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Abstract

Semiparametric Characteristics-based Models of Asset
Returns
Shaoran Li

King’s College

University of Cambridge

This thesis, which includes three chapters, studies asset-specific characteristics such as cap-
italization, book-to-market ratio etc., and their implications on assets prices and portfolio
management. This thesis selects characteristics that have prediction powers on assets excess
returns and specifies a flexible regression model, including linear, non-linear and pairwise
interactive parts. This thesis further analyses whether characteristics are relevant as mis-
pricing components and factor loadings in an asset pricing factor model. Finally, this thesis
develops an optimal portfolio selection method based on the constructed characteristics-based
asset pricing model. Methodologies in this thesis are mainly proposed for two popular ques-
tions in financial econometrics, namely, high dimensional analysis and the approximation
of uni-variate and multi-variate unknown functions. The tools extended by this thesis are
B-splines and orthogonal series, and multi-variate unknown functions are approximated by
tensor products. In terms of high dimensional problems, which are caused by both abundant
financial data and diverging B-splines bases used to approximate unknown functions, they are
solved by LASSO-style selection model and power enhanced hypothesis tests. The details of
the three chapters are summarized below:
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Specification LASSO and an Application in Financial Mar-
kets

This chapter proposes the method of Specification-LASSO in a flexible semi-parametric re-
gression model that allows for the interactive effects between different covariates. Specification-
LASSO extends LASSO and Adaptive Group LASSO to achieve both relevant variable
selection and model specification. Specification-LASSO also gives preliminary estimates
that facilitate the estimation of the regression model. Monte Carlo simulations show that the
Specification-LASSO can accurately specify partially linear additive models with interactive
effects. Finally, the proposed methods are applied in an empirical study, which examines the
topic proposed by Freyberger et al. (2020b), arguing that firms’ sizes may have interactive
effects with other security-specific characteristics, which can explain the stocks excess returns
together.

Dynamic Peer Groups of Arbitrage Characteristics

This chapter proposes an asset pricing factor model constructed with semi-parametric
characteristics-based mispricing and factor loading functions. We approximate the unknown
functions by B-splines sieve where the number of B-splines coefficients is diverging. We
estimate this model and test the existence of the mispricing function by a power enhanced hy-
pothesis test. The enhanced test solves the low power problem caused by diverging B-splines
coefficients, with the strengthened power approaches one asymptotically. We also investigate
the structure of mispricing components through Hierarchical K-means Clusterings. We apply
our methodology to CRSP (Center for Research in Security Prices) and Compustat data for
the US stock market with one-year rolling windows during 1967-2017. This empirical study
shows the presence of mispricing functions in certain time blocks. We also find that distinct
clusters of the same characteristics lead to similar arbitrage returns, forming a “peer group”
of arbitrage characteristics.

A Dynamic Semiparametric Characteristics-based Model for
Optimal Portfolio Selection

This paper develops a two-step semiparametric methodology for portfolio weight selection
for characteristics-based factor-tilt and factor-timing investment strategies. We build upon
the expected utility maximization framework of Brandt (1999) and Aït-sahalia and Brandt
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(2001). We assume that assets returns obey a characteristics-based factor model with time-
varying factor risk premia as in Ge et al. (2020). We prove under our return-generating
assumptions that an approximately optimal portfolio can be established using a two-step
procedure in a market with a large number of assets. The first step finds optimal factor-
mimicking sub-portfolios using a quadratic objective function over linear combinations of
characteristics-based factor loadings. The second step dynamically combines these factor-
mimicking sub-portfolios based on a time-varying signal, using the investor’s expected utility
as the objective function. We develop and implement a two-stage semiparametric estimator.
We apply it to CRSP (Center for Research in Security Prices) and FRED (Federal Reserve
Economic Data) data and find excellent in-sample and out-sample performance consistent
with investors’ risk aversion levels.
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Chapter 1

Specification LASSO and an Application
in Financial Markets





Abstract

This paper proposes the method of Specification-LASSO in a flexible semi-parametric regres-
sion model that allows for the interactive effects between different covariates. Specification-
LASSO extends LASSO and Adaptive Group LASSO to achieve both relevant variable
selection and model specification. Specification-LASSO also gives preliminary estimates
that facilitate the estimation of the regression model. Monte Carlo simulations show that the
Specification-LASSO can accurately specify partially linear additive models with interactive
regressors. Finally, the proposed methods are applied in an empirical study, which examines
the topic proposed by Freyberger et al. (2020a), which argues that firms’ sizes may have
interactive effects with other security-specific characteristics, which can explain the stocks
excess returns together.

KEYWORDS: Variable Selection; Model Selection; Interaction;

JEL CLASSIFICATION: C14; G12.



4 Specification LASSO and an Application in Financial Markets

1.1 Introduction

In a data-rich era, researchers are more likely to suffer both "variable selection" and "specifica-
tion" challenges. "Variable selection" problem is incurred due to the ease of data attainability,
so vast of data are available when researchers intend to model. This seems to be trivial if the
number of observations n is relatively large compared with the number of potential covariates
P. However, in recent empirical studies that have large P and small n, which causes the
classical analysis tool failing to work. Therefore, it is crucial to determine which subset of
candidate variables should be considered. Meanwhile, another challenge comes from the
model specification, as one may be dazzled to choose a suitable model from a model zoo.
In general, all parametric analyses have the risk of misspecification. Thus, nonparametric
analysis is introduced to relax the functional form restrictions. Although this helps to increase
the model flexibility, the "curse of dimensionality" causes the extremely low convergence
rate of estimation when the dimension of independent variables is more than three.

Suppose we observe a sample of data {(Yi,PPPi) : 1 ⩽ i ⩽ n}, where i represents the ith

individual. PPPi is a P×1 large dimensional vector of potential covariates where only the Q×1
subset QQQi contains relevant regressors to explain or predict the variation of Yi, which presents
a sparse model if Q << P.

We suppose:
E(Yi|PPPi) = θi +h(QQQi), i = 1,2, . . . ,n, (1.1)

where θi is the intercept whereas h(QQQi) is an unknown multi-variate function of QQQi. Most
researchers specify an additive semi-parametric structure on h(QQQi) as:

h(QQQi) =
Q

∑
q=1

fq(Xiq), (1.2)

where fq(Xiq) is an unknown uni-variate function. Models like Equation 1.2 are called
additive nonparametric regressions and are widely discussed by Hastie and Tibshirani (1990),
Linton (1997), Linton (2000), and Linton and Härdle (1996).

The Equation 1.2 avoids the curse of dimensionality by imposing an additive structure, but
can be inefficient if some of the relevant covariates only have linear effects as the rate of
convergence for nonparametric function fq(Xqi) is slower than O(n−1/2).
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Therefore, a partially linear additive semi-parametric model is proposed to take advantages
of linear effects as:

h(QQQi) = θ +
L

∑
l=1

βlXil +
Q

∑
q=L+1

fq(Xiq), (1.3)

where we distinguish L linear effects from QQQi, and the coefficients of linear part can be
estimated at the rate of convergence O(n−1/2), as discussed in Wang et al. (2007) and Ma
and Yang (2011). Similar models of Equation 1.3 are also studied by Li (2000), Fan and Li
(2003) and Liang et al. (2008).

Unfortunately, both additive models omit potential interactions between covariates. Pairwise
interactions between covariates are quite common in both economic and financial studies.

Example 1.1.1. In macroeconomics, most production functions specify a interactive term of
capital and labour inputs such as:

Cobb-Douglas: Y = ΓXα
C Xβ

L + ε

Example 1.1.2. In microeconomics, Deaton and Muellbauer (1980) document the utility
model of a household (Y ) containing interactions between eating and drinking (XE ,XD) for
foodstuffs, housing and fuel (XH ,XF ) for shelters, and television and sports (XT ,XS) for
entertainment.

Y = mED(XE ,XD)+mHF(XH ,XF)+mT S(XT ,XS)+ ε

Example 1.1.3. In environment studies, Dong et al. (2019) study effects of CO2 and solar
irradiance (SI) on the global sea level (YSL) rise. They specify the model as:

YSL = m(XCO2,XSI)+ ε,

and they verify the interactive effects between CO2 (XCO2) and solar irradiance (XSI) through
empirical results.

Example 1.1.4. In finance, Freyberger et al. (2020a) argue that assets returns at time t is
predictable by stock characteristics, such as capitalization and book-to-market ratio, at t −1
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as

YYY t = θθθ t +

interaction with firm size Xs︷ ︸︸ ︷
Q

∑
q̸=s

mqs(XXXqt−1 ·XXX st−1) +

uni-variate︷ ︸︸ ︷
Q

∑
q=1

mq(XXXqt−1),

and they find significant effects of interactions between firms’ sizes and other characteristics.
In this paper, we will revisit this study using our methods.

Interactions among covariates refer to the circumstance that marginal effects of the jth

variable X j on Y are determined by other relevant covariates. Sperlich et al. (2002) illustrate
the importance of interactions in the additive model, and propose a marginal integration
style estimation and test methods to solve the potential interactions in the model. However,
their methods cannot be applied to a high-dimensional case, not only due to the enormous
workload but also the failure of estimation when P > n. From the above examples and
Sperlich et al. (2002), we can conclude that higher-order interactions are barely discussed
due to both the curse of dimensionality and interpretation issues. In this paper, we mainly
discuss pairwise interactions among variables, although our methods can be easily extended
to higher-order interactions.

Based on the aforementioned research and examples, it is more reasonable to expand h(QQQi)

in Equation 1.2 to three components, including linear, nonlinear and pairwise interactive
parts.

Compared with specifying the structure of an unknown multivariate function h(QQQi), selecting
relevant variables under a high-dimensional setting is more widely discussed. The most
popular way for achieving this goal is LASSO (Least Absolute Shrinkage and Selection
Operator) style variables selection methods. Tibshirani (1996) proposes this method to
perform both variable selection and regularization in the linear model under high-dimensional
cases.

min
ααα

n

∑
i=1

(
Yi −

W

∑
j=1

α jXi j

)2

+λn

W

∑
j=1

|α j|, (1.4)

In Equation 1.4, λn is a data driving tuning parameter, and the attractive property of LASSO
is that it can achieve initial selection by shrinking some α = 0 and estimation even if P >> n.
A necessary condition for consistent selection of LASSO is discussed by Zhao and Yu (2006)
and Zou (2006), which is called irrepresentable condition (discussed in subsection 1.4.1).
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This condition restricts the correlation between relevant and irrelevant components to be
relatively small.

To relax this condition, Zou (2006) proposes Adaptive LASSO, which can achieve consistent
selection under mild conditions:

min
βββ

n

∑
i=1

(
Yi −

W

∑
j=1

β jXi j

)2

+λn

W

∑
j=1

ŵ j|β j|, (1.5)

where the weight ŵ j is data-dependent and typically chosen as ŵ j = |α̂ j|−γ for some γ > 0,
and α̂ j is a preliminary consistent estimate in Equation 1.4. X j with a smaller estimate α̂ j

will be penalized more severely, and the variable with α = 0 will be smoothed out.

As for selecting nonparametric functions, Lin and Zhang (2006) introduce COSSO (COm-
ponent Selection and Smoothing Operator), where they consider the model selection in a
general setting of the smoothing spline analysis of variance (SS-ANOVA) framework, shown
as:

h(XXX i) = b+
d

∑
j=1

f j(X
( j)
i )+ ∑

j<k
f jk(X

( j)
i ,X (k)

i )+ . . . .

This model can provide large flexibility in terms of the form of nonparametric functions,
such as higher dimensional functions. However, in COSSO, it only works under P < n,
which means variables considered are not allowed to exceed the number of observations.
Furthermore, Lin and Zhang (2006) do not give a detailed discussion of the selection of the
linear part. Finally, this selection model is not facilitated with the initial estimation. All of
these issues will be solved by our method.

Moreover, Huang et al. (2010a) introduce a selection and estimation method of an additive
nonparametric model inspired by both group LASSO as in Yuan and Lin (2006) and adaptive
group LASSO as in Wang and Leng (2008). They use a linear combination of B-splines basis
φk,1 ⩾ k ⩾ mn to approximate any potential unknown function as:

fn j(x) =
mn

∑
k=1

β jkφk(x).

Next, they consider the penalized least squares criterion

Ln(µ,βn) =
n

∑
i=1

[Yi −µ −
P

∑
j=1

mn

∑
k=1

β jkφk(Xi j)]
2 +λn

P

∑
j=1

ŵn j∥βββ n j∥2,
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where λn is a tuning parameter while ∥βn j∥2 is the L2 norm of the jth coefficient vector
βββ n j = (β j1, . . . ,β jmn)

⊺, and

ŵn j =

{
∥β̃n j∥−1

2 for ∥β̃n j∥2 > 0
∞ for ∥β̃n j∥2 = 0

,

where β̃n j is an initial and consistent estimate. Huang et al. (2010a) also compare adaptive
group LASSO model with COSSO by Lin and Zhang (2006), concluding that, when the
number of observations is small, adaptive group LASSO has much higher accuracy in terms
of selecting relevant variables in the semi-parametric additive model.

This paper proposes a Specification-LASSO (S-LASSO) for both variables selection and
model specification of a partially linear additive semi-parametric model with interac-
tions, which can be applied when P > n. S-LASSO can achieve variables selection, model
specification, and initial estimation at the same time. S-LASSO firstly use levels, B-splines
bases and pairwise tensor products of all potentially relevant variables to approximate linear,
nonlinear and interactive effects, respectively, and then it extends a two-step procedure to
give consistent selection.

In the first step, S-LASSO uses ordinary LASSO to consider all bases indifferently to attain
the initial selection and estimates. In the second step, S-LASSO clusters these bases into
different groups according to linear, nonlinear and interactive parts, and then an adaptive
group LASSO is applied to give a final selection and estimation results. The estimates from
the first step help the second step to set group-specific penalty-weighting parameters, which
leads to the consistency of selection.

In the empirical work, we employ S-LASSO to study a characteristics-based asset pricing
model. In Freyberger et al. (2020a), they assume assets excess returns can be predicted by
security-relevant characteristics and their interaction with the firm’s size:

YYY t = θθθ t +

interaction with firm size Xs︷ ︸︸ ︷
Q

∑
q̸=s

mqs(XXXqt−1 ·XXX st−1) +

uni-variate︷ ︸︸ ︷
Q

∑
q=1

mq(XXXqt−1),

where YYY t is a n×1 vector of assets excess returns at time t while XXX jt−1 is a n×1 vector of
asset-specific characteristic at time t −1. However, they fail to consider the potential linear
effects of characteristics, which have a quicker convergence rate and less computational
burden. Furthermore, they analyse interactive effects by specifying the form of pairwise



1.2 Model Setup 9

interaction as XXXqt−1 ·XXX st−1 (elementwise product), which is quite restrictive since mqs(XXXqt−1 ·
XXX st−1) ̸=mqs(XXXqt−1,XXX st−1) generally. S-LASSO can overcome this limitation by considering
the linear effect and not restricting the form of interactions. We will illustrate these through
both simulation and empirical studies.

The rest of the paper is organized as follows. Section 2 presents the model that S-LASSO
is working on; Section 3 provides procedures for S-LASSO to work; Section 3 illustrates
the theoretical results; Section 4 gives simulated experiments; Section 5 demonstrates an
empirical study; Section 6 concludes the paper. All proofs and other materials are arranged
in the Appendix.

1.2 Model Setup

Suppose we observe a sample data (((YYY ,,,PPP))), where YYY presents the n×1 vector of dependent
variables while PPP denotes the n×P matrix of potential covariates (XXX1,XXX2, . . . ,XXXP), allowing
for P > n.

We assume there is an n×Q matrix QQQ= (XXX1,XXX2, . . . ,XXXQ) that is relevant to explain or predict
the variation of YYY and QQQ ⊂⊂⊂ PPP. We restrict that Q is fixed, whereas P is diverging as sample
size n → ∞. We propose a sparse structure by assuming Q is relatively small as:

YYY = θθθ +h(QQQ)+UUU ,

E(YYY |||PPP) = θθθ +h(QQQ), (1.6)

where UUU is an n×1 vector of idiosyncratic errors εi with E(((UUU |||PPP))) === 000; h(QQQ) is a multi-variate
unknown function.

We also specify a partially linear additive semi-parametric model with interactive terms on
h(QQQ) as:

E(YYY |||PPP) = θθθ +h(QQQ) = θθθ +

interactive︷ ︸︸ ︷
S

∑
1⩽s<s′⩽S

mss′(XXX s,XXX s′)+

uni−variate︷ ︸︸ ︷
Q

∑
q=1

mq(XXXq) (1.7)

= θθθ +

interactive︷ ︸︸ ︷
S

∑
1⩽s<s′⩽S

mss′(XXX s,XXX s′)+

nonlinear︷ ︸︸ ︷
R

∑
r=1

mr(XXX r)+

linear︷ ︸︸ ︷
L

∑
l=1

βlXXX l, (1.8)
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where XXX j denotes the vector of the jth covariate. L, R and S are cardinal numbers of three
sets corresponding to linear effects variables, non-linear effects variables and interactive
variables, respectively, which will be estimated later. The complement of XXX that does not
appear in Equation 1.7 are regarded as irrelevant variables, which should be smoothed out.

Here we have Q relevant variables in total and S of them have interactive effects with S ⩽ Q.
Similarly, R of them have uni-variate effects with R ⩽ Q. Finally, L out of Q covariates have
linear effects, namely, R+L ⩽ Q, which means we may have some covariates having only
interactive effects with others. s and s′ (s < s′) is the sth pair of relevant covariates that has
interaction.

Meanwhile, mss′(XXX s,XXX s′) is an unknown bivariate nonparametric function of the sth pair of
relevant variables; mr(XXX r) is an uni-variate unknown function of the rth relevant variable; βl

is the coefficient of the lth relevant variable.

Furthermore, we define variable sets as follows:

L = {XXX l ∈ QQQ : XXX l has linear effects on YYY},

R = {XXX r ∈ QQQ : XXX r has nonlinear effects on YYY}

S = {XXX s,XXX s′ ∈ QQQ : XXX s,XXX s′ have interactive effects on YYY}.

The cardinality for each set are: |L |= L, |R|= L and |S |= S. Each set above is unknown
to researchers and can be empty.

Equation 1.7 avoids the curse of dimensionality with fewer restrictions. Compared with con-
ventional additive models where components are uni-variate, we allow potential covariates
to interact with each other to provide more information and flexibility. We also allow for a
linear part since it has a better convergence rate and less computational burden. Therefore,
practitioners do not bother employing nonparametric techniques when simpler parametric
methods work. The decomposition in Equation 1.7 gives considerable adaptability to miti-
gate possible model misspecification. We do not include higher-order interactions among
covariates, but our methods can be extended accordingly.

Based on the model above, our methodology focuses on:

1. Selecting the relevant variables subset QQQ from PPP;

2. Specifying the form of decomposition in Equation 1.7;
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3. Giving initial estimates of Equation 1.7.

1.3 Methodology

This section provides the detailed procedures to select relevant variables, decompose and
estimate of h(XXX).

1.3.1 Variables and Model Selection by Specification-LASSO

Without external knowledge and other information, it is hard for us to determine relevant
variables and the form of Equation 1.7. Therefore, all forms of entire covariates and their
interactive effects should be considered, and then, a proper variable selection model can be
applied to filter all possibilities. After analyzing selection results, one can examine whether
the function form of each covariate is linear or not, and whether some of them have interactive
effects.

To develop our methods and theoretical results, we introduce some notations and definitions.
First, we illustrate spline spaces.

Similar to Schumaker (1981) and Huang et al. (2010a), we suppose that the jth potential
covariates XXX j, where XXX j is a n×1 vector taking values in [a,b] as:

XXX j = (X1 j,X2 j, . . . ,Xn j)
⊺, XXX j ∈ PPP and j = 1,2, . . . ,P.

Furthermore, a,b are finite with a < b. Let KKK = {a = κ0 = κ0 = . . .= κ0︸ ︷︷ ︸
g

< κ1 < κ2 <

· · ·< κkn < κ = κ = . . .= κ︸ ︷︷ ︸
g

= b} be a sequence of knots partitioning the interval [a,b] into

subintervals, where kn = [nv] with 0 < v < 0.5 being a positive integer whereas g is the order
of bases used. Let Kn = kn+g, which denotes the total number of bases. For the ith individual
of XXX j, where j = 1,2, . . . ,P and i = 1,2, . . . ,n , a set of B-splines can be built in the L2 space
Ωn[KKK] as ΦKKK(XXX j) = {φ1(XXX j),φ2(XXX j), . . . ,φKn(XXX j)}. Next, we define a B-splines matrix:

ΦKKK(XXX j) =


φ1(X j1) φ2(X j1) . . . φKn(X j1)

φ1(X j2) φ2(X j2) . . . φKn(X j2)
...

... . . . ...
φ1(X jn) φ2(X jn) . . . φKn(X jn)

 ,
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Definition 1.3.1. Define spline space Kg,KKK as linear combination of B-splines by:

Kg,KKK = span{φKKK,k,1 ⩽ k ⩽ Kn}= {
Kn

∑
k=1

βkφKKK,k|βk ∈ R for 1 ⩽ k ⩽ Kn},

where g is the degree of those bases and KKK is the knots sequence, and βk is the kth B-spline
coefficient. To simplify the notation without causing confusion, we drop the sequence
subscript KKK henceforth.

Accordingly, the rth unknown uni-variate function can be approximated as:

mr(XXX r) = Φ(XXX r)βββ r +ξξξ r,

where βββ r = (βr1,βr2, . . . ,βrKn)
⊺, and ξξξ r is the approximation error.

Similar to spline space Kg,KKK , we construct another spline space Dg,DDD using knot sequence DDD
in interval [a′,b′].

Definition 1.3.2. Define the tensor product of spline spaces Kg,KKK
⊗

Dg,DDD as the famlily of
all functions of the form:

f (xxxp,xxxp′) =
Kn

∑
k=1

Dn

∑
d=1

βkdφk(xxxp)µd(xxxp′), where 1 < 2 < · · ·< p < p′ < · · ·< P

where coefficients βkd can be any real numbers.

Accordingly, for any covariates XXXa,XXXb ∈ PPP, their potential interactive effects can be approxi-
mated as:

mab(XXXa,XXXb) =
Kn

∑
k=1

Dn

∑
d=1

βabkdφk(XXXa)µd(XXXb)+ξξξ ab, 1 ⩽ a < b ⩽ P,

where ξξξ ab is the approximation error.

Equivalently, let
ΦKKK(Xia) = (φ1(Xia),φ2(Xia), . . . ,φKn(Xia))

⊺,

µDDD(Xib) = (µ1(Xib),µ2(Xib), . . . ,µDn(Xib))
⊺.
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Equivalently:

ΦKKK(Xia)⊗µDDD(Xib)=Vec




φ1(Xia)µ1(Xib) φ1(Xia)µ2(Xib) . . . φ1(Xia)µDn(Xib)

φ2(Xia)µ1(Xib) φ2(Xia)µ2(Xib) . . . φ2(Xia)µDn(Xib)
...

... . . . ...
φKn(Xia)µ1(Xib) φKn(Xia)µ2(Xib) . . . φKn(Xia)µDn(Xib)




⊺

= (φ1(Xia)µ1(Xib),φ1(Xia)µ2(Xib), . . . ,φ1(Xia)µDn(Xib), . . . ,φKn(Xia)µDn(Xib)).

Then:

ΦΦΦKKK(XXXa)⊗µµµDDD(XXXb) =


ΦKKK(X1a)⊗µDDD(X1b)

ΦKKK(X2a)⊗µDDD(X2b)
...

ΦKKK(Xna)⊗µDDD(Xnb)

 .
To simplify the notation without causing any confusion, we drop the sequence subscript KKK
and DDD henceforth.

We also write tensor product coefficients as vector βββ ab as:

βββ ab = (βab11,βab12, . . . ,βab1Dn, . . . ,βabKn1,βabKn2, . . . ,βabKnDn)
⊺

The true model can be approximated as:

YYY = θθθ + ∑
XXX l∈L

βlXXX l + ∑
XXX r∈R

ΦΦΦ(Xr)βββ r + ∑
XXX s,XXX s′∈S

ΦΦΦ(XXX s)⊗µµµ(XXXb)βββ ss′ +ΞΞΞn +UUU ,

where ΞΞΞn is the approximation error and UUU is the n×1 vector of idiosyncratic error εi .

Those non-zero coefficients are:

βββL = (β1, . . . ,βL)
⊺,

βββR = (βββ⊺
1, . . . ,βββ

⊺
R)

⊺,

βββS = (βββ⊺
11′, . . . ,βββ

⊺
SS′)

⊺.

We define a non-zero coefficient vector:

βββ P1
= (βββ⊺

L ,βββ⊺
R ,βββ⊺

S )⊺.



14 Specification LASSO and an Application in Financial Markets

Let dim(βββ P1
) = P1, where dim(·) means the dimension of any vector. We also define B-spline

bases of relevant covariates as:

XXXL = (XXX1, . . . ,XXX l, . . . ,XXXL), XXX l ∈ L .

NNN(XXXR) = (ΦΦΦ(XXX1), . . . ,ΦΦΦ(XXX r), . . . ,ΦΦΦ(XXXR)), XXX r ∈ R.

III(XXXS ) = (ΦΦΦ(XXX1)⊗µµµ(XXX1′), . . . ,ΦΦΦ(XXXS)⊗µµµ(XXXS′)), XXX s and XXX s′ ∈ S .

Recall that for individual i, we observe P potential covariates denoted as a vector PPPi, and
there are Q relevant variables denoted as QQQi, Q ⩽ P. There are two steps for the S-LASSO to
work to select QQQi out of PPPi and to specify the model as in Equation 1.7.

In the next step, our job is to put all possible linear, nonlinear and interactive forms of
all potential covariates in a selection model. S-LASSO can achieve at least three goals,
namely, to select all the relevant variables, to specify the model and to obtain the preliminary
estimates.

Step 1. Substitute all possible forms of each variable and pairwise interactive terms in PPP into
LASSO selection:

min
βββ l ,βββ r,βββ ab

||YYY −θθθ −
P

∑
l=1

βlXXX l −
P

∑
r=1

ΦΦΦ(XXX r)βββ r −
P−1

∑
a=1

P

∑
b>a

ΦΦΦ(XXXa)⊗µµµ(XXXb)βββ ab||22

+λn

(
P

∑
l=1

|βl|+
P

∑
r=1

|βββ r|+
P−1

∑
a=1

P

∑
b>a

|βββ ab|

)

where |β | and |βββ n| are l1 norms and ||βββ ||2 ≡ (∑N
n=1 |βn|2)1/2 denotes the l2 norm of any n×1

vector βββ . λn > 0 is a data driven tuning parameter. This step provides us with preliminary
information after the initial selection. However, one drawback of LASSO process is that
it may leave plenty of small but non-zero coefficients. Nonetheless, the first step provide
crucial hints which are helpful for discriminatory penalty in the next step.

Step 2. Use step 1 estimates to construct penalty weighting coefficients and substitute all
bases into adaptive group LASSO:

ω̂l =


√

NL |β̃l|−1, if |β̃l|> 0

∞, if β̃l = 0.
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ω̂r =


√

NR ||β̃ββ r||−1
2 , if ||β̃ββ r||2 > 0

∞, if ||β̃ββ r||2 = 0.

ω̂ab =


√

NS ||β̃ββ ab||−1
2 , if ||β̃ββ ab||2 > 0

∞, if ||β̃ββ ab||2 = 0.

NL = L, NR = R×Kn and NS = S(S−1)
2 × (Kn)

2 are the number of coefficients within each
group as our group sizes are significantly different. We use group cardinality to control the
strength of the penalty.

To eliminate the noise from step 1, we consider the adaptive group LASSO which can select
variables in a group manner.

L(θ ,βl,βββ r,βββ ab) = ||YYY −θθθ −
P

∑
l=1

βlXXX l −
P

∑
r=1

ΦΦΦ(XXX r)βββ r −
P−1

∑
a=1

P

∑
b>a

ΦΦΦ(XXXa)⊗µµµ(XXXb)βββ ab||2

+λ̃n

(
P

∑
l=1

ω̂l|βl|+
P

∑
r=1

ω̂r||βββ r||2 +
P−1

∑
a=1

P

∑
b>a

ω̂ab||βββ ab||2

)
,

Let 0×∞ = 0, so groups deleted by LASSO are not selected by adaptive group LASSO for
sure. λ̃n > 0 is a data driven tuning parameter.

After the selection by step 2, all non-zero coefficients of linear approximation are represented
as β̂ββL ; non-zero coefficients of the approximate of nonlinear effects are shown as β̂ββR ; non-
zero coefficients of tensor products are written as β̂ββS . At the same time, all the irrelevant
variables or bases are smoothed out since their coefficients are zeros. Additionally, the
non-zero β s of Step 2 is a vector β̂ββ P1

,

β̂ββ P1
= (β̂ββ

⊺
L , β̂ββ

⊺
R , β̂ββ

⊺
S )⊺,

where β̂ββL = (β̂1, . . . , β̂L̂)
⊺, β̂ββR = (β̂ββ

⊺
1 , . . . , β̂ββ

⊺
R̂)

⊺, and β̂ββP = (β̂ββ
⊺
11′ , . . . , β̂ββ

⊺
ŜŜ′)

⊺.

The model specification we obtained is:

h(QQQ) = ∑
XXX l∈L̂

βlXXX l + ∑
XXX r∈R̂

mr(XXX r)+ ∑
XXX s,XXX s′∈Ŝ

mss′(XXX s,XXX s′),

where,
L̂ = {XXX l ∈ QQQ : |β̂l|> 0},

R̂ = {XXX r ∈ QQQ : ||β̂ββ r||2 > 0},
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Ŝ = {XXX s,XXX s′ ∈ QQQ : ||β̂ββ ss′||2 > 0},

Accordingly, |L̂ | = L̂, |R̂| = R̂ and |Ŝ | = Ŝ. In practice, we include covariates that are
selected by both linear and nonlinear parts in the nonlinear set only since this can simplify
the model further. The classification above is for theoretical proof purposes.

Next, nonlinear and interactive components are approximated by:

m̂r(XXX r) = ΦΦΦ(XXX r)β̂ββ r,1 ⩽ r ⩽ R̂

m̂ss′(XXX s,XXX s′) = ΦΦΦ(XXX s)⊗µµµ(XXX s′)β̂ββ ss′, 1 ⩽ s < s′ ⩽ Ŝ.

Meanwhile, we define the matrix of irrelevant components, which are smoothed out by
S-LASSO as:

XXXL C = (XXX1, . . . ,XXX l, . . . ,XXXLC), XXX l ∈ PPP but XXX l ̸∈ L .

NNN(XXXRC) = (ΦΦΦ(XXX1), . . . ,ΦΦΦ(XXX r), . . . ,ΦΦΦ(XXXRC)), XXX r ∈ PPP but XXX r ̸∈ R.

III(((XXXS C)))= (ΦΦΦ(XXX1)⊗µµµ(XXX1′), . . . ,ΦΦΦ(XXXSC)⊗µµµ(XXXSC′ )), XXX s and XXX s′ ∈PPP but XXX s and XXX s′ ̸∈S .

Let n×P1 matrix ZZZ1 = (XXXL ,NNN(XXXR), III(XXXS )) represent all the relevant components and
let βββ P1

be the P1 × 1 coefficient vector of matrix ZZZ1. Meanwhile, let n×P2 matrix ZZZ2 =

(XXXL C ,NNN(XXXRC), III(XXXS C)), denotes all the irrelevant components. Similarly, let βββ P2
=(βββ⊺

L C ,βββ
⊺
RC ,βββ

⊺
S C)

⊺

be the P2 ×1 coefficient vector of matrix ZZZ2.

1.3.2 Estimation

OLS can be applied to obtain estimates:

β̂ββ P1
= (((ZZZ⊺

1ZZZ1)))
−1ZZZ⊺

1YYY .

And
β̂ββ P2

= 000,

β̂ββ PZ
= (β̂ββ

⊺
P1
, β̂ββ

⊺
P2
)⊺.

1.4 Theoretical results

Firstly, we list some assumptions to facilitate our theoretical analysis.
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1.4.1 Assumption

Assumption 1.4.1. The noise εi are independent and identically distributed with Eεi = 0 and
Var(ε) = σ2. Furthermore, it has finite 2kth moment with E(ε2k

i )< ∞ for k = 1,2, . . . ,K.

Assumption 1.4.2. Let

VVV =
1
n
(ZZZ1,ZZZ2)

⊺(ZZZ1,ZZZ2) =

{
VVV Z1Z1 VVV Z1Z2

VVV Z2Z1 VVV Z2Z2

}

be the covariance matrix of all the components in step 1. There exist constants c1, c2, c3, and
c4 with 0 ⩽ c1 < c2 ⩽ 1 and c3,c4 > 0, such that

P1 = O(nc1), (1.9)

n
1−c2

2 min{|βl|, ||βββ r||2, ||βββ ss′||2}⩾ c4, for βl,βββ r,βββ ss′ ∈ βββ P1
. (1.10)

P2 = O(n(c2−c1)k), (1.11)

λmin(VVV Z1Z1)> c3, (1.12)

Equation 1.9 and Equation 1.11 control the maximum dimensions of relevant and irrelevant
components respectively. Equation 1.12 ensures that the minimum eigenvalue of relevant
components matrix ZZZ1 is away from 0 to be invertible, where λmin(VVV Z1Z1) indicates the
smallest eigenvalue of covariance matrix VVV Z1Z1 . Finally, Equation 1.10 limits the decay rate
of elements in βββ P1

.

Assumption 1.4.3. E(mr(XXX r)) = 0, E(mss′(XXX s,XXX s′)) = 0, given XXX j ∈ R ∪S .

This assumption is for unique identification purpose.

Assumption 1.4.4. 0–th, first and second derivatives of mr(XXX r) and mss′(XXX s,XXX s′) are con-
tinuous, for Xr ∈ R and Xs,Xs′ ∈ S .

This assumption is for approximation accuracy of B-splines bases and their tensor products.

Definition 1.4.1. Let β̂ be an estimate of β . Then, β̂ is Sign Consistent with β , shown as
β̂ =s β , if and only if

sign(β̂ ) = sign(β ),
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where sign(β̂ ) = 1, if β̂ > 0;sign(β̂ ) =−1, if β̂ < 0; and sign(β̂ ) = 0, if β̂ = 0. Similarly,
Let β̂ββ be a vector of estimates of βββ . Then β̂ββ is Sign Consistent with βββ , written as β̂ββ =s βββ if
and only if each entry is Sign Consistent.

Definition 1.4.2. Let β̂ be an estimate of β . Then, β̂ is Norm Consistent with β , shown as
β̂ =0 β , if and only if

sign0(β̂ ) = sign0(β ),

where sign0(β̂ ) = 1, if β̂ ̸= 0;sign0(β̂ ) = 0, if β̂ = 0. Similarly, Let β̂ββ be a vector of esti-
mates of βββ . Then β̂ββ is Norm Consistent with βββ , written as β̂ββ =0 βββ if and only if each entry
is Norm Consistent.

Condition 1.4.1. Let covariance matrix VVV satisfies strong irrepresentable condition docu-
mented by Zhao and Yu (2006), stating that there exists a positive constant P1 ×1 vector ηηη ,
and

|VVV Z2Z1(VVV Z1Z1)
−1sign(βββ P1

)|⩽ 111−−−ηηη ,

which is true element-wise.

Condition 1.4.2. Similarly, covariance matrix VVV satisfies weak irrepresentable condition , if

|VVV Z2Z1(VVV Z1Z1)
−1sign(βββ P1

)|< 111,

which is true element-wise.

Theorem 1.4.1. Under Assumptions 1.4.1-1.4.4 and Condition 1.4.2, and let PZ = P1 +P2,
βββ PZ

= (βββ⊺
P1
,βββ⊺

P2
)⊺, for ∀λn satisfying λn√

n = o(n
c2−c1

2 ) and 1
PZ
( λn√

n)
2k → ∞ for k = 1,2,3 . . . ,

then the first step of S-LASSO is sign consistent with:

P(β̂ββ PZ
=s βββ PZ

)⩾ 1−O(
PZnk

λ 2k
n

)→ 1, as n → ∞.

Theorem 1.4.2. Given the well-chosen number of internal knots kn = [nv] and under Assump-
tions 1.4.1-1.4.4 and Theorem 1.4.1, S-LASSO is consistent on selection relevant covariates
and specification of the correct model:

P( lim
n→∞

β̂ββL =0 βββL )→ 0,

P( lim
n→∞

β̂ββR =0 βββR)→ 0,
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P( lim
n→∞

β̂ββS =0 βββS )→ 0.

1.5 Simulation study

We generate our model as:

yi = βx1i +m1(x2i)+m2(x3i,x4i)+ εi, i = 1, . . . ,n,

where βx1i = x1i, m1(x2i) = x2
2i, m2(x3i,x4i) = sin(x3i + x4i). All three above functions are

rescaled to be zero mean and unit variance. Furthermore, we generate P candidate variables
xpi. We have all independent variables generated from Uni f orm[−2,2] and ε ∼ N(0,σ2),
where there are no correlations between all potential variables. Two different P dimensions
and three different sample sizes are tested, namely, P = 30,50 with n = 100,300,500.

In Table 1.1, we compare the results of S-LASSO and the methods of selecting interactive
effects between stock characteristics in Freyberger et al. (2020a) (named FNW).

We choose four evenly distributed knots to construct B-splines approximation of nonlinear
effects while choosing two evenly distributed knots for each covariate to construct tensor
products to keep the group size comparable. Meanwhile, for the FNW methods, we choose
all the knots sequences for x j and x j × x j′ to be 4, which are also evenly distributed, to
approximate both nonlinear and interaction effects among potential covariates. The tuning
parameter λns are chosen through BIC for both steps. Here, we define BIC as:

BIC = n∗ log(MSE)+d f ∗ log(n),

where n is the number of observation and df represents the degree of freedom in LASSO
procedures discussed in Leng et al. (2006).

Furthermore, we define the signal to noise ratio as as Rσ = sd(m(·))/sd(ε) to illustrate the
robustness of S-LASSO under different noise level.
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Table 1.1 Simulation Example of S-LASSO

σ=0.25 σ=0.333 σ=0.5

INC CS MSE INC CS MSE INC CS MSE

P=30

n=100
S-LASSO

52.8 49.4 0.77 48.2 44.2 0.83 32.8 28.4 0.94
(0.5) (0.5) (0.28) (0.5) (0.5) ( 0.29) (0.47) (0.45) (0.32)

FNW
0 0 1.13 0 0 1.2 0.2 0.2 1.42

(0) (0) (0.4) (0) (0) (0.41) (0.04) (0.04) (0.49)

n=300
S-LASSO

95.6 95 0.59 94.8 94 0.66 95 95 0.81
(0.21) (0.22) (0.17) (0.22) (0.24) (0.2) (0.218) (0.218) (0.2)

FNW
0 0 0.97 0 0 1.02 0 0 1.16

(0) (0) (0.18) (0) (0) (0.17) (0) (0) (0.18)

n=500
S-LASSO

99.8 99.6 0.53 98.2 97.2 0.59 98.4 98.4 0.75
(0.04) (0.06) (0.08) (0.133) (0.165) (0.11) (0.126) (0.126) (0.138)

FNW
0 0 0.97 0 0 0.96 0 0 1.15

(0) (0) (0.14) (0) (0) (0.14) (0) (0) (0.15)

P=50

n=100
S-LASSO

34.8 31.6 0.88 34.8 32 0.89 24.8 22 1.01
(0.48) (0.47) (0.31) (0.48) (0.47) (0.32) (0.43) (0.41) 0.35

FNW
0 0 1.24 0 0 1.31 0 0 1.5

(0) (0) (0.48) (0) (0) (0.45) (0) (0) (0.41)

n=300
S-LASSO

92.8 92.4 0.66 88 88 0.75 85.8 85.8 0.92
(0.26) (0.27) (0.22) (0.33) (0.33) (0.26) (0.35) (0.35) (0.27)

FNW
0 0 1.01 0 0 1.06 0 0 1.22

(0) (0) (0.2) (0) (0) (0.19) (0) (0) (0.19)

n=500
S-LASSO

98.6 98.4 0.57 96.8 96.8 0.64 96 96 0.81
(0.12) (0.13) (0.12) (0.18) (0.18) (0.17) (0.2) (0.2) (0.19)

FNW
0 0 0.98 0 0 1.02 0 0 1.18

(0) (0) (0.14) (0) (0) (0.16) (0) (0) (0.16)

Note: This table compares the performance of S-LASSO and the method used in FNW (2020) under
different sample size, n=100, 300, 500; different number of irrelevant variables, P=30, 50; and
different levels of noise, Rσ = 4,3,2. INC represents the percentage that all the relevant covariates
are correctly included in the model. CS shows the percentage of the whole model that is correctly
specified, which means the model not only selects all relevant variables but also gives them a precise
specification. MSE indicates the average mean squared error of all repetitions under each method.
Simulations are repeated 500 times for each setting. Standard deviations are given in the parentheses.

From the results in Table 1.1, S-LASSO overperforms FNW under all scenarios. Because
in FNW, they treat interaction term x j × x j′ as a new variable and construct B-spline space
based on this covariate. Therefore, only certain forms of pairwise interactions with input
x j × x j′ can be detected. Hence, for nearly all the simulation settings, FNW can neither
include all the relevant covariates nor specify the model correctly, given the interactive
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function form sin(x3i + x4i). However, S-LASSO employs tensor products of B-splines to
approximate potential interactions and has decent accuracy on both including all relevant
covariates and choosing the correct model. We use this simulation to show the limitation of
FNW and demonstrate that tensor products can accommodate more comprehensive forms of
interactions. Additionally, although prediction is not the primary goal of S-LASSO, it has
much smaller MSE compared with FNW.

Furthermore, S-LASSO works better for small P large n circumstances, and the highest
percentage of selecting the relevant covariates and specifying the correct model can be 99.8%
and 99.6% individually. For the most challenging condition under P=50, n=100 and σ = 0.5,
S-LASSO also has acceptable performance with an accuracy of 24.8% and 22% respectively.

S-LASSO is also robust under different levels of noise for all settings. As shown from
different rows of Table 1.1, the accuracy is similar across three different noise levels.

1.6 Empirical Study

1.6.1 Introduction

In this section, we revisit the question proposed by Freyberger et al. (2020a), where they try
to detect the influence of firms’ characteristics on stock returns non-parametrically. They
specify assets returns as additive non-parametric functions of lagged corresponding assets
characteristics such as book-to-market ratio, profitability, etc. Their model is:

E(YYY t+1|WWW t) = θθθ t +
R

∑
r=1

mr(XXX rt), (1.13)

where YYY t+1 is a n×1 vector of stock excess returns at time t; WWW t is a n×W matrix of W asset-
relevant characteristics that are observed at time t. At the right hand side of Equation 1.13,
they select R additive non-parametric uni-variate unknown functions of characteristics that
are relevant to predict stock excess returns, and θθθ t is the intercept.

To further investigate the interactive effects between assets sizes with other characteristics,
they propose a model to accommodate pairwise interactions:

E(YYY t+1|WWW t) = θθθ t +
R

∑
r=1

mr(XXX rt)+
S

∑
s

ms(XXX st ·XXX size,t), (1.14)
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where they consider the unknown function form taking input as XXX s ·XXX size. As discussed in
Introduction and exemplified in Simulation, ms(XXX s ·XXX size) ̸= ms(XXX s,XXX size), this specification
of interactions may restrict the form of interactive effects to be multiplicity only. Furthermore,
they do not include linear parts, which have both computational simplicity and quicker rate
of convergence.

In this section, we apply S-LASSO to short rolling window data to revisit the effects of
assets characteristics on stock returns and their interactive effects with firms sizes. We further
divide uni-variate effects to be linear or nonlinear. The model is specified as:

E(YYY t+1|WWW t) = θθθ t +
L

∑
l=1

βlXXX l +
R

∑
r=1

mr(XXX rt)+
S

∑
s=1

ms(XXX st ,XXX size,t), (1.15)

where the notations are similar to Equation 1.14. However, we add a linear term to capture
the linear effects of some characteristics, which can increase the rate of convergence and
simplify the model and interpretation. Meanwhile, we relax the pairwise interaction between
characteristics to a more general form. Similarly, we also assume that both slope parameters
and characteristic functions are time-invariant. Therefore, for those nonlinear and interactive
characteristics, each characteristic and each pair among them share a certain form of variation.

1.6.2 Data Description

Monthly stock returns are collected from CRSP (Center for Research in Security Prices) and
security-specific characteristics date is from Compustat. In terms of stock returns, we correct
all returns of delisted stock as in Hou et al. (2015). Furthermore, we subtract Fama-French’s
monthly risk-free returns from monthly stock returns to attain YYY from July 1967 to June
2017, 600 months in total. As for security-related characteristics matrix WWW , is constructed
using the same way of Freyberger et al. (2020a). After trading off the number of assets
kept and characteristics’ availability, we select 33 characteristics, which are documented in
the Appendix. We use balance sheet data ending at fiscal year t −1 to predict stock excess
returns from July t −1 to June t. Some characteristics are updated annually, so we take them
unchanged during the fiscal year t. Finally, we merge stock returns and security-specific
characteristics.

1.6.3 Variable Selection and Model Specification

We apply non-overlapping rolling window analysis in this empirical study. The purpose is to
understand whether there are any time variations in Equation 1.15. In each rolling block, we
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use pooled panel data to apply S-LASSO. We omit the heterogeneity to assume that the same
characteristic has an identical functional form within each rolling window.

For each characteristic, we choose the number of knots to be 6 to construct B-spline bases,
which are used to approximate nonlinear effects and choose the number of knots to be 3 for
tensor product bases, which are constructed to approximate interactive effects. Next, we
substitute all the levels, B-spline bases and tensor products into the S-LASSO algorithm.

There are two steps for S-LASSO to work, and for both steps, similar to simulation studies,
we choose λn and λ̃n through BIC.

We summarize selection results in Table 1.2, Table 1.3 and Table 1.4, respectively. Columns
of these tables are rolling window time periods while each row presents selection results of
each characteristic separately. We use ✓ to show that the corresponding characteristic is
selected in a certain rolling block. We omit some rolling blocks due to the non-invertible
characteristics matrix. Table 1.2 documents selection results of characteristics’ linear effects
on assets excess returns. We do not include characteristics that have both linear and nonlinear
effects in Table 1.2 as the general effects of these characteristics should be concluded as
nonlinear. Compared with Table 1.3, characteristics that only have linear effects on assets
returns are uncommon. However, some characteristics experience persistent linear effects on
stock returns, such as "C2A" (ratio of cash and short-term investments to total assets), "PCM"
(price-to-cost margin ), "r12_7" (cumulative past return from 12 to 7 months). Table 1.2
demonstrates that most uni-variate effects from characteristics are nonlinear, and some of
them are long-lasting. "LME" (total market capitalization of the previous month), "A2ME"
(assets to market capitalization), "AT" (total assets), "E2P" (earnings to price) and "ROA"
(return-on-assets) are selected by all rolling windows. Meanwhile, "Investment", "Q" (Tobin’s
Q), "ROE" (return-on-equity), "r2_1" (short-term reversal 2 to 1 month) and "S2P" (sales-
to-price) are frequently chosen. As for interactive effects with firms’ sizes, we use "LME"
(total market capitalization of the previous month) as the measure of firms’ sizes. Table 1.4
shows the characteristics that have interactive effects with "LME". The interactive effects
are not limited to be multiplicity by our method. "Free_cash" is more influential on stock
returns when interacting with firms’ sizes. "A2ME", "AT", "Q" and "ROA" also substantially
interact with "LME".

Empirical results demonstrate the power of S-LASSO to select relevant variables and specify
a flexible regression model. We show that asset-related characteristics are relevant to predict
stock excess returns. Specifically, the form of each characteristic is different, which includes
but is not limited to linear effects, nonlinear effects and interactions with firms’ sizes.
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Although most uni-variate functions of characteristics are nonlinear, however, linear functions,
which have both computational and convergence advantages, are still important. S-LASSO
can not only specify linear parts but also select more general interactive effects with firms’
sizes since it uses tensor products to approximate more complicated bi-variate functions.

1.6.4 Selection Results
Table 1.2 Summary of Linear Effects of Characteristics on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

LME
A2ME

AT
ATO

BEME
C2A ✓ ✓ ✓ ✓ ✓ ✓

C2D
CTO ✓ ✓ ✓ ✓

Delceq
DelGmSale
Delshrout ✓

E2P
EPS ✓ ✓

Free_cash ✓ ✓ ✓ ✓

Investment
IPM ✓

Lev ✓ ✓ ✓

LTurnover
PCM ✓ ✓ ✓ ✓ ✓

PM ✓ ✓ ✓

Prof
Q

ROA
ROC
ROE
r12_2
r12_7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

r6_2 ✓ ✓ ✓ ✓

r2_1 ✓ ✓ ✓ ✓

S2C
S2P ✓

Sales_g ✓

SGA2S ✓

This table shows selection results of characteristics that only have linear effects on predicting assets excess returns through three-year
rolling windows from July 1965-June 2012. ✓ represents the characteristic is selected in the corresponding rolling window shown in the
column.
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Table 1.3 Summary of nonlinear Effects of Characteristics on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

LME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A2ME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ATO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BEME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C2A ✓

C2D ✓ ✓ ✓ ✓ ✓

CTO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Delceq ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DelGmSale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Delshrout ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E2P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EPS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Free_cash ✓

Investment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IPM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lev ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LTurnover ✓ ✓ ✓ ✓ ✓

PCM ✓ ✓ ✓ ✓

PM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Prof ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

r12_2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

r12_7 ✓ ✓

r6_2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

r2_1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S2C ✓ ✓ ✓ ✓

S2P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sales_g ✓ ✓ ✓ ✓ ✓

SGA2S ✓ ✓ ✓ ✓

This table shows selection results of characteristics that have nonlinear effects on predicting assets excess returns through three-year rolling
windows from July 1965-June 2012. ✓ represents the characteristic is selected in the corresponding rolling window shown in the column.
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Table 1.4 Summary of Interactive Effects of Characteristics with Size on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

A2ME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ATO ✓

BEME ✓ ✓ ✓ ✓ ✓

C2A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C2D
CTO ✓ ✓ ✓ ✓ ✓ ✓

Delceq
DelGmSale ✓

Delshrout ✓ ✓

E2P ✓ ✓ ✓ ✓ ✓ ✓

EPS ✓ ✓ ✓ ✓ ✓ ✓

Free_cash ✓ ✓ ✓ ✓ ✓ ✓

Investment ✓ ✓ ✓

IPM
Lev ✓ ✓ ✓ ✓ ✓ ✓

LTurnover ✓ ✓ ✓

PCM ✓ ✓ ✓ ✓ ✓ ✓

PM ✓

Prof ✓

Q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ROC ✓ ✓ ✓

ROE
r12_2 ✓

r12_7
r6_2 ✓

r2_1 ✓ ✓

S2C ✓

S2P ✓ ✓ ✓ ✓ ✓ ✓

Sales_g
SGA2S ✓ ✓ ✓ ✓

This table shows selection results of characteristics that have interactive effects with firms’ sizes (LME) on predicting assets excess returns
through three-year rolling windows from July 1965-June 2012. ✓ represents the characteristic is selected in the corresponding rolling
window shown in the column.

1.7 Conclusion

We propose a more general variable selection and model specification method, called Spec-
ification LASSO (S-LASSO). S-LASSO is designed under sparsity, to specify a partially
linear additive non-parametric regression model with pairwise interactions among regressors.
Firstly, S-LASSO considers all possibilities through levels, B-splines bases and tensor prod-
ucts of all variables. Then, there are two steps for S-LASSO to work. In the first step, we
apply LASSO to give preliminary selection. In the second step, an adaptive group LASSO is
employed to give the final selection results in a group manner, using estimates in the first step
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as discriminatory group penalty. We illustrate the satisfactory accuracy of S-LASSO through
simulation studies. Empirically, S-LASSO is applied to a characteristics-based asset pricing
model. We show that security-specific characteristics have linear, nonlinear and interactive
effects with firms’ sizes on assets excess returns, which complements current literature.





Chapter 2

Dynamic Peer Groups of Arbitrage
Characteristics





Abstract

We propose an asset pricing factor model constructed with semiparametric characteristics-
based mispricing and factor loading functions. We approximate the unknown functions by
B-splines sieve where the number of B-splines coefficients is diverging. We estimate this
model and test the existence of the mispricing function by a power enhanced hypothesis test.
The enhanced test solves the low power problem caused by diverging B-splines coefficients,
with the strengthened power approaches one asymptotically. We also investigate the structure
of mispricing components through Hierarchical K-means Clusterings. We apply our method-
ology to CRSP (Center for Research in Security Prices) and Compustat data for the US stock
market with one-year rolling windows during 1967-2017. This empirical study shows the
presence of mispricing functions in certain time blocks. We also find that distinct clusters of
the same characteristics lead to similar arbitrage returns, forming a "peer group" of arbitrage
characteristics.

Keywords: Semiparametric; Characteristics-based; Peer Groups; Power-enhanced test
JEL Classification: C14; G11; G12
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2.1 Introduction

Stock returns have both common and firm-specific components. Ross (1976) proposed
Arbitrage Pricing Theory (APT) to summarize that expected returns on financial assets can be
modeled as a linear combination of risk factors. In such a model, each asset has a sensitivity
beta to the risk factor. The APT model explains the excess returns in the cross-sectional
direction. Fama and French (1993) and Fama and French (2015) proxied those factors by the
returns on portfolios sorted by different characteristics, and they developed three-factor and
five-factor models. After extracting the common movement parts, they treated the intercept
as the mispricing alpha, which is asset-specific and cannot be explained by those risk factors.
Many papers use a similar method to present other factor models, such as the four-factor
model of Carhart (1997), the q-factor model of Hou et al. (2015), and the factor zoo by Feng
et al. (2017) among others. All of the above papers studied observed factors and did not
assign characteristics-based information to either alpha or beta.

Security-specific characteristics, such as capitalization and book to market ratio, are usually
documented to explain asset-specific excess returns. Freyberger et al. (2020a) analyzed the
nonlinear effects of 62 characteristics through Lasso-style regressions. This study concluded
that 13 of these characteristics have explanatory power on stock excess returns after selecting
by adaptive group Lasso. Characteristics-based information is also exploited to develop
arbitrage portfolios by directly parameterizing the portfolio weights as a linear function of
characteristics, as in Hjalmarsson and Manchev (2012) and Kim et al. (2019). Empirically,
they showed that their portfolio outperformed other baseline competitors.

This paper’s contributions are fourfold. Firstly, we build up a more flexible semiparametric
characteristics-based asset pricing factor model focusing on the mispricing component.
Secondly, we extend previous estimation and testing methods, which can fit the current
framework better. Especially, we extend the power-enhanced test of Fan et al. (2015) in
a group manner to strengthen the conventional Wald test for mispricing functions. This
test can also select the characteristics that contribute to arbitrage portfolios simultaneously.
Thirdly, we construct a two-layer clustering structure of mispricing components. Finally,
our methods are applied to fifty years of monthly US stock data. We detect distinct clusters
of the same characteristics resulting in similar arbitrage returns, forming a "peer group" of
arbitrage characteristics. This finding supplements existing portfolio management techniques
by implying that the development of arbitrage portfolios through the asset weights determined
by the linear mispricing function is improvable.
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This class of models has a basic regression specification in Equation 2.1. Consider the panel
regression model

yit = αi +
J

∑
j=1

β ji f jt + εit , (2.1)

where yit is the excess return of security i at time t; f jt is the jth risk factor’s return at time t;
β ji denotes the jth factor loading of asset i; αi represents the intercept (mispricing) of asset
i; and εit is the mean zero idiosyncratic shock. In terms of factor loadings β ji, Connor and
Linton (2007) and Connor et al. (2012) studied a characteristic-beta model, which bridges
the beta-coefficients and firm-specific characteristics by specifying each beta as an unknown
function of one characteristic. In their model, beta functions and unobservable factors
are estimated by the back-fitting iteration. They concluded that those characteristic-beta
functions are significant and nonlinear. Their model can be summarized by

yit =
J

∑
j=1

g j(X ji) f jt + εit , (2.2)

where X ji is the jth observable characteristic of firm i.

They restricted their beta function to be uni-variate and did not consider the components
of factor loading functions that cannot be explained by characteristics. To overcome this
limitation, Fan et al. (2016) allowed β ji in Equation 2.2 to have a component explained
by observable characteristics as well as an unexplained or stochastic part, written as β ji =

g j(Xi)+u ji, where u ji is mean independent of X ji. They proposed the Projected Principal
Component Analysis (PPCA), which projects stock excess returns onto space spanned by
firm-specific characteristics and then applies Principal Component Analysis (PCA) to the
projected returns to find the unobservable factors. This method has attractive properties even
under the large n and small T setting. However, they did not study the mispricing part (alpha),
which is crucial to both asset pricing theories and portfolio management.

In this paper, we work on a semiparametric characteristics-based alpha and beta model, which
utilizes a set of security-specific characteristics that are similar to Freyberger et al. (2020a).
We use unknown multivariate characteristic functions to approximate both αi and β ji in
Equation 2.1. Specifically, we assume αi and β ji are functions of a large set of asset-specific
characteristics as αi = h(XXX i)+ γi and β ji = g j(XXX i)+λi j

1. We only specify additive structure
of h(XXX i) and g j(XXX i), which are further approximated by B-splines sieve. We then estimate

1XXX i is a vector of a large set of asset-specific characteristics of stock i.
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h(XXX i), g j(XXX i) and unobservable risk factors f jt . In addition, we design a power-enhanced test
and Hierarchical K-mean Clustering for the mispricing function h(XXX i) to study the nonlinear
behavior of arbitrage characteristics.

Some recent papers such as Kim et al. (2019) and Kelly et al. (2019) analyzed a similar model
as ours, which assume that both h(XXX i) and g j(XXX i) are linear functions . They both included
around 40 characteristics in XXX i. However, they drew different conclusions on the existence of
h(XXX i). Kim et al. (2019) determined assets weights of arbitrage portfolios using one-year
rolling window estimates 1

n ĥ(XXX i). They showed that their arbitrage portfolios returns are
statistically and economically significant. However, Kelly et al. (2019) applied instrumented
principal component analysis (IPCA) to the entire time span from 1965 to 2014, and con-
cluded no evidence to reject the null hypothesis H0 : h(XXX i) = XXX⊺

i BBB = 000 through bootstrap.
This dispute spurs the development of a more flexible model and reliable hypothesis tests
to investigate the existence and structure of h(XXX i). The IPCA, which requires both large n
and T to work, was introduced in Kelly et al. (2017). This method does not fit our setting
since we apply rolling window analysis with small T . Furthermore, Kelly et al. (2019)
restricted the function form of h(XXX i) and g j(XXX i) to be time-invariant, which is not consistent
with our empirical results under a semiparametric setting. To clarify the differences with
the aforementioned research, this paper proposes a semiparametric model, which allows
for both nonlinearity and time-variation of h(XXX i) and g j(XXX i). Furthermore, we consider a
different economic question, namely, the existence and structure of mispricing functions. Our
empirical study sheds light on why Kelly et al. (2019) and Kim et al. (2019) drew different
conclusions: weak, time-varying and nonlinear characteristics-based mispricing functions
only appear in certain rolling windows, which is hard to be detected without rolling window
analysis. However, given the presence of some persistent arbitrage characteristics, portfolios
developed through mispricing functions can provide arbitrage returns.

The unrestrictive model in this paper brings both opportunities and challenges. According
to Huang et al. (2010b), the number of B-spline knots must increase in the number of
observations to achieve accurate approximation and good asymptotic performance. Therefore,
the dimension of B-splines bases coefficients also needs to grow with the sample size. Besides,
mispricing functions are treated as anomalies. Under a correctly specified factor model,
coefficients of these B-splines bases that are employed to approximate h(XXX i) are very likely to
be sparse. All of these circumstances make the conventional Wald tests have very low power
as discussed in Fan et al. (2015). Therefore, a power-enhanced test should be developed to
strengthen the power of Wald tests and to detect the most relevant characteristics among
a characteristic zoo included in h(XXX i). Kock and Preinerstorfer (2019) illustrated that if
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the number of coefficients diverges as the number of observations approaches infinity, the
standard Wald test is power enhanceable. Fan et al. (2015) proposed a power-enhanced test
by introducing a screening process on all estimated coefficients one by one. They added
significant components as a supplement to the standard Wald test. In this paper, we extend
Fan et al. (2015) to a group manner to enhance the hypothesis test on a high dimensional
additive semiparametric function, H0 : h(XXX i) = 0. This method allows all the significant
components of h(XXX i) to be selected and contribute to the test statistics, with the test power
approaching one.

The careful analysis of h(XXX i) is theoretically and practically meaningful. Firstly, the presence
of h(XXX i) is an important component of Arbitrage Pricing Theory (APT) and can contribute
to asset pricing theories, namely, linking the mispricing functions with security-related
characteristics. Secondly, as in Hjalmarsson and Manchev (2012) and Kim et al. (2019),
h(XXX i) can be utilized to construct arbitrage portfolios through observed characteristics.
However, both research was built upon the condition that h(XXX i) is linear over characteristics.
If the mispricing function h(XXX i) is not monotonic, simply setting portfolio weights to the
estimated values of linear-specified h(XXX i) can be problematic. In this paper, we show that
some characteristics with substantially different values give rise to similar arbitrage returns.
The distance of arbitrage returns between two assets i and j is di j = |h(XXX i)−h(XXX j)| and the
similarity of their characteristics is ∥XXX i −XXX j∥2, where ∥ · ∥2 represents L2 distance. Inspired
by Hoberg and Phillips (2016) and Vogt and Linton (2017), we employ a hierarchical
K-means clustering to classify these characteristics within each mispricing return group.
We present the dynamic of distinct clusters of the same characteristics leading to similar
arbitrage returns, forming a "peer group" of arbitrage characteristics. Therefore, under the
semiparametric setting, the asset weighting function should rely on these time-varying and
nonlinear peer groups.

The rest of this paper is organized as follows. Section 2 sets out the semiparametric model.
Section 3 introduces the assumptions and estimation methods. Section 4 constructs a power-
enhanced test for high dimensional additive semiparametric functions. Section 5 employs
Hierarchical K-Means Clustering to investigate peer groups of arbitrage characteristics.
Section 6 describes the asymptotic properties of our estimates and test statistics. Section 6
simulates data to verify the performance of our methodology. Section 7 presents an empirical
study. Finally, Section 8 concludes this paper. Characteristics description tables, proofs,
mispricing curves and plots of peer groups are arranged in the Appendix.
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2.2 Model Setup

We assume that there are n securities observed over T time periods. We also assume that
during a short time window, each security has P time-invariant observed characteristics, such
as market capitalization, momentum, and book-to-market ratios. Meanwhile, we may omit
heteroskedasticity by assuming that each characteristic shares a certain form of variation
within each period for all securities. We suppose that

yit = (h(XXX i)+ γi)+
J

∑
j=1

(g j(XXX i)+λi j) f jt + εit , (2.3)

where yit is the monthly excess return of the ith stock at the month t; XXX i is a 1×P vector of P
characteristics of stock i during time periods t = 1, . . .T . T is a small and fixed time block.
In practice, most characteristics are updated annually. Thus, we assume XXX i is time-invariant
in one-year time window. h(XXX i) is an unknown mispricing function explained by a large
set of characteristics whereas γi is the random intercept of the mispricing part that cannot
be explained by characteristics. Similarly, we have characteristics-beta function g j(·) to
explain the jth factor loadings and the unexplained stochastic part of the loading is λi j. λi j is
orthogonal to the g j(·) function. f jt is the realization of the jth risk factor at time t. Finally,
εit is homoskedastic zero-mean idiosyncratic residual of the ith stock at time t. Random
variables γi and λi j are used to generalize our settings and not to be estimated. They will be
treated as noise in the identification assumptions.

To avoid the curse of dimensionality, we impose additive forms on both h(·) and g j(·)
functions: h(XXX i) = ∑

P
p=1 µp(Xip) and g j(XXX i) = ∑

P
p=1 θ jp(Xip), where µp(Xip) and θ jp(Xip)

are uni-variate unknown functions of the pth characteristic Xp. We rewrite the model as:

yit = (
P

∑
p=1

µp(Xip)+ γi)+
J

∑
j=1

(
P

∑
p=1

θ jp(Xip)+λi j) f jt + εit , (2.4)

Assumption 2.2.1. We suppose that:

E(εit |XXX , f jt) = 0,

E(h(XXX i)) = E(g j(XXX i)) = 0, for j = 1,2, . . . ,J

E(γi|XXX) = E(γi),

E(λi j|XXX) = E(λi j), for j = 1,2, . . . ,J
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E(h(XXX i)g j(XXX i)) = 000, for j = 1,2, . . . ,J

Similar to Connor et al. (2012) and Fan et al. (2016), Assumption 2.2.1 above is to standardize
model settings, including the zero mean assumption for factor loadings and mispricing
functions for identification purposes. We also impose orthogonality between mispricing and
factor loading parts for the identification reason. This is because the variation of risk factors
can be absorbed into the mispricing part if it is not orthogonal to the factor loadings. More
discussions can be found in Connor et al. (2012).

2.3 Estimation

In this section we discuss the approximation of unknown uni-variate functions and our
estimation methods for model Equation 2.3. In the semiparametric setting, we apply the
Projected-PCA following Fan et al. (2016) to work on the common factors and characteristics-
beta directly. Next, we project the residuals onto the characteristics-based alpha space that is
orthogonal to the systematic part. The second step is similar to equality-constrained OLS.

2.3.1 B-splines Approximation

We use B-splines sieve to approximate unknown functions θ(·) and µ(·) in Equation 2.4.
Similar to Huang et al. (2010b) and Chen and Pouzo (2012), we have the following procedures.
Firstly, suppose that the pth covariate Xp is in the interval [D0,D], where D0 and D are finite
numbers with D0 < D. Let DDD = {D0,D0, . . . ,D0︸ ︷︷ ︸

l

< d1 < d2 < · · ·< dmn < D,D, . . . ,D︸ ︷︷ ︸
l

} be a

simple knot sequence on the interval [D0,D]. Here, mn = ⌊nv⌉ (⌊·⌉ gives nearest integer) is
a positive integer of the number of internal knots, which is a function of security size n in
period t with 0 < v < 0.5. l is the degree of those bases. Therefore, we have Hn = l +mn

bases in total, which will diverge as n → ∞. Following this setting, a set of B-splines can be
built for the space Ωn[DDD].

Secondly, for the pth characteristic Xp, there is a set of Hn orthogonal bases {φ1p(Xp), . . . ,φHn p(Xp)}.
Those uni-variate unknown functions can be approximated as linear combinations of these
bases as µp(Xp) = ∑

Hn
q=1 αqφqp(Xp) + Rµ

p (Xp) and θp(Xp) = ∑
Hn
q=1 β jqφqp(Xp) + Rθ

p(Xp),
where Rµ

p (Xp) and Rθ
p(Xp) are approximation errors. It is not necessary to use the same

bases for both unknown functions and the representation here is for notational simplicity
only. Therefore, the model Equation 2.4 can be written as:
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yit =
P

∑
p=1

(
Hn

∑
q=1

αpqφpq(Xip)+Rµ
p (Xp))+γi+

J

∑
j=1

(
P

∑
p=1

(
Hn

∑
q=1

β jpqφpq(Xip)+Rθ
p(Xp))+λi j) f jt +εit

For each i = 1,2, . . . ,n , p = 1,2, . . . ,P and t = 1,2, . . . ,T , we have:

111T = (1, . . . ,1)⊺ ∈ RT ,

β j = (β1, j1, . . . ,βHn, j1, . . . ,β1, jP, . . . ,βHn, jP)
⊺ ∈ RHnP,

BBB = (β1, . . . ,βJ),

AAA = (α11, . . . ,α1Hn, . . . ,αP1, . . . ,αPHn)
⊺ ∈ RHnP,

ΦΦΦ(XXX) =


φ1,11(X11) · · · φ1,1Hn(X11) · · · φ1,P1(X1P) . . . φ1,PHn(X1P)

φ2,11(X21) · · · φ2,1Hn(X21) · · · φ2,P1(X2P) . . . φ2,PHn(X2P)
...

...
... . . . ...

φn,11(Xn1) · · · φn,1Hn(Xn1) · · · φn,P1(XnP) . . . φn,PHn(XnP)

 ,
where φi,ph(Xip) is the hth basis of the pth characteristic of asset i at time t. Therefore, the
original model

YYY = (h(((XXX)))+ΓΓΓ)111⊺T +(GGG(((XXX)))+ΛΛΛ)FFF⊺+UUU ,

can be represented by B-splines sieve as:

YYY = (ΦΦΦ(((XXX)))AAA+ΓΓΓ+RRRµ(((XXX))))111⊺T +(ΦΦΦ(((XXX)))BBB+ΛΛΛ+RRRθ (((XXX))))FFF⊺+UUU , (2.5)

YYY is the n×T matrix of yit ; ΦΦΦ(((XXX))) is the n×PHn matrix of B-splines bases; AAA is a PHn ×1
matrix of mispricing coefficients; RRRµ(((XXX))) is a n×1 matrix of approximation errors; BBB is a
PHn×J matrix factor loadings’ coefficients; RRRθ (((XXX))) is a n×J matrix of approximation errors.
We have Rµ

p (Xp)→p 0 and Rθ
p(Xp)→p 0, as n → ∞ as in Huang et al. (2010b). Therefore,

we omit the approximation errors for simplicity henceforth. FFF is the T × J matrix of ft j

and UUU is a n×T matrix of εit . h(((XXX))) is a n× 1 vector of characteristics-based mispricing
component; GGG(((XXX))) is a n× J vector of characteristics-based factor loadings; 111T is a T ×1
vector of 1. The rest are defined the same as Equation 2.4.

We define a projection matrix as:

PPP = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1
ΦΦΦ(XXX)⊺.
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The remaining goals of this paper are to estimate both h(XXX) and GGG(XXX) consistently and
conduct a power-enhanced test on the hypothesis H0 : h(XXX) = 000, i.e., to check the existence
of mispricing functions under semiparametric settings. Finally, we cluster peer groups of
arbitrage characteristics.

2.3.2 Two-Step Projected-PCA

In this section, we combine and extend Projected-PCA by Fan et al. (2016) and equality
constrained least squares similar to Kim et al. (2019) to estimate the model. To facilitate the
estimation, we define a T ×T time series demeaning matrix DDDT = IIIT − 1

T 111T 111⊺T ...
2 Next, we

demean the equation above on both sides. Therefore we have

YYY DDDT = ỸYY = (ΦΦΦ(XXX)BBB+ΛΛΛ)FFF⊺DDDT +UUUDDDT ...

Mispricing terms disappear since they are time-invariant by (ΦΦΦ(XXX)AAA+ΓΓΓ)111⊺T DDDT = 000. This
helps us to work on the systematic part later. Henceforth, we use FFF to represent the time-
demeaned factor matrix.

Our procedures are designed to estimate factor loadings GGG(((XXX))), time-demeaned unobserved
factors FFF and mispricing coefficients AAA in sequence.

Under Assumption 2.2.1, we have the following estimation procedures:

1 Projecting ỸYY onto the spline space spanned by {XXX ip}i⩽n,p⩽P through a n×n projection
matrix PPP with PPP = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1ΦΦΦ(XXX)⊺ . We then collect the projected data
ŶYY = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1ΦΦΦ(XXX)⊺ỸYY .

2 Applying the Principal Component Analysis to the projected data ŶYY
⊺
ŶYY . This al-

lows us to work directly on the sample covariance of GGG(((XXX)))FFF⊺, under the condition
E(g j(XXX i)εit) = E(g j(XXX i)λi j) = 0.

3 Estimating F̂FF as the eigenvectors corresponding to the first J (assumed given) eigenval-
ues of the T ×T matrix 1

nŶYY
⊺
ŶYY (covariance of projected ŶYY ).

The method above substantially improves estimation accuracy and facilitates theoretical
analysis even under the large n and small T . Small T is preferable in our model setting
as we use one-year rolling windows analysis in both simulation and empirical studies,
and large n is required for asymptotic analysis.

2IIIT is a T ×T identity matrix, and 111T is a T ×1 matrix of 1.
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Factor loadings ĜGG(((XXX))) are estimated as:

ĜGG(((XXX))) = ŶYY F̂FF(F̂FF
⊺
F̂FF)−1

In the next step, we estimate the coefficients of the mispricing bases.

4 The estimator of AAA is

ÂAA = argmin
AAA

vec(YYY −ΦΦΦ(((XXX)))AAA111⊺T − ĜGG(((XXX)))F̂FF
⊺
)⊺vec(YYY −ΦΦΦ(((XXX)))AAA111⊺T − ĜGG(((XXX)))F̂FF

⊺
), (2.6)

subject to ĜGG(((XXX)))⊺ΦΦΦ(((XXX)))AAA = 000J .

Let a PHn ×1 vector ÂAA be a closed-form solution:

ÂAA = QQQÃAA,

where

QQQ = III − (ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1
ΦΦΦ(XXX)⊺ĜGG(((XXX)))(ĜGG(((XXX)))⊺ĜGG(((XXX))))−1ĜGG(((XXX)))⊺ΦΦΦ(XXX),

ÃAA =
1
T
(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1

ΦΦΦ(XXX)⊺(YYY −−− ĜGG(((XXX)))F̂FF
⊺
)111T ,

given PPPĜGG(((XXX))) = ĜGG(((XXX))).

As in Assumption 2.2.1, the h(XXX) is orthogonal to the characteristics-based loadings
GGG(((XXX))).

5 We also estimate the covariance matrix of ÂAA, i.e., ΣΣΣ, by extending the methods of Liew
(1976). This can facilitate theoretical analysis in the next section. According to Liew
(1976), ÂAA is the equality constrained least-square estimator, which has the covariance
matrix as (under n ⩽ T and covariance shrinkage as in Ledoit et al. (2012) and Fan
et al. (2013) among others.):

Σ̂ΣΣ = QQQΣ̂ΣΣÃAAQQQ⊺,

where:

Σ̂ΣΣÃAA = (ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1
ΦΦΦ(XXX)⊺

σ̂2
1 0 0

0 . . . 0
0 0 σ̂2

n

ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1,
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σ̂
2
i =

∑
T
1 ê2

it
T −1

,

where ∑
T
1 ê2

it =∑
T
1 (yit − ȳi−∑

P
p=1 ∑

Hn
q=1 α̂pqφpq(xip)−∑

J
j=1(∑

P
p=1 ∑

Hn
q=1 β̂ jpqφpq(xip)) f̂ jt)

2.

Heteroskedasticity is caused by γi.

2.4 Power-enhanced Tests

There are considerable discussions about the mispricing phenomenon under factor models,
while the existence of mispricing functions remains controversial. Namely, whether there
are relevant covariates explaining remaining excess returns after subtracting co-movements
components captured by risk factors. Recently, Kim et al. (2019) found the characteristics
arbitrage opportunities by estimating a linear characteristic mispricing function without
providing theoretical results. However, Kelly et al. (2019) conducted a conventional Wald
hypothesis test on the similar mispricing function using bootstrap, concluding that there is no
evidence to reject the null hypothesis H0 : h(XXX) = 000. Additionally, they applied the bootstrap
method to estimate the covariance matrix ΣΣΣ, which caused potential problems for theoretical
analysis. Moreover, according to Fan et al. (2015), their test results may have relatively low
power when the true coefficient vector of linear mispricing function AAA has a sparse structure.

Both studies adopt a parametric framework, which relies on the strong assumption of linearity.
However, this assumption is not consistent with Connor et al. (2012), which showed that
both characteristic-beta and mispricing functions are very likely to be nonlinear. Therefore,
we propose a semiparametric model to accommodate the nonlinearity to a great extent.

But semiparametric framework leads to additional challenges for inference. On the one
hand, as mentioned above, the number of coefficients of mispricing B-splines diverges as
n → ∞, which implies that the power of the standard Wald test can be quite low, (see Fan
et al. (2015)). On the other hand, according to other research like Fama and French (1993)
and Fama and French (2015), mispricing terms can be regarded as anomalies. This means
that in our model setting, the true mispricing coefficient vector AAA can be high-dimensional
but sparse, reducing the power of the conventional Wald test further.

As in Kock and Preinerstorfer (2019), conventional hypothesis tests under these circumstances
are power enhanceable. The power-enhanced Wald test in this paper is an extension of Fan
et al. (2015) to a group manner, namely, the hypothesis test under high-dimensional additive
semiparametric settings. The proposed test is power strengthened when the dimension of
the coefficients of the additive regression AAA is diverging as n → ∞ without size distortion.
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Meanwhile, this test is robust to sparse alternatives. On top of that, the proposed test can
select the most important components from sparse additive functions. Finally, the proposed
method can also be applied when the number of characteristics is diverging, i.e., P → ∞.

We construct a new test:

H0 : h(XXX) = 000, H1 : h(XXX) ̸= 000,

equivalently,
H0 : AAA = 000, H1 : AAA ∈ A ,

where A ⊂ RPHn\000.

Here, we have:

S1 =
ÂAA
⊺
Σ̂ΣΣ
−1

ÂAA−PHn√
2PHn

,

where S1 is the "original" Wald test statistics; P is the number of characteristics; PHn is the
total number of B-spline bases, and ÂAA ∈ RPHn . The value of Hn is a function of asset number
n, therefore, Hn → ∞ as n → ∞. Under H0, S1 has a nondegenerate limiting distribution F as
n → ∞. Given the significance level q, q ∈ (0,1) as well as the critical value Fq:

S1|H0 →d F,

lim
n→∞

Pr(S1 > Fq|H0) = q.

Pesaran and Yamagata (2012) showed that:

S1|H0 →d N (0,1),

under regularity conditions.

Potentially, sparse and diverging PHn means that it is plausible to add a power-enhanced
component to S1, which can improve the power of the hypothesis test without any size
distortions.

Therefore, we can construct an extra screening component S0 as:

S0 = Hn

P

∑
p=1

III(
Hn

∑
h=1

|α̂ph|/σ̂ph ⩾ ηn),
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where σ̂ph is the square-root of the phth entry of the diagonal elements of Σ̂ΣΣ. III(·) is an
indicator for the screening process while ηn is a data-driven threshold value to avoid potential
size-distortion.

Here we discuss the choice of ηn. By construction and the assumption of independent
characteristics, we assume that all B-splines bases are orthogonal. Our goal is to bound the
maximum of those standardized coefficients under the null hypothesis.

Define Z = max
{1⩽p⩽P,1⩽h⩽Hn}

{|α̂ph|/σ̂ph}. We have

α̂ph/σ̂ph|HHH0 →d N(0,1),

E(Z|HHH0) =
√

2logPHn.

After grouping the coefficients of bases used to approximate the unknown function of
each characteristic, let R = max(∑Hn

h=1 |α̂1h|/σ̂1h, . . . ,∑
Hn
h=1 |α̂ph|/σ̂ph . . . ,∑

Hn
h=1 |α̂Ph|/σ̂Ph).

Following this, we set the threshold as ηn = Hn
√

2log(PHn), where Hn = l +nv. As Hn is
a diverging sequence, it can control the influence of the group size properly. Meanwhile,
ηn also diverges so that ηn is a conservative threshold value used to avoid potential size
distortion.

Apart from strengthening the power of conventional hypothesis test, III(·) is a screening term
that can select the most relevant characteristics at the same time.

We then define the arbitrage characteristics set, which includes the characteristics that have
the strong explanation power for mispricing functions:

M̂ = {XXX p ∈ XXX :
Hn

∑
h=1

|α̂ph|/σ̂ph ⩾ ηn, p = 1,2, . . . ,P},

and M is the cardinality of the set containing mispricing characteristics. When the set M̂ is
relatively small, conventional tests are likely to suffer the lower power problem. The added
S0 strengthens the power of the test and drives the power to one since S0 is slowly diverging.

Therefore, our new test statistic is S = S0 + S1 , and asymptotic properties of S will be
discussed later.

To conclude, the advantages of S = S0 +S1 are:
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1 The power of the hypothesis test on H0 : h(XXX) = 000 is mainly enhanced without size
distortions.

2 We can find specific characteristics which cause the mispricing by this screening
mechanism.

As designed, S0 satisfies all three properties of Fan et al. (2015), as n → ∞:

1 S0 is non-negative, Pr(S0 ⩾ 0) = 1

2 S0 does not cause size distortion: under H0, Pr(S0 = 0 | H0)→ 1

3 S0 enhances test power. Under H1, S0 diverges quickly in probability given the well
chosen ηn.

Based on properties of S0, we have three properties of S listed:

1 No size-distortion limsup
n→∞

Pr(S > Fq|H0) = q

2 Pr(S > Fq|H1)⩾ Pr(S1 > Fq|H1). Hence, the power of S is at least as large as that of
S1.

3 Pr(S > Fq|M̂ ̸= /0)→ 1 when S0 diverges. This happens, especially, when the true
form of AAA has a sparse structure.

2.5 Hierarchical K-Means Clustering

This section introduces a Hierarchical K-means Clustering method to find peer groups of
arbitrage characteristics based on their arbitrage returns. We ask whether distinct groups
of the same arbitrage characteristics, according to their similarity measured by ∥XXX i −XXX j∥2,
may result in similar characteristic-based arbitrage returns in each rolling block, which is
an implication for the non-monotonic mispricing function, and forms a "peer group" of
arbitrage characteristics. Because traditional arbitrage portfolios as in Kim et al. (2019) and
Hjalmarsson and Manchev (2012) rely on the linearity of characteristics-based mispricing
components to work, our clustering results can show whether this method is still applicable
under more flexible semiparametric model. If there are persistent peer groups in arbitrage
returns, investors should consider to long the assets in the peer group with the highest
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arbitrage returns while short the assets in the peer group with the lowest arbitrage returns to
form an arbitrage portfolio.

Introduction of K-means clustering can be found in Cox (1957) and Fisher (1958).

After the screening process in section 2.4, we obtain the relevant components of mispricing
function h(XXX), which is estimated as

M̂ = {XXX p ∈ XXX :
Hn

∑
h=1

|α̂ph|/σ̂ph ⩾ ηn, p = 1,2, . . . ,P}.

We define an n×M matrix MMM of arbitrage characteristics at time window t as :

MMM = {XXX1, . . . ,XXXm, . . . ,XXXM}, where XXXm ∈ M̂ .

Note that these characteristics are time-invariant in each rolling window. We also set
characteristics-based arbitrage returns of asset i in month t as:

ÿit = φφφ(((MMMi)))ÂAAM,

where φφφ(((MMMi))) and ÂAAM are the corresponding parts of matrix ΦΦΦ(((XXX i))) and vector ÂAA. For each
rolling window, we classify all n assets through a 2-layer K-means clustering. At the first
layer, we cluster these assets into K groups according to the similarity of their characteristics-
based arbitrage returns ÿit . At the second layer, we divide R j subgroups within the jth group
from the first layer by the similarity of their arbitrage characteristics, where j = 1,2, . . . ,K .
Finally, the peer groups of arbitrage characteristics can be attained. We repeat this method for
all rolling blocks to investigate dynamic patterns of these peer groups. These clusterings will
provide illustrative evidence of linear/nonlinear and time-invariant/time-varying structure of
mispricing function h(XXX).

We give the classification procedures of both layers. We define ∆i j as the difference between
characteristics-based arbitrage returns of ÿit and ÿ jt , as well as ϒi j as the difference between
arbitrage characteristics:

∆i j = ÿit − ÿ jt , where i ̸= j, i, j = 1,2, . . . ,n.

ϒi j = ∥MMMi −MMM j∥2, where i ̸= j, i, j = 1,2, . . . ,n,



46 Dynamic Peer Groups of Arbitrage Characteristics

MMMi represents the ith row of MMM. We set two tolerance thresholds ψy and ψx, which are used
to control the biggest difference within each group of both layers separately. To accelerate
the convergence of the K-means Clustering, we first apply a first difference process, which is
introduced below, to obtain centroids as in Vogt and Linton (2017).

For the first layer, we have first difference process:

1. First difference: We randomly pick ith asset and then we calculate ∆i j with other
assets j = 1,2, . . . ,n. Thus we obtain ∆i(1) . . .∆i(n), with n being the total individuals
for classification. Without loss of generality, we assume ∆i(1) = min{∆i(1), . . . ,∆i(n)},
and ∆i(n) = max{∆i(1), . . . ,∆i(n)}.

2. Ordering: We rank the values obtained in Step 1 as follows:

∆i(1) ⩽ . . .⩽ ∆i( j1−1) < ∆i( j1) ⩽ . . .⩽ ∆i( j2−1)

< ∆i( j2) ⩽ . . .⩽ ∆i( j3−1)

...

< ∆i( jK−1) ⩽ . . .⩽ ∆i(n).

We use the strict inequality mark to show large jumps of "first difference", all of which
are larger than ψy , while the weak inequality means that the distance calculated is
not larger than ψy. We identify K −1 jumps that are larger than ψy above. Thus, the
initial classification is achieved, and we have a total of K groups with j1 −1 members
in the first group C1, j2 − j1 members in the second group C2 , . . . , and n− jK−1 +1
members in the final group CK .

In terms of the second layer, for the assets in the kth group Ck, we use the same method to
further divide them into r subgroups as R1k,R2k, . . . ,Rrk. Within each subgroup, we have:

ϒab = ∥MMMa −MMMb∥2 ⩽ ψx, where a,b ∈ Rik, i = 1,2, . . . ,r, and k = 1,2, . . . ,K.

The K-means algorithm is:

1. Step 1: Determine the starting mean values for each group ˆ̄c[0]1 , . . . , ˆ̄c[0]K and cal-
culate the distances D̂k(i) = ∆(ÿit , ˆ̄c[0]k ) = |ÿit − ˆ̄c[0]k | for each i and k. Define the
partition {C [0]

1 , . . . ,C
[0]
K } by assigning the ith individual to the k-th group C

[0]
k if

D̂k(i) = min1⩽k′⩽K D̂k′(i).
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2. Step l: Let {C [l−1]
1 , . . . ,C

[l−1]
K } be the partition of {1, . . . ,n} from the latest iteration

step. Calculate mean functions

ˆ̄c[l]k =
1

|C [l−1]
k |

∑
i∈C

[l−1]
k

ÿit for 1 ⩽ k ⩽ K

And then we calculate ∆(ÿit , ˆ̄c[l]k ) = |ÿit − ˆ̄c[l]k | for each i and k. Define the parti-
tion {C [l]

1 , . . . ,C
[l]
K } by assigning the ith individual to the k-th group C

[l]
k if D̂k(i) =

min1⩽k′⩽K D̂k′(i).

3. Iterate the above steps until the partition {C [w]
1 , . . . ,C

[w]
K } does not change anymore.

To accelerate the convergence of K-means algorithm, at the step 1, results of first difference
are used. As we have already obtained our initial grouping {C1, . . . ,CK}, therefore starting
values for the Step 1 is:

ˆ̄c[0]k =
1

|Ck| ∑
i∈Ck

ÿit for 1 ⩽ k ⩽ K,

where |Ck| is the cardinality of the group Ck.

The consistency and other theoretical results of the above procedures can be found in Pollard
(1981), Pollard et al. (1982), Sun et al. (2012) and Vogt and Linton (2017).

For the second layer, we repeat the procedures within each group C
[w]
k with respect to ϒab,

and the structure of characteristics-based arbitrage returns is:

Arbitrage returns

C
[w]
1 · · ·

R11 · · · · · · · · ·Rr1

C
[w]
k

R1k · · · · · · · · ·Rr′k

· · ·C [w]
K

R1K · · · · · · · · ·Rr′′K

The first layer is the structure of characteristics-based arbitrage returns, while the second layer
gives peer groups of characteristics that can provide similar characteristics-based arbitrage
returns.
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The number of clusterings is determined by threshold values ψy and ψx directly. ψy and ψx

are chosen by the trade-off between the number of clusterings and total within-group sum of
squares.

2.6 Asymptotic Properties

This section discusses assumptions and properties of estimates and power enhanced statistics
S.

Definition 2.6.1. We define AAA →P BBB as n → ∞ of two n×m matrix AAA and BBB with fixed p
when 1

n(AAA−BBB)⊺(AAA−BBB)→P 000m×m as n → ∞.

2.6.1 Consistency Assumptions

Assumption 2.6.1. As n → ∞, we have:

1
n

YYY ⊺YYY →P MMMY ,

FFF⊺FFF = IIIJ,

where MMMY is a positive definite matrix, and IIIJ is a J× J identity matrix.

We define λmin(M) and λmax(M) as the largest and the smallest eigenvalues of matrix M,
respectively. Additionally, we define Cmin and Cmax to be positive constants such that:

Cmin ⩽ λmin(
1
n

ΦΦΦ
⊺(((XXX)))ΦΦΦ(((XXX))))< λmax(

1
n

ΦΦΦ
⊺(((XXX)))ΦΦΦ(((XXX))))⩽Cmax

as n → ∞.

We impose these restrictions to avoid non-invertibility of stock returns, characteristics, and
rotation indeterminacy.

Assumption 2.6.2.

1
n

GGG(((XXX)))⊺GGG(((XXX)))→P

d1 0 0

0 . . . 0
0 0 dJ

 ,
as n → ∞, where d j are distinct and positive entries.
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Both Assumption 2.6.1 and 2.6.2 are similar to those in Fan et al. (2016), which are used to
separately identify risk factors and factor loadings. Given the orthogonal bases of B-splines
and uncorrelated or weakly correlated characteristics, Assumption 2.6.2 is mild.

Assumption 2.6.3. Kmin and Kmax are positive constants such that:

Kmin ⩽ λmin(
1
n

GGG(((XXX)))⊺PPPGGG(((XXX))))< λmax(
1
n

GGG(((XXX)))⊺PPPGGG(((XXX))))⩽ Kmax

as n → ∞.

This assumption requires non-vanishing explanatory power of the B-splines bases ΦΦΦ(((XXX))) on
the factor loading matrix GGG(((XXX))).

Assumption 2.6.4. εit is realized i.i.d. idiosyncratic shocks with E(εit) = 0 and var(εit) =

σ2.

Heteroskedasticity is caused by γi, namely, var(γi + εit) = σ2
i .

2.6.2 Main Results

Theorem 2.6.1. Let F̂FF be the T × J matrix estimate of latent risk factors. Under Assumption
2.2.1-2.6.3, F̂FF →P FFF, as n → ∞.

Theorem 2.6.2. Define the n× J matrix ĜGG(((XXX))) as the estimate of factor loadings GGG(((XXX))).
Under Assumption 2.2.1-2.6.3 and Theorem 2.6.2 , as n → ∞, then ĜGG(((XXX)))→P GGG(((XXX))).

Theorem 2.6.3. Let the PHn ×1 vector ÂAA be the solution of constrained OLS Equation 2.6,
then

ÂAA = QQQÃAA,

where

QQQ = III − (ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1
ΦΦΦ(XXX)⊺ĜGG(((XXX)))(ĜGG(((XXX)))⊺ĜGG(((XXX))))−1ĜGG(((XXX)))⊺ΦΦΦ(XXX),

ÃAA =
1
T
(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1

ΦΦΦ(XXX)⊺(YYY −−− ĜGG(((XXX)))F̂FF
⊺
)111⊺T .

Under Assumption 2.2.1-2.6.3, ΦΦΦ(((XXX)))ÂAA →P h(XXX), as n → ∞.
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Theorem 2.6.4. Under Assumption 2.6.2 and Assumption 2.6.4, E(Z|HHH0) =
√

2logPHn.

Theorem 2.6.5. Under n → ∞ and H0, given the properties of S0 and S1, then:

S →d N(0,1),

the power of S is approaching 1 once the arbitrage characteristic is selected as:

Pr(reject H0|M̂ ̸= /0)→ 1.

2.7 Numerical Study

In this section, we use Compustat and Fama-French three and five factors data to simulate
stock returns and then evaluate the performance of our estimation and hypothesis test
procedures.

2.7.1 Data Generation

Firstly, we use Fama-French three factors monthly returns and all the characteristics that
will be included in the empirical study to simulate the stock excess returns. Most of the
characteristics are updated annually so we treat those variables as time-invariant during each
one-year rolling block. For the characteristics that are updated every month, we substitute the
mean values as their fixed values for each fiscal year. We use Fama-French monthly returns
from July of year t to June of year t +1 and characteristics of fiscal year t −1 to generate the
stock returns from July of year t to June of year t +1. The periods we generate are the same
as the empirical study, namely, 50 years from July 1967 to June 2017. For each rolling block
with 12 months we have:

yit = h(Xi)+
3

∑
j=1

g j(XXX i j) f jt + εit , (2.7)

yit is the generated stock’s return; h(Xi) is the mispricing function consisting of a nonlinear
characteristic function of xi, which is to mimic the sparse structure of the mispricing function;
g j(XXX i j) is the jth characteristics-based factor loading, which has an additive semiparametric
structure; XXX i j is the jth subset consisting of 4 characteristics; f jt is the jth Fama-French factor
returns at time t; εit is the idiosyncratic shock for stock i at time t, generated from N(0,σ2).
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We generate characteristic functions:

h(Xi) = sinXi,

g j(XXX i j) = X2
i j1 +(3X3

i j2 −2X2
i j2)+(3X3

i j3 −2Xi j3)+X2
i j4,

Xi jl is a randomly picked characteristic without replacement from the data in empirical
study and j = 1,2,3 , l = 1, . . . ,4. A description of these characteristics can be found in
the Appendix. Additionally, all h(Xi), g j(XXX i j) are rescaled to have zero mean and unit
variance. As we use real data to conduct the simulation, the Assumption of independent Xi

may not be satisfied. Although some characteristics are correlated, the semiparametric model
overcomes this problem properly when compared with the parametric model that has serious
size distortion.

We do not specify h(Xi) and g j(XXX i j) to be orthogonal explicitly, but we draw characteristics
without replacement and employ sine-waves and polynomials to approximate the orthogo-
nality as much as possible. In this simulation, our method can only estimate the component
of h(Xi) that is orthogonal to g j(XXX i j). However, results reveal that one can still select the
arbitrage characteristics even if we cannot estimate arbitrary h(Xi) unrestrictively.

2.7.2 Model Misspecification

In this subsection, we show the necessity to consider semiparametric analysis when the forms
of factor loadings and mispricing functions are nonlinear.

Under the data generation process, we consider both semiparametric and linear analysis to
compare Mean Squared Error (MSE) and hypothesis test results under both specifications. We
apply our estimation methodology in section 2.3 to estimate Equation 2.7. For semiparametric
specification, we choose the number of B-splines bases to be ⌊n0.3⌉. n is the number of assets
in each balanced rolling window, and ⌊·⌉ means the nearest integer. We orthogonalize these
bases, and then use the Projected-PCA and restricted OLS to estimate model Equation 2.7.
As for the hypothesis test part, we choose threshold value to be ηn = Hn

√
2log(PHn) =

⌊n0.3⌉
√

2log(P⌊n0.3⌉), where P is the number of characteristics, and n is the number of
stock in each rolling block. For the linear specification, each characteristic only has one basis,
which is itself. In terms of the hypothesis test, we use the same logic as in the semiparametric
settings, and we set ηn =

√
3log(P).
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In all the estimation above, we assume that we know the real number of factors, which is
three. We will discuss the situation when the number of factors is unknown in the next
subsection. Mean Squared Error (MSE) is also reported to compare the fitness of models
Equation 2.7.

From Table 2.1, under different noise levels, namely σ2 = 1 and σ2 = 4, the semiparametric
model outperforms the linear model in the following aspects:

1 The fitness of the semiparametric model is much better than the linear model, which can
be illustrated from MSE.

2 The semiparametric model can enhance the power of S1 by non-zero S0, which can not
only select the correct mispricing characteristics but also avoid size distortions. As for
the linear model, it is influenced by the correlated characteristics. Therefore, during
certain periods we even obtain the non-invertible characteristic matrix. The linear
model can also select the relevant covariates with decent probability, but it suffers from
serious size distortions. In contrast, our semiparametric model with orthogonal bases
can mitigate this problem to a great extent.

3 Because S1 can be very small and even negative, especially when the noise σi is strong,
the additional component S0 is necessary to strengthen the power of S1 and to select
the relevant characteristics that can explain the mispricing function.
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2.7.3 Robustness Under Stronger Noise

In Table 2.1, we set two different noise levels of random shocks, namely σ2 = 1 and σ2 = 4.
Although σ2 = 1 is closer to the empirical data, we conduct this comparison to show the
robustness of our methods. When the noise level becomes three times bigger, the accuracy
of power-enhanced tests gets much lower for certain windows. However, there are no size
distortions under comparatively high noise level recalling that all the components of our
simulation model are rescaled to have unit variance. Another fact is that the stronger noise
does deteriorate the power of conventional Wald tests, leading to an even smaller value of S1,
which can be mitigated through adding S0.

Therefore, we conclude that our methods are robust to a higher noise level regarding no
size distortions. However, the accuracy of selecting relevant components and the role of
enhancing the power of hypothesis tests will be influenced negatively.

2.7.4 Number of Factors

In the empirical study, the number of factors is unknown. Therefore, in this subsection we
will study whether our methodology is robust to a various numbers of factors considered.

We simulate according to another data generation process:

yit = h(Xi)+
5

∑
j=1

g j(XXX i j) f jt + εit , (2.8)

similarly, yit is the generated stock return; h(Xi) is the mispricing function consisting of
a nonlinear characteristic function of Xi, to mimic the sparse structure of the mispricing
function; g j(XXX i j) is the jth characteristics-based factor loading, which has an additive
semiparametric structure; Xi j is a subset consisting of four characteristics; f jt is the j Fama-
French 5-factor returns at time t; εit is the idiosyncratic shock, generated from N(0,σ2).
Moreover, we generate characteristic functions as:

h(Xi) = sinXi,

g j(XXX j) = X2
i j1 +(3X3

i j2 −2X2
i j2)+(3X3

i j3 −2Xi j3)+X2
i j4,

where Xi jl is a randomly picked characteristic without replacement from the data in empirical
study with j = 1, . . . ,5 , l = 1, . . . ,4. Furthermore, all h(Xi) and g j(XXX i j) are rescaled to have
zero mean and unit variance.
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Given the above data generation process, together with the data generation process, we test
the influence of over and under-estimated number of factors. We choose the number of factors
to be either three or five, and compare the results in Table 2.3. The first category column is the
scenario of over estimating the number of factors. We simulate the data generation process
using the Fama-French three factors model, but estimate the number of factors to be five.
However, this does not cause any serious problems. For some rolling blocks, the probability
of mistakenly selected irrelevant characteristics is slightly higher under over estimating the
number of factors. Moreover, over estimating the number of factors can increase the model
fitting marginally. Therefore, we conclude that over estimating the number of factors does
not cause severe size distortion using our methods.

On the other hand, under estimating the number of factors can lead to misleading test results.
We can conclude this from the last column where we estimate the number of factors to be
three in a five-factor model. Compared with the correct specified model, under estimating
causes not only higher MSE, but also higher distortions, which means it is more likely to
select irrelevant characteristics. Therefore, in the empirical study we prefer the five-factor
model rather than the three-factor model.
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2.8 Empirical Study

2.8.1 Data

We use monthly stock returns from CRSP and firms’ characteristics from Compustat, ranged
from 1965 to 2017. We construct 33 characteristics following the methods of Freyberger et al.
(2020a). Details of these characteristics can be found in the Appendix. We use characteristics
from fiscal year t −1 to explain stock returns between July of year t to June of year t +1.
After adjusting the dates from the balance sheet data, we merge two data sets from CRSP
and Compustat. We require all firms included in our analysis to have at least three years of
characteristics data in Compustat.

Data is modified with regards to the following aspects:

1 Delisting is quite common for CRSP data. We use the way of Hou et al. (2015) to correct
the returns of all delisted assets before 2018. Detailed methods can be found in their
Appendix.

2 Projected-PCA works well, even under small T circumstances. Thus, we choose the width
of our window to be 12 months. Another reason for the short window width is that
we assume that mispricing functions are time-invariant in each window. One of the
limitations of Projected-PCA is that it can only be used for a balanced panel, which
means the number of stock will vary when we applied one-year rolling windows to ob-
tain a short-time balanced panel. Meanwhile, we take monthly updated characteristics’
mean values of 12 months as fixed characteristic values in each window. We also use
the rolling window method to detect peer groups of arbitrage characteristics.

3 B-splines are based on each time-invariant characteristic of n firms, which are not delisted
in each window.

4 Rolling windows are moving at a 12-month step from Jul. 1967 to Jun. 2017 without over-
lapping. The first 24 months returns are not included as they do not have corresponding
characteristics.

5 Excess returns are obtained by the difference between monthly stock returns and monthly
Fama-French risk-free returns.
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2.8.2 Estimation

We construct B-splines bases based on evenly distributed knots, and the degree of each
basis is three. We choose Hn = ⌊n0.3⌉, and n is the number of stocks. To get a relatively
large balanced panel in each window, some characteristics with too many missing values are
eliminated. Therefore, only 33 characteristics are left. Firms kept in balanced panels in our
dataset range from 468 to 2928, which means that both n and ÂAA ∈ RPHn are diverging. Large
n can satisfy asymptotic requirements. These facts emphasize the necessity of introducing
a power-enhanced component into the hypothesis test. Before the next step, we use time-
demeaning matrix DDDT to demean excess return matrix in each window.

Next, we project the time-demeaned monthly excess return matrix ỸYY onto the B-splines space
spanned by characteristics bases ΦΦΦ(((XXX))), and then we collect the fitted values ŶYY . We apply
Principal Component Analysis on 1

nŶYY ⊺ŶYY , and attain the first five eigenvectors corresponding
to the first five biggest eigenvalues as the estimates of unobservable factors FFF . We choose
the number of factors to be five according to simulation results.

Then, we estimate the factor loading matrix by:

ĜGG(((XXX))) = ŶYY F̂FF(F̂FF
⊺
F̂FF)−1.

Moreover, we use equality-constrained OLS to estimate the mispricing function. We project
excess monthly return matrix on the characteristic space ΦΦΦ(((XXX))) that is orthogonal to factor
loading matrix ĜGG(((XXX))).

Another goal of this paper is to conduct a power-enhanced test on the mispricing function.
Therefore, our final step is to estimate the covariance matrix ΣΣΣ of ÂAA.

2.8.3 Power-enhanced Hypothesis Tests

In this section, we conduct a power-enhanced test in each rolling block. Firstly, we set
threshold value for each window, ηn = Hn

√
2log(PHn), where Hn is the number of bases

for each characteristic whereas P is the number of total characteristics in each window, with
P = 33. ηn is data-driven critical value and it diverges as the number of firms increases. We
use indicator function III(∑Hn

h=1 |α̂ph|/σ̂ph ⩾ ηn) with critical value ηn = Hn
√

2log(PHn) to
achieve three goals.
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1 This indicator function select the most relevant characteristics that can explain the variation
of the mispricing function. Results of last column in Table 2.5 are characteristics
selected in M̂ = {XXX p ∈ XXX : ∑

Hn
h=1 |α̂ph|/σ̂ph ⩾ ηn, p = 1,2, . . . ,P}.

2 It contributes to the test statistics S by adding a diverging power-enhanced component S0.
As T = 12 is small in this empirical study, we assume the homoskedasticity of εit + γi.
We also specify an over-shrunk covariance matrix by setting off-diagonal elements to
be zeros.

3 It avoids size-distortion by the conservative critical value ηn.

The diagonal elements of Σ̂ΣΣ are estimated variances of mispricing coefficients. These elements
can be substituted into the indicator function III(∑Hn

h=1 |α̂ph|/σ̂ph ⩾ ηn), where σ̂ph is the phth

diagonal element of Σ̂ΣΣ.

Finally, the new statistics S can be calculated as:

S = S0 +S1,

S0 = Hn

P

∑
p=1

III(
Hn

∑
h=1

|α̂ph|/σ̂ph ⩾ ηn), S1 =
ÂAA
⊺
Σ̂ΣΣ
−1

ÂAA−PHn√
2PHn

.

2.8.4 Test Results

This section presents the empirical results. Details can be found in Table 2.5, which lists the
results of 50 rolling windows from Jul.1967 to Jun.2017. Generally, the number of firms
included in the 12-month rolling block is increasing period by period. The number of our
characteristic B-splines bases is a function of the number of firms n in each block. Therefore,
the dimension of the mispricing coefficient vector AAA ∈ RPHn is also diverging. This verifies
the necessity of using a power-enhanced component S0.

Recalling that S|H0 →d N(0,1), some of the test statistics S is big enough to reject the null
hypothesis. However, for some testing windows, there are no strong signals showing the
existence of characteristics-based mispricing functions after subtracting systematic effects.
Most S1 values are small and even negative, which may be caused by the sparsity structure
of the mispricing function or/and the low power problems due to diverging dimension of
mispricing coefficients.
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The power-enhanced component S0 works well in the empirical study. It selects the most
important explanatory characteristics and strengthens the power of S1, mitigating the low
power problem.

Apart from contributing to the power of tests, the indicator function in the power-enhanced
component can also screen out the most relevant characteristics, which are concluded as
"Characteristics Selected" in Table 2.5.

Some empirical findings are worth discussing. Although short-term cumulative returns like
r2_1 are always selected, we cannot take this as the evidence of arbitrage opportunities since
we construct r2_1 as the time-invariant average of all r2_1 in the same rolling window, which
contains much overlapping information of monthly excess returns. However, this is not the
case for long-term and mid-term cumulative returns like r12_2, r12_7 and r6_2, because these
average returns include a lot of information from another rolling window.

Apart from the cumulative returns, some other characteristics contribute to the arbitrage
opportunities as well. PCM (Price to Cost Margin) appears twice. From Figure B.2, we
find that the PCM mispricing curve is nonlinear and generally decreasing as the value of
PCM increases. ROA (Return-On-Asset) also plays a role during 1988-1989. It behaves like
a parabola with fluctuations near zero in Figure B.3. As for Lev (ratio of long-term debt
and debt in the current liabilities), it is decreasing for Lev 0 and increasing afterward as in
Figure B.7. In Figure B.8, IPM (pre-tax Profit Margin) function behaves like a "V" shape
with the turning point zero during 2004-2005. DelGmSale (difference in the percentage
in Gross margin and the percentage change in Sales) experiences a bump at zero during
2015-2016 in Figure B.9. C2D (cash flow to price) curve behaves like "V" around the zero in
2016-2017, (see Figure B.10). All characteristics curves in the above figures are standardized
as uniformly distributed characteristics in the interval [−100,100]. This is for presentation
purposes only since most characteristics are unevenly distributed.

Another finding is the persistence of some arbitrage characteristics. Arbitrage characteristics
can be persistent for two years once appeared, such as BEME (ratio of the book value of
equity and market value of equity) in Figure B.4. Some persistent arbitrage characteristics
even have similar shapes of mispricing functions in different rolling windows, such as AT
(Total asset) in Figure B.6 and LME (total market capitalization of the previous month) in
Figure B.5.
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Table 2.5 Empirical Study Results

Time period n S S0 S1 MSE Characteristics Selected

Jul.1967-Jun.1968 468 -9.6 0 -9.6 0.005 NONE
Jul.1968-Jun.1969 951 -0.45 8 -8.45 0.004 r2_1

Jul.1969-Jun.1970 1108 1.7 9 -7.3 0.005 r2_1

Jul.1970-Jun.1971 1199 -8.7 0 -8.7 0.006 NONE
Jul.1971-Jun.1972 1333 -10 0 -10 0.004 NONE
Jul.1972-Jun.1973 1409 12.7 18 -5.3 0.005 r12_2,r6_2

Jul.1973-Jun.1974 1466 2.1 9 -6.9 0.005 r2_1

Jul.1974-Jun.1975 1560 -10.7 0 -10.7 0.01 NONE
Jul.1975-Jun.1976 1494 0.1 9 8.9 0.05 r2_1

Jul.1976-Jun.1977 1292 0.1 9 -9 0.004 r2_1

Jul.1977-Jun.1978 1393 -9.4 0 -9.4 0.005 NONE
Jul.1978-Jun.1979 1340 8.6 18 -9.4 0.005 r2_1,r12_7

Jul.1979-Jun.1980 1285 1 9 -8 0.005 r2_1

Jul.1980-Jun.1981 1181 9.7 18 -8.2 0.006 r12_7,r12_2

Jul.1981-Jun.1982 1110 1.2 9 -7.8 0.01 r2_1

Jul.1982-Jun.1983 1044 33.1 36 -3 0.01 r12_2,r12_7,r6_2,r2_1

Jul.1983-Jun.1984 1125 -0.9 9 -9.9 0.006 r2_1

Jul.1984-Jun.1985 2192 -0.2 11 -11.2 0.01 r2_1

Jul.1985-Jun.1986 2236 13.1 22 -8.94 0.01 r12_7,r12_2

Jul.1986-Jun.1987 2273 1.7 11 -9.3 0.01 PCM
Jul.1987-Jun.1988 2235 0.9 11 -10.1 0.01 r2_1

Jul.1988-Jun.1989 2270 1.2 11 -9.8 0.01 ROA
Jul.1989-Jun.1990 2405 -0.1 11 -11.1 0.01 r2_1

Jul.1990-Jun.1991 2376 1.1 11 -9.9 0.02 r2_1

Jul.1991-Jun.1992 2323 2.1 11 -8.9 0.02 r2_1

Jul.1992-Jun.1993 2344 12.2 22 -9.8 0.02 r12_7,r12_2

Jul.1993-Jun.1994 2434 0.4 11 -10.6 0.01 r2_1

Jul.1994-Jun.1995 2548 2.4 11 -8.6 0.01 r2_1

Jul.1995-Jun.1996 2741 14.1 22 -7.9 0.02 BEME,r2_1

Jul.1996-Jun.1997 2928 18.1 22 -3.9 0.01 BEME,r2_1

Jul.1997-Jun.1998 2894 26.5 33 -6.5 0.02 r2_1,r12_7,r12_2

Jul.1998-Jun.1999 2905 24.6 33 -8.4 0.02 AT,LME,r2_1

Jul.1999-Jun.2000 2804 13.8 22 -8.2 0.03 r2_1,r12_7

Jul.2000-Jun.2001 2570 37.7 44 -6.3 0.02 AT,LME, r2_1, r6_2

Jul.2001-Jun.2002 2516 1.3 11 -9.7 0.02 r2_1

Jul.2002-Jun.2003 2491 15 22 -7 0.02 Lev, r2_1

Jul.2003-Jun.2004 2402 3.9 11 -7.1 0.01 r2_1

Jul.2004-Jun.2005 2326 1.8 11 -9.2 0.01 IPM
Jul.2005-Jun.2006 2241 2.5 11 -8.5 0.01 r2_1

Jul.2006-Jun.2007 2178 1.5 11 -9.5 0.01 r2_1

Jul.2007-Jun.2008 2113 12.6 20 -7.4 0.01 r12_2,r2_1

Jul.2008-Jun.2009 2023 1.7 10 -8.3 0.02 r2_1

Jul.2009-Jun.2010 2007 1 10 -9 0.01 r2_1

Jul.2010-Jun.2011 1924 13.6 20 -6.4 0.01 r2_1

Jul.2011-Jun.2012 1990 2.5 10 -7.5 0.01 r2_1

Jul.2012-Jun.2013 1937 23.7 30 -6.3 0.01 r2_1,r12_7,r12_2

Jul.2013-Jun.2014 1909 2.3 10 -7.7 0.01 r2_1

Jul.2014-Jun.2015 1872 5.5 10 -4.5 0.01 r2_1

Jul.2015-Jun.2016 1841 12.4 20 -7.6 0.01 DelGmSale,r2_1

Jul.2016-Jun.2017 1826 26.1 30 -3.9 0.01 C2D,PCM,r12_7

This table summarizes the empirical results, where n represents the number of stock in this
rolling window.
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2.8.5 Dynamic Peer Groups of Arbitrage Characteristics

In this section, we illustrate that there are distinguishable peer groups of the same arbitrage
characteristic resulting in similar mispricing returns. We apply the methods in section 2.5
and take two rolling windows, namely, Jul.1986- Jun.1987 and Jul.2004-Jun.2005 as demon-
strative examples.

In the rolling window Jul.1986-Jun.1987, PCM is selected as the only arbitrage characteristic
that can explain arbitrage returns. We reveal that similar characteristic-based arbitrage returns
are determined by distinguishable groups of the characteristic PCM. We first divide arbitrage
returns ÿit into different return groups. And then, we detect whether there are some clustering
structures within groups of the highest and the lowest characteristic-based arbitrage returns,
respectively. As we have 2326 assets, for the visualization purpose, we set the threshold
value of the K-means method to be relatively small to have as many as ten groups.

Table 2.6 First layer 1986-1987 (clusterings of ÿit )

Group number Group centroid Group size
1 0.0059 435
2 0.1205 26
3 -0.0082 428
4 0.0399 189
5 0.0697 71
6 -0.1018 29
7 -0.0617 110
8 -0.0390 250
9 -0.0225 349

10 0.0208 386

In Table 2.6, group 2 has the largest positive average return while group 6 has the worst. Next,
we detect the clusterings of characteristic "PCM" within each group individually, which is
the second layer in section 2.5.

Table 2.7 Second layer 1986-1987 (clusterings of characteristic PCM )

Group number Centroids of Arbitrage returns Centroids of PCM Group size
2.1 0.1211 0.2452 25
2.2 0.1039 -7.630 1
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In Table 2.7, there are two clusterings of PCM that provide the highest positive characteristic-
based arbitrage returns. Group 2.2, which has an extreme negative PCM value but a high
characteristic-based arbitrage return, is an outlier. Members in group 2.1 with excellent
arbitrage performance have positive and small PCM values.

Table 2.8 Second layer 1986-1987 (clusterings of characteristic PCM )

Group number Centroids of Arbitrage returns Centroids of PCM Group size
6.1 -0.1085 0.728 9
6.2 -0.0989 0.288 20

Table 2.8 gives groups of PCM in group 6. Members of this group are divided into two
clusterings. Group 6.1 has a relatively large PCM value, while group 6.2 has a smaller
PCM, which is close to that in group 2.1 with the highest arbitrage return. This is an
evident illustration of the nonlinear structure of h(XXX) in this window. The structure of
characteristic-based arbitrage returns during Jul.1986- Jun.1987 is:

Arbitrage returns 1986-1987

G2 ÿit = 0.12

Group 2.1 PCM=0.25 Group 2.2 PCM=-7.6

G k

. .

G6 ÿit =−0.1

Group 6.1 PCM=0.73 Group 6.2 PCM=0.29

The classification can be found at Figure B.11, where assets are labeled by their "PERMNO,"
and both axes are rescaled.

Another example is the characteristic-based arbitrage return ÿit during the year 2004-2005.
The power-enhanced test selects characteristic "IPM" as the only explanatory variable.

We apply the Hierarchical K-means method. The results of the first layer classification can be
found in Table 2.9. There are ten groups in total according to the similarity of characteristic-
based arbitrage returns. Next, we pick two groups with the highest and the lowest returns,
respectively, to give clusterings of "IPM" in these two groups.
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Table 2.9 First layer 2004-2005 (clusterings of ÿit )

Group number Group centroid Group size
1 0.0421 276
2 0.0059 459
3 0.1537 26
4 -0.024 367
5 0.0659 166
6 0.023 387
7 0.0999 120
8 -0.0758 67
9 -0.0437 244

10 -0.0082 436

Similarly, we show classification results in Table 2.10 and Table 2.11. Positive IPM values
give higher characteristic-based arbitrage returns. On the contrary, when IPM is close to zero
or negative, the characteristic-based arbitrage returns fall into the lowest group (group 8).

Table 2.10 Second layer 2004-2005 (clusterings of characteristic IPM )

Group number Centroids of Arbitrage returns Centroids of PCM Group size
3.1 0.1681 0.266 5
3.2 0.1502 0.143 21

Table 2.11 Second layer 2004-2005 (clusterings of characteristic IPM )

Group number Centroids of Arbitrage returns Centroids of PCM Group size
8.1 -0.0713 -0.07 10
8.2 -0.1016 -0.134 57
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Arbitrage returns 2004-2005

G3 ÿit = 0.15

Group 3.1 IPM=0.27 Group 3.2 IPM=0.14

G k

. .

G8 ÿit =−0.07

Group 8.1 IPM=-0.07 Group 8.2 IPM=-0.13

The plots of the IPM can be found at Figure B.12, where the axes are rescaled, and assets are
labeled by their "PERMNO" code with five digits.

Finally, it is obvious that peer groups of arbitrage characteristics are dynamic in two aspects.
Firstly, the selected arbitrage characteristics are time-varying. Although some of the arbitrage
characteristics can show up for more than one block once they appeared, no arbitrage
characteristic can be substantially persistent. Secondly, as in Figure B.4, the same arbitrage
characteristic can have different functional forms in various rolling windows. However, the
patterns of some characteristics show persistence in different time periods, such as AT in
Figure B.6 and LME in Figure B.5. In a word, under the flexible semiparametric setting,
methods for constructing arbitrage portfolio in Kim et al. (2019) are inapplicable, although
the characteristics-based mispricing function is significant for certain time periods.

2.9 Conclusion

We proposed a semiparametric characteristics-based factor asset pricing model, with a focus
on the existence and the structure of the mispricing function. Both unknown characteristics-
based factor loadings and the mispricing component are approximated by B-splines sieve.
The model is estimated by both Project-PCA and equality-constrained OLS. We also develop
a power-enhanced test to investigate whether there are mispricing characteristics, orthogonal
to the main systematic factors. This is necessary because when the B-splines coefficients
of the mispricing function are diverging, the conventional Wald test has very low power.
The traditional Wald test is strengthened by a screening process, which adds significant
components to the original statistics. Our proposed methods work well for both simulations
and the US stock market. Empirically, we find distinct clusterings of the same characteristics
resulting in similar arbitrage returns, forming "peer groups." The mispricing functions are
time-varying and mostly insignificant under our setting.





Chapter 3

A Dynamic Semiparametric
Characteristics-based Model for Optimal
Portfolio Selection





Abstract

This paper develops a two-step semiparametric methodology for portfolio weight selection
for characteristics-based factor-tilt and factor-timing investment strategies. We build upon
the expected utility maximization framework of Brandt (1999) and Aït-sahalia and Brandt
(2001). We assume that asset returns obey a characteristics-based factor model with time-
varying factor risk premia as in Ge et al. (2020). We prove under our return-generating
assumptions that an approximately optimal portfolio can be established using a two-step
procedure in a market with a large number of assets. The first step finds optimal factor-
mimicking sub-portfolios using a quadratic objective function over linear combinations of
characteristics-based factor loadings. The second step dynamically combines these factor-
mimicking sub-portfolios based on a time-varying signal, using the investor’s expected utility
as the objective function. We develop and implement a two-stage semiparametric estimator.
We apply it to CRSP (Center for Research in Security Prices) and FRED (Federal Reserve
Economic Data) data and find excellent in-sample and out-sample performance consistent
with investors’ risk aversion levels.

KEYWORDS: Portfolio management; Prediction; Single index; GMM;

JEL CLASSIFICATION: C14; G11.
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3.1 Introduction

The traditional portfolio choice model proceeds by estimating the parameters of an asset
return distribution and then finding the portfolio that maximizes expected payoffs for a
given risk level, such as the optimal mean-variance portfolio choice model proposed by
Markowitz et al. (1952). This approach can produce biases in portfolio weights since the
portfolio selection process ignores the estimation error in the empirically-derived return
distribution parameters. Furthermore, as the number of assets increases, the estimation of
the high-dimensional covariance matrix becomes intractable. Some notable methods have
been proposed to solve this issue, such as linear (Ledoit and Wolf (2004)) and nonlinear
shrinkage (Ledoit and Wolf (2017)) of the target covariance matrix or selecting main elements
by threshold (Fan et al. (2013)). However, these approaches may cause information loss
and lead to unsatisfactory results, as illustrate by Ao et al. (2019). At the same time, Ao
et al. (2019) studied a method called MAXSER, which is a sparse regression that sets the
optimal Sharpe-ratio as the regressand. Their method also requires a sparsity assumption and
can be problematic when the number of assets n is large. Meanwhile, all aforementioned
papers ignore the importance of predictive variables, which have been documented by many
researchers, such as Fama and French (1989), who analyzed the forecasting ability of dividend
yield, default spread, and term spread on asset returns, as well as Keim and Stambaugh
(1986), Campbell and Shiller (1988), Hodrick (1992), Chen et al. (2016), Gu et al. (2020) and
Chen et al. (2020) among others. The goal of this paper is to construct an optimal two-step
portfolio that takes advantage of both a large number of assets and dynamic predictors.

Brandt (1999) used nonparametric tools to directly estimate the portfolio weights that
maximize the expected utility of the observed data, without first estimating the return
distribution. He estimated the dynamic portfolio weights of the assets in a two-asset model
as a nonparametric function of the uni-variate time-series predictor of the future excess
returns of the risky assets. Aït-sahalia and Brandt (2001) replaced the uni-variate time series
predictor with an index-based set of predictors: the time-varying portfolio weights in a
three-asset model were assumed to be a nonlinear function of a linear fixed combination of a
vector of predictive variables. However, the number of assets included in their portfolio was
quite limited.

Brandt et al. (2009) developed a characteristic-based model for portfolio selection with a
large cross-section of assets. They assumed that optimal portfolio weights were linearly
related to a small set of observable characteristics, such as book-to-market ratio, momentum,
and market capitalization. They found the linear coefficients that maximized expected utility
under this assumption.
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In this paper, we develop a new semiparametric model of portfolio selection, which com-
bines the advantages of a large cross-section of assets and dynamic predictive variables.
This is achieved by a characteristics-based asset pricing factor model. We generalize the
methodologies in the papers mentioned above since we do not impose the assumption that
optimal weights are linear in the characteristics. Furthermore, the firm-specific characteristics
included in our model can be significantly broadened. There are 33 characteristics in our
empirical study, which provide more potential abnormal return opportunities. Also, as in Aït-
sahalia and Brandt (2001), we also allow information-based dynamically-varying portfolio
allocation based on a single-index function of predictors. We replace weighting across asset
classes in Aït-sahalia and Brandt (2001) with weighting across our optimally-constructed
characteristics-based sub-portfolios.

We estimate the model using a new, two-stage semiparametric procedure. The first step
involves the estimation of the factor-mimicking sub-portfolios, which is a high-dimensional
estimation problem since the number of assets is diverging. Still, the objective function
is quadratic, allowing us to solve it using semiparametric techniques. That step compacts
those assets into several sub-portfolios rather than discarding some of them and reduces
dimensionality, simplifying the next step. The second step maximizes the dynamic expected
utility of a risk-free asset and those sub-portfolios conditional on a set of predictors, similar
to Aït-sahalia and Brandt (2001). Our two-step statistical methodology accounts fully for
the estimation error in both semiparametric steps, and we show that it approximates the
intractable single-stage, asset-by-asset portfolio weight estimation problem in a well-defined
sense.

Our model is not entirely general: we do not allow individual asset selection in response to
asset-specific valuation information. We essentially allow for factor-tilt strategies, which
means weighting securities according to their factor exposure in response to the associated
factor risk premia, and factor timing, which means dynamically varying factor-tilt strategies,
accounting for predictability in factor risk premia, but not individual asset selection. This
method keeps most of the information contained in individual assets while benefitting greatly
from dimensionality reduction.

We base our model on a dynamic, characteristics-based factor model of returns. This kind of
model was first studied by Connor and Linton (2007) and Connor et al. (2012), where they
specified their model as:

yit = αi +
J

∑
j=1

g j(X ji) f jt + εit , (3.1)
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where yit is the excess return on security i at time t; f jt is the jth risk factor’s return at time
t; X ji is the jth observable characteristic of firm i; αi represents the intercept (mispricing)
part of ith asset return; and εit are the mean zero idiosyncratic shocks. They restricted
characteristic-based loading g j(·) to be a uni-variate nonparametric function. To extend the
dimension of the factor loading function g j(·), Kelly et al. (2019) and Kim et al. (2019)
specify both mispricing and factor loading parts as a parametric linear function of a large set
of firm-specific characteristics as:

yit = h(XXX i)+
J

∑
j=1

g j(XXX i) f jt + εit . (3.2)

They illustrated the validity of characteristics-based factor models and provided relevant
empirical results. Ge et al. (2020) generalized the parametric part of Equation 3.2 as semipara-
metric functions to be consistent with earlier research. They also proposed power-enhanced
tests to verify their model, concluding that the semiparametric mispricing component h(XXX i)

was only significant during certain rolling windows.

Section two describes the econometric framework for our model. We assume the returns
are generated by the asset pricing model in Ge et al. (2020) and that the factor risk premia
are predictable based on a single-index function involving a set of both stationary and
nonstationary predictors.

Section three presents the general portfolio management problem, and our restricted class of
portfolio selection rules in which the problem is divided into two steps. In the first step, the
investors choose a set of characteristics-based sub-portfolios that are well-diversified and
mimic the returns of the underlying unobservable factors. In the second step, the investors
choose a dynamic combination of these sub-portfolios and a risk-free asset dependent upon
their time-varying information set and utility function. The information is specified as a
single-index function, which is well-approximated by orthogonal series, allowing for both
stationary and nonstationary covariates. We show that under reasonable conditions on risk
preference, the two-step selection rule has asymptotically zero impact on an investor’s
expected utility as the number of assets grows to infinity, relative to the unattainable true
optimal choice.

Section four derives estimators for both steps. In the factor-tilt step, the factor-mimicking
portfolios are constructed by the linear combination of estimated characteristics-based factor
loadings. To diversify the idiosyncratic shocks further, the weight for each factor loading
function is estimated through a constrained quadratic objective function. In the second
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step, called factor timing, the optimization of the expected utility function is solved using
the continuously-updating GMM, as in Hansen et al. (1996). The weights allocated to the
risk-free asset and sub-portfolios are determined by the single-index function approximated
through Hermite polynomials, which allows for both stationary and nonstationary predictors,
as in Dong et al. (2016b). The coefficients of those orthogonal bases are estimated by
solving the sample counterpart under the continuously-updating GMM framework. Section
five documents the hypothesis tests on the significance of these predictors included in the
single-index function.

Section six presents the empirical findings. We apply our approaches to monthly CRSP and
FRED data and reveal some popular predictive variables’ nonstationarity and significance.
Furthermore, we find our portfolios have different but outstanding performances under
various levels of risk aversion. Finally, the results of the in-sample and out-sample are similar
and reflect the risk preference of the investor.

Section seven concludes and discusses the paper, while proofs of theorems and supplementary
tables are arranged in the Appendix.

3.2 The Model of Asset Returns

We assume that there is a large panel of monthly assets excess returns generated by the
characteristics-based model:

yit =
J

∑
j=1

g j(XXX i)( f jt +φ jt)+ εit , (3.3)

where yit is ith stock’s excess return at time t while XXX i is a large set of assets’ P-vector of
characteristics, which is regarded as time-invariant within a short time window; g j(XXX i) is
the jth characteristics-based factor loading, which is specified as a multivariate additive
semiparametric function, where g j(XXX i) = ∑

P
p=1 µ jp(Xi jp) with µ jp(X jp) the pth univariate

unknown characteristic function. The factor returns FFF t = ( f1t , . . ., fJt)
⊺ are the common

sources of risk in assets returns at time t with associated means φφφ t = {φ1t , . . . ,φJt}. The
asset-specific return εit is conditional zero mean, i.e., E(εit |XXX i) = 0.

This framework is an extension of Connor and Linton (2007) and Connor et al. (2012), who
assumed the factor beta function g(·) to be uni-variate. This model is a special case of Ge
et al. (2020) by replacing the mispricing component with the mean value φ jt of the jth risk
factor.
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We allow for time variation in the characteristics of assets across rolling windows. We treat
the n×P matrix of characteristics in the tth rolling window XXX = (XXX1, . . . ,XXXn)

⊺, as a random
draw from a multivariate population distribution. Furthermore, the investor can observe XXX
before rolling block t, and then choose his time t portfolio.

We define the n× J matrix G(XXX) = (g1(XXX), . . . ,gJ(XXX)) and g j(XXX) = (g j(XXX1), . . . ,g j(XXXn))
⊺ ,

and the matrix form of the demeaned assets excess returns at time t is :

YYY t = G(XXX)FFF t + εεε t , t = 1,2, . . . ,T, (3.4)

where YYY t is a n × 1 matrix of the demeaned assets excess returns at time t, G(XXX) =

(g1(XXX), . . . ,gJ(XXX)) is a n× J factor loading matrix, and εεε t is a n×1 vector of asset-specific
risks.

We allow for dynamic variation in the mean value of factor return premia. At the beginning of
each period, a K ×1 vector of random signal zzzt = (z1t , . . . ,zKt)

⊺ is observed by the investor
before he chooses his portfolio. The expected return on the jth factor in Equation 3.3 is a
nonlinear function of a fixed linear combination of these dynamic signals by coefficients
θθθ = (θ1, . . . ,θK)

⊺ as:
φ jt+1 = π j(θθθ

⊺zzzt). (3.5)

The vectors zzzt and εεε t are assumed to be statistically independent. At each time t, the investor
observes the characteristics of those assets XXX , which is treated as time-invariant during
this time block, and the dynamic signal zzzt . Then, the investor chooses his time t portfolio
based on this information. Finally, at the (t +1)th period, his portfolio return depends upon
the realized assets returns, which in turn depends on the realized factors returns FFF t+1 and
asset-specific returns εεε t+1, respectively, according to Equation 3.3.

3.3 A Two-Step Version of the Portfolio Choice Problem

This section first defines the utility function of a rational decision-maker and then describes
how the optimal portfolio weights are chosen through a two-step procedure. In step one,
the investor chooses characteristics-based factor-mimicking sub-portfolios based on a linear
combination of the beta function∑

J
j=1 g j(XXX) in Equation 3.3. Step two combines these

sub-portfolios optimally using expected utility as the investor’s objective function, based on
a dynamic index.
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3.3.1 Utility Function of the Investor

The investor in our model is myopic. He chooses his portfolio for time t to maximize one-
period expected utility of return. We assume that his return at time t is Wt and his risk-averse
von Neumann Morgenstern preference is defined over Wt with a lower bound on the second
derivative:

d
dW

u(W )> 0,−c <
d2

W 2 u(W )< 0 (3.6)

Additionally, we define the optimal portfolios weights n×1 vector w∗ such that:

w∗ = argmax
w

E[u(r f t +w∗⊺rrrt)|XXX ,zzzt ], (3.7)

where r f t is the risk-free return and rrrt is a n×1 vector of stock returns at time t. In practice ,
the optimal w∗ is hard to determine and unstable when n is large or the trading frequency is
high, as discussed in the Introduction. Therefore, we consider optimal portfolio choice under
a restriction on portfolio weights. Rather than choosing asset weights directly, the investor
chooses a set of J characteristics-based portfolios to approximately mimic the factors. Then,
in the second step, the investor combines these factor-mimicking sub-portfolios optimally
using his expected utility function conditional on a group of predictors.

3.3.2 Step 1: Factor-mimicking Sub-portfolios

In this subsection, we propose a method to construct factor-mimicking sub-portfolios based
on Equation 3.3 and discuss the properties of these sub-portfolios.

We propose a semiparametric weighting function to mimic the risk factors FFF ttt , which is in
the form of a linear combination of characteristics-based factor loadings as in Equation 3.3:

b j(XXX i) = γ j1g1(XXX i)+ · · ·+ γ jJgJ(XXX i), (3.8)

therefore, the portfolio weight of ith asset to construct the jth sub-portfolio is 1
nb j(XXX i).

The weighting matrix of assets to mimic all J factors is as follows:

B(XXX i) =
1
n

ΓΓΓG(XXX i)
⊺, (3.9)
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where

B(XXX i) =
1
n


b1(XXX i)

b2(XXX i)
...

bJ(XXX i)

 ,

ΓΓΓ =


γ11 . . . γ1J

γ21 . . . γ2J

. . . . . . . . .

γJ1 . . . γJJ

 , G(XXX i)
⊺ =


G1(XXX i)

G2(XXX i)
...

GJ(XXX i)

 .

Thus, the J×1 factor-mimicking portfolio returns vector at time t is calculated as:

QQQt(XXX) =


q1t(XXX)

q2t(XXX)
...

qJt(XXX)

=
n

∑
i=1

B(XXX i)yit . (3.10)

The factor-mimicking portfolio vector has at least two attractive properties, which are listed
as Theorems.

An investor who uses a semiparametric characteristics-based weighting function to choose
sub-portfolios rather than individual assets i sacrifices the flexibility to weight assets differ-
ently based on the properties of their asset-specific returns εit , since the sub-portfolio weight
function Equation 3.10 only differentiates assets by their characteristic vectors. However,
for both hedge fund managers and researchers, there are no satisfactory rules for choosing
thousands of assets robustly. Furthermore, some weighting strategies have to be rebalanced
once per trading day, and even more frequently for some strategies. This high-speed decision-
making problem is intractable without some simplifying applicable rules like Equation 3.10.

3.3.3 Step 2: Factor-timing Portfolio Based on Dynamic Signals

This subsection describes how to approximate the dynamic signal function π j(θθθ
⊺zzzt) in Equa-

tion 3.5, and how to use this function as dynamic weights assigned to those factor-mimicking
sub-portfolios in subsection 3.3.2, to reflect information about their over-performance/under-
performance on a risk-adjusted basis. This subsection captures the particular "factor-timing"
strategy used by the investor.
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Here, we define the objective function as:

argmax
θθθ

E[u(αr f t+1 +ΠΠΠ(θθθ⊺zzzt)
⊺QQQt+1(XXX))], (3.11)

subject to
∥θθθ∥2 = 1 and θ1 > 0

and

α +
J

∑
j=1

π j(θθθ
⊺zzzt) = 1

where r f t is the risk-free return at time t and α is its portfolio weight, and

ΠΠΠ(θθθ⊺zzzt) = (π1(θθθ
⊺zzzt), . . . ,πJ(θθθ

⊺zzzt))
⊺.

The first restriction is for identification purposes while the second is for unit investment. We
do not restrict short selling and leverage. Equation 3.11 is a transformation of the objective
function Equation 3.7. The n×1 vector of assets’ returns rrrt in Equation 3.7 is replaced by
the vector of sub-portfolios’ returns QQQt+1 conditional on XXX , which compacts the information
of rrrt through observed characteristics XXX . Similarly, the dynamic weights of each asset w∗ is
substituted by the dynamic information function ΠΠΠ(θθθ⊺zzzt), which is the mean function for
the risk factors φφφ t as in Equation 3.3. In other words, the objective function Equation 3.7 is a
transformation of the utility function Equation 3.11 by incorporating conditional variables
zzzt ,XXX .

Our purpose is to maximize the conditional expectation of the investor’s utility function. The
investment allocation to the jth factor-tilt sub-portfolio is determined by the jth information
indicator π j(θθθ

⊺zzzt), which is a single-index function, to avoid the problem of "curse of di-
mensionality" caused by fully nonparametric methods. We specify fixed linear combinations
as information input in an unknown function π j(·), as stated by Aït-sahalia and Brandt
(2001), for at least two reasons. Statistically, this can achieve a better convergence rate for
estimates, and economically, a uni-variate index value provides meaningful and convenient
descriptions of current investment opportunities. Meanwhile, these index functions’ effects
on each sub-portfolio can be highly nonlinear, as documented by Aït-sahalia and Brandt
(2001). Therefore, we do not specify the functional form of π j(·), allowing a parametric
index function to influence each sub-portfolio’s weight nonparametrically.
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3.4 Econometric Methods

This section gives Assumptions for estimation, shows the estimation of characteristics-based
factor loading G(XXX), illustrates procedures for estimating ΓΓΓ in Equation 3.9 and BBB,,,θθθ in ??,
and theoretical results.

3.4.1 Assumptions

Assumption 3.4.1. As n → ∞, we have:

1
n

YYY ⊺YYY →P MMMY ,

FFF⊺FFF =

d1 0 0

0 . . . 0
0 0 dJ

 ,
where MMMY is a positive definite matrix; FFF = (FFF1, . . . ,FFFT ) and d j are distinct and positive
entries.

Assumption 3.4.2. We define λmin(M) and λmax(M) as the largest and the smallest eigenval-
ues of matrix M, respectively. Additionally, we define Cmin and Cmax to be positive constants
such that:

Cmin ⩽ λmin(
1
n

ΦΦΦ
⊺(((XXX)))ΦΦΦ(((XXX))))< λmax(

1
n

ΦΦΦ
⊺(((XXX)))ΦΦΦ(((XXX))))⩽Cmax,

Cmin ⩽ λmin(E(εεε tεεε
⊺
t )< λmax(E(εεε tεεε

⊺
t ))⩽Cmax,

Cmin ⩽ λmin(
1
n

GGG(((XXX)))⊺PPPGGG(((XXX))))< λmax(
1
n

GGG(((XXX)))⊺PPPGGG(((XXX))))⩽Cmax,

as n → ∞, where ΦΦΦ(((XXX))) is the matrix of B-spline basis of characteristics; PPP is the n× n
projection smoother with PPP = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1ΦΦΦ(XXX)⊺.

Assumption 3.4.3.
1
n

GGG(((XXX)))⊺GGG(((XXX)))→P IIIJ,

as n → ∞, and IIIJ is a J× J identity matrix.
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Assumption 3.4.4. We assume that there exists a neighbourhood of θθθ , N(θθθ ,ΣΣΣθ )⊂ ΘΘΘ, such
that for any θθθ 0 ∈ N(θθθ ,ΣΣΣθ ), θθθ

⊺zzzt is always an I(1) process.

Both Assumption 3.4.1 and 3.4.3 are similar to those in Fan et al. (2016), which are used to
separately identify risk factors and factor loadings. Given the orthogonal bases of B-splines
and uncorrelated or weakly correlated characteristics, Assumption 3.4.3 is mild. Assumption
3.4.2 shows the explanation power of characteristics on factor loadings is non-vanishing
and implies that the asset specific risk caused by εεε t is diversifiable. Assumption 3.4.4
precludes the co-integration of the signal function θθθ

⊺zzzt , which fits the framework of Dong
et al. (2016b).

3.4.2 Estimation of Characteristics-based Factor Loadings

The estimation of the characteristics-based loading G(XXX) is the same as in Ge et al. (2020),
through the Projected-PCA proposed by Fan et al. (2016). The idea is to project the n×T
asset excess returns YYY onto the B-splines space spanned by XXX through a n×n projection matrix
P, where PPP = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1ΦΦΦ(XXX)⊺, and then, we collect the projected returns ŶYY .
Furthermore, we perform PCA on 1

nŶYYŶYY
⊺
. The Ĝ(XXX) is attained as

√
n times the largest J

eigenvectors of 1
nŶYYŶYY

⊺
. Due to the property of the PCA, the Assumption 3.4.3 is satisfied.

3.4.3 Estimation of the First Step–Factor-tilt

We assume that the investor chooses ΓΓΓ based on the following objective function:

Γ̂ = argmin
Γ

J

∑
j=1

E(b j(XXX iii)
2) (3.12)

subject to
E[Qt(XXX)Qt(XXX)⊺] = IIIJ,

where IIIJ is a J× J identity matrix.

In other words, we choose the linear combination coefficients J× J matrix to maximize the
spread of the portfolio weights, specifically by minimizing the expected sum of squared
portfolio weights, in the class of semiparametric functions of the characteristics, subject
to an orthogonality constraint on the vector of sub-portfolios’ returns. These portfolios
are an econometrically-derived variant of the widely popular Small-Minus-Big (SMB) and
High-minus-Low (HML) portfolios designed by Fama and French (1993) to capture the
size-related and value-related return factors. Fama and French (1993) did not minimize the
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sum of squared portfolio weights as was done in Equation 3.12, but they instead set the
portfolio weights using capitalization weights, which, in the highly diversified US equity
market, have a very low sum-of-square relative to the number of assets. Fama and French
(1993) did not explicitly impose the orthogonality condition applied in Equation 3.12, but, as
they noted, they chose their size and value breakpoints so that the portfolio returns would
have a very low correlation. The reason that we set the orthogonal constraint here is to
diversify idiosyncratic risks further.

Next we show that Equation 3.12 can have a Langrangian solution. After expanding the
constraint and under the independence between FFF t and εεε t , we have:

E[Qt(XXX)Qt(XXX)⊺] = E[(1
nΓΓΓG(XXX)⊺G(XXX)FFF t +

1
nΓΓΓG(XXX)⊺εεε t)(

1
nFFF⊺

t G(XXX)⊺G(XXX)ΓΓΓ⊺+ 1
nεεε

⊺
t G(XXX)ΓΓΓ⊺)]

= E(ΓΓΓG(XXX)⊺G(XXX)
n FFF tFFF

⊺
t

G(XXX)⊺G(XXX)
n ΓΓΓ

⊺)+ 1
n2 E(ΓΓΓG(XXX)⊺εεε tεεε

⊺
t G(XXX)ΓΓΓ⊺)

→ ΓΓΓMMMGE(FFF tFFF
⊺
t )MMM

G
ΓΓΓ
⊺+ 1

n2 ΓΓΓG(XXX)⊺E(εεε tεεε
⊺
t )G(XXX)ΓΓΓ⊺

,

which is a quadratic form in ΓΓΓ.

As for the objective function, we have:

J

∑
j=1

E(b j(XXX i)
2) = E(ΓΓΓ2G(XXX i)

2),

which is linear in ΓΓΓ
2.

Therefore, we write this constrained optimization problem of sample analogues in the
Lagrangian form:

L(ΓΓΓ) =
1
n

n

∑
i=1

ΓΓΓG(XXX i)
⊺G(XXX i)ΓΓΓ

⊺−ΛΛΛ
⊺vec((

1
T

T

∑
t=1

QQQt(XXX)QQQt(XXX)⊺)− IIIJ), (3.13)

where Λ is the 1
2J(J+1) vector of Lagrangian multipliers; G(XXX i) = (g1(XXX i), . . . ,gJ(XXX i)) and

vec is the vecterization of a matrix.

The optimal ΓΓΓ and associated Lagrangian multipliers will solve the first order conditions:

∂L
∂ΓΓΓ

= 000J×J,

∂L
∂ΛΛΛ

= 000
1
2 J(J+1).
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Meanwhile, we collect the estimate Γ̂ΓΓ to obtain the factor-mimicking sub-portfolios’ returns
as:

Q̂QQt(XXX) =


q̂1t(XXX)

q̂2t(XXX)
...

q̂Jt(XXX)

=
n

∑
i=1

B̂(XXX i)yit =
1
n

n

∑
i=1

Γ̂ΓΓĜ(XXX i)
⊺yit , (3.14)

where Ĝ(XXX i) is the consistent estimate of Equation 3.3 as in Ge et al. (2020), where they
specify G(XXX i) as an additive semiparametric function of asset-specific characteristics.

3.4.4 Estimation of the Second Step–Factor-timing

The next step derives an estimator for the dynamic portfolio allocation weighting functions
ΠΠΠ(((θθθ⊺zzzt−1))).

To facilitate our estimation procedures, we approximate those unknown functions π j(·) by
orthonormal bases similar to Dong et al. (2016b). Their methods can allow the elements of
the information vector zzzt to be nonstationary. As pointed by Gao and Phillips (2013a) and
Gao and Phillips (2013b), conventional kernel estimation as in Brandt (1999) and Aït-sahalia
and Brandt (2001) methods may not be workable due to the breakdown of the limit theory,
when zzzt is a multivariate I(1) process. In practice, some time series predictors are likely
to be nonstationary, like the unemployment rate, inflation and exchange rates, among other
economic indicators. Therefore, we apply a similar method as in the Dong et al. (2016b) to
validate a more comprehensive application of our model.

Suppose all the link functions π j belong to L2(R) = { f (x) :
∫

f 2(x)dx < ∞}. The Hermite
function sequence {Hi} is an orthonormal basis in L2(R):

Hi(x) = (
√

π2ii!)−1/2Hi(x)exp(−x2

2
), i ⩾ 0, (3.15)

where Hi(x) are Hermite polynomials orthogonal with density exp(−x2). The orthogonality
reads

∫
Hi(x)H j(x)dx = δi j, the Kronecker delta.

Therefore, any continuous function π j(·) ∈ L2(R) can be expanded into a linear combination
of orthogonal series:

π j(θθθ
⊺zzzt) =

∞

∑
l=0

β jlHl(θθθ
⊺zzzt). (3.16)
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We keep the first L−1 terms and leave the rest as approximation residues:

π j(θθθ
⊺zzzt) =

L−1

∑
l=0

β jlHl(θθθ
⊺zzzt)+ψ(θθθ⊺zzzt), (3.17)

where ψ(θθθ⊺zzzt) is the approximation residues.

Furthermore, all J dynamic indicator functions can be approximated (we set the same
truncation parameters for all functions for the purposes of notation simplicity only):

ΠΠΠ(θθθ⊺zzzt) = BBBH L(((θθθ
⊺zzzt)))+Ψ(θθθ⊺zzzt), (3.18)

where

BBB =


β10 . . . β1(L−1)

. . . . . . . . .

βJ0 . . . βJ(L−1)

 , H L(((θθθ
⊺zzzt))) =


H0(θθθ

⊺zzzt)

. . .

HL−1(θθθ
⊺zzzt)

 ,

and Ψ(θθθ⊺zzzt) is the approximation error.

Therefore, the objective function Equation 3.11 is transformed through replacing ΠΠΠ(θθθ⊺zzzt)

by BBBH L(((θθθ
⊺zzzt−1))) as:

(α̂αα,,, B̂BB,,, θ̂θθ) = arg max
α,BBB,,,θθθ

E[u(αr f t +(BBBH L(((θθθ
⊺zzzt−1))))

⊺Q̂QQt(XXX))], (3.19)

subject to
∥θθθ∥2 = 1 and θ1 > 0

α +
J

∑
j=1

βββ
⊺
j H L(((θθθ

⊺zzzt−1))) = 1

where Q̂QQt(XXX) is the estimate of sub-portfolios from Equation 3.14. This is essentially the
same semiparametric estimation problem analyzed by Aït-sahalia and Brandt (2001). The
procedure relies on the profile estimation of the single-index function. We iterate the first
order condition to convergence after choosing initial values arbitrarily.

The first order condition of the maximization with respect to BBB,,,θθθ is:

E[MMMt ] = E


u′(·)Q̂QQt(XXX)⊗H L(((θθθ

⊺zzzt−1)))

u′(·)Q̂QQt(XXX)(BBBH ′
L(((θθθ

⊺zzzt−1)))⊗ zzzt−1)]

u′(·)r f t

= 000J×L+J×K+1,



3.4 Econometric Methods 85

where H ′
L and u′(·) are the first derivatives of the truncated orthonormal series and the

investor’s utility function respectively.

There are J×L+ J×K +1 moment conditions to maximize the objective function.

These moment conditions can be used to construct standard GMM problem as was done in
Hansen (1982):

(α, B̂BB,,, θ̂θθ) = arg min
α,BBB,,,θθθ

E[MMMt ]
⊺SSSE[MMMt ]

subject to
∥θθθ∥2 = 1 and θ1 > 0

α +
J

∑
j=1

βββ
⊺
j H L(((θθθ

⊺zzzt−1))) = 1

where SSS is the optimal weighting positive definite matrix as SSS = cov(MMMt)
−1.

Then, we substitute these moment conditions E[MMMt ] with corresponding sample counterparts
as:

mmmt =


1
T ∑

T
t=1 u′(·)Q̂QQt(XXX)⊗H L−1(((θθθ

⊺zzzt−1)))
1
T ∑

T
t=1 u′(·)Q̂QQt(XXX)(BBBH ′

L−1(((θθθ
⊺zzzt−1)))⊗ zzzt−1)

u′(·)r f t

= 000J×L+J×K+1.

Similarly,

ŜSS = (
1
T

T

∑
t=1


u′(·)Q̂QQt(XXX)⊗H L−1(((θθθ

⊺zzzt−1)))

u′(·)Q̂QQt(XXX)IIIL×L(BBBH ′
L−1(((θθθ

⊺zzzt−1)))⊗ zzzt−1)

u′(·)r f t




u′(·)Q̂QQt(XXX)⊗H L−1(((θθθ
⊺zzzt−1)))

u′(·)Q̂QQt(XXX)IIIL×L(BBBH ′
L−1(((θθθ

⊺zzzt−1)))⊗ zzzt−1)

u′(·)r f t


⊺

)−1.

We substitute the sample analogues and ŜSS into the objective function, and estimate B̂BB,,, θ̂θθ :

(α̂, B̂BB,,, θ̂θθ) = arg min
α,BBB,,,θθθ

mmm⊺
t ŜSSmmmt , (3.20)

subject to
∥θθθ∥2 = 1 and θ1 > 0

α +
J

∑
j=1

βββ
⊺
j H L(((θθθ

⊺zzzt−1))) = 1
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Furthermore, we substitute Equation 3.20 into the optimization iteration, which is called the
continuously-updating estimator; details can be found in Dong et al. (2018).

3.4.5 Hypothesis Tests

This section introduces the hypothesis tests that help us to understand which index variables
are important to guide the construction of factor-timing portfolios. We apply a Wald test to
infer the significance of θ j. We have the null and alternative hypotheses as follows:

H 0 : CCCθθθ = 000D×1, against H 1 : CCCθθθ ̸= 000D×1,

where CCC is a D×K fix matrix indicating the number of constraints DDD.

We denote the value of the objective function Equation 3.20 under B̂BB, θ̂θθ as V (B̂BB, θ̂θθ))) while
under the null hypothesis H 0 as VVV (B̂BB, θ̂θθ

∗
).

Therefore, if the null hypothesis is correct, we have:

T (V (B̂BB, θ̂θθ
∗
)−V (B̂BB, θ̂θθ))∼ χχχ

2(D), (3.21)

where χχχ2(((DDD))) is the chi-square distribution with degree of freedom D. This method is a
minimum-χ2 test, the purpose of which is to check the minimized values of the objective
function Equation 3.20 after imposing some restrictions.

We reject the null hypothesis if the test statistic exceeds the critical value.

3.4.6 Theoretical Results

Theorem 3.4.1. Each sub-portfolio in the J ×1 factor-mimicking vector defined by Equa-
tion 3.10 is a linear combination of risk factors f jt directly.

Theorem 3.4.1 implies that we can control the similarity between sub-portfolios and risk
factors by adjusting coefficients matrix Γ, which provides us with considerable flexibility.

Theorem 3.4.2. The returns of portfolio defined by Equation 3.10 have asymptotically zero
idiosyncratic variance.

Theorem 3.4.2 illustrates that portfolio returns of factor-mimick sub-portfolios can diversify
the asset-specific returns completely as the number of assets goes to infinity.
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Theorem 3.4.3. The restricted optimal portfolio weighting function chosen by ?? gives an
approximately optimal portfolio.

Theorem 3.4.3 demonstrates that, as the number of assets n → ∞, our two-step procedure
is approximately equivalent to Equation 3.7, which is the completely unrestricted asset-
by-asset portfolio optimization because these two methods give the same expected utility
asymptotically.

3.5 Empirical Study

3.5.1 Data Description

Index Variables

We use the same index variable set as Aït-sahalia and Brandt (2001). These variables are all
at a monthly frequency:

• The Default Spread is the yield difference between Moody’s Baa and Aaa rated bonds,
observed from 1967-07-01 to 2017-06-01 (600 months in total) denoted as DS.

• The Term Spread is the yield difference between 10 and 1 year government bonds,
observed from 1967-07-01 to 2017-06-01 (600 months in total) denoted as TS.

• The Trend is the difference between the log of the current S&P 500 index level and the
log of the average index level over the previous 12 months, observed from 1967-07-01
to 2017-06-01 (600 months in total).

• The Dividend Yield, also called Dividend-to-Price, is the sum of dividends paid on
the S&P 500 index over the past 12 months divided by the current level of the index
observed from 1967-07-01 to 2017-06-01 (600 months in total). We use the percentage
natural logarithm form of Dividend Yield, denoted as Ln(DY%).

• The Risk Free rate is obtained from the Fama-French factor model’s risk-free rate,
observed from 1967-07-01 to 2017-06-01, denoted in the percentage form as RF%.

In Table 3.1, both "Trend" and "RF%" have small variation while "RF%" has some strong
correlation with "TS" and " Ln(DY%)". Apart from these, we also find that all of the index
variables are not symmetrically distributed, shown by the non-zero skewness. As for the
kurtosis, the table indicates that outliers are quite common among these variables.
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In Table 3.2, we conclude the results of the unit root test and autocorrelation. After the
Dickey-Fuller tests, we fail to reject the null hypotheses that there are no unit roots among
all index variables, especially for the " Ln(DY%)". That can also be found from Figure 3.4.
In terms of autocorrelation, almost all of the index series present persistent autocorrelation
even for lag nine, " Ln(DY%)" showing a strong signal of autocorrelation coefficient of
0.94, as shown in Figure 3.4 and Figure 3.5. However, "Trend" is an exception, where the
autocorrelation decays to zero and is negative after lag ten as shown in Figure 3.3. These
test results verify the necessity of applying orthogonal series to approximate the single index
function with nonstationary covariates, as in subsection 3.3.3.

The data above was collected from the websites of FRED and Multpl.

Monthly Stock Data

We collected monthly stock returns from CRSP and firms’ characteristics from Compustat,
from 1965 to 2017. We constructed 33 characteristics following the methods of Freyberger
et al. (2020b). Details of these characteristics can be found in the appendix of Ge et al. (2020).
We construct characteristics from fiscal year t −1 to explain stock returns between July of
year t to June of year t +1. Following Hou et al. (2015), we adjust returns of delisted stocks.
The method that we apply to estimate the Equation 3.4 is similar to Ge et al. (2020). We
only include firms with at least three years of data in Compustat. The values of firm-specific
characteristics are updated annually since most characteristic data are reported every year.
We use rolling windows to accommodate time-varying characteristics-based loadings, and
the risk factors are estimated correspondingly.

Our in-sample analysis’s period is 50 years, from July 1967 to June 2017 (600 months).

3.5.2 In-sample Factor-mimicking Portfolios

This section presents portfolios that mimic the annually updated risk factors estimated
through ??. In this study, we choose the number of unobservable factors in Equation 3.3 to
be three. In Ge et al. (2020), they compared the effects of the number of factors through a
simulation study, concluding that underestimating the number of factors can be problematic.
However, their discussions mainly focused on the estimation of mispricing functions. We
only have four dynamic index variables, and therefore, we follow the renowned research of
Fama and French (1993) to set the number of factors to be three. According to the literature,
three factors can capture the essential common variation in asset excess returns.
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The methods are introduced in subsection 3.3.2, and we utilize all 600 months of data and
construct three such portfolios every year, assuming the number of risk factors in Equation 3.3
to be three. Then, we conclude the descriptive statistics of these three sub-portfolios in
Table 3.3. The constraints in estimation determine the zero mean and unit variance. As
for the correlation between risk factors and those sub-portfolios using observations of all
600 months, our first step works very well because the diagonal elements of correlation
are quite high while the off-diagonal elements are negligible. That demonstrates that each
sub-portfolio imitates only the target risk factor’s variation accurately and leaves the rest
uncorrelated. The weights put on each asset for these sub-portfolios are calculated through
a constrained optimization, which restricts the similarity between sub-portfolios and risk
factors. Furthermore, during certain years, the sub-portfolios behaved in the opposite
direction of the imitated factor, which can also influence the average correlation over 50
years. The annual correlation can be found in Table B.2, where some negatively correlated
periods are presented.

3.5.3 Utility Function

We utilize the classic Constant Relative Risk Aversion (CRRA) utility function to model
function u(W ) in Equation 3.6:

u(W ) =

{
W 1−ξ

1−ξ
if ξ > 1;

ln(W ) if x = 1,

where ξ is an integer and ξ =W ∂ 2u(W )/∂W 2

∂u(W )/∂W , measuring the level of risk aversion. Therefore,
under this setting, the investor is risk-averse and tries to maximize his expected utility
function through factor-mimicking and factor-timing portfolio strategy. The CRRA utility
function is twice differentiable, which can further facilitate our optimization algorithm.

3.5.4 Selection of Truncation Number

The value of L in Equation 3.17, which is the truncation number in polynomials, needs to
be determined here. Unfortunately, to the best of our knowledge, there is no rule of thumb
for the best choice of L. We refer to Dong et al. (2015) and Dong et al. (2016a), where the
authors determined L according to the number of observations n. However, the n in this study
ranged from 468 to 2928. After trading off the computational burden and approximation
accuracy, we choose L to be four throughout the empirical study.
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Table 3.1 Index Variable Summary

Descriptive Statistics Correlation Matrix
Index name T Mean Variance Median Max Min Skewness Kurtosis DS TS Trend Ln(DP%) RF%

DS 600 1.08 0.2 0.94 3.38 0.55 1.82 7.34 1.00
TS 600 1.12 1.39 1.23 3.40 -3.07 -0.32 2.72 0.09 1.00

Trend 600 0.03 0.01 0.05 0.22 -0.4 -1.24 5.63 -0.27 0.07 1.00
Ln(DY%) 600 1.00 0.17 1.05 1.83 0.10 -0.09 2.07 0.46 -0.26 -0.12 1.00

RF% 600 0.39 0.08 0.41 1.35 0.00 0.51 3.44 0.23 -0.68 -0.01 0.65 1.00

This table documents the descriptive statistics of the index variables that are used in this empirical study as well as the correlations among them. To
be consistent with most of the literature, we use the percentage values of DP and RF.

Table 3.2 Tests Summary

Unit root test Autocorrelation
Index name T time trend p-value (Trend) ∆Yt p-value (∆Yt) ρ3 ρ6 ρ9

DS 600 −2.3×10−5 -0.81 −3.82×10−2 -3.43 0.85 0.68 0.54
(2.8×10−5) (1.11×10−2)

TS 600 9.27×10−5 1.23 −3.6×10−2 -3.26 0.88 0.77 0.69
(7.51×10−5) (1.1×10−2)

Trend 600 4.1×10−6 0.47 −7.59×10−2 -4.86 0.70 0.37 0.12
(8.75×10−6) (1.56×10−2)

Ln(DY%) 600 −1.8×10−5 -1.44 −8.86×10−3 -1.72 0.98 0.96 0.94
(1.25×10−5) (5.16×10−3)

RF% 600 −6.6×10−5 -3.22 −5.48×10−2 -4.23 0.94 0.90 0.87
(2.05×10−5) (5.16×10−3)

This table summarizes the results of unit root tests and autocorrelations of those index variables. It reports the estimates,
standard errors (in parentheses) and t-statistics of Dickey-Fuller test with trend individually. Autocorrelation column
illustrates the correlation between the series and lag 3, lag 6 and lag 9 respectively, dennoted as ρ3, ρ6, ρ9.

Table 3.3 Factor-mimicking Portfolios Summary

Descriptive Statistics Average Correlation
Index name T Mean Variance Median Max Min Skewness Kurtosis f̂ff 1 f̂ff 2 f̂ff 3

q̂qq1 600 0.00 1.00 0.08 2.81 -3.10 -0.38 3.33 0.48 -0.01 0.13
q̂qq2 600 0.00 1.00 0.03 2.70 -3.20 -0.15 3.42 -0.11 0.59 0.05
q̂qq3 600 0.00 1.00 0.05 2.60 -2.79 -0.10 2.82 0.06 -0.03 0.63

This table presents the descriptive statistics of factor-mimicking portfolios and their correlations with estimated risk factors.
q̂qq1, q̂qq2, and q̂qq3 are constructed portfolios through all 600 months’ data while fff 1, fff 2, and fff 3 are three T ×1 factors estimated
by rolling windows.
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Figure 3.5 The Plot of RF

3.5.5 Estimation of Dynamic Signals

This section presents the estimation of single-index coefficient vector θθθ and the results of the
corresponding hypothesis tests. We use the CRRA utility function with various risk aversion
levels ξ . Meanwhile, we also test the null hypothesis in subsection 3.4.5 to examine whether
some of the coefficients of dynamic variables are significantly different from 0. These tests
are used to show the importance of this dynamic information during the second step of
portfolio management, namely factor-timing.

During our estimation, all the optimization processes converged, and the optimized values are
reported. The in-sample results are based on the data for all 600 months and the estimation
procedures are repeated under different risk-aversion levels ξ = 2,ξ = 5, and ξ = 10. We
then obtain the values of the objective function Equation 3.20, denoted as V (((B̂BB,,, θ̂θθ))). The
hypothesis tests are conducted by setting θi = 0, where i indicates the ith index variable. We
denote the value of the objective function Equation 3.20 under H0 : θi = 0 as V (B̂BB, θ̂i = 0).
In addition, χ2 statistics are calculated as T ∆VVV = T (V (B̂BB, θ̂i = 0)−V (((B̂BB,,, θ̂θθ)))).

Table 3.4 Index Variable Summary

ξ = 2 ξ = 5 ξ = 10
Index name T θ̂i V (B̂BB, θ̂i = 0) V (((B̂BB,,, θ̂θθ))) T ∆VVV θ̂i V (B̂BB, θ̂i = 0) V (((B̂BB,,, θ̂θθ))) T ∆VVV θ̂i V (B̂BB, θ̂i = 0) V (((B̂BB,,, θ̂θθ))) T ∆VVV

DS 600 0.15 0.23 0.006 134.4 0.06 0.0001 2.5×10−8 0.066 0.08 0.0026 4.9×10−10 1.56
TS 600 0.19 0.064 0.006 34.8 -0.34 0.0008 2.5×10−8 0.481 -0.06 5.2×10−9 4.9×10−10 0

Trend 600 0.03 0.01 0.006 2.4 0.06 1×10−6 2.5×10−8 0.006 0.03 8.1×10−10 4.9×10−10 0
Ln(DY%) 600 -0.97 0.06 0.006 32.4 -0.93 3.2×10−6 2.5×10−8 0.002 -0.995 2×10−8 4.9×10−10 0

This table reports the estimates and hypothesis test of dynamic index variables. θ̂i is the estimate of the coefficient of the ith index variable while VVV represent the value of the
objective function. ∆VVV = V (B̂BB, θ̂i = 0)−V (((B̂BB,,, θ̂θθ))).

The findings in Table 3.4 differ across the risk-aversion levels. When the magnitude of risk
aversion is low, the influence of the dynamic index variables is significant. With ξ = 2,
nearly all of the values of T ∆VVV exceed the 95% critical value of χ2(1), which is 3.84, except
for Trend. As the risk-aversion becomes larger, the importance of these dynamic variables
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declines which can be confirmed when ξ = 5 and ξ = 10, where all the four variables are
insignificant. We compare the values of the objective function Equation 3.20, and most of
them are quite similar and close to zero. That means the moment conditions in Equation 3.20
can be satisfied even if we restrict the coefficient of the ith index variable to zero. Nevertheless,
we cannot reject their joint significance.

3.5.6 In-sample Performance of Factor-timing Portfolios

This section presents portfolio performance estimated using in-sample data. As mentioned
previously, there are two steps in constructing our dynamic portfolio, namely, factor-tilt
and factor-timing steps. In subsection 3.5.2, we describe how to build the sub-portfolios
that mimic the behavior of risk factors. This section solves the second step, factor-timing:
choosing the time-varying weights for the risk-free asset and risky sub-portfolios. The
dynamic weights are determined by a single-index function with a set of index variables.
These variables capture investment opportunities. We standardize the amount of investment
to be 1 unit and take the monthly returns as the wealth gleaned by the investor. We do not
restrict leverage or short-selling to check the influence of the risk-aversion level ξ .

As we have 600 months in total, we record the average returns every year and annual standard
deviations in Table 3.5 to save the space, and we calculate the Sharpe-ratio directly through
mean(Returnt)/SDannual . Table 3.5 shows the in-sample results from July 1967 to June 2017
under all three risk-aversion levels defined in subsection 3.5.3, and these results are compared
with monthly S&P 500 returns.

Some findings here are substantial and worth discussing. Firstly, for investors who have
relatively lower risk-aversion, the average portfolio returns are more rewarding, with some
extremely high returns appearing as well. For example, when the risk-aversion level ξ = 2,
the twelve-month average monthly returns can be 10.61 and 8. 65. As for ξ = 10, the average
monthly returns are more normal. Most monthly returns are around 5%, except for some
outliers. Secondly, a higher risk-aversion level corresponds to more volatile returns, such
as losing -2.33 monthly during the whole year when ξ = 2, provided the standard deviation
of the monthly return is 6.44. But the circumstances can be much more favourable when
ξ increases to 5 and 10, with the standard deviation of the monthly return being 3.98 and
2.81, respectively. Especially under ξ = 10, the returns are more stable. Thirdly, all of
the portfolios under various ξ have a relatively low Sharpe-ratio, compared with S&P 500
returns, which may be due to the high volatility.
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In this empirical study, we optimize over three risky sub-portfolios and one risk-free asset
without restricting leveraging or short-selling, and the weight for each asset are plotted in
Figure 3.6. As we can see in (a), when the relative risk aversion level is low, ξ = 2, the
weight for each sub-portfolio is variable, while the scale of the vertical axis here is broader
than (b) and (c). As we increase ξ , the weights become more stable. Specifically, when the ξ

increases to 10, the only substantial volatility in the weights appeared around the stock crash
in March 2000.

3.5.7 Out-sample Performance of Factor-timing Portfolios

This section examines the out-sample performance of our two-step portfolio selection pro-
cedure. We test the last six months of the last ten years in our data set for various risk
aversion levels. The coefficients of the dynamic information function are estimated using
all of the past information while the sub-portfolios are estimated using the first six months
each year. The "Return" in Table 3.6 is calculated by substituting the predictors observed
at the beginning of time t +1. The sub-portfolios are constructed at time t, based on all the
available data at the target year before time t +1. Table 3.6 also lists the assigned weights to
each sub-portfolios and the risk-free asset using 1 unit of investment, represented by c1,c2,c3

and c0. To summarize each column, we also provide the mean and standard deviation values
at the end of the table, indicated by "ColMeans" and "ColStd".

As in Table 3.6, most of the out-sample performance is quite similar to the in-sample
performance in Table 3.5. When the risk-aversion level is low such as ξ = 2, the variation
of assets’ weights is the largest and with an extensive range. Correspondingly, the realized
monthly returns are also variable and high on average. The mean return of all 60 months
is 0.36, which is very similar to that of the in-sample result 0.37. Not surprisingly, the
out-sample standard deviation of 8.88 is bigger than that of the in-sample result (6.44).

When the risk-aversion level increases to ξ = 5, the weights’ volatility decreases, and the
mean return also falls from 0.36 to 0.27, which is similar to the in-sample result (0.29).
Compared with the ξ = 2 situation, the standard deviation of all the assigned weights and
the monthly returns decline.

In the case of ξ = 10, all of the weights and monthly returns become more stable and less
volatile. However, the average monthly return here is much lower than the in-sample result
(0.17), with a smaller standard deviation of 1.51.

From the above analysis, we can conclude that our out-sample results are robust and vary
according to the risk aversion levels. When the risk-aversion level is low, the investor
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reassigns his weights broadly and frequently, with a high average monthly return but high
volatility. As the risk aversion level increases, the investor adjusts his portfolios weights
more moderately, and the monthly average return and its standard deviation are reduced.

Unfortunately, the extreme high volatility of all empirical results make a investor face the
risk of bankruptcy every year, which means our method is practically inapplicable. We will
discuss this problem in the next subsection.

For this subsection, all the reported Sharpe-ratios are not annualized.
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Table 3.5 Average Annual In-sample Results

ξ = 2 ξ = 5 ξ = 10 Average Monthly S&P 500
n Return SD Sharpe-ratio Return SD Sharpe-ratio Return SD Sharpe-ratio return SD Sharpe-ratio

468.00 -0.13 1.07 -0.12 0.15 0.70 0.22 0.06 0.61 0.10 0.01 0.03 0.27
894.00 -0.15 1.07 -0.14 0.20 0.47 0.41 0.08 0.63 0.13 -0.00 0.03 -0.03

1108.00 -0.13 1.11 -0.11 0.45 0.66 0.69 0.06 0.72 0.09 -0.02 0.04 -0.58
1199.00 -2.33 9.36 -0.25 0.10 0.88 0.12 0.04 0.59 0.08 0.02 0.03 0.87
1333.00 10.61 37.73 0.28 0.09 0.74 0.12 0.04 0.80 0.04 0.01 0.03 0.23
1409.00 -0.23 1.38 -0.16 0.10 0.77 0.13 0.06 0.82 0.08 -0.00 0.03 -0.08
1466.00 -0.16 1.03 -0.16 -1.02 3.50 -0.29 0.08 0.70 0.12 -0.01 0.04 -0.31
1560.00 -0.10 1.12 -0.09 0.35 1.19 0.30 0.05 0.70 0.07 0.00 0.07 0.07
1494.00 0.19 2.89 0.06 0.32 1.25 0.26 0.06 0.59 0.10 0.01 0.04 0.22
1292.00 0.52 7.48 0.07 0.14 1.29 0.11 0.03 0.60 0.05 -0.00 0.02 -0.09
1393.00 -0.12 0.73 -0.16 0.08 0.92 0.09 0.03 0.58 0.06 -0.00 0.03 -0.04
1340.00 -0.10 0.84 -0.12 0.38 0.94 0.41 0.05 0.79 0.06 0.00 0.03 0.12
1285.00 0.39 2.92 0.13 -0.13 5.27 -0.02 0.09 0.61 0.16 0.01 0.04 0.25
1181.00 -0.12 0.76 -0.16 -0.68 8.15 -0.08 0.03 0.57 0.06 0.01 0.03 0.47
1110.00 -0.15 0.83 -0.18 0.82 2.08 0.39 0.05 0.75 0.07 -0.01 0.04 -0.38
1044.00 -0.09 1.34 -0.07 -0.05 1.64 -0.03 -0.07 0.59 -0.11 0.04 0.03 1.05
1125.00 -0.73 1.72 -0.42 0.12 1.15 0.10 0.05 0.75 0.07 -0.01 0.02 -0.31
2192.00 -0.88 1.83 -0.48 -1.83 13.38 -0.14 0.05 0.73 0.06 0.02 0.03 0.59
2236.00 8.65 16.35 0.53 -0.87 2.35 -0.37 0.06 0.77 0.07 0.02 0.03 0.77
2273.00 0.07 0.53 0.13 0.08 0.87 0.09 0.05 0.95 0.05 0.02 0.03 0.57
2235.00 0.60 2.48 0.24 0.02 0.63 0.04 0.04 0.73 0.05 -0.01 0.06 -0.11
2270.00 -0.02 1.15 -0.02 0.28 0.95 0.30 0.09 0.58 0.16 0.02 0.02 0.68
2405.00 -0.33 1.19 -0.28 0.24 0.82 0.29 0.09 0.61 0.15 0.01 0.02 0.38
2376.00 2.03 3.87 0.53 0.02 1.00 0.02 0.03 0.63 0.05 0.01 0.05 0.11
2323.00 0.09 0.62 0.14 3.80 9.31 0.41 0.05 0.66 0.08 0.01 0.02 0.28
2344.00 0.05 0.68 0.08 2.45 3.21 0.76 0.03 0.61 0.05 0.01 0.01 0.56
2434.00 0.06 0.69 0.09 0.03 1.07 0.03 0.05 0.63 0.08 0.00 0.01 0.09
2548.00 -0.87 11.71 -0.07 -0.04 0.95 -0.04 0.10 0.56 0.17 0.01 0.02 0.79
2741.00 0.26 1.06 0.25 0.15 0.59 0.25 0.15 0.69 0.21 0.02 0.02 0.98
2928.00 0.10 0.55 0.19 0.14 0.74 0.18 0.25 0.53 0.47 0.02 0.04 0.64
2894.00 0.10 0.68 0.14 -0.03 1.90 -0.01 0.38 0.67 0.57 0.02 0.03 0.79
2905.00 0.11 0.73 0.16 -0.14 2.53 -0.05 0.25 0.64 0.39 0.02 0.05 0.33
2804.00 0.13 0.89 0.15 2.60 7.64 0.34 7.55 18.53 0.41 0.01 0.03 0.26
2570.00 0.10 0.69 0.14 -1.02 4.43 -0.23 0.95 1.64 0.58 -0.01 0.04 -0.34
2516.00 0.26 1.33 0.20 0.11 0.94 0.12 0.07 0.61 0.12 -0.02 0.05 -0.33
2491.00 0.11 0.89 0.13 0.07 1.05 0.07 0.03 0.60 0.05 -0.00 0.05 -0.01
2402.00 0.20 0.97 0.20 0.07 0.97 0.07 -0.04 0.58 -0.08 0.01 0.02 0.56
2326.00 0.06 0.90 0.07 0.01 0.50 0.03 0.11 0.58 0.18 0.01 0.02 0.23
2241.00 0.06 0.69 0.09 0.46 0.96 0.48 0.13 0.59 0.23 0.00 0.02 0.19
2178.00 0.12 0.73 0.17 7.04 15.93 0.44 0.15 0.60 0.25 0.02 0.02 0.89
2113.00 0.05 0.68 0.07 0.14 0.66 0.20 0.11 0.57 0.18 -0.01 0.04 -0.25
2023.00 -0.00 0.57 -0.00 -0.86 2.32 -0.37 0.04 0.85 0.04 -0.03 0.08 -0.33
2007.00 0.03 0.53 0.05 0.23 1.87 0.13 0.02 0.69 0.03 0.01 0.04 0.35
1924.00 -0.02 0.87 -0.02 0.02 1.14 0.02 -0.04 0.75 -0.05 0.01 0.02 0.62
1990.00 0.01 0.88 0.01 0.04 0.66 0.07 0.03 0.80 0.03 0.00 0.04 0.07
1937.00 0.00 0.89 0.00 -0.02 0.59 -0.03 0.01 0.79 0.01 0.02 0.02 0.77
1909.00 0.01 0.89 0.01 -0.02 0.94 -0.02 -0.01 0.70 -0.01 0.02 0.01 1.18
1872.00 0.00 0.69 0.01 -0.03 0.93 -0.04 -0.00 0.63 -0.00 0.01 0.02 0.31
1841.00 0.00 0.70 0.01 0.05 0.93 0.06 0.00 0.63 0.01 0.00 0.04 0.00
1826.00 0.01 0.70 0.02 -0.02 0.90 -0.02 -0.01 0.61 -0.01 0.01 0.01 0.94

Total mean 0.37 6.44 0.06 0.29 3.98 0.07 0.23 2.81 0.08 0.01 0.04 0.17

This table illustrates the in-sample results under various risk-aversion levels annually from July 1967- June 2017. n represents the number of stocks included in the
portfolio. Both returns and standard deviations are calculated based on each year’s results. The results of monthly S&P 500 returns are reported for comparison. No
restrictions on leverage or short-selling.
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Table 3.6 Monthly Out-sample Results Comparison

ξ = 2 ξ = 5 ξ = 10
Year c0 c1 c2 c3 Return c0 c1 c2 c3 Return c0 c1 c2 c3 Return

2008

1.12 0.04 0.05 -0.21 -0.04 -0.14 0.59 0.22 0.32 0.12 0.07 0.73 0.01 0.20 0.65
2.03 -0.13 -0.41 -0.49 0.21 -0.11 0.63 0.18 0.30 0.60 0.11 2.12 -0.37 -0.86 2.67
2.41 -0.21 -0.64 -0.55 0.67 -0.23 0.89 -0.09 0.43 0.22 -0.14 -2.37 1.00 2.51 0.84
2.31 -0.19 -0.58 -0.54 -0.82 -0.20 0.82 -0.02 0.40 0.69 -0.14 -2.31 0.99 2.46 4.20
2.24 -0.17 -0.54 -0.53 -1.28 -0.14 0.69 0.12 0.33 1.35 0.62 11.15 -3.11 -7.65 -6.09
1.85 -0.09 -0.31 -0.45 0.77 -0.11 0.63 0.18 0.30 0.49 0.11 2.02 -0.34 -0.79 3.93

2009

-0.00 1.47 0.79 -1.26 -1.60 0.15 -1.56 2.56 -0.15 6.52 -0.29 0.20 0.24 0.85 2.69
-0.00 1.45 0.83 -1.28 0.73 0.10 -1.08 2.03 -0.06 -0.30 -0.26 0.31 0.03 0.93 0.31
-0.00 1.46 0.81 -1.28 -1.44 0.11 -1.15 2.11 -0.07 0.92 -0.26 0.30 0.04 0.92 -0.44
-0.00 1.49 0.77 -1.25 -0.86 0.06 -0.66 1.60 -0.00 -1.90 -0.25 0.39 -0.13 1.00 -1.87
-0.00 1.45 0.83 -1.28 -0.05 0.03 -0.25 1.19 0.03 1.21 -0.26 0.67 -0.66 1.25 0.82
-0.00 1.39 0.94 -1.33 -0.48 0.02 0.03 0.93 0.03 0.33 -0.39 1.86 -2.80 2.33 -0.63

2010

-0.00 0.22 0.02 0.75 -0.21 -0.01 2.06 -0.73 -0.31 -1.17 -0.00 2.17 -0.84 -0.33 -1.23
-0.00 0.23 0.02 0.75 0.50 -0.01 2.04 -0.72 -0.31 -0.00 -0.00 2.18 -0.84 -0.34 -0.05
-0.00 0.23 0.02 0.75 -0.72 -0.01 2.07 -0.74 -0.31 -2.10 -0.00 2.17 -0.84 -0.33 -2.17
-0.00 0.22 0.03 0.75 0.31 -0.01 1.97 -0.67 -0.30 -2.02 -0.00 2.18 -0.84 -0.34 -2.31
-0.00 0.27 -0.01 0.74 -0.86 -0.01 2.11 -0.78 -0.32 -1.49 -0.00 2.18 -0.83 -0.35 -1.51
-0.00 0.30 -0.03 0.74 -0.71 -0.01 2.39 -1.03 -0.36 -1.00 -0.00 2.17 -0.84 -0.32 -0.97

2011

1.49 -0.90 0.61 -0.20 1.01 0.00 1.07 0.28 -0.35 -0.11 -0.02 0.37 0.66 0.00 0.36
1.02 -0.91 1.10 -0.20 1.42 0.00 1.09 0.26 -0.35 -0.35 -0.02 0.37 0.64 0.01 0.12
1.18 -0.92 0.96 -0.22 -1.19 0.00 1.06 0.28 -0.35 0.45 -0.03 0.39 0.62 0.02 0.09
1.05 -0.92 1.07 -0.21 -1.56 0.00 1.08 0.27 -0.35 0.54 -0.03 0.39 0.62 0.02 0.05
1.31 -0.92 0.83 -0.21 -2.11 0.00 1.04 0.31 -0.34 1.24 -0.03 0.40 0.61 0.02 0.73
1.52 -0.89 0.56 -0.19 -0.78 0.00 1.01 0.33 -0.35 0.78 -0.03 0.43 0.56 0.04 0.70

2012

-33.41 5.01 8.21 21.20 53.27 0.04 0.75 0.17 0.04 1.64 0.19 0.12 0.30 0.39 0.96
31.14 -4.95 -6.39 -18.80 -37.15 0.05 0.76 0.17 0.02 1.23 0.19 0.12 0.30 0.39 0.77
22.59 -3.62 -4.46 -13.50 -6.39 0.05 0.76 0.17 0.03 0.30 0.17 0.12 0.33 0.39 0.16
13.19 -2.17 -2.36 -7.67 13.97 0.05 0.77 0.17 0.01 -1.08 0.18 0.12 0.31 0.39 -0.93
11.36 -1.88 -1.95 -6.53 9.04 0.07 0.79 0.17 -0.03 -0.80 0.23 0.12 0.26 0.38 -0.72
14.33 -2.34 -2.61 -8.37 -4.71 0.07 0.79 0.17 -0.04 0.33 0.27 0.12 0.23 0.38 0.26

2013

1.06 -0.71 2.04 -1.40 0.44 0.05 1.18 -0.87 0.64 -0.30 0.09 0.19 0.36 0.36 -0.04
1.40 -1.02 2.53 -1.91 -0.90 0.05 1.17 -0.85 0.63 0.43 0.09 0.19 0.36 0.36 0.03
1.12 -0.76 2.12 -1.48 0.89 0.05 1.14 -0.77 0.58 -0.64 0.09 0.18 0.37 0.35 -0.17
0.43 -0.12 1.10 -0.41 -0.26 0.05 1.12 -0.72 0.55 0.92 0.10 0.18 0.37 0.35 0.32
1.09 -0.73 2.08 -1.43 -5.69 0.05 1.07 -0.60 0.48 2.90 0.10 0.17 0.40 0.33 0.15
-0.42 0.65 -0.08 0.85 1.06 0.04 1.05 -0.53 0.44 0.94 0.10 0.17 0.40 0.33 0.46

2014

0.01 0.24 0.63 0.13 -1.20 -0.04 2.39 1.34 -2.68 -4.24 0.08 -0.76 1.23 0.45 -3.96
0.01 0.25 0.63 0.12 0.02 -0.05 2.39 1.34 -2.68 0.29 0.09 -0.36 0.89 0.38 0.14
0.01 0.25 0.63 0.12 0.35 -0.05 2.39 1.34 -2.68 0.43 0.09 -0.28 0.82 0.37 0.34
0.01 0.25 0.63 0.12 0.75 -0.05 2.39 1.34 -2.68 1.40 0.09 -0.37 0.90 0.38 0.97
0.01 0.26 0.62 0.11 1.29 -0.06 2.40 1.34 -2.69 1.29 0.11 0.00 0.59 0.29 1.15
0.01 0.25 0.62 0.12 -0.01 -0.05 2.39 1.34 -2.68 0.33 0.10 -0.19 0.75 0.34 0.08

2015

0.37 0.36 1.09 -0.82 -1.66 -0.35 0.80 0.34 0.21 -0.13 0.40 0.20 0.29 0.12 -0.06
0.50 0.54 1.42 -1.46 2.83 -1.35 4.17 -1.20 -0.62 4.29 0.37 0.20 0.24 0.20 -0.21
0.51 0.55 1.43 -1.48 -0.58 -1.32 4.08 -1.16 -0.60 -0.60 0.36 0.20 0.22 0.22 -0.05
0.42 0.43 1.21 -1.05 2.27 -0.56 1.51 0.01 0.04 3.29 0.39 0.19 0.27 0.15 1.19
2.79 3.58 7.06 -12.44 -3.46 0.33 -1.46 1.36 0.77 -0.37 0.31 0.23 0.15 0.31 -0.09
-1.06 -1.50 -2.36 5.92 2.20 0.17 -0.91 1.11 0.64 -0.17 0.28 0.27 0.10 0.35 -0.04

2016

1.26 -0.15 -0.86 0.75 -1.11 -0.01 1.45 -1.28 0.84 -0.05 0.00 0.09 -0.11 1.02 -0.86
1.37 -0.29 -0.40 0.32 0.19 -0.01 1.12 -0.89 0.78 0.50 0.00 0.11 -0.10 0.99 0.37
1.37 -0.30 -0.35 0.28 1.24 -0.01 1.09 -0.85 0.78 -1.09 0.00 0.11 -0.10 0.99 -0.01
1.36 -0.28 -0.43 0.34 0.80 -0.01 1.03 -0.78 0.76 0.84 0.00 0.13 -0.10 0.97 1.02
1.37 -0.29 -0.40 0.32 -0.18 -0.01 0.94 -0.67 0.74 -2.72 0.00 0.17 -0.09 0.92 -1.29
1.37 -0.33 -0.19 0.15 -0.06 -0.01 0.85 -0.56 0.72 2.38 0.00 0.17 -0.09 0.92 0.18

2017

-0.00 -1.51 2.14 0.37 -0.92 0.60 -1.03 -2.37 3.80 -0.65 0.08 0.25 0.46 0.21 0.04
-0.00 -1.43 2.06 0.37 0.23 0.59 -1.00 -2.32 3.73 0.01 0.10 0.21 0.51 0.18 0.23
-0.00 -1.09 1.72 0.37 1.21 0.34 -0.24 -1.03 1.93 -0.14 0.14 0.10 0.65 0.11 0.53
-0.00 -0.71 1.35 0.37 1.56 0.25 0.10 -0.40 1.06 0.52 0.21 -0.08 0.87 0.00 0.85
-0.00 -0.60 1.23 0.37 1.18 0.24 0.16 -0.27 0.87 -0.08 0.26 -0.20 1.01 -0.07 1.18
-0.00 -0.30 0.93 0.37 0.28 0.24 0.25 -0.02 0.54 0.07 0.60 -1.08 2.03 -0.55 0.45

ColMean 1.58 -0.18 0.47 -0.88 0.36 -0.02 0.95 0.03 0.04 0.27 0.08 0.53 0.15 0.25 0.07
Colstd 7.15 1.42 2.03 4.75 8.88 0.30 1.18 1.02 1.21 1.58 0.19 1.67 0.81 1.22 1.51

This table demonstrates the out-sample results under various risk-aversion levels of the last six months from 2008- 2017. c0 represents the weight of the
risk-free asset while c1 c2 and c3 show the weights of three sub-portfolios individually. "Return" represents the monthly return. "ColMean" and "ColStd"
show the column means and standard deviations, respectively. No restrictions on leverage or short-selling.
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3.5.8 Restrictive Sub-portfolios Weights

The volatile weights of sub-portfolios bring massive volatility to our dynamic investment
strategy. In this subsection, we restrict the weights of risk-free asset and sub-portfolios to be
within [0,1] by a Cumulative Distribution Function of N (0,σ2). This does not mean the
restriction of leverage and short selling since the first step identifies optimal characteristics-
based portfolios subject to orthogonal and unit variance constraints only without restrict each
asset’s weight. However, both steps restrict the magnitude of leverage and short-selling now.

For the weight of the jth sub-portfolio qqq j, we have:

π j(θθθ
⊺zzzt) = ΦΦΦ(BBBH L(((θθθ

⊺zzzt)))), j = 1, · · · ,J,

where Φ(·) is the c.d.f of a normal distribution. The empirical results below set σ2 = 20.
The Sharpe-ratios increase enormously.

After controlling the leverage and short selling at the factor timing step, both returns and
volatility drop dramatically, with a massive improvement of the annualized Sharpe-ratio. The
attitudes to risks of investors also matter, which is reflected in Figure 3.7. When the investor
is less risk averse, nearly all his input are arranged to factor-mimicking portfolios, namely
risky assets. However, when the risk aversion level increases to ξ = 10, the risk free asset
takes up to 40% of the total investment.

To show the necessity of the first step, factor mimicking, we compare the performance of our
portfolios in Table 3.7 to the performance of portfolios using Fama French 3 (FF3) factors as
factor-tilt sub-portfolios. In Table 3.8, we summarise the results using the same factor timing
step as in Table 3.7, but in the first step, we use the FF3 factors as three sub-portfolios that
are available to be invested by investors.

The FF3 portfolios enjoy slightly higher average annualized Sharpe-ratios, which are mainly
due to the low volatility at all three risk aversion levels. However, the monthly return of FF3
portfolio is much lower, which can be also illustrated by Figure 3.8, because the risk free
asset takes a considerable amount for all levels of risk aversion.
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Table 3.7 Average Annual In-sample Results

ξ = 2 ξ = 5 ξ = 10
n Return SD Sharpe-ratio Return SD Sharpe-ratio Return SD Sharpe-ratio

468.00 0.40 0.53 2.66 0.39 0.50 2.69 0.24 0.31 2.70
894.00 -0.32 0.63 -1.73 -0.28 0.59 -1.67 -0.17 0.37 -1.63

1108.00 -0.42 0.72 -2.04 -0.40 0.68 -2.04 -0.25 0.43 -2.06
1199.00 0.28 0.54 1.81 0.25 0.52 1.67 0.21 0.36 2.01
1333.00 0.52 0.50 3.60 0.52 0.47 3.85 0.34 0.33 3.58
1409.00 -0.42 0.62 -2.35 -0.40 0.62 -2.26 -0.26 0.38 -2.36
1466.00 0.24 0.52 1.63 0.23 0.52 1.53 0.15 0.32 1.56
1560.00 0.22 0.58 1.32 0.22 0.54 1.41 0.17 0.40 1.47
1494.00 0.31 0.74 1.46 0.30 0.73 1.44 0.23 0.46 1.71
1292.00 -0.41 0.65 -2.18 -0.39 0.65 -2.06 -0.30 0.39 -2.63
1393.00 0.33 0.70 1.66 0.32 0.66 1.69 0.21 0.43 1.65
1340.00 -0.16 0.53 -1.04 -0.16 0.53 -1.07 -0.10 0.33 -1.05
1285.00 -0.10 0.75 -0.44 -0.08 0.74 -0.37 -0.04 0.47 -0.33
1181.00 0.38 0.54 2.47 0.38 0.51 2.60 0.25 0.33 2.66
1110.00 -0.69 0.31 -7.72 -0.68 0.29 -8.22 -0.43 0.18 -8.29
1044.00 -0.51 0.56 -3.17 -0.49 0.53 -3.21 -0.35 0.40 -3.04
1125.00 0.43 0.64 2.34 0.40 0.60 2.30 0.30 0.43 2.36
2192.00 0.10 0.31 1.11 0.15 0.29 1.77 -0.04 0.19 -0.80
2236.00 0.45 0.62 2.49 0.41 0.60 2.36 0.31 0.41 2.59
2273.00 -0.27 0.73 -1.28 -0.26 0.70 -1.28 -0.21 0.45 -1.58
2235.00 0.23 0.51 1.56 0.19 0.51 1.30 0.20 0.31 2.22
2270.00 0.45 0.62 2.49 0.43 0.59 2.50 0.27 0.38 2.49
2405.00 -0.37 0.69 -1.84 -0.37 0.64 -2.00 -0.22 0.41 -1.88
2376.00 0.04 0.73 0.17 0.04 0.70 0.19 0.05 0.49 0.35
2323.00 0.23 0.76 1.06 0.21 0.76 0.95 0.16 0.46 1.24
2344.00 0.57 0.42 4.70 0.57 0.42 4.67 0.41 0.30 4.71
2434.00 0.04 0.73 0.17 0.01 0.73 0.03 0.07 0.45 0.57
2548.00 0.63 0.65 3.37 0.60 0.60 3.48 0.40 0.38 3.59
2741.00 0.63 0.38 5.73 0.60 0.36 5.74 0.39 0.23 5.74
2928.00 0.03 0.69 0.14 -0.03 0.63 -0.15 -0.00 0.42 -0.01
2894.00 0.29 0.72 1.40 0.27 0.69 1.38 0.17 0.45 1.35
2905.00 0.26 0.57 1.60 0.26 0.54 1.67 0.17 0.34 1.69
2804.00 0.38 0.52 2.50 0.38 0.50 2.63 0.24 0.31 2.64
2570.00 0.38 0.66 1.98 0.36 0.65 1.93 0.23 0.41 1.97
2516.00 0.45 0.62 2.53 0.44 0.59 2.62 0.35 0.42 2.93
2491.00 0.54 0.45 4.15 0.51 0.45 3.94 0.40 0.29 4.91
2402.00 -0.61 0.40 -5.24 -0.59 0.40 -5.13 -0.43 0.27 -5.46
2326.00 0.49 0.58 2.94 0.48 0.56 2.93 0.33 0.38 2.94
2241.00 0.72 0.27 9.29 0.69 0.27 8.74 0.43 0.17 8.68
2178.00 0.72 0.52 4.74 0.68 0.51 4.67 0.43 0.32 4.67
2113.00 0.56 0.44 4.45 0.52 0.44 4.02 0.38 0.26 5.17
2023.00 0.25 0.55 1.61 0.22 0.55 1.36 0.23 0.33 2.40
2007.00 0.19 0.70 0.93 0.18 0.68 0.92 0.18 0.47 1.36
1924.00 0.59 0.47 4.35 0.58 0.49 4.11 0.39 0.25 5.26
1990.00 -0.60 0.47 -4.44 -0.59 0.45 -4.61 -0.43 0.31 -4.79
1937.00 0.63 0.38 5.74 0.61 0.36 5.83 0.42 0.25 5.85
1909.00 -0.34 0.69 -1.68 -0.31 0.68 -1.56 -0.26 0.47 -1.92
1872.00 -0.33 0.70 -1.61 -0.33 0.68 -1.69 -0.24 0.47 -1.79
1841.00 -0.34 0.56 -2.09 -0.37 0.55 -2.32 -0.25 0.37 -2.31
1826.00 0.21 0.74 0.98 0.19 0.71 0.93 0.14 0.47 1.01
Average 0.15 0.69 0.73 0.14 0.67 0.71 0.10 0.44 0.75

This table illustrates the in-sample results under various risk-aversion levels annually from July 1967- June 2017. n
represents the number of stocks included in the portfolio. Both returns and standard deviations are calculated based on
each year’s results. Sharpe-ratio is annualized. No leverage or short-selling for the factor timing step.
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Figure 3.7 The Plot of Sub-portfolio Weights
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Table 3.8 Average Annual In-sample Results

ξ = 2 ξ = 5 ξ = 10
n Return SD Sharpe-ratio Return SD Sharpe-ratio Return SD Sharpe-ratio

468.00 0.01 0.02 1.79 0.01 0.02 1.93 0.01 0.01 2.08
894.00 0.00 0.02 0.27 0.00 0.02 0.39 0.00 0.01 0.62

1108.00 -0.01 0.02 -1.78 -0.01 0.02 -1.77 -0.01 0.01 -1.44
1199.00 0.01 0.02 1.85 0.01 0.02 1.91 0.01 0.01 2.01
1333.00 -0.00 0.02 -0.14 0.00 0.02 0.09 0.00 0.01 0.13
1409.00 -0.00 0.01 -0.84 -0.00 0.01 -1.21 -0.00 0.01 -0.69
1466.00 -0.00 0.03 -0.04 0.00 0.02 0.22 0.00 0.02 0.44
1560.00 0.01 0.03 0.79 0.01 0.03 0.96 0.01 0.03 1.07
1494.00 0.01 0.03 1.20 0.01 0.03 1.18 0.01 0.02 1.34
1292.00 0.01 0.01 2.51 0.01 0.01 2.69 0.01 0.01 2.83
1393.00 0.01 0.01 1.99 0.01 0.01 2.65 0.01 0.01 2.61
1340.00 0.01 0.02 0.96 0.01 0.02 1.07 0.01 0.02 1.34
1285.00 0.01 0.02 1.12 0.00 0.02 0.54 0.00 0.02 0.90
1181.00 0.01 0.01 2.15 0.01 0.01 3.35 0.01 0.01 4.11
1110.00 -0.00 0.01 -0.27 0.00 0.01 0.37 0.00 0.01 1.50
1044.00 0.02 0.01 4.87 0.02 0.01 5.54 0.01 0.01 5.48
1125.00 0.00 0.01 0.90 0.00 0.01 0.77 0.00 0.01 1.49
2192.00 0.01 0.01 2.82 0.01 0.01 2.74 0.01 0.01 3.45
2236.00 0.01 0.01 2.20 0.01 0.01 2.59 0.01 0.01 2.79
2273.00 0.00 0.01 0.77 0.00 0.01 0.60 0.00 0.01 1.04
2235.00 0.00 0.02 0.31 0.00 0.02 0.30 0.00 0.02 0.44
2270.00 0.00 0.01 3.00 0.00 0.00 2.87 0.00 0.00 4.04
2405.00 -0.00 0.01 -1.31 -0.00 0.01 -0.92 -0.00 0.01 -0.48
2376.00 -0.00 0.02 -0.11 0.00 0.02 0.05 0.00 0.01 0.20
2323.00 0.01 0.02 1.47 0.01 0.01 1.53 0.01 0.01 1.63
2344.00 0.01 0.01 3.11 0.01 0.01 2.84 0.01 0.01 2.98
2434.00 0.00 0.01 0.95 0.00 0.01 0.99 0.00 0.01 1.15
2548.00 0.00 0.01 1.19 0.00 0.01 1.53 0.00 0.01 1.64
2741.00 0.00 0.01 1.81 0.01 0.01 2.01 0.00 0.01 2.42
2928.00 0.01 0.01 2.38 0.01 0.01 2.07 0.01 0.01 2.64
2894.00 0.01 0.01 1.73 0.01 0.01 2.01 0.01 0.01 2.30
2905.00 -0.00 0.02 -0.56 -0.00 0.02 -0.34 -0.00 0.02 -0.16
2804.00 0.00 0.03 0.14 0.00 0.01 0.12 0.00 0.01 0.43
2570.00 0.01 0.01 4.64 0.01 0.01 4.62 0.01 0.01 4.91
2516.00 0.00 0.02 0.68 0.00 0.02 0.85 0.00 0.01 0.92
2491.00 -0.00 0.02 -0.09 -0.00 0.02 -0.00 -0.00 0.02 -0.04
2402.00 0.01 0.01 2.56 0.01 0.01 2.60 0.01 0.01 2.58
2326.00 0.01 0.01 1.51 0.00 0.01 1.32 0.00 0.01 1.56
2241.00 0.01 0.01 1.54 0.00 0.01 1.67 0.00 0.01 1.89
2178.00 0.00 0.01 1.90 0.00 0.01 2.42 0.00 0.00 2.99
2113.00 -0.01 0.01 -2.35 -0.01 0.01 -2.03 -0.01 0.01 -1.94
2023.00 -0.00 0.04 -0.35 -0.01 0.04 -0.45 -0.01 0.04 -0.47
2007.00 0.01 0.03 1.07 0.01 0.03 1.11 0.01 0.02 1.09
1924.00 0.01 0.02 1.18 0.01 0.02 1.28 0.00 0.01 1.18
1990.00 -0.00 0.02 -0.18 -0.00 0.02 -0.18 -0.00 0.02 -0.20
1937.00 0.01 0.01 3.28 0.01 0.01 3.00 0.01 0.01 3.16
1909.00 0.01 0.01 1.59 0.01 0.01 1.51 0.00 0.01 1.53
1872.00 -0.00 0.01 -0.41 -0.00 0.01 -0.21 -0.00 0.01 -0.34
1841.00 -0.00 0.02 -0.36 -0.00 0.01 -0.47 -0.00 0.01 -0.42
1826.00 0.01 0.02 1.22 0.01 0.02 1.25 0.01 0.01 1.25
Average 0.00 0.02 0.73 0.00 0.02 0.81 0.00 0.01 0.97

This table illustrates the in-sample results under various risk-aversion levels annually from July 1967- June 2017. n
represents the number of stocks included in the portfolio. Both returns and standard deviations are calculated based on
each year’s results. Sharpe-ratio is annualized. No leverage or short-selling for the factor timing step.
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Figure 3.8 The Plot of of FF 3 factors Weights
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3.6 Conclusion

This paper develops and tests a two-step portfolio selection procedure that relies on a large
universe of investable assets and a set of dynamic predictors of factor-related returns. The
first step in the procedure creates a collection of well-diversified mimicking portfolios to
approximate the returns of pervasive risk factors. The second step uses a set of predictors
including default spread, term spread, price trend, and dividend yield. These predictors are
combined into a single-index function, which in turn determines a dynamic allocation of
portfolio weights across the factor-mimicking portfolios in order to maximize investor’s
expected utility. Due to the nonstationarity of some predictive variables, we apply orthogonal
series to approximate the single-index function in estimation. We apply the technique to
fifty years of monthly U.S. data and find outstanding performance both in-sample and out-of-
sample. We show empirically that the factor-mimicking portfolios have high correlation with
the targeted factors and low correlation with others. Our dynamic portfolios perform well,
both for high risk-aversion and low risk aversion investors, providing high average returns
and also high return volatility for the less risk-averse and correspondingly lower average
returns and lower volatility for the more risk-averse investor.
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Appendix A

Proofs of Theorems

A.1 Proofs

A.1.1 Proofs of Chapter 1

Let βββ PZ
= (βββ⊺

P1
,βββ⊺

P2
), ZZZ === (((ZZZ1,,,ZZZ2))), βi is the ith element of βββ . βββ j is the jth group of βββ PZ

,
and XXX j is the covariates matrix of ZZZ in the second group.

In the first step, after applying KKT conditions, we obtain Lemma A.1.1 below.

Lemma A.1.1.
d||YYY −−−θθθ −−−ZZZβββ ||2

dβi
= λnsign(β̂i) for β̂i ̸= 0,

d||YYY −−−θθθ −−−ZZZβββ ||2

dβi
⩽ λnsign(β̂i) for β̂i = 0.

Lemma A.1.2. Under Strong Irrepresentable Condition holds and a constant η > 0, then:

P(β̂ββ PZ
=s βββ PZ

)⩾ P(EA ∩EB),

where:

EA = { 1√
n
|(VVV Z1Z1)

−1ZZZ⊺
1UUU |<

√
n(|βββ P1

|− λn

2n
|(VVV Z1Z1)

−1sign(βββ P1
)|)}
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EB = { 1√
n
|VVV Z2Z1(VVV Z1Z1)

−1ZZZ⊺
1UUU −ZZZ⊺

2UUU |⩽ λn

2
√

n
η},

The above equations hold for each entry.

The Lemma A.1.2 is borrowed from Proposition 1. of Zhao and Yu (2006). Proofs can be
found in their Appendix.

Proof of Theorem 1.4.1 : We give some notations before the proof. Let τττ = 1√
n(VZ1Z1)

−1ZZZ⊺
1UUU ,

and υυυ = 1√
n(VZ2Z1(VZ1Z1)

−1ZZZ⊺
1UUU −ZZZ⊺

2UUU).

By Lemma A.1.2 we have:

1−P(EA∩EB)⩽P(Ec
A)+P(Ec

B)⩽
P1

∑
i=1

P(|τi|⩾
√

n(|βP1i|−
λn

2n
(VVV Z1Z1)

−1sign(βP1i))+
P2

∑
i=1

P(|υi|⩾
λn

2
√

n
ηi).

Then we have
FFFτ =

1√
n
(VVV Z1Z1)

−1ZZZ⊺
1,

therefore,
FFFτFFF⊺

τ = (VVV Z1Z1)
−1.

Given λmin(VVV Z1Z1)> c3, then we have VVV−1
Z1Z1

< c5 for each entry. Similarly, let

FFFυ =
1√
n
(VVV Z2Z1(VVV Z1Z1)

−1ZZZ⊺
1 −ZZZ⊺

2),

and
FFFυFFF⊺

υ =
1
n

ZZZ⊺
2(III −ZZZ⊺

1VVV Z1Z1)
−1ZZZ⊺

1)ZZZ2.

Since III−ZZZ⊺
1(VVV Z1Z1)

−1ZZZ⊺
1 is idempotent, which only has the eigenvalues of 1 and 0, therefore

FFFυFFF⊺
υ ⩽ c4 for each diagonal element.

Furthermore, we have:

λn

n
|(VVV Z1Z1)

−1sign(βββ P1
)|⩽ c5λn

n
∥βββ P1

∥2

Given E(ε2k
i )< ∞, then we have E(τ2k

i )< ∞ and E(υ2k
i )< ∞. Therefore, the tail probability

of τi is bounded by:

P(τi > T ) = O(T−2k),
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furthermore, under λn√
n = o(n

c2−c1
2 ),

P1

∑
i=1

P(|τi|⩾
√

n(|βP1i|−
λn

2n
(VVV Z1Z1)

−1sign(βP1i)) = P1O(n−kc2) = o(
PZnk

λ 2k
n

). (A.1)

Similarly,
P2

∑
i=1

P(|υi|⩾
λn

2
√

n
ηi) = P2O(

nk

λ 2k
n
) = o(PZ

nk

λ 2k
n
). (A.2)

Then, combining Equation A.1 and Equation A.2 gives Theorem 1.4.1. □

After grouping all the coefficients from step 1, we use βββ j to represent the jth group of βββ PZ
.

we apply the KKT condtions again to obtain the Lemma A.1.3

Lemma A.1.3.
d||YYY −−−θθθ −−−ZZZβββ ||2

dβββ j
= ω̂ jλ̃n

β̂ββ j

∥β̂ββ j∥2
for ∥β̂ββ j∥2 ̸= 0,

d||YYY −−−θθθ −−−ZZZβββ ||2

dβββ j
⩽ ω̂ jλ̃n for ∥β̂ββ j∥2 = 0,

Similar to Lemma 5 and Lemma 6 of Huang et al. (2010a), we give the following Lemmas:

Lemma A.1.4. Under Assumptions 1.4.1-1.4.4 and Condition 1.4.1-1.4.2:

P(∥β̂ββ j −βββ j∥2 ⩾ ∥βββ j∥2, ∃XXX j ∈ L ∪R ∪S )→ 0.

Lemma A.1.5. Under Assumptions 1.4.1-1.4.4 and Condition 1.4.1-1.4.2:

P(∥XXX⊺
j (((YYY −−−ZZZ1βββ 1)))∥2 > λ̃nω̂ j/2, ∃XXX j /∈ L ∪R ∪S )→ 0

Proofs of Lemma A.1.4 and Lemma A.1.5 can be found in the Appendix of Huang et al.
(2010a).

Proof of Theorem 1.4.2 : Theorem 1.4.2 satisfies the Condition 1 of Huang et al. (2010a).

Under Theorem 3.4.1, and Lemma A.1.3, we set ζζζ = (
ω̂ jβ̂ββ j

2∥β̂ββ j∥
), for XXX j ∈ L ∪R ∪S .
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Therefore, we have:
β̂ββ P1

=== (((ZZZ⊺
1ZZZ1)))

−1ZZZ⊺
1(YYY − λ̃nζζζ ).

To proof Theorem 1.4.2, equivalently, we need to proof:

β̂ββ P1
===0 βββ P1

∥ZZZ⊺
j (YYY −ZZZ1βββ P1

)∥2 ⩽ λ̃nω̂ j/2 ∀ j /∈ L ∪R ∪S
.

This is equivalently to show:

∥βββ j∥2 −∥β̂ββ j∥2 < ∥βββ j∥2 ∀ j ∈ L ∪R ∪S

∥ZZZ⊺
j (YYY −ZZZ1βββ P1

)∥2 ⩽ λ̃nω̂ j/2 ∀ j /∈ L ∪R ∪S
.

Therefore,

P(β̂ββ PZ
̸=0 βββ PZ

)⩽ P(βββ j∥2 −∥β̂ββ j∥2 ⩾ ∥βββ j∥2 ∃ j ∈ L ∪R ∪S )

+P(∥ZZZ⊺
j (YYY −ZZZ1βββ P1

)∥2 > λ̃nω̂ j/2 ∃ j /∈ L ∪R ∪S )
.

Theorem 1.4.1 shows
ω̂ j → ∞, ∀ j /∈ L ∪R ∪S ,

where ω j is the specific penalty parameter of the jth coefficient group.

Then,
P(∥ZZZ⊺

j (YYY −ZZZ1βββ P1
)∥2 > λ̃nω̂ j/2, ∃ j /∈ L ∪R ∪S )→ 0

Therefore, under Lemma A.1.4 and Lemma A.1.5, the Theorem 1.4.2 follows. □

A.1.2 Proofs of Chapter 2

Throughout the proofs, we have the number of observations n → ∞, and time T is fixed.

Proof of Theorem 2.6.1 : In equation 5, we have

YYY = (ΦΦΦ(XXX)AAA+ΓΓΓ+RRRµ(((XXX))))111⊺T +(ΦΦΦ(XXX)BBB+ΛΛΛ+RRRθ (((XXX))))FFF⊺+UUU ,
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Multiply time-demeaned matrix DDDT on both sides, where DDDT = IIIT − 1
T 111⊺T 111T . Given time-

invariant mispricing components, we obtain:

YYY DDDT = (ΦΦΦ(XXX)BBB+ΛΛΛ+RRRθ (((XXX))))FFF⊺DDDT +UUUDDDT .

On-wards, we define YYY DDDT = ỸYY and FFF⊺ = FFF⊺DDDT . Time-demeaned factors do not change their
properties.

Next, multiple both sides by PPP = ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1ΦΦΦ(XXX)⊺,

ŶYY === (((ΦΦΦ(((XXX)))BBB+++PPPΛΛΛ+++PPPRRRθ (((XXX))))))FFF⊺+++PPPUUUDDDT .

We decompose:

PPPỸYY = ŶYY === ΦΦΦ(((XXX)))BBBFFF⊺+++PPPΛΛΛFFF⊺+++PPPUUUDDDT +PPPRRRθ (((XXX)))FFF⊺ = eee1 + eee2 + eee3 + eee4,

as n → ∞ and nv → ∞, approximation error RRRθ (((XXX)))→P 000 as in Huang et al. (2010b). Thus,
eee⊺4 →P 000.

Under Assumption 2.2.1, we have following results:

for 1
n ∑

3
j=1 eee⊺2eee j,

1
n

PPPΛΛΛ →P 000,

therefore,
1
n

3

∑
j=1

eee⊺2eee j +
1
n

3

∑
j=1

eee⊺j eee2 →P 000.

For 1
n ∑

3
j=1 eee⊺3eee j,

1
n

PPPUUU →P 000,

therefore,
1
n

3

∑
j=1

eee⊺2eee j +
1
n

3

∑
j=1

eee⊺j eee2 →P 000.

And only 1
neee⊺1eee1 left, namely,
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1
n

eee⊺1eee1 = FFF
B⊺Φ⊺(XXX)Φ(XXX)B

n
FFF⊺.

Under Assumption 2.6.1-2.6.3 and fixed T . A much smaller T × T matrix 1
nŶYY

⊺
ŶYY can

be sovled by asymptotic principal component by Connor and Korajczyk (1986). F̂FF =
1√
T
{ψ1,ψ2, . . . ,ψJ}, where{ψ1,ψ2, . . . ,ψJ} are eigenvectors corresponding to the first J

eigenvalues of 1
nŶYY

⊺
ŶYY .

Thus, F̂FF →P FFF follows. □

Proof of Theorem 2.6.2 : Given F̂FF , we have:

ĜGG(((XXX))) = ŶYY F̂FF(F̂FF
⊺
F̂FF)−1,

as F̂FF
⊺
F̂FF === IIIJ , therefore,

ĜGG(((XXX))) = ỸYY F̂FF .

Then we need to show:
E((((ĜGG(((XXX iii)))−−−GGG(((XXX iii))))))

2) = 0.

Take the sample analogue,

1
n
(ĜGG(((XXX)))−−−GGG(((XXX))))⊺(ĜGG(((XXX)))−−−GGG(((XXX)))).

Given:
GGG(((XXX))) = ΦΦΦ(XXX)BBB+RRRθ (XXX).

ĜGG(((XXX))) === (((ΦΦΦ(((XXX)))BBB+++PPPΛΛΛ+++PPPRRRθθθ (((XXX))))))FFF⊺F̂FF +++PPPUUUDDDT F̂FF

Furthermore,

GGG(((XXX)))−−−ĜGG(((XXX)))= (((ΦΦΦ(((XXX)))BBB+++PPPΛΛΛ+++PPPRRRθ (((XXX))))))FFF⊺F̂FF+++PPPUUUDDDT F̂FF−ΦΦΦ(((XXX)))BBB−−−RRRθ (((XXX)))= qqq1+++qqq2+++qqq3+++qqq4.

Similar to the Proof of Theorem 2.6.1,

1
n
(ĜGG(((XXX)))−−−GGG(((XXX))))⊺(ĜGG(((XXX)))−−−GGG(((XXX))))→P 1

n
qqq⊺1qqq1 +++

1
n

qqq⊺3qqq3 +++
1
n

qqq⊺1qqq3 +++
1
n

qqq⊺3qqq1.

For the first term,

1
n

qqq⊺1qqq1 = F̂FF
⊺
FFF(((ΦΦΦ(((XXX)))BBB+++PPPΛΛΛ+++PPPRRRθ (((XXX))))))⊺(((ΦΦΦ(((XXX)))BBB+++PPPΛΛΛ+++PPPRRRθ (((XXX))))))FFF⊺F̂FF ,
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due to
1
n

3

∑
j=1

eee⊺2eee j +
1
n

3

∑
j=1

eee⊺j eee2 →P 000,

and
1
n

eeeT
1 eee1 →P FFF

BBB⊺
ΦΦΦ

⊺(XXX)ΦΦΦ(XXX)BBB
n

FFF⊺

then,
1
n

qqqT
1 qqq1 →P F̂FF

⊺
FFF

BBB⊺
ΦΦΦ

⊺(XXX)ΦΦΦ(XXX)BBB
n

FFF⊺F̂FF .

Theorem 2.6.1 and Assumption 2.6.1 give F̂FF → FFF and FFFT FFF === IIIJ , therefore:

1
n

qqqT
1 qqq1 →P BBB⊺

ΦΦΦ
⊺(XXX)ΦΦΦ(XXX)BBB

n
,

Similarly,
1
n

qqqT
3 qqq3 →P BBB⊺

ΦΦΦ
⊺(XXX)ΦΦΦ(XXX)BBB

n
,

1
n

qqqT
1 qqq3 →P −BBB⊺

ΦΦΦ
⊺(XXX)ΦΦΦ(XXX)BBB

n
,

1
n

qqqT
3 qqq1 →P −BBB⊺

ΦΦΦ
⊺(XXX)ΦΦΦ(XXX)BBB

n
.

Therefore,

1
n

qqq⊺1qqq1 +++
1
n

qqq⊺3qqq3 +++
1
n

qqq⊺1qqq3 +++
1
n

qqq⊺3qqq1 → 0.

Then,
1
n
(ĜGG(((XXX)))−−−GGG(((XXX))))⊺(ĜGG(((XXX)))−−−GGG(((XXX))))→P 0,

thus,
ĜGG(((XXX)))→→→P GGG(((XXX))).

Then Theorem 2.6.2 follows.

□

Proof of Theorem 2.6.3 : Let ẎYY = 1
T (((YYY −−− ĜGG(((XXX)))F̂FF)))111T . By substituting the restriction, we

have the Lagrangian equation:

min
A

(((ẎYY −−−ΦΦΦ(((XXX)))AAA)))⊺(((ẎYY −−−ΦΦΦ(((XXX)))AAA)))+++λλλ ĜGG
⊺
(((XXX)))ΦΦΦ(((XXX)))AAA (A.3)
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Then we take the first order condition with respect to AAA and λλλ separately, and we obtain:(
222ΦΦΦ(((XXX)))⊺ΦΦΦ(((XXX))) ΦΦΦ(((XXX)))⊺ĜGG(((XXX)))

ĜGG(((XXX)))⊺ΦΦΦ(((XXX)))⊺ 000

)(
ÂAA
λλλ

)
=

(
2ΦΦΦ(((XXX)))⊺ẎYY

000

)
. (A.4)

Under Assumption 2.6.1, the above matrices are invertible, which can be written as:(
ÂAA
λλλ

)
=

(
2ΦΦΦ(((XXX)))⊺ΦΦΦ(((XXX))) ΦΦΦ(((XXX)))⊺ĜGG(((XXX)))

ĜGG(((XXX)))⊺ΦΦΦ(((XXX)))⊺ 000

)−1(
2ΦΦΦ(((XXX)))⊺ẎYY

000

)
. (A.5)

Therefore, we obtain:
ÂAA = QQQÃAA,

where

QQQ = III − (ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1
ΦΦΦ(((XXX)))⊺ĜGG(((XXX)))(ĜGG(((XXX)))⊺ĜGG(((XXX))))−1ĜGG(((XXX)))⊺ΦΦΦ(((XXX))),

ÃAA =
1
T
(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1

ΦΦΦ(XXX)⊺ẎYY 111T .

Furthermore, let Ξ = ΦΦΦ(((XXX)))ÂAA−hhh(((XXX))) = ΦΦΦ(((XXX)))QQQÃAA−−−ΦΦΦ(((XXX)))AAA−−−RRRµ(((XXX))).

Under the restriction ĜGG(((XXX)))⊺ΦΦΦ(((XXX)))AAA = 000, we can obtain:

ΞΞΞ=ΦΦΦ(((XXX)))MMM(((ΦΦΦ(((XXX)))
⊺
ΦΦΦ(((XXX))))))

−1
ΦΦΦ(((XXX)))

⊺ 1
T
(((ΦΦΦ(((XXX)))AAA+++RRRµ(((XXX)))+++ΓΓΓ+++(((ΛΛΛ+++RRRθ (((XXX))))))FFF ′′′)))111T −−−ΦΦΦ(((XXX)))AAA−−−RRRµ(((XXX))).

(A.6)
Furthermore, we have:

ΦΦΦ(((XXX)))MMM(((ΦΦΦ(((XXX)))
⊺
ΦΦΦ(((XXX))))))

−1
ΦΦΦ(((XXX)))

⊺
=(III−ΦΦΦ(XXX)(ΦΦΦ(XXX)⊺ΦΦΦ(XXX))−1

ΦΦΦ(((XXX)))
⊺ĜGG(((XXX)))(ĜGG(((XXX)))

⊺ĜGG(((XXX))))−1ĜGG(((XXX)))
⊺
)PPP.

(A.7)
And then, substitute Equation A.7 into Equation A.6 and under Assumption 2.2.1 and Theorem 2.6.2:

ΞΞΞ = ΦΦΦ(((XXX)))AAA−−−ΦΦΦ(((XXX)))AAA−−−RRRµ(((XXX))).

RRRµ(((XXX)))→ 000 as n → ∞,

therefore,
1
n

ΞΞΞ
⊺
ΞΞΞ → 000.

And the Theorem 2.6.3 follows. □
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Proof of Theorem 2.6.4 : Define Z = max
{1⩽p⩽P,1⩽h⩽Hn}

{|α̂ph|/σ̂ph}. Under Assumption 3,

we have
α̂ph/σ̂ph|HHH0 →d N(0,1).

Therefore, under the HHH0, we have:

etE(Z) ⩽ E[etZ]

= E[max{t|α̂ph|/σ̂ph}]

⩽
p=P,h=Hn

∑
p=1,h=1

E[et|α̂ph|/σ̂ph]

= PHnet2/2.

Then take the logarithm of both sides we can obtain:

E[Z]⩽
logPHn

t
+

t
2
.

If we set t =
√

2logPHn to minimise logPHn
t + t

2 , then we have:

E[Z]⩽
√

2logPHn.

Therefore, we can bound the |α̂ph|/σ̂ph by
√

2logPHn. □

Proof of Theorem 2.6.5 : To proof

Pr(reject H0|M̂ ̸= /0)→ 1,

equivalently, we need to prove

Pr(S0 +S1|M̂ ̸= /0)→ 1

S0 = Hn ∑
P
p=1 III(∑Hn

h=1 |α̂ph|/σ̂ph ⩾ ηn), as Hn = nv → ∞ when n → ∞.

Once M̂ ̸= /0, then ∑
P
p=1 III(∑Hn

h=1 |α̂ph|/σ̂ph ⩾ ηn)⩾ 1, therefore, S0 → ∞ as n → ∞. Mean-
while Fq = O(1), we can show that:

Pr(S0 +S1 > Fq|M̂ ̸= /0)→ 1.

Then the Theorem 2.6.5 follows. □
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A.1.3 Proofs of Chapter 3

Proof of Theorem 3.4.1 : Write the subportfolio vector QQQt(((XXX))) as:

QQQt(((XXX))) =
n

∑
i=1

BBB(((XXX i)))yit .

Because:
yit = G(XXX i)FFF t + εit .

Then, substitute yit into QQQt(((XXX))):

QQQt(((XXX))) = ∑
n
i=1 BBB(((XXX i)))(G(XXX i)FFF t + εit)

= 1
n ∑

n
i=1 ΓG(XXX i)))

⊺(G(XXX i)FFF t + εit)

= Γ(1
n ∑

n
i=1(G(XXX i)))

⊺G(XXX i))FFF t +
1
n ∑

n
i=1(G(XXX i)))

⊺
εit))

Given:

p lim
n→∞

1
n

n

∑
1=1

G(XXX i)
⊺G(XXX i) = MMMG,

where MMMG is an identity matrix, and

E(εit |XXX i,FFF t) = 0.

Therefore, we have:

p lim
n→∞

1
n

n

∑
1=1

G(XXX i)
⊺
εit = 0.

Thus,

p lim
n→∞

QQQt(((XXX))) = ΓMMMGFFF t = ΓFFF t .

This shows that the factor-mimicking portfolio is a linear combination of risk factors given Γ

is a non-zero matrix. □

Proof of Theorem 3.4.2 : Let F̃FF represent the demeaned risk factor matrix while

ỹyyt = G(((XXX)))F̃FF t + εεε t .
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Correspondingly, we have:
Q̃QQt(((XXX))) = BBB(((XXX i)))ỹyyt

= 1
nΓG(XXX)⊺ỹyyt .

And then,

E(Q̃QQt(((XXX)))Q̃QQt(((XXX)))⊺|XXX) = Γ(1
nG(XXX)⊺G(XXX))E(F̃FFF̃FF⊺

)(1
nG(XXX)⊺G(XXX))Γ⊺+

Γ(1
nG(XXX)⊺ 1

nE(εεε tεεε
⊺
t )(G(XXX))Γ⊺.

Given E(εit |XXX i,FFF t) = 0, the cross terms are E(F̃FF ε̃εε t) = 0.

Taking the second term and using the Euclidian matrix norm:

||Γ(1
nG(XXX)⊺ 1

nE(ε̃εε t ε̃εε t
⊺)G(XXX))Γ⊺||⩽

1
n ||Γ

1
n(G(XXX)⊺G(XXX))Γ⊺||× ||E(εεε tεεε

⊺
t )|| →n→∞

1
n ||ΓΓ⊺||× ||E(εεε tεεε

⊺
t )|| →n→∞ 0

The conclusion of the above formula is due to

p lim
n→∞

1
n

n

∑
1=1

G(XXX i)
⊺G(XXX i) = MMMG,

and ||E(εεε tεεε
⊺
t )|| has bounded eigenvalues for all n.

Furthermore, the well-chosen coefficient matrix Γ can give:

E(Q̃QQt(((XXX)))Q̃QQt(((XXX)))⊺|XXX) = IIIJJ

□

Proof of Theorem 3.4.3 : We decompose the investment returns of optimal asset-by-asset
portfolio and risk-free rate as:

r f t +RRRF + εεε
∗
t ,

where the RF is the optimal factor returns since the return generation function states the risk
premiums come from risk factors. The εεε∗t is the zero mean idiosyncratic returns.

Since
E(εit |XXX i,FFF t) = 0,
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it follows from the second-order stochastic dominance that the expected utility has the
following relationship:

E(u(r f t +RRRF))> E(u(r f t +RRRF + εεε
∗
t )).

Because zero mean εεε∗t only contributes variance rather than returns.

According to Theorem 3.4.1 and Equation 3.18, the restricted portfolio optimally combines
the factors’ returns. Therefore, our two-stage portfolio’s return can be written as:

r f t +RRRF + εεε
∗∗
t ,

where the only difference is the idiosyncratic returns. Our goal now is to show that:

E(u(r f t +RRRF + εεε
∗∗
t )|XXX ,zzzt)→n→∞ E(u(r f t +RRRF)|XXX ,zzzt).

Next, we take the Taylor expansion of u(r f t +RRRF + εεε∗∗t ) around r f t +RRRF :

u(r f t +RRRF +εεε
∗∗
t )= u(r f t +RRRF)+

d
d(r f t +RRRF)

u(r f t +RRRF)εεε
∗∗
t +

d2

d(r f t +RRRF)
u(r f t +RRRF)

2
εεε
∗∗2
t .

We take the expection on both sides, given E(εεε∗∗t ) = 0 and d2u(·)
dW 2 ⩾−c. Therefore, we have:

E(u(r f t +RRRF + εεε
∗∗
t ))⩾ E(u(r f t +RRRF))− cE(εεε∗∗2

t ),

where p limn→∞ E(εεε∗∗2
t ) = 0, according to Theorem 3.4.2. Therefore, we have :

p lim
n→∞

E(u(r f t +RRRF + εεε
∗∗
t )|XXX ,zzzt)−E(u(r f t +RRRF)|XXX ,zzzt) = 0,

which completes the proof. □



Appendix B

Tables and Figures

B.1 Characteristic Description

Table B.1 Characteristic Details

Name Description Reference

A2ME We define assets-market cap as total assets (AT)
over market capitalization as of December t-1. Mar-
ket capitalization is the product of shares outstand-
ing (SHROUT) and price(PRC).

Bhandari (1988)

AT Total assets (AT) Gandhi and Lusting (2015)
ATO Net sales over lagged net operating assets. Net op-

erating assets are the difference between operating
assets and operating liabilities. Operating assets are
total assets (AT) minus cash and short-term invest-
ments (CHE), minus investment and other advances
(IVAO). Operating liabilities are total assets (AT),
minus debt in current liabilities(DLC),minus long-
term debt (DLTT),minus minority interest (MIB),
minus preferred stock (PSTK), minus common eq-
uity (CEQ).

Soliman(2008)
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BEME Ratio of book value of equity to market value of
equity. Book equity is shareholder equity (SH) plus
deferred taxes and investment tax credit (TXDITC),
minus preferred stock (PS). SH is shareholder‘s
equity (SEQ). If missing, SH is the sum of common
equity (CEQ) and preferred stock (PS). If missing,
SH is the difference between total assets (AT) and
total liabilities (LT). Depending on availability, we
use the redemption (item PSTKRV), liquidating
(item PSTKL), or par value (item PSTK) for PS.
The market value of equity is as of December t-1.
The market value of equity is the product of shares
outstanding (SHROUT) and price (PRC).

Rosenberg, Reid and Lanstein
(1985) Davis, Fama, and French
(2000)

C Ration of cash and short-term investments (CHE)
to total assets (AT)

Palazzo

C2D Cash flow to price is the ratio of income and ex-
traoridinary items (IB) and depreciation and amor-
tization (dp) to total liabilities (LT).

CTO We define caoital turnover as ratio of net sales
(SALE) to lagged total assets (AT).

Haugen and Baker (1996)

Debt2P Debt to price is the radio of long-term debt (DLTT)
and debt in current liabilities (DLC) to the mar-
ket capitalization as of December t-1 . Market
capitalization is the product of shares outstanding
(SHROUT) and price (PRC).

Litzenberger and Ramaswamy
(1979)

∆ceq The percentage change in the book value of equity
(CEQ).

Richardson et al. (2005)

∆(∆Gm−Sales) The difference in the percentage change in gross
margin and the percentage change in sales (SALE).
We define gross margin as the difference in sales
(SALE) and costs of goods sold (COGS).

Abarbanell and Bushee (1997)

∆Shrout The definition of the percentage change in shares
outstanding (SHROUT).

Pontiff and Woodgate (2008)
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∆PI2A We define the change in property, plants ,and equip-
ment as changes in property,plants,and equipment
(PPEGT) and inventory (INVT) over lagged total
assets (TA).

Lyandres , Sun, and Zhang
(2008)

DTO We define turnover as ratio of daily volume (VOL)
to shares outstanding (SHROUT) minus the daily
market turnover and de-trend it by its 180 trading
day median. We scale down the volume of NAS-
DAQ securities by 38% after 1997 and by 50%
before that to address the issue of double-counting
of volume for NASDAQ securities.

Garfinkel (2009); Anderson and
Dyl (2005)

E2P We define earnings to price as the ratio of income
before extraordinary items (IB) to the market cap-
italization as December t-1 Market capitalization
is the product of share outstanding (SHROUT) and
price (PRC).

Basu (1983)

EPS We define earnings per share as the ratio of income
before extraordinary items (IB) to share outstanding
(SHROUT) as of December t-1

Basu (1997)

Investment We define investment as the percentage year-on-
year growth rate in total assets (AT).

Cooper, Gulen and Schill(2008)

IPM We define pre-tax profit margin as ratio of pre-tax
income (PI) to sales (SALE).

Lev leverage is the ratio of long-term debt (DLTT) and
debt in the current liabilities (DLC) to the sum of
long-term debt, debt in current liabilities, and stock-
holders’ equity (SEQ)

Lewenllen (2015)

LME Size is the total market capitalization of the pre-
vious month defined as price (PRC) times shares
outstanding (SHROUT)

Fama and French (1992)

Turnover Turnover is last month’s volume (VOL) over shares
outstanding (SHROUT).

Datar, Naik and Radcliffe (1998)

PCM The price-to-cost margin is the difference between
net sales (SALE) and costs of goods sold (COGS)
divided by net sales (SALE).

Gorodnichenko and Weber
(2016) and D’Acunto, Liu,
Pflucger and Wcber (2017)
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PM The profit margin is operating income after depre-
ciation (OIADP) over sales (SALE)

Soliman (2008)

Q Tobin’s Q is total assets (AT), the market value
of equity (SHROUT times PRC) minus cash and
short-term investments (CEQ) minus deferred taxes
(TXDB) scaled by total assets (AT).

ROA Return-on-assets is income before extraordinary
items (IB) to lagged total assets (AT).

Balakrishnan, Bartov and Faurel
(2010)

ROC ROC is the ratio of market value of equity (ME)
plus long-term debt (DLTT)minus total assets to
Cash and Short-Term Investments (CHE).

Chandrashekar and Rao (2009)

ROE Return-on-equity is income before extraordinary
items (IB) to lagged book-value of equity.

in Haugen and Baker (1996)

r12−2 We define momentum as cumulative return from 12
months before the return prediction to two months
before.

Fama and French (1996)

r12−7 We define intermediate momentum as cumulative
return from 12 months before the return prediction
to seven months before.

Novy-Marx (2012)

r6−2 We definer6−2 as cumulative return from 6 months
before the return prediction to two months before.

Jegadeesh and Titman (1993)

r2−1 We define short-term reversal as lagged one-month
return.

Jegadeesh(1990)

S2C Sales-to-cash is the ratio of net sales (SALE) to
Cash and Short-Term Investments (CHE).

following Ou and Penman (1989)

Sales-G Sales growth is the percentage growth rate in annual
sales (SALE).

Lakonishok, Shleifer , and
Vishmy (1994)

SGA2S SGA to sales is the ratio of selling ,general and ad-
ministrative expenses (XSGA) to net sales (SALE).
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B.2 Figures and Tables

B.2.1 Figures of Chapter 2

(a) r12−2 Curve 1972-1973 (b) r12−7 Curve 1978-1979 (c) r12−2 Curve 1980-1981

(d) r12−7 Curve 1985-1986 (e) r12−2 Curve 1982-1983 (f) r12−7 Curve 1982-1983

(g) r12−2 Curve 1985-1986 (h) r12−2 Curve 1985-1986

Figure B.1 Mispricing Characteristic Curve of standardized r12−2 and r12−7

(a) PCM Curve 1984-1985 (b) PCM Curve 2016-2017

Figure B.2 Mispricing Characteristic Curve of standardized PCM
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Figure B.3 Mispricing Characteristic Curve of standardized ROA in 1988-1989

(a) BEME Curve 1995-1996 (b) BEME Curve 1996-1997

Figure B.4 Mispricing Characteristic Curve of standardized BEME

(a) LME Curve 1998-1999 (b) LME Curve 2000-2001

Figure B.5 Mispricing Characteristic Curve of standardized LME
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(a) AT Curve 1998-1999 (b) AT Curve 2000-2001

Figure B.6 Mispricing Characteristic Curve of standardized AT

Figure B.7 Mispricing Characteristic Curve of standardized LEV in 2002-2003

Figure B.8 Mispricing Characteristic Curve of standardized IPM in 2004-2005
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Figure B.9 Mispricing Characteristic Curve of standardized DelGmSale in 2015-2016

Figure B.10 Mispricing Characteristic Curve of standardized C2D in 2016-2017

(a) Clustering of PCM with highest re-
turns

(b) Clustering of PCM with lowest re-
turns

Figure B.11 Clustering of PCM 1986-1987
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(a) Clustering of IPM with highest re-
turns (b) Clustering of IPM with lowest returns

Figure B.12 Clustering of IPM 2004-2005

B.2.2 Tables of Chapter 3
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