
https://doi.org/10.1007/s42484-021-00041-1

RESEARCH ARTICLE

A quantum search decoder for natural language processing

Johannes Bausch1 · Sathyawageeswar Subramanian1 · Stephen Piddock2,3

Received: 5 November 2020 / Accepted: 9 February 2021
© The Author(s) 2021

Abstract
Probabilistic language models, e.g. those based on recurrent neural networks such as long short-term memory models
(LSTMs), often face the problem of finding a high probability prediction from a sequence of random variables over a set
of tokens. This is commonly addressed using a form of greedy decoding such as beam search, where a limited number of
highest-likelihood paths (the beam width) of the decoder are kept, and at the end the maximum-likelihood path is chosen.
In this work, we construct a quantum algorithm to find the globally optimal parse (i.e. for infinite beam width) with high
constant success probability. When the input to the decoder follows a power law with exponent k > 0, our algorithm has
runtime Rnf (R,k), where R is the alphabet size, n the input length; here f < 1/2, and f → 0 exponentially fast with
increasing k, hence making our algorithm always more than quadratically faster than its classical counterpart. We further
modify our procedure to recover a finite beam width variant, which enables an even stronger empirical speedup while
still retaining higher accuracy than possible classically. Finally, we apply this quantum beam search decoder to Mozilla’s
implementation of Baidu’s DeepSpeech neural net, which we show to exhibit such a power law word rank frequency.

Keywords Recurrent neural networks · Quantum algorithms · Quantum search · Parsing · Natural language processing ·
Quantum speedups

1 Introduction

A recurring task in the context of parsing and neural sequence
to sequence models—such as machine translation (Ilya et al.
2011; Sutskever et al. 2014), natural language processing
(Schmidhuber 2014) and generative models (Graves 2013)—
is to find an optimal path of tokens (e.g. words or letters)
from a sequential list of probability distributions. Such a
distribution can for instance be produced at the output
layer of a recurrent neural network, e.g. a long short-term

� Johannes Bausch
jkrb2@cam.ac.uk

Sathyawageeswar Subramanian
ss2310@cam.ac.uk

Stephen Piddock
stephen.piddock@bristol.ac.uk

1 CQIF, DAMTP, University of Cambridge, Cambridge,
CB3 0WA, UK

2 Heilbronn Institute for Mathematical Research, Bristol, UK

3 School of Mathematics, University of Bristol,
Bristol BS8 1TW, UK

memory (LSTM). The goal is to decode these distributions
by scoring all viable output sequences (paths) under some
language model, and finding the path with the highest score.

Nowadays, the de facto standard solution is to use a
variant of beam search (Steinbiss et al. 1994; Vijayakumar
et al. 2016; Wiseman and Rush 2016; Kulikov et al. 2018;
Pratap et al. 2020) to traverse the list of all possible output
strings. Beam search stores and explores a constant sized list
of possible decoded hypotheses at each step, compared to a
greedy algorithm that only considers the top element at each
step. Beam search thus interpolates between a simple greedy
algorithm and best-first search; but just like greedy search,
beam search is not guaranteed to find a global optimum.
Furthermore, beam search suffers from sensitivity to the
predicted sequence length. Improving the algorithm itself
(Murray and Chiang 2018; Yang et al. 2018), as well as
finding new decoding strategies (Fan et al. 2018; Holtzman
et al. 2020), is an ongoing field of research.

A related task is found in transition based parsing of
formal languages, such as context-free grammars (Hopcroft
et al. 2001; Zhang and Clark 2008; Zhang and features
2011; Zhu et al. 2015; Dyer et al. 2015). In this model,
an input string is processed token by token, and a heuristic
prediction (which can be based on various types of

Quantum Machine Intelligence (2021) 3: 16

/ Published online: 30 April 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-021-00041-1&domain=pdf
http://orcid.org/0000-0003-3189-9162
mailto: jkrb2@cam.ac.uk
mailto: ss2310@cam.ac.uk
mailto: stephen.piddock@bristol.ac.uk

classifiers, such as feed forward networks) is made on how
to apply a transition at any one point. As in generative
models and decoding tasks, heuristic parsing employs beam
search, where a constant sized list of possible parse trees
is retained in memory at any point in time, and at the
end the hypothesis optimising a suitable objective function
is chosen. Improvements of beam search-based parsing
strategies are an active field of research (Buckman et al.
2016; Bohnet et al. 2016; Vilares and Gȯmez-Rodriguez
2018).

In essence, the problem of decoding a probabilistic
sequence with a language model—or probabilistically
parsing a formal grammar—becomes one of searching for
paths in an exponentially growing tree: since at each step or
node the list of possible sequence hypotheses branches, with
maximum degree equal to the number of predictions for the
next tokens. The goal is to find a path through this search
space with the highest overall score. Due to runtime and
memory constraints, a tradeoff has to be made which limits
any guarantees on the performance of the search strategy.

Quantum computing has shown promise as an emerging
technology to efficiently solve some instances of difficult
computing tasks in fields ranging from optimisation (Gilyén
et al. 2019; Montanaro 2020), linear algebra (Harrow
et al. 2009; Berry et al. 2017), number theory and pattern
matching (Montanaro 2016; 2017), language processing
(Aaronson et al. 2019; Wiebe et al. 2019), machine learning
(McClean et al. 2016; Bausch 2018; Wang et al. 2019;
Li et al. 2019), to quantum simulation (Lloyd 1996;
Babbush et al. 2018; Childs and Su 2019). While quantum
computers are not yet robust enough to evaluate any of
these applications on sample sizes large enough to claim
an empirical advantage, a structured search problem such
as language decoding is a prime candidate for a quantum
speedup.

Although most naı̈ve search problems can be sped up
using Grover’s search algorithm (or one of its variants, such
as fixed point search or oblivious amplitude amplification),
finding good applications for quantum algorithms remains
challenging, and super-quadratic (i.e. faster than Grover)
speedups—such as Shor’s for prime factorisation (Shor
1999)—are rare. Recently, several exponentially faster algo-
rithms (such as quantum recommender systems (Kerenidis
and Prakash 2016), or dense low rank linear algebra (Woss-
nig et al. 2018)) have been proven to rely on a quantum
random access memory model which, if classically avail-
able, can yield an exponential speedup without the need for
quantum computing (Tang 2019).

In this work, we develop a quantum search decoder
for parsing probabilistic token sequences with a super-
quadratic speedup as compared to its classical counterpart.
The algorithm can be seen as a generalisation of classical
beam search, with potentially infinite beam width; for finite

beam width, the list of hypotheses is pruned only once at
the very end—after all possible parsing hypotheses have
been generated—instead of performing continuous pruning
during decoding, resulting in higher accuracy guarantees.

We develop two variants of the decoder. The first one is
for finding the most likely parsed string. The more realistic
use case is where the input sequence simply serves as advice
on where to find the top scoring parse under a secondary
metric—i.e. where the element with the highest decoder
score is not necessarily the one with the highest probability
of occurring when sampled. In this variant the speedup
becomes more pronounced (i.e. the runtime scales less and
less quickly in the input length) the better the advice (i.e. the
steeper the power law falloff of the input, see Fig. 1).

Our novel algorithmic contribution is to analyse a
recently developed quantum maximum finding algorithm
(Apeldoorn et al. 2017) and its expected runtime when
provided with a biased quantum sampler that we developed
for formal grammars, under the premise that at each step
the input tokens follow a power-law distribution; for a
probabilistic sequence obtained from Mozilla’s DeepSpeech
(which we show satisfies the premise), the quantum search
decoder is a power of ≈ 4–5 faster than possible classically
(Fig. 2).

In the following we assume basic familiarity with
the notion of quantum computation, but provide a short
overview for the reader in Appendix 1.

2Main results

In this paper, we address the question of decoding a
probabilistic sequence of words, letters, or generally tokens,
obtained, e.g., from the final softmax layer of a recurrent
neural network, or given as a probabilistic list of heuristic
parse transitions. These models are essentially identical
from a computational perspective. Hence, we give the
following formal setup, and will speak of a decoding task,
leaving implicit the two closely related applications.

Given an alphabet Σ , we expect as input a sequence of
random variables X = (X1, X2, . . . , Xn), each distributed
as Xi ∼ DΣ

i . The distributions DΣ
i can in principle vary

for each i; furthermore, the Xi can either be independent,
or include correlations. The input model is such that we
are given this list of distributions explicitly, e.g. as a table
of floating point numbers; for simplicity of notation we
will continue to write Xi for such a table. The decoding
machine M is assumed to ingest the input (a sample of the
Xi) one symbol at a time, and branch according to some
factor R at every step; for simplicity we will assume that
R is constant (e.g. an upper bound to the branching ratio at
every step). As noted, M can for instance be a parser for a
formal grammar (such as an Earley parser (Earley 1970)) or

Quantum Machine Intelligence (2021) 3: 16Page 2 of 2416

Fig. 1 Exponent f (R, k) of
expected runtime of QUANTUM-
SEARCHDECODE, when fed
with a power law input with
exponent k, over R alphabet
tokens; plotted are individual
curves for the values R ∈
{3, 5, 10, 15, 20, 30, 40, 60, 100},
from top to bottom. For all R,
f (R, k) drops off exponentially
with growing k

some other type of language model; it can either accept good
input strings, or reject others that cannot be parsed. The set
of configurations of M that lead up to an accepted state is
denoted by Ω; we assume that everything that is rejected is
mapped by the decoder to some type of sink state ω �= Ω .
For background details on formal grammars and automata
we refer the reader to Hopcroft et al. (2001), and we provide
a brief summary over essential topics in Appendix 2.

While we can allow M to make use of a heuristic that
attempts to guess good candidates for the next decoding

step, it is not difficult to see that a randomised input setting
is already more generic than allowing extra randomness to
occur within M itself: we thus restrict our discussion to a
decoder M that processes a token sequence step by step,
and such that its state itself now simply becomes a sequence
(Mi)i≤n of random variables. More precisely, described as
a stochastic process, the Mi are random variables over the
set Ω of internal configurations after the automaton has
ingested Xi , given that it has ingested Xi−1, . . . , X1 prior
to that, with a distribution DΩ

i . The probability of decoding

Fig. 2 Runtime of quantum beam search decoding the output of
Mozilla’s DeepSpeech LSTM with a grammar, assuming an average
branching ratio of R = 5, a token power law distribution with exponent
k = 2.91, and post-amplification of the quantum search decoder with
a constant number of retained hypotheses Nhyp ∈ {101, . . . , 1015},
plotted in rainbow colors from purple to red, bottom to top. In the

left region, where full QUANTUMSEARCHDECODING is performed
(as the beam comprises all possible hypotheses), a super-Grover
speedup is obtained (Corollary 2). Where the beam width saturates, a
Grover speedup is retained, and hypotheses are pruned only after all
hypotheses have been constructed

Quantum Machine Intelligence (2021) 3: 16 Page 3 of 24 16

a specific accepted string x = (x1, . . . , xn) is then given by
the product of the conditional probabilities

Pr(Mn =x) : = NPr(X = x)

= 1

N

n∏

i=1

Pr(Xi =xi |Xj =xj , j ≤ i−1) (1)

where N = ∑
x∈Ω Pr(X = x). In slight abuse of notation

we write Mn = x when we mean Mn = y(x), where
y(x) is the configuration of the parser M that was provided
with some input to produce the parsed string x (which is
unambiguous as there is a one-to-one mapping between
accepted strings and parser configurations y(x)). Similarly,
we write x ∈ Ω for an accepted string/decoded path.

The obvious question is: which final accepted string of
the decoder is the most likely? This is captured in the
following computational problem.

MOST LIKELY PARSE
Input: Decoder M over alphabet Σ , set of accep-

ting configurations Ω . Sequence of random
variables (Xi)i≤n over sample space Σ .

Question: Find σ = argmaxx∈ΩPr(Mn = x).
Classically, it is clear that if we have a procedure that

can sample the random variable Mn efficiently, then we
can find the most likely element with an expected runtime
of 1/Pr(Mn = σ), as this is the number of samples we
are expected to draw to see the element once. While such
sampling algorithms might be inefficient to construct in
general, we emphasise that the question of drawing samples
from strings over a formal language is an active field of
research, and algorithms to sample uniformly are readily
available for a large class of grammars: in linear time for
regular languages (Bernardi and Giménez 2012; Oudinet
et al. 2013), but also context-free grammars/restrictions
thereof (McKenzie 1997; Goldwurm et al. 2001; Hickey and
Cohen 1983; Gore et al. 1997; Denise 1996), potentially
with global word bias (Reinharz et al. 2013; Lorenz and
Ponty 2013; Denise et al. 2000; Ponty 2012).

In Theorem 3 and Section 3.1, we lift such a classical
uniform sampler to a quantum sampler (denoted Uμ) with
local (instead of global) word bias, which we can use
to obtain a quantum advantage when answering MOST

LIKELY PARSE. We note that the techniques used to prove
Theorem 3 may well be used to obtain a (potentially
faster) classical Monte Carlo procedure to sample from
Mn. In what follows, we will therefore keep the decoder’s
time complexity separate from the sampler’s runtime and
simply speak of the decoder’s query complexity to Uμ, but
we emphasise that constructing such an Uμ is efficiently
possible, given a classical description of an automaton that
parses the grammar at hand.

We start with the following observation, proven in
Section 4.1.

Theorem 1 For an input sequence of n random variables
to a parser with sampling subroutine Uμ, there exists
a quantum search algorithm answering MOST LIKELY

PARSE, using π/4
√
Pr(Mn = σ) queries to Uμ.

As explained, this theorem formalises the expected
quadratic speedup of the runtime as compared to a classical
algorithm based on sampling from Mn. Given the input to
the parser is power-law distributed (see Definition 1), this
allows us to formulate the following corollary.

Corollary 1 If the Xi ∼ PowerR(k), answering MOST

LIKELY PARSE requires at most 1/HR(k)n/2 queries; where
HR(k) = ∑R

i=1 i−k .

Yet a priori, it is not clear that the weight of a decoded
path (e.g. the product of probabilities of the input tokens)
also corresponds to the highest score we wish to assign
to such a path. This becomes obvious in the setting of a
heuristic applied to a live translation: while at every point
in time the heuristic might be able to guess a good forward
transition, it might well be that long range correlations
strongly affect the likelihood of prior choices. Research
addressing these long-distance “collocations” indicates that
LSTM models are capable of using about 200 tokens of
context on average, but that they sharply distinguish nearby
context (≈ 50 tokens) from the distant past. Furthermore,
such models appear to be very sensitive to word order
within the most recent context, but ignore word order
in the long-range context (more than 50 tokens away)
(Zhu et al. 2015; Dabrowska 2008; Khandelwal et al.
2018). Similarly, transformer-type architectures with self-
attention—while outperforming LSTMs—feature a fixed-
width context window; extensions thereof are an active field
of research (Al-Rfou et al. 2019; Dai et al. 2019; Kitaev
et al. 2020).

To address this setting formally, we assume there exists
a scoring function , which assigns scores
to all possible decoded paths. Without loss of generality,
there will be one optimal string which we denote with τ =
argmaxx∈ΩF(x). Furthermore, we order all decoded strings
Ω in some fashion, and index them with numbers i =
1, . . . , |Ω|. Within this ordering, τ can now be in different
places—either because the heuristic guesses differently at
each step, or because the input sequence varied a little.
We denote the probability that the marked element τ is
at position i with pi . In essence, the position where τ is
found is now a random variable itself, with probability mass
Pr(finding τ at index i) = pi .

For the decoder probabilities Pr(Mn = x) to serve as
good advice on where to find the highest-score element
under the metric F , we demand that the final distribution
over the states of the decoder puts high mass where the

Quantum Machine Intelligence (2021) 3: 16Page 4 of 2416

highest-scoring element often occurs; or formally that

Pr(Mn = string with index i) = pi . (2)

To be precise, we define the following problem.
HIGHEST SCORE PARSE

Input: Decoder M over alphabet Σ and with state
space Ω . Sequence of random variables
(Xi)i≤n over sample space Σ . Scoring
function .

Promise: Eq. (2).
Question: Find τ = argmaxx∈ΩF(x).

What is the classical baseline for this problem? As
mentioned in Montanaro (2011), if px is the probability that
x is the highest-scoring string, then in expectation one has
to obtain 1/px samples to see x at least once. Any procedure
based on sampling from the underlying distribution px thus
has expected runtime

∑
x∈Ω

1
px

× px = |Ω|. In a sense
this is as bad as possible; the advice gives zero gain over
iterating the list item by item and finding the maximum in
an unstructured fashion. Yet provided with the same type of
advice, a quantum computer can exhibit tremendous gains
over unstructured search, such as the following statement,
formally proven in Section 4.2.

Theorem 2 With the same setup as in Theorem 1 but
under the promise that the input tokens are iid with
Xi ∼ Power|Σ |(k) over alphabet Σ (Definition 1), that the
decoder has a branching ratio R ≤ |Σ |, and that we can
uniformly sample from the grammar to be decoded, there
exists a quantum algorithm QUANTUMSEARCHDECODE

(Algorithm 1) answering HIGHEST SCORE PARSE with an
expected number of iterations

RT1(R, k, n) = O
(
Rnf (R,k)

)
,

where f (R, k) = log

(
HR(k/2)

HR(k)1/2

)/
log R,

and where HR(k) is defined in Corollary 1.
There exists no classical algorithm to solve this problem

based on taking stochastic samples from the decoder M that
requires less than Ω(Rn) samples.

The exponent f (R, k) indicates the speedup over a
classical implementation of the decoding algorithm (which
would have to search over Rn elements). We find that
f (R, k) < 1/2 for all R, k > 0, and in fact f (R, k) −→ 0
exponentially quickly with k; we formulate the following
corollary.

Corollary 2 For k > 0, QUANTUMSEARCHDECODE is
always faster than plain Grover search (with runtime ∝
Rn/2); the extent of the speedup depends on the branching
ratio R and the power law exponent k (see Fig. 1).

Finally, in Section 5 we modify the full quantum search
decoder by only searching over the paths with likelihood
above some given threshold (that we allow to depend
on n in some fashion), turning the decoder into a type
of beam search, but where the pruning only happens at
the very end (Algorithm 2). This means that in contrast
to beam search, the top scoring element is found over
the globally most likely parsed paths, avoiding the risk
early beam pruning brings. We analyse the runtime of
Algorithm 2 for various choices of beam width numerically,
and analyse its performance on a concrete example—
Mozilla’s DeepSpeech implementation, a speech-to-text
LSTM which we show to follow a power-law token
distribution at each output frame (see Appendix 8 for
an extended discussion). For DeepSpeech, we empirically
find that input sequence lengths of up to 500 tokens can
realistically be decoded, with an effective beam width
of 1015 hypotheses—while requiring ≈ 3 × 106 search
iterations (cf. Fig. 2). As expected, the super-Grover
speedup from Corollary 2 is achieved in the regime
where full QUANTUMSEARCHDECODING happens; once
the beam width saturates, the speedup asymptotically
approaches a quadratic advantage as compared to classical
beam search.

3 Quantum search decoding

In this section, we give an explicit algorithm for QUANTUM-
SEARCHDECODE. As mentioned before (see Section 2), we
assume we have access to a classical sampling algorithm
that, given a list of transition probabilities determined by
the inputs X1, . . . , Xn, yields a random sample drawn uni-
formly from the distribution. Since this sampler is given as
a classical probabilistic program, we first need to translate it
to a quantum algorithm. We start with the following lemma.

Lemma 1 For a probabilistic classical circuit with runtime
T (n) and space requirement S(n) on an input of length
n, there exists a quantum algorithm that runs in time
O(T (n)log2 3) and requires O(S(n) log T (n)) qubits.

Proof Follows from Thm. 1 in Buhrman et al. (2001); see
Appendix 7.

3.1 Biased quantum sampling from a regular
or context-free grammar

Given a sampler that can yield uniformly distributed strings
si of a language, we want to raise it to a quantum circuit
Uμ that produces a quantum state which is a biased
superposition over all such strings si = ai1ai2 · · · ain, where
each string is weighted by the probability pij of the symbol

Quantum Machine Intelligence (2021) 3: 16 Page 5 of 24 16

aij occurring at index j (i.e. by Eq. (1)). In addition to the
weighted superposition, we would like to have the weight
of each state in the superposition spelled out as an explicit
number in an extra register (e.g. as a fixed precision floating
point number), i.e. as

Uμ|0〉 = |μ〉 ∝
∑

q∈Ω

√
pq |hq〉|pq〉|q〉, (3)

where Ω is the set of accepted strings reachable by
the decoder in n steps, |hq〉 is an ancillary state that
depends on q and is contained in the decoder’s work space,
where q is a state reached by reading the input sequence
aq1, aq2, . . . , aqn. The weights pq = ∏n

j=1 pqj .
As outlined in the introduction, we know there exist

uniform classical probabilistic samplers for large classes of
grammars, e.g. for regular languages in linear time (e.g.
Oudinet et al. 2013) and polynomial time for variants of
context free grammars (e.g. Goldwurm et al. 2001). Keeping
the uniform sampler’s runtime separate from the rest of the
algorithm, we can raise the sampler to a biased quantum
state preparator for |μ〉.

Theorem 3 Assume we are given a classical probabilistic
algorithm that, in time T (n), produce a uniform sample of
length n from a language, and we are also given a list of
independent random variables X1, . . . , Xn with pdfs pi,j

for i = 1, . . . , n and j = [Σ]. Then we can construct
a quantum circuit Uμ′ that produces a state |μ′〉 ε-close
(in total variation distance) to the one in Eq. (3). The
algorithm runs in time O(T (n)1.6 × n3κ/ε2), where κ is
an upper bound on the relative variance of the conditional
probabilities Pr(a|s1 . . . si), for a, si ∈ Σ , for the variable
Xi+1 given the random string XiXi−1 · · · X1.

Proof See Appendix 3.

Getting a precise handle on κ strongly depends on the
grammar to be parsed and the input presented to it; it seems
unreasonable to claim any general bounds as it will most
likely be of no good use for any specific instance. However,
we note that it is conceivable that if the input is long and
reasonably independent of the language to be sampled, then
κ should be independent of n, and κ ≈ 1/p(rmin), where
p(r) is the distribution of the input tokens at any point in
time—e.g. p(r) ∝ r−k as in a power law.1

1This should make intuitive sense: the branching ratios are already
biased with respect to the number of future strings possible with prefix
s; if the input sequence is independent of the grammar, then we would
expect them to weigh the strings roughly uniformly; the extra factor
of 1/p(rmin) simply stems from the weighing of the token we bin by,
namely a.

3.2 The quantum search decoder

The quantum algorithm underlying the decoder is based
on the standard maximum finding procedure developed by
Dürr and Høyer (1996) and Ahuja and Kapoor (1999), and
its extension in Apeldoorn et al. (2017) used in the context
of SDP solvers.

The procedure takes as input a unitary operator Uμ which
prepares the advice state, and a scoring function F which
scores its elements, and returns as output the element within
the advice state that has the maximum score under F . As in
Section 3.1, we assume that F can be made into a reversible
quantum circuit to be used in the comparison operation. We
also note that reversible circuits for bit string comparison
and arithmetic are readily available (Oliveira and Ramos
2007), and can, e.g., be implemented using quantum adder
circuits (Gidney 2018).

Algorithm 1 lists the steps in the decoding procedure. As
a subroutine within the search loop, we perform exponential
search with oblivious amplitude amplification (Berry et al.
2014). As in the maximum finding algorithm, the expected
query count for quantum search decoding is given as
follows.

Theorem 4 If x ∈ Ω is the highest-scoring string and
px its score in Eq. (3), the expected number of iterations
in QUANTUMSEARCHDECODE to find it maximum is
O(min{1/

√
px,

√
n}).

Proof Immediate by Apeldoorn et al. (2017).

In the following we will for simplicity say |x〉 is the
highest-scoring string (including ancilliary states given in
Eq. (3)), and write |〈x|μ〉| instead of

√
px . It is clear that the

two notions are equivalent.

Quantum Machine Intelligence (2021) 3: 16Page 6 of 2416

4 Power law decoder input

In this section we formally prove that if the decoder is fed
independent tokens that are distributed like a power law,
then the resulting distribution over the parse paths yields
a super-Grover speedup—meaning the decoding speed is
faster than applying Grover search, which itself is already
quadratically faster than a classical search algorithm that
traverses all possible paths individually.

A power law distribution is the discrete variant of
a Pareto distribution, also known as Zipf’s law, which
ubiquitously appears in the context of language features
(Jäger 2012; Stella and Brede 2016; Egghe 2000; Piantadosi
2014). This fact has already been exploited by some authors
in the context of generative models (Goldwater et al. 2011).

Formally, we define it as follows.

Definition 1 Let A be a finite set with |A| = R, and
k > 1. Then PowerR(k) is the power law distribution over
R elements: for X ∼ PowerR(k) the probability density
function Pr(X = x) = r−k/HR(k) for an element of rank
r (i.e. the r th most likely element), where HR(k) is the Rth

harmonic number of order k (Corollary 1).

We are interested in the Cartesian product of power
law random variables, i.e. sequences of random variables
of the form (X1, . . . , Xn). Assuming the random variables
Xi ∼ PowerR(k) are all independent and of rank ri with pdf
q(ri) = r−k

i /HR(k), respectively, it is clear that

p(r1, . . . , rn) =
n∏

i=1

q(ri) = 1

HR(k)n

1

(r1 · · · rn)k . (4)

As in Montanaro (2011), we can upper bound the number
of decoder queries in QUANTUMSEARCHDECODE by cal-
culating the expectation value of the iterations necessary—
given by Theorem 4—with respect to the position of the top
element.

We assume that at every step, when presented with choices
from an alphabet Σ , the parsed grammar branches on average
R ≤ |Σ | times. Of course, even within a single time frame,
the subset of accepted tokens may differ depending on what
the previously accepted tokens are. This means that if the
decoder is currently on two paths β1 (e.g. corresponding to
“I want”) and β2 (“I were”), where the next accepted token
sets are Σ1, Σ2 ⊂ Σ (each different subsets of possible
next letters for the two presented sentences), respectively,
then we do not necessarily have that the total probability of
choices for the two paths—Pr(Σ1) and Pr(Σ2)—are equal.
But what does this distribution over all possible paths of the
language, weighted by Eq. (1), look like?

Certainly this will depend on the language and type
of input presented. Under a reasonable assumption of

independence between input and decoded grammar, this
becomes equivalent to answering the following question: let
X be a product-of-powerlaw distribution with pdf given in
Eq. (4), where every term is a powerlaw over Σ . Let Y

be defined as X, but with a uniformly random subset of
elements deleted; in particular, such that Rn elements are
left, for some R < |Σ |. Is Y distributed as a product-of-
powerlaws as in Eq. (4), but over R elements at each step?
In the case of continuous variables this is a straightforward
calculation (see Appendix 5); numerics suggest it also holds
true for the discrete case.

But even if the input that the parser given is indepen-
dent of the parsed grammar, it is not clear whether the
sample distribution over R (i.e. sampling R out of |Σ |
power-law distributed elements) follows the same power
law as the original one over Σ ; this is in fact not the
case in general (Zhu et al. 2015). However, it is straight-
forward to numerically estimate the changed power law
exponent of a sample distribution given R and |Σ |—and
we note that the exponent shrinks only marginally when
R < |Σ |.

In this light and to simplify the runtime analysis, we
therefore assume the decoder accepts exactly R tokens
at all times during the parsing process (like an R-ary
tree over hypotheses) with a resulting product-of-powerlaw
distribution, and give the runtimes in terms of the branching
ratio, and not in terms of the alphabet’s size. This indeed
yields a fair runtime for comparison with a classical
variant, since any classical algorithm will also have the
aforementioned advantage (i.e. we assume the size of final
elements to search over is Rn, which precisely corresponds
to the number of paths down the R-ary tree).

4.1 MOST LIKELY PARSE: query bound

In this case F simply returns pq as the score in Eq. (3). If
x labels the highest-mass index of the probability density
function (neglecting the ancilliary states in Eq. (3) for
simplicity), it suffices to calculate the state overlap |〈x|μ〉|.
By Eq. (4), we then have |〈x|μ〉|2 = H−n

R (k). The claim of
Corollary 1 follows from these observations.

4.2 HIGHEST SCORE PARSE: simple query bound

We aim to find a top element scored under some function
F under the promise that |μ〉 (given in Eq. (3)) presents
good advice on where to find it, in the sense of Eq. (2). The
expected runtimes for various power law falloffs k can be
obtained by taking the expectation with respect to px as in
Montanaro (2011).

In order to do so, we need to be able to calculate
expecation values of the cartesian product of power law
random variables, where we restrict the domain to those

Quantum Machine Intelligence (2021) 3: 16 Page 7 of 24 16

elements with probability above some threshold. We start
with the following observation.

Lemma 2 If QUANTUMSEARCHDECODE receives as
input iid random variables X1, . . . , Xn, with Xi ∼
PowerR(k), then the number of queries required to the
parser is RT1(R, k, n) = O

(
HR(k/2)n/HR(k)n/2

)
.

Proof The expectation value of 1/〈x|μ〉 is straightforward
to calculate; writing r = (r1, . . . , rn), by Eq. (4), we have

As O(min{1/〈x|μ〉, √n}) ≤ O(1/〈x|μ〉) the claim
follows.

We observe that the runtime in Lemma 2 is exponential
in n. Nevertheless, as compared to a Grover algorithm—
with runtime Rn/2—the base is now dependent on the power
law’s falloff k. We can compare the runtimes if we rephrase
RT1(R, k, n) = Rnf (R,k), by calculating

(
HR(k/2)

HR(k)1/2

)n

= Rnf (R,k)

⇐⇒ f (R, k) = log

(
HR(k/2)

HR(k)1/2

)/
log R.

We observe that the exponent f (R, k) ∈ (0, 1/2), i.e.
it is always faster than Grover, and always more than
quadratically faster than classically. The exponent’s precise
dependency on k for a set of alphabet sizes R is plotted in
Fig. 1. For growing k, f (R, k) falls off exponentially.

4.3 MOST LIKELY PARSE: full query bound

A priori, it is unclear how much we lose in Lemma 2 by
upper-bounding O(min{1/〈x|μ〉, √n}) by O(1/〈x|μ〉)—so
let us be more precise. In order to evaluate the expectation
value of the minimum, we will break up the support of the
full probability density function p(r) into a region where
p(r) > 1/Rn, and its complement. Then, for two constants
C1 and C2, we have for the full query complexity

(5)

In order to calculate sums over sections of the pdf p(r), we
first move to a truncated Pareto distribution by making the
substitutions

∑

r∈A

1

rk
−→

∫

A

1

rk
dr, HR(k) −→ hR(k) :=

∫ R

1

1

rk
dr .

While this does introduce a deviation, its magnitude is
minor, as can be verified numerically throughout (see
Fig. 4, where we plot both RT1 and the continuous variant
RT1′(R, k, n) := hn

R(k/2)/h
n/2
R (k)).

The type of integral we are interested in thus takes the
form

MR,k1,k2
c,n := 1

hn
R(k1)

∫∫∫ R

1

χ(r1 · · · rn ≤c)

(r1 · · · rn)k2
dr1 · · · drn, (6)

where k1 is not necessarily equal to k2, and typically
c = (R/hR(k1))

n/k1 , which would reduce to the case we
are seeking to address in Eq. (5). Here, χ(·) denotes the
characteristic function of a set, i.e. it takes the value 1 where
the premise is true, and 0 otherwise. We derive the following
closed-form expression.

Lemma 3 For k �= 1, Eq. (6) becomes

MR,k1,k2
c,n = (−1)n

k′nhn
R(k1)

min{n,�c′/a′�}∑

j=0

(
n

j

)

×
(

ea′k′j − e−c′k′
n−1∑

l=0

(a′k′j − c′k′)l

l!

)
,

where k′ = 1 − k2, c′ = log c, a′ = log R.

Proof See Appendix 4.

5 Quantum beam search decoding

The goal of this section is to modify the QUANTUM-
SEARCHDECODER such that it behaves more akin to a
classical beam search algorithm. More specifically, instead
of searching for the top scored element which could sit any-
where within the advice distribution, we make the assump-
tion that wherever the advice probability lies below some
threshold p(x) < p0—where p0 can be very small—we
discard those hypotheses. This is done by dovetailing a
few rounds of amplitude amplification to suppress all beam
paths with probability less than p0 (which we can do, since
we have those probabilities written out as numbers within
the advice state |μ〉 in Eq. (3)); a schematic of the algorithm
can be found in Algorithm 2.

Quantum Machine Intelligence (2021) 3: 16Page 8 of 2416

Of course we only want to do this if the number
of amplification rounds, given as the squareroot of the
inverse of the leftover probability

∑
x:p(x)≥p0

p(x), is small
(i.e. constant, or logarithmic in n). We note that this
expression is, as before, well-approximated by M

R,k,k
p0,n given

in Lemma 3.

In beam search, only the top scoring hypotheses are
kept around at any point in time; the difference to our
method is of course that we can score the elements after
every hypothesis has been built. This is not possible in the
classical case, since it would require an exponential amount
of memory, or postselection. As in Section 3, we have the
two cases of finding the top scoring path and the most likely
parse. Deriving a runtime bound for MOST LIKELY PARSE

is straightforward—and does not, in fact, gain anything.
This is because when finding the maximum-likelihood path
τ , one performs amplitude amplification on that element
anyhow, and p(τ) > p0—so it is within the set of elements
with probability kept intact by the post-amplification.2

The only interesting case of amplifying the advice state
in QUANTUMSEARCHDECODE to raise it to a beam search
variant is thus for the case of HIGHEST SCORE PARSE,
using the decoder’s output as advice distribution. Instead
of listing a series of results for a range of parameters,
we provide an explicit example of this analysis with
real-world parameters derived from Mozilla’s DeepSpeech
neural network in the next section, and refer the reader to
Appendix 6 for a more in-depth analysis of variants of a
constant and non-constant amount of post-amplification.

2If anything, p0 introduces some prior knowledge about the first pivot
to pick for maximum finding.

6 DeepSpeech

6.1 Analysis of the output rank frequency

To support the applicability of our model, we analysed
our hypothesis that the output probabilities of an LSTM
used to transcribe voice to letters—which can then be used,
e.g., in a dialogue system with an underlying parser—is
distributed in a power-law like fashion. More specifically,
we use DeepSpeech, Mozilla’s implementation of Baidu’s
DeepSpeech speech recognition system (Hannun et al.
2014; Mozilla 2019b); our hypothesis was that these letter
probabilities follow a power-law distribution; our data
supports this claim (see Appendix 8, also for a discussion
of the LSTM’s power-law output—a model feature—vs. the
power-law nature of natural language features).

6.2 Runtime bounds for quantum beam search
decoding

We take the power law exponent derived from Mozilla’s
DeepSpeech neural network, k = 3.03 (cf. Appendix 8),
and derive runtime bounds for decoding its output with a
parser under the assumption that, on average, we take R = 5
branches in the parsing tree at every time step. As discussed
in Section 4, the sampling distribution over five elements
only yields a slightly lower exponent of k = 2.91. How
does quantum beam search perform in this setting, and how
many hypotheses are actually searched over? And what if
we fix the beam’s width to a constant, and increase the
sequence length? We summarise our findings in Figs. 2,
7 and 8).

7 Summary and conclusions

We have presented a quantum algorithm that is modelled
on and extends the capabilities of beam search decoding
for sequences of random variables. Studies of context
sensitivity of language models have shown that state-of-
the-art LSTM models are able to use about 200 tokens of
context on average while working with standard datasets
(WikiText2, Penn Treebank) (Khandelwal et al. 2018);
state of the art transformer-based methods level off at a
context window of size 512 (Al-Rfou et al. 2019). On
the other hand, under the premise of biased input tokens,
our quantum search decoding method is guaranteed to
find—with high constant success probability—the global
optimum, and it can do so in expected runtime that is always
more than quadratically faster than possible classically.
As demonstrated empirically (cf. Fig. 2), our quantum
beam search variant features a runtime independent of the
sequence length: even for token sequences of length > 500

Quantum Machine Intelligence (2021) 3: 16 Page 9 of 24 16

the top 1014 global hypotheses can be searched for an
optimal prediction, within 107 steps.

We have further shown that neural networks used in
the real world—concretely DeepSpeech—indeed exhibit a
strong power law distribution on their outputs, which in turn
supports the premise of our algorithm; how the performance
scales in conjunction with a native recurrent quantum neural
network such as in Bausch (2020) is an interesting open
question.

Appendix 1. Quantum computing:
preliminaries and notation

In this section we briefly review the basic notions and
notations in quantum computation, referring to Nielsen and
Chuang (2010) for more details.

The usual unit of classical computation is the bit, a
Boolean variable taking values in Z2 = {0, 1}. Its analogue
in quantum computation is called the qubit, and represents
the state of a physical quantum 2-level system. A qubit can
take values in C

2, i.e. linear combinations or superpositions
of two classical values (complex numbers)

α|0〉 + β|1〉
In particular we require that |α|2 + |β|2 = 1. We have also
introduced the Dirac bracket in the above:

More generally, the set of states an m-qubit quantum
register can take is the set of unit vectors

|φ〉 =
∑

i∈{0,1}m
αi |i〉 with αi ∈ C, such that

∑

i

|αi |2 = 1

(7)

in the Hilbert space spanned by a set of orthonormal basis
vectors {|i〉, i ∈ {0, 1}m}, known as the computational
basis. Each αi is called the amplitude of basis state |i〉.
We interpret the vector |i〉 as the m-dimensional complex
vector vi with entries given by (vi)j = δij , and also
interchangeably as the integer i or the bit string that gives
its binary representation b1 . . . bm where bi is either 0 or 1.
Furthermore, and of key importance to quantum mechanics
and computation, the vector |b1 . . . bm〉 ∈ C

2m
is interpreted

as a tensor product

|b1 . . . bm〉 = |b1〉 ⊗ |b2〉 ⊗ . . . ⊗ |bm〉
of the m vectors |bi〉 in C

2. The ⊗ is often dropped for
convenience, and we write |b1〉|b2〉 for |b1〉 ⊗ |b2〉.

Unitary operators There are two ways in which we can
compute on a state φ. The first is by unitary evolution of

the system under the Schrödinger equation with a specified
Hamiltonian operator H

i
d|ψ〉
dt

= H |ψ〉,
where H is a hermitian matrix. Closed systems undergo
reversible dynamics in quantum mechanics, and this
dynamics is represented by unitary matrices. Since we can
think of |φ〉 as a vector in C

2m
, a computation is represented

by multiplication of this state by a U ∈ SU(2m), i.e.
|φout〉 = U |φin〉. Recall that a matrix U is said to be unitary
if , where U† is the conjugate transpose of U .
It is possible to compile a large ‘algorithm’ U down into
elementary unitary operations, or quantum gates.

Measurements The second kind of operation we can
perform on |φ〉 is measurement. For our purposes, note that
the postulates of quantum mechanics say that on measuring
the state |φ〉 in Eq. (7) in the basis {|i〉}, we obtain as
outcome the basis state |i〉 with probability |αi |2. Since we
have chosen states to be normalised, the measurement gives
a valid probability mass function over the set of classical m-
bit strings. After the measurement, the state “collapses” to
the observed basis state |i〉, and no further information can
be retrieved from the original state.

Input models We will use two kinds of input models. The
first is a quantum analogue of the classical query model,
where inputs are accessed via a black-box or oracle that can
be queried with an index i and returns the i-th bit of the input
bit string. For a bit string x ∈ {0, 1}n we assume access to a
unitary Ox which performs the map

Ox |i〉|b〉|z〉 = |i〉|b ⊕ xi〉|z〉, (8)

where the first register consists of �log n� qubits, the second
is a single qubit register to store the output of the query, and
the third is any additional workspace the quantum computer
might have and is not affected by the query. Here ⊕ is
addition on Z2, i.e. the XOR operation in Boolean logic.
Note that Ox can be used by a quantum computer to make
queries in superposition:

Ox

(
1

n

n∑

i=1

|i〉|b〉|z〉
)

= 1

n

∑

i

|i〉|b ⊕ xi〉|z〉, (9)

Complexity measures For many theoretical studies in
complexity theory, the query input model is a powerful
setting where several results have been proven. In this
model, the total number of queries made to the input oracle
is the primary measure of algorithmic complexity, known as
the query complexity.

For practical purposes, it is more important to understand
the number of elementary quantum gates used to implement
the unitary circuit corresponding to the algorithm in the

Quantum Machine Intelligence (2021) 3: 16Page 10 of 2416

quantum circuit model. This is known as the gate complexity
of the algorithm. The depth of the circuit is directly
related to the time complexity, and gives an idea of how
parallelisable the algorithm is.

Appendix 2. Languages, automata,
and parsing

We refer the reader to the excellent overview of automata
theory in Hopcroft et al. (2001). In the following, we
introduce the two lowest-level type automata in the
Chomsky hierarchy; those that accept regular languages,
which are relatively restricted sets of strings, and those
that accept context-free languages. While the latter are still
somewhat restrictive, they are interesting in the context
of natural language processing (NLP) as they are able to
capture the essential features of a large fraction of human
languages, and are as such a natural model to study in this
context.

More pragmatically, we study these two types of lan-
guages because there exist efficient algorithms for executing
automata that accepts them—in linear time in the length of
the input string and of the regular expression in the case
of a regular language, and in cubic time for the context-
free case.

Moving further up in the Chomsky hierarchy, we first
encounter context sensitive languages. Those have a natural
associated automaton which is a linear space bounded
nondeterministic Turing machine. These languages can
be recognised by non-deterministic Turing machines with
linear space, and so are in NSPACE(O(n)) for an input of
size n. While the necessary memory might be bounded,
we do not have good runtime guarantees (i.e. the Turing
machine can potentially run for a time ∝ exp(n)). These
models thus seem less relevant in practice; naturally, this
just becomes worse when we allow an arbitrary Turing
machine for which we have even less of a grasp on their
runtime for a given string, and where even the question of
whether the machine halts on some input is undecidable.3

Furthermore, for both NFAs and PDAs, at each step
one symbol of the input is ingested. This symbol will then
dictate how the automaton proceeds. If this input is not given
by a fixed string but by a sequence of random variables over
an alphabet, the sequence of states the automaton passes
through as it processes the input will also be a sequence
of random variables. Since we ingest one input symbol at
every step, the random variable representing the state of the

3Even for linear space bounded nondeterministic TMs, the halting
problem is in principle decidable, as for a finite number of internal
states any computation must eventually halt or loop; see Minsky
(1967).

automaton at any given step will be significantly easier to
analyse (in contrast to Turing machines, which can choose
to ignore the given input; cf. Remark 1).

2.1 Regular languages and finite state automata

To give motivation for the study of finite state machines
(FSAs), we start with a simple example of a regular
expression, which is a string of characters from an
alphabet (e.g. the letters “a”-“z”), with placeholders for
arbitrary symbols (commonly denoted with a .), as well as
quantifiers (e.g. the Kleene star *). For instance, the regular
expression hello only matches the word “hello”, whereas
a regular expression a*b would match a string conprising
any number of “a”s (including zero), and ending with “b”,
such as “aaaaab”, or “ab”, or “b”.

Example 1 Take the regular expression a*b over the
lowercase letters of the English alphabet. Then a finite state
automaton that checks whether a string matches the regular
expression would be

where the double lines of state 1 signify an accepting state.
Given the string “aaab”, one starts in the initial state q0 and
ingests all “a”s at the beginning of the string; once “b” is
encountered, we jump to the accepting state qf . Similarly,
had the string been “aaabc”, there would now be a “c” left to
be ingested and the finite state automaton proceeds to state
q2. Since q2 is not an accepting state, the regular expression
does not match the string.

Notice that this model is deterministic: the automaton
does not use randomness in making transitions, or indeed
at any step at all. Any regular expression can be expressed
as a finite state automaton—they are in fact equivalent, in
the sense that both accept regular languages (Hopcroft et al.
2001, sec. 3.2).

With our newly gained intuition, we can now naturally
define deterministic finite state automata as follows.

Definition 2 (Deterministic Finite State Automaton
(DFA)) A deterministic finite state automaton is a tuple
(Q, Σ, δ, q0, F) of a finite set of states Q, an alphabet Σ , an
initial state q0 ∈ Q and a set of accepting states F ⊆ Q. The
allowed transitions are described by the transition function
δ : Q × Σ −→ Q.

While regular expressions and FSAs are equivalent,
there exist pathological examples for which enumerating

Quantum Machine Intelligence (2021) 3: 16 Page 11 of 24 16

the possible intermediate states incurs an exponential over-
head.

Example 2 Take the regular expression .*ab.....—
which, written in this way, requires ten characters to note
down. It is easy to see that this regular expression matches
any string where the three characters preceding the five
last characters equal “ab”. However, since for every state
q ∈ Q the function δ allows precisely one forward transition
per letter in the input string, the DFA has to memorise
all the past characters it has seen, and thus requires a
number of states that is exponential in the length of the
regular expression (in an example such as the above) and/or
exponential in the input length (e.g. for an expression like
.*ab.*), see Hopcroft et al. (2001, sec. 2.3.6]).

To circumvent such a scenario, it would be beneficial to
introduce the possibility of branching in order to attempt
multiple matches in parallel, i.e. to have a list of multiple
head states at which to attempt the next match. This is
formalised with a nondeterministic finite state automaton,
defined as follows.

Definition 3 (Nondeterministic Finite State Automaton
(NFA)) An NFA is a tuple (Q, Σ, δ, q0, F), where
Q, Σ, q0 and F are defined as in Definition 2, while now
the transition function allows a subset of Q to as possible
target states for any transition, i.e. δ : Q × Σ −→ 2Q.

Example 3 An NFA for the regular expression .*ab.....
is given by

The initial state q0 is set up such that it will always be
active, while—as soon as an “a” is encountered—there is
the possibility of branching out to qa to explore whether the
successive letters match the rest of the regular expression.

Note that in Example 3, as depicted, we dropped the non-
accepting states after qf ; we simply implicitly assume for
NFAs that every state q ∈ Q has a link to a non-accepting
state for all the missing transitions not yet present.

There is one final variant of nondeterministic automata
we wish to define, which are called ε-NFA because they
allow so-called ε-transitions, which need not be conditioned
on reading an input symbol.

Definition 4 (ε-NFA) An ε-NFA is an NFA with the
addition of ε-transitions, i.e. transitions that can be taken
unconditionally.

NFAs or ε-NFAs appear intrinsically more powerful than
DFAs, as they give more freedom in the way the parsing tree
is traversed. However, this is not the case.

Theorem 5 ((Ullman et al. 1997; Kleene 1956; Louden
1997; Rabin and Scott 1959)) The languages recognisable
by NFAs, DFAs, and regular expressions, are all equal, and
are called regular languages.

It is known (Thompson 1968) that a regular language
can be parsed in time O(mn), where m is the length of the
regular expression, and n is the length of the input string.4

So what is the configuration of an NFA at any one point?
In contrast to a DFA, the internal state the automaton in Exam-
ple 3 is not anymore a single state q ∈ Q, but it will have mul-
tiple hypotheses: for instance, for an input “xyaaxabx...”, the
successive state of the automaton from Example 3 will be

4Curiously, even though the linear runtime of Thompson et al.’s
NFA has been known since 1968, even until relatively recently,
modern regular expression implementations were implemented using
backtracking and memorisation techniques that have an exponential
asymptotic runtime (Cox 2007).

Quantum Machine Intelligence (2021) 3: 16Page 12 of 2416

At every time step, the set of hypotheses is the union of all
the hypotheses that δ yields, when applied to the current list
of marked vertices.

To be precise and because we will need it later we define
the set of possible configurations for finite state automata as
follows.

Definition 5 (DFA and NFA State Space) The set of
possible states for a DFA as defined in Definition 2 is Q.
The set of possible states for an NFA and ε-NFA is defined
as Ω ⊆ 2Q, such that c ∈ Ω iff there exists an input
string s ∈ Σ∗ such that the automaton, starting in its initial
configuration is in state c after ingesting it.

Note that for DFAs we implicitly assumed that all such
states Q are reachable from its initial configuration q0, and
a suitably chosen input.

We finally remark the following.

Remark 1 DFAs, NFAs, and ε-NFAs all ingest one input
symbol per step. If there is an ε transition, the instantaneous
state of an ε-NFA is that of all the states in Q reachable with
ε transitions at any given moment.

In particular, what Remark 1 exemplifies is that there is
no notion of “ε-loops”; if there is such a loop between two
q1, q2 ∈ Q, the state of the automaton is in both q1 and q2

at the same time.

2.2 Context-free grammars and pushdown automata

While regular languages play an important role in computer
science, it is straightforward to come up with an example
of a language that cannot be parsed with an NFA, e.g.
palindromes, or all strings of the form anbn for .
Regular grammars are the most restrictive ones in the
Chomsky hierarchy (Chomsky 1956), i.e. they are Type-3
grammars.

The palindrome example can be captured by going one
level further up in the hierarchy, to Type-2 or context-free
grammars (CFGs). They form a strict superset of regular
languages and encompass common structures of modern
programming languages such as nested balanced opening
and closing brackets, e.g. {()([...]...)}.

While CFGs find wide application, e.g. for parsing
(Hopcroft et al. 2001, sec. 5.3.2) or markup languages
(Hopcroft et al. 2001, sec. 5.3.3), they still fail to
capture more complicated language features, even ones as
fundamental as requiring that variables have to be declared
before they can be used within a scope; in fact, most
widely used programming languages are not described
with a context-free grammar. Indeed, the fact whether a

programming language is Turing complete is independent
on where its syntax is placed in the Chomsky hierarchy; the
programming language “whitespace” can be described with
a regular expression, whereas any language using brackets
can easily be seen to require a stack, which goes beyond the
capabilities of an NFA.

Instead of digressing too far into the theory of languages,
we follow the same pattern as in Appendix 2.1 and discuss
the natural machine that comes with CFGs. As mentioned,
the existence of a stack seems to be necessary to recognise
a context-free grammar, and in fact it also turns out to be
sufficient.

Definition 6 (Pushdown Automaton (PDA) A pushdown
automaton is an ε-NFA with access to a stack, which itself is
given by a stack alphabet Γ with initial stack configuration
(Z0) ∈ Γ , and such that the transition operation

δ : Q × ({ε} ∪ Σ) × Γ −→ 2Q×Γ ∗

always pops the top element a ∈ Γ off the stack and returns
a list of pairs (q, s) ∈ Q × Γ ∗ that indicate what state to
transition to, and what string to push onto the stack. Here Γ ∗
is the set of strings of arbitrary length in the stack alphabet,
and ε is the empty input symbol.

Theorem 6 ((Hopcroft et al. 2001, sec. 6.3)) Context-free
grammars are equivalent to pushdown automata.

As for the case of NFAs, there exist efficient algorithms
based on dynamic programming such as an Earley parser
that can decide whether a CFG accepts an input string,
namely in time O(n3) for a string of length n (Earley 1970;
Younger 1967).

As in Definition 5, we define the set of possible
configurations that a pushdown automaton can be in as
follows.

Definition 7 (PDA State Space) A PDA M’s state space
Ω ⊂ 2Q×Γ ∗

is the set of all those configurations of M

reachable from its initial configuration (q0, (Z0)) with a
suitably chosen input string s ∈ Σ∗.

We point out that an instantaneous state of a PDA can
be a larger list than an instantaneous state of an NFA, since
for any two possible chosen paths towards a state q ∈ Q,
depending on the path the stack content can vary. We further
note that the stack size is, in principle, unlimited, but as the
transition function is specified a priori and is of finite size,
the amount of information that can be pushed onto the stack
for each step is upper-bounded by a constant as well; the
stack can thus grow at most linearly in the runtime of the PDA.

Quantum Machine Intelligence (2021) 3: 16 Page 13 of 24 16

Appendix 3. Biased quantum sampling
from a regular or context-free grammar

In this section we rigorously proof Theorem 3, which we
restate for completeness.

Theorem 6 Assume we are given a classical probabilistic
algorithm that, in time T (n), produces uniform samples
of length n from a language, and we are also given a
list of independent random variables X1, . . . , Xn with pdfs
pi,j for i = 1, . . . , n and j = [Σ]. Then we can
construct a quantum circuit Uμ′ that produces a state
|μ′〉 ε-close to the one in Eq. (3). The algorithm runs in
time O(T (n)1.6 × n3κ/ε2), where κ is an upper bound
on the relative variance of the conditional probabilities
Pr(a|s1 . . . si), for a, si ∈ Σ , for the variable Xi+1 given
the random string XiXi−1 · · · X1.

Proof Using Lemma 1, translate the parser—which takes
its input step by step—into a sequence of unitaries U =
Un · · ·U1. Considering a single unitary Ui at the ith step, it
is clear that it can be broken up into a family of unitaries
(Ua

i)a∈Σ , such that each Ua
i is a specialisation of Ui when

given a fixed input symbol a ∈ Σ . We define Va
i to

perform Ua
i , and in addition store the input a in some

ancillary workspace, e.g. via Va
i |φ〉|ξ〉 = (Ua

i |φ〉)|ξ ⊕ a〉.
Then define the block-diagonal unitary Vi := diag(Va

i)a∈Σ ,
which acts like a controlled matrix, meaning that if Vi acts
on some state |ψ〉 = |a〉|φ〉, then Vi |ψ〉 = |a〉Va

i |φ〉.
Naturally this works in superposition as well, e.g. Vi (α|a〉+
β|b〉)|φ〉 = α|a〉Va

i |φ〉+β|b〉Vb
i |φ〉. We further assume that

the Va
0 take as initial state |0〉|q0〉.

The final step in augmenting the parser is to extend Vi

to carry out a controlled multiplication: for a finite set of
numbers (e.g. fixed precision), and d1, d2 ∈ F ,
we write Vi (d1)|a〉|d2〉|φ〉 = |a〉|d1 × d2〉Va

i |φ〉. We denote
this extended unitary for step i with U′

i .
The next ingredient we take is the classical uniform

language sampler. Once again using Lemma 1, we raise it to
a unitary W, which takes as input a prefix sm := a1 · · · am

of the m previously seen tokens, and a list of distributions
over the future weights Wm := (pi,j)m<j≤n. These are the
distribution of tokens for each of the Xj . We then augment
W to a circuit W′ that quantumly performs the following
classical calculations, in superposition over its input:

1. Draw S samples uniformly at random from the grammar
starting at strings prefixed with sm (which is certainly
possible given an algorithm that samples uniformly
from the entire regular/context-free language, as one
can derive a language which is also regular/context-
free, but starts with strings from the given prefix).
Denote this list with B := {b1, . . . , bS}.

2. Group the samples B into bins Ca of samples with
the same first token a ∈ Σ , i.e. Ca = {b ∈ B :
b = a?? · · ·?}, where ? stands for any token in the
alphabet Σ .

3. Calculate the total of the probabilities of each bin Ca

where each element is weighted with respect to the
future probabilities given in list Wm, which yields a
distribution D = (da)a∈Σ .

It is straightforward to write the unitary W′ that then takes

a state —the first register for storing
a number in F , and the second for storing a letter—
and a list of such weights D to a weighted superposition
W′(D)|0〉 = ∑

a∈Σ

√
da|da〉|a〉 (where for the sake

of simplicity we drop the scratch space register that is
certainly required). Furthermore, we need a controlled
unitary Q that, given some state |h〉|a〉 where h = h(a)

in some specified fashion—which we can demand the Va
i

produce—uncomputes a and da from the second register,
i.e. Q|h〉|da〉|a〉 = |h〉|00〉.

Together with the sequence of parser unitaries U′
i , the

overall quantum circuit Uμ—depicted in Fig. 3—can then
be constructed as follows:

For a partial string s1s2 · · · si of length i, we denote
the set of all strings in the grammar prefixed with letters
of s with A(s1 . . . si). At every step i in the algorithm
we sample the expectation value of a future hypothesis
continuing with some token a, weighted by their individual
likelihood pij . The sampling procedure then yields an
empirical distribution (da)a∈Σ , which we denote with

da = f si∗ (a) =
S∑

j=1

χ
[
bj ∈ A(s1 . . . sia)

]
p(bj)

/
S∑

j=1

p(bj),

(10)

where the S sampled hypothesis is given in list B =
{b1, . . . , bS} with individual letters bj = bj,1 · · · bj,n). As
usual, χ[·] denotes the indicator function, and

p(bj) :=
n∏

k=1

pk,bjk
.

Our goal is to show that the algorithm reproduces the
desired weight distribution given in Eq. (3), i.e.

Pr(s) =
n−1∏

i=0

Pr(si+1|s1 . . . si)

where

Pr(si+1|s1 . . . si) =
∑

x∈A(s1...si)
p(x)

∑
x∈A(s1...si+1)

p(x)

To estimate the total probability distribution to error ε in
total variation distance, it suffices to approximate each
conditional distribution to error ε/n, and thus we must show

Quantum Machine Intelligence (2021) 3: 16Page 14 of 2416

Fig. 3 Quantum algorithm to
sample from a language
according to weights Wi ,
constructed in Theorem 3. |q0〉
is the automaton’s initial
internal state

how many samples S are required for da to be a good
estimator for Pr(a|s1 . . . si).

First note that f si(a) = usi(a)/vsi for

usi(a) := 1

S

S∑

j=1

χ
[
bj ∈ A(s1 . . . sia)

]
p(bj) and

vsi := 1

S

S∑

j=1

p(bj) =
∑

a∈Σ

usi(a).

It is straightforward to calculate that

E(usi(a)) = 1
|A(s1...si)|

∑
x∈A(s1...sia)

p(x) and

E(vsi) = 1
|A(s1...si)|

∑
x∈A(s1...si)

p(x)

and so E(usi(a))/E(vsi) = Pr(a|s1 . . . si), the value we are
trying to estimate.

Therefore it suffices to take enough samples S such that
the usi(a) are close to their mean in relative error (and thus
vsi is also close in relative error, since vsi = ∑

a usi(a)).
Noting that usi(a) = 1

S

∑S
j=1 Yj for i.i.d. random

variables Yj , we have that Var(usi(a)) = 1
S

Var(Y).
Therefore by Chebyshev’s inequality, to get a ε/n relative
error approximation requires the number of samples S to be
at least

S ≥ Var(Y)

E(Y)2(ε/n)2
.

By assumption Var(Y)/E(Y)2 ≤ κ , and so the total
number of uses of the sampler over all n steps of the
algorithm is O(κn3/ε2) as claimed.

We note that variants of this sampling algorithm are
certainly possible: a naı̈ve approach would be to just
sample from the product-of-powerlaws distribution and
postselect on the resulting strings being in the grammar;
the performance of this will then depend on the number of
strings in the grammar vs. the number of all possible strings.
Another method could be to execute the uniform sampler in
superposition, and perform amplitude amplification on the
resulting quantum state to reintroduce the power-law bias.

The number of amplification rounds will again depend on
the distribution of the strings in the grammar.

Appendix 4. MOST LIKELY PARSE: full query
bound

In this section we rigorously prove the integral runtime
expression in Lemma 10.

As a reminder, the type of integral from Eq. (6) we are
interested in takes the form

M(R, k1, k2, c, n) := 1

hn
R(k1)

∫∫∫ R

1

χ(r1 · · · rn ≤ c)

(r1 · · · rn)k2
dr1 · · · drn,

where k1 is not necessarily equal to k2, and typically
c = (R/hR(k1))

n/k1 . Here, χ(·) denotes the characteristic
function of a set, i.e. it takes the value 1 where the
premise is true, and 0 otherwise. It is possible to integrate
Eq. (6) numerically for small n; however, due to the
high dimensionality and the flat tail, convergence suffers
drastically already for n > 6. Similarly, evaluating the
integral with a computer algebra system takes significant
time for larger n and produces ever growing expressions that
are hard to handle, as the reader is welcome to verify. To
address this problem, we derive the closed-form expression
from Lemma 3:

Lemma 4 For k �= 1, Eq. (6) becomes

M(R, k1, k2, c, n) = (−1)n

k′nhn
R(k1)

min{n,�c′/a′�}∑

j=0

(
n

j

)

×
(

ea′k′j − e−c′k′
n−1∑

l=0

(a′k′j − c′k′)l

l!

)
,

where k′ = 1 − k2, c′ = log c, a′ = log R.

Proof As a first step, we perform a log substitution zi =
log ri , ezi dzi = dri which yields

M(R, k1, k2, c, n) = 1

hn
R(k1)

∫∫∫ log R

0
e(1−k2)(z1+...+zn)χ

×(z1 + . . . + zn ≤ log c)dz1 · · · dzn.

Quantum Machine Intelligence (2021) 3: 16 Page 15 of 24 16

Fig. 4 Expected runtime RT1(R, k, n) as evaluated for R = 10
and various k (top row: k ∈ {0.2, 0.4, 0.6, 0.8}, middle row: k ∈
{1.2, 1.4, 1.6, 1.8}, bottom row: k ∈ {2.5, 3, 3.5, 4}, always from left
to right), vs. the same parameters used for RT1′ (R, k, n) (dashed line),

where the discrete probabilities from the power law are approximated
with a continuous Pareto distribution. On the x-axis is the length of the
input sequence n

The characteristic function is now supported on a rescaled
unit simplex, and writing z̄ := ∑

i zi we can take its Fourier
transform

We of course have F−1
z̄ Ftχ ≡ χ . Then

(11)

In the step marked with ∗, we applied Fubini’s theorem,
for which we implicitly assumed a smooth limiting
argument for the step function. To evaluate the integral Jn,
we observe that the denominator has a root of order n at

We further expand the Fourier-transformed characteristic
function—and again glossing over the details of Fubini’s
theorem to swap the integration order—to obtain

(12)

We handle the integrand’s three pole cases separately.

k > 1. We have k′ < 0 and an order n pole at ; the

integrand is holomorphic in the
lower half plane. The exponent of the exponential, x − ja′,
assumes signs

x − ja′

⎧
⎪⎨

⎪⎩

> 0 x > ja′

< 0 x < ja′

= 0 x = ja′.

In the latter case, the integral (over t) evaluates to zero.
In the middle case, for we have

as s −→ ∞; by Jordan’s lemma we can thus write

Quantum Machine Intelligence (2021) 3: 16Page 16 of 2416

where γ1(r) contains the real interval [−r, r] and a half
circle connecting the end points in the lower half complex
plane.

In the first case, for , we have
exp(−s(x − ja′)) −→ 0 as s −→ ∞; however now
the corresponding upper half plane loop encircles the pole
of g(x). We apply the residue theorem for a flipped path
γ2(r) = −γ1(r):

For the case x − ja′ < 0 we are left to perform the outer
integration in Eq. (12). If c′ ≤ ja′ we necessarily have
x ≤ ja′ and Jn = 0. For the case c′ > ja′ we have

Where Γ (n, ·) is the lower incomplete gamma function.
Putting it all together, we get

Finally, we insert the last expression back into Eq. (11), and
obtain

The second term in the sum we can further simplify using
the identity Γ (n, x)/Γ (n) = e−x

∑n−1
l=0 xl/ l! which holds

for integer j , which yields

M(R, k1, k2, c, n) = (−1)n

k′nhn
R(k1)

min{n,�c′/a′�}∑

j=0

(
n

j

)

×
(

ea′k′j − e−c′k′
n−1∑

l=0

(a′k′j − c′k′)l

l!

)
.

k < 1. We have k′ > 0 and the order n pole of Eq. (12)

lies at . The integrand
is holomorphic in the upper half plane; and analogous to
before, this time when x − ja′ > 0, we have

In the opposite case we can again apply the residue theorem
and obtain

where the negative sign in step ∗ stems from the clockwise
orientation of the contour γ2. The outer integration in
Eq. (12) is now

Inserting the expression back into Eq. (11) we obtain

Quantum Machine Intelligence (2021) 3: 16 Page 17 of 24 16

To reduce the last sum to the previous expression, we
note that

n∑

j=0

n−1∑

l=0

(
n

j

)
(−1)j

(xj − y)l

l!

=
n−1∑

l=0

xl

l!
n∑

j=0

(
n

j

)
(−1)j

l∑

m=0

(
l

m

)
jm
(
−y

x

)l−m

=
n−1∑

l=0

xl

l!
l∑

m=0

(
l

m

)(
−y

x

)l−m
n∑

j=0

(
n

j

)
(−1)j jm

︸ ︷︷ ︸
=(−1)nn!S(n)

m

,

where S
(n)
m is the Stirling number of the second kind, which

denotes the number of ways to partition a set of size m into
n non-empty subsets. Since m ≤ l ≤ n − 1, S

(n)
m ≡ 0 here,

and thus
n−1∑

l=0

n∑

j=�c′/a′�+1

(
n

j

)
(−1)j

(a′k′j − c′k′)l

l!

= −
n−1∑

l=0

min{n,�c′/a′�}∑

j=0

(
n

j

)
(−1)j

(a′k′j − c′k′)l

l! .

The claim follows.

We leave the k = 1 case as an exercise to the reader.
With Lemma 3, we can now evaluate the terms in Eq. (5)

efficiently. The first term is

rt =
√

hn
R(k)M

[
R, k,

k

2
,

(
R

hR(k)

)n
k

, n

]
, (13)

and the second

rt′ = 1 − M

[
R, k, k,

(
R

hR(k)

)n
k

, n

]
. (14)

Of interest is whether taking this full expectation value
and splitting it to fall back to Grover search whenever
the probability dips below 1/Rn yields a significant
improvement of the runtime bound. We found this to not
be the case, as Fig. 5 demonstrates; while for smaller n

there is a significant improvement, as n grows the ratio
rt/RT1 −→ 1 exponentially fast.

Appendix 5. Postselected product
of powerlaws

In this appendix we answer the open question left in
Section 4. The setup here is as follows. Let S > 1, and X

be distributed according to a product of distributions with
pdf

p(r1, . . . , rn) := 1

HS(k)n

1

(r1 · · · rn)k
as in Eq. (4), i.e. where every factor is a power law
distribution over S elements. If we remove a random subset
of the elements such that Rn (for some R < S) elements are
left over, is the resulting probability distribution a product-
of-powerlaws, where every factor is over R elements?

In the continuous case this can be seen as follows. If
X ∼ Pareto(k, S) with pdf p as defined in Section 4,
then removing a random subset of elements on the interval
[1, S + 1] is equivalent to taking a random characteristic
function χ1 over it, with

∫
[1,S+1] χ(r)dr = R, and defining

X′ with pdf Sp(r)χ(r)/R. We define the postselected
random variable Y over [1, R] by relabelling the points in
suppχ by values in [1, R] in an order-preserving fashion.

Similarly, if Xn is a product of n iid Pareto random
variables with pdf pn, then postselection means taking a
random characteristic function χn on [1, S]n with
∫

[1,S+1]n
χn(r1, . . . , rn)dr1 · · · drn = Rn.

We claim that the resulting random variable X′
n with pdf

Snpn(r)χn(r)/R
n then factors into a product distribution.

This holds because χn has the property that for all ε >

0 there exists a bijection f such that for almost all
(x1, . . . , xn) ∈ suppχn, there exists

(y1, . . . , yn) = f (x1, . . . , xn) ∈ (suppχ1)
n

s.t.
n∑

i=1

|xi − yi | < ε,

for some characteristic function χ1 defined on [1, S]. We
refer to this property as χn being ‘product’.

We now prove this claim by induction on n. For n = 1,
X and χ1 are already product, so there is nothing to show.
Assume the hypothesis holds for χn which can be factored

Fig. 5 Ratios of rt/RT1 for various power law exponents k. left: {0.2, 0.4, 0.6, 0.8} from top to bottom, middle: {1.2, 1.4, 1.6, 1.8} from top to
bottom, right: {2.5, 3.0, 3.5, 4.0} from bottom to top. In all cases the runtime ratios approach 1 exponentially fast with growing n

Quantum Machine Intelligence (2021) 3: 16Page 18 of 2416

into a product χn
1 for some χ1. Take a random characteristic

function χn+1 over n + 1 dimensions. Let ε > 0. As is
uncountable, we take a δ-net over the interval I := [1, S+1]
for some small ε � δ > 0, which we will denote with Iδ;
each x ∈ I then has a corresponding x′ ∈ Iδ that satisfies
|x − x′| < δ. In particular, Iδ is countable. In a similar
fashion, for χn+1 we consider its discretised variant over In

δ

as χ ′
n+1.

So let (x1, . . . , xn, xn+1) ∈ suppχ ′
n+1, and analogously

define the discretised characteristic functions χ ′
n and χ ′

1. A
counting argument shows that within each ε-bin (defined
over I and extended over to In

δ accordingly), we can
map (x1, . . . , xn+1) to their closest corresponding point
(y1, . . . , yn, z1) ∈ χ ′

n × χ ′
1—or if that point was previously

chosen its next- and next-to-next-closest one etc., while
staying within ε distance for each original coordinate for the
majority of the points.

A limiting argument ε −→ 0 shows that this map can
be constructed for almost all points. This concludes the
induction.

The question that remains is what distribution Y follows.
Despite scale invariance of Pareto distributions, the resulting
pdf for a surviving fraction λ of the original points looks
like p̃(r) = p(1 + (x − 1)λ), which is itself not a Pareto
distribution. Yet, since we actually work with a power law
distribution, we already answered in Section 4 what this
resulting sample distribution over R looks like: it can be
well-approximated by a power law with a slightly worse
falloff k′ < k that itself can be estimated numerically
in a straightforward fashion. The smaller exponent should
also account for any approximation errors made by the
continuous variable analysis demonstrated in this section.

Appendix 6. Beam search variants

Continuing from Section 5 from the main text, the relevant
questions to ask here is what choice of p0 will

1. only require a constant—or logarithmic—number of
rounds of amplitude amplification,

2. retain a large number of hyptheses, and
3. improve runtime for the post-amplified QUANTUM-

SEARCHDECODE variant.

We address all these questions in the next sections.

6.1 Constant post-amplification

In light of simplicity, we will take RT1 as an upper runtime
bound to the full expected number of rounds, RT2; as we
amplify away all paths with weights below the cutoff we
never expect to find an element therein—meaning we can
drop the fallback to Grover search in our analysis, and treat

the search as if the advice state was purely on those paths
with weight ≥ p0.

We first address the question for which choice of p0

the cumulative leftover probability M(R, k, k, p0, n) can be
lower-bounded by a quantity independent of n, which means
we have to perform only a constant number of amplitude
amplification rounds on the advice state. In order to do so,
we solve the implicit inequality

minimize fsplit subject to M

⎡

⎢⎢⎢⎣R, k, k,

(
R

hR(k)

)n
k
fsplit

︸ ︷︷ ︸
=p0

, n

⎤

⎥⎥⎥⎦

≥ C0. (15)

As M is monotonically decreasing for a decreasing
splitting exponent fsplit, and since M can be computed
in O(n2) many arithmetic operations, we can perform the
minimisation efficiently. For a choice of C0 = 1/4 (which
implies a single amplitude amplification round) and C0 =
1/100 (ten rounds of amplification) we plot fsplit in Fig. 6.
As can be seen, fsplit tends towards a limiting value ∈ (0, 1)

for n −→ ∞.
The next step in our analysis is to take the modified

splitting exponent fsplit and count how many hypotheses
Nhyp remain to be searched over; this is important because it
is not clear a priori how many paths we can still search over,
and if that quantity is low—or even tends towards zero—
then we retained too few elements. Our hope is of course
that in contrast to beam search, where generally the beam’s
width, i.e. the number of hypotheses retained at any point
in time, is capped at some possibly large but constant value,
we have a growing number of hypotheses to search over.

In order to count this number of hypotheses given a
cutoff probability p0, we can evaluate M(R, k, k, p0, n) in
the limit of the power law exponent k −→ 0, and finally
multiply hn

R(k1) in Eq. (6) to make the integral count instead
of calculating a cumulative density. We again choose a
series of values for R, k and C0 and plot the results in Fig. 7.
While the number of leftover hypotheses is indeed reduced
drastically as compared to performing a full search over
Rn elements, it is still growing exponentially with n, which
results in a significant number of hypotheses to search over,
many more than possible in the classical setting.

As a last step, we want to analyse the modified runtime
given the changed probability cutoff, which corresponds
to evaluating the integral M(R, k, k/2, p0, n) with the p0

derived from the optimisation Eq. (15). The results are
collected in Fig. 8. As one can verify, the runtime does
remain asymptotically exponential in the sequence length n;
however the base of the exponential is reduced accordingly.

Quantum Machine Intelligence (2021) 3: 16 Page 19 of 24 16

Fig. 6 Minimized value of the splitting exponent fsplit as defined in
Eq. (15). Plotted are the values for R = 6 (left) and R = 24 (right), as
well as C0 = 1/4 (green, upper family of lines) which implies exactly
one extra round of amplitude amplification, and C0 = 1/100 (red,

lower family of lines) which implies ten extra rounds of amplification.
The power law exponents chosen are k ∈ {1.5, 2.0, 2.5, 3.0} (bottom
to top, respectively)

Fig. 7 Number of hypotheses Nhyp left for a specific choice of splitting
exponent fsplit to retain C0 > 1/4 (green, one extra round of amplifi-
cation) and C0 > 1/100 (red, ten extra rounds of amplification) total
probability weight for the hypotheses. The value of fsplit is obtained

numerically from Eq. (15) (cf. Fig. 6). Plotted is the case R = 6 (left)
and R = 24 (right), and k ∈ {1.5, 2.0, 2.5, 3.0} (from top to bottom
in each plot and each color, respectively). The dashed line is the total
number of possible hypotheses Rn as reference

Fig. 8 Runtime when post-amplifying to retain only a fraction C0 ≥
1/4 of weight (green, one extra round of amplification) or C0 ≥ 1/100
(red, ten extra rounds of amplification) on the hypotheses. The value
of fsplit is obtained numerically from Eq. (15) (cf. Fig. 6). Plotted is

the case R = 6 (left) and R = 24 (right), and k ∈ {1.5, 2.0, 2.5, 3.0}
(from top to bottom in each plot and for each color, respectively). The
dashed line is the full search runtime RT1(R, k, n) from Lemma 2 as
reference

Quantum Machine Intelligence (2021) 3: 16Page 20 of 2416

Fig. 9 Number of iterations (Eq. (18)) and number of hypothe-
ses (Eq. (17)) of quantum beam search decoding the output of
Mozilla’s DeepSpeech LSTM with a grammar, assuming an aver-
age branching ratio of R = 3, a token power law distribution with
exponent k = 2.91, and post-amplification of the quantum search

decoder with a retained fraction of hypotheses C0 = C0(n) ∈
{n−1/2, n−2/3, n−1, n−3/2, n−2, n−3} as defined in Eq. (16), which is
plotted in rainbow colors from red to blue, top to bottom. The dashed
line is the full quantum search runtime and number of hypotheses from
Eq. (13)

6.2 Non-constant post-amplification

The analysis of Appendix 6.1 can of course be repeated for a
non-constant fsplit; however, one has to be aware that these
extra amplitude amplification rounds factor into the overall
runtime. For a retained fraction g(n) of the total probability
weight, the optimisation thus reads

minimize p0 subject to M(R, k, k, p0, n) ≥ g(n) (16)

which retains lim
k→0

M(R, k, k, p0, n) hypotheses, (17)

and has runtime bound g(n)−1/2M(R, k, k/2, p0, n). (18)

We take the power law exponent derived from Mozilla’s
DeepSpeech neural network, k = 3.03 (cf. Sec. 5.2,
supplementary material), and derive runtime bounds for
decoding its output with a parser under the assumption that,
on average, we take R = 3 branches in the parsing tree
at every time step. As discussed in Section 4, the sampling
distribution over three elements only yields a slightly lower
exponent of k = 2.91.

As an example we consider an input sequence of length
500; with the above parameters and a splitting exponential
fsplit = n−1/2 (resp. = n−3) we can search over Nhyp ≈
1060 (resp. ≈ 1018) hypotheses, with a runtime ≈ 1030

(resp. ≈ 109). Similarly, when capping the beam width at
Nhyp ≤ 106, we asymptotically require ≈ 103 iterations
of the beam search decoder (which includes the post-
amplification rounds); for shorter sequences, a super-Grover
speedup as present in full QUANTUMSEARCHDECODE is
achieved (Fig. 9).

Appendix 7. Further proof details

For Lemma 5, a more detailed proof is given as follows.

Lemma 5 By Th. 1 (Buhrman et al. 2001), we have that
any non-reversible computation requiring time T and space
S can be simulated reversibly in time T ′ = 3k2O(T /2k)

and space S′ = (1 + O(k))S, for a 0 ≤ k ≤ log2 T

chosen arbitrarily. Choose k = log2 T , then S′ = (1 +
O(log2 T))S, and T ′ = O(T log2 3). Now translate this
reversible probabilistic classical circuit into a quantum
circuit—e.g. using the Solovay-Kitaev theorem (Nielsen
and Chuang 2010), which incurs an at most logarithmic
runtime overhead.

Appendix 8. Rank of letter likelihood
for Mozilla’s DeepSpeech

DeepSpeech processes mel-frequency cepstral coefficients
extracted from a sliding window of 25 ms, with a stride of
20 ms; for each such frame, the LSTM is invoked, and yields
a distribution over the letters of the English alphabet “a” to
“z”, as well as a few special symbols, e.g. “silence”. For the
specific architecture of the LSTM we refer the reader to the
original paper (Hannun et al. 2014). Our hypothesis was that
these letter probabilities follow a power-law distribution;
our data (shown in Fig. 10) supports this claim.

We want to emphasise that the fact the letters a–z
follow Zipf’s law with respect to their occurence in English
sentences (see, e.g., Egghe 2000; Piantadosi 2014) plays
no role in attaining the speedup. In addition to Fig. 10, we
verified that when only collecting those output frames of
DeepSpeech where, say, “t” is the most likely prediction, the
distribution over all letters—sorted by rank, i.e. sorted from
most to least likely prediction—is already a power-law. This
is a feature of the output of the model, and not necessarily
a property of the underlying data the model was trained on.
In our context this means that the Softmax output layer of
the LSTM has to yield a power-law probability distribution.

Quantum Machine Intelligence (2021) 3: 16 Page 21 of 24 16

Fig. 10 Log plot of the power law distribution of the output
probabilities obtained from Mozilla’s DeepSpeech voice recognition
LSTM on the Mozilla Common Voice verified test dataset for English
(Mozilla 2019a), which consists of 3995 audio samples of about 10 s
each of spoken test sentences. The dashed line is a fitted power law
ar−b with parameters a = 1.2 ± 0.1 and b = 3.03 ± 0.03. We
individually process each audio file, and capture the output after the
final Softmax layer (logits:0), but before it is processed further
by the greedy connectionist temporal classification (CTC beam search)
implemented by DeepSpeech

How frequently a given letter is the most likely prediction—
which is itself known to be a power-law, as mentioned—is
not important.

Acknowledgements J. B. would like to thank the Draper’s Research
Fellowship at Pembroke College. S. S. would like to thank the Science
Education and Research Board (SERB, Govt. of India) and the
Cambridge Trust for supporting his PhD through a Cambridge-India
Ramanujan scholarship. We are grateful for the useful feedback and
the comments we recieved from Jean Maillard, Ted Briscoe, Aram
Harrow, Massimiliano Goldwurm, Mark Jerrum, and when presenting
this work at IBM Zürich. We further thank Terence Tao for the
suggestion to try to take the Fourier transform of the indicator function
in Section 4.3.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aaronson S, Grier D, Schaeffer L (2019) A quantum query
complexity trichotomy for regular languages. In: IEEE 60th

annual symposium on foundations of computer science (FOCS).
IEEE, pp 942–965

Ahuja A, Kapoor S (1999) A quantum algorithm for finding the
maximum

Al-Rfou R, Choe D, Constant N, Guo M (2019) Character-level
language modeling with deeper self-attention. In: Proceedings of
the AAAI conference on artificial intelligence, vol 33, pp 3159–
3166

Bausch J (2018) Classifying data using near-term quantum devices. Int
J Quantum Inf 16(08):1840001

Bausch J (2020) Recurrent quantum neural networks. In: Advances
in neural information processing systems, vol 33. 34th Annual
conference on neural information processing systems (NeurIPS)

Buckman J, Ballesteros M, Dyer C (2016) Transition-based depen-
dency parsing with heuristic backtracking. In: Proceedings of the
2016 Conference on empirical methods in natural language pro-
cessing, pp 2313–2318. Stroudsburg, PA, USA. ACL (Association
for Computational Linguistics), Association for Computational
Linguistics

Berry DW, Childs AM, Cleve R, Kothari R, Somma RD (2014)
Exponential improvement in precision for simulating sparse
hamiltonians. In: Proceedings of the forty-sixth annual ACM
symposium on theory of computing, STOC ’14. ACM, New York,
pp 283–292

Berry DW, Childs AM, Ostrander A, Wang G (2017) Quantum algo-
rithm for linear differential equations with exponentially improved
dependence on precision. Commun Math Phys 356(3):1057–1081

Bernardi O, Giménez O (2012) A linear algorithm for the random
sampling from regular languages. Algorithmica 62(1-2):130–145

Bohnet B, McDonald R, Pitler E, Ma J (2016) Generalized
transition-based dependency parsing via control parameters. In:
Proceedings of the 54th Annual meeting of the association for
computational linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Stroudsburg, pp 150–160

Buhrman H, Tromp J, Vitányi P (2001) Time and space bounds for
reversible simulation. J Phys A Math 34(35):6821–6830

Babbush R, Wiebe N, McClean J, McClain J, Neven H, Chan GK-L
(2018) Low-depth quantum simulation of materials. Phys Rev X
8(1):011044

Chomsky N (1956) Three models for the description of language.
IEEE Trans Inform Theory 2(3):113–124

Cox R (2007) Regular expression matching can be simple and fast (but
is slow in Java, Perl, PHP, Python, Ruby, ...)

Childs AM, Su Y (2019) Nearly optimal lattice simulation by product
formulas. Phys Rev Lett 123(5):050503

Dabrowska E (2008) Questions with long-distance dependencies: A
usage-based perspective. Cogn Linguist 19(3)

Dyer C, Ballesteros M, Ling W, Matthews A, Smith NA (2015)
Transition-based dependency parsing with stack long short-term
memory. In: Proceedings of the 53rd annual meeting of the
association for computational linguistics and the 7th international
joint conference on natural language processing (Volume 1: Long
Papers). Association for Computational Linguistics, Stroudsburg,
pp 334–343

Denise A (1996) Génération aléatoire uniforme de mots de langages
rationnels. Theor Comput Sci 159(1):43–63

Dürr C, Høyer P (1996) A quantum algorithm for finding the minimum
in LANL e-print quantph/9607014

Denise A, Roques O, Termier M (2000) Random generation of words
of context-free languages according to the frequencies of letters.
In: Mathematics and computer science. Basel, Birkhäuser Basel,
pp 113–125

Dai Z, Yang Z, Yang Y, Carbonell J, Le QV, Salakhutdinov R (2019)
Transformer-XL: attentive language models beyond a fixed-length

Quantum Machine Intelligence (2021) 3: 16Page 22 of 2416

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

context. In: Proceedings of the 57th Annual meeting of the
association for computational linguistics

Earley J (1970) An efficient context-free parsing algorithm. Commun
ACM 13(2):94–102

Egghe L (2000) The distribution of N-Grams. Scientometrics
47(2):237–252

Fan A, Lewis M, Dauphin Y (2018) Hierarchical neural story
generation. In: Proceedings of the 56th annual meeting of the
association for computational linguistics

Gilyén A, Arunachalam S, Wiebe N (2019) Optimizing quantum
optimization algorithms via faster quantum gradient computation.
In: Proceedings of the Thirtieth annual ACM-SIAM symposium
on discrete algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, pp 1425–1444

Goldwater S, Griffiths TL, Johnson M (2011) Producing power-
law distributions and damping word frequencies with two-stage
language models. J Mach Learn Res 12:2335–2382

Gidney C (2018) Halving the cost of quantum addition. Quantum 2:74
Gore V, Jerrum Mark, Kannan S, Sweedyk Z, Mahaney S (1997)

A quasi-polynomial-time algorithm for sampling words from a
context-free language. Inf Computat 134(1):59–74

Goldwurm M, Palano B, Santini M (2001) On the circuit complexity
of random generation problems for regular and context-free
languages. In: Ferreira A, Reichel H (eds) STACS 2001. Springer,
Berlin, pp 305–316

Graves A (2013) Generating sequences with recurrent neural networks
Holtzman A, Buys J, Du L, Forbes M, Choi Y (2020) The curious

case of neural text degeneration. In: International conference on
learning representations

Hickey T, Cohen J (1983) Uniform random generation of strings in a
context-free language. SIAM J Comput 12(4):645–655

Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger
R, Satheesh S, Sengupta S, Coates A, Ng AY (2014) Deep speech:
Scaling up end-to-end speech recognition

Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for
linear systems of equations. Phys Rev Lett 103(15):150502

Hopcroft JE, Motwani R, Ullman JD (2001) Introduction to automata
theory, languages, and computation, vol 32, 2nd edn.

Jäger G. (2012) Power laws and other heavy-tailed distributions in
linguistic typology. Adv Complex Syst 15(03n04):1–21

Khandelwal U, He H, Qi P, Jurafsky D (2018) Sharp nearby,
fuzzy far away: how neural language models use context. In:
Proceedings of the 56th annual meeting of the association for
computational linguistics (Volume 1: Long Papers). Association
for Computational Linguistics., Stroudsburg, pp 284–294

Kitaev N, Kaiser L, Levskaya A (2020) Reformer: The efficient trans-
former. In: International conference on learning representations

Kleene SC (1956) Representation of events in nerve nets and finite
automata. In: Automata studies. (AM-34). Princeton University
Press, Princeton, pp 3–42

Kulikov I, Miller AH, Cho K, Weston J (2018) Importance of a search
strategy in neural dialogue modelling

Kerenidis I, Prakash A (2016) Quantum recommendation systems
Li T, Chakrabarti S, Wu X (2019) Sublinear quantum algorithms for

training linear and kernel-based classifiers. In: ICML
Lloyd S (1996) Universal quantum simulators. Science

273(5278):1073–1078
Louden KC (1997) From a Regular Expression to an NFA.

Pearson/Addison Wesley, Boston
Lorenz WA, Ponty Y (2013) Non-redundant random generation

algorithms for weighted context-free grammars, vol 502
Murray K, Chiang D (2018) Correcting length bias in neural machine

translation. In: Proceedings of the third conference on machine
translation: research papers. Association for Computational
Linguistics, Stroudsburg, pp 212–223

McKenzie B (1997) Generating strings at random from a context
free grammar. Technical report, Department of Computer Science,
University of Canterbury, Engineering Reports

Minsky ML (1967) Unsolvability of the halting problem. Prentice-
Hall, Inc, Upper Saddle River

Montanaro A (2011) Quantum search with advice. In: Lecture notes
in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics), 6519 LNCS,
pp 77–93

Montanaro A (2016) Quantum algorithms: an overview. Npj Quantum
Inf 2(1):15023

Montanaro A (2017) Quantum pattern matching fast on average.
Algorithmica 77(1):16–39

Montanaro A (2020) Quantum speedup of branch-and-bound algo-
rithms. Phys Rev Res 2(1):013056

Mozilla (2019) Common voice
Mozilla (2019) DeepSpeech
McClean JR, Romero J, Babbush R, Aspuru-Guzik Alán (2016) The

theory of variational hybrid quantum-classical algorithms. New J
Phys 18(2):23023

Nielsen MA, Chuang IL (2010) Quantum computation and quantum
information. Cambridge University Press, Cambridge

Oudinet J, Denise A, Gaudel M-C (2013) A new dichotomic algorithm
for the uniform random generation of words in regular languages.
Theor Comput Sci 502:165–176

Piantadosi ST (2014) Zipf’s word frequency law in natural language:
A critical review and future directions. Psychon Bull Rev
21(5):1112–1130

Ponty Y (2012) Rule-weighted and terminal-weighted context-free
grammars have identical expressivity. Research report

Pratap V, Xu Q, Kahn J, Avidov G, Likhomanenko T, Hannun A,
Liptchinsky V, Synnaeve G, Collobert R (2020) Scaling up online
speech recognition using ConvNets. facebook research

Reinharz V, Ponty Y, Waldispühl J (2013) A weighted sampling
algorithm for the design of RNA sequences with targeted
secondary structure and nucleotide distribution. Bioinformatics
29(13):i308–i315

Rabin MO, Scott D (1959) Finite automata and their decision
problems. IBM J Res Dev 3(2):114–125

Stella M, Brede M (2016) Investigating the phonetic organisation of
the English language via phonological networks, percolation and
markov models. pp 219–229

Schmidhuber J (2014) Deep learning in neural networks: an overview.
Neural Netw 61:85–117

Shor PW (1999) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Rev
41(2):303–332

Ilya S, Martens J, Hinton G (2011) 1017–1024. In: Proceedings of
the 28th international conference on international conference on
machine learning, ICML’11. Omnipress

Oliveira DS, Ramos R (2007) Quantum bit string comparator: circuits
and applications. Quantum Comput Comput 7:01

Steinbiss V, Tran B-H, Ney H (1994) Improvements in beam search.
In: Third international conference on spoken language processing

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning
with neural networks. In: Ghahramani Z, Welling M, Cortes
C, Lawrence ND, Weinberger KQ (eds) Advances in neural
information processing systems, vol 27. Curran Associates, Inc.,
pp 3104–3112

Tang E (2019) A quantum-inspired classical algorithm for recommen-
dation systems. In: Proceedings of the 51st Annual ACM SIGACT
symposium on theory of computing - stoc 2019.ACM Press, New
York, pp 217–228

Thompson K (1968) Programming techniques: regular expression
search algorithm. Commun ACM 11(6):419–422

Quantum Machine Intelligence (2021) 3: 16 Page 23 of 24 16

Ullman AVA, Lam MS, Sethi R, Jeffrey D (1997) Construction of an
NFA from a regular expression. PWS Pub. Co, Boston

Vijayakumar AK, Cogswell M, Selvaraju RR, Sun Q, Lee S, Crandall
D, Batra D (2016) Diverse beam search: decoding diverse
solutions from neural sequence models. pp 1–16

Apeldoorn JV, Gilyén A, Gribling S, de Wolf R, Gilyen A, Gribling
S, de Wolf R (2017) Quantum SDP-solvers: better upper and
lower bounds. In: Annual symposium on foundations of computer
science - Proceedings, 2017-Octob(617), pp 1–74

Vilares D, Gȯmez-Rodriguez C (2018) Transition-based parsing with
lighter feed-forward networks. UDW@EMNLP

Wiebe N, Bocharov A, Smolensky P, Troyer M, Svore KM (2019)
Quantum language processing

Wang D, Higgott O, Brierley S (2019) Accelerated variational
quantum eigensolver. Phys Rev Lett 122(14):140504

Wiseman S, Rush AM (2016) Sequence-to-sequence learning as beam-
search optimization. In: Proceedings of the 2016 conference on
empirical methods in natural language processing. Association for
Computational Linguistics, Stroudsburg, pp 1296–1306

Wossnig L, Zhao Z, Prakash A (2018) Quantum linear system
algorithm for dense matrices. Phys Rev Lett 050502:120

Yang Y, Huang L, Ma M (2018) Breaking the beam search curse:
a study of (re-)scoring methods and stopping criteria for neural

machine translation. In: Proceedings of the 2018 conference on
empirical methods in natural language processing. Association for
Computational Linguistics, Stroudsburg, pp 3054–3059

Younger DH (1967) Recognition and parsing of context-free languages
in time n3. Inf Control 10(2):189–208

Zhang Y, Clark S (2008) A tale of two parsers: investigating
and combining graph-based and transition-based dependency
parsing using beam-search. In: Proceedings of the conference on
empirical methods in natural language processing. Association for
Computational Linguistics, pp 562–571

Zhang Y, features JoakimNivre. (2011) Transition-based dependency
parsing with rich non-local. In: Proceedings of the 49th annual
meeting of the association for computational linguistics: human
language technologies: short papers, vol 2. Association for
Computational Linguistics, pp 188–193

Zhu C, Qiu X, Huang X (2015) Transition-based dependency parsing
with long distance collocations. In: Lecture notes in computer
science (including subseries lecture notes in artificial intelligence
and lecture notes in bioinformatics)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Quantum Machine Intelligence (2021) 3: 16Page 24 of 2416

	A quantum search decoder for natural language processing
	Abstract
	Introduction
	Main results
	Quantum search decoding
	Biased quantum sampling from a regular or context-free grammar
	The quantum search decoder

	Power law decoder input
	Most likely parse: query bound
	Highest score parse: simple query bound
	Most likely parse: full query bound

	Quantum beam search decoding
	DeepSpeech
	Analysis of the output rank frequency
	Runtime bounds for quantum beam search decoding

	Summary and conclusions
	Appendix 1. Quantum computing: preliminaries and notation
	Unitary operators
	Measurements
	Input models
	Complexity measures

	Appendix 2. Languages, automata, and parsing
	Appendix 2. Languages, automata, and parsing
	2.1 Regular languages and finite state automata
	2.2 Context-free grammars and pushdown automata
	Appendix 3. Biased quantum sampling from a regular or context-free grammar
	Appendix 3. Biased quantum sampling from a regular or context-free grammar
	Appendix 4. Most likely parse: full query bound
	Appendix 4. Most likely parse: full query bound
	k>1.
	k<1.

	Appendix 5. Postselected product of powerlaws
	Appendix 5. Postselected product of powerlaws
	 6. Beam search variants
	Appendix F 6. Beam search variants
	6.1 Constant post-amplification
	6.2 Non-constant post-amplification
	Appendix 7. Further proof details
	Appendix 7. Further proof details
	Appendix 8. Rank of letter likelihood for Mozilla's DeepSpeech
	Appendix 8. Rank of letter likelihood for Mozilla's DeepSpeech
	References

