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Abstract 

Intelligence is often defined as the ability of an agent to learn, adapt to its environment, 

and solve novel challenges. However, despite over 100 years of theoretical development (e.g., 

general intelligence), widespread explanatory power (up to 50% of variance in cognitive 

scores), and the ability of intelligence measures to predict important life outcomes such as 

educational achievement and mortality, the exact configuration and neural correlates of 

cognitive ability remain poorly understood. This dissertation aims to make progress in this 

pursuit by exploring how human brain structure and intelligence correlate and co-develop 

with each other from childhood to early adulthood (ages 5 – 22 years). This endeavour is 

undertaken in three large cohorts (N range: 337 – 2072), guided by theory (e.g., crystallised 

and fluid intelligence), and implemented using rigorous, cutting-edge quantitative methods 

(i.e., structural equation modelling and network science). The results of this research provide 

robust evidence that the brain-behaviour relationships in intelligence are complex (i.e., 

consists of many independent yet interacting parts) and change nonlinearly during 

development.  

The first study sought to elucidate the factorial structure and white matter substrates 

of child and adolescent intelligence using two cross-sectional, developmental samples 

(CALM: N = 551 (N = 165 neuroimaging), age range: 5 – 18 years; NKI-Rockland: N = 337 (N 

= 65 neuroimaging), age range: 6 – 18 years). In both samples, it was found (using structural 

equation modelling (SEM)) that cognitive ability is best modelled as two separable yet related 

constructs, crystallised and fluid intelligence, which became more distinct (i.e., less correlated) 

across development, in line with the age differentiation hypothesis. Further analyses revealed 

that white matter microstructure, most prominently of the superior longitudinal fasciculus, 

was strongly associated with crystallised (gc) and fluid (gf) abilities. Finally, SEM trees, which 

combines traditional SEM with decision trees, provided evidence for developmental 

reorganisation of gc and gf and their white matter substrates such that the relationships among 

these factors dropped between ages 7 – 8 years before increasing around age 10. Together, 

these results suggested that shortly before puberty marks a pivotal phase of change in the 

neurocognitive architecture of intelligence.  

The second study builds upon the first by again examining the neurocognitive 

structure of intelligence, this time from a network perspective. The network or mutualism 



 

viii 

 

theory of intelligence presupposes direct (statistical) interactions among cognitive abilities 

(e.g., maths, memory, and vocabulary) throughout development. Therefore, this project used 

network analytic methods (specifically graphical LASSO) to simultaneously model brain-

behaviour relationships essential for general intelligence in a large (behavioural, N = 805; 

cortical volume, N = 246; fractional anisotropy, N = 165), developmental (ages 5 – 18 years) 

cohort of struggling learners (CALM). Results indicated that both the single-layer (cognitive 

or neural nodes) and multilayer (combined cognitive and neural variables) networks 

consisted of mostly positive, small partial correlations, providing further support for the 

mutualism/network theory of cognitive ability. Moreover, using community detection (i.e., 

the Walktrap algorithm) and calculating node centrality (absolute strength and bridge 

strength), convergent evidence suggested that subsets of both cognitive and neural nodes play 

an intermediary role ‘between’ brain and behaviour. Overall, these findings suggest specific 

behavioural and neural variables that may have greater influence among (or might be more 

influenced by) other nodes within general intelligence. 

The final study investigated the longitudinal relationships between human cortical 

grey matter structure and measures of decision-making, risk-related behaviours, and spatial 

working memory from adolescence to early adulthood (ages 14 – 22 years). In the IMAGEN 

study (maximum N across time points/waves = 2072), latent growth curve models were used 

to estimate the baseline and longitudinal associations between behavioural measures and 

cortical surface area, thickness, and volume. Univariate models (only behavioural or neural 

measures) revealed that performance in decision-making, risk-related behaviours, and spatial 

working memory, as well as brain structure changed nonlinearly from mid-adolescence (age 

14) to early adulthood (age 22). Furthermore, bivariate models (combined behavioural and 

neural measures) provided evidence for adaptive reorganisation (behaviour intercept predicts 

changes in brain structure) but not structural scaffolding (brain structure intercept predicts 

changes in behaviour). Furthermore, findings suggested that there were no correlated changes 

between behavioural and brain structure slopes (rates of change from mid-adolescence to 

early adulthood). 

This dissertation concludes by summarising the core results, addressing key 

limitations, and discussing avenues for future research. Taken together, this thesis hopes to 

convince cognitive neuroscientists that to understand cognitive ability and its neural 
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determinants, they (we) must work more diligently toward building coherent, rigorous, and 

testable neurocognitive theories of intelligence—particularly under the conceptual and 

analytic paradigm of complex systems.  
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Chapter One 

Laying the Foundations:  

Neurocognitive Paradigms for Understanding  

Human Intelligence 

 
The section Jumping through the Developmental Windowpane: Longitudinal Studies of 

Concurrent Structural Brain and Cognitive Changes from Childhood to Early Adulthood 

from this chapter is partially adapted from: 

Kievit R. A., Simpson-Kent I. L. (2021). It’s About Time: Towards a Longitudinal Cognitive 

Neuroscience of Intelligence. (due to appear in The Cambridge Handbook of Intelligence and 

Cognitive Neuroscience, Cambridge University Press, June 2021).   

 

My contributions to the above publication are:  

1. Co-conceptualisation and planning (with R. A. Kievit) about content of publication. 

2. Co-selection (with R. A. Kievit) of relevant literature to include in the publication. 

3. Co-writing and editing (with R. A. Kievit), including confirmation of final version, of 

the chapter manuscript for publication in Cambridge University Press. 

 

All other sections of Chapter One were led and conceptualised solely by me. 

 

 

 

 

 

 

 

 

 

 

 

https://psyarxiv.com/n2yg7/
https://psyarxiv.com/n2yg7/
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Spearman’s Positive Manifold of Cognitive Abilities and 

 the g factor of Individual Differences in General Intelligence  

Intelligence is often defined as the ability of an agent to learn, adapt to its environment, 

and solve novel challenges (e.g., see Gottfredson, 1997 and Legg and Hutter, 2007). It has been 

over 100 years since Charles Spearman published his landmark observations that, across 

domains (e.g., language abilities, mathematics and music), individuals who scored higher on 

one cognitive task also tended to score higher on all other cognitive tasks, in relation to their 

peers (Spearman, 1904). He termed his discovery the ‘positive manifold’ of cognitive abilities 

(as all abilities positively correlated with each other, top of Figure 1). Spearman attempted to 

explain his results by proposing the general or g factor to account for the shared covariance 

among individuals on cognitive tasks. Later on, he also postulated the existence of specific or 

s factors, which described the unique variance among individuals (Spearman, 1927). Taken 

together, Spearman’s “two-factor” (g and s) theory, commonly referred to collectively as the 

g factor model of human intelligence (Figure 1, bottom), states that differences in cognitive 

performance are jointly due to individuals possessing a lower or higher g, which relates to 

general cognitive abilities such as abstract reasoning and problem-solving, as well as 

possessing lower or higher levels of specific factors (s) that enable them to outperform their 

counterparts on more narrow cognitive tasks (e.g., mathematics, music, etc., see Spearman, 

1927). Under Spearman’s theory, individual differences in general intelligence are caused by 

the combination of general (g) and specific (s) factors, both of which vary from person to 

person. Moreover, g is assumed to account for most of the variance in general cognitive ability 

(e.g., innate ability through genetics) while s explains individual differences in narrow 

abilities (task-specific variance). 
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Across intelligence datasets, Spearman’s g factor model typically accounts for between 

20 – 50% of the total variance in individual differences in cognitive ability (Deary et al., 2010), 

as well as reliably predicts important life outcomes such as educational and occupational 

achievement (Deary et al., 2007; Hegelund et al., 2018) and mortality (Calvin et al., 2011). 

Today, the g factor is recognised as one of the most replicable findings in psychology and is 

not limited to WEIRD (Western, Educated, Industrialised, Rich, and Democratic, see Henrich 

et al., 2010) samples, which are overrepresented in psychological studies, as g has been further 

verified in non-Western populations (see Warne and Burningham, 2019). Moreover, the g 

factor has been found in non-human animals such as dogs (Arden and Adams, 2016), 

Figure 1. Top: Example correlation matrix showcasing the positive manifold of cognitive 

abilities. Bottom row shows factor loadings from g to cognitive tasks. Bottom: g factor 

model of human intelligence including general (g) and specific (s) factors. Note that error 

(residual) terms are also estimated in this model but are not shown. x’s denote specific 

instances/measurements of cognitive abilities (e.g., xm1 = arithmetic) 
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orangutans (Damerius et al., 2019), mice and primates (Locurto and Scanlon, 1998; Reader et 

al., 2011), and has even been extended to include performance of human groups (c factor of 

‘collective intelligence’, Woolley et al., 2010;  2015)1. Together, these studies strongly suggest 

that a single cognitive ability factor (whether it be in humans, other organisms, or groups) has 

extraordinary predictive power when examining a range of abilities and outcomes.   

Despite the efficacy of the g factor model to account for individual differences in 

cognitive ability, several other theories have been proposed, which give alternate ontologies 

of the positive manifold (rather than exclusively g). Most of these competing formulations 

posit the presence of group factors (e.g., crystallised and fluid intelligence, see Cattell, 1967, 

1963) that cluster abilities measured by tests with similar properties (e.g., verbal ability and 

working memory, see McGrew, 2009; Schneider and McGrew, 2012). Other models 

conceptualise the positive manifold (and hence g) as arising from network interactions among 

cognitive abilities during a given task or over the course of early development (e.g., childhood, 

see van der Maas et al., 2006) while others view g as the (population-level) emergent property 

of within-individual differences in executive processes such as working memory capacity 

(Kovacs and Conway, 2016). In the next section, I will briefly describe these theory types—

specifically gc-gf theory, Cattell-Horn-Carroll (CHC) theory, mutualism, and Process 

Overlap Theory—and evaluate how they relate to Spearman’s g theory.  

 

 

 

 

 

 

 

 

 

 

 
1 Interestingly, c has been found to be only moderately correlated with average or maximum individual 

intelligence. Instead measures related to “social perceptiveness” (e.g., Reading the Mind in the Eyes 

(RME) Test, Baron-Cohen et al., 2001) and “moderate level of cognitive style diversity” (Aggarwal et 

al., 2015) are better predictors of c.  
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Going Against the (g)rain:  

Refinements to the g factor Theory of General Intelligence 

Crystallised and fluid intelligence:  

Cattell’s gc-gf theory 

As described above, the g factor is highly effective in accounting for individual 

differences on cognitive scores (accounts for up to 50% of the total variance) and predicting 

important life outcomes. As a result, it provides a parsimonious framework (as it only 

assumes one general factor) for understanding how and why humans as well as other 

organisms perform well on tests of cognitive ability, relative to their peers. However, since 

Spearman first hypothesised g, several researchers, having conceptual as well as theoretical 

issues with his theory, have proposed alternative theories that have become prominent in the 

intelligence literature.  

One of these refinements to Spearman’s g theory came from his student, Raymond 

Cattell. According to Cattell, rather than of a single factor underlying all cognitive ability, 

general intelligence was instead composed of two distinct yet correlated constructs or types, 

which he labelled crystallised (gc) and fluid (gf) intelligence (Cattell, 1963; 1967). Cattell 

suggested that gc represents the capacity to effectively complete tasks relying on experience 

and knowledge obtained (mostly) from schooling (e.g., arithmetic, vocabulary, etc.), whereas 

he defined gf as an individual’s capacity to solve novel problems devoid of task-specific 

knowledge, instead using abstract reasoning and pattern recognition (also see Deary et al., 

2010). Hence, Cattell replaced Spearman’s g with his gc-gf theory (Figure 2) as the core 

psychological mechanisms that give rise to the positive manifold. In Chapter Two, I 

statistically compare Spearman’s g factor to Cattell’s gc-gf theory and investigate their 

structural neural correlates (via white matter fractional anisotropy) in two large 

developmental samples of children and adolescents (Centre for Attention, Learning and 

Memory, N = 551; NKI-Rockland, N = 337).  
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Let’s get it stratum: 

 Cattell-Horn-Carroll (CHC) theory 

In addition to Cattell’s gc-gf theory of intelligence, other 20th century theorists put forth 

factor models hoping to elucidate the nature of the positive manifold. These include (but are 

not limited to) the Cattell-Horn Extended gc-gf theory (Horn and Cattell, 1966), the bifactor 

model (Holzinger and Swineford, 1937; also see Watkins and Beaujean, 2014 for illustration) 

and Carroll’s three-stratum theory (Carroll, 1993; 1997). Arguably the most comprehensive 

model of intelligence to date (see Flanagan and Dixon, 2014) is the Cattell-Horn-Carroll (CHC) 

theory of cognitive abilities (McGrew, 2009; Schneider and McGrew, 2012), which combines 

the formulations of Cattell, Horn, and Carroll into a single hierarchical model. 

According to CHC theory (Figure 3), general intelligence (g) sits at the apex of the 

hierarchy of cognitive abilities and is considered to be a ‘General Ability or Factor’ (stratum 

III), analogous to Spearman’s original conception of g. Beneath g comes the ‘Broad Abilities’ 

(stratum II) that include specific groups of cognitive abilities such as crystallised (gc) and fluid 

intelligence (gf) mentioned above as well as (but not limited to) short-term memory (gsm), 

mathematical knowledge needed for manipulating numerical symbols (gq), and processing 

speed (gs), which is required to quickly and accurately manipulate information such as 

numbers and to read sentences. As with gc-gf theory, the broad abilities represent ‘group 

factors’ that organise related tasks (e.g., verbal abilities such as reading and spelling) so they 

Figure 2. Cattell’s gc-gf factor model of human intelligence. Here, gc and gf are conceived 

to cause changes in the factor loadings of crystallised (Arithmetic and Vocabulary) and 

fluid (Matrix Reasoning and Analogies) tasks, respectively. Note, in this model, gc and gf 

are correlated with each other (double-headed arrow). 
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are separate from more dissimilar tasks such as arithmetic and mathematical problem-solving 

(Maths). Although Spearman included s factors in his two-factor model to account for fine-

gained individual differences in specific abilities, he was aware that group factors might be 

necessary if the cognitive content of different tests significantly overlapped (e.g., see 

Thomson, 1947). Lastly, at the lowest level rest the ‘Narrow Abilities’ (stratum I), which refer 

to even more specific abilities than those of stratum II. In describing stratum I, Carroll stated 

that these abilities ‘‘represent greater specializations of abilities, often in quite specific ways 

that reflect the effects of experience and learning, or the adoption of particular strategies of 

performance’’ (Carroll, 1993, p. 634). This depiction can be compared with Spearman’s s 

factors in the sense that their contributions depend on the task and training level of the 

individual. 

The CHC theory has garnered widespread empirical and statistical support (Benson, 

2008; Flanagan, 2000; see Flanagan and Dixon, 2014 and McGrew, 2009 for overviews but also 

see Canivez and Youngstrom, 2019 for conflicts regarding CHC theory and its applications) 

and is a deeply influential paradigm for thinking about cognitive abilities in the cognitive 

psychology community. In closing, while the aforementioned models and their subsequent 

iterations differ from each other in terms of the constructs involved (e.g., g only, gc and gf only, 

or combined with additional factors) and statistical properties (i.e., correlational, orthogonal, 

and/or hierarchical structure), a comprehensive comparison of these models is beyond the 

scope of this dissertation (but see Beaujean, 2015 and Flanagan and Dixon, 2014 for reviews). 

 



 

8 

 

 

The emergence of g through interactions of cognitive abilities throughout development: 

The mutualism theory of general intelligence 

An alternative perspective to traditional factor-model theories is to conceptualise 

general intelligence as the consequence of a dynamic network that evolves over time. This 

theory, known as mutualism, claims that the positive manifold results from positive, reciprocal 

interactions between cognitive abilities (van der Maas et al., 2006). Hence, early in cognitive 

development, cognitive abilities (e.g., vocabulary and reasoning) are weakly correlated with 

each other, resulting in little to no g factor/positive manifold. Instead, over time—for instance 

from early childhood until adolescence—these associations increase in strength and become 

more positive, eventually giving rise to the positive manifold and g. Mutualism (see Figure 4) 

has gained support from several studies (Ferrer and McArdle, 2004; Kan et al., 2019; Kievit et 

al., 2019, 2017) and reviews (Peng et al., 2019; Peng and Kievit, 2020) that have demonstrated 

that cognitive abilities such as vocabulary drive positive changes in other abilities (e.g., 

reasoning) and vice versa. Since its initial conception, the mutualism/network model of 

intelligence has been expanded and further formalised (van der Maas et al., 2021, 2017) to 

Figure 3. The Cattell-Horn-Carroll (CHC) theory of cognitive abilities. General intelligence 

(g) is located at the top (stratum III), followed by Broad abilities (stratum II), and bottoms 

out with Narrow abilities (stratum I). Abbreviation key: crystallised (gc) and fluid (gf) 

intelligence (both studied in Chapter Two), short-term memory (gsm), quantitative 

knowledge (gq) and processing speed (gs). 
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incorporate additional psychometric theories (i.e., Spearman’s g factor, Cattell’s crystallised 

(gc) and fluid (gf) abilities, and the Dickens-Flynn gene-environment interaction model of IQ, 

Dickens and Flynn, 2001). Moreover, it has recently been further formalised to help explain 

cognitive development (Savi et al., 2019) and has even been applied to help understand 

sensitive periods in cognitive development (Kievit, 2020). In Chapter Three, I apply the 

mutualism/network model paradigm to include metrics of brain structure (i.e., grey and white 

matter).  

 

 

 

Process Overlap Theory:  

General intelligence as a formative, emergent phenomenon  

One of the most recent psychometric theories of general intelligence (also see Savi et 

al., 2019) that attempts to elucidate the positive manifold is Process Overlap Theory (POT, 

Kovacs and Conway, 2016). POT attempts to elucidate interindividual (between-person) 

differences in general intelligence by including constraints on g in the form of intraindividual 

(within-person) differences. According to the authors, POT separates itself from previous 

accounts in “that it integrates psychometrics, cognitive psychology, and neuroscience” (p. 

152). Thus, unlike the formal theories described above, POT incorporates properties of brain 

structure and function, especially insights obtained from the Parieto-Frontal Integration 

Figure 4. Simplified model of the mutualism theory of cognitive ability. Single-headed 

arrows indicate interactions (positive reciprocal correlations) between cognitive abilities 

(arithmetic, vocabulary, and reasoning).   
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Theory (Jung and Haier, 2007, see the section The early years: The Parieto-Frontal Integration 

Theory (P-FIT) of intelligence below) as well as studies of the neural correlates of executive 

processes (especially fluid intelligence and working memory), which together emphasise the 

network properties of the brain and their links with intelligence as opposed to only individual 

regions. I discuss the neural interpretation of POT further in the section Overlapping 

processes in the brain: The neural determinants of Process Overlap Theory below.   

 To build their theory, Kovacs and Conway, 2016 first lay out the three fundamental 

assumptions or “axioms” of their theory (p. 152 – 153). First and foremost, the g factor is a 

necessary statistical consequence of the positive manifold. In other words, in any correlation 

matrix with solely positive values, it is inevitable that a single (latent/unobserved) factor can be 

extracted using factor analytic techniques (see Krijnen, 2004 for technical analysis). 

Furthermore, this general factor will have positive correlations (indexed by factor loadings) 

between it and its manifest/observed indicators or first- or second-order factors if the model 

is hierarchical (e.g., CHC theory). Secondly, independent from this inescapable mathematical 

result, any such latent variable must be assumed to causally influence the positive correlations 

among the measured variables (known as entity realism, see Borsboom et al., 2003). Lastly, as 

“differential constructs” (p. 153), there are no one-to-one mappings between latent variable 

between-subject variation and within-person processes (Molenaar and Campbell, 2009; 

Voelkle et al., 2014 but also see Schmiedek et al., 2020 for recent example in intelligence data). 

A corollary of this is that latent variables such as g do not exist in isolation, but instead depend 

on individual differences (variation in cognitive ability among multiple people). Therefore, g 

is necessarily a between-subject (population-level) phenomenon. To quote the authors’ 

explanation:  

“…the last survivor of a meteor collision with Earth would still have cognitive abilities 

and mental limitations but would not have g…Hence the scope of any explanation of 

the positive manifold, including but not restricted to latent variables, is not necessarily 

directly applicable to single individuals.” (p. 153) 

With these axioms, Kovacs and Conway put forth Process Overlap Theory (POT), which ties 

together robust evidence that implicates the overlapping roles of domain-general—for 

instance, executive processes such as working memory capacity (WMC, see Burgoyne et al., 

2019; Conway et al., 2003, 2002; Engle et al., 1999 for studies exploring the relations between 
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WMC and general (fluid) intelligence)—and domain-specific abilities that are recruited when 

individuals perform narrow tasks (e.g., verbal reasoning). The authors surmise that “Such a 

pattern of overlap of executive and specific processes explains the positive manifold as well 

as the hierarchical structure of cognitive abilities” (p.161, Kovacs and Conway, 2016). In other 

words, the reason many complex abilities such as WMC strongly correlate with measures such 

as fluid intelligence (gf) is that both involve a “multicomponent construct with overlapping 

processes” (p. 162). This also explains why more specific, elementary tests such as simple span 

tasks do not significantly correlate with each other and explain unique sources of variation in 

g (i.e., they do not share overlapping processes).  

Under POT (Figure 5), g is the emergent (formative latent variable) result of a finite 

number of distinct abilities rather than a single, unitary entity responsible for the shared 

variation among cognitive tasks (reflective latent variable). However, below g, specific 

abilities take on a reflective latent variable structure and are correlated with each other to 

formalise the overlapping process (i.e., not completely independent) that underlie them. In 

addition to arguing that g is an emergent phenomenon, POT claims that executive processes 

(e.g., WMC) function as limiting factors for successful completion of tasks requiring domain-

general abilities. For example, if a participant lacks sufficient working memory or inhibitory 

control, they will not be able to perform well on goal-related tasks (tapping g) such as playing 

a video game that consists of remembering rules (e.g., sequence of steps needed to pass a level) 

and avoiding obstacles (e.g., game-generated monsters that try to kill you before you finish a 

level). Moreover, these participants would also struggle on domain-specific tasks (e.g., 

gaining enough points to unlock a single item necessary to continue through a level). 

Kovacs and Conway mathematically formalised their theory (Equation 1 of Kovacs 

and Conway, 2016) in an item response model that estimates the “probability of a person (p) 

arriving at a correct answer on a test item (i) that taps component processes (C) from a number 

of different domains (D)” (p. 162). The model assumes that each cognitive dimension is 

relatively (ontologically) independent from each other. POT is formalised as a hybrid 

multidimensional item response model (see Reckase, 2009) with both compensatory (additive 

sums within cognitive domains) and noncompensatory (products of across-domain abilities) 

elements. Given that across-domain abilities such as executive processes act as bottlenecks to 

higher-order g, this makes p “a nonadditive and nonlinear [product] function of the score on 
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each individual dimension” (p. 163). Therefore, a person with below average capacity in one 

executive process such as working memory capacity will have a low probability of 

successfully performing a specific working memory tasks, even if they display high scores for 

that specific test. This is because their deficiency in nonlinear WMC (e.g., complex span) cannot 

be offset by additive satisfactory or above average capacity in the easier working memory tests 

(e.g., simple span). In closing, POT formalises g as a population-level phenomenon that emerges 

(formative) from the within-person overlapping of (mainly executive) cognitive processes that 

are tapped by various psychometric tests. Now, having described several prominent 

psychological models of intelligence, I next discuss how recent perspectives and findings from 

cognitive neuroscience have further informed understanding of intelligence.  

 

Figure 5. Simplified depiction of Process Overlap Theory (POT) as a latent variable model. 

Single-headed arrows (solid red: reflective, black dashed: formative) indicate causal 

directions among types of cognitive tests (boxes), latent constructs (circles), and 

error/residual terms (ε). Double-headed arrows indicate correlations between cognitive 

domains. General intelligence/the positive manifold (g) is an emergent property of 

interactions of theorised cognitive abilities (here gf, gv and gc) from lower stratum. The ζ 

term represents residual/unexplained variance (e.g., neural and environmental processes) 

that also contribute to the emergence of g. Note that ‘Fluid Ability’ is also an executive 

process but is coloured grey to distinguish it from other executive process (e.g., WMC) 

more widely involved in the other latent ability factors (i.e., gv and gc). 
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From Psychometrics to Cognitive Neuroscience:  

The Search for the Neural Foundations of General Intelligence 

In addition to the psychological literature, the field of cognitive neuroscience has 

provided an emerging source of insight in uncovering the neural causes of individual 

differences in general intelligence. These cognitive neuroscience approaches go beyond 

purely behavioural descriptions and formulations by also measuring the neural process 

necessary for cognitive ability. In this section, I will describe five leading neurocognitive 

theories of general intelligence (in chronological order in which they appear in the literature): 

Parieto-Frontal Integration Theory, the multiple-demand system, Process Overlap Theory, 

The watershed model of individual differences in fluid intelligence, and The Network 

Neuroscience Theory of Human Intelligence.  

    

The early years:  

The Parieto-Frontal Integration Theory (P-FIT) of intelligence 

The first comprehensive attempt to propose a neural basis of intelligence was Jung and 

Haier’s Parieto-Frontal Integration Theory (P-FIT,  Jung and Haier, 2007). P-FIT, formulated 

based upon a review and synthesis of many neuroimaging studies on cognitive ability, asserts 

that individual differences in intelligence derive from information exchange primarily 

between inferior and superior parietal (Brodmann areas (BAs): 7, 39, and 40) and dorsolateral 

prefrontal (BAs: 6, 9, 10, 45, 46, and 47) cortical areas, but also regions of the occipital (BAs: 18 

and 19) and temporal (BAs: 21 and 37) lobes, as well as the anterior cingulate (particularly BA 

32). Moreover, Jung and Haier proclaimed that white matter tracts, especially the arcuate 

fasciculus but also the superior longitudinal fasciculus, assist in producing intelligent 

behaviour by integrating informational content from individual grey matter regions through 

anatomical linkages. They assumed that occipital (e.g., the fusiform gyrus (BA 37) for the 

analysis of visual stimuli) and temporal (i.e., Wernicke’s area (BA 22) for auditory content) 

regions played an especially pronounced role in early processing of relevant information (i.e., 

a sensory stimulus). The results of this initial stage are then “fed forward” (p. 138) to parietal 

areas such as the angular (BA 39), superior parietal (BA 7) and supramarginal (BA 40) gyri for 

additional processing. Lastly, parietal regions interact with frontal cortices to “test various 
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solutions to a given problem” (p. 138), eventually leading to a final decision made in the 

anterior cingulate.  

The acclaim of P-FIT theory is well-founded and justified. It represents a tour de force 

of scientific investigation, the culmination and synthesis of 37 studies (total N = 1,557 

participants) using various neuroimaging techniques (e.g., functional MRI, positron emission 

tomography, diffusion tensor imaging, etc.) and measures of intelligence (chess performance, 

analogy and maths reasoning, WAIS vocabulary, etc.), and even incorporating findings from 

lesion and genomics studies. Despite this, however, Jung and Haier never intended for the P-

FIT to solve the quest to understand intelligence. Instead, they argued that “the model 

provides a framework for testing new hypotheses in future experimental designs” (p. 135). 

Therefore, progress was still needed and welcomed despite their impressive achievement.     

 

Neural g?  

The multiple-demand system underlying complex problem-solving 

Shortly after Jung and Haier’s publication of P-FIT Theory, Duncan, 2010 presented 

his g-style theory of human intelligence, known as the brain’s multiple-demand (MD) system. 

The MD system (also see Fedorenko et al., 2013), also sometimes referred to as the 

frontoparietal control network (Vincent et al., 2008; see Uddin et al., 2019 for additional 

functional network names association with MD (“Lateral Frontoparietal Network”) regions), 

is thought to be involved in a wide array of cognitive processes, including but not limited to 

fluid intelligence (gf), a form of abstract reasoning discussed above. Furthermore, the MD 

system is only activated (the MD system has been studied mostly using fMRI, but in principle 

could be assessed using other functional modalities such as EEG, PET or MEG) whenever an 

individual performs a challenging task, and is, therefore, usually studied using an easy/hard 

task contrast. Composed primarily of frontal and parietal brain regions, the MD system acts 

as a functional network that, through its coordinated activity, enables intelligent behaviour. 

According to Duncan, 2010, the MD system’s principal function pertains to the solving of 

complex tasks by first partitioning them into smaller, simpler sub-tasks. This “sequential 

mental programming” (p. 177) allows for easier solvability and facilitates learning. To 

summarise, supporters of the MD system argue that domain-general cognition can (in large 
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part) be explained by a unitary core (i.e., mainly frontal and parietal regions) of functional brain 

activity (see Figure 6).  

While early work on the MD system focused on fluid intelligence and complex 

problem-solving (see Duncan et al., 2020 for recent review of how the MD system integrates 

‘distributed’ brain activity to produce ‘organised’ cognition), it is known that gf represents 

only one facet of overall cognitive ability. In other words, the MD system, while responsible 

for higher-level complex problem-solving on challenging tasks, might play a smaller role in 

more elementary cognitive areas such as language abilities. One such study has recently 

supported this hypothesis (Woolgar et al., 2018). Using probabilistic volume maps obtained 

from MRI scans in 80 patients with either frontal or posterior lobe lesions, they found that 

MD-weighted, but not language-weighted, lesion volume (negatively) predicted change in 

fluid intelligence (lower scores represented greater deficit after injury). Moreover, a distinct 

effect was seen in the prediction of verbal fluency scores such that language-weighted rather 

than MD-weighted lesion volume was a significant (negative) indicator of change in verbal 

fluency (lower scores indicated greater postmorbid language deficit)2. The authors concluded 

that their results supported the notion that language (and the brain systems that support it) 

are not essential for complex thought. However, it is the case that many complex tasks, 

including but not limited to the translation of challenging academic texts and memory sports 

competitions, also tap into fluid-like cognitive resources to form associations (e.g., between 

concepts in different languages or dialects and mnemonic devices) that involve verbal 

(language) abilities. Therefore, an alternative interpretation could be that the MD and 

language systems are instead part of a larger conglomerate of brain regions that, although 

specialised with respect to their intrinsic function, work together to produce cognitive ability 

in all its diverse forms.  

 
2 Along these lines, a more recent study (Diachek et al., 2020) found similar results in a larger sample 

(N = 481) collected from datasets of 30 “word and sentence comprehension experiments” (p. 4537). 

Specifically, the left MD-system ROIs responded stronger to verbal tasks, indicating language 

lateralisation. In addition, the MD-system displayed weaker activation during sentence and ‘passive’ 

comprehension tasks, in contrast to the ‘language-selective network’. Therefore, the MD itself seems to 

be further specialised into functional units. 
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Overlapping processes in the brain: 

The neural determinants of Process Overlap Theory 

Under Process Overlap Theory (POT, Kovacs and Conway, 2016), the primary focus is 

on executive processes such as fluid intelligence (gf) and working memory capacity (WMC), 

which act as bottlenecks to forming general intelligence (g, see Figure 5). According to the 

authors, a large body of evidence (starting with P-FIT theory, Jung and Haier, 2007, see above) 

implicates the frontal lobe (and some parietal regions) as the section of cortex essential for  gf 

and WMC. As part of the MD system/frontoparietal control network, the frontal lobe and 

especially the prefrontal cortex (PFC) functions as integration and regulatory hub that 

coordinates information exchange between it and more specialised regions (e.g., those 

responsible for specific abilities). Hence, the within-subject frontoparietal control network 

(mainly via frontal regions such as the PFC) represents the neural capacity limits/bottleneck 

in information processing (Dux et al., 2006; Koechlin and Hyafil, 2007; Marois and Ivanoff, 

2005; Tombu et al., 2011) in a wide variety of cognitive demands and correspond to the 

overlapping executive processes that lead to between-subject differences in g.  

Further support for this claim can be found in lesion and statistical modelling studies 

that link executive processes (e.g., gf and WMC) to imaging metrics from the frontal lobe. For 

instance, in 80 patients Woolgar et al., 2010 used multiple regression to estimate the extent to 

which damage to specific brain regions-of-interests (ROIs) correlated with deficit in gf. They 

found that, on average, damage localised to prefrontal and parietal areas of the MD system 

resulted in greater loss (i.e., 6.5 points) in fluid ability than if injury was elsewhere in the brain 

Figure 6. The ‘Extended’ multiple-demand (MD) system represented by non-grey brain 

regions. This figured is based on functional MRI and reproduced from Assem et al., 2020 

with permission. 
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(1 point). Moreover, using partial correlations (see Chapter Three for use of this statistical 

technique), the researchers found that, regardless of location within the brain, each ROI 

studied explained unique variance in fluid IQ loss.  

Various multivariate techniques have been used to examine these questions. One such 

tool is structural equation modelling (see Chapter Two), which has been used to pinpoint the 

central influence of frontal areas in executive processes. For example, in 104 participants 

Román et al., 2014 examined the relationship between both general (e.g., g) and specific (e.g., 

crystallised (gc) and fluid ability (gf)) measures of intelligence and brain morphology, assessed 

by cortical surface area, thickness and volume. They found a ‘reversed hierarchy’ in the grey 

matter correlates of cognitive ability such that at higher-order, more general psychometric 

scales (e.g., general factors such as g) “the smaller the number of relevant gray matter clusters 

accounting for individual differences in intelligent performance” (p. 3805). In other words, as 

one moves from specific to general factors of intelligence, less total (but still predominantly 

frontal) brain structure is needed to explain variance in cognitive performance scores.  

Lastly, Kievit et al., 2016 investigated the relation of fluid reasoning to brain activity 

using task-based fMRI, which enabled the authors to simultaneously determine and distinguish 

between individual differences (between-subjects) in fluid ability as well as performance 

dependent upon the level of difficulty (within-subjects) of the gf-related task. Using 

conjunction analysis (see Nichols et al., 2005) in a small sample (N = 34), Kievit and colleagues 

found three cortical areas that showed greater activation depending both on between-subject 

ability and level of difficulty: right middle and superior frontal gyri, bilateral angular gyri 

(superior parietal cortex), and bilateral precunei. They termed this convergence “local neural 

ergodicity” (p. 13), which has proven challenging to find in neuroscience data (e.g., Medaglia 

et al., 2011; Roberts et al., 2016; but also see Kievit et al., 2013 for a discussion of Simpson’s 

paradox in psychology). Altogether, the agreement in (statistical) neural evidence among this 

and the above studies, despite using diverse methods, led Kovacs and Conway, 2016 to 

conclude that “The present state of research in neuroscience demonstrates that…the overlap 

the theory proposes appears to actually take place in the human brain” (p. 169).      
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The watershed model of individual differences in fluid intelligence 

The watershed model of individual differences in fluid intelligence (Kievit et al., 2016; 

also see Penke et al., 2007) provides another example (as POT) of hierarchical representation 

and estimation of neurocognition. In a large (N = 555) adult lifespan (ages 18 – 87 years) 

sample (Cam-CAN, Shafto et al., 2014), Kievit and colleagues used a type of structural 

equation modelling formalisations known as MIMIC models (see Chapter Two for brief 

description and use of this model class) to explore the relations between processing speed, 

fluid intelligence, and white matter integrity. They found that a ‘watershed’ model, inspired 

by Cannon and Keller, 2006’s attempt to conceptualise and quantify the complex and 

multilevel causes of mental disorders, showed better fit to the data than competing models 

(i.e., a single factor/unidimensional model).  

The watershed model assumes ‘hierarchical dependence’, predicting that the most 

‘downstream’ phenotype (in this case fluid ability) is the final result of a cascade of multiple 

‘upstream’ causes (e.g., white matter integrity). Moreover, these factors only exert indirect 

influence on fluid intelligence via intermediate endophenotypes (Fornito and Bullmore, 2012), 

in this study tests of processing speed. This means that no causal pathway is drawn directly 

between, for example, specific white matter tracts and general (or fluid) cognitive ability. The 

watershed model also presupposes a many-to-one mapping of brain-behaviour relationships, 

known as degeneracy in neuroscience (Friston and Price, 2003 but also see Edelman and Gally, 

2001 for how the concept more broadly applies to biological systems), as well as increased 

statistical dimensionality for more upstream compared to downstream levels due to them being 

more partially independent from each other. The performance of this model has been 

replicated (Fuhrmann et al., 2020) in two childhood and adolescent (ages 5 – 17 years) cohorts 

(CALM, Holmes et al., 2019, and NKI-Rockland, Nooner et al., 2012), again using processing 

speed (i.e., N-back task, rapid naming and trail-making) but also working memory tasks (e.g., 

forward and backward digit recall). In doing so, they extended the explanatory power (in 

terms of variance) of the model to include developmental periods prior to adulthood. Lastly, 

although so far only examined for fluid intelligence, uncontrolled eating (Garcia-Garcia et al., 

2020) and nationalism (Zmigrod et al., 2018), the hierarchical watershed model can, in theory, 

also be applied to other cognitive domains such as language. 
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The dawn of modern network neuroscience:  

The Network Neuroscience Theory of Human Intelligence 

More recently, network neuroscience (Bassett and Sporns, 2017; Betzel, 2020) has 

evolved into a more quantitatively-oriented (e.g., increasingly using methods from computer 

science, mathematics, physics, etc.) and established subfield. Under this theoretical 

framework, the brain is conceptualised as a complex system of interconnected (i.e., cortical 

structure such as grey and white matter) and interactive (e.g., functional brain regions with 

significantly correlated co-activation patterns) networks that enable various cognitive abilities 

including sensorimotor autonomy and learning (Bassett et al., 2015, 2011; Bassett and Mattar, 

2017). This view contrasts with previously dominant reductionist perspectives (see Kievit et 

al., 2011 for an overview of reductionism in cognitive neuroscience) that mostly focused on 

the isolated roles of individual brain regions (for example, primarily the prefrontal cortex) in 

contributing to cognition and other behaviours.      

Network neuroscience employs techniques from network science (Barabási, 2016) such 

as graph theory and centrality analysis to characterise both universal and specific aspects of 

brain structure and function (Fornito et al., 2016). These methods can be applied across spatial 

(from single-cells to whole-brain), temporal (from milliseconds to across the lifespan), and 

topological (from individual nodes to global network) scales (Betzel and Bassett, 2017), as well 

as between species (van den Heuvel et al., 2016). Toward this end, several pioneering studies 

have revealed pervasive properties of brain network structure and function. These include, 

for example, the discovery of hubs (Sporns et al., 2007; van den Heuvel and Sporns, 2013), or 

nodes (e.g., individual brain regions) that share many connections with other nodes within 

the brain. Subsequent research has built upon this finding by identifying specific classes of 

hub regions such as the ‘rich club’ (Heuvel and Sporns, 2011), the ‘diverse club’ (Bertolero et 

al., 2017), and the ‘flexible club’, (Yin et al., 2020). Due to their numerous links (whether 

physically as in white matter or statistically through co-activation patterns found in fMRI), 

hubs help relay informational content throughout the brain.  

Furthermore, nervous  systems have been shown to exhibit modularity (Meunier et 

al., 2010; Sporns and Betzel, 2016), small-world topology (Bassett and Bullmore, 2006, 2017), 

and an economical trade-off between minimising neural wiring cost and maximising 

efficiency (Bullmore and Sporns, 2012). Together, these properties enable the brain to perform 
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both specialised (intra-modular) and global (inter-modular) processing and allow efficient 

information transfer to facilitate adaptive behaviours (e.g., intelligence). Lastly, concerted 

efforts have been made to formulate mathematical models to generate and mechanistically 

describe a variety of brain phenomena including (but not limited to) functional brain network 

organisation (Vertes et al., 2012), normal and abnormal neurodevelopment (Akarca et al., 

2020; Vértes and Bullmore, 2015), and how connector hubs and modularity relate to cognition 

(Bertolero et al., 2018).  

Drawing on these and other findings (further explored in Chapter Three), the latest 

network neuroscience proposal aiming to explain general intelligence (Spearman, 1904) is the 

Network Neuroscience Theory of Human Intelligence (Barbey, 2018). Barbey draws 

inspiration from four theories of intelligence: 1) Spearman’s g, 2) Cattell’s gc-gf theory and 3) 

the mutualism theory of cognitive ability (all explained above), and 4) Godfrey Thomson’s 

sampling theory (Thomson, 1939, 1919, 1916). Thomson, one of Spearman’s contemporaries, 

formulated his sampling theory of cognitive abilities and challenged Spearman’s g as the 

causal mechanism underlying the positive manifold. According to Thomson, the myriad of 

positive correlations between tasks stem from a given test (e.g., vocabulary) sampling a large 

number of mental ‘bonds’ that each partially contribute to cognition. Therefore, if one were to 

devise assessments that only measure specific abilities—for example, the fundamental 

building blocks of simple vocabulary—the positive manifold would disappear. However, in 

practice most tests measure mental constructs that are too broad (e.g., fluid or verbal ability) 

and, therefore, share cognitive processes. Although there are arguments to the contrary (i.e., 

see Savi et al., 2019), Thomson’s sampling theory, which states the positive manifold results 

from separate cognitive faculties each contributing to varying degrees to general cognitive 

ability, can be viewed as one of the first (and most forgotten) network perspectives and 

models of general intelligence.  

Barbey, 2018 conceptualises g as a global network phenomenon that arises from the 

small-world typology, modularity, and dynamics of the brain. He finds correspondence 

between Thomson’s sampling theory, Spearman’s s factors and Cattell’s gc-gf theory, and 

relates them to intrinsic connectivity networks (ICNs, Laird et al., 2011; Seeley et al., 2007). For 

instance, it is well-known that many neural regions are specialised for particular functions 

(e.g., Power et al., 2011), both for simple processes and cognition, which allows for increased 
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local efficiency and minimises wiring cost (Bullmore and Sporns, 2012). The functional and 

structural specialisation of ICNs parallels Spearman’s s factors (specific abilities developed 

through practice) and Thomson’s narrow sampling of cognitive domains (a test that only 

measures verbal ability). Due to their intra-modular connectivity and hub architecture (De 

Domenico et al., 2016; Hilger et al., 2017; Power et al., 2013; van den Heuvel and Sporns, 2013), 

the presence of ICNs (e.g., the default mode network) allows individuals to access prior 

knowledge stores (i.e., those obtained via education), typically a hallmark of crystallised 

intelligence. According to Barbey, fluid ability, the second component of Cattell’s gc-gf theory 

(Cattell, 1963), arises from ICNs (e.g., cingulo-opercular and frontoparietal networks) that 

contain nodes with weaker inter-module ties, which is needed for collective behaviour 

(Schneidman et al., 2006). This enhances flexibility and the efficiency of global processing by 

forming new links between distinct modules (see Gallos et al., 2012), which in turn enable 

individuals to adapt to novel environments and situations (Barbey et al., 2014, 2012; Gläscher 

et al., 2010). 

These characteristics of brain functional and structural organisation (also see Bertolero 

et al., 2015), which balance short and long-range connections through dynamic small-world 

typology, facilitate transitions (Betzel et al., 2016) between two primary network states (Gu et 

al., 2015): 1) ‘easy-to-reach’ (those used to access prior knowledge needed to carry out 

crystallised tasks), and 2) ‘difficult-to-reach’ (necessary for integrating information, giving rise 

to fluid-like cognitive abilities). Therefore, general intelligence (or g) is best understood as the 

emergent result (similar, in principle, to mutualism and Process Overlap Theory) of this ‘tug 

of war’ between specific and broad ICNs. Broad ICNs (especially frontoparietal networks) 

help to drive the brain to difficult-to-reach or random states due to the greater variability of 

their connections between modules compared to within them (Braun et al., 2015; Cole et al., 

2013). Altogether, this constrained flexibility allows the brain to adapt to novel cognitive 

domains (e.g., in abstract reasoning), while preserving the retrieval of previously learned 

skills (e.g., from schooling). Barbey’s theory has been supported by some preliminary 

evidence, but more is needed to confirm its validity (Girn et al., 2019). One potentially 

promising avenue of new empirical evidence is the emerging insight coming from 

longitudinal studies, which I describe in the next section. 
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Jumping through the Developmental Windowpane: 

 Longitudinal Studies of Concurrent Structural Brain and Cognitive 

Changes from Childhood to Early Adulthood  

Cross-sectional data provide incomplete information about the  

development of general intelligence 

Any serious attempt at a mechanistic understanding of intelligence must involve 

consideration of developmental changes and trajectories. Longitudinal data, whereby 

participants undergo testing at two or more time points (also known as waves), are necessary 

to capture the dynamics of cognitive ability across the lifespan as cross-sectional data alone 

remain insufficient (see Raz and Lindenberger, 2011). Cross-sectional data can only be used 

to account for between-subject differences among individuals in a population at a single time 

point. For instance, if participant A scores higher than participants B and C on an IQ test on 

Monday, they are more intelligent according to that test, but only relative to their peers on that 

day. However, their score on Monday does not tell me how well they will score and compare 

with others throughout the week, or how they would develop over time. To answer these 

questions, I would need longitudinal data, which along with between-subject differences also 

permits the study of the within-person changes of participant A’s IQ trajectory over time (i.e., 

how their score fluctuates from Monday to Tuesday to Wednesday, etc.). Furthermore, 

longitudinal data allow me to compare participant A’s performance to themselves (i.e., rather 

than their peers), which provides subject-specific information about how participant A’s 

intelligence changes throughout development (e.g., ranging from day-to-day to across the 

lifespan), as well as a comparison of between-subject differences in rates of change. 

Echoing this point, one recent study (Schmiedek et al., 2020) has shown that a cross-

sectional analysis of the g factor of cognitive ability failed to capture within-person changes 

in cognitive abilities over time. This highlights the need to integrate between-person 

differences (cross-sectional) and within-person changes (longitudinal) when studying 

cognitive abilities. Such an approach must be extended to include concurrent changes in brain 

structure and function to examine how brain and behaviour correlate with (i.e., baseline-

baseline and baseline-second time point) and predict changes in each other (e.g., baseline-

change (slope) in cognition and/or brain, and correlated change (cognitive slope and brain 
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slope)). In the next section, I will summarise the major findings from a recent review of 

longitudinal studies that jointly measure the relationship of cognitive ability to its neural 

correlates (particularly structural measures such as grey matter cortical volume and white 

matter fractional anisotropy) from childhood to early adulthood (Kievit and Simpson-Kent, 

2021).3 Doing so will further help elucidate the cognitive neuroscience of intelligence by also 

taking into account one of its central yet often neglected elements: (developmental) time.  

 

The structural scaffolding of cognitive ability from childhood through early adulthood 

The longitudinal cognitive neuroscience of intelligence from childhood to early 

adulthood is in its infancy (pun intended), with around 30 total studies to date (see Table 7.1 

of Kievit and Simpson-Kent, 2021), many of which were published within the last five years. 

Despite varying sample sizes (minimum N for first wave = 33, maximum N for first wave = 

2,091), cognitive measures (e.g., WISC, Mullen Scales of Early Learning, etc.), imaging metrics 

(e.g., cortical thickness, fractional anisotropy, etc.) and methodologies (e.g., simple 

correlations, latent change score models, etc.), three key interpretations stood out based on 

the aggregate findings from the studies: timing matters, methods matter, and convergent 

evidence in support of the structural scaffolding of intelligence (see Figure 7). 

First, timing matters: the relationship between brain structure and cognitive ability 

shows both negative and positive associations, which might depend on age and ability (e.g., 

see Shaw et al., 2006), and/or sample size. This should not be surprising as both neural and 

cognitive performance change rapidly during development as the brain matures and children 

and adolescents learn through education. Therefore, the age distribution—for example, 

samples with a disproportionally large number of participants of a certain age group (e.g., 

pre-teenagers), and/or studies with a long interval between baseline and follow-up testing 

(i.e., longer than 4 years)—might not be suitable for capturing fine-grained changes in brain 

and behaviour.  

Second, methods matter: due to methodological differences between most studies, 

direct comparisons among findings are difficult, if not impossible. However, this is only a 

challenge if one does not understand the differences (and similarities) between the 

 
3 For a recent review of correlated structural brain and cognitive changes in later life, see  Oschwald et 

al., 2019. 
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quantitative methods used in longitudinal cognitive neuroscience. Different models entail 

different assumptions that can lead to different (and even seemingly contradictory) 

conclusions. Therefore, it is imperative that researchers understand not only the strengths but 

also the limitations of the statistical techniques they use to interpret data. Doing so allows for 

easier evaluations of theoretical frameworks across a variety of neurocognitive processes that 

encompass intelligence such as working memory and decision-making.  

Finally, a consistent pattern emerged from the results of the studies (e.g., Ferrer, 2018; 

Wendelken et al., 2017) surveyed in the review: current brain structure (e.g., grey matter 

cortical thickness and white matter fractional anisotropy) but not function significantly 

predicted the rate of change in cognitive performance over time. In other words, individuals 

with ‘better’ brain structure such as greater white matter integrity were associated with larger 

gains (in children) or shallower declines (in older participants) than individuals with lower 

scores on structural brain imaging metrics. Although preliminary, this pattern suggests that 

the structural connectivity of the brain at a previous time point lays the foundations for later 

changes in cognition over time. This hypothesis is further tested in Chapter Four of this 

dissertation. 
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Figure 7. The ‘structural scaffolding’ model of human intelligence. Here, previous brain 

structure (time point 1) is thought to ‘set the stage’ from changes in intelligence (blue 

arrow). Alternatively (although not mutually exclusive of structural scaffolding), baseline 

cognition might predict changes in brain (structural) organisation over time (adaptive 

reorganisation, yellow arrow). Lastly, cognitive and brain changes might drive each other, 

or be driven by unmeasured other processes (correlated change, purple double-arrow). 
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Outline of the Thesis 

This thesis attempts to advance understanding of human intelligence by investigating 

how human brain structure (i.e., cortical grey and white matter) and measures of cognitive 

ability such as working memory and decision-making co-develop with each other from 

childhood to early adulthood (ages 5 – 22 years). Towards this end, over the course of three 

empirical studies, I analysed neurocognitive data from three large cohorts (N range: 337 – 

2072), combining insights from theory (i.e., gc and gf (Chapter Two), network neuroscience 

(Chapter Three), and brain-behaviour co-development (Chapter Four)) with rigorous and 

cutting-edge quantitative methods (i.e., structural equation modelling and network science). 

In the concluding remarks (Chapter Five), I argue that cognitive neuroscientists need to 

dedicate more time and effort towards building coherent, rigorous, and testable neurocognitive 

theories of intelligence—particularly through the concepts and tools of complex systems 

science. 
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Chapter Two 

Neurocognitive Reorganisation  

between Crystallised Intelligence, Fluid Intelligence, 

and White Matter Integrity in  

Childhood and Adolescence 

 
Chapter Two has been published (although appears in this thesis in a modified form to ensure 

consistent formatting and thesis coherence):  

Simpson-Kent I. L., Fuhrmann D., Bathelt J., Achterberg J., Borgeest G. S., the CALM Team, 

Kievit R. A. (2020).  Neurocognitive reorganization between crystallized intelligence, fluid 

intelligence and white matter microstructure in two age-heterogeneous developmental 

cohorts. Developmental Cognitive Neuroscience, Special Issue: Flux 2018: Mechanisms of Learning 

& Plasticity. doi: 10.1016/j.dcn.2019.100743 

 

Although first-person pronouns are used throughout the chapter, this work is the result of a 

collaborative research project. My contributions to the above publication are:  

1. I led conceptualisation and planning (aided by R. A. Kievit and D. Fuhrmann) about 

the scientific hypotheses, analysis methods, and interpretations of the project. 

2. I performed all manuscript analyses (aided by R. A. Kievit and D. Fuhrmann). 

3. I wrote the first full draft (with input from R. A. Kievit and D. Fuhrmann) of the 

manuscript and led the revisions and confirmation of the final version (aided by other 

co-authors) of the manuscript for publication in Developmental Cognitive Neuroscience. 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.dcn.2019.100743
https://doi.org/10.1016/j.dcn.2019.100743
https://doi.org/10.1016/j.dcn.2019.100743
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Introduction 

In Chapter One, I described the positive manifold and the theoretical foundation and 

predictive ability of general intelligence or g (Spearman, 1904). Moreover, I also discussed 

how Spearman’s student, Raymond Cattell, proposed a division of Spearman’s g factor into 

two separate yet related constructs, crystallised (gc) and fluid (gf) intelligence (Cattell, 1967). 

In this chapter, I use a novel statistical method, structural equation modelling trees, to study 

how the associations between gc and gf, and white matter (specifically fractional anisotropy) 

differ from childhood to adolescence (ages 5 – 18 years) in two cross-sectional, age-

heterogeneous developmental samples (CALM and NKI-Rockland).  

Fluid and crystallised intelligence have proven especially insightful regarding 

developmental changes in intelligence. For instance, current understanding of lifespan 

trajectories of gc and gf using cross-sectional (Horn and Cattell, 1967) and longitudinal 

(McArdle et al., 2000; Schaie, 1994) cohorts indicates that gc slowly improves until late age 

while gf increases into early adulthood before steadily decreasing. However, most of the 

literature on individual differences between gc and gf has focused on early to late adulthood. 

As a result, considerably less is known about the association between gc and gf in childhood 

and adolescence (but see Hülür et al., 2011).  

There has, however, been a recent rise in interest in this topic in child and adolescent 

samples. For instance, research on age-related differentiation and its inverse, age 

dedifferentiation, in younger samples has greatly expanded since first being pioneered in the 

middle of the 20th century (Garrett, 1946). According to the age differentiation hypothesis, 

cognitive factors become less correlated (more differentiated) with increasing age. For 

example, the relationship (covariance) between gc and gf would decrease as children age into 

adolescence, suggesting that cognitive abilities increasingly specialise into adulthood. In 

contrast, the age dedifferentiation hypothesis predicts that cognitive abilities become more 

strongly related (less differentiated) throughout development. In this case, gc and gf 

covariance would increase between childhood and adolescence, potentially indicating a 

strengthening of the g factor across age. However, despite its increased attention in the 

literature, the age differentiation/dedifferentiation debate remains unsolved as evidence in 

support of both hypotheses has been found in child, adolescent, and adult samples (Bickley 

et al., 1995; de Mooij et al., 2018; Gignac, 2014; Hülür et al., 2011; Juan-Espinosa et al., 2000; 
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Tideman and Gustafsson, 2004). Together, this literature highlights the importance of a 

lifespan perspective on theories of cognitive development, as neither age differentiation nor 

dedifferentiation may be solely able to capture the dynamic changes that occur from 

childhood to adolescence and (late) adulthood (Hartung et al., 2018).   

The introduction of non-invasive brain imaging technology has complemented 

conventional psychometric approaches by allowing for fine-grained probing of the neural 

bases of human cognition. A particular focus in developmental cognitive neuroscience has 

been the study of white matter using techniques such as diffusion-weighted imaging, which 

allows for the estimation of white matter microstructure (Wandell, 2016). Both cross-sectional 

and longitudinal research in children and adolescents using fractional anisotropy (FA), a 

commonly used estimate of white matter integrity, have consistently revealed strong 

correlations between FA and cognitive ability using tests of working memory, verbal and non-

verbal performance (Koenis et al., 2015; Krogsrud et al., 2018; Peters et al., 2014; Tamnes et al., 

2010; Urger et al., 2015) and even mathematical giftedness (Navas-Sánchez et al., 2014). 

However, interpretations of these studies are limited due to restricted cognitive batteries (e.g., 

small number of tests used) and a dearth of theory-driven statistical analyses (e.g., structural 

equation modelling).  

For these reasons, several outstanding questions in the developmental cognitive 

neuroscience of intelligence remain: 1) Are the white matter substrates underlying intelligence 

in childhood and adolescence best understood as a single global factor, or do individual tracts 

provide specific contributions to gc and gf?, 2) If they are specific, are the tract contributions 

identical between gc and gf?, and 3) Does this brain-behaviour mapping differ across age (i.e., 

a neurocognitive interpretation of age differentiation/dedifferentiation or both)?  

To examine these questions, I statistically tested four preregistered hypotheses: 

1) gc and gf are separable constructs in childhood and adolescence. More specifically, 

the covariance among scores on cognitive tests are more adequately captured by 

the two-factor (gc-gf) model as opposed to a single-factor (i.e., g) model.  

2) The covariance between gc and gf differs (decreases) across childhood and 

adolescence, in line with the age differentiation hypothesis. 

3) White matter tracts make unique complementary contributions to gc and gf.  

4) The contributions of these tracts to gc and gf differ (decrease) with age. 

https://aspredicted.org/5pz52.pdf
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To address these questions, I examined the relationship between gc and gf in two large 

cross-sectional child and adolescent samples. The first is the Centre for Attention, Learning 

and Memory (CALM, see Holmes et al., 2019). This atypical sample, included in the 

preregistration (see https://aspredicted.org/5pz52.pdf), generally includes children with 

slightly lower cognitive abilities than age-matched controls (see Methods for more detail). To 

examine whether findings from CALM would generalise to other samples, I also conducted 

non-preregistered replication analyses on the Nathan Kline Institute (NKI)-Rockland Sample, 

a cohort with similar population demographics to the United States (e.g., race and 

socioeconomic status, see Table 1 of Nooner et al., 2012). All analyses were carried out using 

structural equation modelling (SEM), a multivariate statistical framework combining factor 

and path analysis to examine the extent to which causal hypotheses concerning latent 

(unobserved, e.g., g) and manifest (observed, e.g., cognitive tests scores) variables are in line 

with the observed data (Schreiber et al., 2006). Taken together, this chapter sought to 

investigate the relationship between measures of intelligence (i.e., gc, gf and working memory) 

and white matter connectivity (i.e., fractional anisotropy) in typically and atypically 

(struggling learners) developing children and adolescents.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://aspredicted.org/5pz52.pdf
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Methods 

Participants: The CALM and NKI-Rockland cohorts 

For the CALM sample, I analysed the then most recent data release (N = 551, age range: 

5 – 18 years) at the time of preregistration (January 2018). Participants were recruited based 

on referrals made for possible attention, memory, language, reading and/or mathematics 

problems (Holmes et al., 2019). Participants with or without formal clinical diagnosis were 

referred to CALM. Exclusion criteria included known significant and uncorrected problems 

in vision or hearing and a native language other than English. A subset of participants 

completed MRI scanning (N = 165, age range: 6 – 18 years). 

Next, to assess the generalisability of the findings in CALM, I applied the same 

analyses to a non-preregistered subset of the data from the Nathan Kline Institute (NKI)-

Rockland Sample (N cognitive data = 337, age range: 6 – 18 years; N neural data = 65, age 

range: 7 – 18 years). This multi-institutional initiative recruited a lifespan (aged between 6 and 

85 years), community-ascertained sample (Nooner et al., 2012). This sample was chosen due 

to its representativeness (demographics resemble those of the United States population) and 

the fact that its cognitive battery assessments closely matched CALM.  

 

Cognitive assessments: gc, gf, and working memory 

All cognitive data from the CALM sample were collected on a one-to-one basis by an 

examiner in a dedicated child-friendly testing room. The test battery included a wide range 

of standardised assessments of cognition and learning (Holmes et al., 2019). Participants were 

given regular breaks throughout the session. Testing was divided into two sessions for 

participants who struggled to complete the assessments in one sitting. For analyses of the 

NKI-Rockland Sample cohort, I matched tasks used in CALM except for the Peabody Picture 

Vocabulary Test, Dot Matrix, and Mr. X, which were only available for CALM. For the NKI-

Rockland Sample (Nooner et al., 2012), I included the N-Back task, which is not available in 

CALM, to help balance the number of working memory tasks between cohorts. In both 

samples, only raw scores obtained from assessments were included in analyses. Due to 

varying delays between recruitment and testing in the NKI-Rockland cohort, I only used 

cognitive test scores completed no later than six months (i.e., 180 days) after initial 

https://aspredicted.org/5pz52.pdf
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recruitment. The cognitive tasks are further described in Table 1; the raw scores are depicted 

in Figure 8.  

The working memory digit recall/span tasks, while measuring the same cognitive 

abilities, used different test batteries and scoring protocols. For CALM, working memory 

scores indicate the total number of correctly recalled digits across all trials while the NKI-

Rockland scores were transformed into a span score. Due to this discrepancy (see References 

in Table 1 and Alloway et al., 2008 for statistical comparisons between the batteries), these 

tasks are plotted separately (see Figure 8). 

 

Cognitive 

Domain 
Task and Description 

Mean (sd)                 

[range] 

Missing 

Data % 
Reference 

Crystallized 

Ability (gc) 

 

  

Peabody Picture Vocabulary 

Test (PPVT): Participants were 

asked to choose the picture (out 

of four multiple-choice options) 

showing the meaning of a word 

spoken by an examiner. 

CALM:  

133.77 (31.68) 

[8, 215] 

 

NKI-Rockland: 

N/A 

CALM:  

1.09       

 

NKI-Rockland: 

N/A 

Dunn and 

Dunn, 2007 

Single Word Reading (SWR): 

Participants read aloud first a list 

of letters and then words that 

gradually increased in 

complexity. Correct responses 

required correctness and fluency. 

CALM:  

80.95 (24.35) 

[7, 130] 

 

NKI-Rockland: 

104.47 (20.28) 

[35, 131] 

CALM:  

2.36 

 

NKI-Rockland: 

 0 

Wechsler, 

2005 

Spelling (Spell): Participants 

spelled words with increasing 

difficulty one at a time that were 

spoken by an examiner. 

CALM:  

21.17 (8.68) 

[0, 48] 

 

NKI-Rockland: 

33.57 (10.55) 

[4, 52] 

CALM: 

 3.09 

 

NKI-Rockland: 

0 

Numerical Operations (NO): 

Participants answered written 

mathematical problems that 

increased in difficulty. 

CALM:  

14.83 (7.46) 

[0, 48] 

 

NKI-Rockland: 

27.95 (11.95) 

[4, 53] 

CALM:  

13.61 

 

NKI-Rockland: 

0 
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Fluid Ability 

(gf) 

Matrix Reasoning (MR): 

Participants saw sequences of 

partial matrices and selected the 

response option that best 

completed each matrix. 

CALM:  

10.88 (5.44) 

[0, 25] 

 

NKI-Rockland: 

17.37 (5.19) 

[4, 27] 

CALM:  

0 

 

NKI-Rockland: 

0 

Wechsler, 

1999 

Wechsler, 

2011 

Working 

Memory (WM) 

 

 

  

Digit Recall/Span (DR): 

Participants recalled sequences of 

single digit numbers given in 

audio format. 

CALM:  

24.22 (5.32) 

[7, 43] 

 

NKI-Rockland: 

5.97 (1.25) 

[3, 9] 

CALM:  

0.36 

 

NKI-Rockland: 

24.63 

Alloway, 

2007 

Kaufman, 

1975 

Backward Digit Recall/Span 

(BDR): Same as regular digit 

recall/span but in reversed order. 

CALM:  

9.2 (4.42) 

[0, 25] 

 

NKI-Rockland: 

4.04 (1.40) 

[0, 8] 

CALM:  

1.63 

 

NKI-Rockland: 

24.63 

Dot Matrix (Dot): Participants 

were shown the location of a red 

dot in a sequence of 4x4 matrices 

and had to recollect the location 

and order of these sequences. 

CALM:  

17.94 (5.49) 

[2, 35] 

 

NKI-Rockland: 

N/A 

CALM:  

0.18 

 

NKI-Rockland: 

N/A 

Mr. X (MRX): Participants 

remembered spatial locations of 

a ball held by a cartoon man 

rotated in one of seven positions. 

CALM:  

8.94 (4.90) 

[0, 30] 

 

NKI-Rockland: 

N/A 

CALM: 

 0.91 

 

NKI-Rockland: 

N/A 

N-Back (NB): For 500 ms 

participants were presented letter 

sequences with a further 2000 ms 

to respond by pressing the 

computer spacebar. The task 

consisted of three separate 

conditions: 0-Back– participants 

pressed the spacebar whenever 

an “X” appeared; 1-Back– 

participants pressed the spacebar 

whenever the same letter was 

presented twice in a row; and, 

lastly, 2-Back– participants 

CALM:  

N/A 

 

NKI-Rockland: 

16.32 (4.22) 

[0, 20]  

CALM:  

N/A 

 

NKI-Rockland: 

20.47 

Gur et al., 

2010 
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pressed the spacebar each time 

the letter presented matched the 

one shown two letters 

beforehand.  

 

Table 1. List, descriptions, and summary statistics (mean, standard deviation, range, 

and percentage of missing data) of cognitive assessments used in CALM and NKI-

Rockland samples.  
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Figure 8 Top. Scatterplots of cognitive task scores across age for CALM and NKI-Rockland 

samples (Level I: tasks identical between cohorts; Level II: tasks similar between cohorts). 

Lines and shades reflect linear and polynomial fit and 95% confidence intervals, 

respectively. Solid lines: CALM. Dashed lines: NKI-Rockland. Abbreviations: Matrix 

Reasoning (MR), Spelling (Spell), Single Word Reading (SWR), Numerical Operations 

(NO), Forward Digit Recall/Span (DR), and Backward Digit Recall/Span (BDR). 
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Structural MRI measures: Fractional anisotropy (FA) 

The CALM sample neuroimaging data were obtained at the MRC Cognition and Brain 

Sciences Unit, Cambridge, UK. Scans were acquired on the Siemens 3T Tim Trio system 

(Siemens Healthcare, Erlangen, Germany) via a 32-channel quadrature head coil. All T1-

weighted volume scans were acquired using a whole brain coverage 3D magnetisation-

prepared rapid acquisition gradient echo (MPRAGE) sequence with 1 millimetre (mm) 

isotropic image resolution with the following parameters: Repetition Time (TR) = 2250 

milliseconds (ms); Echo Time (TE) = 3.02 ms; Inversion Time (TI) = 900 ms; flip angle = 9 

degrees; voxel dimensions = 1 mm isotropic; GRAPPA acceleration factor = 2. Diffusion-

Weighted Images (DWI) were acquired using a Diffusion Tensor Imaging (DTI) sequence with 

64 diffusion gradient directions with a b-value of 1000 s/mm2, plus one image acquired with a 

b-value of 0. Other relevant parameters include: TR = 8500 ms, TE = 90 ms, voxel 

dimensions = 2 mm isotropic.  

Figure 8 Bottom. Scatterplots of cognitive task scores across age for CALM and NKI-

Rockland samples (Level III: tasks unique between cohorts). Lines and shades reflect linear 

and polynomial fit and 95% confidence intervals, respectively. Solid lines: CALM. Dashed 

lines: NKI-Rockland. Abbreviations: Peabody Picture Vocabulary Test (PPVT), Dot Matrix 

(Dot), Mr. X (MRX), and N-Back (NB). 
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The NKI-Rockland high-resolution 3D T1-weighted structural images were obtained 

using a Magnetisation Prepared Rapid Gradient Echo (MPRAGE) sequence with the following 

parameters: Repetition Time (TR) = 1900 ms; Echo Time (TE) = 2.52 ms; Inversion Time (TI) = 

900 ms; flip angle = 9 degrees; voxel dimensions = 1 mm isotropic (see 

http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf for additional details). 

Diffusion-Weighted Images (DWI) were acquired with a Diffusion Tensor Imaging (DTI) 

sequence with 137 diffusion gradient directions with a b-value of 1500 s/mm2. Other relevant 

parameters include: TR = 2400 ms, TE = 85 ms, voxel dimensions = 2 mm isotropic (see 

http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/DIff_137.pdf for additional 

details). 

Note that part of the following pipeline for the white matter construction is identical 

to that described in Bathelt et al., 2019. Diffusion-weighted images were pre-processed to 

create a brain mask based on the b0-weighted image (FSL BET; Smith, 2002) and to correct for 

movement and eddy current-induced distortions (eddy; Graham et al., 2016). Subsequently, 

the diffusion tensor model was fitted and fractional anisotropy (FA) maps were calculated 

(dtifit). Images with a between-image displacement greater than 3 mm as indicated by FSL 

eddy were excluded from further analysis. All steps were carried out with FSL v5.0.9 and were 

implemented in a pipeline using NiPyPe v0.13.0 (Gorgolewski et al., 2011). To extract FA 

values for major white matter tracts, FA images were registered to the FMRIB58 FA template 

in MNI space using a sequence of rigid, affine, and symmetric diffeomorphic image 

registration (SyN) as implemented in ANTS v1.9 (Avants et al., 2008). Visual inspection 

indicated good image registration for all participants. Subsequently, binary masks from a 

probabilistic white matter atlas (threshold at > 50% probability) in the same space were 

applied to extract FA values for white matter tracts (see below). 

Participant movement, particularly in developmental samples, can significantly affect 

the quality, and, hence, statistical analyses of MRI data. Therefore, several procedures were 

undertaken to ensure adequate MRI data quality and minimise potential biases due to subject 

movement. First, for the CALM sample, children were trained to lie still inside a realistic mock 

scanner prior to their actual scans.  Secondly, for both samples, all T1-weighted images and 

FA maps were visually examined by a qualified researcher to remove low quality scans. 

Lastly, quality of the diffusion-weighted data was evaluated in both samples by calculating 

http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/DIff_137.pdf
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the framewise displacement between subsequent volumes in the sequence. Only data with a 

maximum between-volume displacement below 3 mm were included in the analyses. All 

steps were carried out with FMRIB Software Library v5.0.9 and implemented in the pipeline 

using NiPyPe v0.13.0 (see https://nipype.readthedocs.io/en/latest/). 

Selection of FA tracts was based on previous studies of associations between cognition 

(e.g., fluid intelligence) and white matter in developmental samples (de Mooij et al., 2018; 

Kievit et al., 2016). I used FA as a general summary metric of white matter microstructure as 

it cannot directly discern between specific cellular components (e.g., axonal diameter, myelin 

density, and water fraction). Mean FA was computed for 10 bilateral tracts as defined by the 

Johns Hopkins University DTI-based white matter tractography atlas (see Hua et al., 2008): 

anterior thalamic radiations (ATR), corticospinal tract (CST), cingulate gyrus (CING), 

cingulum [hippocampus] (CINGh), forceps major (FMaj), forceps minor (FMin), inferior 

fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal 

fasciculus (SLF), and uncinate fasciculus (UNC). Figure 9 shows visualisations (top) and cross-

sectional trends (bottom) of FA across the age range for both samples.  

Figure 9. Top: White matter ROIs based on the John’s Hopkin’s University atlas (fractional 

anisotropy in Transverse (superior) plane (left), Coronal plane (middle), and Transverse 

(inferior) plane (right).  

 

https://nipype.readthedocs.io/en/latest/
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Figure 9. Bottom: Scatterplots of FA values for all white matter tracts across age for CALM 

and NKI- Rockland samples. Lines and shades reflect linear and polynomial fit and 95% 

confidence intervals, respectively. Solid lines: CALM. Dashed lines: NKI-Rockland. 

Abbreviations: anterior thalamic radiations (ATR), corticospinal tract (CST), cingulate 

gyrus (CING), cingulum [hippocampus] (CINGh), inferior fronto-occipital fasciculus 

(IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), 

uncinate fasciculus (UNC), forceps major (FMaj), and forceps minor (FMin). 

 



 

40 

 

Statistical analyses: Structural equation modelling (SEM) and SEM trees 

I used structural equation modelling (SEM), a multivariate approach that combines 

latent variables and path modelling to test causal hypotheses (Schreiber et al., 2006) as well as 

SEM trees, which combine SEM and decision tree paradigms to simultaneously permit 

exploratory and confirmatory data analysis (Brandmaier et al., 2013). Analyses were 

performed using the lavaan package version 0.5-22 (Rosseel, 2012) in R (R Core Team, 2020) 

and versions 2.9.9 and 0.9.12 of the R packages OpenMx (Boker et al., 2011) and semtree 

(Brandmaier et al., 2013), respectively. To account for missing data and deviations from 

multivariate normality, I used robust full information maximum likelihood estimator (FIML) 

with a Yuan-Bentler scaled test statistic (MLR) and robust standard errors (Rosseel, 2012). I 

evaluated overall model fit via the (Satorra-Bentler scaled) chi-squared test, the comparative 

fit index (CFI), the standardised root mean squared residuals (SRMR), and the root mean 

square error of approximation (RMSEA) with its confidence interval (Schermelleh-Engel et 

al., 2003). Assessment of model fit was defined as: CFI (acceptable fit 0.95 – 0.97, good fit > 

0.97), SRMR (acceptable fit 0.05 – 0.10, good fit < 0.05), and RMSEA (acceptable fit 0.05 – 0.08, 

good fit < 0.05).  

To determine whether gc and gf were separable constructs, I compared a two-factor 

(gc-gf) model to a single-factor (g) model. To investigate if the covariance between gc and gf 

differed across ages, I conducted multiple group comparisons between younger and older 

participants based on median splits (CALM split at 8.91 years yielding N = 279 young and N 

= 272 old; NKI-Rockland split at 11.38 years into N = 169 young and N = 168 old). Doing so 

inevitably led to slightly unbalanced numbers of participants with white matter data (CALM: 

N = 60 young and N = 105 old; NKI-Rockland: N = 19 young and N = 46 old). To test 

measurement invariance across age groups (Putnick and Bornstein, 2016), I fit multigroup 

models (French and Finch, 2008), constraining key parameters across groups. Model 

comparisons and deviations from measurement invariance were determined using the 

likelihood ratio test and Akaike information criterion (AIC, see Bozdogan, 1987). 

To examine whether white matter tracts made unique contributions to the latent 

variables (i.e., g, gc, and gf) I fit Multiple Indicator, Multiple Cause (MIMIC) models (Jöreskog 

and Goldberger, 1975; Kievit et al., 2012). MIMIC models enable neural variables (e.g., 

individual white matter tracts) to be simultaneously regressed onto cognitive latent constructs 
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such as gc and gf. Lastly, I conducted a SEM tree analysis, a method that combines the 

confirmatory nature of SEM with the exploratory framework of decision trees (Brandmaier et 

al., 2013). SEM trees hierarchically and recursively partition datasets based on a covariate (in 

this case age). This creates data-driven age-groups which show differences in one or more 

paths of interest. The advantage of SEM trees is that they do not require a-priori decisions as 

to where potential categorical boundaries between age groups may lie (as was the case in the 

median split analysis). SEM trees also do not require a-priori knowledge as to the shape of 

developmental trajectories (as is usually the case when using age as a continuous covariate). 

Using this technique therefore allowed for the examination of: 1) the robustness of findings 

based on the median age split, and 2) whether white matter contributions differed across age 

groups of younger and older participants in a data-driven way (Hypothesis 4). Therefore, for 

the CALM and NKI-Rockland SEM tree analyses, age was used as a continuous covariate with 

a significance alpha level of .001 for each node split. Finally, I used Bonferroni-correction to 

correct for multiple comparisons, and the semtree cross-validation scheme, which “partitions 

the data for maximizing splits on each variable, then comparing maximum splits across each 

variable on the rest of the data” (for more details, see https://cran.r-

project.org/web/packages/semtree/semtree.pdf). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://cran.r-project.org/web/packages/semtree/semtree.pdf
https://cran.r-project.org/web/packages/semtree/semtree.pdf
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Results 

Covariance among cognitive abilities cannot be captured by a single factor 

In accordance with the preregistered analysis plan, I first describe model fit for the 

measurement models of the cognitive data only. First, I tested hypothesis 1: that gc and gf are 

separable constructs in childhood and adolescence. More specifically, I tested the hypothesis 

that the covariance among scores on cognitive tests would be better captured by a two-factor 

(gc-gf) model than a single-factor (i.e., g) model. In support of this prediction, the single-factor 

model fit the data poorly: χ2(27) = 317.695, p < .001, CFI = .908, SRMR = .040, RMSEA = .146 

[.132 .161], Yuan-Bentler scaling factor = 1.090, suggesting that cognitive performance was not 

well represented by a single factor. The two-factor (gc-gf) model also displayed poor model fit 

(χ2(24) = 196.348, p < .001, CFI = .946, SRMR = .046, RMSEA = .119 [.104 .135], Yuan-Bentler 

scaling factor = 1.087), although it fit significantly better (χ2Δ = 119.41, dfΔ = 3, AICΔ = 127, p 

< .001) than the single-factor model.  

To investigate the source of poor fit, I examined modification indices (Schermelleh-

Engel et al., 2003), which quantify the expected improvement in model fit if a parameter is 

freed. Modification indices suggested that the Peabody Picture Vocabulary Test had a very 

strong cross-loading onto the fluid intelligence latent factor. The Peabody Picture Vocabulary 

Test (PPVT), often considered a crystallised measure in adult populations, asks participants 

to choose the picture (out of four multiple-choice options) corresponding to the meaning of 

the word spoken by an examiner. Including a cross-loading between gf and the PPVT 

drastically improved goodness of fit (χ2Δ = 67.52, dfΔ = 1, AICΔ = 100, p < .001) to adequate 

(χ2(23) = 104.533, p < .001, CFI = .975, SRMR = .025, RMSEA = .083 [.067 .099], Yuan-Bentler 

scaling factor = 1.069). A likely explanation of this result is that such tasks may draw 

considerably more on executive, gf-like abilities in younger, lower ability samples. For a more 

thorough investigation of the loading of PPVT across development, see Supplementary 

Material section Is the Peabody Picture Vocabulary Test a measure of fluid ability?. 

Notably, fitting the PPVT as a solely fluid task (i.e., removing it as a measurement of gc 

entirely) did not significantly decrease model fit (χ2Δ = 2.058, dfΔ = 1, AICΔ = 1, p = .152). 

Therefore, I decided to proceed with the more parsimonious PPVT gf-only model (χ2(24) = 

106.382, p < .001, CFI = .972, SRMR = .025, RMSEA = .082 [.066 .098], Yuan-Bentler scaling factor 

= 1.073).  

https://aspredicted.org/5pz52.pdf
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Next, I examined whether the single- or two-factor model fit best in the NKI-Rockland 

sample. The single-factor model fit the data adequately (χ2(14) = 41.329, p < .001, CFI = .983, 

SRMR = .029, RMSEA = .075 [.049 .102], Yuan-Bentler scaling factor = .965). Still, the two-factor 

model showed considerably better fit (χ2(12) = 19.732, p = .072, CFI = .995, SRMR = .018, 

RMSEA = .043 [.000 .075], Yuan-Bentler scaling factor = .956) compared to the single-factor 

model (χ2Δ = 20.661, dfΔ = 2, AICΔ = 17, p < .001). It should be noted that, given the differences 

in tasks measured between the samples, gf and working memory were assumed to be 

measurements of the same latent factor, rather than separable factors. A similar competing 

model where gf and working memory were modelled as separate constructs with working 

memory loaded onto gf, similarly to the best-fitting model for the CALM sample (see Figure 

10), showed comparable model fit and converging conclusions with further analyses. Overall, 

these findings suggested, that for both the CALM and NKI-Rockland samples, a two-factor 

model with separate gc and gf factors provided a better account of individual differences in 

intelligence than a single-factor model. Note that, for both CALM and NKI-Rockland, these 

final models include a latent variable called ‘gc Verbal’ that is loaded onto the more 

fundamental gc factor.  

 

Evidence of age differentiation between crystallised and fluid ability 

I investigated the relationship between gc and gf in development to see whether I could 

observe evidence for age differentiation as predicted by hypothesis 2. Age differentiation (e.g., 

Hülür et al., 2011) would predict decreasing covariance between gc and gf from childhood to 

adolescence. I fit a multigroup confirmatory factor analysis to assess fit on the younger (N = 

279) and older (N = 272) participants from the CALM sample. The model had acceptable fit 

(χ2(48) = 142.214, p < .001, CFI = .960, SRMR = .037, RMSEA = .085 [.069 .102], Yuan-Bentler 

scaling factor = 1.019). However, a likelihood ratio test, showed that model fit did not decrease 

significantly when imposing equal covariance between gc and gf in the younger and older 

participant subgroups (χ2Δ = 0.323, dfΔ = 1 AICΔ = 2, p = .57). This suggested no evidence for 

age differentiation in the CALM sample. However, the lack of association could be due to 

limitations of using median splits to investigate age differences when independent (or latent 

in this case) variables are correlated (Iacobucci et al., 2015). For instance, if the age range of 

differences in behavioural associations between gc and gf lies elsewhere, the median split may 
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not be sensitive enough to detect it. To test this explicitly, I next fit SEM trees (Brandmaier et 

al., 2013) to the cognitive data.   

I estimated SEM trees in the CALM sample by specifying the cognitive model with age 

as a continuous covariate. I observed a SEM tree split at age 9.12 years, yielding two groups 

(younger participants = 290, older participants = 261). This split was accompanied by a 

decrease in the unstandardised parameter estimate between gc and gf (from .64 to .59, see 

Table 3), providing support for age differentiation using a more exploratory approach (SEM 

tree: 9.12 versus median split: 8.91). When fitting the two-factor model before and after the 

SEM tree age split, I found that the correlation between gc and gf increased slightly (from .90 

to .92), which supports age dedifferentiation. 

Next, as in the CALM cohort, I fit a multigroup model with younger (N = 169) and 

older (N = 168) age groups in the NKI-Rockland Sample, which produced good fit (χ2(24) = 

33.736, p = .089, CFI = .991, SRMR = .035, RMSEA = .047 [.000 .081], Yuan-Bentler scaling factor 

= .916). In contrast to CALM, imposing equality constraints on the covariance between gc and 

gf across age groups preferred the freely-estimated model (χ2Δ = 61.244, dfΔ = 1 AICΔ = 46, p 

< .001) and revealed a lower gc-gf correlation for the older (.811) compared to the younger 

participants (1.008). This suggested evidence for age differentiation in the NKI-Rockland 

Sample using multigroup models.  

In contrast to the multigroup model outcome, the NKI-Rockland SEM tree model 

under identical specifications as in CALM failed to produce an age split. A possible 

explanation is that, to penalise for multiple testing, I relied on Bonferroni-corrected alpha 

thresholds for the SEM tree. If, as seems to be the case here, the true split lies (almost) exactly 

on the median split, then the SEM tree will have slightly less power than conventional 

multigroup models, as the SEM tree likelihood ratio test is penalised for the number of tests 

(splits). These differences between analyses methods suggested that the age differentiation 

observed here is likely modest in size. Taken together, I interpret these findings as evidence 

for a small, age-specific but suggestive decrease in gc-gf covariance in both cohorts, which is 

compatible with age differentiation such that, for younger participants, gc and gf factors are 

almost indistinguishable, whereas for older participants a clearer separation emerges.  
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Violation of metric invariance suggests differences in relationships among  

cognitive abilities in childhood and adolescence 

I more closely assessed age-related differences in cognitive architecture (i.e., factor 

loadings) by examining metric invariance (Putnick and Bornstein, 2016). Testing this in the 

CALM sample as a two-group model by imposing equality constraints on the factor loadings 

(fully constrained) showed that the freely-estimated model (no factor loading constraints) 

outperformed the fully-constrained model (χ2Δ = 107.05, dfΔ = 7, AICΔ = 82, p < .001), 

indicating that metric invariance was violated. This violation of metric invariance suggested 

that the relationship between the cognitive tests and latent variables was different in the two 

age groups. Closer inspection suggested that the differences in loadings were not uniform, 

but rather showed a more complex pattern of age-related differences (see Table 2 for more 

details). Some of the most pronounced differences include an increase of the loading of Matrix 

Reasoning onto gf as well as increased loading of Digit Recall and Dot Matrix onto working 

memory across age groups.  

Similarly, in the NKI-Rockland cohort, the freely-estimated model outperformed the 

constrained model (χ2Δ = 41.111, dfΔ = 5, AICΔ = 33, p < .001), indicating that metric invariance 

was again violated as in CALM. This suggests that the relationship between the cognitive tests 

and the latent factors differed across age groups. The pattern of factor loadings differed in 

some respects from CALM. For example, the loading of the N-back task onto gf showed the 

largest difference across age groups in the NKI-Rockland sample. However, as CALM did not 

include the N-back task, this finding cannot directly be interpreted as a difference between 

the cohorts. For detailed comparisons among factor loadings between age groups in both 

samples, refer to Table 2. The overall pattern in both samples suggested small and varied 

differences in the relationship between the latent factors and observed scores. A plausible 

explanation is that the same task draws on a different balance of skills as children differ in age 

and ability. Therefore, these findings concerning the latent factors should be interpreted in 

this light as it seems likely that in addition to age differentiation (and possibly 

dedifferentiation) effects, the nature of the factors also differed slightly across the age range 

studied here. 
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Relationship CALM NKI-Rockland 

  Young Old Young Old 

gc➔gf(WM) 

0.89 0.93 1.01 0.81 

40.23 (5.40) 44.27 (4.50) 64.49 (8.64) 12.27 (2.68) 

[29.65, 50.82] [ 35.45, 53.09] [47.56, 81.43] [7.02, 17.52] 

gf➔WM 

0.96 0.9 

NA NA 1.06 (.19) .79 (.09) 

[.69, 1.44] [ .61, .97] 

gf(WM)➔MR 

0.59 0.74 0.69 0.6 

1.00 (NA) 1.00 (NA) 1.00 (NA) 1.00 (NA) 

[1.00, 1.00] [1.00, 1.00] [1.00, 1.00] [1.00, 1.00] 

gf➔PPVT 

0.75 0.76 

NA NA 
7.49 (.84) 5.45 (.43) 

[5.84, 9.14] [ 4.60, 6.30] 

gf(WM)➔DR 

0.56 0.68 0.38 0.54 

1.00 (NA) 1.00 (NA) .12 (.03) .27 (.07) 

[1.00, 1.00] [1.00, 1.00] [.07, .17] [.13, .40] 

gf(WM)➔BDR 

0.76 0.79 0.5 0.53 

1.01 (.12) .94 (.09) .16 (.03) .30 (.08) 

[.77, 1.26] [ .76, 1.12] [.10, .22] [.13, .40] 

gfWM➔NB NA NA 

0.55 0.35 

.67 (.10) .54 (.14) 

[.48, .87] [.27, .81] 

WM➔Dot 

0.58 0.67 

NA NA .87 (.12) 1.06 (.12) 

[.63, 1.10] [ .82, 1.30] 

WM➔MRX 

0.59 0.56 

NA NA .80 (.11) .82 (.13) 

[.57, 1.02] [ .56, 1.08] 

gc➔gcV 

0.89 0.79 0.96 0.87 

1.00 (NA) 1.00 (NA) 1.00 (NA) 1.00 (NA) 

[1.00, 1.00] [1.00, 1.00] [1.00, 1.00] [1.00, 1.00] 

gc➔NO 

0.87 0.87 0.9 0.76 

.19 (.01) .54 (.06) .42 (.03) 1.08 (.20) 

[ .17, .22] [ .43, .65] [.36, .49] [.69, 1.48] 

gcV➔SWR 

0.94 0.91 0.93 0.89 

1.00 (NA) 1.00 (NA) 1.00 (NA) 1.00 (NA) 
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[1.00, 1.00] [1.00, 1.00] [1.00, 1.00] [1.00, 1.00] 

gcV➔Spell 

0.87 0.91 0.97 0.88 

.28 (.02) .46 (.03) .48 (.02) .71 (.06) 

[ .25, .31] [ .40, .51] [.44, .52] [.60, .83] 

 

The neural architecture of gc and gf indicates unique contributions of  

multiple white matter tracts to cognitive ability 

I next focused on the white matter regression coefficients to inspect the neural 

underpinnings of gc and gf. In line with hypothesis 3, I wanted to explore whether individual 

white matter tracts made independent contributions to gc and gf. First, I examined whether a 

single-factor model could account for the covariance in white matter microstructure across 

the ten tracts (Figure 9). If so, then scores on such a latent factor would represent a 

parsimonious summary for neural integrity. However, this model showed poor fit (χ2(35) = 

124.810, p < .001, CFI = .938, SRMR = .039, RMSEA = .132 [.107 .157], Yuan-Bentler scaling factor 

= 1.114), suggesting that white matter integrity cannot be summarised by a single factor. To 

examine whether the white matter tracts showed specific and complementary associations 

with cognitive performance, I fit a MIMIC model in the CALM sample using the 10 white 

matter tracts mentioned above (see Figure 9). Doing so, I observed that 5 out of the 10 tracts 

showed significant relations with gc and/or gf (Figure 10). Specifically, the anterior thalamic 

radiations, forceps major, and forceps minor had moderate to strong associations with gc with 

similar relations seen for gf for the superior longitudinal fasciculus, forceps major, and the 

cingulate gyrus. Interestingly, the forceps minor exhibited a negative association with gf. This 

could be due to modelling several highly correlated paths simultaneously since this 

relationship was not found when only the forceps minor was modelled onto gc (standardised 

estimate = .426) and gf (standardized estimate = .386), see Tu et al., 2008. Together, individual 

differences in white matter microstructure explained 32.9% in crystallised and 33.6% in fluid 

ability. 

Table 2. First row: standardised path estimates for cognitive assessments in CALM and 

NKI-Rockland samples. Second row: raw path estimates with standard errors 

(parentheses). Third row: 95% confidence intervals [brackets]. NA = not applicable. 

Note that age groups were determined according to the median split (CALM: 8.91 

years, NKI-Rockland: 11.38 years). 
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As in the CALM sample, the single-factor white matter model produced poor fit (χ2 

(35) = 131.637, p < .001, CFI = .924, SRMR = .023, RMSEA = .201 [.165 .238], Yuan-Bentler scaling 

factor = .950) in the NKI-Rockland Sample. Therefore, I fit a multi-tract MIMIC model. The 

superior longitudinal fasciculus emerged as the only tract to significantly load onto gc or gf 

(Figure 10). This result was likely due to lower power associated with a small subset of 

individuals with white matter data (see Discussion for further investigation). In NKI-

Rockland, the same set of tracts explained 29.7% and 26.7% of the variance in gc and gf, 

respectively. Together, these findings demonstrated generally similar associations (in terms 

of variance explained) between white matter microstructure and cognitive abilities in the 

CALM and NKI-Rockland samples. Therefore, it seems to be the case that, in both typically 

and atypically (struggling learners) developing children and adolescents, individual white 

matter tracts make distinct contributions to crystallised and fluid ability, as more than one 

tract explains variance in the outcomes (gc and gf). 
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Figure 10 Top. MIMIC model displaying standardised parameter estimates and regression 

coefficients for all cognitive measures and white matter tracts for complete CALM sample. Dotted, 

green, and red arrows indicate nonsignificant (> .05), positively significant, and negatively significant 

path estimates, respectively.  
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Support for neurocognitive reorganisation of crystallised and fluid ability in 

childhood and adolescence 

Lastly, to address the fourth and final hypothesis, I examined whether brain-

behaviour associations differed across the developmental age range. I hypothesised that the 

relationship between the white matter tracts and cognitive abilities would decrease across the 

age range, in support of the differentiation hypothesis, inclusive of neural associations. Using 

Figure 10 Bottom. MIMIC model displaying standardised parameter estimates and regression 

coefficients for all cognitive measures and white matter tracts for complete NKI-Rockland Sample. 

Dotted and green arrows indicate nonsignificant (> .05) and positively significant path estimates, 

respectively. Note standardised estimate exceeding 1 is likely the consequence of highly-correlated 

factors (Jöreskog, 1999). 
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a multigroup model, I compared the strength of brain-behaviour relationships between 

younger and older participants to test whether white matter contributions to gc and gf differed 

in development. Contrary to this prediction, I observed that, in the CALM sample, a freely 

estimated model, where the brain-behaviour relationships were allowed to vary across age 

groups, did not outperform the constrained model (χ2Δ = 12.16, dfΔ = 10, AICΔ = 9, p = .27). 

This suggested that the contributions of white matter tracts did not vary significantly between 

age groups when examined using multigroup models. 

As before with the cognitive data, next I estimated a SEM tree model from the CALM 

MIMIC model. In contrast to the multigroup model, I observed that multiple white matter 

tracts did differ in their associations with gc and/or gf. These differences manifested in 

different ways for gc and gf. For example, the correlations between the cingulum, superior 

longitudinal fasciculus, and forceps major and gf decreased with increasing age, in line with 

age differentiation. On the other hand, the forceps major, forceps minor and anterior thalamic 

radiations demonstrated a more complicated pattern with each tract displaying two age splits. 

For the first split (around age 8), the regression strength decreased before spiking again 

around age 11 (Table 3). Given that all first splits showed a decrease between white matter 

and cognition, and all second splits revealed an increase compared to the first, this suggests a 

non-monotonic pattern of brain-behaviour reorganisation that cannot be fully captured by age 

differentiation or dedifferentiation (Hartung et al., 2018) but may be in line with theories such 

as Interactive Specialization (Johnson, 2011), which provides a range of mechanisms which 

may induce age-varying brain-behaviour strengths. One hypothesis that has previously been 

offered that may (partially) explain the nature of the age-varying associations between white 

matter and cognitive performance is the onset of puberty (Fuhrmann et al., 2020) and the 

associated hormonal changes. Previous work has shown that pubertal processes, including 

differences and changes in hormones such as testosterone, affect diffusion measures in ways 

that cannot be explained away by (only) age (Menzies et al., 2015). More work in large samples 

such as ABCD (Volkow et al., 2018), ideally including longitudinal changes in hormone levels, 

is needed to establish the robustness of this explanation. 

Lastly, I performed the same multigroup analysis for the NKI-Rockland MIMIC 

model, but it failed to converge or produce an age split, likely due to sparsity of the neural 

data. Therefore, this analysis could not be used to replicate the cut-off age used for multigroup 
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analyses (11.38 years) based on the median split. Further inspection with SEM trees of the only 

significantly associated tract, the superior longitudinal fasciculus, revealed the same trend for 

gc and gf with decreased correlations with increasing age (see Table 3). Overall, the findings 

suggest the need for a neurocognitive account of age differentiation-

dedifferentiation/reorganisation from childhood into adolescence.  

 

Parameter 
  

CALM 
    

NKI-Rockland 
  

 
Estimate 

before 

split 

Age 

of 1st 

split 

Estimate 

after 

split 

Age 

of 2nd 

split 

Estimate 

after 

split 

Estimate 

before 

split 

Age 

of 1st 

split 

Estimate after 

split 

Age of 

2nd 

split 

Estimate 

after 

split 

gc➔gf(WM) .64 (.01) 9.12 .59 (.01) NS NS .96 (.02) NS NS NS NS 

gf(WM)SLF .38 (.05) 7.38 .29 (.03) NS NS .35 (.09) 13.16 .21 (.09) NS NS 

gcSLF NA NA NA NA NA .91 (.09) 9.85 .69 (.06) NS NS 

gfFMaj .38 (.04) 7.38 .26 (.03) NS NS NA NA NA NA NA 

gcFMaj .24 (.04) 8.29 .04 (.05) 10.79 .42 (.05) NA NA NA NA NA 

gfCING .29 (.05) 7.38 .18 (.03) NS NS NA NA NA NA NA 

gcATR .30 (.05) 7.62 .13 (.05) 10.79 .37 (.05) NA NA NA NA NA 

gcFMin -.34 (.06) 7.62 -.52 (.04) 10.79 -.25 (.05) NA NA NA NA NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. SEM tree Results for CALM and NKI-Rockland samples. Note: values listed represent 

unstandardised estimates and standard errors (parentheses).  NS = no SEM tree split, NA = not 

applicable. 

 



 

53 

 

Discussion 

Summary and interpretation of findings 

In this chapter, I examined the cognitive architecture as well as the white matter 

substrates of fluid and crystallised intelligence in children and adolescents in two 

developmental samples (CALM and NKI-Rockland). Analyses in both samples indicated that 

individual differences in intelligence were better captured by two separate but highly 

correlated factors (gc and gf) of cognitive ability as opposed to a single global factor (g). Further 

analysis suggested that the covariance between these factors decreased slightly from 

childhood to adolescence, in line with the age differentiation hypothesis of cognitive abilities 

(Garrett, 1946; Hülür et al., 2011).  

I observed multiple, partially independent contributions of specific tracts to individual 

differences in gc and gf (Figure 10). The clearest associations were observed for the anterior 

thalamic radiations, cingulum, forceps major, forceps minor, and superior longitudinal 

fasciculus, all of which have been implicated to play a role in cognitive functioning in 

childhood and adolescence (Krogsrud et al., 2018; Navas-Sánchez et al., 2014; Peters et al., 

2014; Tamnes et al., 2010; Urger et al., 2015; Vollmer et al., 2017).  However, except for the 

superior longitudinal fasciculus, these tracts were not significant in the NKI-Rockland 

Sample. A possible explanation for this is the difference in imaging sample size between the 

cohorts (N = 165 in the CALM sample vs N = 65 in the NKI-Rockland Sample). This difference 

implies sizeable differences in power (73.4% in CALM versus 36.2% in NKI-Rockland, 

assuming a standardised effect size of 0.2) to identify weaker individual pathways.  

The most consistent association, observed in both samples, was between the superior 

longitudinal fasciculus, a region known to be important for language and cognition, which 

significantly contributed to cognitive ability in both CALM (gf only) and NKI-Rockland (gc 

and gf). The superior longitudinal fasciculus is a long myelinated bidirectional association 

fibre pathway that runs from anterior to posterior cortical regions and through the major lobes 

of each hemisphere (Kamali et al., 2014), and has been associated with memory, attention, 

language, and executive function in childhood and adolescence in both healthy and atypical 

populations (Frye et al., 2010; Urger et al., 2015). Therefore, given its widespread links 

throughout the brain, which include temporal and fronto-parietal regions, it is no surprise 

that it was found to be significantly related to both gc and gf in the two samples. 
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Together, these results are in line with previous research relating fractional anisotropy 

(FA) and cognitive ability. For instance, Peters et al., 2014 found that age-related differences 

in cingulum FA mediated differences in executive functioning. Moreover, white matter 

changes in the forceps major have been linked to higher performance on working memory 

tasks (Krogsrud et al., 2018). The remaining tracts (superior longitudinal fasciculus and 

anterior thalamic radiations) have also been positively correlated with verbal and non-verbal 

cognitive performance in childhood and adolescence (Tamnes et al., 2010; Urger et al., 2015). 

I also observed a more surprising negative pathway, between gc and the forceps minor in the 

CALM sample. However, closer inspection showed that the simple association between 

forceps minor and gc was positive, suggesting the negative pathway is likely the consequence 

of the simultaneous inclusion of collinear predictors (see Tu et al., 2008). 

Finally, using SEM trees (Brandmaier et al., 2013), I observed that white matter 

contributions to gc and gf differed between participants of different ages (Table 3). In CALM, 

the contributions of the cingulum, superior longitudinal fasciculus, and forceps major 

weakened with increasing age for gf.  For gc, however, the forceps major and forceps minor, 

and the anterior thalamic radiations exhibited a more complex pattern with each tract 

providing significantly different effects on crystallised intelligence at two distinct time points 

in development. In NKI-Rockland, the superior longitudinal fasciculus became less associated 

with both gc and gf. Considering that decreases in white matter relations to gc and gf occurred 

before covariance decreases were found between gc and gf suggest that differences in white 

matter development may underlie subsequent individual differences in cognition.  

Overall, these findings align with a neurocognitive interpretation of age 

differentiation-dedifferentiation hypothesis, which would predict that cognitive abilities and 

their neural substrates become more differentiated (less correlated) until the onset of maturity, 

followed by an increase (dedifferentiation) in relation to each other until late adulthood 

(Hartung et al., 2018). However, I must note that the evidence for age 

differentiation/dedifferentiation was not always robust across analyses methods or samples, 

suggesting only small effect sizes. 
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Limitations of the present study 

First and foremost, all findings here were observed in cross-sectional samples. To 

better understand effects such as age differentiation and dedifferentiation, future studies will 

need to model age-related changes within the same individual. The complexity and expense 

of collecting such longitudinal data has long precluded such investigations, but new cohorts 

such as the ABCD sample (Volkow et al., 2018) will allow researchers to model longitudinal 

changes in the future (see Chapter Four for longitudinal analyses in the IMAGEN study). 

Secondly, since the tasks modelled here were not identical between cohorts, detailed 

interpretations of similarities and differences between the CALM and NKI-Rockland samples 

should be treated with caution. Therefore, future research comparing cohorts may want to 

prioritise cohorts with matching tasks to maximise comparability. Thirdly, although most 

findings are similar across our cohorts, some differences were observed, particularly in white 

matter effects. Although the findings in the SEM tree analysis of age-related differences in 

white matter to cognition mapping are both cross-validated as well as corrected for multiple 

comparisons, they remain inherently exploratory. Furthermore, while these findings largely 

generalise across the two cohorts studied here, further work in larger (such as ABCD, Volkow 

et al., 2018), more age-heterogeneous (e.g., the Developing Human Connectome Project, 

Makropoulos et al., 2018) is needed to assess the robustness of these findings. The samples 

here are considerably larger than typical in the field (Poldrack et al., 2017)—however, even 

larger samples are desirable to gain truly precise estimates of the key parameters, especially 

regarding measures such as DTI in the NKI-Rockland sample that have a non-trivial 

proportion of missing data, which are known to inflate effect sizes (Gelman and Carlin, 2014; 

Vul et al., 2009). Moreover, the white matter differences observed could also be due to the 

scans being obtained at different scanner sites, although this is unlikely to have produced 

considerable differences for all raw images were processed using the same pipeline, and 

previous work suggests that FA is quite a robust measure in multi-site comparison (see 

Vollmar et al., 2010).   

In terms of analytical frameworks, here a relatively new analytical framework, called 

SEM trees (Brandmaier et al., 2013), was implemented to allow for recursive partitioning of 

the cohorts into age-demarcated subgroups to capture developmental heterogeneity. SEM 

trees have a number of strengths, including considerable flexibility in model specification, 
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implementation in open-source software, and the ability to combine measurement and 

structural model components as well as multiple simultaneous predictors. However, they also 

have challenges, including potential vulnerability to small fluctuations and overfitting (which 

may cascade down affecting other partitions), and are certainly not the only choice available 

to examine model heterogeneity. Alternative analytical strategies, varying in the degree to 

which they presuppose known group membership or estimate it, include finite mixture 

models (Zadelaar et al., 2019), Gaussian process structural equation models (Silva and 

Gramacy, 2010), latent class and latent profile analysis (Oberski, 2016), general frameworks 

such as decision trees (McArdle, 2013) and model-based cluster analysis (Fraley and Raftery, 

1999), as well as extensions of SEM trees such as SEM forests (Brandmaier et al., 2016). All 

these techniques differ in their strengths and weaknesses, ease of implementation, degree of 

confirmation versus exploration and their flexibility (e.g., can they accommodate latent 

variables or not). One particularly fruitful avenue for future research is to combine both, using 

exploratory as well as confirmatory methods to balance discovery and robustness. Here I 

hopefully illustrate how SEM trees can be one such tool, but would urge the reader to tailor 

their analytical framework to the question at hand, and be mindful of potential drawbacks. 

Nonetheless, my view is that SEM trees offer at least one fruitful avenue to formalise 

hypotheses in developmental cognitive neuroscience which would otherwise often remain 

mostly verbal.  

Related to this point, the findings are further limited by the selection of cognitive tasks 

for both cohorts. Although the battery of tests used in the current study span three cognitive 

domains (i.e., crystallised and fluid intelligence, and working memory), inclusion of 

additional tasks measuring abilities such as processing speed and other executive functions 

would capture a fuller picture of individual differences in intelligence. For example, including 

tests of processing speed in the CALM and NKI-Rockland samples would increase the number 

of indicators (and latent constructs) that can be related to gc and/or gf. Furthermore, while 

Matrix Reasoning is the only fluid task identical between both cohorts, NKI-Rockland also 

contains Block Design, Similarities, and Verbal Reasoning (see Fuhrmann et al., 2020), which 

were not considered and, therefore, not loaded onto gf in the SEM or SEM trees models in this 

study. Finally, in the CALM sample, the working memory latent variable could be partitioned 

into traditional working memory (forward and backward recall) and short-term memory (Dot 
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Matrix and Mr X) to align with more canonical psychometric memory assessments. Taken 

together, this proposed expanded battery of intelligence-related tasks coupled with more 

standardised assignment of cognitive tasks to latent constructs would further improve 

inference for the SEM and SEM trees models as well as provide a more comprehensive and 

robust estimation of age (de)differentiation between gc and gf and their associations with 

white matter (i.e., FA). 

Lastly, CALM consists of children with referrals for any difficulties related to learning, 

attention or memory (Holmes et al., 2019). It should be noted that, since CALM is a sample of 

children and adolescents struggling to learn, and, therefore, ‘atypical’, a large percentage of 

this cohort had been assigned a diagnosis (36.12%). However, controlling for this possible 

confound through constrained multigroup models showed this did not affect the results of 

the models, as was seen in previous work using CALM (Fuhrmann et al., 2020). The NKI-

Rockland sample, in contrast, is a United States population representative sample (Nooner et 

al., 2012). Both samples are composed of large cohorts that underwent extensive phenotyping 

and population-specific representative sampling. Therefore, I argue that the results generalise 

to ‘typical’ and ‘atypical’ samples of neurocognitive development, although further research 

is required to substantiate this claim.  

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

Summary of the Chapter 

In this chapter, I presented analyses that suggested that crystallised and fluid 

intelligence factors explained a significant amount of variance in test performance in two large 

child and adolescent samples. These results were found in both typically and atypically 

(struggling learners) developing cohorts, demonstrating the generalised notion that cognitive 

ability is better understood as a two-factor (gc and gf) rather than a single-factor (g) phenomenon 

in childhood and adolescence. The addition of white matter microstructure indicated 

independent contributions from specific white matter tracts known to be involved in cognitive 

ability. Moreover, further analyses suggested that the associations between neural and 

behavioural measures differed during development.  

Overall, these results support a neurocognitive age differentiation-dedifferentiation 

hypothesis (reorganisation) of cognitive abilities whereby the relation between white matter 

and cognition become more differentiated (less correlated) in pre-puberty and then dedifferentiate 

(become more correlated) during early puberty. However, structural equation modelling, 

although a highly informative and flexible method, assumes the presence of (unobserved) 

latent variables that cause the variation among cognitive scores. Therefore, in Chapter Three, 

I now describe analyses done, again using the CALM sample, but this time using the tools of 

network science, which estimates interactions among observed variables rather than presuming 

the existence of unobserved entities. Here I use this approach to model intelligence and its 

structural brain correlates (i.e., grey and white matter) as a complex system—coinciding with 

the mutualism theory of cognitive ability (see Chapter One).    
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Chapter Three 

Bridging Brain and Cognition:  

A Multilayer Network Analysis of  

Brain Structural Covariance and General Intelligence  

in the CALM Sample 

 

Chapter Three is available as a preprint (although appears in this thesis in a modified form to 

ensure consistent formatting and thesis coherence): 

Simpson-Kent I. L., Fried E.I., Akarca D., Mareva S., Bullmore E.T., the CALM Team, Kievit 

R. A. (2021). Bridging brain and cognition: A multilayer network analysis of brain structural 

covariance and general intelligence in a developmental sample of struggling learners. 

Accepted, Journal of Intelligence. Preprint: Biorxiv. doi: 10.1101/2020.11.15.383869 

 

Although first-person pronouns are used throughout the chapter, this work is the result of a 

collaborative research project. My contributions to the above publication are:  

1. I led conceptualisation and planning (aided by R. A. Kievit) about the scientific 

hypotheses, analysis methods, and interpretations of the project. 

2. I performed all manuscript analyses (aided by R. A. Kievit, Eiko I. Fried, and S. 

Mareva). 

3. I wrote the first full draft (with input from R. A. Kievit) of the manuscript and led the 

revisions (aided by other co-authors) of the manuscript for upload as a preprint in 

Biorxiv. 

 

 

 

 

https://www.biorxiv.org/content/10.1101/2020.11.15.383869v2
https://www.biorxiv.org/content/10.1101/2020.11.15.383869v2
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Introduction 

In Chapter Two, I took a traditional approach to studying associations between 

intelligence-related measures: structural equation modelling (SEM).  Although the use of SEM 

trees is novel and more data-driven than more widely used SEM methods, it uses a 

confirmatory factor modelling approach, which posits the existence of a latent (unobserved) 

variable that causes variation in the observed scores. However, SEM is not the only conceptual 

or methodological approach to study intelligence and its neural correlates. Other perspectives, 

for example, instead posit direct connections between cognitive domains. In this chapter, I use 

network analysis to study the associations between crystallised and fluid intelligence, 

working memory, and brain structure (cortical volume and fractional anisotropy) in the 

CALM sample (ages 5 – 18 years). Rather than opposing the results of Chapter Two, this 

network model of intelligence (i.e., mutualism) complements them and previous research. 

However, network science conceptualises intelligence as a complex system and uses 

exploratory methods (i.e., partial correlations and community detection), without presuming 

the influence of latent variables.    

In recent years, methods from network analysis have shed new light on both the 

cognitive abilities that make up general intelligence (Kievit et al., 2019; van der Maas et al., 

2017), as well as the brain systems purported to support them (Girn et al., 2019; Seidlitz et al., 

2018). For instance, the mutualism model (van der Maas et al., 2006) was inspired by an 

ecosystem model of prey-predator relations, and states that the positive manifold (Spearman, 

1904), rather than existing in final form since birth, emerges gradually from the positive 

interactions among different cognitive abilities (i.e., reasoning and vocabulary) over time (see 

Kievit et al., 2019, 2017). Hence, the positive manifold (and hence, general intelligence) can 

arise even from originally weakly correlated cognitive faculties. The mutualism model (also 

see van der Maas et al., 2017) therefore highlights the need to both conceptualise traits, 

abilities, or psychological constructs such as general intelligence as complex dynamical 

systems, as well as use appropriate statistical models (i.e., network analysis) to estimate 

relationships among elements of the systems under investigation (Fried, 2020; Fried and 

Robinaugh, 2020). 

For instance, new innovations in network psychometrics (Epskamp et al., 2018) have 

led to a rapid increase in popularity of behavioural network analysis, especially in 
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psychopathology (Borsboom, 2017; Robinaugh et al., 2019). In this framework, psychological 

constructs are theorised as complex systems, whereby relationships (edges) between nodes 

(e.g., item responses on a questionnaire) are estimated using weighted partial correlation 

networks. This use of partial correlations enables the determination of conditional dependencies 

among variables, after controlling for the associations among every other node in the network 

(Epskamp et al., 2018).  

This approach has also recently been used to analyse cross-sectional data on general 

intelligence. For instance, both Kan et al., 2019 (N = 1,800; age range: 16 – 89 years) as well as 

Schmank et al., 2019 (N = 1,112; age range: 12 – 90 years) used a network model approach to 

analyse data from the WAIS-IV cognitive battery (Wechsler, 2008). The network model 

showed better fit to the pattern of intelligence scores compared to a latent variable approach 

(g factor), in support of mutualism. Furthermore, Mareva and Holmes, 2020, in two separate 

samples, one the same group of struggling learners as studied here (CALM) but with fewer 

participants (N = 350), no neuroimaging data, and including tasks not analysed in this study 

(e.g., motor speed and tower achievement), observed links between cognitive abilities and 

learning, especially between mathematics skills and more ‘domain-general’ faculties such as 

backward digit span and matrix reasoning.  

Besides psychology, in neuroscience, network analysis methods have been widely 

used to describe the relations among brain regions, ushering in the field of network 

neuroscience (Bassett and Sporns, 2017; Fornito et al., 2016). Rather than focusing on 

individual brain regions in isolation, the brain is conceived as a complex system of 

interconnected networks that facilitate behavioural functions ranging from sensorimotor 

control to learning. Several influential studies have revealed pervasive properties of brain 

networks that enable adaptive behaviour such as small-world topology (Bassett and Bullmore, 

2006, 2017), modularity (Meunier et al., 2010; Sporns and Betzel, 2016) and ‘rich-club’ 

connector hubs (Heuvel and Sporns, 2011), consistent with an economical trade-off between 

minimising wiring cost and maximising efficiency (e.g., information transfer) (Bullmore and 

Sporns, 2012). Furthermore, in the same sample studied here, Akarca et al., 2020 applied a 

generative network modelling approach to simulate the growth of brain network 

connectomes. The findings demonstrate the possibility of simulating structural networks with 

statistical properties mirroring the spatially embedding of those observed in the real-life 
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brains. The parameters of these generative models were shown to correlate with 

neuroimaging measures not used to train the models (including grey matter measures), 

cognitive performance (including vocabulary and mathematics) and relate to gene expression 

in the cortex. Together these studies point the field toward a better mechanistic understanding 

of the development of human brain structure, function, and their relationship with cognitive 

ability.  

 Despite the success of network approaches in providing unique insights within both 

cognitive psychology and cognitive neuroscience, few studies have integrated them into a so-

called multilayer network paradigm (Bianconi, 2018), which models the relationships among 

variables simultaneously across time (e.g., days, weeks, months, and years) and/or levels of 

organisation (e.g., behaviour and brain  variables). Two studies have recently pushed this 

boundary. Hilland et al., 2020 examined the relations between brain structure (cortical 

thickness and volume) and depression symptoms. They found (via a partial correlation 

network model) that certain clusters of brain regions (i.e., the cingulate, fusiform gyrus, 

hippocampus, and insula) were conditionally dependent with a subset of depression 

symptoms (crying, irritability and sadness). Secondly, in 172 male autistic participants (ages 

10 – 21 years), Bathelt et al., 2020 used ‘network-based regression’ to estimate the relationship 

between the unique variance of both the autism symptom network and functional brain 

connectivity (resting-state fMRI). Moreover, they applied Bayesian network analysis to create 

a directed acyclic graph between subscores of autism symptoms and their neural correlates. 

They found that communication and social behaviour were predicted by their respective 

resting-state MRI neural correlates (termed ‘Comm Brain’ and ‘Social Brain’). 

In Chapter Two, I showed in two large samples (CALM and NKI-Rockland) that the 

variance of general intelligence (Spearman, 1904) and its white matter correlates (fractional 

anisotropy, see Wandell, 2016) were better captured by separate factors (i.e., gc, gf, and 5 of 10 

white matter tracts) rather than a single-factor model of cognition or global white matter (g). 

While factor models have traditionally been used to study intelligence (e.g., Carroll, 1993), in 

the last two decades there has been a rise in use of the statistical tools of network science 

(Barabási, 2016) to show that examining relationships between cognitive abilities can help us 

better understand the development of general intelligence. In this chapter, I use techniques 

from network science (i.e., graphical LASSO, strength centrality, and the Walktrap 
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community detection algorithm) to extend previous work assessing the mutualism model of 

intelligence (Figure 4). I also expand on work in the previous chapter by including grey matter 

(i.e., cortical volume). I conduct these analyses in the CALM sample (behavioural, N = 805; 

cortical volume, N = 246; fractional anisotropy, N = 165, age range: 5 – 18 years). 
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Methods 

Participants: The CALM cohort 

The present cross-sectional sample (behavioural, N = 805; cortical volume, N = 246; 

fractional anisotropy, N = 165; age range: 5 to 18 years) was obtained from the Centre for 

Attention, Learning and Memory (CALM) located in Cambridge, UK (Holmes et al., 2019), 

which has been described in Chapter Two (Participants: The CALM and NKI-Rockland 

cohorts section). 

 

 Cognitive assessments: gc, gf, and working memory 

 

I analysed the same tasks (measures of crystallised and fluid intelligence, and working 

memory) outlined in Chapter Two (Table 1). Furthermore, I included the task Following 

Instructions (mean: 11.2, standard deviation: 4, range: [1, 33], missingness: 6.83%), which was 

not part of the previous study in Chapter Two. This was done to balance the number of 

variables analysed for cognitive and brain structure measures in the multilayer networks (i.e., 

cognition = grey matter = white matter = 10 nodes each). Moreover, doing so helps to prevent 

biased findings by ensuring that the partial correlation estimation procedures (see below) are 

applied across an equal number of nodes for each level of the multilayer networks. Following 

Instructions, a working memory task (Gathercole et al., 2008), requires participants to carry 

out various sequences of actions (touch and/or pick up) involving objects (a box, an eraser, a 

folder, a pencil or a ruler), which are presented in front of them. Participants undertake actions 

sequentially (do X “then” do Y), with increasingly longer instruction sequences, leading to 

increased difficulty. Performance scores denote total number of correct responses. To view 

age trends of the performance scores for the cognitive tasks, see Figure 11. It must be noted 

that, since the present sample size is larger (i.e., 805 vs 551), the descriptive statistics and 

missingness (range: 0.12% to 9.94%) are different for this study. 
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Structural MRI measures: Cortical volume (CV) and fractional anisotropy (FA) 

 

All CALM T1-weighted volume scans and Diffusion-Weighted Images (DWI) 

acquisition protocols, parameters, MRI quality control procedures (to minimise potential 

biases due to subject movement), and steps/pipelines to compute regional CV estimation and 

Figure 11. Cross-sectional scatterplot for cognitive raw scores. Solid lines represent 

linear and polynomial fit while shades indicate 95% confidence intervals. 

Abbreviations: Matrix Reasoning (MR), Peabody Picture Vocabulary Test (Pea), 

Spelling (Spell), Single Word Reading (Read), Numerical Operations (NO), Digit Recall 

(DR), Backward Digit Recall (BDR), Mr. X (MrX), Dot Matrix (Dot), and Following 

Instructions (Ins). Note, that this figure differs from Figure 8 by including a larger 

sample size (805 vs 551) and the Following Instructions task.  



 

66 

 

FA maps were the same as described in Chapter Two (section Structural MRI measures: 

Fractional anisotropy (FA)).  

As the grey matter metric, I used region-based cortical volume (CV, in mm3; N = 246, 

averaged across contralateral homologues), based on the Desikan-Killiany atlas (Desikan et 

al., 2006) and defined as the distance between the outer edge of cortical grey matter and 

subcortical white matter (Fischl and Dale, 2000). Tissue classification and anatomical labelling 

was performed based on the T1-weighted scan using FreeSurfer v5.3.0 software (see 

http://surfer.nmr.mgh.harvard.edu/ for free download and documentation) The technical 

details of these procedures are described in prior publications (Dale et al., 1999; Fischl et al., 

2002, 1999). FreeSurfer morphology output statistics were computed for each ROI, and also 

included cortical thickness and surface area (see Supplementary Material for Chapter Three, 

section Teasing apart the relations of cortical volume to general intelligence: Multilayer 

analysis using cortical surface area and thickness for analyses involving these two metrics). 

I included a subset of 10 cortical volume regions in this study: caudal anterior cingulate 

(CAC), caudal middle frontal gyrus (CMF), frontal pole (FP), medial orbitofrontal cortex 

(MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), superior 

frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal gyrus (SMG), and 

transverse temporal gyrus (TTG). Moreover, for fractional anisotropy (FA, N = 165), a proxy 

measure for white matter integrity (Wandell, 2016), I included 10 regions using the Johns 

Hopkins University DTI-based white matter tractography atlas (see Hua et al. 2008): anterior 

thalamic radiations (ATR), corticospinal tract (CST), cingulate gyrus (CING), cingulum 

[hippocampus] (CINGh), forceps major (FMaj), forceps minor (FMin), inferior fronto-occipital 

fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), 

and uncinate fasciculus (UNC). 

I used these region-based measures to study brain structural covariance (Alexander-

Bloch et al., 2013), which have been used in cross-sectional and longitudinal designs of 

cognitive ability in childhood and adolescence (e.g., Solé-Casals et al., 2019; see Kievit and 

Simpson-Kent, 2021 for a recent review of longitudinal studies). In addition, emerging 

theoretical proposals emphasise the role of networks of brain areas in producing intelligent 

behaviour (e.g., Parieto-Frontal Integration Theory (P-FIT),  Jung and Haier, 2007, and The 

Network Neuroscience Theory of Human Intelligence, Barbey, 2018) rather than individual 

http://surfer.nmr.mgh.harvard.edu/
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regions-of-interest (ROIs) in isolation (e.g., primarily the prefrontal cortex). I selected these 10 

grey matter and 10 white matter ROIs based upon combined evidence from a recent meta-

analysis (Basten et al., 2015) on associations between functional and structural ROIs and 

cognitive ability that further extended the P-FIT theory, but also more recent work involving 

two large cohorts, one in longitudinal analysis of the UK Biobank sample (grey matter, Kievit 

et al., 2018b) and the other using the same (cross-sectional) CALM sample in Chapter Two 

(cognitive data, N = 551; white matter data, N = 165).  

To view age trends of CV and illustrations of ROIs, see Figure 12. For ROI 

visualisations and ages trends of FA, see Figure 9 of Chapter Two. For correlation plots of 

cognitive tasks and neuroimaging measures, see Figure 13.  

 

 

 

Figure 12. Top: Grey matter ROIs based on the DK atlas (cortical volume, N = 246) in 

the left and right hemisphere.  
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Figure 12. Bottom: Cross-sectional scatterplot for bilateral cortical volume. Solid lines 

represent linear and polynomial fit while shades indicate 95% confidence intervals. 

Abbreviations: caudal anterior cingulate (CAC), caudal middle frontal gyrus (CMF), 

medial orbitofrontal cortex (MOF), rostral anterior cingulate gyrus (RAC), rostral 

middle frontal gyrus (RMF), superior frontal gyrus (SFG), superior temporal gyrus 

(STG), supramarginal gyrus (SMG), frontal pole (FP), and transverse temporal gyrus 

(TTG). 
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Figure 13 Top. Correlation plot for cognitive raw scores and bilateral cortical volume 

ROIs. All coefficients shown are Pearson correlations. Blue represents positive 

correlations while red signifies negative correlations among variables. Size of circles 

indicates the magnitude of the association (e.g., larger circle = higher correlation). 

Correlations calculated using pairwise complete observations. Abbreviations: Matrix 

Reasoning (MR), Peabody Picture Vocabulary Test (Pea), Spelling (Spell), Single Word 

Reading (Read), Numerical Operations (NO), Digit Recall (DR), Backward Digit Recall 

(BDR), Mr. X (MrX), Dot Matrix (Dot), Following Instructions (Ins), caudal anterior 

cingulate (CAC), caudal middle frontal gyrus (CMF), medial orbitofrontal cortex 

(MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), 

superior frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal gyrus 

(SMG), frontal pole (FP), and transverse temporal gyrus (TTG). 
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Figure 13 Bottom. Correlation plot for cognitive raw scores and bilateral fractional 

anisotropy ROIs. All coefficients shown are Pearson correlations. Blue represents 

positive correlations while red signifies negative correlations among variables. Size of 

circles indicates the magnitude of the association (e.g., larger circle = higher correlation). 

Correlations calculated using pairwise complete observations. Abbreviations: Matrix 

Reasoning (MR), Peabody Picture Vocabulary Test (Pea), Spelling (Spell), Single Word 

Reading (Read), Numerical Operations (NO), Digit Recall (DR), Backward Digit Recall 

(BDR), Mr. X (MrX), Dot Matrix (Dot), Following Instructions (Ins), anterior thalamic 

radiations (ATR), corticospinal tract (CST), cingulate gyrus (CING), cingulum 

[hippocampus] (CINGh), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus 

(UNC), forceps major (FMaj), and forceps minor (FMin). 



 

71 

 

Statistical analyses: Network analyses and community detection 

All statistical analyses and plots were performed using R (R Core Team, 2020) version 

3.6.3 (“Holding the Windsock”). Network estimation was performed using the packages 

bootnet (version 1.4.3, Epskamp and Fried, 2020) , igraph (version 1.2.6, Amestoy et al., 2020), 

qgraph (version 1.6.5, Epskamp et al., 2020), and networktools (version 1.2.3, Jones, 2020). I 

used these tools to estimate weighted partial correlation networks, which allowed 

determination of conditional dependencies among the cognitive and neural variables. For 

example, in a multilayer network, any partial correlation between node A (e.g., Matrix 

Reasoning) and node B (e.g., the caudal anterior cingulate) is one that remains after controlling 

for the associations among A and B with every other node in the network (e.g., other cognitive 

abilities and cortical volume ROIs). To estimate these networks, I applied Gaussian Graphical 

Models (Pearson correlations) using regularisation (graphical lasso, see Friedman et al., 2008) 

with a threshold tuning parameter of 0.5 and pairwise deletion to account for missingness. 

These methods have been widely used to generate sparser networks by penalising for more 

complex models—thus, decreasing the risk of potentially spurious (e.g., false positive) 

connections and enabling simpler visualisation and interpretation of conditional 

dependencies between nodes (Epskamp and Fried, 2018). I hypothesised that the results 

would show positive partial correlations (in line with mutualism theory) both within 

cognitive (e.g., as observed in Mareva and Holmes, 2020 and Schmank et al., 2019) and within 

neural measures (single-layer networks) as well as between brain-behaviour variables in the 

multilayer networks.  

Age was included as a node in the estimation procedures of all partial correlation 

networks (i.e., edge weights, centrality, network stability, and community detection) but was 

not included in the visualisations of the networks and centrality plots, or in network 

descriptive statistics (i.e., mean, median, and range of edge weights). For a comparison and 

discussion of the use of age (i.e., included in network estimation, regressed out beforehand, 

or removed from dataset before network estimation), see the Supplementary Material for 

Chapter Three section How to deal with age?. 

To assess the statistical interconnectedness or connectivity of cognitive and neural 

nodes relative to their neighbours within the single-layer networks, I estimated node strength, 

a weighted degree centrality measure calculated by summing the absolute partial correlation 
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coefficients (edge weights) between a node and all other nodes it connects to within the 

network. Note that the brain structural covariance networks involve ROIs that are not 

necessarily anatomically connected, preventing certain inferences such as information flow. 

Nodes were classified as central if the magnitude of their strength z-score was positive and 

equal to or greater than one standard deviation above the mean. I do not discuss or interpret 

negative centrality z-score values for the single-layer networks. 

In the multilayer networks, I applied the Walktrap community detection algorithm 

(Pons and Latapy, 2005) to determine in a data-driven manner whether clustering, or 

grouping, of nodes (e.g., cognitive and/or neural) occurred. The Walktrap algorithm assesses 

how strongly related nodes are to each other (that can be due to similarity, e.g., because nodes 

A and B are similar, or it can be because nodes A and B are different but node A has a strong 

impact on node B; see “Topological overlap and missing nodes” of Fried and Cramer, 2017). The 

Walktrap algorithm takes recursive random walks between node pairs and classifies 

communities according to how densely connected these parts are within the network 

(wherever the random walks become ‘trapped’). Walktrap is widely used in the network 

psychometrics literature and, in a Monte Carlo simulation study, was shown to outperform 

other algorithms (e.g., InfoMap) for sparse count networks (e.g., those used in diffusion tensor 

imaging). However, it must be noted that this result was found for networks made up of 500 

nodes or higher (Gates et al., 2016). I also calculated the maximum modularity index value 

(Q), which estimates the robustness of the community partition (Newman, 2006). I interpreted 

values of 0.5 or above as evidence for reliable grouping.  

Instead of traditional absolute strength, for the multilayer networks I calculated bridge 

strength, a novel weighted degree centrality measure originally developed to study 

comorbidity between mental disorders (see Jones et al., 2019 for overview). Bridge strength 

centrality sums the absolute value of every edge that connects one node (e.g., Matrix 

Reasoning) in one pre-assigned community (e.g., cognition) to another node (e.g., caudal 

anterior cingulate) in another pre-assigned community (e.g., brain). Recent simulation work 

has shown that the method can reliably recover true structures of bridge nodes in both 

directed and undirected networks (Jones et al., 2019). Rather than relying on straightforward 

‘brain’ or ‘behaviour’ assignments to classify nodes, I pre-assigned communities for bridge 

strength calculation based on results from the Walktrap algorithm.  
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The presence of bridges between communities (e.g., if nodes from topological distinct 

clusters such as cognition vs brain feature relations) might suggests the existence of 

intermediate endophenotypes (Fornito and Bullmore, 2012; Kievit et al., 2016), and potentially 

identify nodes (both cognitive and neural) that might one day guide intervention studies. 

Nodes were classified as central if the magnitude of their bridge strength z-score was positive 

and equal to or greater than one standard deviation above the mean. I do not discuss or 

interpret negative centrality z-score values for the multilayer networks. 

Finally, I quantified the reliability of the centrality estimates for all single-layer 

(absolute strength of cognitive and brain structural covariance nodes) and multilayer 

networks (bridge strength). To do this, I estimated the correlation stability (CS)-coefficient. 

The CS-coefficient calculates the maximum proportion (out of 2000 bootstraps) of the sample 

that can be dropped out and, with 95% probability, still retain a correlation of 0.7 (correlation 

between rank order of centrality in network estimated on full sample with order of 

subsampled network in smaller N) (Epskamp et al., 2018). A CS-coefficient value of 0.5 is 

considered to be stable. Lastly, also using bootstrapping, I determined the stability of the 

edge-weight coefficients but present these results in the Supplementary Material for Chapter 

Three of this dissertation (section Edge-weight stability analyses).  
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Results 

Single-layer network models (cognitive, cortical volume, and fractional anisotropy) 

The regularised partial correlation (PC) network for the CALM cognitive data is shown 

in Figure 14 (top left). This network shows that all partial correlations are positive, and most 

have small magnitude (mean PC = 0.08, median PC = 0.07, PC range = 0 – 0.63). One edge 

(between Reading and Spelling) was an outlier (PC = 0.63, all others are between 0 and 0.27), 

likely due to close content overlap (verbal ability). Regarding centrality, three nodes emerged 

as strong (positive z-score at or greater than one standard deviation above the mean): (in 

descending order of centrality strength) Reading, Numerical Operations, and Peabody Picture 

Vocabulary Test (Figure 14 top right). Overall, centrality estimates were stable, indicated by a 

high correlation stability (CS)-coefficient of 0.75, revealing that at least 75% of the sample 

could be dropped while maintaining a correlation of 0.7 with the original sample at 95% 

probability.  

Next, I estimated the partial correlation network among the 10 grey matter regions as 

shown in Figure 12 above. All edge weights (mean PC = 0.09, median PC = 0, PC range = -0.15 

– 0.52) of the cortical volume network (Figure 14, middle left) were positive apart from one 

negative path (caudal middle frontal gyrus and frontal pole PC = -0.15). Note, the negative 

path between the caudal middle frontal gyrus and frontal pole might be due to the weak 

correlations between the frontal pole with other grey matter nodes and displaying a steeper 

decrease pattern across age (Figures 12 and 13). Two ROIs emerged as central (in descending 

order of centrality strength): superior temporal gyrus and rostral middle frontal gyrus (Figure 

14, middle right). Similar to the cognitive network, cortical volume centrality was stable (CS-

coefficient = 0.52), indicating that about 52% of the sample could be subtracted to maintain a 

correlation of centrality estimates above 0.7 compared to the full sample. This finding is 

despite the lower sample size compared to the behavioural data (N = 805 for behaviour vs N 

= 246 for cortical volume).  

Finally, similar to the cognitive and the grey matter covariance network, the fractional 

anisotropy network (Figure 14, bottom left) has positive partial correlations with all edge 

weights varying between small and moderate values: mean PC = 0.08, median PC = 0, and PC 

range = 0 – 0.44. Two white matter ROIs displayed centrality (Figure 14, bottom right). These 

included (in descending order) the forceps minor and inferior longitudinal fasciculus. Finally, 
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fractional anisotropy centrality was moderately stable (CS-coefficient = 0.44) indicating that 

about 44% of the sample could be removed while maintaining an association of 0.7 with 95% 

probability. This is possibly due to the much lower sample size (N = 165) compared to the 

cognitive (N = 805) and grey matter (N = 246) networks.  

   

 



 

76 

 

 



 

77 

 

 

Bridging the gap: Multilayer networks 

The regularised partial correlation network analyses for the CALM multilayer 

networks data are shown in Figure 15. Consistent with the pattern found in the single-layer 

networks, the cognitive and grey matter multilayer network (top left of Figure 15) edges are 

mostly positive with small to moderate weights (mean PC = 0.04, median PC = 0, PC range = -

0.12 – 0.64). Comparably, the cognitive and white matter multilayer network (Figure 15, top 

right) had similar edge weight estimates (mean PC = 0.04, median = 0, range = -0.2 – 0.65). 

Finally, combining all measures together (tri–layer network consisting of cognition, grey and 

white matter, bottom centre of Figure 15) produced a network with similar characteristics to 

the bi-layer networks (mean PC = 0.02, median PC = 0, PC range = -0.2 – 0.66). For the bi-layer 

networks, the Walktrap algorithm produced either three (cognition-white matter) or four 

(cognitive-grey matter) clusters that consisted entirely of cognitive or neural nodes except for 

Following Instructions (Ins), which was either separated from the network (cognition-grey 

matter, Q = 0.56, indicating strong modularity) or grouped with a neural node (forceps minor 

of the cognition-white matter network, Q = 0.39, indicating moderate modularity). The result 

for the tri-layer network (Q = 0.25, indicating weak modularity) was more complex with a 

total of 15 communities (Figure 15, bottom centre).    

 Regarding centrality, I report bridge strength (Figure 16). In the cognitive-grey matter 

network, three bridge nodes surfaced (in descending order: superior temporal gyrus, superior 

frontal gyrus, and rostral middle frontal gyrus, Figure 16 top left). In terms of stability, the 

CS-coefficient was 0.20, indicating that the bridge strength estimates were unstable under 

bootstrapping conditions. In the cognitive-white matter bi-layer network, three nodes (in 

descending order: uncinate fasciculus, inferior frontal-occipital fasciculus, and hippocampal 

cingulum) emerged as possible bridge nodes (Figure 16, top right). Moreover, the centrality 

estimates had a CS-coefficient of 0.13, once again suggesting that the bridge strength estimates 

Figure 14. Single-layer partial correlation networks. Top: Network visualisation (spring 

layout, left side) of CALM cognitive data (N = 805). Centrality estimates (z-scores) of all 

cognitive tasks (right). Middle: Network visualisation (spring layout, left side) of CALM 

cortical volume data (N = 246). Centrality estimates (z-scores) of all cortical volume nodes 

(right). Bottom: Network visualisation (spring layout, left side) of CALM fractional 

anisotropy data (N = 165). Centrality estimates (z-scores) of all fractional anisotropy nodes 

(right). Dashed lines indicate mean strength and one standard deviation above the mean. 
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were unstable. Lastly, for the tri-layer network, five nodes displayed positive bridge strength 

equal to or greater than one standard deviation above the mean (Figure 16, bottom centre). 

These included (in descending order): Reading, Peabody Picture Vocabulary Test, superior 

frontal gyrus, Spelling, and Numerical Operations. Much better than the bi-layer networks, 

the tri-layer network bridge strength estimates were moderately stable (CS-coefficient = 0.44).  

Lastly, I re-ran our analyses to test the sensitivity of the main findings (e.g., positive 

partial correlations and central nodes) to potential outliers (defined as ± 4 standard 

deviations). Doing so did not severely alter the partial correlation weights between nodes in 

the networks (see section The possible effect of outliers on major findings of 

Supplementary Material for Chapter Three for detailed comparisons). It must be restated 

that this study’s data comes from an atypical sample, which might influence brain metrics 

even with rigorous quality control procedures. Therefore, despite this discrepancy, the data 

supports brain-behaviour ‘bridges’ in general intelligence.  
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Figure 15. Network visualisations (spring layout) of partial correlation multilayer networks 

for CALM data. Colors indicate groups determined by the Walktrap algorithm (see above). 

Top: Bi-layer networks consisting of cognition and grey matter (left), and cognition and white 

matter (right). Bottom: Tri-layer network consisting of cognition, grey matter and white 

matter (centre).  
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Figure 16. Bridge centrality estimates (z-scores) for multilayer networks. Top: Bi-layer 

networks consisting of cognition and grey matter (left), and cognition and white matter 

(right). Bottom: Tri-layer network consisting of cognition, grey matter and white matter 

(centre). Dashed lines indicate mean strength and one standard deviation above the mean. 
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Discussion 

Summary and interpretation of findings 

In this study, I used network analysis (partial correlations) to examine the 

neurocognitive structure of general intelligence in a childhood and adolescent cohort of 

struggling learners (CALM). For the single-layer networks (Figure 14), I found that cognitive, 

grey matter, and white matter networks contained mostly (if not all) positive partial 

correlations. Moreover, in all single-layer networks, at least two nodes emerged as more 

central than others (as indexed by node strength equal to or greater than one standard 

deviation above the mean), which varied in stability from moderately to highly reliable. In the 

cognitive network, this included two measures of verbal ability (specifically Reading and 

Peabody Picture Vocabulary Test) and crystallised intelligence (i.e., Numerical Operations). 

In the structural brain networks (grey matter cortical volume and white matter fractional 

anisotropy), two nodes each from the grey matter network (superior temporal gyrus and 

rostral middle frontal gyrus) and white matter network (forceps minor and inferior 

longitudinal fasciculus) passed the centrality threshold.  

Furthermore, I extended previous approaches by integrating a cognitive network with 

networks of structural brain data, forming bi- and tri-layer networks (Figure 15). Doing so, I 

observed multiple (both positive and negative) partial correlations between brain and 

behaviour variables. Using bridge strength as a metric, I found that, in the bi-layer networks, 

only neural nodes harboured significant connections across communities (defined by the 

Walktrap algorithm) and levels of organisation (Figure 16, top). In contrast, in the tri-layer 

network, I found support that mostly cognitive nodes connect across different communities 

(Figure 16, bottom). Overall, my results suggest that specific behavioural and neural variables 

serve as ‘bridges’ between the brain and cognition within general intelligence. These variables 

may exert greater influence among nodes. Alternatively, these variables might be more 

influenced by other nodes. However, the literature on drawing inferences from networks to 

the most likely consequences of intervening on the network is complex and rapidly changing, 

(e.g., Dablander and Hinne, 2019; Henry et al., 2020; Levine and Leucht, 2016). 

Each node in the cognitive network corresponded to a single cognitive task (e.g., 

Matrix Reasoning) while partial correlations (weighted edges) between nodes were 

interpreted as compatible with (possible) causal consequences of interactions among cognitive 
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abilities during development. This interpretation is compatible with the mutualism theory of 

cognitive development (van der Maas et al., 2006), whereby cognitive abilities positively 

reinforce each other (e.g., positive partial correlations) over time to produce the positive 

manifold (Spearman, 1904). Mutualism hypothesises that general intelligence emerges from 

causal interactions among abilities rather than a general latent factor  (Fried, 2020; Kan et al., 

2019). Hence, cognition is viewed as a complex system derived from the dynamic relations of 

specific abilities that become more intertwined over development.  

The existence of only positive edges in the cognitive network would be expected under 

a mutualistic perspective (interactions among cognitive variables), which at its essence is a 

network theory of general intelligence. However, longitudinal analyses are needed to further 

substantiate this claim. Initially, it was surprising that two of the three most central nodes (i.e., 

Reading and Peabody Picture Vocabulary Test) relate to verbal ability rather than abilities 

such as fluid intelligence and working memory (Matrix Reasoning and (forward and 

backward) Digit Recall), which are traditionally viewed as having strong causal influences on 

cognitive development (Cattell, 1971). However, an emerging body of literature suggests that 

verbal ability plays a crucial role in cognitive development (e.g., between reading and 

working memory before 4th grade, Peng et al., 2018 and Zhang and Malatesha Joshi, 2020), as 

well as driving the emergence of reasoning (Kievit et al., 2019; also see Gathercole et al., 1999)). 

As for the neural networks (here, grey matter cortical volume and white matter 

fractional anisotropy), individual nodes were comprised of a single ROI. Importantly, I did 

not interpret weighted edges as an index of direct connectivity. Instead, the presence of strong 

associations between these ROIs would be compatible with the hypothesis of coordinated 

development (see Alexander-Bloch et al., 2013), whereby certain brain regions show 

preferential correlations to each other than more peripheral regions over time (e.g., childhood 

to late adolescence) as well as the notion of “rich” (Heuvel and Sporns, 2011) and “diverse” 

(Bertolero et al., 2017) clubs that enable local and global integration. The most central grey 

matter node was the superior temporal gyrus, which has been implicated in verbal reasoning 

(e.g., Khundrakpam et al., 2017). Regarding white matter, the two strongest nodes were the 

forceps minor and inferior longitudinal fasciculus, which while not anatomically close, 

instead represent long-range connections (see de Mooij et al., 2018) that have been linked to 
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mathematical ability (Navas-Sánchez et al., 2014) and visuospatial working memory 

(Krogsrud et al., 2018).  

Finally, I integrated both domains (cognitive abilities and brain metrics) into combined 

multilayer networks (cognition-grey matter, cognition-white matter, and cognition-grey and- 

white matter). Doing so enabled simultaneous comparison and integration across explanatory 

levels within the same analytical paradigm (network analysis) and statistical metrics (partial 

correlations, centrality, and community detection). From this analysis, three observations 

immediately stood out. First, there were multiple partial correlations between cognitive and 

neural nodes (especially in the cognitive-white matter and cognitive-grey matter and- white 

matter networks). Second, compared to the single-layer networks, the multilayer networks 

have more negative partial correlations. Together, these two findings further suggest that 

associations between the brain and cognition are complex as they defy straightforward (e.g., 

only positive and/or one-to-one) relationships and interpretations. However, it should be 

noted that causality (e.g., conditioning on colliders, see Rohrer, 2018 for overview of 

interpretations of correlations in graphical causal models in observational data) becomes even 

more difficult to determine with networks that include multiple levels of organisation (e.g., 

cognition and structural brain covariance). Finally, I found a peculiar role of the cognitive task 

Following Instructions (Ins) within all multilayer networks. For example, in the cognitive-grey 

matter network, Ins had no partial correlations with any other nodes within the network while 

in both the cognitive-white matter and tri-layer network (cognition, grey and white matter) 

Ins only correlated with the forceps minor (FMin), a neural node, and not any of the cognitive 

variables. This might suggest that Following Instructions, traditionally a working memory 

task and often analysed using structural equation modelling, may have distinct psychometric 

properties (e.g., one-to-one mapping) when compared to other cognitive tasks when modelled 

through network science approaches, and/or when adjusted for all shared correlations.   

Further inspection of bridge strength centrality showed an interesting pattern: 

(discounting the one standard deviation cut-off) the neural nodes are stronger than the 

cognitive variables within the multilayer networks, despite there being an equal number of 

cognitive nodes for each brain metric. This is possibly due to the large number of edges 

between them (grey and white matter regions) and both cognitive and other neural nodes. In 

other words, since the neural nodes contain a larger number of connections (partial 
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correlations) across explanatory levels, they display greater bridge strength (bridge strength 

sums inter-network correlations).  

In other ways, the multilayer networks differed. First, in the tri-layer network, the four 

of the five central nodes were cognitive variables while, in the bi-layer networks, the central 

nodes were neural ROIs. Three of these central cognitive nodes in the tri-layer network 

(Reading, Peabody Picture Vocabulary Test, and Numerical Operations) were also found to 

be central in the single-layer cognitive network. This further suggests the importance of 

mathematical and verbal ability in understanding the cognitive neuroscience of general 

intelligence. Secondly, the fact that cognitive nodes were found to be central only in the tri-

layer network suggests that grey and white matter, while related, possibly reveal unique 

information about cognition when combined and analysed together simultaneously.  

However, particularly for the cognition-grey matter bi-layer network, the conclusion 

that the presence of only central neural nodes indicates that these ROIs form strong 

connections ‘between’ brain and cognition might be confounded due to the ten cortical 

volume nodes being clustered into two separate communities. For instance, for the two most 

central regions in this network, the superior temporal gyrus and the superior frontal gyrus, 

the majority of partial correlations bridge between the two grey matter clusters rather than 

the cognitive group. On the other hand, in the cognition-white matter network, the Walktrap 

algorithm produced a more straightforward grouping (besides UNC) of brain and behaviour. 

For this network, the three strongest bridge nodes (the uncinate fasciculus, inferior fronto-

occipital fasciculus, and hippocampal cingulum) show more associations between neural and 

cognitive clusters, which support the conclusion of bridging ‘between’ brain and cognition. 

Lastly, for the tri-layer network, the large number of clusters identified (i.e., 15 including age) 

further complicates the interpretations of the findings. Perhaps the clearest example of this is 

the Peabody Picture Vocabulary Test (Pea), which connects to four separate communities, 

three of which are cognitive nodes. Moreover, the Pea and these three nodes each form 

communities of which they are the sole member. Therefore, before any strong claims can be 

made, these analyses should be conducted using different cognitive batteries (but similar 

cognitive domains) to discern whether this clustering is corroborated. 
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Limitations of the present study 

This study contains several limitations that require caution when interpreting the 

results. First and foremost, these findings are based on cross-sectional data. While adequate 

to help tease apart individual differences in cognition between people, cross-sectional data 

cannot be used to elucidate differences in changes within individuals over time, such as 

during development. Therefore, longitudinal analyses are needed before attempting to make 

strong inferences about the dynamics of these networks. Reiterating this point, a recent study 

using intelligence data (Schmiedek et al., 2020) found that a cross-sectional analysis of the g 

factor of cognitive ability was unable to capture within-person changes in cognitive abilities 

over time. This finding further stresses the necessity to integrate cross-sectional (between-

person) differences and longitudinal (within-person) changes when studying cognition.  

Moreover, as also detailed in Chapter Two, the CALM sample represents an atypical 

sample (Holmes et al., 2019), with participants who consistently score lower on measures of 

attention, learning and/or memory than age-matched controls (see Figure 8 (Level I) of 

Chapter Two for comparison to a typically developing sample). As a result, these analyses 

would need to be replicated in additional (ideally larger) samples with different cognitive 

profiles before the results can be said to generalise. This shortcoming of the present study is 

echoed by the low stability estimates found for the centrality values in the bi-layer networks, 

which might be due to the differences between the sample sizes of the neural data (grey 

matter, N = 246; white matter, N = 165) compared to cognition (N = 805). Interestingly, the tri-

layer network showed moderate bridge strength stability, but also displayed weak 

modularity. Moreover, given that the Walktrap algorithm produced 15 communities in the 

network, which contained only 31 nodes (including age), I further state that this result should 

be interpreted with caution and must be corroborated in larger cohorts (e.g., ABCD study, 

Casey et al., 2018).  

 

 

 

 

 

 



 

87 

 

Summary of the Chapter 

This chapter builds on the findings from Chapter Two, by using a network 

psychometrics approach to understand individual differences in cognitive ability (general 

intelligence) with structural covariance networks derived from structural brain properties 

(i.e., grey matter cortical volume and white matter fractional anisotropy). In doing so, I created 

a network of networks, which differs from multiplex (same nodes, different edge types across 

layers) and multi-slice (same nodes and edge types over time such as in fMRI time-series data) 

networks (see figure 4.1 of Bianconi, 2018). The advantages of applying this approach are 

threefold and complementary. First, it places the brain and behaviour, which often do not map 

onto each other in a simple and reductionist one-to-one fashion, into the same analytical 

paradigm (network analysis). This allows for simultaneous estimation and easier visualisations 

of potential causal links between cognition and structural brain properties, which to my 

knowledge, has only been done in a similar way in two other studies, one involving 

depression (Hilland et al., 2020), the other in autism (Bathelt et al., 2020). Second, it enables 

the use of community detection algorithms to tease apart major clusters of cognitive abilities, 

which could help pinpoint potential intervention targets (e.g., using cognitive training and/or 

transcranial magnetic stimulation). Lastly, it aids in establishing a coherent framework for 

theory building, which has been lacking in both the neuroscience (Levenstein et al., 2020) and 

psychological (Fried, 2020) literature, by treating both the brain (algorithmic) and behaviour 

(computational) as equally important levels of analysis to study (Marr and Poggio, 1976), and 

attempting to more directly translate findings from one level to the other.  

 In Chapter Four, I finally overcome a key limitation of the past two empirical chapters: 

the lack of longitudinal data. In the IMAGEN study (Schumann et al., 2010), I use longitudinal 

structural equation modelling to examine how brain-behaviour relations change over time 

from mid-adolescence to early adulthood (ages 14 to 22 years). By doing so I statistically test 

for evidence in support of the structural scaffolding hypothesis mentioned in Chapter One 

(Figure 7, also see Kievit and Simpson-Kent, 2021). 
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Chapter Four 

Longitudinal Analyses of Individual Differences and 

Change between Human Cortical Grey Matter Structure 

and Measures of Decision-making, Risk-related 

Behaviours, and Spatial Working Memory from 

Adolescence to Early Adulthood in the IMAGEN Study 

 
Chapter Four is in preparation for submission to a journal for publication and includes 

additional co-authors. 

 

Although first-person pronouns are used throughout the chapter, this work is the result of a 

collaborative research project. My contributions to this study are:  

1. I led conceptualisation and planning (aided by R. A. Kievit) about the scientific 

hypotheses, analysis methods, and interpretations of the project. 

2. I performed all manuscript analyses (aided by R. A. Kievit). 

3. I wrote the first full draft (with input from R. A. Kievit) of the original manuscript 

draft. 
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Introduction 

In Chapters Two and Three, I analysed cross-sectional data in two samples (i.e., CALM 

and NKI-Rockland) using structural equation modelling (SEM) and network analysis, 

respectively, to tease apart the brain-behaviour relationships between brain structure and 

measures of intelligence in childhood and adolescence. However, a major limitation of these 

analyses was the lack of repeat (longitudinal) assessments to not only examine how these 

variables differ between individuals, but also how they change within individuals over time. 

Hence, in the final empirical chapter of this thesis, I will describe longitudinal analyses used 

to investigate the structural scaffolding hypothesis of human intelligence (see Figure 7). 

Specifically, I use latent growth curve modelling to estimate intercept and slope associations 

between grey matter structure (i.e., cortical surface area, thickness, and volume) and 

behavioural performance (here measured by decision-making, risk-related behaviours, and 

spatial working memory) from mid-adolescence to early adulthood (ages 14 to 22 years), all 

performed in the IMAGEN study.    

Adolescence, defined as the developmental period between childhood and adulthood 

(e.g., ages 10 and 24 years, Sawyer et al., 2018), is marked by distinct changes in biological (i.e., 

physical maturation resulting from pubertal hormones), cognitive (e.g., increase in risky 

behaviours more likely to result in injury or death, see Eaton et al., 2006), and social (e.g., 

advanced levels of schooling such as high school and undergraduate studies) functioning. 

Moreover, both cross-sectional and longitudinal evidence has found associations between 

adolescence and developmental differences in brain structure such as synaptic pruning 

(Huttenlocher, 1990), white matter microstructure (Simmonds et al., 2014) and volume 

(Vijayakumar et al., 2018), and grey matter metrics such as cortical surface area, thickness, and 

volume (Becht and Mills, 2020; Ducharme et al., 2015; Giedd et al., 1999; Tamnes et al., 2017; 

Vijayakumar et al., 2016).  

    Furthermore, differences in adolescent brain structure are related to various 

cognitive and affective functions ranging from decision-making and risk-related behaviours 

(Steinberg, 2008) and social cognition (i.e., the social brain, see Blakemore, 2008 and Andrews 

et al., 2021) to intelligence measures (Ferrer, 2018; Ritchie et al., 2019; Wendelken et al., 2017). 

For example, in a previous release of the IMAGEN cohort (also used here, see Schumann et 

al., 2010), Ritchie et al., 2019 investigated baseline and rate of change (slope) relationships 
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between a general factor of cognitive ability (obtained by extracting the first component of a 

battery of CANTAB tasks) and measures of cortical brain structure (i.e., total surface area, 

mean cortical thickness, and grey matter volume). Using latent change score modelling (Kievit 

et al., 2018a), they observed that the general cognitive ability factor (based on CANTAB tasks, 

see Haring et al., 2015) at baseline (age 14 years) had significant associations with surface and 

volume, but not cortical thickness. Moreover, higher scores on the baseline CANTAB factor 

predicted more rapid cortical thinning and volume loss between 14 and 19 years. In contrast, 

baseline brain structure did not significantly correlate with change/slope of the general 

CANTAB factor.  

A recent review of developmental associations between brain structure and 

intelligence from childhood to early adulthood found that longitudinal studies (i.e., at least 

two time points) that combine both brain structure and intelligence-related measures are 

scarce, with about 30 total studies to date (see Table 7.1 and Figure 7.2 of Kievit and Simpson-

Kent, 2021). Furthermore, most of these studies have been published within the last five years, 

indicating that this approach is very much in its infancy. Although only a modest number of 

studies exist, several patterns emerged: In multiple studies, baseline brain structure (e.g., grey 

matter cortical thickness and white matter fractional anisotropy) significantly predicted the 

rate of change in cognitive performance over time (Ferrer, 2018; Wendelken et al., 2017). In 

other words, individuals with ‘better’ brain structure such as greater white matter integrity 

on average also showed larger gains (in children and adolescents) than individuals with lower 

scores on structural brain imaging metrics. This pattern, termed ‘structural scaffolding’, 

suggests that the structural integrity of the brain at a previous time point lays the foundations 

for later changes in cognition over time. On the other hand, it was also found that baseline 

cognitive scores significantly predict changes in brain structure over time (e.g., Ritchie et al., 

2019). This is referred to as ‘adaptive reorganisation’. Lastly, ‘correlated change’ could also 

exist between the slopes of behavioural performance and brain structure such that changes in 

one of these measures are correlated. 

The purpose of the present study was to further investigate structural scaffolding, as 

well as adaptive reorganisation and correlated change from adolescence to early adulthood 

(ages 14 – 22 years). In the IMAGEN consortium, I fit latent growth curve models (Duncan 

and Duncan, 2004) to estimate the baseline and longitudinal associations between measures 
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of three psychometric domains (decision-making, risk-related behaviours, and spatial 

working memory), and three metrics of cortical brain structure (i.e., surface area, thickness, 

and volume). In contrast to my hypothesis, I found evidence for adaptive reorganisation but 

not structural scaffolding. Furthermore, findings suggested that there were no correlated 

changes between behavioural and brain structure slopes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 

 

Methods 

Participants: The IMAGEN study 

Participants from the present study were obtained from the IMAGEN study 

(Schumann et al., 2010), a longitudinal (four time points, three of which include neuroimaging 

and are analysed in this study), multi-centre (research sites are located in Berlin, Dresden, 

Dublin, Hamburg, London, Mannheim, Nottingham, and Paris) consortium formed to study 

reinforcement-related behaviour in both typical and atypical brain function associated with 

psychopathology. For this study, I included participants across three time points (waves) from 

middle adolescence to early adulthood (wave 1 ≈ 14 years old, N = 2072; wave 2 ≈ 19 years old, 

N = 1436; wave 3 ≈ 22 years old, N = 1256). I did not include the first follow up after baseline 

in my analyses because neuroimaging data were not collected during this assessment. 

 

Cognitive assessments:  

Decision-making, risk-related behaviours, and spatial working memory 

Previous studies tend to focus on more narrow cognitive domains. However, this 

approach might fail to discover broader behavioural patterns of change, as well as specific 

associations between behavioural domains (see Table 4) and different brain metrics (Figure 

18). Therefore, here I examine a broader sample of eight measures, which I group descriptively 

into three behavioural domains. First, as representative of classic intelligence-type tasks, I 

used two spatial working memory measures (Between Errors and Strategy). Beyond standard 

general cognitive ability measures, I also incorporated measures of decision-making (Delay 

Aversion, Deliberation Time, and Quality of Decision-making), and risk-related behaviours 

(Overall Proportion Bet, Risk Adjustment, and Risk Taking). These will allow me to compare 

and contrast the neurocognitive development of intelligence and other domains. See Table 4 

for descriptions and summary statistics of behavioural measures for all three waves. 

Behavioural measures originated from the from the Cambridge Neuropsychological 

Test Automated Battery (CANTAB, Haring et al., 2015), which includes spatial working 

memory and the Cambridge Gambling Task (CGT, renamed Cambridge Guessing Task for 

the IMAGEN study, Deakin et al., 2004; Rogers et al., 1999), which contained the measures of 

decision-making and risk-related behaviours.  
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During the spatial working memory portion of CANTAB, participants are presented 

with varying numbers of coloured boxes shown on a screen. The goal of this task is to (via 

process of elimination) find the boxes that contain a yellow token inside them and use those 

tokens to fill up an empty column positioned on the right-hand side of the screen. Difficulty 

(more boxes to choose from) increases until up to 12 boxes at a time are displayed for 

participants to search and pick from. Over successive trails, both the colour and location of 

the boxes are changed to inhibit stereotyped search strategies used for selection. 

For the Cambridge Gambling/Guessing Task (CGT), participants are presented with a 

row of ten boxes (located at the top of a screen), with some coloured in blue while the others 

are coloured in red. One of these boxes contains a yellow token, which is concealed inside. 

Across trials, the ratio of red to blue boxes changes but, in every trial, one box (either blue or 

red) always contains a yellow token. In each trial, participants select the box colour they think 

contains the token. Participants are also given 100 points at the start of the task, a proportion 

of which they bet (by pressing a button when the value displayed on the screen matches the 

amount they wish to bet) per decision on each trial. The bet value counter increases 

(ascending) or decreases (descending) depending on the trial and points are added or 

subtracted for correct (yellow token present in box) or incorrect (wrong box colour choice) 

responses, respectively.       

Notably, for both spatial working memory measures, Between Errors and Strategy, 

and Delay Aversion (decision-making), higher scores designate poorer performance. For the 

other tasks, higher scores either indicate better performance (i.e., Quality of Decision-making) 

or their interpretations are ambiguous regarding the magnitude of the score (i.e., Deliberation 

Time, Overall Proportion Bet, Risk Adjustment, and Risk Taking). See Figure 17 for age trends 

of the behavioural variables analysed as a part of this study.  

 

Behavioural 

Domain 
Measure Descriptions Mean (sd) [range] Missing Data Task 

Decision-making 

 

 

Delay Aversion: difference 

(ascending vs descending) in 

proportion a participant bet 

across trial conditions.  

Wave 1: 0.24 (0.14) [-0.20, 0.70] 

Wave 2: 0.19 (0.14) [-0.13, 0.65] 

Wave 3: 0.16 (0.13) [-0.20, 0.60] 

Wave 1: 18.82% 

Wave 2: 34.26% 

Wave 3: 42.65% 

CGT 
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 Deliberation Time: average 

time taken by a participant to 

choose a box colour (red or 

blue). 

Wave 1: 2.00 (0.56) [0.74, 4.15] 

Wave 2: 1.60 (0.42) [0.73, 3.03] 

Wave 3: 1.52 (0.43) [0.74, 3.67] 

Wave 1: 19.66% 

Wave 2: 35.19% 

Wave 3: 42.51% 

CGT 

Quality of Decision-making: 

average proportion of trials 

whereby a participant chose 

the box colour (red or blue) 

containing the yellow token 

(correct response).   

Wave 1: 0.94 (0.08) [0.66, 1.00] 

Wave 2: 0.96 (0.05) [0.75, 1.00] 

Wave 3: 0.96 (0.06) [0.55, 1.00] 

 

Wave 1: 20.12% 

Wave 2: 34.77% 

Wave 3: 41.77% 

 

CGT 

Risk-related 

Behaviours 

Overall Proportion Bet: 

average proportion a 

participant bets across all 

trials.  

Wave 1: 0.50 (0.13) [0.09, 0.89] 

Wave 2: 0.49 (0.12) [0.14, 0.83] 

Wave 3: 0.52 (0.12) [0.11, 0.91] 

Wave 1: 18.59% 

Wave 2: 33.43% 

Wave 3: 41.77% 

CGT 

Risk Adjustment: degree to 

which participant betting 

behaviour was influenced by 

the box ratio (red vs blue). 

Hence, this measure gauges a 

participant’s tendency to 

make higher or lower bets 

based on which box colour is 

likely to be favourable 

(contains yellow token) or 

unfavourable (no yellow 

token), respectively, on a 

given trial.    

Wave 1: 1.52 (0.96) [-1.02, 4.42] 

Wave 2: 1.90 (0.98) [-1.04, 4.77] 

Wave 3: 1.99 (1.00) [-0.82, 4.83] 

 

 

Wave 1: 18.64% 

Wave 2: 33.47% 

Wave 3: 41.77% 

 

 
CGT 

Risk Taking: average 

proportion of total points a 

participant bets on trials 

when they chose the most 

likely outcome. 

Wave 1: 0.54 (0.14) [0.13, 0.95] 

Wave 2: 0.54 (0.12) [0.17, 0.90] 

Wave 3: 0.57 (0.13) [0.11, 0.90] 

Wave 1: 18.54% 

Wave 2: 33.43% 

Wave 3: 41.77% 

 

CGT 

Spatial Working 

Memory 

 

 

Between Errors: a measure of 

the tendency (i.e., number of 

times) of participants to go 

back to boxes previously 

found to contain a yellow 

token.  

Wave 1: 19.40 (13.64) [0, 62] 

Wave 2: 10.46 (10.12) [0, 47] 

Wave 3: 11.75 (10.94) [0, 49] 

 
 

Wave 1: 4.64% 

Wave 2: 53.69% 

Wave 3: 42.70% 

  

CANTAB 
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Strategy: quantifies how 

often (i.e., number of times) 

participants began a new 

search by selecting a different 

box and, therefore, deviating 

from a more efficient 

‘predetermined sequence’ of 

revisiting a box where a 

yellow token was previously 

found.  

Wave 1: 31.28 (5.43) [18, 46] 

Wave 2: 27.66 (6.20) [18, 45] 

Wave 3: 27.74 (6.13) [10, 46] 

Wave 1: 3.94% 

Wave 2: 52.67% 

Wave 3: 41.86% 

CANTAB 

 

Table 4. Behavioural domains, descriptions, summary statistics, missingness, and test 

battery of IMAGEN behavioural data across all three waves (ages 14 – 22 years) used 

in this study. Descriptions of measures are paraphrased from Cacciamani et al., 2018 

and Flouri et al., 2019. 
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Figure 17 Top. Spaghetti plots showing (first half of) age trends of IMAGEN 

behavioural data across all three waves (ages 14 – 22 years).   
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Figure 17 Bottom. Spaghetti plots showing (second half of) age trends of IMAGEN 

behavioural data across all three waves (ages 14 – 22 years).   
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Structural MRI measures: Cortical surface area, thickness, and volume 

The IMAGEN study neuroimaging data were obtained on the 3T MRI scanners from 

four different manufacturers (Bruker, Ettlingen, Germany; General Electrics, Chalfont St 

Giles, UK; Philips, Best, The Netherlands; and Siemens, Munich, Germany) at eight different 

European locations (i.e., Berlin, Dresden, Dublin, Hamburg, London, Mannheim, 

Nottingham, and Paris). Scanning protocol parameters, particularly those related to image 

contrast or signal-to-noise ratio were synchronised (held constant) across manufacturers at all 

acquisition sites. The 3D T1-weighted images were acquired using a 3D magnetisation-

prepared rapid acquisition gradient echo (MPRAGE) sequence with 1.1 millimetre (mm) 

isotropic image resolution, and is based on the ADNI protocol (see Jack et al., 2008) with the 

following parameters: Repetition Time (TR) = 2300 milliseconds (ms); Echo Time (TE) = 2.80 

ms; Inversion Time (TI) = 900 ms; flip angle = 8 – 9 degrees; voxel dimensions = 1.1 mm 

isotropic. All segmentation of structural MRI data was performed with FreeSurfer version 

5.3.0 (see http://surfer.nmr.mgh.harvard.edu). For details about quality control measures, see 

Supplementary Tables 3 and 4 of Schumann et al., 2010.  

The neural data used in this study consisted of three cortical grey matter metrics: 

cortical surface area, thickness, and volume. Regions-of-interest (ROIs) were derived from the 

Desikan-Killiany atlas (Desikan et al., 2006). Rather than incorporating whole-brain grey 

matter cortical structure into the analyses, I instead selected a subset of 10 cortical regions (see 

top Figure 12 from Chapter Three for visualisation) for this study (caudal anterior cingulate, 

caudal middle frontal gyrus, frontal pole, medial orbitofrontal cortex, rostral anterior 

cingulate gyrus, rostral middle frontal gyrus, superior frontal gyrus, superior temporal gyrus, 

supramarginal gyrus, and transverse temporal gyrus). These ROIs were selected based on a 

meta-analysis on functional and structural correlates of intelligence (Basten et al., 2015), as 

well as from previous studies where evidence was found for an important role of these regions 

in predicting and/or correlating with performance on tests of intelligence (Kievit et al., 2018b; 

also see Chapter Three). I then calculated the average for these 10 ROIs across both 

hemispheres to create a global mean bilateral estimate of grey matter cortical structure in this 

network of regions (referred to from here on as Surface Area, Thickness, and Volume). I 

speculated that, given these 10 regions have been found to robustly correlate with intelligence, 

they may also play a role in other abilities involved in behaviour/cognition such as decision-

http://surfer.nmr.mgh.harvard.edu/
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making, risk-related behaviours, and spatial working memory. See Figure 18 for age trends of 

the neural measures used in this study.   

 

 

 

Figure 18. Spaghetti plots showing age trends of IMAGEN neural (grey matter 

structure) data across all three waves (ages 14 – 22 years).   
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Statistical analyses: Latent growth curve models 

I used latent growth curve modelling (Duncan and Duncan, 2004), a longitudinal class 

of structural equation modelling techniques (Kline, 2015), which allows the estimation of 

trajectories (i.e., intercepts and slopes) and associations (i.e., variances and covariances) of the 

behavioural and brain structure measures across the three time points (age 14, 19, and 22 

years). Since, by definition, unobserved/latent variables (LVs) cannot be observed directly, the 

statistical properties (i.e., intercepts, slopes, and variances) of psychological and neural LVs 

are estimated through observed/manifest variables such as behavioural and brain structure 

measures.   

To estimate the latent growth curve models, I used the lavaan package (version 0.6-6, 

see Rosseel, 2012) of the R language (R Core Team, 2020). I implemented two variants of these 

models: linear (Figure 19 left) and basis (Figure 19 right) models. In the linear model, change 

(slope) is specified to increase in equal amounts (here, 0.25 per year) for every year between 

time points/waves of data (t2 – t1 = 5 years; t3 – t2 = 3 years). In contrast, the basis model 

assumes that change in slope is nonlinear. In terms of model specification, in the basis model 

the second wave (age 19) is freely estimated (instead of being set to 1.25), with the first and 

third wave being constrained to 0 and 2, respectively, as in the linear model. If, based on a 

likelihood ratio test, the basis model outperforms the linear model, it would suggest that, from 

mid-adolescence to early adulthood (ages 14 – 22 years), participants changed/increased at a 

rate faster, or more slowly, than would be expected if the growth was equally distributed at 

each year.  

Prior to fitting models, I removed outliers (defined as ± 3 standard deviations from the 

mean) for both behavioural and neural data. I repeated this procedure for Deliberation Time 

after noticing additional outliers when plotting the data. To account for data missingness and 

deviations from multivariate normality, I used robust full information maximum likelihood 

estimator (FIML, see Enders, 2001). I assessed overall model fit using the robust estimates of 

chi-squared test, the comparative fit index (CFI), the root mean square error of approximation 

(RMSEA) with its confidence interval, and the standardised root mean squared residuals 

(SRMR) (Schermelleh-Engel et al., 2003). Interpretation of model fit was defined as: CFI 

(acceptable fit 0.95 – 0.97, good fit > 0.97), RMSEA (acceptable fit 0.05 – 0.08, good fit < 0.05), 

and SRMR (acceptable fit 0.05 – 0.10, good fit < 0.05). Moreover, I compared models (linear vs 
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basis) using the likelihood ratio test, which determines whether the complexity of the basis 

model leads to a sufficient improvement in fit. Additionally, I examined the Akaike 

information criterion (AIC, see Akaike, 1998) and Bayesian information criterion (BIC, see 

Schwarz, 1978).  

For all models I allowed the residual variance of time point 2 (around age 19) to be 

unique (whereas time points 1 and 3 were constrained to be equal) to achieve proper solutions. 

Furthermore, fitting some univariate models led to convergence issues (e.g., negative latent 

variable slope variances). For these models, I incorporated necessary model restrictions (e.g., 

setting slope to be positive) to achieve proper solutions (e.g., no Heywood cases). Lastly, the 

best fitting models from the univariate model selection were used in the bivariate models (i.e., 

brain and behaviour combined). For the bivariate models, I also incorporated model 

restrictions only where necessary (as with the univariate models). All these modifications 

were made solely to achieve proper fit, rather than based on other criteria (e.g., parameters of 

interest). 

I evaluated five hypotheses using latent growth curve modelling: 

1. Participants will change (i.e., increase or have a non-zero slope) in decision-

making, risk-related behaviour, spatial working memory, and cortical 

brain structure from mid-adolescence (age 14) to early adulthood (age 22). 

2. These changes will not be fully linear (i.e., a basis model will outperform a 

linear model). 

3. There will be significant (p < .05) individual differences among participants 

in mean and variances of baseline (intercept) and change (slope) estimates. 

4. Intercepts and slopes within the same variables will be significantly 

correlated. This will be the case for both behavioural and brain variables. 

The direction of this association was not specified before analyses were 

conducted. 

5. There will be ubiquitous covariance between brain structure slope (e.g., 

Surface Area, Thickness, and/or Volume) and change in behavioural 

performance, providing further longitudinal evidence for the structural 

scaffolding hypothesis (Figure 20). 
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Basis Model Linear Model 

Figure 19. Left: Example of linear univariate latent growth curve model. Right: Example 

of basis/nonlinear univariate latent growth curve model. Circles and squares represent 

latent (LV) and manifest (MV) variables, respectively. Single and double-headed 

arrows indicate factor loadings (intercepts and slopes) and covariances, respectively. 

Residual variances are also estimated in these models but are not shown for easier 

illustration. 
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Figure 20. Example of bivariate latent growth curve model illustrating theorised 

longitudinal changes in brain-behaviour relationships (adaptive reorganisation, structural 

scaffolding, and correlated change) across development. Est. = slope estimate at time 

point/wave 2 (1.25 for linear model, freely estimated for basis model). Residual variances 

are also estimated in these models but are not shown for easier illustration.  

 

Bivariate Latent Growth Curve Model: Longitudinal Changes in Brain-Behaviour 

Relationships 
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Results 

Univariate models show that most behavioural and all cortical grey matter structural 

measures change nonlinearly from mid-adolescence to early adulthood 

First, I fit univariate latent growth curve models, separately for each behavioural 

measure and grey matter metric. For each behavioural domain and brain metric, I compared 

a linear growth model with a basis (nonlinear) model, where the slope factor loading of the 

middle time point (i.e., age 19) is freely estimated. If developmental change is truly linear, the 

penalty for the complexity (estimated using the AIC and BIC) of the basis model will indicate 

that the linear model is preferred. If, however, change is nonlinear, such that change is more 

(or less) rapid between ages 14 and 19 than between 19 and 22 (or vice versa), then the basis 

model will be preferred. 

I found that the basis model outperformed the linear model for most behavioural 

measures (Between Errors: χ2∆ = 87.16, df∆ = 1, AIC∆ = 179.20, BIC∆ = 173.50, p < .001; Delay 

Aversion: χ2∆ = 5.90, df∆ = 1, AIC∆ = 3.54, BIC∆ = 2.08 (Note: the linear model had a lower BIC, 

suggesting a small benefit of the linear model), p < .05; Deliberation Time: χ2∆ = 63.06, df∆ = 1, 

AIC∆ = 89.15, BIC∆ = 83.53, p < .001; Quality of Decision-making: χ2∆ = 29.26, df∆ = 1, AIC∆ = 

81.60, BIC∆ = 76.00, p < .001; Risk Adjustment: χ2∆ = 10.18, df∆ = 1, AIC∆ = 10.50, BIC∆ = 4.90, 

p < .05; Strategy (χ2∆ = 31.42, df∆ = 1, AIC∆ = 40.40, BIC∆ = 34.70, p < .001). All nonlinear models 

had good fit (Table 5). Exceptions to this trend of nonlinear change in behaviour included 

Overall Proportion Bet (χ2∆ = 1.12, df∆ = 1, AIC∆ = 0.59, BIC∆ = 6.22, p > .05; I chose the linear 

model as the winning model since it had better overall fit, and a lower AIC and BIC), and Risk 

Taking (χ2∆ = 2.07, df∆ = 1, AIC∆ = 0.59 (the basis model had a lower AIC), BIC∆ = 5.04 (the 

linear model had a lower BIC), p > .05; I chose the linear model as the winning model since it 

had better overall fit, and a lower BIC). All these models also fit well to the behavioural data 

(Table 5).  

Behavioural slope estimates (see Figure 21 left) showed substantial evidence for 

change during adolescence (i.e., from age 14 until age 22, with all slopes showing a significant 

mean intercept (all p < .001)). Notably, risk-related behaviours (here measured by Overall 

Proportion Bet, Risk Adjustment, and Risk Taking) was the only construct where the model 

fit revealed mixed results in relation to the shape of their trajectories (linear or nonlinear). For 

instance, Risk Adjustment was the only risk-related measure that exhibited nonlinear slope 
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increases from the first to third wave, while Overall Proportion Bet and Risk Taking grew 

linearly. Between Errors displayed the largest increase between waves 1 and 2 of any 

behavioural measure (slope factor loading estimate at wave 2 (age 19) = 2.28; second highest 

estimate: Quality of Decision-making = 1.85, also at age 19; third highest estimate at age 19: 

Strategy = 1.84).  

Together, these findings overall support hypothesis 1 that behavioural performance in 

decision-making, risk-related behaviours, and spatial working memory changed (particularly 

increased) from mid-adolescence (age 14) to early adulthood (age 22). Moreover, these 

changes in behaviour tended to be nonlinear (supporting hypothesis 2), with exceptions for 

two risk-related behaviours (Overall Proportion Bet and Risk Taking). This suggests that 

adolescents change linearly in managing risk as they age into early adulthood.  

In terms of cortical grey matter structure, the pattern of change was consistent (Table 

5 and Figure 21 right): the basis model outperformed the linear model for each brain metric 

(Surface Area: χ2∆ = 30.36, df∆ = 1, AIC∆ = 183.71, BIC∆ = 178.06, p < .001; Thickness: χ2∆ = 

63.23, df∆ = 1, AIC∆ = 60.44, BIC∆ = 54.79, p < .001; Volume: χ2∆ = 83.77, df∆ = 1, AIC∆ = 212.70, 

BIC∆ = 207.10, p < .001). This indicated that brain maturation changed nonlinearly (i.e., 

decreased except for Surface Area, which increased over time, see Figure 18) from mid-

adolescence to early adulthood, thereby further supporting hypotheses 1 and 2, this time for 

neural measures.   

 

Measure Model χ2 df CFI RMSEA SRMR AIC BIC 

Between Errors 

 

Linear*** 121.16 2 .739 .205 [.175 .237] .127 32971.790 33011.401 

Basis .66 1 1.000 .000 [.000 .000] .008 32792.618 32837.888 

Delay Aversion 

 

Linear** 10.10 2 .965 .045 [.021 .075] .026 -5091.057 -5051.699 

Basis* 4.35 1 .984 .043 [.009 .088] .018 -5094.599 -5049.618 

Deliberation 

Time 

 

Linear*** 76.24 2 .823 .157 [.128 .188] .078 5358.397 5397.732 

Basis** 9.15 1 .982 .071 [.034 .115] .027 5269.249 5314.203 

Overall 

Proportion Bet 

 

Linear*** 32.09 2 .954 .089 [.064 .118] .038 -6574.895 -6535.516 

Basis*** 36.97 1 .954 .126 [.091 .164] ┼ .037 -6574.309 -6529.305 
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Quality of 

Decision-making 

 

Linear*** 45.45 2 .883 .141 [.107 .178] .061 -12234.723 -12195.412 

Basis .76 1 1.000 .000 [.000 .000] .006 -12316.315 -12271.388 

Risk Adjustment 

 

Linear** 12.30 2 .988 .053 [.027 .082] .022 11515.535 11554.904 

Basis 1.01 1 1.000 .000 [.000 .058] ┼ .006 11505.007 11550.000 

Risk Taking 

 

Linear*** 33.30 2 .956 .092 [.066 .120] .038 -6117.493 -6078.120 

Basis*** 35.76 1 .957 .127 [.093 .165] ┼ .037 -6118.075 -6073.078 

Strategy 

 

Linear*** 40.10 2 .945 .099 [.074 .127] .051 26912.742 26952.390 

Basis 1.65 1 .999 .013 [.000 .061] ┼ .010 26872.345 26917.656 

Surface Area 

 

Linear*** 78.08 2 .939 .241 [.197 .289] .043 -2151.555 -2112.014 

Basis*** 211.71 1 .984 .175 [.140 .212] ┼ .020 -2335.264 -2290.074 

Thickness 

 

Linear*** 78.53 2 .914 .134 [.109 .160] .060 -7071.839 -7032.242 

Basis*** 15.26 1 .984 .081 [.049 .120] ┼ .027 -7132.284 -7087.029 

Volume 

 

Linear*** 133.11 2 .891 .240 [.207 .276] .083 10442.303 10481.877 

Basis*** 28.27 1 .986 .122 [.086 .163] .032 10229.578 10274.806 

 

Table 5. Goodness-of-fit indices for linear and basis models of behavioural measures and 

brain structure (grey matter) metrics. χ2 = Chi-squared, df = degrees of freedom, CFI = 

Comparative Fit Index, RMSEA = Root Mean Square Error of Approximation, SRMR = 

Standardised Root Mean Residual, AIC = Akaike Information Criterion, BIC = Bayesian 

Information Criterion, denotes the best-fitting model, * p < .05, ** p < .01, *** p < .001., ┼ 

indicates that robust estimate could not be properly calculated. 
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Univariate model estimates show that participants significantly differed in  

means and variances for intercepts (baseline) and slopes (rates of change)  

Next, I inspected the means and variances for the intercepts and slopes of the 

univariate models. This revealed (see Table 6) that participants significantly (all p < .001 except 

for Strategy slope variance) differed from each other at both baseline levels (intercepts, age 14 

years) and rate of change/slopes (ages 14 – 22 years). This occurred for both the means (except 

for Surface Area mean slope, p > .05) and variances, indicating that individuals not only began 

assessment at different behavioural and neural levels, but they also showed patterns of change 

that varied from each other across waves. Lastly, mean intercept-slope covariances showed 

consistently significant (besides Strategy) and negative correlations, suggesting that, the lower 

participants ‘started off’ in behavioural performance or the larger initial brain structure, the 

more they ‘gained’ (regardless of whether change specified an improvement or a decline) 

Figure 21. Left: Slope parameter estimates for the winning (linear or basis) univariate 

behavioural latent growth curve models. Note, Quality of Decision-making and 

Strategy show substantial overlap in this plot since their slope estimates at age 19 are 

1.846 and 1.836, respectively. Right: Slope parameter estimates for the univariate brain 

structure (grey matter) latent growth curve models, where the basis model was always 

preferred. Horizontal dashed lines indicate the slope estimate (1.25) for linear growth 

at wave 2 (age 19).  
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during development (from 14 to 22 years). This pattern is commonly found and taken to reflect 

a ceiling or floor effect of the nearing end of maturation, as well as regression to the mean due 

to measurement error. Taken together, these results support hypotheses 3 and 4.   

 

Measure Model 
Mean 

Intercept  

Mean 

Slope  

Intercept 

Variance 

Slope 

Variance 

Standardised 

(Mean) 

Intercept-Slope 

Covariance 

Between Errors Basis 19.484*** -3.610*** 131.539*** 10.531*** -.735*** 

Delay Aversion Basis .244*** -.038*** .011*** .003*** -.665*** 

Deliberation Time Basis 2.007*** -.237*** .216*** .031*** -.767*** 

Overall Proportion 

Bet 
Linear .491*** .011*** .011*** .002*** -.527*** 

Quality of 

Decision-Making 
Basis .937*** .013*** .004*** .001*** -.698*** 

Risk Adjustment Basis 1.522*** .215*** .580*** .082*** -.304* 

Risk Taking Linear .539*** .012*** .013*** .002*** -.528*** 

Strategy Basis 31.286*** -1.749*** 16.147*** 2.304** -.050 

Surface Area Basis 2.718*** .004 .088*** .005*** -.389*** 

Thickness Basis 2.812*** -.072*** .016*** .004*** -.695*** 

Volume Basis 8.923*** -.350*** 1.107*** .153*** -.594*** 

 

 

Bivariate models corroborate univariate findings for mean and variance  

estimates of intercepts and slopes 

Next, I estimated bivariate latent growth curve models to quantify the associations 

between each behavioural and neural measure across time points (ages 14, 19, and 22 years). 

Similar to the univariate models, bivariate models had acceptable to good fit (Table 7), 

although RMSEA estimates and ranges were consistently worse (but still acceptable) in 

Table 6. Mean, variance, and covariance estimates for intercepts and slopes of the 

winning (linear vs basis) behavioural and brain structure (grey matter) univariate 

models. * p < .05, ** p < .01, *** p < .001.  
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models that included Surface Area. These results extend support for hypotheses 1 and 2 to 

include bivariate models. Note that, although the results for hypotheses 3 and 4 are shown for 

the bivariate models (Table 8; columns four and seven of Table 9), I do not discuss them as 

their values represent the same estimates (with minor discrepancies in magnitude) as the 

univariate models. An exception to this was Risk Taking-Volume, which had a non-significant 

brain slope variance (estimate = .045, p > .05), which was significant in the univariate model 

(Volume slope variance estimate = .153, p < .001, see column six of Table 6).  

 

Behavioural 

Measure 
Brain Metric χ2 df CFI RMSEA SRMR AIC BIC 

Between 

Errors 

Surface Area*** 74.84 7 .987 .065 [.052 .078] .014 51271.855 51385.348 

Thickness* 18.58 7 .992 .028 [.013 .044] .018 46321.192 46434.685 

Volume*** 39.88 7 .989 .047 [.034 .062] .020 42983.378 43096.880 

Delay 

Aversion 

Surface Area*** 73.61 7 .984 .067 [.053 .081] .018 -7445.307 -7331.870 

Thickness*** 26.60 7 .982 .036 [.022 .052] .022 -12225.075 -12111.648 

Volume*** 44.99 7 .985 .050 [.037 .065] .024 5108.825 5222.243 

Deliberation 

Time 

Surface Area*** 102.87 7 .983 .071 [.059 .084] .020 2940.499 3053.936 

Thickness*** 36.91 7 .979 .044 [.031 .059] .025 -1858.996 -1745.559 

Volume*** 63.82 7 .980 .061 [.048 .075] .027 15505.563 15618.981 

Overall 

Proportion Bet 

Surface Area*** 135.40 8 .977 .080 [.068 .092] .026 -8934.464 -8826.690 

Thickness*** 54.80 8 .970 .053 [.040 .066] .028 -13708.310 -13600.545 

Volume*** 68.07 8 .979 .060 [.047 .073] .029 3642.407 3750.163 

Quality of 

Decision-

making 

Surface Area*** 88.77 7 .985 .069 [.057 .083] .014 -14651.406 -14537.960 

Thickness* 18.52 7 .993 .027 [.012 .042] .017 -19444.322 -19330.886 

Volume*** 34.74 7 .990 .045 [.031 .061] .021 -2090.874 -1977.446 

Risk 

Adjustment 

Surface Area*** 84.12 7 .986 .067 [.055 .080] .017 9136.726 9250.171 

Thickness** 21.41 7 .992 .031 [.016 .046] .017 4375.626 4489.062 
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Volume*** 38.41 7 .990 .045 [.032 .060] .021 21688.028 21801.455 

Risk Taking 

Surface Area*** 137.73 8 .977 .080 [.069 .092] .026 -8478.744 -8370.970 

Thickness*** 57.88 8 .969 .055 [.042 .068] .029 -13253.139 -13145.374 

Volume*** 40.61 7 .989 .048 [.034 .062] .024 4070.185 4183.612 

Strategy 

Surface Area*** 88.26 7 .986 .067 [.055 .080] .014 24464.161 24577.682 

Thickness** 22.36 7 .991 .031 [.017 .047] .020 40416.631 40530.142 

Volume*** 41.60 7 .989 .046 [.033 .061] .020 37045.282 37158.803 

 

Bivariate Association Mean Intercept Mean Slope  Intercept Variance Slope Variance  

Behavioural 

Measure 

Brain 

Metric 

Behaviour Brain Behaviour Brain Behaviour Brain Behaviour Brain 

Between 

Errors 

Surface 

Area 

19.486*** 27.183*** -3.609*** .035 132.112*** 8.835*** 10.606*** .463*** 

Thickness 19.492*** 28.123*** -3.617*** -.719*** 131.534*** 1.595*** 10.565*** .364*** 

Volume 19.493*** 8.922*** -3.616*** -.350*** 132.046*** 1.107*** 10.586*** .154*** 

Delay 

Aversion 

Surface 

Area 

.243*** 2.718*** -.038*** .004 .011*** .088*** .003*** .005*** 

Thickness .243*** 2.812*** -.038*** -.072*** .012*** .016*** .003*** .004*** 

Volume .243*** 8.924*** -.037*** -.350*** .011*** 1.106*** .003*** .153*** 

Deliberation 

Time 

Surface 

Area 

2.007*** 2.718*** -.236*** .004 .216*** .088*** .031*** .005*** 

Thickness 2.008*** 2.812*** -.237*** -.072*** .216*** .016*** .031*** .004*** 

Volume 2.007*** 8.923*** -.237*** -.350*** .216*** 1.107*** .031*** .153*** 

Overall 

Proportion 

Bet 

Surface 

Area 

.492*** 2.718*** .011*** .004 .011*** .089*** .002*** .005*** 

Thickness .491*** 2.812*** .011*** -.072*** .011*** .016*** .002*** .004*** 

Volume .492*** 8.923*** .011*** -.350*** .011*** 1.106*** .002*** .154*** 

Table 7. Goodness-of-fit indices for bivariate models of behavioural measures and 

structural grey matter metrics. χ2 = Chi-squared, df = degrees of freedom, CFI = 

Comparative Fit Index, RMSEA = Root Mean Square Error of Approximation, SRMR = 

Standardised Root Mean Residual, AIC = Akaike Information Criterion, BIC = Bayesian 

Information Criterion, * p < .05, ** p < .01, *** p < .001.  

 



 

111 

 

Quality of 

Decision-

making 

Surface 

Area 

.937*** 2.718*** .013*** .003 .004*** .088*** .001*** .005** 

Thickness .937*** 2.812*** .013*** -.072*** .004*** .016*** .001*** .004*** 

Volume .937*** 8.923*** .013*** -.351*** .004*** 1.107*** .001*** .154*** 

Risk 

Adjustment 

Surface 

Area 

1.524*** 2.718*** .213*** .004 .572*** .088*** .078*** .005*** 

Thickness 1.522*** 2.812*** .214*** -.072*** .577*** .016*** .082*** .004*** 

Volume 1.525*** 8.924*** .212*** -.351*** .574*** 1.107*** .079*** .153*** 

Risk Taking Surface 

Area 

.539*** 2.718*** .012*** .004 .013*** .089*** .002*** .005*** 

Thickness .538*** 2.812*** .013*** -.072*** .013*** .016*** .002*** .004*** 

Volume .539*** 8.922*** .012*** -.356*** .013*** .721*** .002*** 0.045 

Strategy Surface 

Area 

31.284*** 2.718*** -1.745*** .003 16.120*** .088*** 2.267** .005*** 

Thickness 31.289*** 28.123*** -1.748*** -.722*** 16.056*** 1.595*** 2.280** .363*** 

Volume 31.285*** 8.923*** -1.746*** -.350*** 16.144*** 1.107*** 2.273** .153*** 

 

 

Bivariate latent growth models fail to support the structural scaffolding hypothesis 

Next, I examined the covariances between the slopes and intercepts in the bivariate 

models. First, I observed that a subset of intercepts between behavioural abilities and brain 

structure were significant (p < .05, see column three of Table 9). Exceptions included 

Deliberation Time (no statistically significant covariances), as well as Between Errors and Risk 

Taking (all covariances with brain structure were statistically significant). There were several 

brain-behaviour intercept associations that were negative, implying a negative (although 

small) relationship between starting brain structure and behavioural performance for some 

measures: Between Errors-Volume, Delay Aversion-Surface Area, Delay Aversion-Volume, 

Risk Taking-Thickness, Strategy-Surface Area, and Strategy-Volume. For surface area and 

volume, these findings suggest that participants with larger baseline brain structure (i.e., 

greater volume and surface) also performed better on measures of decision-making and 

spatial working memory. Moreover, for cortical thickness, this interpretation suggests that 

Table 8. Mean and variance estimates for intercepts and slopes of the bivariate models. 

* p < .05, ** p < .01, *** p < .001. 



 

112 

 

individuals with a thicker cortex at the onset of assessment were also better able to assess risk, 

again at age 14. 

To statistically test for structural scaffolding of the cognitive measures (hypothesis 5), 

I inspected the covariance estimates for brain structure intercept and change/slope in 

behaviour. Doing this, I found no statistical evidence for structural scaffolding (Table 9, 

column six). In other words, contrary to my hypothesis, in this sample it was not the case that 

individual differences in brain structure at age 14 was associated with the rate of behavioural 

development across any measure of the three psychometric domains. 

Next, I examined the reverse association: Does the current state of behavioural abilities 

(intercept) predict the rate of brain change (which was previously coined ‘adaptive 

reorganisation’, Kievit and Simpson-Kent, 2021). I observed several associations compatible 

with this hypothesis (see column five of Table 9 and Figure 22): For multiple bivariate models 

the intercept of the behavioural measure significantly predicted change in brain structure. 

This was found for three behaviour-brain couplings: Between Errors-Thickness (standardised 

covariance = .068, p < .05), Between Errors-Volume (standardised covariance = .116, p < .01), 

and Strategy-Volume (standardised covariance = .130, p < .001). This pattern suggests that, for 

these bivariate associations, baseline behavioural performance significantly predicted change 

in brain structure (i.e., cortical Thickness, and Volume) development. Moreover, the direction 

of these associations implies that, on average, lower starting scores (i.e., better performance) 

on spatial working memory (Between Errors and Strategy) led to a steeper (negative) brain 

change (e.g., more rapid thinning and/or larger volume loss in brain structure across waves). 

Finally, I did not observe correlated change (i.e., statistically significant covariances between 

behavioural and brain structure slopes). Therefore, in this sample and modelling framework, 

the rate of change at one level (e.g., behaviour) is not significantly associated with the rate of 

change in the other (e.g., brain).   

 

Behavioural 

Measure 

Brain 

Metric 

Covariance: 

Behaviour 

Intercept-

Brain 

Intercept 

Covariance: 

Behaviour 

Intercept-

Behaviour 

Slope 

Covariance: 

Behaviour 

Intercept-

Brain Slope 

Covariance: 

Brain 

Intercept-

Behaviour 

Slope 

Covariance: 

Brain 

Intercept-

Brain Slope 

Covariance: 

Behaviour 

Slope-Brain 

Slope 

Between Errors Surface 

Area 

.184*** -.733*** .066 -.075 -.388*** -.037 
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Thickness .073** -.734*** .068* -.081 -.696*** -.034 

Volume -.143*** -.732*** .116** .013 -.594*** -.059 

Delay Aversion Surface 

Area 

-.082* -.662*** .013 -.049 -.389*** .009 

Thickness -.052 -.665*** .02 -.014 -.695*** .024 

Volume -.085* -.662*** .008 -.075 -.594*** .056 

Deliberation 

Time 

Surface 

Area 

-.024 -.767*** .035 .008 -.389*** -.032 

Thickness .016 -.767*** -.032 -.052 -.695*** .03 

Volume -.018 -.767*** .013 -.008 -.594*** -.001 

Overall 

Proportion Bet 

Surface 

Area 

.115*** -.528*** .036 .01 -.392*** -.055 

Thickness -.056 -.525*** .003 .027 -.695*** -.042 

Volume .096** -.529*** .007 -.007 -.594*** -.051 

Quality of 

Decision-

making 

Surface 

Area 

.046 -.698*** -.044 .017 -.387*** .016 

Thickness .047 -.698*** -.043 -.026 -.695*** .045 

Volume .067* -.697*** -.031 .003 -.594*** .001 

Risk 

Adjustment 

Surface 

Area 

.154*** -.286* -.042 .029 -.389*** -.009 

Thickness .031 -.300* -.03 .052 -.696*** -.059 

Volume .164*** -.288* -.059 .061 -.593*** -.071 

Risk Taking Surface 

Area 

.124*** -.529*** .024 -.002 -.392*** -.037 

Thickness -.064* -.524*** .009 .039 -.695*** -.057 

Volume .125** -.530*** -.007 -.034 -.228 -.050 

Strategy Surface 

Area 

-.241*** -.040 .077 -.034 -.389*** .011 

Thickness .051 -.044 .046 -.054 -.695*** .043 

Volume -.207*** -.040 .130*** -.057 -.594*** .019 

 

Table 9. Standardised covariance estimates for bivariate models. * p < .05, ** p < .01, *** 

p < .001. 
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Figure 22. Left: Example of adaptive reorganisation using the predicted intercept and 

slope estimates of the Between Errors-Thickness model (i.e., lower intercept scores 

(better performance) on Between Errors predicted a faster rate of brain cortical thinning; 

r = .08). Right: Example of adaptive reorganisation using the predicted intercept and 

slope estimates of the Strategy-Volume model (i.e., lower intercept scores (better 

performance) on Strategy predicted a faster rate of brain cortical volume loss; r = .19).  
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Discussion 

Summary and interpretation of findings 

The present study sought to estimate the baseline, growth trajectories, and covariances 

between measures of decision-making, risk-related behaviours, and spatial working memory, 

as well as cortical brain structure (i.e., surface area, thickness, and volume) from mid-

adolescence (age 14 years) to early adulthood (age 22 years). Using latent growth curve 

modelling, I found that most measures for behaviour (except for Overall Proportion Bet and 

Risk Taking) and all for neural structure change, and do so nonlinearly, across development 

(Figure 21).  In addition, the univariate models also indicated that participants differed from 

one another both in baseline (age 14) and slope estimates (ages 14 – 22). This result held true 

for both the means (apart from Surface Area mean slope) and variances, implying that 

individuals not only started assessment at different behavioural and neural levels (i.e., 

baseline), but they also showed individual differences in patterns of change (i.e., slopes) across 

the time points included in this analysis (Table 6). When I inspected the mean intercept-slope 

covariances within domains, I also found that these relationships were universally significant 

(besides Strategy) and negatively correlated. This suggests that adolescents who began the 

IMAGEN study with lower behavioural performance and/or larger initial cortical brain 

structure tended to change more (i.e., behaviour: improved in performance, brain structure: 

showed less steep decrease) up until early adulthood. This is compatible with the growth 

models capturing differences in rates of maturation: Those who have already matured a lot 

(e.g., improved cognitive performance, or thinned their cortex) will, on average, change less 

rapidly, inducing a negative within-domain covariance. 

Following these results, I fit bivariate latent growth curve models to estimate the 

correlations and covariances (i.e., intercepts and slopes) between each behavioural measure 

and brain structure metric. As expected, mean and variances estimates for intercepts and 

slopes were similar in magnitude and statistical significance as in the univariate models (Table 

8). Finally, I examined brain-behaviour associations to statistically test for the presence of 

structural scaffolding, a phenomenon whereby baseline (intercept) cortical brain structure 

(whether surface area, thickness, and/or volume) predicts change (slope) in behavioural 

performance (e.g., spatial working memory). I found no support for structural scaffolding or 

correlated change (Table 9). Instead, I observed weak evidence in favour of adaptive 
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reorganisation, which states that the behavioural intercept(s) significantly predict change in 

brain structure in subsequent time points. This was found for three bivariate brain-

behavioural models: Between Errors-Thickness, Between Errors-Volume, and Strategy-

Volume (see Figure 22). This suggests that, on average, better starting scores on spatial 

working memory (i.e., Between Errors and Strategy) led to more rapid cortical thinning and/or 

volume loss across waves. 

The observation that most behavioural (besides Overall Proportion Bet and Risk 

Taking) and all neural (i.e., cortical Surface Area, Thickness, and Volume) measures changed, 

and did so nonlinearly (i.e., increased behavioural performance and cortical shrinkage except 

for Surface Area) aligns with previous studies that demonstrated adolescence to be a period 

characterised by substantial alterations in behaviour (see Luna, 2009; Steinberg, 2005) and 

brain structure development (e.g., Becht and Mills, 2020; Tamnes et al., 2017). Therefore, 

strictly linear change (i.e., increase) and/or negative nonlinear change in behavioural abilities 

(except those similar to the ones shown to be linear in this study) and/or brain structure (e.g., 

cortical thinning) might serve as a potential neurocognitive marker of abnormal development, 

although one would need more waves of data to reliably predict this abnormality for a single 

individual. In other words, if a middle adolescent (e.g., ages 14 – 16 years) fails to show 

substantial behavioural development accompanied by abnormal (e.g., slow, or greater than 

average exponential) reductions in structural brain maturation, it could signify that they will 

face problems adjusting to future cognitive demands (e.g., success in undergraduate studies 

and/or occupational attainment).  

The finding that Between Errors and Strategy, both spatial working memory 

measures, changed nonlinearly supports the notion that participants became significantly less 

error-prone and planned their choices better over successive assessments. This interpretation 

corroborates prior research, which demonstrated that working memory increases in 

childhood and adolescence (Best and Miller, 2010; Conklin et al., 2007; Huizinga et al., 2006). 

This coupled with the fact that Quality of Decision-making also showed pronounced 

nonlinear changes further hints that, in this sample, adolescents made better decisions and 

improved in cognitive ability up until early adulthood. 

An alternative explanation for the nonlinear change in performance scores is a 

retest/practice effect (Scharfen et al., 2018). For instance, given that participants encountered 
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the same tasks across multiple waves, rather than nonlinear change in behavioural scores 

being the result of developmental factors (e.g., improved cognition and/or brain maturation), 

participants could have adjusted their strategy use (not to be confused with the Strategy 

measure used in this study) from mid-adolescence to early adulthood. On the other hand, 

instead of due to strategy adjustment, participants could have changed nonlinearly simply 

from being more familiar with the tasks across time points. Therefore, if change is truly linear, 

the presence of a retest/practice effect (whether through strategy adjustment and/or 

familiarity with the tasks) will make the trajectory appear nonlinear. While retest/practice 

effects were not estimated in this study, it is doubtful that strategy use and/or practice effects 

can account for the pattern of change in behavioural scores since the intervals between waves 

are no less than two years apart across the duration of the IMAGEN protocol (see 

https://imagen-europe.com/about/project/). Contrasting this point, a recent meta-analysis 

suggests that longer test-retest intervals (around 8 years) might be necessary to eliminate the 

influence of test-retest interval on retest/practice effects on cognitive tests (Scharfen et al., 

2018). Therefore, future longitudinal studies should directly estimate the possible role of 

retest/practice effects before making strong claims about developmental change.  

A final point worth discussing about nonlinear change in behavioural/cognitive 

performance is whether the degree of difficulty related to percentage changes in task 

performance across waves/time points is the ‘same’ at all ability levels. For example, is it easier 

to improve 5% in a task/measure when you previously scored below average (e.g., going from 

50% to 55%) than it is to gain 5% points when your baseline performance is already near 

ceiling (e.g., increasing from 90% to 95%)? Although not tested in this study, an approach to 

answering this question is to use item response theory (IRT) modelling to establish an interval 

or ratio scale, which would enable one to confidently conclude whether behavioural 

development/change is truly nonlinear. 

Overall Proportion Bet and Risk Taking showing linear change from ages 14 to 22 

suggest that adolescents were relatively stable in their increase in risk-related behaviours. The 

only other risk-related behaviour, Risk Adjustment, although increasing nonlinearly, has an 

ambiguous interpretation (e.g., whether that change implies more erratic risk behaviour). 

Therefore, I conclude that from mid-adolescence to early adulthood, participants did not 

become worse at assessing risk. This interpretation agrees with recent perspectives that 

https://imagen-europe.com/about/project/
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challenge popular opinions and stereotypes of adolescents as purely irrational, instead 

providing a more nuanced view of adolescence as a formative transitional period into 

adulthood with both positive and negative consequences of risk-related behaviours (e.g., 

Blakemore, 2018; Do et al., 2020; Duell and Steinberg, 2019; Khurana et al., 2018; Maslowsky 

et al., 2019; Romer et al., 2017).   

Interestingly, Surface Area, despite showing rapid growth from age 14 to 19 (slope 

was freely estimated), was the only variable with a non-significant mean intercept-slope 

covariance, which indicates that one cannot predict the trajectory of participants’ cortical 

surface area from their baseline. This result hints that Surface Area has a distinct 

developmental pattern compared to Thickness and, hence, Volume (cortical volume is the 

product of surface area and thickness). Along these lines, recent research has suggested that 

the growth of cortical surface area and thickness (as well as and white matter maturation) is 

related to myelination. In particular, using functional, quantitative, and diffusion MRI as well 

as post-mortem histological methods, Natu et al., 2019 found that tissue growth in the ventral 

temporal cortex was associated with increased myelination from childhood to adulthood. 

This, in turn, affects the grey-white matter contrast in MRI scans, resulting in the apparent 

thinning of the cortex (e.g., see Becht and Mills, 2020; Tamnes et al., 2017; Vijayakumar et al., 

2016). Therefore, and given that thickness and surface area were significantly (negatively) 

correlated in that study (i.e., Natu et al., 2019), increased myelination might lead to cortical 

thinning and a potential increase in surface area metrics.  

In the bivariate behaviour-brain structure models, covariance estimates failed to 

support the structural scaffolding hypothesis. In other words, for all bivariate models, brain 

structure intercepts did not significantly predict changes in behavioural slopes across time 

points. There are at least three possible explanations for this finding. First, and perhaps the 

simplest, the structural scaffolding hypothesis may be false. Therefore, the pattern found in 

the studies (e.g., see Wendelken et al., 2017 and Ferrer, 2018) mentioned in Kievit and 

Simpson-Kent, 2021 might not generalise to other samples and cohorts. Second, in this study 

I used measures that are not typically associated with intelligence, except for spatial working 

memory (i.e., Between Errors and Strategy). Moreover, outside of spatial working memory, 

only Quality of Decision-making and Risk Adjustment have been found to positively associate 

with canonical intelligence measures, of which only Risk Adjustment significantly predicted 
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gains in IQ (Flouri et al., 2019). Moreover, in that study, Overall Proportion Bet was excluded 

from the analyses since it very strongly correlated with Risk Taking (r = .962). When I 

correlated these variables in the present dataset, I also found that Overall Proportion Bet and 

Risk Taking displayed a strong association (all r > .980 across waves), while no other abilities 

correlated with each other to that extent. In other words, the failure to find the predicted 

associations may be because of the particular measures used—I discuss this possibility in 

more detail below. Third and related to the second point, the 10 ROIs that I used to calculate 

the mean bilateral cortical brain structure were all regions known to be associated with 

traditional tests of intelligence. As a result, it might be possible that structural scaffolding does 

exists for these measures but requires a broader or alternative network of brain regions to 

discover its effect.  

I observed some evidence for adaptive reorganisation, which predicts that behavioural 

intercept(s) will significantly covary with change in brain structure across waves. This effect 

was only found for three bivariate brain-behavioural models: Between Errors-Thickness, 

Between Errors-Volume, and Strategy-Volume. Furthermore, all three of these associations 

were positive. Therefore, given that higher values for these two abilities indicate worse 

performance, this relationship suggests that, on average, participants with better spatial 

working memory performance at baseline had more cortical volume loss and/or thinning from 

age 14 to 22. Adaptive reorganisation is in line with a study by Shaw et al., 2006, who found 

that individuals with higher IQ showed dynamic changes in cortical thickness from childhood 

to late adolescence. Specially, those with ‘superior’ intelligence underwent more pronounced 

cortical thickening in childhood, followed by intense cortical thinning by early adolescence 

(age 11.2 years). However, this study (IMAGEN) began assessment at age 14, after this 11.2-

year-old cut-off. Therefore, even though the increased thinning continued until around age 16 

(Shaw et al., 2006), further research is needed to substantiate adaptive reorganisation in 

adolescence. Finally, and surprisingly, there was no evidence for correlated change 

(significant covariances between behavioural and neural slopes). In close, in this cohort, 

behavioural performance and cortical brain structure did not significantly predict each other 

from mid-adolescence to early adulthood.   
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Limitations of the present study 

Perhaps the most obvious limitation of the current study are the behavioural measures 

used. Structural scaffolding, adaptive reorganisation and correlated change, while possible to 

generalise to all behaviour-brain structure associations, were formulated as hypotheses about 

intelligence (Kievit and Simpson-Kent, 2021). Therefore, if these phenomena exist, their 

effect(s) should be most discoverable using assessments that have been verified to robustly 

correlate with IQ (e.g., fluid intelligence tasks such as Raven’s Matrices, see Bilker et al., 2012). 

Therefore, future studies should examine these associations using more widely used tasks 

(e.g., working memory tasks such as digit recall, see Alloway, 2007). Furthermore, observation 

of these longitudinal bivariate hypotheses might require whole-brain (or more regionally 

specific) structure estimates rather than the reduced 10 ROIs used here (however, I do not test 

this here since whole-brain analyses were not part of the original conceptualisation and 

planning of the study). Relatedly, this study only incorporated grey matter metrics, although 

it is also known that white matter (e.g., fractional anisotropy, see Wandell, 2016) also 

significantly predict change in cognition from childhood to early adulthood (e.g., Wendelken 

et al., 2017).  

Although the IMAGEN study has a substantially larger sample size compared to most 

neuroimaging studies (Poldrack et al., 2017), this cohort still contains fewer participants than 

might be necessary to find replicable results of brain-behaviour associations of small 

magnitude (Marek et al., 2020). As a result, future studies should seek to investigate these 

hypotheses in larger cohorts (e.g., ABCD, see Casey et al., 2018; Volkow et al., 2018) that 

surpass the “consortium” level for imaging (N > 2000, see Marek et al., 2020). Lastly, the time 

intervals between behavioural assessment and neuroimaging (i.e., t2 – t1 = 5 years; t3 – t2 = 3 

years) might prevent the detection of neurocognitive changes that occur over a shorter time 

period (e.g., 1 year). Therefore, future studies should examine developmental changes in 

samples with more frequent behavioural and/or neural testing to help determine whether the 

patterns observed in this study using these measures translate to smaller developmental 

windows (e.g., each year between schooling).  
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Summary of the Chapter 

In this chapter, I extended upon the findings from Chapter Two and Chapter Three by 

using longitudinal statistical methodology (i.e., latent growth curve modelling) to test within-

person hypotheses of neurocognitive development (i.e., structural scaffolding, but also 

adaptive reorganisation and correlated change) from mid-adolescence to early adulthood 

(ages 14 – 22 years, using the IMAGEN study). I found no evidence for structural scaffolding 

or correlated change but did observe some support for adaptive reorganisation (current 

behavioural performance predicts change in brain structure). However, this result was only 

found for spatial working memory. Therefore, this finding suggests that, on average, greater 

performance on spatial working memory tasks (here measured by Between Errors and 

Strategy) led to more rapid cortical thinning and/or volume loss over time.  

 This concludes the empirical part of this dissertation. Now, in the final chapter, I 

summarise the main findings across the studies included in this thesis, address key 

limitations, and speculate about future directions towards advancing understanding of the 

developmental cognitive neuroscience of human intelligence.  
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Chapter Five 

Concluding Remarks:  

Summary, Limitations, and Future Directions 

 

Summary of Thesis Findings 

This dissertation has attempted to further understand the associations between human 

brain structure (i.e., grey matter and white matter) and intelligence (e.g., decision-making and 

working memory), particularly how they develop from early childhood to early adulthood 

(ages 5 – 22 years). These investigations were based on neurocognitive theory (i.e., crystallised 

and fluid intelligence, mutualism and network neuroscience, and structural scaffolding, 

adaptive reorganisation, and correlated change) and assessed in large (N range: 337 – 2072) 

developmental cohorts (i.e., CALM, IMAGEN, and NKI-Rockland) using well-established 

statistical methods (i.e., structural equation modelling and network science). Here I 

summarise the findings from each empirical chapter. 

Chapter Two examined the latent variable structure and white matter determinants 

(i.e., fractional anisotropy) of child and adolescent intelligence (measured via tasks of 

crystallised and fluid intelligence, and working memory) using two cross-sectional, 

developmental samples (CALM: N = 551 (N = 165 neuroimaging), age range: 5 –18 years; NKI-

Rockland: N = 337 (N = 65 neuroimaging), age range: 6 – 18 years). After estimating and 

comparing a series of structural equation models (SEM, see Kline, 2015), I found in both 

samples that, rather than the g factor, cognitive ability is best modelled as two separable but 

highly correlated constructs, crystallised (gc) and fluid (gf) intelligence. Interestingly, the best-

fitting model for the CALM sample occurred when the working memory latent variable (LV) 

was assigned as an indicator of fluid intelligence, while for NKI-Rockland, the model fit best 

when working memory and gf were combined into a single LV, which has been suggested in 

prior research when participants are under increased time constraints (Chuderski, 2015, 2013). 

Moreover, in line with the age differentiation hypothesis (de Mooij et al., 2018; Garrett, 1946; 

Hülür et al., 2011), the covariance between gc and gf decreased from childhood to adolescence. 

This result was revealed through measurement invariance testing across age groups (Putnick 
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and Bornstein, 2016), which revealed that gc and gf  became more distinct (i.e., less correlated) 

as the age of participants increased (i.e., cross-sectional childhood scores to cross-sectional 

adolescent scores). In terms of brain structure, I used Multiple Indicator Multiple Cause 

(MIMIC) analysis, which indicated that individual differences in white matter fractional 

anisotropy, especially of the superior longitudinal fasciculus, was strongly associated with gc 

and gf abilities. Finally, using a novel analysis framework, SEM trees (Brandmaier et al., 2013), 

a method that combines traditional SEM with decision trees, provided evidence for 

neurocognitive reorganisation of gc and gf and their white matter substrates. Hence, the 

relationships between gc, gf and a subset of white matter tracts (i.e., anterior thalamic 

radiations, cingulate gyrus, forceps major, forceps minor, and the superior longitudinal 

fasciculus, see Table 3) decreased between ages 7 – 8 years before increasing around age 10. 

Together, these results suggested that shortly before puberty marks a pivotal phase of change 

in the neurocognitive architecture of intelligence.  

Chapter Three complemented and extended the analyses done in Chapter Two and 

sought to assess the mutualism theory of cognitive ability (van der Maas et al., 2006). 

Mutualism is a network model of general intelligence (see van der Maas et al., 2021, 2017) that 

claims that the positive manifold and g factor (Spearman, 1927, 1904) arise from direct 

(statistical) interactions among cognitive abilities such as reasoning and vocabulary 

throughout development (Kievit et al., 2019, 2017). Instead of using the SEM framework, 

which presumes the existence of unobserved LVs, this project used techniques from network 

science (Barabási, 2016), specifically network psychometrics (Epskamp et al., 2018). This 

analytic framework conceptualises psychological constructs such as general intelligence as a 

complex system and uses partial correlations, which estimate statistical dependencies among 

variables of interest (see also Epskamp et al., 2018). Hence, Chapter Three simultaneously 

modelled the brain-behaviour relationships essential for general intelligence in the same 

cohort as in Chapter Two (i.e., the CALM sample, see Holmes et al., 2019) but with more 

participants (ages 5 – 18 years; behavioural, N = 805; cortical volume, N = 246), except for white 

matter (fractional anisotropy, N = 165), which was the same as Chapter Two. The results of 

this analysis revealed that both single-layer (cognitive or neural nodes) and multilayer 

(combined cognitive and neural variables) networks contained mainly small and positive partial 

correlations, providing further support for mutualism theory (Kan et al., 2019; Schmank et al., 
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2019). Furthermore, I attempted to identify possible groups of cognitive and/or neural nodes. 

To do this, I used community detection, particularly the Walktrap algorithm (Pons and 

Latapy, 2005) and calculated node centrality, both absolute strength (Bringmann et al., 2019) 

and bridge strength (see Jones et al., 2019). I found convergent evidence that certain cognitive 

(e.g., Reading) and neural (e.g., superior frontal gyrus) nodes may have had greater influence 

among (or might have been more influenced by) other nodes within the neurocognitive 

network. Together, these findings suggest that specific behavioural and neural variables 

function as intermediary nodes ‘between’ brain structure and cognitive ability. 

Lastly, Chapter Four sought to statistically test for evidence of the structural 

scaffolding hypothesis of intelligence (see Figures 7 and 20). To do this, I employed latent 

growth curve modelling (Duncan and Duncan, 2004) to estimate the longitudinal 

relationships between human cortical grey matter structure (i.e., mean bilateral cortical 

surface area, thickness, and volume), and measures of decision-making, risk-related 

behaviours and spatial working memory from adolescence to early adulthood in the IMAGEN 

study (maximum N across time points/waves = 2072; age range: 14 – 22 years). For univariate 

models (i.e., solely behavioural or neural measures), comparisons between a linear and basis 

model of developmental growth revealed that both behavioural performance (here decision-

making, risk-related behaviours, and spatial working memory), and cortical brain structure 

changed nonlinearly from mid-adolescence (age 14) to early adulthood (age 22). Moreover, 

bivariate models, which combined behavioural and neural measures, displayed support for 

adaptive reorganisation (behavioural intercept/baseline predicts changes/slopes in brain 

structure). However, no evidence was observed for structural scaffolding (brain structure 

intercept/baseline predicts changes/slopes in behaviour). Lastly, findings also failed to 

support the phenomenon of correlated change, whereby rates of change (i.e., covariance 

between behavioural and neural slopes) significantly predict each other, between ages 14 and 

22 years. Overall, results from this study further suggest that mid-adolescence to early 

adulthood marks a distinct developmental period of brain-behaviour changes related to 

spatial working memory and decision-making, and grey matter cortical structure.  
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Limitations of this Dissertation 

First, besides Chapter Four (IMAGEN study), the rest of the empirical chapters 

(Chapters Two and Three) in this dissertation only analyse cross-sectional data (CALM and 

NKI-Rockland cohorts). However, that is not to say that cross-sectional data are 

uninformative. Rather, cross-sectional analyses must be complemented by longitudinal 

analyses to understand neurocognitive processes more fully (e.g., see Raz and Lindenberger, 

2011 and Schmiedek et al., 2020). Therefore, while cross-sectional data is informative relating 

to between-subject differences (e.g., group-level differences in cognitive ability), longitudinal 

samples are required to help tease apart within-subject differences in neurocognition. As noted 

in Kievit and Simpson-Kent, 2021, studies with longitudinal data for both 

behavioural/cognitive measures and structural neural metrics (e.g., grey matter: cortical 

surface area, thickness and volume; and white matter: fractional anisotropy) from childhood 

to early adulthood are scarce, with many having been published within the last five years. 

This rise in studying longitudinal developmental cohorts suggests that this approach, while 

growing, is still in its infancy. Therefore, future research programs should build upon this 

trend for a truly developmental cognitive neuroscience of intelligence. 

Second, the cohorts included in this dissertation (i.e., CALM, IMAGEN and NKI-

Rockland), while relatively representative of childhood, adolescent and/or early adulthood 

persons for their respective territories (CALM: East and South East of England; IMAGEN: 

Western Europe; NKI-Rockland: United States), still consists entirely of participants from 

WEIRD (Western, Educated, Industrialised, Rich, and Democratic) countries, which are 

known to often not generalise to non-WEIRD populations (Henrich et al., 2010). Therefore, 

future research is needed to assess the replicability of these findings in traditionally under-

represented groups (such as, but not limited to, the Global South and other traditionally 

under-sampled populations).  

Third, cohorts also tend to be extremely broad in their age ranges (e.g., see list of 

cohorts mentioned in Walhovd et al., 2018). While ambitious in their scope, studies that 

examine long-term changes might miss more fine-grained developmental shifts. For instance, 

if adolescence, a period marked by distinct behavioural and neural development, is defined 

as occurring between the ages of 10 and 24 (Sawyer et al., 2018), it is perhaps more informative 

to further divide statistical and/or empirical investigation into shorter time frames (e.g., early 
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adolescence may show differences from mid- and late adolescence). Related to this point, 

many longitudinal designs assess change over periods of months or years, which might fail 

to capture very acute (e.g., minutes or days) changes in behaviour and/or brain structure. 

While collection of such frequent data of both behavioural and neural dynamics in large 

samples (e.g., N ≥ 2000, see Marek et al., 2020) is not feasible due to the extreme logistical, 

monetary, and labour-intensive nature of such an endeavour, future cohorts should aim to 

shorten the window of assessment to approximate the outcomes of drastic developmental 

alterations (interval between assessments < 6 months).  

Last but not least, given the observational nature of this thesis (i.e., non-experimental), 

one cannot conclusively determine cause-effect relationships due to the presence of possible 

confounding variables (e.g., see Rohrer, 2018). For example, I cannot confidently claim that, 

on average, having better spatial working memory performance causes more rapid cortical 

thinning or volume loss (adaptive reorganisation, see Chapter Four). Instead, I would have to 

directly intervene on behaviour (e.g., through cognitive training) and then compare brain 

structure shortly before and after the intervention. Conversely, I could use brain stimulation 

combined with cognitive training to measure the presence or absence of transfer effects for 

various intelligence-related tasks (e.g., for gf, see Brem et al., 2018).  Moreover, I could perform 

analyses on lesion participants to study the neural determinants of intelligence (e.g., how loss 

of specific brain regions affect g, see Barbey et al., 2014, 2012; Gläscher et al., 2010; Woolgar et 

al., 2018, 2010). Therefore, while large observational studies such as those found in this 

dissertation are suitable to discover general trends in brain-behaviour associations, they must 

be complemented with experimental, lesion-symptom mapping, and meta-analytic 

methodology to further test mechanistic hypotheses. Related to this point, there exist many 

additional behavioural domains (e.g., cognitive constructs related to intelligence such as 

creativity, see Jauk et al., 2013 and Karwowski et al., 2017) and neural measures (e.g., brain 

function via activity patterns and cell recordings, or other structural correlates obtained 

through lesion studies) that also can provide further insight into neurocognitive function. As 

a result, future studies should seek to incorporate related cognitive abilities, brain metrics, 

and experimental/meta-analytic designs to more comprehensively tease apart the causal links 

between cognition and brain mechanisms.  
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This is by no means an exhaustive list as any study, no matter how rigorous, will 

contain areas for improvement and motivations for further study. Rather, these four 

limitations act as guiding principles to attempt to overcome in future studies on the 

development of human brain structure and intelligence from childhood to early adulthood. 

To close, I will now discuss what I argue can help overcome these limitations in research on 

neurocognitive differences and mechanisms of intelligence: theory building. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

128 

 

Future Directions 

Towards mechanistic theory building in developmental cognitive neuroscience 

My results from Chapter Two and Three that suggest verbal abilities (e.g., Peabody 

Picture Vocabulary Test and Reading) rather than fluid intelligence might play a more pivotal 

role in the development of cognitive ability fit with the gradual progression in schooling. For 

example, before children can successfully be taught more advanced subjects (e.g., history, 

reading comprehension, etc.), they must first become competent in basic language faculties. 

In other words, it may be that verbal skills (e.g., reading and spelling) facilitate performance 

on abstract tests, even in the absence of direct knowledge-based task demands. Recent 

evidence has been found supporting this notion and suggest that verbal ability, particularly 

reading and vocabulary in relation to working memory and reasoning, might drive early 

cognitive development (Kievit et al., 2019; Peng et al., 2018; Zhang and Malatesha Joshi, 2020). 

Therefore, future studies could further examine whether greater verbal ability in early 

development facilitates greater acquisition of higher-level cognitive skills by lowering 

computational demands in working memory.   

Moreover, the fact that the Numerical Operations task was also found to be central 

(tri-layer network only, see Chapter Three) should be expected since mathematics (e.g., 

arithmetic) also involves symbol manipulation, as does language. In terms of mutualism (van 

der Maas et al., 2017, 2006), future models (ideally in longitudinal samples) could test whether 

language and other symbolic abilities show progressively higher reciprocal associations 

during early development compared to other abilities until more complex cognitive abilities 

(i.e., fluid reasoning and working memory) develop in later childhood (also see Kievit et al., 

2019 and Peng et al., 2018).  

These insights help to build coherent, rigorous, and testable neurocognitive theories of 

intelligence that have lacked in the psychology and neuroscience literature (Fried, 2020; 

Levenstein et al., 2020). In doing so, cognitive neuroscientists can help mitigate the limitations 

mentioned above as they would have more tangible interpretations of their results. Therefore, 

I argue that future research should aim to incorporate data from different scales, not only 

temporal (e.g., development across the lifespan) but also levels of organisation (e.g., brain, 

behaviour, genetics, and the environment). Furthermore, results from different levels can 

more easily be interpreted if these datasets are analysed using a unified conceptual and 
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quantitative framework (e.g., complex systems theory, see Siegenfeld and Bar-Yam, 2020) that 

combines strengths from various statistical techniques. Last, and perhaps most important, 

cognitive neuroscientists must formulate mechanistic (e.g., Bertolero et al., 2018) and 

generative models (for instance, Akarca et al., 2020) to gain further insights from past and help 

guide future controlled experiments. Researchers must not shy away from but rather embrace 

the complexity of the brain and cognition (see Fried and Robinaugh, 2020 for similar argument 

for mental health research).  

One such proposal mentioned in Chapter One that attempts to explain general 

intelligence using a complex systems approach is The Network Neuroscience Theory of 

Human Intelligence (NNTHI, Barbey, 2018). Barbey argues that general intelligence arises 

from the dynamic small-world typology of the brain, which permits transitions between 

‘regular’ or ‘easy-to-reach’ network states (needed to access prior knowledge for specific 

abilities) and ‘random’ or ‘difficult-to-reach’ (required to integrate information for broad 

abilities) network states (i.e., as in network control theory, see Gu et al., 2015). Together, this 

constrained flexibility allows the brain to adapt to novel cognitive domains (e.g., in abstract 

reasoning) while still preserving access to previously learned skills (e.g., from schooling). 

While evidence supporting the NNTHI has been inconclusive so far (Girn et al., 2019), it is a 

step (also see Process Overlap Theory, Kovacs and Conway, 2016, also mentioned in Chapter 

One) in the right direction toward a complex systems theory of human intelligence. Intelligence is 

a complex system—to understand it, we must treat it as such. 
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Supplementary Material 

 
The Supplementary Material of Chapter Two has been published (although appears in this 

thesis in a modified form to ensure consistent formatting and thesis coherence):  

Simpson-Kent I. L., Fuhrmann D., Bathelt J., Achterberg J., Borgeest G. S., the CALM Team, 

Kievit R. A. (2020).  Neurocognitive reorganization between crystallized intelligence, fluid 

intelligence and white matter microstructure in two age-heterogeneous developmental 

cohorts. Developmental Cognitive Neuroscience, Special Issue: Flux 2018: Mechanisms of Learning 

& Plasticity. doi: 10.1016/j.dcn.2019.100743 

 

The Supplementary Material of Chapter Three is available as a preprint (although appears in 

this thesis in a modified form to ensure consistent formatting and thesis coherence): 

Simpson-Kent I. L., Fried E.I., Akarca D., Mareva S., Bullmore E.T., the CALM Team, Kievit 

R. A. (2021). Bridging brain and cognition: A multilayer network analysis of brain structural 

covariance and general intelligence in a developmental sample of struggling learners. 

Accepted, Journal of Intelligence. Preprint: Biorxiv. doi: 10.1101/2020.11.15.383869 

Note: Supplementary Table 3 was created for this dissertation but is not included in the 

preprint. Also, Supplementary Figures 5 and 6 are different from the preprint due to an error 

discovered after uploading. 

 

Although first-person pronouns are used throughout the chapter, this work is the result of 

collaborative research projects. My contributions to the above publications are:  

1. I led conceptualisation and planning (aided by R. A. Kievit and/or D. Fuhrmann) about 

the scientific hypotheses, analysis methods, and interpretations of the project. 

2. I performed all manuscript analyses (aided by R. A. Kievit, D. Fuhrmann, Eiko I. Fried, 

and/or S. Mareva). 

3. I wrote the first full draft (with input from R. A. Kievit and D. Fuhrmann) of the 

manuscript and led the revisions and confirmation of the final version (aided by other 

co-authors) of the manuscript for publication/preprint. 

 

https://doi.org/10.1016/j.dcn.2019.100743
https://doi.org/10.1016/j.dcn.2019.100743
https://doi.org/10.1016/j.dcn.2019.100743
https://www.biorxiv.org/content/10.1101/2020.11.15.383869v2
https://www.biorxiv.org/content/10.1101/2020.11.15.383869v2
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Supplementary Material for Chapter Two 

Is the Peabody Picture Vocabulary Test a measure of fluid ability? 

As a non-preregistered exploratory analysis, I more closely examined the cross-

loading of the Peabody Picture Vocabulary Test (PPVT). This task asks participants to select 

the correct picture (out of four multiple-choice options) corresponding to the meaning of a 

word spoken by an examiner (Dunn and Dunn, 2007). As discussed previously in the Results 

section Covariance among cognitive abilities cannot be captured by a single factor, 

modification indices suggested the PPVT should either be cross-loaded or solely loaded onto 

gf. To better understand this cross-loading, I performed an exploratory (i.e., not part of 

preregistration, see https://aspredicted.org/5pz52.pdf) analysis using SEM tree analysis. In 

this analysis, I allowed the PPVT to load on both gc and gf and examined whether using age 

as a covariate yielded a developmental period where the associations between the latent 

factors and the PPVT task differed. This generated an age split for gf at around age 9.5 years 

whereby the loading of the PPVT decreased (from 1 to .87, unstandardised estimate).  

Conversely, for gc, the loading remained the same (.12, unstandardised estimate). This 

suggested the PPVT as commonly implemented behaved as a fluid, rather than a crystallised, 

task, especially in younger participants of lower ability. A possible explanation for this pattern 

is that, while the PPVT draws on gc, the demanding nature of the task may require more fluid, 

executive components in younger children, especially in a cohort with comparatively low 

overall performance (e.g., CALM). Moreover, the surprisingly strong (.84, standardised) 

association between gf and PPVT in the full sample is similar to previous research in children 

(Naglieri, 1981) and adults (Bell et al., 2001), although with small, typically developing 

samples using different statistical methods.  

 

 

 

 

https://aspredicted.org/5pz52.pdf
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Supplementary Figure 1. Depiction of SEM tree analyses. Left: SEM tree results for the 

relationship between gc and the anterior thalamic radiations (ATR) (see Table 3 for full 

results). Figure adapted from Fuhrmann et al., 2020. Right: Visualisation of the nature of 

the effect for one path (ATR➔gc). The association between FA in the ATR and scores on 

the gc factor are moderately to strongly positive in the youngest children (r = .22) and the 

oldest children (r = .29), but effectively absent in the intermediate group (r = 0.02). Notably, 

the reader can see in this figure the steady increase in fractional anisotropy across ages 

(scaled ATR scores moving rightward) and improvement in gc (scaled gc scores moving 

upwards). 
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Supplementary Material for Chapter Three 

Edge-weight stability analyses 

To further quantify the reliability of the partial correlation network edge-weights, I 

performed 2000 bootstraps and compared the bootstrapped mean values to the original 

sample estimates (Supplementary Figures 2 – 4). I do not show the bootstraps for the 

multilayer networks due to the size of the plots, but they can be found online 

(https://osf.io/36d2n/). Bootstrapped edge-weight means were consistently near the original 

sample value with the most variable being the white matter network (Supplementary Figure 

4) and the multilayer networks (not shown). The low edge-weight stability in these networks 

could possibly be due to lower sample sizes of neural data (especially in the white matter 

network, N = 165, although centrality strength was moderately stable, CS-coefficient = 0.44), 

including when structural brain and cognitive data were combined. This, in turn, could have 

influenced the low stability estimates of the bridge centrality values in the multilayer 

networks.    

 

https://osf.io/36d2n/
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Supplementary Figure 2. Comparisons between bootstrapped means and original 

sample edge-weight estimates for the CALM cognitive partial correlation network.   
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Supplementary Figure 3. Comparisons between bootstrapped means and original 

sample edge-weight estimates for the CALM grey matter partial correlation network.   
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The possible effect of outliers on major findings 

In a previous version (https://www.biorxiv.org/content/10.1101/2020.11.15.383869v1) 

of this study, I observed that two FA values (one for the uncinate fasciculus, one for the forceps 

major), represented potential outliers with undue influence on the partitioning of the 

Walktrap algorithm in the single-layer white matter network. Removing this data yielded a 

distinct, and more parsimonious clustering solution (2 communities vs 5). Moreover, 

removing this outlier did not affect any summary statistics for the white matter partial 

correlation (single-layer) network except for range. Nevertheless, below I present the Pearson 

Supplementary Figure 4. Comparisons between bootstrapped means and original 

sample edge-weight estimates for the CALM white matter partial correlation network.   

https://www.biorxiv.org/content/10.1101/2020.11.15.383869v1
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correlations between the weights obtained from the original data presented in the main 

manuscript and those from the data after all outliers (defined as ± 4 standard deviations) are 

removed (Supplementary Table 1). Due to the vast similarity in descriptive statistics and high 

correlations between partial correlation weights, I conclude that outliers did not confound the 

results of this study. However, it must be noted that outliers might slightly affect community 

detection, but I chose to keep the original data due to the nature of the sample (struggling 

learners, therefore behavioural and neural data might be atypical to begin with) and given the 

fact that the neural data was already quality controlled. Furthermore, the two outlier white 

matter ROIs occurred in two separate participants (one outlier each) while the rest of their 

ROIs were consistent with the rest of the sample. In close, I argue that outliers (both cognitive 

and neural) are likely not due to measurement error but instead represent realistic values of 

an atypically developing sample.    

 

Network Type Original Data Outliers Removed Pearson Correlation 

Cognitive 
0.08 (0.11) 

[0, 0.63] 

0.08 (0.11) 

[0, 0.61] 
0.99 

Grey Matter 
0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 
1 

White Matter 
0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.14, 0.47] 
0.93 

Cognitive-grey matter 
0.04 (0.1) 

[-0.12, 0.64] 

0.03 (0.09) 

[-0.11, 0.62] 
0.97 

Cognitive-white matter 
0.04 (0.1) 

[-0.2, 0.65] 

0.04 (0.1) 

[-0.22, 0.65] 
0.97 

Tri-layer 
0.02 (0.08) 

[-0.2, 0.66] 

0.02 (0.08) 

[-0.19, 0.65] 
0.98 

  

 

Supplementary Table 1. Comparisons between partial correlation (PC) networks 

(original data vs outliers removed). These include summary statistics such as mean, 

(standard deviation), [range] and Pearson correlations between PC graph weights using 

pairwise complete observations to account for missingness.   
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How to deal with age? 

As in previous literature, in the CALM sample age shows a clear positive association 

with intelligence measures (Figures 8 and 11) and brain structure (Figures 9 and 12). This fact, 

however, may further complicate any interpretations of (possible) causal interactions between 

cognitive and/or neural nodes. This is due to the multitude of reasons age might correlate with 

cognition and brain structure. For instance, this pattern could be due to the fact that older 

participants normally score higher on cognitive tasks and have greater brain maturation. In 

this case age functions as an underlying driver of (even greater) covariance between the two 

domains. There are at least two options (included in the original preprint) of how to deal with 

the relationship of age to cognitive ability, and grey and white matter structural covariance: 

1) I could estimate the partial correlation network and include age as a node, therefore, 

choosing to estimate it simultaneously with the cognitive and neural variables (this is the option 

I chose for the non-Supplemental part of the analyses), or 2) I could regress out the association 

of age for each variable (age would show no correlation with cognitive and/or neural 

measures) before network estimation. Both approaches are related and have corresponding 

pros and cons. For example, these two options might enable the detection of correlations 

beyond age, possibility revealing core relations among variables independent of stereotypical 

neurocognitive development (e.g., older participants normally score higher on cognitive tasks 

and have larger brains as they mature). However, this might also remove developmental 

associations of interest (e.g., age may function as a moderator of cognitive and neural growth 

as in the above example).  

Notably, a third possible option (assessed for this thesis and to be included in the 

revision of the preprint for future publication), which addresses this limitation, is to estimate 

the network ignoring age (i.e., removing it from dataset before estimation). Specifically, choosing 

not to include age as a node has the benefit of revealing the ‘actual correlations’ (i.e., those 

dependent on neurocognitive development in childhood and adolescence) among cognitive 

abilities and brain structure in the population, as the ‘effects’ of age are not controlled for 

before (regressed out) or during (age node associations with other nodes removed during 

calculation of partial correlations) network estimation. However, a drawback to this approach 

is that doing so could also amplify these associations, confounding the findings. 
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Here I compare the partial correlations matrices for the three analysis paths (i.e., age 

node used in network estimation vs age node regressed out before estimation; and age node 

used in network estimation vs age node removed from dataset prior to network estimation) 

for both single and multilayer networks (Supplementary Tables 2 and 3). This analysis 

demonstrates that, regardless of how age is accounted for in estimation, the partial correlation 

networks are very similar to each other. 

 

Network Type 
Age Included in 

Estimation 

Age Regressed Out 

before Estimation 
Pearson Correlation 

Cognitive  0.08 (0.11) 

[0, 0.63] 

0.08 (0.12) 

[0, 0.65] 

0.98 

Grey Matter 0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 

1(rounded from 0.999) 

White Matter 0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.2, 0.49] 

0.93 

Cognitive-grey matter 0.04 (0.10) 

[-0.12, 0.64] 

0.03 (0.10) 

[-0.14, 0.65] 

0.94 

Cognitive-white matter 0.04 (0.10) 

[-0.20, 0.65] 

0.03 (0.10) 

[-0.24, 0.66] 

0.94 

Tri-layer 0.02 (0.08) 

[-0.20, 0.66] 

0.02 (0.07) 

[0, 0.64] 

0.88 

 

 

 

 

 

 

 

Supplementary Table 2. Comparisons between partial correlation networks (age 

included in estimation vs age regressed out before estimation). These include summary 

statistics such as mean, (standard deviation), [range] and Pearson correlations between 

PC graph weights using pairwise complete observations to account for missingness.   
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Network Type 
Age Included in 

Estimation 

Age Removed from 

Dataset before Estimation 
Pearson Correlation 

Cognitive  0.08 (0.11) 

[0, 0.63] 

0.09 (0.12) 

[0, 0.68] 

0.99 

Grey Matter 0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.16, 0.52] 

0.99 

White Matter 0.08 (0.11) 

[0, 0.44] 

0.09 (0.13) 

[-0.19, 0.46] 

0.90 

Cognitive-grey matter 0.04 (0.10) 

[-0.12, 0.64] 

0.04 (0.10) 

[-0.11, 0.66] 

0.97 

Cognitive-white matter 0.04 (0.10) 

[-0.20, 0.65] 

0.04 (0.10) 

[-0.21, 0.69] 

0.97 

Tri-layer 0.02 (0.08) 

[-0.20, 0.66] 

0.02 (0.08) 

[-0.16, 0.67] 

0.94 

 

Teasing apart the relations of cortical volume to general intelligence: 

 Multilayer analysis using cortical surface area and thickness 

Lastly, I partitioned cortical volume into its constituent parts, cortical surface area and 

thickness, to compare their partial correlations and community structures when combined 

with white matter and general intelligence (Supplementary Figures 5 and 6). This produced 

bilayer networks that were much less connected between domains (brain vs behaviour) than 

the cognition-volume bilayer network in Figure 15 (top left). Finally, bridge strength showed 

the same pattern as in the main manuscript, except for the surface area tri-layer network, 

where neural regions (both grey and white) appear to dominate the bridge strength centrality 

(Supplementary Figure 6), rather than cognition (Figure 16, bottom). 

 

Supplementary Table 3. Comparisons between partial correlation networks (age 

included in estimation vs age node removed from dataset prior to network estimation). 

These include summary statistics such as mean, (standard deviation), [range] and 

Pearson correlations between PC graph weights using pairwise complete observations 

to account for missingness.   
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Supplementary Figure 5. Top: Network visualisations (spring layout) of partial correlation 

CALM bi-layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes 

are grouped according to Walktrap algorithm results. Bottom: Bridge centrality estimates (z-

scores) for CALM bi-layer grey matter (surface area (left) and cortical thickness (right)) 

networks. Dashed lines indicate mean strength and one standard deviation above the mean. 
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Supplementary Figure 6. Top: Network visualisations (spring layout) of partial correlation 

CALM tri-layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes 

are grouped according to Walktrap algorithm results. Bottom: Bridge centrality estimates (z-

scores) for CALM tri-layer grey matter (surface area (left) and cortical thickness (right)) 

networks. Dashed lines indicate mean strength and one standard deviation above the mean. 
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