γ(2

3)e(N+1)/2

N1/6
√

2π
, Pβ[0↔ 1] ∼

[
32/3Γ(4

3)

Γ(2
3)

]
1

N2/3
. (4.3.3)
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Integral representation
The first step in the proof of the theorem is the following integral representation that follows from
a transformation of the fermionic field theory representation from Section 4.2. We introduce the
effective potential

V (z̃) ≡ −P (iαz̃), P (w) ≡ w2

2α
+ w + log(1− w) (4.3.4)

and set

F (w) ≡ 1− α

1− w
, F01(w) ≡ −

(
w

1− w

)2(
F (w)− 2α

N(−w)(1− w)

)
. (4.3.5)

Proposition 4.3.2. For all α > 0 and all positive integers N ,

Zβ = e(N+1)α/2

√
Nα

2π

∫
R
dz̃ e−NV (z̃)F (iαz̃) (4.3.6)

Zβ[0↔ 1] = e(N+1)α/2

√
Nα

2π

∫
R
dz̃ e−NV (z̃)F01(iαz̃), (4.3.7)

where Zβ[0↔ 1] ≡ Pβ[0↔ 1]Zβ.

Proof. We start from the representations of the partition functions in terms of the H0|2 model, i.e.,
Theorem 4.2.1 and Corollary 4.2.2, which we simplify using the assumption that the graph is the
complete graph. Let (∆βf)i = α

N

∑N−1
j=0 (fi − fj) be the mean-field Laplacian and h = (hi)i. Then

1

2
(u,−∆βu) = −(ξ,−∆βη)− 1

2
(z,−∆βz)

= −(ξ,−∆βη) + α

N−1∑
i=0

ξiηi +
α

2N

(
N−1∑
i=0

zi

)2

− αN

2
(4.3.8)

(h, z − 1) = −
N−1∑
i=0

hiξiηi. (4.3.9)

In the sequel we will omit the range of sums and products when there is no risk of ambiguity.
To decouple the two terms that are not diagonal sums we use the following Hubbard–Stratonovich-

type transforms in terms of auxiliary variables ξ̃, η̃ (fermionic) and z̃ (real). Let 1 be the vector
such that 1i = 1 for all 0 6 i 6 N − 1.

e+(ξ,−∆βη) =
1

Nα
∂η̃∂ξ̃e

α(ξ̃1−ξ,η̃1−η) =
1

Nα
∂η̃∂ξ̃

[
eNαξ̃η̃

∏
i

eα(ξiηi−ξ̃ηi−ξiη̃)

]
(4.3.10)

e−
α

2N
(
∑
i zi)

2
=

√
Nα

2π

∫
R
dz̃ e−

1
2
Nαz̃2

eiαz̃
∑
i zi . (4.3.11)

The second formula is the formula for the Fourier transform of a Gaussian measure. The first
formula can be seen by making use of the following identity. Write Af ≡ 1

N

∑
i fi for the average

of f , so that

α(ξ̃1− ξ, η̃1− η) = α([ξ̃ −Aξ]1− [ξ − (Aξ)1], [η̃ −Aη]1− [η − (Aη)1])

= α([ξ̃ −Aξ]1, [η̃ −Aη]1) + α(ξ − (Aξ)1,η − (Aη)1)

= Nα(ξ̃ −Aξ)(η̃ −Aη) + (ξ,−∆βη). (4.3.12)

Using this identity the first equality in (4.3.10) is readily obtained by computing the fermionic
derivatives, while the second equality follows by expanding the exponent. In the second line of
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(4.3.12) we used the orthogonality of constant functions with the mean 0 function ξ − (Aξ)1.
Finally, on the last line of (4.3.12), we used that [η̃ − Aη]1 is a constant to write the `2 inner
product as a product multiplied by a factor N , and the factor α in the second term was absorbed
into ∆β.

Substituting (4.3.10)–(4.3.11) into (4.2.8) gives

Zβ,h =
∏
i

∂ηi∂ξi
1

zi
e−

1
2

(u,−∆βu)−(h,z−1)

=
eNα/2√
2πNα

∫
R
dz̃∂η̃∂ξ̃ e

− 1
2
Nαz̃2+Nαξ̃η̃+α/2

N∏
i=1

[
∂ηi∂ξi

(
exp
(
α(ξiηi − ξ̃ηi − ξiη̃) + iαz̃(1− ξiηi)− αξiηi + (1 + hi)ξiηi

))]
(4.3.13)

Simplifying the term inside the exponential gives

Zβ,h =
eNα/2√
2πNα

∫
R
dz̃∂η̃∂ξ̃ e

− 1
2
Nαz̃2+Nαξ̃η̃+Nαiz̃+α/2

N∏
i=1

[
∂ηi∂ξi

(
exp
(

(1 + hi − iαz̃)(ξiηi)− α(ξ̃ηi + ξiη̃)
))]

. (4.3.14)

Since (ξ̃η̃)2 = 0 and (ξ̃ηi + ξiη̃)3 = 0, the exponential can be replaced by its third-order Taylor
expansion, giving

Zβ,h =
e(N+1)α/2

√
2πNα

∫
R
dz̃∂η̃∂ξ̃ e

−Nα[ 1
2
z̃2−ξ̃η̃−iz̃]

∏
i

[
(1 + hi − iαz̃)− α2ξ̃η̃

]
.

=
e(N+1)α/2

√
2πNα

∫
R
dz̃∂η̃∂ξ̃ e

−Nα[ 1
2
z̃2−ξ̃η̃−iz̃]

∏
i

(1 + hi − iαz̃)
∏
i

[1− α2

1 + hi − iαz̃
ξ̃η̃] (4.3.15)

Using again nilpotency of ξ̃η̃ this may be rewritten as

Zβ,h =
e(N+1)α/2

√
2πNα

∫
R
dz̃∂η̃∂ξ̃ e

−Nα[ 1
2
z̃2−iz̃]

∏
i

(1 + hi − iαz̃)

[
1 +

(
Nα−

∑
i

α2

1 + hi − iαz̃

)
ξ̃η̃

]
.

(4.3.16)

Evaluating the fermionic derivatives gives the identity

Zβ,h =
e(N+1)α/2αN√

2πNα

∫
R
dz̃ e−Nα[ 1

2
z̃2−iz̃]

N∏
i=1

(1 +hi− iαz̃)

[
1− α

N

∑
i

(1 + hi − iαz̃)−1

]
. (4.3.17)

To show (4.3.6)–(4.3.7) we now take h = 0. By definition the last bracket in (4.3.17) is then
F (iαz̃) and the remaining integrand defines e−NV (z̃), proving (4.3.6). For (4.3.7) we use that
zi = ezi−1, and hence that [z0z1]β = Zβ,−10−11 . Therefore (4.3.17) implies

[z0z1]β =
e(N+1)α/2αN√

2πNα

∫
R
dz̃ e−NV (z̃)

(
−iαz̃

1− iαz̃

)2[
F (iαz̃) +

2α

N

[
1

1− iαz̃
− 1

−iαz̃

]]
. (4.3.18)

By definition, the integrand equals −F01(iαz̃), so together with the relation Zβ[0↔ 1] = −[z0z1]β ,
which holds by (4.2.11), the claim (4.3.7) follows.
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Asymptotic analysis
To apply the method of stationary phase to evaluate the asymptotics of the integrals, we need the
stationary points of V , and asymptotic expansions for V and F . The first two derivatives of P are

P ′(w) =
w

α
+ 1− 1

1− w
, P ′′(w) =

1

α
− 1

(1− w)2
. (4.3.19)

The stationary points are those w = iαz̃ such that P ′(w) = 0. This equation can be rewritten as

w2 − w(1− α) = 0, (4.3.20)

which has solutions w = 0 and w = 1− α. We call a root w0 stable if P ′′(w0) > 0 and unstable if
P ′′(w0) < 0. For α < 1 the root 0 is stable whereas 1− α is unstable; for α > 1 the root 1− α is
stable whereas 0 is unstable; for α = 0 the two roots collide at 0 and P ′′(0) = 0.

For the asymptotic analysis, we start with the nondegenerate case α 6= 1. First observe that we
can view the right-hand sides of (4.3.6)–(4.3.7) as contour integrals and can, due to analyticity
of the integrand and the decay of e−Nαz̃

2/2 when Re z̃ is large, shift this contour to the horizontal
line R + iw for any w ∈ R. We will then apply Laplace’s method in the version given by the next
theorem, which is a simplified formulation of [82, Theorem 7, p.127].

Theorem 4.3.3. Let I be a horizontal line in C. Suppose that V,G : U → R are analytic in a
neighbourhood U of the contour I, that t0 ∈ I is such that V ′ has a simple root at t0, and that
Re(V (t)− V (t0)) is positive and bounded away from 0 for t away from t0. Then∫

I
e−NV (t)G(t) dt ∼ 2e−NV (t0)

∞∑
s=0

Γ(s+ 1/2)
bs

N s+1/2
, (4.3.21)

where the notation ∼ means that the right-hand side is an asymptotic expansion for the left-hand
side, and the coefficients are given by (with all functions evaluated at t0):

b0 =
G

(2V ′′)1/2
, b1 =

(
2G′′ − 2V ′′′G′

V ′′
+

[
5V ′′′2

6V ′′2
− V ′′′′

2V ′′

]
G

)
1

(2V ′′)3/2
, (4.3.22)

and with bs as given in [82] for s ≥ 2. (Also recall that Γ(1/2) =
√
π and that Γ(s+ 1) = sΓ(s).)

For α 6= 1, denote by w0 the unique stable root. As discussed in the previous paragraph, we
can shift the contour to the line R− iw0

α , and the previous theorem implies that√
Nα

2π

∫
R
e−NV (z̃)G(z̃)dz̃

=

√
1

αP ′′
eNP

[
F − 1

4NP ′′

(
2F ′′ − 2P ′′′F ′

P ′′
+

[
5P ′′′2

6P ′′2
− P ′′′′

2P ′′

]
F

)
+O

(
1

N2

)]
, (4.3.23)

with all functions on the right-hand side are evaluated at w0. From this the proof of Theorem 4.3.1
for α 6= 1 is an elementary (albeit somewhat tedious) computation of the derivatives of P and F
and F01 at w0.

Proof of Theorem 4.3.1, α < 1. The stable root is w0 = 0. By (4.3.23) and elementary computa-
tions for the derivatives of P and F and F01, we find√

Nα

2π

∫
R
e−NV (z̃)F (iαz̃)dz̃ ∼

√
1− α (4.3.24)√

Nα

2π

∫
R
e−NV (z̃)F01(iαz̃)dz̃ ∼ α2

√
1− α

. (4.3.25)

Recalling the definitions (4.3.6)–(4.3.7), this implies the claims.
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Proof of Theorem 4.3.1, α > 1. The stable root is w0 = 1 − α. Again (4.3.23) and elementary
computations for the derivatives of P and F and F01 lead to√

Nα

2π

∫
R
e−NV (z̃)F (iαz̃)dz̃ ∼ eNP α3/2

N(α− 1)5/2
(4.3.26)√

Nα

2π

∫
R
e−NV (z̃)F01(iαz̃)dz̃ ∼ eNP 1

N(α− 1)1/2α1/2
, (4.3.27)

and P = P (w0) = P (1− α). Again the claims follow from (4.3.6)–(4.3.7).

At the critical point α = 1, the two roots collide at 0 and P ′′(0) = 0. We analyse the integral
as follows.

Proof of Theorem 4.3.1, α = 1. We begin by using the conjugate flip symmetry to write

N
2
3

∫
R
dz̃ e−NV (z̃)F (iz̃) = 2N

2
3 Re

∫ ∞
0

dz̃ e−NV (z̃)F (iz̃). (4.3.28)

Using analyticity of the integrand, we then deform the contour from [0,∞) to [0, eiπ/6∞); the
contribution of the boundary arc vanishes due to the decay of e−Nαz̃

2/2 on this arc. We now split
the contour into two intervals I1 = [0, eiπ/6N−3/10) and I2 = [eiπ/6N−3/10, eiπ/6∞), and denote
the integrals over these regions as J1 and J2 respectively.

Over the first interval I1, we introduce the new real variable s = N
1
3 e−iπ/6z̃, in terms of which

J1 = 2N
2
3 Re

∫
I1

dz̃ e−NV (z̃)F (iz̃) = 2 Re

∫ N
1
30

0
ds e−NV (e

iπ
6 N−

1
3 s)N

1
3 e

iπ
6 F (e

2iπ
3 N−

1
3 s). (4.3.29)

We then approximate the arguments as

NV (e
iπ
6 N−

1
3 s) =

1

3
s3 +O(N−

1
3 s4) =

1

3
s3 +O(N−

6
30 ) (4.3.30)

N
1
3 e

iπ
6 F (e

2iπ
3 N−

1
3 s) = e−

iπ
6 s+O(N−

1
3 s2) = e−

iπ
6 s+O(N−

8
30 ), (4.3.31)

where the last error bounds hold uniformly for s ∈ [0, N1/30]. This gives

J1 = 2 Re

∫ N
1
30

0
ds e−

iπ
6 se−

1
3
s3 +O(N−

4
30 ) = 2 Re

∫ ∞
0

ds e−
iπ
6 se−

1
3
s3 + o(1) = 3

1
6 Γ(2

3) + o(1).

(4.3.32)
The second term J2 is asymptotically negligible. To see this, we bound |F (iz̃)| ≤ 1, introduce

the real variable s = e−
iπ
6 z̃, and split the resulting domain as [N−3/10, 2) ∪ [2,∞) = I ′2 ∪ I ′′2 :

J2 = 2N
2
3 Re

∫
I2

dz̃ e−NV (z̃)F (iz̃) ≤ 2N
2
3 Re

∫
I′2

ds e−NV ( iπ
6
s) + 2N

2
3 Re

∫
I′′2

ds e−NV ( iπ
6
s).

(4.3.33)
Over I ′2, we use that |I ′2| ≤ 2 and bound the integral in terms of the supremum of the integrand:

2N
2
3 Re

∫
I′2

ds e−NV ( iπ
6
s)e

iπ
6 F (e

2iπ
3 s) ≤ 2N

2
3 Re

∫
I′2

ds e−NV ( iπ
6
s) ≤ 4N

2
3 sup
s∈I′2

e−Re[NV ( iπ
6
s)],

(4.3.34)
and as ReNV ( iπ6 s) is decreasing, this supremum is attained on the boundary s = N−3/10. Taylor
expanding as before gives us

4N
2
3 sup
s∈I′2

e−ReNV ( iπ
6
s) = 4N

2
3 e−ReNV ( iπ

6
N−

3
10 ) = e−( 1

3
+o(1))N

1
10 (4.3.35)
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Over I ′′2 , we use that Re[NV ( iπ6 s)] ≥
Ns2

4 for all s ≥ 2 to bound the second term as

2N
2
3 Re

∫
I′2

ds e−NV ( iπ
6
s) ≤ 2N

2
3

∫
I′2

ds e−
Ns2

4 ≤ e−(1+o(1))N . (4.3.36)

Putting together the estimates for J1 and J2, we therefore find

N
2
3

∫
R
dz̃ e−NV (z̃)F (iz̃) = J1 + J2 = 3

1
6 Γ(2

3) + o(1) (4.3.37)

and hence the first asymptotic relation in (4.3.3) follows from (4.3.6), i.e.,

Zβ ∼
3

1
6 Γ
(

2
3

)
e

(N+1)
2

N
1
6

√
2π

. (4.3.38)

Using the same procedure, we can compute Pβ[0 ↔ 1]. We again split the (conveniently
scaled) integral into two terms as

N
4
3

∫
R
dz̃ e−NV (z̃)F01(iz̃) = 2 Re

∫ N
1
30

0
ds e−NV (e

iπ
6 N−

1
3 s)Ne

iπ
6 F01(e

2iπ
3 N−

1
3 s)

+ 2 Re

∫ ∞
N

1
30

ds e−NV (e
iπ
6 N−

1
3 s)Ne

iπ
6 F01(e

2iπ
3 N−

1
3 s) = J1 + J2. (4.3.39)

As before J2 is asymptotically negligible. For J1, we approximate the F01 term as

Ne
iπ
6 F01(e

2iπ
3 N−

1
3 s) = e

iπ
6 s3 +O(N−

1
3 s4) = e

iπ
6 s3 +O(N−

6
30 ), (4.3.40)

uniformly for s ∈ [0, N1/30], to obtain the asymptotic relation

J1 = 2 Re

∫ N
1
30

0
ds e−NV (e

iπ
6 N−

1
3 s)Ne

iπ
6 F01(e

2iπ
3 N−

1
3 s) ∼ 2 Re

∫ ∞
0

ds e
iπ
6 s3e−

1
3
s3 = 3

5
6 Γ(4

3).

(4.3.41)
From (4.3.7), we therefore find

Zβ[0↔ 1] ∼
3

5
6 Γ
(

4
3

)
e

(N+1)
2

N
5
6

√
2π

(4.3.42)

which after dividing by Zβ shows the second asymptotic relation in (4.3.3).

4.4 No percolation in two dimensions

In this section, we consider the arboreal gas on (finite approximations of) Z2 with constant nearest
neighbour weights, i.e., with βij = β > 0 for all edges ij and vertex weights hi = h for all vertices
i. As such we write β instead of β in this section. Constant weights are merely a convenient
choice; everything in this section also applies to translation-invariant finite range weights, for
example. In contrast with the case of the complete graph, we show that on Z2 the tree containing
a fixed vertex always has finite density. Our arguments are closely based on estimates developed
for the vertex-reinforced jump process [9, 62, 88]. The main new idea is to use these bounds in
combination with dimensional reduction from Section 4.2.
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Two-point function decay in two dimensions

The proof of Theorem 4.1.3 makes use of the representation from Section 4.2, and closely fol-
lows [88]; an alternative proof could likely be obtained by adapting instead [62].

To lighten the notation, for a finite subgraph Λ ⊂ Z2 we write Pβ in place of PΛ,β . By (4.2.86),
the connection probability can be written in the horospherical coordinates of the H2|4 model as

Pβ[0↔ j] = 〈etj 〉0β (4.4.1)

where 〈·〉0β denotes the expectation with pinning at vertex 0. Explicitly, by (4.2.85), the measure
〈·〉0β on the right-hand side can be written as the a = 3/2 case of

Qβ,a(dt) ≡
1

Zβ,a
exp

−1

2

∑
i,j

βij(cosh(ti − tj)− 1)

D(β, t)a
∏
i 6=0

dti√
2π
, (4.4.2)

where
D(β, t) ≡ D̃β(t)

∏
i

e−2ti , (4.4.3)

and where D̃β(t) was given explicitly in (4.2.82) and Zβ,a is a normalising constant. We have
made the parameter a explicit as our argument adapts that of [88], which concerned the case
a = 1/2. When a = 1/2 supersymmetry implies that Zβ,1/2 = 1 and EQβ,1/2(etk) = 1 for all
β = (βij) and all k ∈ Λ. These identities require the following replacement when a 6= 1/2:

Zβ,a is increasing in all of the βij , EQβ,a(e2atk) = 1 for all (βij) and all k ∈ Λ. (4.4.4)

When a = 3/2 the first of these facts follow from the forest representation for the partition
function, see Proposition 4.2.9, and the second is (4.2.87) of Corollary 4.2.13. Proof that (4.4.4)
holds for general half-integer a > 0 appears in [29], and we conjecture that these assumptions
are true for any a > 0.

With (4.4.4) given, it is straightforward to adapt [88, Lemma 1] to obtain the following lemma.
In the next lemma we assume 0, i ∈ Λ, but we make no further assumptions beyond that β induces
a connected graph.

Lemma 4.4.1 (Sabot [88, Lemma 1] for a = 1/2). Let a > 0, s ∈ (0, 1), and γ > 0. Assume (4.4.4)
holds. Then for any v ∈ RΛ with vj = 1, v0 = 0, and

γ|vi − vk| 6
1

2
(1− s)2 for all i ∼ k, (4.4.5)

one has, with q = 1/(1− s),

EQβ,a(e2astj ) 6 e−2asγe
1
2
γ2q2

∑
i,k(βik+2a)(vi−vk)2

. (4.4.6)

Proof. As mentioned, our proof is an adaptation of [88, Lemma 1], and hence we indicate the
main steps but will be somewhat brief. In this reference a = 1/2, Qβ,a is denoted Q, βij is denoted
Wij , and t is denoted by u. Let Qγβ,a denote the distribution of t− γv. Since the partition function
does not change under translation of the underlying measure, by following [88, Prop. 1] we
obtain,

dQβ,a
dQγβ,a

(t) = exp

−1

2

∑
i,k

βik(cosh(ti − tk)− cosh(ti − tk + γ(vi − vk))

 D(β, t)a

D(β + γv, t)a
. (4.4.7)
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With et replaced by e2at but otherwise exactly as in the argument leading to [88, (2)], by using
that s−1 and q are Hölder conjugate and using the second part of (4.4.4),

EQβ,a(e2astk) = EQγβ,a

(
dQβ,a
dQγβ,a

e2astk

)
6 EQγβ,a

((
dQβ,a
dQγβ,a

)q)1/q(
EQγβ,a(e2atk)

)s
6 EQγβ,a

((
dQβ,a
dQγβ,a

)q)1/q

e−2asγ . (4.4.8)

The expectation on the right-hand side is estimated as in [88], with the only change that
√
D(β, t)

is replaced by D(β, t)a in all expressions, and that the change of measure from Qβ,a to Qβ̃,a
involves the normalisation constants, i.e., a factor Zβ̃,a/Zβ,a. Setting γ′ = γ(q − 1), we obtain

EQγβ,a

((
dQβ,a
dQγβ,a

)q)
= E

Qγ
′
β,a

(dQβ,a
dQγβ,a

)q−1
dQβ,a

dQγ
′

β,a


6 E

Qγ
′
β,a

q
2

∑
i,k

βik cosh(ti − tk + γ′(vi − vk))(2q2γ2(vi − vk)2)


= e

1
2

∑
i,k βikq

3γ2(vi−vk)2Zβ̃,a
Zβ,a

EQβ̃,a

((
D(β, t)

D(β̃, t)

)a)
(4.4.9)

where
β̃ik = βik(1− 2q3γ2(vi − vk)2) ∈ [

1

2
βik, βik]. (4.4.10)

The ratio of determinants is bounded using the matrix-tree theorem as done on [88, p.7], and we
use that Zβ̃,a 6 Zβ,a, by (4.4.4). The result is (4.4.6).

Proof of Theorem 4.1.3. We may choose s = 1/(2a) = 1/3 ∈ (0, 1) in Lemma 4.4.1. We then
combine (4.4.1) and (4.4.6) and choose v as a difference of Green functions (exactly as in [88,
Section 2.2]) to find that,

Pβ[0↔ j] = EQβ,a(etj ) = EQβ,a(e2astj ) 6 |j|−cβ (4.4.11)

as needed.

Mermin–Wagner theorem
We now show that the vanishing of the density of the cluster containing a fixed vertex on the torus
also follows from a version of the classical Mermin–Wagner theorem. We first derive an expression
for a quantity closely related to the mean tree size. For constant h, Theorem 4.2.1 implies that

[za]β,h =
∑
F∈F

∏
ij∈F

βij
∏
T∈F

(1 +
∑
k∈T

(h− 1a=k)), (4.4.12)

which leads to

〈zi〉β,h = Eβ,h
h|Ti|

1 + h|Ti|
, (4.4.13)

where Ti is the (random) tree containing the vertex i.
Let Λ be a d-dimensional discrete torus, and let λ(p) by the Fourier multiplier of the corre-

sponding discrete Laplacian:

λ(p) ≡
∑
j∈Λ

β0j(1− cos(p · j)), p ∈ Λ? (4.4.14)

where · is the Euclidean inner product on Rd and Λ? is the Fourier dual of the discrete torus Λ.
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Theorem 4.4.2. Let d > 1, and let Λ be a d-dimensional discrete torus of side length L. Then

1

〈z0〉β,h
≥ 1 +

1

(2πL)d

∑
p∈Λ?

1

λ(p) + h
. (4.4.15)

Proof. The proof is analogous to [9, Theorem 1.5]. We write the H0|2 expectations 〈ξiηj〉β,h and
〈zi〉β,h in horospherical coordinates using Corollary 4.2.10:

〈ξiηj〉β,h = 〈sisjeti+tj 〉β,h, 〈zi〉β,h = 〈eti〉β,h = 〈e2ti〉β,h. (4.4.16)

Set
S(p) =

1√
|Λ|

∑
j

ei(p·j)etjsj , D =
1√
|Λ|

∑
j

e−i(p·j)
∂

∂sj
. (4.4.17)

Since the expectation of functions depending only on (s, t) in horospherical coordinates is an
expectation with respect to a probability measure, denoted 〈·〉 from hereon, the Cauchy–Schwarz
inequality implies

〈|S(p)|2〉 > |〈S(p)DH̃〉|2

〈|DH̃|2〉
. (4.4.18)

Since the density in horospherical coordinates is e−H̃(s,t), the probability measure 〈·〉 obeys the
integration by parts 〈FDH̃〉 = 〈DF 〉 identity for any function F = F (s, t) that does not grow too
fast. Therefore by translation invariance, with yi = sie

ti ,

〈|S(p)|2〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈yjyl〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈y0yj−l〉 =
∑
j

ei(p·j)〈y0yj〉, (4.4.19)

〈S(p)DH̃〉 = 〈DS(p)〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈∂yj
∂sl
〉 =

1

|Λ|
∑
j

〈etj 〉 = 〈z0〉. (4.4.20)

By Cauchy–Schwarz, translation invariance, and (4.4.16) we also have

〈etj+tl〉 6 〈e2t0〉 = 〈z0〉. (4.4.21)

Using (5.4.13) and the integration by parts identity it follows that

〈|DH̃|2〉 = 〈DD̄H̃〉 =
1

|Λ|
∑
j,l

βjl〈etj+tl〉(1− cos(p · (j − l))) +
h

|Λ|
∑
j

〈etj 〉 6 〈z0〉(λ(p) + h).

(4.4.22)
In summary, we have proved∑

j

ei(p·j)〈ξ0ηj〉 =
∑
j

ei(p·j)〈y0yj〉 = 〈|S(p)|2〉 > |〈S(p)DH̃〉|2

〈|DH̃|2〉
>

〈z0〉
λ(p) + h

(4.4.23)

Summing over p ∈ Λ? in the Fourier dual of Λ (with the sum correctly normalized), the left-hand
side becomes 〈ξ0η0〉. Using 〈z0〉 = 1− 〈ξ0η0〉 this then gives the claim:

1

〈z0〉
− 1 ≥ 1

(2πL)d

∑
p∈Λ∗

1

λ(p) + h
. (4.4.24)

From the Mermin–Wagner theorem we obtain that on a finite torus of side length L the density
of the tree containing 0 tends to 0 as L→∞. We write . for inequalities that hold up to universal
constants.

Corollary 4.4.3. Let Λ be the 2-dimensional discrete torus of side length L. Then

Eβ,0
|T0|
|Λ|

.
1√

logL
. (4.4.25)
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Proof. For any h 6 1/|Λ| we have h|T0| 6 1. By Theorem 4.4.2, for d = 2 thus

Eβ,h
|T0|
|Λ|

=
1

|Λ|h
Eβ,hh|T0| 6

2

|Λ|h
Eβ,h

h|T0|
1 + h|T0|

=
2

|Λ|h
〈z0〉β,h .

1

hL2 logL
(4.4.26)

where we used that, for all h > 0, the Green’s function of the discrete torus satisfies

1

(2πL)2

∑
p∈Λ?

1

λ(p) + h
& log(h−1 ∧ L). (4.4.27)

Directly following the conclusion of the present proof, we shall show that if X is a random variable
with |X| 6 1, and if h� 1/|Λ|,

|Eβ,hX − Eβ,0X| = O(h|Λ|). (4.4.28)

Applying this estimate with X = |T0|/|Λ|, for h� 1/|Λ| we have∣∣∣∣Eβ,h |T0|
|Λ|
− Eβ,0

|T0|
|Λ|

∣∣∣∣ = O(hL2). (4.4.29)

With h = L−2(logL)−1/2, combining both estimates gives

Eβ,0
|T0|
|Λ|

.
1

hL2 logL
+ hL2 .

1√
logL

. (4.4.30)

Lemma 4.4.4. Let Λ be any finite graph with |Λ| vertices. Let X be a random variable with |X| 6 1.
Then for h� 1/|Λ|,

|Eβ,hX − Eβ,0X| = O(h|Λ|). (4.4.31)

Proof. By definition,

Eβ,hX =
Eβ,0(X

∏
T∈F (1 + h|T |))

Eβ,0(
∏
T∈F (1 + h|T |))

. (4.4.32)

With A′/(1 + ε)−A = (A′ −A)−A′(ε/(1 + ε)) = (A′ −A) + (A′/(1 + ε))ε we get

Eβ,hX − Eβ,0X = Eβ,0(X(
∏
T

(1 + h|T |)− 1))− Eβ,h(X)Eβ,0(
∏
T

(1 + h|T |)− 1). (4.4.33)

Since |X| 6 1 it suffices to bound∏
T∈F

(1 + h|T |)− 1 =
∑
F ′⊂F

∏
T∈F ′

h|T | (4.4.34)

where the sum runs over subforests F ′ of F , i.e., unions of the disjoint trees in F . Since
∑

i |Ti| 6
|Λ|,

∑
F ′⊂F

∏
T∈F ′

h|T | 6
∑
n>1

∑
i1,...,in

n∏
i=1

(h|Ti|) 6
∑
n>1

(
h
∑
i

|Ti|

)n
6
∑
n>1

(h|Λ|)n = O(h|Λ|) (4.4.35)

whenever h|Λ| � 1.



Appendices

4.A Percolation properties
In this appendix we indicate how to deduce Theorem 4.1.3 from our results in Section 4.4. We
also give proofs of the other unproven claims from Section 4.1. While we are unaware of any
references for these results, it is likely that they have been independently discovered in the past.
In particular, we thank G. Grimmett for pointing out Proposition 4.1.1.

Stochastic domination
The proof of Proposition 4.1.1 is an application of Holley’s inequality, and we begin by recalling
the set-up and result. For a finite set X and probability measures µi : 2X → [0,∞), µ1 convexly
dominates µ2 if for all A,B ⊂ 2X

µ1(A ∪B)µ2(A ∩B) > µ1(A)µ2(B). (4.A.1)

Holley’s inequality, as stated in [32], says that µ1 convexly dominating µ2 is a sufficient condition
for µ1 to stochastically dominate µ2.

Proof of Proposition 4.1.1. To prove the proposition, we verify the condition (4.A.1) when µ1 is
pβ bond percolation and µ2 is the arboreal gas with parameter β. This is straightforward: if B is
not a forest the inequality is trivial because the right-hand side is 0, whereas if B is a forest then
both sides are actually equal.

Remark 4.A.1. Proposition 4.1.1 implies a monotone coupling between the arboreal gas with
parameter β and pβ-bond percolation exists. An explicit construction of such a coupling would be
interesting.

The arboreal gas in infinite volume

Let Λ ⊂ Zd be a finite set of vertices such that the subgraph GΛ = (Λ, E(Λ)) induced by Λ is
connected. Write PΛ,β for the arboreal graph measure on GΛ. In this section we prove Proposi-
tion 4.1.9, i.e., we show how Conjecture 4.1.8 implies the existence of the infinite-volume limit
limΛ↑Zd PΛ,β , where Λn ↑ Zd means that Λn is increasing and for any finite set A ⊂ Zd, there is an
nA such that A ⊂ Λn for n > nA.

Proof of Proposition 4.1.9. We consider the case of general non-negative weights β = (βij). We
first claim it suffices to prove that for any finite graph G = (V,E), any set Ẽ of edges and any
e /∈ Ẽ, that

PG,β[Ẽ ∪ {e}] 6 PG,β[Ẽ]PG,β[e]. (4.A.2)

Note that this implies PG,β[Ẽ] is (weakly) monotone decreasing in βij for all edges ij /∈ Ẽ. The
sufficiency of this claim is a standard argument, but we provide it for completeness.

Observe that monotonicity and probabilities being bounded below by zero implies that for any
finite collection of edges Ẽ in Zd, limn→∞ PGn,β[Ẽ] exists. This is because the transition from Gn
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to Gn+1 can be viewed as a limit when β(n)
ij (weakly) increases to β(n+1)

ij – the increase is in fact
no change for ij ∈ E(Gn) and is positive for ij /∈ E(Gn). Moreover, the limit is independent of the
sequence Gn, as can be seen by interlacing any two sequence G(i)

n that increase to Zd. By inclusion-
exclusion the probability of any cylinder event depending on edges Ẽ can be expressed in terms of
the occurrence of finite subsets of edges in Ẽ, and hence every cylinder event has a well-defined
limiting probability. Since all cylinder probabilities converge, there is a well-defined probability
measure Pβ on {0, 1}E(Zd) that is the weak limit of the PGn,β . Moreover, Pβ is translation invariant
by the interlacing argument used above.

What remains is to prove (4.A.2). This is obvious if Ẽ is the empty set of edges, so we may
assume Ẽ is non-empty. We use an argument of Feder–Mihail [48]. In the proof of [48, Lemma 3.2]
it is shown that (4.A.2) follows if one knows, for all finite graphs G = (V,E), that

(i) PG,β[e, f ] 6 PG,β[e]PG,β[f ] for all distinct e, f ∈ E, and

(ii) For any Ẽ ⊂ E and e /∈ Ẽ, there is an f ∈ E such that PG,β[Ẽ | e, f ] > PG,β[Ẽ | e, f̄ ], where
f̄ means f is not present.

The first of these conditions is precisely Conjecture 4.1.8. The second is obvious: choose f ∈ Ẽ,
for which the right-hand side is zero.

Proof of Corollary 4.1.4
In this section we show how to deduce Corollary 4.1.4 from the quantitative estimate of Theo-
rem 4.1.3; we thank Tom Hutchcroft for suggesting this proof. The proof crucially exploits planar
duality and the resulting connected subgraph model that is dual to the arboreal gas. The precise
definitions are as follows.

Given a set ω ∈ {0, 1}E(Z2), we write ω? for the dual set of edges, i.e., if e? is the edge dual
to e, then ω?e? ≡ 1− ωe. In what follows we will identify Z2 with its dual; with this identification
ω 7→ ω? is an involution on the set of edge configurations {0, 1}E(Z2).

Suppose Pβ is an arboreal gas measure, either on a finite graph, or a weak limit of measures
on finite graphs. We define the connected subgraph measure P?β by P?β(A?) = Pβ(A) for all edge
configurations A. The name arises as for finite-volume measures P?β is supported on connected
subgraphs of Z2 since Pβ is supported on forests with finite components, see, e.g., [53, Theo-
rem 2.1]. It is important to note, however, that this is not necessarily true for infinite-volume
measures: in this case it may be that P?β has disconnected graphs in its support.

Remark 4.A.2. The connected subgraph measure as defined above is a special case of a more
general construction that occurs in the context of q → 0 limits of the q-state random cluster model,
see [53].

Given an event A ⊂ {0, 1}E(Z2), we write Ae = {ω ∪ {e} | ω ∈ A} and Ae = {ω \ {e} | ω ∈ A}
for the events in which we add or remove the edge e, respectively.

Lemma 4.A.3. For any arboreal gas measure Pβ , the dual measure P?β is insertion tolerant, i.e., for
A ⊂ {0, 1}E(Z2) and any edge e,

P?β[Ae] > 0 if P?β[A] > 0. (4.A.3)

Proof. This is equivalent to proving that the arboreal gas is deletion tolerant, i.e., that Pβ[Ae] > 0
if Pβ[A] > 0. We will need a standard notion of boundary conditions [41, Section 1.2.1]. In
brief, for a finite-volume Λ, a boundary condition ω is a partition of the boundary vertices of Λ.
Configurations are valid for a given boundary condition if they are forests after identifying each
set of the partition together. For any finite-volume Λ, any boundary condition ω, and any forest
F ,

PωΛ,β[F e] > min(1/β, 1)PωΛ,β[F ],
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and hence the same inequality holds true for all events. Following a standard argument (e.g., [52,
Theorem 4.17 (b)]) implies this inequality transfers to the infinite volume limit.

Recall that a ray is a semi-infinite self-avoiding walk. Two rays γ1 and γ2 are equivalent if
there is no finite set of vertices X that separates infinitely many vertices of γ1 from infinitely many
vertices of γ2. This is an equivalence relation, and equivalence classes are called ends.

Proposition 4.A.4. For any translation invariant connected subgraph measure P?β on Z2, the number
of components is P?β-a.s. one. Further, the number of ends of the random subgraph with law P?β is
almost surely in {1, 2}.

Proof. Since translations act transitively on Z2, [68, Theorem 7.9] implies that there is at most
one infinite component under P?β. To complete the proof of the first conclusion, note that for any
fixed K ∈ N , for all sufficiently large volumes the finite-volume connected subgraph measures
give probability zero to the existence of a cluster of size at most K.

The second claim is well known, see, e.g., [68, Exercise 7.24].

Lemma 4.A.5. For any infinite-volume translation invariant arboreal gas measure Pβ there are at
most two infinite trees.

Proof. Note first that translation invariance of Pβ implies translation invariance of P∗β. Next, we
note that almost surely all infinite trees in the arboreal gas are one-ended: if not, there is a positive
probability of the arboreal gas containing a bi-infinite path. The dual of this bi-infinite path is an
edge cut of Z2, contradicting the almost sure connectedness of the dual of the arboreal gas from
Proposition 4.A.4.

If the arboreal gas contains three infinite trees with positive probability, then there exist three
disjoint semi-infinite paths γi with initial vertex xi, i = 1, 2, 3. Fix a ball B containing the xi, and
note that the dual of the edges in B ∪

⋃3
i=1 γi divides Z2 into three connected components. Since

the dual to the arboreal gas is connected, it contains an infinite path in each of these components,
which implies it has at least three ends. By Proposition 4.A.4 this is a contradiction.

Proof of Corollary 4.1.4. Let T0 denote the tree containing the origin. By translation invariance
and ergodic decomposition, Pβ[T0 is infinite] is the density of the vertices in infinite trees. More-
over, by an adaptation of [23, Theorem 1], each individual infinite tree has a well-defined density.
We now argue by contradiction. Suppose that Pβ[0 is in an infinite tree] = p > 0. By Lemma 4.A.5,
this implies the existence of an infinite tree with a positive density, and hence of a p′ > 0 such that

Pβ[T0 has positive density] = p′. (4.A.4)

This is a contradiction, as Theorem 4.1.3 implies that the expected density of T0 is zero in any
infinite-volume limit.

4.B Rooted spanning forests and the uniform spanning tree
For the reader’s convenience, we include a short summary of the well-known representation of
rooted spanning forests and uniform spanning trees in the terms of the fermionic Gaussian free
field (fGFF). We follow the notation of Section 4.2. The fGFF is the unnormalised expectation on
Ω2Λ defined by

[F ]fGFF
β,h ≡

(∏
i∈Λ

∂ηi∂ξi

)
exp
[
(ξ,∆βη) + (h, ξη)

]
F. (4.B.1)

where ξη ≡ (ξiηi)i. The normalised version is again denoted by 〈·〉fGFF
β,h if [1]fGFF

β,h > 0; see
Section 4.2. It is straightforward that the fGFF is the properly normalised β →∞ limit of the H0|2

model as stated in the following fact; we omit the details.
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Fact. For all weights β and h,

[F (ξ,η)]fGFF
β,h = lim

α→∞

1

α|Λ|
[
F (
√
αξ,
√
αη)

]
αβ,αh

, (4.B.2)

where the unnormalised expectation on the right-hand side is that of the H0|2 model.

As a consequence of this fact and Theorem 4.2.1, the partition function of the fGFF can be
expressed in terms of weighted rooted spanning forests. Let Froot denote the set of all spanning
forests together with a choice of root vertex in each tree of the forest.

Corollary 4.B.1. For all weights β and h,

[1]fGFF
β,h =

∑
F∈Froot

∏
(T,r)∈F

∏
ij∈T

βij

hr. (4.B.3)

Corollary 4.B.1 also has an elementary proof: it can be seen as a consequence of the matrix-tree
theorem.

The case of the uniform spanning tree (UST) is obtained by pinning the fGFF at a single
arbitrary vertex which we denote 0. This corresponds to taking hj = 1j=0, or equivalently to
adding a factor ξ0η0 inside the expectation. In analogy to Section 4.2, we denote the pinned
expectation by an additional superscript 0, i.e.,

[F ]fGFF,0
β = [ξ0η0F ]fGFF

β . (4.B.4)

The following corollary is then immediate from the previous one.

Corollary 4.B.2. For all sets of edges S,

PUST
β [S] =

∏
ij∈S

βij(ξi − ξj)(ηi − ηj)

fGFF,0

β

. (4.B.5)

For the UST, it is well-known that negative association holds, i.e., that the occurrence of
disjoint edges ij, kl are negatively correlated. Various proofs exist, see e.g. [48,53]. We include a
new proof that mimics the proof of the Ginibre inequality [51].

Proposition 4.B.3. For the uniform spanning tree, negative association holds: for all distinct ij and
kl,

PUST
β [ij, kl] 6 PUST

β [ij]PUST
β [kl]. (4.B.6)

Proof. Consider the doubled Grassman algebra Ω4Λ with generators ξi, ηi, ξ′i, η
′
i where i ∈ Λ′.

Abusing notation, we write 〈·〉 for the product of the two fGFF expectations, i.e.,

〈F (ξ, η)G(ξ′, η′)〉 = 〈F (ξ, η)〉fGFF,0〈G(ξ, η)〉fGFF,0. (4.B.7)

Set χij = (ξi − ξj)(ηi − ηj) and define χ′ij analogously. Then

PUST
β [ij, kl]− PUST

β [ij]PUST
β [kl] =

1

2
βijβkl〈(χij − χ′ij)(χkl − χ′kl)〉. (4.B.8)

Mimicking Ginibre [51], we change generators in Ω4Λ according to

ξi 7→
1√
2

(ξi + ξ′i), ηi 7→
1√
2

(ηi + η′i), ξ′i 7→
1√
2

(ξi − ξ′i), η′i 7→
1√
2

(ηi − η′i). (4.B.9)
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The action defining the product of two fGFFs is invariant under this change of generator and the
integrand of the RHS of (4.B.8) transforms as

(χij − χ′ij)(χkl − χ′kl) 7→ − (ξi − ξj)(ξk − ξl)(η′i − η′j)(η′k − η′l)
− (ηi − ηj)(ηk − ηl)(ξ′i − ξ′j)(ξ′k − ξ′l)
− (ξi − ξj)(ηk − ηl)(ξ′k − ξ′l)(η′i − η′j)
− (ξk − ξl)(ηi − ηj)(ξ′i − ξ′j)(η′k − η′l). (4.B.10)

Taking the expectation, only the last two terms contribute since only monomials with the same
number of factors of ξ as η have non-vanishing expectation, e.g., 〈ξiξj〉fGFF = 0. These last two
terms give the same expectation:

PUST
β [ij, kl]−PUST

β [ij]PUST
β [kl] = −βijβkl〈(ξi−ξj)(ηk−ηl)〉fGFF,0〈(ξk−ξl)(ηi−ηj)〉fGFF,0. (4.B.11)

By (4.2.27) the two terms in the product on the right-hand side are equal, and hence the right-
hand side is non-positive.

Remark 4.B.4. The right-hand side in (4.B.11) gives an alternate expression for the deficit ∆2
ij,kl

that occurs in [48, Theorem 2.1].





Chapter 5

Dynkin isomorphism and
Mermin–Wagner theorems for
hyperbolic sigma models and
recurrence of the two-dimensional
vertex-reinforced jump process

5.1 Introduction and results

Introduction
Our results have motivation from two different perspectives, that of sigma models with hyperbolic
symmetry and their relevance for the Anderson transition, and that of a model of reinforced
random walks known as the vertex-reinforced jump process (VRJP).

The VRJP was originally introduced by Werner and has attracted a great deal of attention
recently [30, 37, 38, 89, 92]. The VRJP on a vertex set Λ is a continuous-time random walk that
jumps from a vertex i to a neighbouring vertex j at time t with rate βij(1 + Ljt ), where Ljt is the
local time of j at time t and βij > 0 are the initial rates. One should view Λ as the vertex set of
an undirected graph with edge set E = {〈ij〉 | βij > 0}. The dependence of the jump rates on the
local time leads the VRJP to be attracted to itself.

One of our new results is the following theorem.

Theorem 5.1.1. Consider a vertex-reinforced jump process (Xt) on the vertex set Zd with initial
rates β that are finite-range and translation invariant. If d = 1, 2 then (Xt) is recurrent in the sense
that the expected time (Xt) spends at the origin is infinite.

As the VRJP is not a Markov process, different notions of recurrence are not a priori equiv-
alent. For example, another natural notion of recurrence would be to ask if the VRJP visits the
origin infinitely often almost surely. For non-Markovian processes neither of these definitions of
recurrence implies the other: there may be infinitely many visits to the origin with the increments
of the local time being summable. To the best of our knowledge, neither implication is known for
the VRJP.

For sufficiently small initial rates recurrence results for the VRJP have previously been estab-
lished [5,39,89]. These results are for recurrence in the sense of visiting the origin infinitely often
almost surely. See [5] for a discussion and precise statements. It has also been shown that the
linearly edge-reinforced random walk (ERRW) with constant initial weights is recurrent in two
dimensions [75,92], but the recurrence of the VRJP for all initial rates was an open problem until
the present work. The relation between the ERRW and VRJP is discussed below.
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Theorem 5.1.1 is in fact a consequence of our proof of a Mermin–Wagner theorem for hy-
perbolic sigma models and a new and very direct relation between VRJPs and hyperbolic sigma
models that parallels the well-known relationship between simple random walks and Gaussian
free fields (the BFS–Dynkin isomorphism theorem).

Before giving precise definitions of our models and stating our results, we briefly indicate the
motivations behind hyperbolic sigma models, and their relations with reinforced random walks.
We also explain some consequences of our results for hyperbolic sigma models. Readers primarily
interested in the VRJP may wish to skip ahead to Section 5.1.

Hyperbolic sigma models were introduced as effective models to understand the Anderson
transition [40,97–99,105]. In Efetov’s supersymmetric method [45] the expected absolute value
squared of the resolvent of random band matrices, i.e., E|(H − z)−1(i, j)|2 where z ∈ C+ and H is
a random band matrix, can be expressed as a correlation function of a supersymmetric spin model.
The spins of this model are invariant under the hyperbolic symmetry OSp(2, 1|2). Extended
states correspond to spontaneous breaking of this non-compact symmetry. The supersymmetric
hyperbolic sigma model, or H2|2 model, was introduced by Zirnbauer [105] and first studied
by Disertori, Spencer and Zirnbauer [40]. It is an approximation of the random band matrix
model above where radial fluctuations are neglected. This is similar to how the O(n) model is an
approximation of models of Rn-valued spins with rotational symmetry such as |ϕ|4-theories. More
detailed motivation for hyperbolic spin models is given in [97,99].

The H2|2 model is believed to capture the physics of the Anderson transition. As is expected
for the Anderson model, it was proved in [40] that the OSp(2, 1|2) symmetry of the H2|2 model is
spontaneously broken in d > 3 for sufficiently small disorder — consistent with the existence of
extended states. Furthermore, it was proved [39] that for sufficiently large disorder this is not the
case — consistent with Anderson localisation. In dimension d 6 2, it is conjectured that extended
states do not exist for any disorder strength. Equation (5.1.16) below is the corresponding
statement for the H2|2 model, and we have thus completed the expected qualitative picture for the
phase diagram of the H2|2 model; see Remark 5.1.9 for a discussion of the conjectured optimal
bounds. Equation (5.1.16) can be considered as a version of the Mermin–Wagner theorem. For
recent and extremely precise results in dimension one, see [96].

Based on the similarity of certain explicit formulas, it was suggested that there is a connection
between the H2|2 model and linearly edge-reinforced random walks [40]. This connection was
first confirmed in [89] by relating marginals of the H2|2 model to the limiting local time profile
of a time change of the VRJP. It was also shown there that the linearly edge reinforced walk is
obtained from the VRJP when averaging over random initial rates. Further marginals of the H2|2

model were explored in [37]. For a discussion of the history of the VRJP, see [89].
Our hyperbolic analogue of the BFS–Dynkin isomorphism theorem, Theorem 5.1.2 below, is a

different relation between the H2|2 model and the VRJP than was found in [89], and it provides a
more direct relation between the correlation structures of the models. Moreover, our statement
also applies without supersymmetry, i.e., when the spins take values in Hn. We will explain further
extensions of Theorem 5.1.2 in the case of Hn, e.g., to multipoint correlations, in a forthcoming
publication.

Model definitions

We now define the VRJP and the hyperbolic sigma models. The walk and the sigma models are
both defined in terms of a set Λ of vertices and non-negative edge weights β = (βij)i,j∈Λ, where
by edge weights we mean that βij = βji. For our Mermin–Wagner theorem we will make use of
two assumptions on β. We call β finite-range if for each i ∈ Λ we have βij = 0 for all but finitely
many j. If Λ = Zd we call β translation invariant if βij = βT (i)T (j) for all translations T of Zd.

Vertex-reinforced jump process. Let Λ be a finite or countable set. The VRJP is a history-dependent
continuous-time random walk (Xt) on Λ that takes jumps from vertex i to vertex j with rate
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βij(1 + Ljt ), where

Ljt ≡
∫ t

0
1Xs=j ds. (5.1.1)

Ljt is called the local time of the walk at vertex j up to time t. We will write Lt ≡ (Lit)i∈Λ for the
collection of local times. It will also be useful to consider the joint process (Xt, Lt), which is a
Markov process with generator L acting on sufficiently nice functions g : Λ× RΛ → R by

Lβg(i, `) =
∑
j

βij(1 + `j)(g(j, `)− g(i, `)) +
∂

∂`i
g(i, `), i ∈ Λ, ` ∈ RΛ. (5.1.2)

We denote by Eβi,` the expectation of the process (Xt, Lt) with initial condition X0 = i and L0 = `.
The VRJP is the marginal of Xt in the special case L0 = 0; by a slight abuse of terminology we
call (Xt, Lt) the VRJP as well.

Hyperbolic sigma models. Let Rn,1 denote (n + 1)-dimensional Minkowski space. Its elements
are vectors u = (x, y1, . . . , yn−1, z), and it is equipped with the indefinite inner product u · u =
x2 + (y1)2 + · · ·+ (yn−1)2 − z2. Note that although x plays the same role as the yi, we distinguish
it in our notation for later convenience. Recall that n-dimensional hyperbolic space Hn can be
realized as

Hn ≡ {u ∈ Rn,1 | u · u = −1, z > 0}. (5.1.3)

Suppose Λ is finite and h > 0. To each vertex i ∈ Λ we associate a spin ui ∈ Hn. The energy
of a spin configuration u = (ui)i∈Λ ∈ (Hn)Λ is

H(u) = Hβ,h(u) ≡
∑
〈ij〉

βij(−ui · uj − 1) + h
∑
j

(zj − 1), (5.1.4)

where the sum is over edges 〈ij〉; since the summands are symmetric in i and j this notation will
not cause any confusion. The Hn sigma model is the measure with density proportional to e−H(u)

with respect to the |Λ|-fold product of the measure µ on Hn induced by the Minkowski metric, see
(5.2.2) and (5.2.4) for explicit expressions, and we let 〈·〉Hn denote the expectation associated to
this model:

〈F (u)〉Hn ≡

∫
(Hn)Λ F (u) e−H(u) µ⊗Λ(du)∫

(Hn)Λ e−H(u) µ⊗Λ(du)
. (5.1.5)

The energy (5.1.4) favours spin alignment because u · v 6 −1 for u, v ∈ Hn with equality if and
only if u = v.

Supersymmetric hyperbolic sigma model. In this section we will introduce a probability measure
which enables the computation of a special class of observables of the full supersymmetric H2|2

model. These restricted observables will suffice for a description of a special, but interesting, case
of our results. Our most general results use the full supersymmetric formalism.

As will be explained further in Section 5.2, at each vertex i ∈ Λ there is a superspin ui =
(xi, yi, zi, ξi, ηi) ∈ H2|2 where ξi and ηi are Grassmann variables. For the moment all that is needed
is that the expectation of a function F (y) of the y ≡ (yi)i∈Λ coordinates can be written as

〈F (y)〉H2|2 =

∫
(R2)Λ

F (ets) e−H̃(s,t) dt ds, (5.1.6)

where dt ds ≡
∏
i dti dsi, e

ts ≡ (etisi)i∈Λ,

H̃(s, t) = H̃β,h(s, t) ≡
∑
〈ij〉

βij

(
cosh(ti − tj)− 1 +

1

2
(si − sj)2eti+tj

)

+ h
∑
i

(
cosh(ti)− 1 +

1

2
s2
i e
ti

)
+
∑
i

(ti + log(2π))− log detDβ,h(t), (5.1.7)



128 CHAPTER 5. RECURRENCE OF THE TWO-DIMENSIONAL VRJP

and the matrix Dβ,h(t) on RΛ is defined by the quadratic form

(v,Dβ,h(t)v) ≡
∑
〈ij〉

βije
ti+tj (vi − vj)2 + h

∑
i

etiv2
i , v ∈ RΛ. (5.1.8)

The determinant detDβ,h(t) does not depend on the s variables and it is positive since Dβ,h(t) is
positive definite. Thus e−H̃(s,t)dt ds is a positive measure, and we will show in Section 5.2 that it
is in fact a probability measure, i.e., 〈1〉H2|2 = 1.

Results

We now state our main results and show how Theorem 5.1.1 is a consequence.

Hyperbolic BFS–Dynkin Isomorphism. The following theorem is a hyperbolic analogue of the
Dynkin isomorphism theorem, which relates the local times of a simple random walk to the square
of a Gaussian free field. As the Dynkin isomorphism theorem was proved by Brydges–Fröhlich–
Spencer in [16, Theorem 2.2], and later expressed in a better form by Dynkin [43], we prefer
to call it the BFS–Dynkin isomorphism. The general idea of relating Gaussian fields to simple
random walks is due to Symanzik [101]. For recent discussions of these ideas see [64, 102].
Supersymmetric versions of these results for simple random walks go back to Luttinger and Le
Jan [63,67].

Note that while we have not yet defined the meaning of 〈g〉H2|2 for a general function g, we
have given a meaning in the case that g is identically one by (5.1.6). It is this case of g identically
one that will be most relevant for the VRJP.

Theorem 5.1.2. Suppose Λ is finite and β is a collection of non-negative edge weights. Let h > 0, let
g : Λ × RΛ → R be any bounded smooth function, and let a, b ∈ Λ. Consider the Hn model, n > 2,
let y = (yi)i∈Λ = (yri )i∈Λ for some r = 1, . . . , n− 1, and z = (zi)i∈Λ. Then

∑
b

〈yaybg(b, z − 1)〉Hn = 〈za
∫ ∞

0
Eβa,z−1(g(Xt, Lt)) e

−ht dt〉Hn . (5.1.9)

For the H2|2 model, we have

∑
b

〈yaybg(b, z − 1)〉H2|2 =

∫ ∞
0

Eβa,0(g(Xt, Lt)) e
−ht dt. (5.1.10)

Remark 5.1.3. Theorem 5.1.2 also holds for the H1 model, but as the proof requires slightly
different considerations we have not included it here.

Taking the function g to be identically one in (5.1.10) implies that

〈yayb〉H2|2 =

∫ ∞
0

Eβa,0(1Xt=b) e
−ht dt. (5.1.11)

The right-hand side can be interpreted as the two-point function of the VRJP with a uniform
killing rate h.

Remark 5.1.4. Theorem 5.1.2 can be extended in a straightforward way to the case in which
h = (hi)i∈Λ is non-constant, provided hi > 0 and at least one value is strictly positive.
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Hyperbolic Mermin–Wagner Theorem. In this section we assume that Λ = ΛL is the discrete
d-dimensional torus Zd/(LZ)d of side length L ∈ N, and that β is translation invariant and
finite-range. We will write 〈·〉 = 〈·〉β,h in place of 〈·〉Hn and 〈·〉H2|2 . Denote

λ(p) ≡
∑
j∈Λ

β0j(1− cos(p · j)), p ∈ Λ?, (5.1.12)

where here · is the Euclidean inner product on Rd and Λ? is the Fourier dual of the discrete torus
Λ. Denote the two-point function and its Fourier transform by

Gβ,h(j) = GLβ,h(j) ≡ 〈y0yj〉β,h, Ĝβ,h(p) = ĜLβ,h(p) =
∑
j∈Λ

Gβ,h(j)ei(p·j). (5.1.13)

The following theorem is an analogue of the Mermin–Wagner Theorem for the O(n) model, in the
form presented in [50].

Theorem 5.1.5. Let Λ = Zd/(LZ)d, L ∈ N. For the Hn model, n > 2, with magnetic field h > 0,

Ĝβ,h(p) >
1

(1 + (n+ 1)Gβ,h(0))λ(p) + h
. (5.1.14)

Similarly, for the H2|2 model with h > 0,

Ĝβ,h(p) >
1

(1 +Gβ,h(0))λ(p) + h
. (5.1.15)

Remark 5.1.6. By (5.1.11) the two-point function Gβ,h equals that of the VRJP in the case of the
H2|2 model, and hence the two-point function of the VRJP satisfies (5.1.15) as well.

Remark 5.1.7. For d > 3, the bound (5.1.15) shows that f̃ can be replaced by f in [40, Theo-
rem 3] using the upper bound proved there for Gβ,h(0).

Corollary 5.1.8. Under the assumptions of Theorem 5.1.5, for d = 1, 2,

lim
h↓0

lim
L→∞

Gβ,h(0) =∞. (5.1.16)

Proof. Since (2πL)−d
∑

p∈Λ∗ e
i(p·j) = 1j=0, summing the bounds (5.1.14) and (5.1.15) over p ∈ Λ?

and interchanging sums implies (with n = 0 for H2|2)

Gβ,h(0) >
1

(2πL)d

∑
p∈Λ?

1

(1 + (n+ 1)Gβ,h(0))λ(p) + h
. (5.1.17)

The assumption of β being finite-range and non-negative implies λ(p) 6 C(β)|p|2. If d 6 2 it
follows that

lim
L→∞

1

(2πL)d

∑
p∈Λ?

1

λ(p) + h
↑ ∞ as h ↓ 0, (5.1.18)

and, as Gβ,h > 0, this implies (5.1.16).

Remark 5.1.9. In fact, the proof shows Gβ,h(0) > cβ/
√

log h with cβ > 0 when h > 0 is small. For
the H2|2 model, we conjecture that the optimal bound is Gβ,h(0) � cβ/h for h small, with cβ > 0
exponentially small as β becomes large. This is consistent with Anderson localisation. On the
other hand, for the Hn model with n > 2, localisation is not expected, i.e., Gβ,h(0)� 1/h.
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Consequences for the vertex-reinforced jump process. In contrast to Corollary 5.1.8, it has been
proven [40,99] that when d > 3 and βij = β1|i−j|=1,

lim
h↓0

lim
L→∞

Gβ,h(0) <∞ (5.1.19)

for all β > 0 in the case of H2 and for all sufficiently large β > 0 for H2|2. In the H2|2 case
(5.1.19) corresponds to transience of the VRJP (in the sense of bounded expected local time, see
Corollary 5.1.10 below) and to the uniform boundedness (in the spectral parameter z ∈ C+) of
the expected square of the absolute value of the resolvent for random band matrices in the sigma
model approximation [97] (recall Section 5.1). It also implies that the hyperbolic symmetry is
spontaneously broken.

Due to the non-amenability of hyperbolic group actions, the question of spontaneous symme-
try breaking for hyperbolic sigma models is, in general, subtle. The usual formulations of the
Mermin–Wagner theorem for models with compact symmetries cannot hold in the non-amenable
case [94], and, in fact, spontaneous symmetry breaking appears to occur in all dimensions [42,81].
Nonetheless, (5.1.16) and (5.1.19) show that the two-point function — the observable of interest
for the VRJP and the random matrix problem — does undergo a transition analogous to that
occurring in systems with compact symmetries.

Proof of Theorem 5.1.1. We must prove that for any translation invariant finite-range β∫ ∞
0

Eβ,Z
d

0,0 (1Xt=0) dt =∞, (5.1.20)

where the expectation refers to that of the VRJP on Zd and d = 1, 2. This is true since, for any
finite-range β, one has∫ ∞

0
Eβ,Z

d

0,0 (1Xt=0) dt = lim
h↓0

∫ ∞
0

Eβ,Z
d

0,0 (1Xt=0) e−ht dt

= lim
h↓0

lim
L→∞

∫ ∞
0

Eβ,ΛL0,0 (1Xt=0) e−ht dt =∞. (5.1.21)

The first equality is by monotone convergence, and the final equality is obtained by combining
(5.1.16) for the H2|2 model and (5.1.11).

For the second equality it suffices, by using the tail of the exponential e−ht, to verify that the
integrand converges for t 6 T for any bounded T . Since the jump rate 1 +Lit is bounded by 1 +T ,
the walk is exponentially unlikely to take more than O(T 3) jumps to new vertices up to time T .
VRJPs on ΛL and Zd can be coupled to be the same until they exit a ball of radius less than 1

2L, an
event which requires at least L/R jumps to occur, where R is the radius of the finite-range step
distribution. This completes the proof.

The analogue of Theorem 5.1.1 for the ERRW with constant initial weights was established
in [75,92], but not for the VRJP. Mermin–Wagner type theorems have also been proven for the
ERRW in one and two dimensions [74,75]. The techniques used deal directly with ERRWs, and
hence are rather different from those employed in this paper.

Our relation between the two-point functions of the H2|2 model and the VRJP also yields a
transience result.

Corollary 5.1.10. The vertex-reinforced jump process (Xt) on Zd, d > 3, with initial rates βij =
β1|i−j|=1 and β sufficiently large is transient, in the sense that the expected time (Xt) spends at the
origin is finite.

Proof. The argument mirrors the proof of Theorem 5.1.1, using (5.1.19) in place of (5.1.16).

Transience in the sense of visiting the origin finitely often almost surely when β is sufficiently
large was established in [89, Corollary 4]; this result also makes use of [40]. As with recurrence,
see the discussion following the statement of Theorem 5.1.1, there is in general no relation
between the two notions of transience.
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5.2 Supersymmetry and horospherical coordinates
In this section we define horospherical coordinates for Hn and then define the supersymmetric
H2|2 model precisely. We also collect Ward identities and relations between derivatives that will
be used in the proofs of Theorems 5.1.2 and 5.1.5.

Horospherical coordinates
As observed in [99, 105], the hyperbolic spaces Hn are naturally parametrised by horospherical
coordinates that are useful for the analysis of the corresponding sigma models. For Hn, these are
global coordinates t ∈ R, s̃ ∈ Rn−1, in terms of which

x = sinh t− 1

2
|s̃|2et, yi = etsi (i = 1, . . . , n− 1), z = cosh t+

1

2
|s̃|2et. (5.2.1)

Both x, z are scalars while ỹ = (y1, . . . , yn−1) and s̃ = (s1, . . . , sn−1) ∈ Rn−1 are n−1 dimensional
vectors and |s̃|2 =

∑n−1
i=1 (si)2. By this change of variables one has (see Appendix 5.A),∫
(Hn)Λ

F (u)µ⊗Λ(du) =

∫
(Rn)Λ

F (u(s̃, t))
∏
i

e(n−1)ti dti ds̃i. (5.2.2)

By a short calculation,

−ui · uj = cosh(ti − tj) +
1

2
|s̃i − s̃j |2eti+tj , zi = cosh ti +

1

2
|s̃i|2eti . (5.2.3)

Thus in horospherical coordinates,

H(s̃, t) =
∑
〈ij〉

βij

(
cosh(ti − tj)− 1 +

1

2
|s̃i − s̃j |2eti+tj

)

+ h
∑
i

(
cosh(ti)− 1 +

1

2
|s̃i|2eti

)
, (5.2.4)

where by a slight abuse of notation we have re-used the symbol H. Moreover, the following
relations, in which we set si = sri and yi = yri for some fixed r = 1, . . . , n− 1, hold:

∂zi
∂si

= yi,
∂yi
∂si

= xi + zi,
∂(ui · uj)
∂si

= yj(xi + zi)− yi(xj + zj). (5.2.5)

Furthermore,

∂2

∂s2
j

zj = etj = xj + zj ,

∂2

∂si∂sl
(−1− uj · ul) =


−etj+tl = −(xj + zj)(xl + zl), i = j,

+etj+tl = +(xj + zj)(xl + zl), i = l,

0, else.

(5.2.6)

Supersymmetry
Let Λ be a finite set. We will define an algebra ΩΛ of forms (which generalise random variables)
that constitute the observables on the super-space (R2|2)Λ. The super-space itself only has meaning
through this algebra of observables. We also define an integral associated to this algebra. We
then introduce the supersymmetry generator and the localisation lemma. For a more detailed
introduction to the mathematics of supersymmetry, see, e.g., [15,21,40].
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Supersymmetric integration. For each vertex i ∈ Λ, let xi, yi be real variables and ξi, ηi be two
Grassmann variables. Thus by definition all of the xi and yi commute with each other and with
all of the ξi and ηi and all of the ξi and ηi anticommute. The way in which the anticommutation
relations are realized is unimportant, but concretely, we can define an algebra of 4|Λ|×4|Λ| matrices
ξi and ηi realising the required anticommutation relations for the Grassmann variables. To fix
signs in forthcoming expressions, fix an arbitrary order i1, . . . , i|Λ| of the vertices in Λ.

We define the algebra ΩΛ to be the algebra of smooth functions on (R2)Λ with values in the
algebra of 4|Λ| × 4|Λ| matrices that have the form

F =
∑
I,J⊂Λ

FI,J(x, y)(ηξ)I,J , (5.2.7)

where the coefficients FI,J are smooth functions on (R2)Λ, and (ηξ)I,J is given by the ordered prod-
uct

∏
i∈I∩J ηiξi

∏
i∈I\J ξi

∏
j∈J\I ηj . This ordering has been chosen so that (ηξ)Λ,Λ is η1ξ1 . . . ηΛξΛ.

We call elements of ΩΛ forms because the forms of differential geometry are instances [21, 63].
The integral (sometimes called a superintegral) of a form F ∈ ΩΛ is defined by∫

(R2|2)Λ

F ≡
∫

(R2)Λ

FΛ,Λ(x, y)
∏
i∈Λ

dxi dyi
2π

, (5.2.8)

where R2|2 refers to the number of commuting and anticommuting variables.
The degree of a coefficient FI,J is |I| + |J |. Thus the integral of a form F is a constant

multiple of the usual Lebesgue integral of the top degree part of F . A form F ∈ ΩΛ is even if the
degree of all non-vanishing coefficients FI,J is even in (5.2.7). Even forms commute. For even
forms F 1, . . . , F p and a smooth function g ∈ C∞(Rp), the form g(F 1, . . . , F p) ∈ ΩΛ is defined
by formally Taylor expanding g about the degree-0 part (F 1

∅,∅(x, y), . . . , F p∅,∅(x, y)). This is well-
defined as there is no ambiguity in the ordering if the F i are all even, and the anticommutation
relations satisfied by the ξi and ηi imply the expansion is finite.

Localisation. Temporarily set x = xi, y = yi, ξ = ξi, and η = ηi. Define an operator ∂η : ΩΛ → ΩΛ

by linearity, ∂η(ηF ) = F , and ∂ηF = 0 if F does not contain a factor η. Define ∂ξ in the same
manner. Define Qi by its action on forms F by

QiF ≡ ξ∂xF + η∂yF + x∂ηF − y∂ξF. (5.2.9)

The supersymmetry generator Q acts on a form F ∈ ΩΛ by QF ≡
∑

i∈ΛQiF .

Definition 5.2.1. F ∈ ΩΛ is supersymmetric if QF = 0.

The supersymmetry generator acts as an anti-derivation on the algebra of forms, see, e.g., [21,
Section 6]. This implies that the forms

τji = τij ≡ xixj + yiyj + ξiηj − ηiξj , i, j ∈ Λ, (5.2.10)

are supersymmetric. Moreover, any smooth function of the τij is supersymmetric as Q obeys a
chain rule, see [21, Equation (6.5)]. The following localisation lemma is fundamental. For a proof,
see [40, Lemma 16].

Lemma 5.2.2 (Localisation lemma). Let F ∈ ΩΛ be a smooth form with sufficient decay that is
supersymmetric, i.e., satisfies QF = 0. Then∫

(R2|2)Λ

F = F∅,∅(0, 0). (5.2.11)
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The H2|2 model

We can now define the H2|2 sigma model and justify our earlier claim that its y marginal is the
probability measure (5.1.6). Given (xi, yi, ξi, ηi) as above define an even variable zi by

zi ≡
√

1 + x2
i + y2

i + 2ξiηi =
√

1 + x2
i + y2

i +
ξiηi√

1 + x2
i + y2

i

, (5.2.12)

where the equality is by the definition of a function of a form. We will write ui = (xi, yi, zi, ξi, ηi).
Define the “inner product”

ui · uj ≡ xixj + yiyj − zizj + ξiηj − ηiξj , (5.2.13)

generalising the Minkowski inner product above (5.1.3); we have written “inner product” as this
is only terminology, since (5.2.13) is not a quadratic form in the classical sense. Then by a short
calculation

ui · ui = −1, (5.2.14)

which we interpret as meaning that ui is in the supermanifold H2|2. Since zi =
√

1 + τii and
ui · uj = τij − zizj , the forms ui · uj and zi are supersymmetric for all i, j ∈ Λ.

The H2|2 integral of a form F ∈ ΩΛ is defined by∫
(H2|2)Λ

F ≡
∫

(R2|2)Λ

F
∏
i∈Λ

1

zi
, (5.2.15)

and the H2|2 model is defined by the following action (which is now a form in ΩΛ)

H ≡ Hβ,h =
∑
〈ij〉

βij(−ui · uj − 1) + h
∑
i

(zi − 1) ∈ ΩΛ. (5.2.16)

Lastly, we define the super-expectation of an observable F ∈ ΩΛ in the H2|2 model by

〈F 〉H2|2 ≡
∫

(H2|2)Λ

Fe−H . (5.2.17)

Lemma 5.2.2 implies that 〈1〉H2|2 = 1, as promised in Section 5.1.

Supersymmetric horospherical coordinates

The H2|2 model can also be reparametrised in a supersymmetric version of horospherical coor-
dinates [40, Sec. 2.2]. For the convenience of the reader, the explicit change of variables is
computed in Appendix 5.A. In this parametrisation, t and s are two real variables and ψ̄ and ψ
are two Grassmann variables. As in the previous section, we denote the algebra of such forms by
Ω̃Λ. The tilde refers to horospherical coordinates. We write

x = sinh t− et(1

2
s2+ψ̄ψ), y = ets, z = cosh t+ et(

1

2
s2 + ψ̄ψ),

ξ = etψ̄, η = etψ.
(5.2.18)

There is a generalisation of the change of variables formula from standard integration to super-
integration. We only require the following special case given in [40, Sec. 2.2] and Appendix 5.A.
Forms F ∈ ΩΛ are in correspondence with forms F̃ ∈ Ω̃Λ obtained by substituting the relations
(5.2.18) into (5.2.7) using the definition of functions of forms. Moreover, expanding

F̃ =
∑
I,J⊂Λ

F̃I,J(t, s)(ψψ̄)I,J (5.2.19)
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the superintegral over F can expressed as∫
(H2|2)Λ

F =

∫
(R2)Λ

F̃Λ,Λ(t, s)
∏
i

e−ti
dti dsi

2π
. (5.2.20)

If a function F (y) depends only on the y coordinates then F has degree 0, and a computation
(see [40, Sec. 2.2] and Appendix 5.A) shows that

〈F (y)〉H2|2 =

∫
(H2|2)Λ

F (y)e−H =

∫
(R2)Λ

F (ets)(e−H)Λ,Λ

∏
i

e−ti
dti dsi

2π

=

∫
(R2)Λ

F (ets)e−H̃(t,s)
∏
i

dti dsi, (5.2.21)

with the function H̃ given by (5.1.6).
Analogously to (5.2.3) a calculation gives the expressions

−ui · uj = cosh(ti − tj) +
1

2
(si − sj)2eti+tj + (ψ̄i − ψ̄j)(ψi − ψj)eti+tj (5.2.22)

zi = cosh ti + (
1

2
s2
i + ψ̄iψi)e

ti . (5.2.23)

We again check that

∂zi
∂si

= yi,
∂yi
∂si

= xi + zi,
∂(ui · uj)
∂si

= yj(xi + zi)− yi(xj + zj) (5.2.24)

and

∂2

∂s2
j

zj = etj = xj + zj ,

∂2

∂si∂sl
(−1− uj · ul) =


−etj+tl = −(xj + zj)(xl + zl), i = j,

+etj+tl = +(xj + zj)(xl + zl), i = l,

0, else.

(5.2.25)

Ward identities
In this section we establish some useful Ward identities. These Ward identities are a reflection
of the underlying symmetries of the target spaces Hn and H2|2, see [40, Appendix B]. Note that
these identities are most easily seen in the ambient coordinates (x, y1, . . . , yn−1, z).

Hn. For the Hn model we have the identities

〈xjg(z)〉Hn = 0. (5.2.26)

for any smooth function g. This identity follows simply from the invariance of the measure under
x 7→ −x (see (5.1.4)–(5.1.5)). Moreover, by rotational symmetry, we have 〈g(yr)〉Hn = 〈g(x)〉Hn
for r = 1, . . . , n− 1.

H2|2. For the H2|2 model we have identities analogous to (5.2.26):

〈xjg(z)〉H2|2 = 0 (5.2.27)

for any smooth function g. This identity again follows from the symmetry x 7→ −x (see (5.2.16)–
(5.2.17)). We also have 〈g(x)〉H2|2 = 〈g(y)〉H2|2 by rotational symmetry. The following identities
arise from (5.2.27):

〈etj+tl〉H2|2 = 〈(xj + zj)(xl + zl)〉H2|2 = 〈xjxl + zjzl〉H2|2

〈etj 〉H2|2 = 〈xj + zj〉H2|2
(5.2.28)
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and hence by supersymmetry and rotational invariance

〈etj+tl〉H2|2 = 1 + 〈yjyl〉H2|2 ,

〈etj 〉H2|2 = 1.
(5.2.29)

Indeed, the evaluations 〈zizj〉H2|2 = 〈zi〉H2|2 = 1 are by Lemma 5.2.2, which implies more generally
that for any smooth function g with rapid decay,∫

(H2|2)Λ

e−Hβ,0g(z) = g(1). (5.2.30)

5.3 Proof of Theorem 5.1.2

In this section, for the Hn model, we will let ya denote the component y1
a of ua ∈ Hn and sa the

corresponding component s1
a in horospherical coordinates. By symmetry (recall Section 5.2), the

results of this section are valid if we replace y1
a by any of the first n− 1 components of ua.

We will prove that for the Hn model, n > 2,∑
b

∫
(Hn)Λ

e−Hβ,hyaybg(b, z − 1) =∫
(Hn)Λ

e−Hβ,hza

∫ ∞
0

Eβa,z−1(g(Xt, Lt)) e
−ht dt.

(5.3.1)

In (5.3.1), and in the rest of this section, we omit the measure µ⊗Λ(du) for integrals over (Hn)Λ

from the notation. For the H2|2 model we prove that∑
b

∫
(H2|2)Λ

e−Hβ,hyaybg(b, z − 1) =

∫ ∞
0

Eβa,0(g(Xt, Lt)) e
−ht dt. (5.3.2)

Theorem 5.1.2 in the case of H2|2 is precisely (5.3.2), and Theorem 5.1.2 in the case of Hn follows
by normalising (5.3.1). The identities (5.3.1) and (5.3.2) are a result of the following integration
by parts formulas. Recall that Lβ denotes the generator (5.1.2) of the joint position and local time
process (Xt, Lt) of the VRJP.

Lemma 5.3.1. Let Λ be finite, let a ∈ Λ, and let g : Λ × RΛ → R be a smooth function with rapid
decay. For the Hn model, n > 2,

−
∑
b

∫
(Hn)Λ

e−Hβ,0yaybLβg(b, z − 1) =

∫
(Hn)Λ

e−Hβ,0zag(a, z − 1). (5.3.3)

For the H2|2 model,

−
∑
b

∫
(H2|2)Λ

e−Hβ,0yaybLβg(b, z − 1) = g(a, 0). (5.3.4)

Proof. The proofs are essentially the same for Hn and H2|2, so we carry them out in parallel.
We write L for Lβ, H for Hβ,0, and the integral

∫
for

∫
(Hn)Λ and, respectively,

∫
(H2|2)Λ . By

(5.2.5) (resp. (5.2.24)) we have yb ∂
∂`b
g(b, z − 1) = ∂

∂sb
g(b, z − 1) where ∂

∂`b
denotes the derivative

with respect to the b-th component of the second argument. Therefore∑
b

∫
e−HyaybLg(b, z − 1)

=

∫
e−Hya

(∑
b,c

βbcybzc(g(c, z − 1)− g(b, z − 1)) +
∑
b

∂

∂sb
g(b, z − 1)

)
. (5.3.5)
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Recall (5.2.2) (resp. (5.2.20)) and integrate the second term in the equation above by parts. This
produces two terms; by the rapid decay of g there are no boundary terms. For the first term
produced by the integration by parts, using (5.2.5) (resp. (5.2.24)) again,

∑
b

∫
e−Hya

(
−∂H
∂sb

)
g(b, z − 1)

=
∑
b

∫
e−Hya

(∑
c

βbc
∂(ub · uc)
∂sb

)
g(b, z − 1)

=
∑
b,c

∫
e−Hyaβbcybzc(g(c, z − 1)− g(b, z − 1)). (5.3.6)

This term cancels the first term on the right-hand side of (5.3.5). For the second term produced
by the integration by parts, we use that

∫
xae
−Hg(b, z) = 0 by (5.2.26) (resp. (5.2.27)):∫

e−H
∂ya
∂sb

g(b, z − 1) = δab

∫
e−H(xa + za)g(b, z − 1)

= δab

∫
e−Hzag(a, z − 1). (5.3.7)

In the supersymmetric case, the localisation lemma in the special case (5.2.30) further implies
that the last right-hand side can be evaluated as

δab

∫
e−Hzag(a, z − 1) = δabg(a, 0). (5.3.8)

Altogether, we have shown (5.3.3) (resp. (5.3.4)).

Proof of Theorem 5.1.2. It suffices to show (5.3.1) and (5.3.2) with h = 0, by replacing g(b, z − 1)
by g(b, z − 1)e−h(z−1). Therefore from now on assume h = 0. To get (5.3.2) from (5.3.4), we
apply (5.3.4) with g(i, `) replaced by gt(i, `) = Ei,`(g(Xt, Lt)). By the definition of the generator
we have Lgt(i, `) = ∂

∂tgt(i, `), so (5.3.4) gives

Ea,0(g(Xt, Lt)) = − ∂

∂t

(∑
b

∫
e−Hyaybgt(b, z − 1)

)
. (5.3.9)

Note that the process (Xt, Lt) is transient even if the marginal (Xt) is recurrent because
∑

i L
i
t →

∞ as t→∞. Therefore, integrating both sides over t and using that gt(x, `)→ 0 as t→∞, which
follows from the transience of (Xt, Lt) and the rapid decay of g = g0, we get∫ ∞

0
Ea,0(g(Xt, Lt)) dt =

∑
b

∫
e−Hyaybg(b, z − 1). (5.3.10)

The proof of (5.3.1) from (5.3.3) is entirely analogous.

5.4 Proof of Theorem 5.1.5
The proof of the hyperbolic Mermin–Wagner follows that of the usual Mermin–Wagner theorem
closely [77, 78]; see also the presentation in [50]. We begin with the non-supersymmetric case.
Due to the non-compact target space, differences occur in the bound of the term 〈|DH|2〉 and in
the role of the coordinate in the direction of the magnetic field. As in the previous section we
write H for Hβ,h. We will write Ā to denote the complex conjugate of A.
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Proof of (5.1.14). As in the previous section we write yj for y1
j . We also write 〈·〉 for 〈·〉Hn , and

we use horospherical coordinates throughout the proof. Throughout the proof H will denote the
energy of a spin configuration in horospherical coordinates, recall (5.2.4).

Let
S(p) =

1√
|Λ|

∑
j

ei(p·j)yj , D =
1√
|Λ|

∑
j

e−i(p·j)
∂

∂sj
. (5.4.1)

By the Cauchy–Schwarz inequality,

〈|S(p)|2〉 > |〈S(p)DH〉|2

〈|DH|2〉
. (5.4.2)

In the following, we compute the terms on the left- and right-hand sides of the above inequality.
Note that we have the integration by parts identity 〈FDH〉 = 〈DF 〉 for any smooth F : (Hn)Λ → R
that does not grow too fast; the vanishing of boundary terms can be seen by looking at the
expression for H (i.e., by (5.2.4)).

By the assumed translation invariance of β,

〈|S(p)|2〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈yjyl〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈y0yj−l〉 (5.4.3)

=
∑
j

ei(p·j)〈y0yj〉,

〈S(p)DH〉 = 〈DS(p)〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈∂yj
∂sl
〉 =

1

|Λ|
∑
j

〈xj + zj〉 (5.4.4)

= 〈z0〉,

〈|DH|2〉 = 〈DD̄H〉 =
1

|Λ|
∑
j,l

eip·(j−l)
〈
∂2H

∂sj∂sl

〉
. (5.4.5)

In (5.4.4) we have used 〈xj〉 = 0; recall Section 5.2. By 〈xjzk〉 = 0, Cauchy–Schwarz, translation
invariance, that 〈x2

0〉 = 〈y2
0〉 (recall the symmetries from Section 5.2), and the constraint u0 · u0 =

−1, observe that

〈(xj + zj)(xl + zl)〉 = 〈xjxl + zjzl〉 6 〈x2
0〉+ 〈z2

0〉 = 1 + (n+ 1)〈y2
0〉. (5.4.6)

Thus, using (5.2.6) and 〈xj〉 = 0 once more, (5.4.5) can be rewritten and bounded above by

〈|DH|2〉 =
1

|Λ|
∑
j,l

βjl〈(xj + zj)(xl + zl)〉(1− eip·(j−l)) +
h

|Λ|
∑
j

〈xj + zj〉

6
1

|Λ|
∑
j,l

βjl(1 + (n+ 1)〈y2
0〉)(1− cos(p · (j − l))) + h〈z0〉. (5.4.7)

In summary, we have shown (recall (5.1.12))

〈|DH|2〉 6 (1 + (n+ 1)〈y2
0〉)λ(p) + h〈z0〉. (5.4.8)

Using (5.4.3) and substituting the above bounds into (5.4.2) gives∑
j

ei(p·j)〈y0yj〉 >
|〈S(p)DH〉|2

〈|DH|2〉
>

〈z0〉2

(1 + (n+ 1)〈y2
0〉)λ(p) + h〈z0〉

>
1

(1 + (n+ 1)〈y2
0〉)λ(p) + h

. (5.4.9)

The last inequality follows from h > 0 and 1 6 〈z0〉, which holds by the definition of Hn.
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Proof of (5.1.15). We use that the expectation of a function F (y) can be written using horospher-
ical coordinates in terms of the probability measure (5.1.6). Throughout this proof, we denote the
expectation with respect to this probability measure by 〈·〉. By the Cauchy–Schwarz inequality,
and since S(p) is a function of the y,

〈|S(p)|2〉H2|2 = 〈|S(p)|2〉 > |〈S(p)DH̃〉|2

〈|DH̃|2〉
. (5.4.10)

The probability measure 〈·〉 obeys the integration by parts 〈FDH̃〉 = 〈DF 〉 identity for any
function F = F (s, t) that does not grow too fast. Therefore by translation invariance we find that,
as in the case of Hn,

〈|S(p)|2〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈yjyl〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈y0yj−l〉 (5.4.11)

=
∑
j

ei(p·j)〈y0yj〉,

〈S(p)DH̃〉 = 〈DS(p)〉 =
1

|Λ|
∑
j,l

eip·(j−l)〈∂yj
∂sl
〉 =

1

|Λ|
∑
j

〈etj 〉 = 1, (5.4.12)

where the last identity uses (5.2.29). By (5.2.29), Cauchy–Schwarz, and translation invariance
we have

〈etj+tl〉 = 1 + 〈yjyl〉 6 1 + 〈y2
0〉. (5.4.13)

Using (5.4.13) and the integration by parts identity it follows that

〈|DH̃|2〉 = 〈DD̄H̃〉 =
1

|Λ|
∑
j,l

βjl〈etj+tl〉(1− cos(p · (j − l))) +
h

|Λ|
∑
j

〈etj 〉

6
1

|Λ|
∑
j,l

βjl(1 + 〈y2
0〉)(1− cos(p · (j − l))) + h

= (1 + 〈y2
0〉)λ(p) + h. (5.4.14)

In summary, we have proved

∑
j

ei(p·j)〈y0yj〉 = 〈|S(p)|2〉 > |〈S(p)DH̃〉|2

〈|DH̃|2〉
>

1

(1 + 〈y2
0〉)λ(p) + h

(5.4.15)

as claimed.



Appendices

5.A Horospherical coordinates

Hn

Under the change of variables

x = sinh t− 1

2
|s̃|2et, yi = etsi, z = cosh t+

1

2
|s̃|2et, (5.A.1)

the measure transforms as

1

z
dx ∧ dy1 ∧ · · · ∧ dyn−1 7→ det J

cosh t+ 1
2 |s̃|2et

dt ∧ ds1 ∧ · · · ∧ dsn−1, (5.A.2)

where the Jacobian matrix in block form is

J =

[
A1×1 B1×n−1

Cn−1×1 Dn−1×n−1

]
(5.A.3)

with

A =
∂x

∂t
= cosh t− 1

2
|s̃|2et, Bj =

∂x

∂sj
= −sjet, (5.A.4)

Ci =
∂yi

∂t
= siet, Dij =

∂yi

∂sj
= δije

t. (5.A.5)

Noting that D = etI, the determinant is easily computed using the Schur complement formula,

det J = (detD) det (A−BD−1C)

= e(n−1)t

(
cosh t− 1

2
|s̃2|et −

n−1∑
i=1

(−siet)e−t(siet)

)

= e(n−1)t(cosh t+
1

2
|s̃|2et), (5.A.6)

giving the transformed measure as

det J

cosh t+ 1
2 |s̃|2et

dt ∧ ds1 ∧ · · · ∧ dsn−1 = e(n−1)t dt ∧ ds1 ∧ · · · ∧ dsn−1. (5.A.7)

H2|2

The calculation for H2|2 is similar to the previous case, but the Jacobian is replaced by the
Berezinian. The notation in (5.2.8) corresponds to the following notation in [40] resp. [13]:∫

R2|2
F =

∫
dx ∧ dy ◦ ∂ξ ∂η F =

∫
F dη dξ dx dy. (5.A.8)
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Applying [13, Theorem 2.1] to the change of variables

x = sinh t− 1

2
(s2+2ψ̄ψ)et, y = set, z = cosh t+

1

2
(s2 + 2ψ̄ψ)et,

η = ψet, ξ = ψ̄et,
(5.A.9)

the Berezin measure transforms as

1

z
dη dξ dx dy 7→

sdetM

cosh t+ 1
2(s2 + 2ψ̄ψ)et

dψ dψ̄ dt ds, (5.A.10)

where M is the Berezinian supermatrix

M =

[
A B
C D

]
=


∂x
∂t

∂y
∂t

∂η
∂t

∂ξ
∂t

∂x
∂s

∂y
∂s

∂η
∂s

∂ξ
∂s

∂x
∂ψ

∂y
∂ψ

∂η
∂ψ

∂ξ
∂ψ

∂x
∂ψ̄

∂y
∂ψ̄

∂η
∂ψ̄

∂ξ
∂ψ̄

, (5.A.11)

and sdetM = (detD)−1 det (A−BD−1C) is its Berezinian (superdeterminant). The four blocks
are then

A =

[
cosh t− 1

2(s2 + 2ψ̄ψ)et set

−set et

]
, B =

[
ψet ψ̄et

0 0

]
, (5.A.12)

C =

[
ψ̄et 0
−ψet 0

]
, D =

[
et 0
0 et

]
. (5.A.13)

The first term in the Berezinian is simply (detD)−1 = e−2t, whilst the second is

det (A−BD−1C) = det

([
cosh t− 1

2(s2 + 2ψ̄ψ)et set

−set et

]
+

[
2ψ̄ψet 0

0 0

])
= et

(
cosh t+

1

2
(s2 + 2ψ̄ψ)et

)
, (5.A.14)

giving the transformed Berezin measure as

sdetM

cosh t+ 1
2(s2 + 2ψ̄ψ)et

dψ dψ̄ dt ds = e−t dψ dψ̄ dt ds, (5.A.15)

which corresponds to (5.2.20).
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