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Unconstrained multivariate 
EEG decoding can help detect 
lexical‑semantic processing 
in individual children
Selene Petit  1,2*, Nicholas A. Badcock  1,2, Tijl Grootswagers1,2,3 & Alexandra Woolgar1,2,4

In conditions such as minimally-verbal autism, standard assessments of language comprehension 
are often unreliable. Given the known heterogeneity within the autistic population, it is crucial to 
design tests of semantic comprehension that are sensitive in individuals. Recent efforts to develop 
neural signals of language comprehension have focused on the N400, a robust marker of lexical-
semantic violation at the group level. However, homogeneity of response in individual neurotypical 
children has not been established. Here, we presented 20 neurotypical children with congruent 
and incongruent visual animations and spoken sentences while measuring their neural response 
using electroencephalography (EEG). Despite robust group-level responses, we found high inter-
individual variability in response to lexico-semantic anomalies. To overcome this, we analysed 
our data using temporally and spatially unconstrained multivariate pattern analyses (MVPA), 
supplemented by descriptive analyses to examine the timecourse, topography, and strength of 
the effect. Our results show that neurotypical children exhibit heterogenous responses to lexical-
semantic violation, implying that any application to heterogenous disorders such as autism spectrum 
disorder will require individual-subject analyses that are robust to variation in topology and 
timecourse of neural responses.

In a variety of conditions, the absence of spoken language does not necessarily reflect an absence of comprehen-
sion. In addition, poor language production is not always associated with low verbal or non-verbal IQ1–3. For 
populations that are unable to reliably communicate, such as people in a vegetative state4, or with cerebral palsy5 
or non-verbal autism6, an accurate assessment of cognitive and language aptitudes is essential, but challenging. 
Traditional testing materials often fail to capture the full cognitive and language abilities of these individuals. 
This is due to the various constraints imposed by the standardised testing environment and materials, and the 
social constraints associated with the examiner–examinee interactions7,8. To assess cognitive and language abili-
ties of these populations, we need to develop objective, fast, and reliable measures of cognition and language 
comprehension. Neuroimaging (e.g., electroencephalography—EEG, functional magnetic resonance imaging—
fMRI) allows the indirect observation of neural processing, bypassing the need for behavioural responses. For 
example, fMRI has previously been used to assess cognition in non-communicative populations such as patients 
with disorders of consciousness9,10. EEG is a less expensive and more readily available alternative which may 
also be suitable for passively measuring cognitive responses in the absence of reliable behaviour. Recent work 
has used EEG to assess covert cognitive abilities in non-communicative populations (see a recent review by 
Harrison and Connolly11). In particular, language processing has been studied using EEG including in patients 
with disorder of consciousness12,13, schizophrenia14,15, and autistic individuals19–21 [Note: we use ‘identify-first’ 
language (‘autistic person’) rather than person-first language (‘person with autism’), because it is the preferred 
term of autistic activists (e.g. Sinclair, 2013) and many autistic people and their families17 and is less associated 
with stigma18]. However, in these cases, EEG research has focused on the population-level, with minimal data 
reported on an individual-participant basis. Yet, in order to design a clinical test of language comprehension, 
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and particularly given the known heterogeneity in developmental disorders such as autism spectrum disorder 
(ASD), it is critical to use paradigms and methods that reliably elicit meaningful neural signals in individuals. 
In this study, we therefore developed and assessed a new EEG paradigm to measure language comprehension 
in individual children. We report the heterogeneity of neural responses to semantic anomalies of speech using 
different data analysis techniques.

The N400 ERP is a well-studied component that indexes the semantic integration of words into their context. 
The N400 effect is a more negative-going electrical potential when participants read or listen to words presented 
in an incongruent semantic context, relative to a congruent semantic context22. As such, it seems to be a well-
suited candidate for the assessment of lexico-semantic processing. The N400 has been widely reported in groups 
of typical adults, children, and special populations, including recently in autistic children23–25. However, despite 
the recent interest in using N400 as an assessment tool, individual-subject level analyses are rarely reported. 
Additionally, studies that do report individual-subject data are often limited by methodological or conceptual 
factors, such as a lack of proper statistical analyses, or lack of a control group. Recently, two studies have looked 
at the individual sensitivity of auditory N400 paradigms, in healthy adults26, and in healthy children27. These 
studies each used two paradigms contrasting auditory words presented in congruent or incongruent semantic 
contexts. Using a task in which participants were asked to make covert violation decisions, these studies reported 
a statistically significant N400 effect in a maximum of 58% of neurotypical adults26 and 56% of neurotypical 
children27. This moderate sensitivity reflects the challenges associated with assessing ERPs at the individual level. 
However, using multivariate pattern analyses (MVPA) on these EEG data, we recently increased the individual-
subject detection rate to 88%27. In the current study, we aimed to build on existing N400 paradigms by improving 
the stimulus delivery paradigm and by using a more robust and sensitive analysis framework. Our goal was to 
derive a highly sensitive measure of language comprehension in individual children.

We set out to extend the paradigm developed in27, and to measure neural differential responses to auditory 
words presented in congruent and incongruent sentences frames (i.e. “The squirrel stored nuts in the tree/door”). 
In order to increase children’s engagement to the task, and build up strong semantic contexts, the spoken sen-
tences were accompanied by short animated cartoons (e.g., an animation of a squirrel storing nuts in a tree). With 
clinical applications in mind, our paradigm presented a semi-covert task, in which participants were asked to 
silently judge the semantic congruency of each sentence in their head, with occasional button press requests to 
check for compliance. Additionally, we explored several analyses of the EEG data to illustrate the inter-individual 
variability of neural responses.

With traditional within-individual ERP analyses, it is necessary to choose a priori time windows and elec-
trodes of interest, in order to reduce the number of comparisons and thus increase the statistical power. However, 
we have previously demonstrated that for individual subject analysis, a priori assumptions about spatio-temporal 
location should be avoided as there is substantial inter-individual variability in the location and timing of N400-
like effects27. For clinical populations, for whom inter-individual variability may be even higher, it is essential to 
allow some inter-individual variability in the location and timing of the effect of interest. To allow for this without 
increasing multiple comparisons, we previously used MVPA. This approach uses the signal recorded across all 
the EEG channels to detect patterns of brain activation that reliably distinguish between two conditions, in this 
case, between identical words presented in different lexico-semantic contexts. Using MVPA at each time point, 
we retain information about when an effect occurs, but allow it to arise from any spatial location. In the current 
study, we again used MVPA, but additionally dropped the requirement for time-resolved results, allowing the 
classifier to detect an effect with any spatial configuration and any temporal profile in an effort to increase our 
detection rate. This allowed us to detect differences in the brain’s pattern of activity irrespective of the location and 
the timing of the difference. Having detected a statistical difference using this approach, time-resolved MVPA and 
univariate approaches can then be used to qualitatively describe the temporal and topographic distribution of the 
effect. In this study, we sought to design an engaging, covert paradigm to elicit individuals’ neural responses to 
semantic violations within spoken sentences. We contrasted congruent and incongruent sentences, and measured 
the brain response of children using EEG, and we analysed the data using MVPA and univariate N400 analyses. 
We found the strongest detection rate using an unconstrained MVPA approach, reaching a medium detection 
rate (13/20 participants). Univariate analyses were less sensitive, possibly due to the need to restrict the analyses 
to a predefined brain region for appropriate statistical power. We additionally provide evidence for this claim by 
illustrating the high inter-individual variability in the location and timing of the discriminative neural signals.

Methods
All presentation scripts, stimuli, and raw data available at https​://osf.io/bv2dy​/.

Stimulus development and validation.  Congruent stimuli.  The stimuli consisted of 94 congruent and 
94 incongruent sentences. The congruent sentences were adapted from the norms of Block and Baldwin28, who 
reported the cloze-probability of 498 sentences for adults in the USA. We started by selecting the 450 sentences 
with a cloze probability higher than 50%. (i.e., more than 50% of the participants completed a given incomplete 
sentence with the same target word), and for which the target word was a noun. From this set, we then selected 
only the 242 sentences in which the target word and of all the keywords were of high frequency (Zipf Log10 fre-
quency > 3.5), according to the children section of the SUBTLEX-UK word database29. This removed sentences 
that were not suitable for children.

To facilitate the splicing of the target word from the audio recording, we retained only the 105 sentences in 
which the boundary between the incomplete sentences and the target was a plosive sound (/t/, /d/, /k/, /p/, /b/, 
or /g/), and the 35 sentences in which it was possible to add an adjective ending in a plosive sound before the 
target without disrupting the meaning of the sentence (e.g., To cut the chicken Sue needed a sharp knife—see 
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Table 1). The remaining 140 sentences were recorded by a female, native Australian-English speaker. In order 
to make sure that the congruent sentences were highly congruent for children, eighteen native English speaker 
children, aged 8- to 12-years old (M = 9:11, range = [8:4 to 11:11]) participated in a validation experiment. We 
presented participants with each of the 140 incomplete sentences, and asked them to say the word they thought 
would best complete each sentence. We then selected only the sentences with a target cloze probability of over 
60%, leaving a full stimulus set of 94 sentences (see Supplementary Table S1 for a complete list of the stimuli). 
The mean length of the auditory sentences was 3.78 s (SD = 0.68 s, range = [2.40; 6.21]).

Incongruent stimuli.  In order to generate an incongruent condition in which the target words and sentence 
frames were perfectly matched with the congruent condition, we swapped the target words of pairs of congru-
ent sentences (see Table 1). Each target and each incomplete sentence was thus presented once in the congru-
ent condition, and once in the incongruent condition. When recombining targets with incongruent sentences 
frames, we ensured that the target did not violate the syntactic structure of the sentence, including matching for 
plurality. Furthermore, we ensured that the incongruent target did not start with the same sound nor rhyme with 
the congruent target.

Animations.  For each congruent sentence, we designed a short, colourful, animated cartoon that matched 
the meaning of the sentence. These cartoons were drawn and animated by Gabriella Keys using Adobe Photo-
shop CC 2017. The animation corresponded to the congruent version of the sentence, and each animation was 
presented twice, once in each condition (e.g., the animation of a leaves falling off autumnal trees was presented 
with the sentence “in autumn, leaves fall off the trees”, and with “in autumn, leaves fall of the dishes”).

EEG experiment.  Participants.  Twenty children aged 9 to 12 years (M = 10:6, SD = 0:11, 12 male and 8 
female) were recruited through the Neuronauts database of the Australian Research Council Centre of Excel-
lence in Cognition and its Disorders. All participants were native English speakers, and received $25 for their 
participation. This study was approved by the Macquarie University Human Research Ethics Committee (Refer-
ence number: 5201200658), and all methods were performed in accordance with the relevant guidelines and 
regulations. Informed consent was obtained from a parent and/or legal guardian for each participant.

Experimental procedure.  Participants were seated in front of a computer screen in a lightly dimmed room. The 
auditory sentences were presented via speakers on both sides of the screen, and the corresponding animations 
played on the screen at a visual angle of approximately 4° of height and width.

All 188 sentences were presented once within a single recording session, in a pseudo-random order that was 
optimised to minimise bias in the sequence of congruent and incongruent trials. For this, we generated 1,000 
candidate sequences, all constrained to have no more than four trials of the same condition in a row, and such that 
longer sequences of the same condition were no more frequent than shorter ones. We then selected the sequence 
that minimised first, second and third order bias in whether a given trial would be congruent given the preceding 
trials. Additionally, during the experimental session we constrained the order of the sentences so that each of the 
sentence frames was used once in the first half and once in the second half of the experiment. For example, the 
sentence frame “It was windy enough to fly a” was paired with the target word “kite” (congruent) and “tongue” 
(incongruent). Therefore, if the sentence “it was windy enough to fly a kite” was presented in the first half of the 
experiment, then the sentence “it was windy enough to fly a tongue” could only appear in the second half. We 
chose to present each complete sentence only once to minimise repetition effects and to limit the length of the 
recording session. For our main analysis (below) we calculated that 94 trials per condition would give us 96% 
power to detect a medium effect (Cohen’s d = 0.5) at the individual-subject level.

Each trial started with a central fixation cross, displayed for two seconds, followed by the presentation of a 
sentence. The animation started first, and included a 500 ms gradual fade-in and a 500 ms fade-out to minimise 
abrupt onsets and reduce eye-movements. After 500 ms, the auditory sentence started. To ensure that each anima-
tion was at least three seconds long irrespective of the auditory sentence length, we added a silent pause before 
each auditory sentence that was shorter than three seconds. The animation disappeared one second before the 
target word was presented, to ensure that EEG responses to visual information did not contaminate the response 
to the target word (see Fig. 1).

We presented the participants with six practice trials at the start of the experiment to ensure they understood 
the instructions. Participants were instructed to listen carefully to each sentence and covertly decide whether 

Table 1.   Example of congruent and incongruent sentences. The conditions are matched by pairing the targets 
between the two conditions. In some cases (last two rows), we added an adjective (italics) ending with a plosive 
sound before the target word to facilitate audio splicing (see Supplementary Table S1 for a complete list of the 
stimuli).

Incongruent sentence Congruent sentence Target

In autumn, leaves fall off the After dinner, they washed the Dishes

After dinner, they washed the In autumn, leaves fall off the Trees

They raised pigs on their private To cut the chicken Sue needed a sharp Knife

To cut the chicken Sue needed a sharp They raised pigs on their private Farm
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the sentence was correct or incorrect. Additionally, on some trials, participants were asked to quickly indicate 
their judgement by pressing a button with their right hand. On these trials a response screen was presented 
with a green “tick” (“correct meaning”) and a red cross (“incorrect meaning”) on either side of the display. A 
central vertical bar decreasing in size indicated the time left to answer (4 s in total). Question trials occurred 
approximately every 7 trials, with a jitter of ± 3 trials so they were unpredictable. The red cross and the green tick 
appeared pseudo randomly on either the left or right hand side of the screen, so participants could not anticipate 
which button they would have to press. If they answered correctly, the participant was told that they had caught 
an “evil alien”. If they answered incorrectly, they were shown a semi-masked picture of the alien that they “did 
not catch”. After each question trial they were told how many evil aliens they had left to catch.

EEG recording and pre‑processing procedures.  We acquired EEG data from a 64-channel ActiveTwo BioSemi 
(BioSemi, Amsterdam, Netherlands). The electrodes were organized according to the 10–20 system, with two 
electrodes placed on the left and right mastoids for offline referencing. Electro-oculogram generated from eye 
movements and eyeblinks was recorded using two facial electrodes, located at the outer canthus of and under 
the right eye, respectively. The data were digitized at 512 Hz with an anti-aliasing filter with 3 dB point at 104 Hz 
(fifth order sinc filter) with an online reference to the common mode sense (CMS), and all impedances were 
kept below 30 kΩ.

We processed the data off-line using the EEGLAB toolbox in MATLAB30. We first re-referenced the data to the 
average of the left and right mastoids, then used a bandpass filter between 0.1 and 40 Hz as recommended in31,32. 
We then segmented the data into 1100 ms epochs time-locked to the onset of the auditory target word (100 ms 
pre-stimulus and 1000 ms post-stimulus). To correct for eye-blinks and eye-movements, we ran an Independent 
Component Analysis (ICA). We removed the components with scalp distributions, time-courses and spectral 
contents indicative of eye blinks and eye movements. Finally, we applied a baseline correction to the epochs, and 
either saved all the epochs for subsequent MVPA analyses, or removed epochs with extreme values (± 200 mV) 
for subsequent univariate analyses. For the purpose of illustrating the topography of the ERP across the scalp, 
we removed epochs that had extreme values in any channel. At this point, any channel that contributed to the 
rejection of more than 10% of the trials was interpolated using spherical interpolation, and the preprocessing was 
done again using the interpolated channel(s) from the filtering stage. An average of 1.9 channels were interpolated 
per participant (range = 0–8). None of the channels in the region of interest (see below) had to be interpolated. 
For the purpose of analysing the N400 within our region of interest, we only removed epochs that had extreme 
values in any of the 9 channels of interest, in order to preserve data. An average of 22.3 trials (SD = 11.7, range = [0 
, 44]) were rejected from the region of interest across participants.

Multivariate pattern analyses.  We performed MVPA using the CoSMoMVPA toolbox33 in Matlab R2017B. 
For each participant, a support vector machine (SVM) was trained to discriminate between the neural patterns 
evoked by the two semantic conditions, using the raw voltage values from all scalp electrodes and all time points. 
We used a standard leave-one-target-out cross-validation approach: we separated our data into a testing set 
containing the two trials corresponding to one target (e.g., the target “kite” in the congruent and the incongru-
ent condition), and a training set consisting of all the other trials. We then trained an SVM algorithm to find 
a decision boundary that best discriminated the two experimental conditions in the training set and tested the 
classifier’s categorization of the two held-out trials in the testing set. We repeated this procedure 94 times, leav-
ing a different target out each time. We then averaged the accuracy obtained for each iteration to obtain a single 
classifier accuracy score for each participant. If this accuracy was significantly above chance (theoretical chance 
level: 50%), we concluded that there was information in the brain signals that differentiated between the two 
semantic conditions.

To test whether the obtained accuracy was significantly above chance, we used a permutation test34. This 
consists of randomly attributing every trial to one of the two conditions, then running the above classification 
procedure on these permuted data. In doing so we maintained the original target pairing (i.e., randomly swap-
ping conditions within words) and cross-validation procedure (i.e., leaving one target word out). We repeated 
this procedure 1,000 times to estimate a null distribution of accuracies34. Accuracy was considered significant 
when the observed accuracy was higher than 95% of the null distributions’ accuracies (α = 0.05)34.

Figure 1.   Trial sequence on a question trial. Note that the same animation would be presented for the 
incongruent version of this sentence (“in autumn, leaves fall of the dishes”). On non-question trials the final 
display was not shown and the 2 s ITI started immediately. Images were drawn and digitised by Gabriella Keys.
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We additionally wished to include an indication of effect size. In the context of multivariate decoding, this 
is not trivial, because standard measures of effect size fail to correct for the number of measurements and their 
autocorrelation as they would do in univariate analyses35. This means that MVPA effect sizes calculated in a 
standard way may not be interpretable using the usual rules of thumb, or comparable across studies (though see36 
for an interpretable measure of effect size using cross-validated multivariate ANOVA). Instead, as the variance 
in the data is best captured by each individual’s estimated null distribution, we calculated illustrative effect sizes 
for each participant according to the formula:

We also included an exploratory analysis to check whether MVPA detection rates would be higher if we aver-
aged the data from several trials together before classification to create “pseudotrials”, on the basis that this might 
reduce noise in the data and improve classification37. In order to select the best parameters for this analysis (e.g., 
number of trials to average to create each pseudotrial), we simulated data with a small effect using the CoSMoM-
VPA toolbox33 and systematically tested different averaging parameters. Highest performance was found when 12 
trials were averaged together in each pseudotrial. For each participant, we then analysed our experimental data 
by creating 100 sets of pseudotrials (each pseudotrial comprising an average of 12 randomly-chosen real trials) 
and performing the classification on each of these sets as described above. Finally, we averaged the results from 
the 100 pseudotrials sets together to give a single measure of classification accuracy for this participant. We then 
repeated the same analysis using 1,000 label permutations to build the null distribution for the data analysed as 
pseudotrials. Although this approach tended to yield higher decoding accuracy for the correctly-labelled data, it 
also increased the variance of the null distribution over permutations, resulting in lower sensitivity overall (8/20 
participants) compared to our original approach.

Finally, we examined two possible sources of intra-individual variation on decoding accuracy: participant 
age and signal quality, as measured by the standardised measurement error (SME)38. The SME is a newly devel-
oped measure that quantifies data quality at the individual-subject level. We obtained a measure of SME for 
each channel and each individual using the ERPLAB toolbox in Matlab39. First, for each individual and each 
channel separately, we created 10,000 differential ERPs (congruent minus incongruent ERP) in a bootstrapping 
approach. For each bootstrap, this consisted of selecting with replacement as many congruent and incongruent 
epochs as the number of accepted congruent and incongruent epochs for this individual. Then, we calculated 
the mean amplitude compared to baseline of each differential ERP in the time-window 300–800 ms (which 
corresponds to the expected time-window for the N40022,26,40). Finally, we computed the SME for each channel 
as the standard deviation of the mean amplitude of the difference ERPs across the 10,000 bootstraps. We then 
investigated whether participants with noisier data (i.e., with higher SME values) had lower decoding accuracy. 
We first averaged the SME across all the scalp electrodes, then calculated the Spearman’s correlation coefficient 
between this mean SME and the individuals’ decoding accuracy.

Having established the presence of a difference in the brain signals, we then performed additional analyses 
to describe the timecourse and the topology of the effect. We first computed the timecourse and the topography 
of the MVPA results, then examined the ERP using univariate analyses of the two conditions.

Time‑resolved MVPA.  In order to examine the timecourse of the discriminating brain signals, we ran a follow-
up analysis where we trained the classifier to distinguish between the two conditions over time. For each time 
point, we trained the classifier on the data from all electrodes, at that time point and the 10 neighbouring time 
points (5 on each side). We then repeated this analysis across time points. To test for significance, we used a 
permutation test and threshold-free cluster enhancement (TFCE), as described by Smith and Nichols41, on all 
time points excluding the baseline as in our previous work42. This approach allows for extraction of a statistic of 
cluster level support at each time point, for the observed accuracy and the permutation results. The maximum 
TFCE statistic across time of each permutation was used to create a corrected null-distribution. The observed 
TFCE statistic at each time point was considered significant if it was larger than 95% of the null-distribution. 
This allowed us to observe the evolution of decoding accuracy over time, thus indicating when the classifier 
could find neural information that discriminated between conditions.

Time–space‑resolved MVPA.  Finally, in order to illustrate both the timecourse and topography of the decod-
ing, we ran a second follow-up decoding analysis allowing the classifier to use the data coming from a subset 
of neighbouring electrodes (5 electrodes per neighbourhood), and from a subset of neighbouring timepoints 
(11 timepoints per neighbourhood). We repeated this analysis for each electrode and each time point. This 
yielded a topographic map of decoding accuracy over time for each participant. For visualisation, we illustrate 
this topography for decoding accuracy averaged over time within four time-windows spanning 200 to 1,000 ms 
post stimulus onset. Videos of the decoding accuracy evolution over time are available at https​://osf.io/bv2dy​/.

Univariate analyses.  Finally, we estimated the N400 effect using traditional univariate analyses as followed. 
First, we defined a region of interest centred around Cz, and the eight surrounding electrodes (Fc1, FCz, FC2, 
C1, C2, CP1, CPz, and CP2), based on26 and 27. We restricted our analyses to the data from 150 ms post-stimulus, 
based on previous results22. We averaged the data from the nine electrodes of interest, and analysed the differ-
ence between the two conditions by running t tests at each time point from 150 ms onward. We corrected for 
multiple comparisons by using a temporal cluster threshold calculated using Guthrie and Buschwald’s43 method. 
We first calculated the autocorrelation value of our ERP waveform, then we generated 1,000 random ERP series 

effect size =

(

participant’s accuracy −mean of null distribution
)

standard deviation of null distribution

https://osf.io/bv2dy/
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with the same autocorrelation value as our original ERP waveform. We calculated the t test statistics between the 
congruent and the incongruent condition at each timepoint for our original waveform and each of the random 
series. For each random serie, we determined the longest run of t-values below 0.05. A cluster was considered 
significant in our original waveform if it was longer than 95% of the random series’ longest cluster. These analy-
ses were carried out at the group level, and for each individual separately.

Similarly to MVPA analyses, we used the SME as an indication of data quality, and examined whether it 
impacted the size of the N400 effect. To do this, we calculated the area under the difference ERP (congru-
ent − incongruent) using a trapezoidal integration from 300 to 800 ms within the ROI, in steps of one sample 
(2 ms). These time points correspond to the expected N400 effect time course22,26,40. We then calculated the 
Spearman correlation coefficient between this area and the mean SME for the 9 ROI channels.

Results
We examined children’s brain responses to semantically congruent and incongruent spoken and visual sen-
tences using EEG. During the experiment, children simultaneously watched and listened to sentences, and were 
occasionally prompted to press a button to indicate whether the sentence they just heard was correct (e.g., “the 
squirrel stored nuts in the tree”) or incorrect (e.g., “the squirrel stored nuts in the door”).

Behavioural results.  Participants (n = 20) performed the button-press task with a high degree of accu-
racy (mean percent correct: M = 97.17%, SD = 3.29%, range = [90%, 100%]), indicating that they understood the 
meaning of the sentences and were able to notice semantic anomalies. They also responded within the required 
time (2 s) on 99.3% of trials (mean reaction time: M = 1.63 s, SD = 0.41, range = [0.51, 4.02]).

Multivariate pattern analyses results.  Temporally and spatially‑unconstrained MVPA.  Using tempo-
rally- and spatially-unconstrained multivariate classification analysis, we could decode whether the target word 
was semantically congruent or incongruent with the sentence in 65% of participants (13/20 participants, Fig. 2). 
Individual decoding accuracies ranged from 68 to 49%, with effect sizes ranging from 4.08 to − 0.27, and p-
values ranging from 0.0002 to 0.60. Thus, using all of the data available allowed us to detect statistical effects of 
semantic violation in two thirds of individuals. We did not find a significant correlation between decoding ac-
curacy and participants’ age (Spearman correlation r = 0.136, p = 0.568) or the standardised measurement error 
across all channels (Spearman correlation r = − 0.36, p = 0.12).

Figure 2.   Individual decoding accuracy for classification of identical target words in congruent and 
incongruent contexts. Purple circles indicate decoding accuracy for each participant. The yellow distribution 
shows the null distribution obtained by the permutation test for that participant. Thirteen out of 20 participants 
had a decoding accuracy significantly above chance (full purple circles). Chance (50%) is indicated by the 
horizontal dashed line. Participants are sorted by decoding accuracy.
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Time‑resolved MVPA.  As our main result yields optimal statistical power by trading off spatial and temporal 
resolution, we conducted a series of follow-up exploratory analyses to qualify when and where the effect of 
interest arose. First, we used time-constrained multivariate classification analyses, to extract the temporal evo-
lution of decoding accuracy for each participant (Fig. 3). Restricting the classifier to short time windows, and 
repeating this over time, shows the time course with which information is decodable from the spatial pattern 
of activity across the scalp. This analysis revealed substantial variability in the timecourse of the effect across 
participants. While three participants (P5, P6 and P12) showed decodable information about the semantic con-
dition at around 400 ms, in line with classic N400 effects, others showed decodable semantic information earlier 
(200 ms, P9) or later (P1, P3, P9). As expected, this approach was less sensitive than the main analysis, because 
the classifier was not given the entire length of the epoch to distinguish between the conditions, and because the 
multiple comparisons inherent in this approach necessitated a more stringent alpha level for inference. Of the 
13 participants with significant decoding over time and space, only 7 retained enough spatial information to be 
decoded using this approach.

Time–space resolved MVPA.  Next, we used a time and space resolved decoding approach to illustrate both 
when and where there was discriminative information for each individual (Fig. 4). Although these analyses were 
exploratory and we did not perform significance testing, we observed substantial inter-subject variability in the 
regions and times that were informative for the classifier. While some participants showed high accuracy at times 
and regions that correspond to the typical univariate N400 effect (i.e., a centroparietal effect around 400 ms, e.g., 
P5, P6, P8), others showed high accuracies at unexpected times (e.g., late, P11) and/or at unexpected locations 
(e.g., left lateralised, P9, late and occipitotemporal, P12). To further investigate these results and examine their 
mapping onto univariate differential responses between conditions, we additionally extracted the N400 ERP in 
response to the two conditions.

Univariate analyses.  Finally, we examined the N400 univariate effect by computing the voltage changes 
over time for the two experimental conditions (congruent and incongruent words) in a pre-specified centropa-

Figure 3.   Individual time-resolved decoding accuracies. Chance (50%) is indicted by the horizontal dashed 
line. Accuracy significantly above chance is indicated by a solid black horizontal line for each participant (after 
multiple comparison correction). Participant numbering as in Fig. 2, seven participants had decoding accuracy 
significantly above chance.
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rietal region of interest. This analysis was included for comparison with the wider literature and to determine 
the extent to which the results of our main analysis could be attributed to classic N400 effects. At the group level, 
we found a significant N400 effect for a cluster of timepoints from 289 to 873 ms (Fig. 5, top panel). The effect 
was maximal at central locations from 200 to 400 ms, then extended to frontal regions at later timepoints (Fig. 5, 
bottom panel).

Figure 4.   Individual topographic distribution of decoding accuracy for 200 ms time windows from 200 
to 1,000 ms after target onset. Yellow areas indicate higher decoding accuracy, and blue areas indicate 
lower decoding accuracy. These maps are for illustrative purposes and are not thresholded for significance. 
Black + indicates Cz location. Participant numbering as in Fig. 2, participants 1–13 showed a significant effect in 
the main analysis.
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At the individual level, 45% of participants showed a significant univariate N400 effect for at least one signifi-
cant cluster of time points in our region of interest (8/20 participant, Fig. 6). To summarise across analyses, 6 of 
the 13 participants with significant decoding results also showed a detectable N400 effect, while the remaining 
7 did not. Only two participants (P14 and P17) showed a detectable N400 effect in the absence of significant 
MVPA classification.

In addition, we did not find a significant correlation between the amplitude of the N400 effect and data quality, 
as indicated by the standardised measurement error (Spearman’s rho = − 0.30, p = 0.19).

The topology of the N400 effect was highly variable across participants (Fig. 7) in line with the time–space-
resolved MVPA analysis (above) and our previous work27.

Figure 5.   Group N400 effect. Top panel displays grand average ERPs (n = 20), with congruent (dashed blue) and 
incongruent (solid red) conditions for the signal averaged over our region of interest. Shading indicates standard 
error of the mean. Time points at which there was a statistically significant difference between conditions are 
indicated with a solid black line under the plot (p < 0.05, after cluster correction for multiple comparisons). 
Bottom panel illustrates the topographic map of the N400 effect (mean magnitude of unrelated minus related 
condition) from 200 to 1,000 ms after target onset in the group. Yellow colours indicate a negative difference 
between the two conditions (incongruent more negative than congruent), while blue colours indicate a positive 
difference. These maps are for illustrative purposes and are not thresholded for significance. Black + indicates Cz 
location. The N400 effect was distributed over central and centro-frontal regions.
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Discussion
Recent electrophysiological evidence has shed light on the semantic processing of spoken language in minimally-
verbal autistic children25. This has important implications for our understanding of brain processing in autism, 
and for the care and treatment of these individuals. However, heterogeneity in the neural signals, even in neu-
rotypical children, is yet to be addressed. This study validates a multi-modal N400 paradigm to assess lexico-
semantic processing from electrophysiological activity, and reports on the reliability of neural signals across 
individual neurotypical children. We recorded EEG from children while they were watching video-animated 
sentences with matched correct and incorrect endings, and used two complementary approaches to analyse 
their brain data. Using Multivariate Pattern Analyses (MVPA) to pool information over both space and time, we 
detected patterns of brain activity that discriminated between the two semantic conditions in 65% of individual 
children. Further descriptive analyses suggested that the patterns of discriminative activity were variable across 
individuals, ranging both in topography and in time. We additionally analysed the N400 ERP using a univariate 
approach, and found a robust N400 effect in the central location at the group level, as well as in 45% of individual 
participants. We present a summary of these analyses in Table 2.

Our data replicate recent findings that univariate effects to identical auditory tokens presented in different 
semantic contexts can be reliably observed in about half of the participants26,42. This result has important implica-
tions both for clinical application23,24,40 and for researchers using the N400 to study language acquisition44,45. For 
the participants not showing reliable differences, it is unclear whether our methods were not sensitive enough 

Figure 6.   Individual participant responses to target words following congruent (dashed blue) and incongruent 
(solid red) sentences in our region of interest. Shading indicates standard error of the mean. Time points where 
there was a statistically significant N400 effect are indicated with a solid, horizontal, black line. P indicates 
participant, with participant numbering as in Fig. 2. 45% (8/20) of participants showed a statistical univariate 
N400 effect.
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to detect N400 effects to semantic violations, or whether N400 effects were truly absent in some participants. In 
the latter case, it remains unclear whether our failure to detect differential brain responses in some participants 
was due to their reliance on different cognitive processes, or whether similar cognitive processes were supported 
by different neural substrates. It is also possible that for some participants, the incongruent sentences were not 
eliciting strong semantic or predictive violations, or that these violations became less strong over the course of 
the experiment. In an attempt to pinpoint the possible cause of inter-individual variability, we examined the 
impact of data quality on the neural responses recorded at the individual-subject level. Although data quality will 
obviously affect our ability to detect meaningful effects, variation in the standardised measurement error (SME) 
did not account for variation in decoding accuracy or the amplitude of the univariate difference wave across 
subjects. The SME was recently introduced as a universal measure of data quality in individuals, and reflects 

Figure 7.   Individual topographic maps of the N400 effect (unrelated minus related condition) for 200 ms time 
windows from 200 to 1,000 ms after target onset. Yellow colours indicate a negative difference between the two 
conditions (incongruent more negative than congruent), while blue colours indicate a positive difference. These 
maps are for illustrative purposes and are not thresholded for significance. Back + indicates Cz location. The 
topography of the N400 effect varied across individuals. P indicates participant, with participant numbering as 
in Fig. 2.
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the standard deviation of a given measure, in our case the amplitude of the difference ERP waveform (congru-
ent minus incongruent) across trials. Although we did not find evidence that lower SME was associated with 
larger effects in our sample, we must be cautious in interpreting correlation coefficients drawn from a relatively 
small sample (20 participants). Future studies may benefit from larger sample sizes, or from including alterna-
tive measures of signal-to-noise ratio, for example by examining the amplitude of auditory evoked responses to 
simple tones46,47 or examining neural entrainment by speech envelopes48,49. We also did not find any evidence for 
an impact of age on our effects, but again with only 20 participants we must be cautious about interpreting this 
absence of correlation. It would be interesting to assess other potential sources of inter-individual differences, 
such as language ability or lateralisation, on a larger sample.

Previous work using purely auditory paradigms have found a similar1,26,exp 1 or better2,26,exp 2 detection rate 
of brain responses to semantic violations than the current study. There was therefore no evidence that adding a 
visual component made the N400 effect stronger in individuals. We hypothesized that creating a semantic con-
text using both visual and auditory information would increase the participants’ expectation for the final word, 
making an incongruent ending even less predictable. This prediction was partly based on previous findings that 
the N400 reflects lexico-semantic access irrespective of the modality. For example, Nigam et al. found similar 
N400 effects for final words of written sentences, whether the final words were in written or picture format50. 
Similarly, when testing the N400 in response to auditory words versus written words, Holcomb and Neville 
found overlapping neural processes between these two modalities51. However, in our study, it is also possible that 
adding a visual component had a detrimental effect, for example by shifting attention away from listening to the 
sentences. The high accuracy of participants on the task suggests that participants were able to correctly clas-
sify the congruency of the sentences when probed, but this is not a sensitive measure of attention. In the future, 
presenting the animations before the auditory sentences, instead of concurrently, may alleviate this concern. It 
is also possible that our numerically lower sensitivity to detect discriminative neural patterns compared to our 
previous study, with a similar stimuli and identical analyses, was due to the task that participants performed. 
In Petit et al.27, participants had to count the number of incorrect sentences within a block. Here, participants 
were occasionally probed for whether the last sentence they heard was correct. Although the probing task is 
attractive for its simplicity (minimal working memory component and no requirement to be able to count), it is 
possible that the counting task in27 encouraged more sustained attention to all the stimuli, potentially improving 
decoding accuracy. However, the two studies are not directly comparable because the current study had more 
unique sentences and less repetition (188 trials unique sentences presented once in this study versus 112 unique 
sentences presented twice for a total of 224 trials in27), and because the current study examined a smaller age 
range (9–12 years, versus 6–12 year in27). There were also differences in the way the sentences for the two stud-
ies were recorded an presented: here complete sentences were recorded and spliced, with adjectives added to a 
subset of the original sentences to introduce a plosive for splicing, whereas in27 sentence frames were recorded 
separately from target words resulting in penultimate word lengthening and were presented with a 100 ms silent 
gap before the target.

Table 2.   Summary of individuals’ effect in different analyses. ‘Yes’ indicates that we found a significant effect 
for this participant.

Participant number Time- and space- unconstrained MVPA Time-resolved MVPA Univariate N400

1 Yes Yes Yes

2 Yes No No

3 Yes Yes Yes

4 Yes No No

5 Yes Yes No

6 Yes Yes Yes

7 Yes No Yes

8 Yes No Yes

9 Yes Yes No

10 Yes No Yes

11 Yes No No

12 Yes Yes No

13 Yes No No

14 No No Yes

15 No No No

16 No No No

17 No No Yes

18 No No No

19 No Yes No

20 No No No

Total 13/20 7/20 8/20
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Using MVPA allowed us to detect differential brain responses to congruent and incongruent sentences in 
65% of individuals (13/20 participants). Of these 13, only 6 (46%) also showed a significant N400 effect. Of the 
seven participants who did not have a significant classification result, only two showed a significant univariate 
N400 effect. This highlights the higher sensitivity of MVPA to detect differences in the pattern of brain activity 
that are relevant to the semantic condition but may occur at variable times or locations, or as subtle changes in 
the pattern of brain activation, across individuals. In our implementation, MVPA takes data from all sensors 
and timepoints into account without introducing multiple comparisons (only one statistical test is performed 
per participant). In our univariate approach we minimised multiple comparisons by restricting our analyses 
to a pre-defined ROI, but with the trade-off of not being sensitive to potential differences occurring outside 
of this region. Only two studies have investigated decoding accuracy to classify individuals’ EEG data. Geuze 
et al. have used a similar approach as the current study on adult participants who were presented with words 
that were related or unrelated with a previously-heard probe word and found above-chance decoding for all of 
their participants52. It is likely that their higher accuracy reflects the better data quality recorded in adults, who 
are better able to sit still and engage with the task. More recently, Tanaka et al. reported significant decoding of 
single-trial semantic anomalies, with an overall accuracy of 59.5%53. They, however, did not report individual-
participant accuracies, making it hard to compare their results to the current findings. The current study adds 
to this body of literature by illustrating the capacity of classifiers to detect processing of semantic congruency in 
individual children performing a covert task, using rigorous and robust EEG data analyses.

Although MVPA appears to be more sensitive for detecting differences in brain activation between conditions, 
it does not always perform better than univariate analyses. For two participants in our study (P 14 and P 17), 
decoding accuracy was not significantly different from chance, while the N400 univariate effect was statistically 
significant. At least two accounts may explain this surprising result. Firstly, MVPA was performed on all the 
trials, while we cleaned the data during preprocessing before univariate analyses. It is possible that the classi-
fier could not overlook the noise in the data or that the univariate effect was driven by a few trials, and was not 
consistent enough to be detected as a pattern by the classifier. We chose not to clean the data before performing 
MVPA as our leave-one-target out approach requires the dataset to be balanced, with the same trials present 
in both conditions. Removing noisy trials would have involved removing their counterpart in the other condi-
tion, as well as the trials in both conditions that had the same sentence frame as the noisy trials. Thus, for each 
noisy trial, we would have to reject four trials in order to keep a balanced design, which would leave too few 
trials to use for classification. Secondly, because the N400 effect occurred at the expected location and timing in 
those two individuals, it is likely that the univariate approach was more sensitive. However, for the purpose of a 
neural test of language comprehension in non-communicative populations, this typicality cannot be assumed, 
so it may nonetheless be preferable to use methods that can detect differences in brain activity at unexpected 
locations and timing. This is reflected in our data, where seven participants had significant decoding but did not 
show an N400 effect at our pre-specified region of interest. Participant 4, for example, had a strong decoding 
result but showed an N400-like effect only at antero-frontal locations (see Fig. 7), which would not be detected 
with conventional N400 analyses.

Conclusion
This study aimed to assess the reliability of neural signals in response to semantic anomalies in individual 
neurotypical children. We used a paradigm contrasting congruent and incongruent sentences, and analysed 
the EEG response using different methods to illustrate the heterogeneity of children’s brain responses. Despite 
the challenges associated with analysing individuals’ EEG data, we were able to reliably detect neural responses 
to lexico-semantic anomalies in 65% of individual children using MVPA. Out of these, only a subset (46% of 
these) also showed a typical N400 ERP at the central location, indicating substantial individual variability in 
the neural basis of lexical-semantic processing. For the purpose of assessing language comprehension in special 
populations, such as non-verbal autistic children, this paradigm yields medium sensitivity. In a clinical setting, 
we would recommend to use the information from multiple types of analyses. The different analyses that we 
present here explore the same process of lexico-semantic decisions with different assumptions about the informa-
tion recorded from the brain. By comparing multiple sources of information, we can achieve higher accuracy in 
the detection of semantic processing: in participants showing both decoding and a significant N400 effect, we 
have strong evidence for intact semantic processing, constituting an important step in designing a neural test 
of language comprehension.

Data availability
All raw EEG data is available at https​://osf.io/bv2dy​/.
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