
TRANSLATION

The long and short of it
Longer poly(A) tails improve translation in early development, but not in

mature cells that have higher levels of the protein PABPC.
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T
he genetic code stored in DNA provides

cells with the blueprint they need to

make proteins. The relevant gene is first

transcribed into an intermediate molecule called

mRNA (short for messenger RNA), which in turn

gets translated by large cellular machines called

ribosomes into the string of amino acids that

make up a protein. At the end of each mRNA

molecule is a poly(A) tail comprised of tens to

hundreds of nucleotides called adenosines. The

length of these tails can vary greatly between

different mRNAs, and longer poly(A) tails are

thought to improve translation and increase

mRNA stability (Sachs, 1990).

Poly(A) tails stimulate the process of transla-

tion through a protein called PABPC (short for

Poly(A)-Binding Protein, Cytoplasmic), which

binds to the tail (Kühn and Wahle, 2004). This

led to the assumption that mRNA molecules

with longer tails are translated more efficiently

(meaning they produce more proteins) because

they can be bound by more copies of PABPC.

However, decades of research on the poly(A)

tail have led to inconsistent results: in some

experiments, longer poly(A) tails improve trans-

lation as hypothesized, while in others they have

no effect (Beilharz and Preiss, 2007;

Legnini et al., 2019; Lim et al., 2016;

Lima et al., 2017; Morgan et al., 2017;

Nudel et al., 1976; Subtelny et al., 2014). The

contentious role of PABPC in translation effi-

ciency has raised fundamental questions: exactly

how important are the poly(A) tail and PABPC in

translation, and what are their relative roles in

different types of cell? Now, in eLife, David P

Bartel and Kehui Xiang from the Whitehead Insti-

tute for Biomedical Research and Massachusetts

Institute of Technology report new findings that

help to answer these questions (Xiang and Bar-

tel, 2021).

To investigate the role PABPC and poly(A)

tail length play in translation efficiency, Xiang

and Bartel manipulated PABPC levels in Xeno-

pus oocytes and in post-embryonic mammalian

cells. They then measured the length of the poly

(A) tails and compared this to the number of

ribosomes occupying each mRNA molecule,

which acts as a readout for translation efficiency.

Xiang and Bartel discovered that poly(A) tail

length is only linked to translation efficiency

when certain criteria are met (Figure 1). They

found that when PABPC concentrations were

increased in oocytes, mRNAs with shorter poly

(A) tails would bind to more ribosomes and

show improved translation, whereas those with

longer tails were unaffected. Therefore, the first

criterion is that PABPC concentrations must be

limiting for the protein to preferentially bind to

mRNAs with longer poly(A) tails and enhance

their translation. Second, for this coupling to

occur, mRNA molecules not bound by PABPC

must be protected from degradation. Finally,

the higher number of PABPC proteins con-

nected to the longer tails must help ribosomes

load onto the mRNA molecule more efficiently

to increase the amount of protein each mRNA

can produce.
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In oocytes and early embryos, all three of

these conditions are met. This suggests that,

during the early stages of development, cou-

pling between poly(A) tail length and translation

efficiency plays a primary role in gene expres-

sion. However, the relative amount of PABPC

protein greatly increases as development pro-

gresses, and it eventually occupies every accessi-

ble poly(A) tail. Since every mRNA with a poly(A)

tail is bound to at least one PABPC, translation

no longer depends on the length of the tail, and

it is likely that additional factors determine trans-

lation efficiency. In this situation, PABPC takes

on a new role and instead protects mRNA mole-

cules from destruction, particularly those with

shorter poly(A) tails (Figure 1). Its role in stabilis-

ing mRNAs could be significant as many ‘house-

keeping’ genes, whose expression is required

for normal cellular function, tend to have shorter

poly(A) tails (Lima et al., 2017).

With exhaustive experiments in different cell

types and cellular conditions, Xiang and Bartel

firmly establish that the roles of PABPC and poly

(A) are highly context-dependent. These results

reconcile many years of controversy, by demon-

strating that PABPC and the poly(A) tail play dif-

ferent roles in different situations: during the

early stages of development, poly(A) tail length

and translation efficiency are coupled together

by PABPC, while later in development, this rela-

tionship is lost and PABPC instead promotes

mRNA stability.

Future studies can build upon this foundation

by studying how mRNAs with shorter poly(A)

tails are stabilised during early development, or

which additional factors regulate translation effi-

ciency in mature cells. Furthermore, it remains a

mystery how the transition between early and

late development is sensed and regulated, lead-

ing to a dramatic increase in PABPC levels.

Finally, this study raises the interesting possibil-

ity that certain cell types, organisms, or cellular

conditions exploit the dynamic relationship

between PABPC abundance and poly(A) tail

length to fine tune gene expression.
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Figure 1. The role PABPC and poly(A) tail length play in translation efficiency changes during development.

During early development (left), the amount of PABPC (grey) is limiting. As a result, most of the PABPC available

binds to messenger RNAs (mRNAs; orange) with longer poly(A) tails, which helps ribosomes (light green) to

translate these molecules more efficiently via improved recruitment of translation initiation factors (dark green). In

mature cells (right), the concentration of PABPC is greatly increased, allowing it to bind indiscriminately to all poly

(A) tails (blue). As other factors are present to regulate translation efficiency, the importance of PABPC in

improving translation is reduced. Instead, PABPC protects mRNAs from degradation, particularly those with

shorter poly(A) tails, by outcompeting decay factors (red) for binding sites on the poly(A) tail.

Image credit: Terence Tang, figure created using biorender.com.
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