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Abstract

With liquefied natural gas becoming increasingly prevalent as a flexible source of

energy, the design and optimization of industrial refrigeration cycles becomes even

more important. In this article, we propose an integrated surrogate modeling and

optimization framework to model and optimize the complex CryoMan Cascade refrig-

eration cycle. Dimensionality reduction techniques are used to reduce the large num-

ber of process decision variables which are subsequently supplied to an array of

Gaussian processes, modeling both the process objective as well as feasibility con-

straints. Through iterative resampling of the rigorous model, this data-driven surro-

gate is continually refined and subsequently optimized. This approach was not only

able to improve on the results of directly optimizing the process flow sheet but also

located the set of optimal operating conditions in only 2 h as opposed to the original

3 weeks, facilitating its use in the operational optimization and enhanced process

design of large-scale industrial chemical systems.
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1 | INTRODUCTION

Large scale production of liquefied natural gas (LNG) typically involves

the use of complex and energy-intensive cascade refrigeration cycles.

Each cascade configuration comprises of a precooling cycle and a liq-

uefaction cycle: the former cycle cools the natural gas stream to tem-

peratures usually below �20�C, whereas the latter cycle cools and

liquefies the natural gas stream down to its target temperature, near

�161�C. The current LNG industry is strongly dominated by the pro-

pane precooled mixed refrigerant (C3MR) cycle, licensed by Air Prod-

ucts & Chemicals Inc.,1 with over 70% of the LNG installed capacity

worldwide utilizing this process.2 The C3MR cycle uses propane as

refrigerant in the precooling cycle, and a mixed refrigerant in the liq-

uefaction cycle. Two other cascade cycles that are commercially well-

established in the LNG industry are Shell's dual mixed refrigerant

(DMR) cycle,3 which uses two mixed refrigerants, and the Con-

ocoPhillips Cascade cycle,4 which uses three pure component refriger-

ants: propane in the precooling cycle, and ethylene and methane in

the liquefaction cycle.

Specifically, the shaft work energy required for refrigerant com-

pression is by far the largest contributor to operating costs (up to

40%–50%) throughout the entire LNG plant.2 Reducing the shaft

work demand associated with a refrigeration cycle would thus likely

bring significant savings in energy as well as operating costs. As a
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result, many research publications have focused on applying stochas-

tic search-based optimization methods to reduce the overall shaft

work demand in these cascade cycles via first-principle rigorous

modeling. For instance, Alabdulkarem et al.5 optimized the C3MR

cycle using a genetic algorithm to achieve 9% savings in shaft work

compared to the base case simulation. Wang et al.6 also minimized

the shaft work demand of the C3MR cycle, but using the nonlinear

optimization algorithm embedded within HYSYS commercial software.

Hwang et al.7 optimized the DMR cycle to minimize shaft work

demand using a genetic algorithm and sequential quadratic program-

ming (SQP), yielding energy savings of 1.2% against an optimized

example provided in.8 Khan et al.9 also optimized the DMR cycle for

minimum shaft work demand, using a stochastic search algorithm

known as the Box method, to evaluate two different inlet conditions

(temperature and pressure) of the natural gas stream. Table 1 summa-

rizes previous works that have aimed to improve the energy efficiency

of the commercial cascade cycles.

While great effort has been made to improve existing commercial

cascade cycles, Almeida-Trasvina and Smith16 proposed a novel con-

figuration named the CryoMan Cascade cycle, developed to be com-

petitive against these commercial benchmarks. This CryoMan

Cascade cycle showed potential to achieve shaft work savings of over

13% compared to the C3MR cycle, and up to 5% compared to the

DMR cycle.16 This CryoMan Cascade cycle was developed by making

structural modifications in the liquefaction cycle, and adjusting the

composition of the mixed refrigerant to reduce the overall shaft work

demand. Despite the efforts of previous works to provide thorough

analyses and clear systematic methodologies for energy efficiency

improvements, optimization of these cascade cycles is still severely

restricted by several practical challenges.

The first challenge arises from the complexity of the rigorous

mathematical model. For example, a single cascade has 13 degrees of

freedom (e.g., refrigerant flow rates, refrigerant composition,

evaporating pressures) for both the precooling and liquefaction cycles,

and these operating variables interact with each other through highly

nonlinear expressions (e.g., thermodynamic equations of state for

gas–liquid equilibrium systems) within process simulators. This there-

fore implies a large number of nonlinear mathematical constraints for

the optimization problem. In addition, compared to many other opti-

mization problems in the process industry, optimizing a cascade cycle

is particularly difficult as its feasible input region is disjoint

(i.e., several discrete feasible subregions) due to a number of feasibility

constraints such as minimum temperature differences are imposed,

impeding the use of many gradient-based deterministic optimization

algorithms (e.g., trapped within a local feasible subregion thus only

finding a local optimum). As a result, stochastic search-based optimi-

zation algorithms are predominantly used in the previous studies.

Although previous studies have shown stochastic optimization

methods (e.g., genetic algorithms) to be effective to find relatively

good solutions, the use of these algorithms directly introduces the

second challenge, namely high computational time cost. As these algo-

rithms require substantial samplings and iterations over the entire

input space, the overall optimization procedure can become time con-

suming (e.g., taking from days to weeks) if the rigorous model consists

of a high dimensional input space and is difficult to converge within

each iteration (due to the complex mathematical structure). This

becomes even more challenging when decisions of process operation

must be updated over a short time period in a real plant due to the

variability of natural gas (feedstock) composition. A potential solution

to this challenge is the adoption of surrogate modeling and

optimization.

Throughout previous decades, surrogate models (also known as

meta-models or reduced order models) have been used to aid the

design and optimization of chemical engineering processes. By

replacing a computationally expensive rigorous model with a compu-

tationally tractable surrogate model, the optimization of chemical pro-

cesses can be performed more rapidly and more efficiently. Typical

surrogate models include polynomial functions,17–19 artificial neural

networks (ANNs),20,21 Gaussian processes (GPs; Kriging models),22–24

and radial basis functions25–27 . For example, Palagi et al.20 utilized

neural networks to optimize an Organic Rankine cycle over seven

design variables. Cabellaro and Grossman28 utilized GP-based surro-

gate models to replace individual unit operations, while also rec-

ommending a maximum number of design variables as 9 or 10.

Boukouvala and Ierapetritou29 applied GPs for the optimization of a

continuous pharmaceutical manufacturing case study over five input

variables, highlighting the need for investigation into global optimiza-

tion approaches with an increased number of decision variables (>9)

and constraints (>6). Another approach is deterministic global optimi-

zation (DGO),30–32 while ensuring high quality global solutions these

approaches have been known to run into 10–100 s of hours in the

case of neural network surrogate models thus are infeasible for opera-

tional optimization. DGO is known to be effective for problems with

<10 design variables, however, suffers with increasingly large dimen-

sion, inhibiting their use on large-scale process flow sheets. Outside

of chemical engineering Eriksson et al.33 propose performing a series

TABLE 1 Publications on energy efficiency improvements of
commercial liquefied natural gas (LNG) cascade cycles

Reference Cascade cycle
Shaft work demand
(MW�MTPA�1 LNG)

Alabdulkarem et al.5 C3MR 32.34

Mortazavi et al.10 C3MR 34.07

Wang et al.6 C3MR 48.17

Wang et al.11 C3MR 60.25

Fahmy et al.12 C3MR –

Wang et al.13 C3MR 45.37

DMR 39.67

Hwang et al.7 DMR 27.08

Khan et al.9 DMR 38.80

Vink and

Nagelvoort14
C3MR 33.42

DMR 34.25

Phillips Cascade 38.63

Fahmy et al.15 Phillips Cascade 37.56
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of local Bayesian optimization routines in an attempt to enable surro-

gate modeling for high-dimensional problems, motivating a local

approach to global optimization. With the adoption of surrogate

models, it has been shown that it is possible to implement global

deterministic optimization algorithms to identify a high-quality

solution.

Nonetheless, a key challenge in the surrogate modeling-based

chemical process optimization is the ability to accurately portray infor-

mation over an increasing number of design variables, for example,

process flow sheet scale (e.g., 29 input variables in this study) as

opposed to unit operation scale (e.g., less than 10 variables as previ-

ous study28 suggested). Due to the unknown disjoint feasible input

space and complexity of the rigorous model, sampling data over a high

dimensional space to generate a meaningful training dataset

(e.g., consisting of a large portion of feasible solutions) for surrogate

construction can become extremely time consuming. This means that

the primary challenge for surrogate modeling-based optimization will

switch from the selection of an efficient optimization algorithm to the

construction of a reliable surrogate model. Therefore, to enable a

responsive plant-wide optimization (i.e., capable of updating optimiza-

tion solution rapidly), how to construct an accurate surrogate model

and identify a high-quality solution within a short time window is of

critical importance for practical applications.

As a result, in this article, we propose a framework integrating

dimensionality reduction and surrogate optimization to effectively

optimize the CryoMan Cascade LNG refrigeration cycle. Specifically,

partial least squares (PLS) is used to reduce the input dimension in

tandem with an array of GPs in order to accurately capture the nonlin-

earities of the CryoMan Cascade LNG refrigeration cycle (e.g., both

the constraints and the objective function). This latent space-based

surrogate model, that is incrementally updated in areas of low objec-

tive value (promising solution subregions), enables access to gradient-

based optimization as well as improved computational time. Through

the use of this approach, we not only improve on the optimal solution

generated when directly optimizing the HYSYS flow sheet but most

importantly finish this within 2 h compared to a total previous time of

3 weeks. This advantage directly enables its transferable use for gen-

eral industrial operational optimization whereby an optimal solution

must be updated within a short time window.

The main procedures of this article are as follows: a large-scale

and computationally expensive model of the CryoMan Cascade refrig-

eration cycle is systematically decomposed into its fundamental out-

puts; then partial least squares is used to reduce the input dimension

to GP surrogate models providing an efficient and reduced

dimension representation of each process output; the subsequent sur-

rogate model was optimized and improved using an iterative data-

resampling regime; and eventually efficient and rapid optimization of

large-input, highly nonlinear refrigeration cycles is enabled with com-

putational time reduced by multiple orders of magnitude. Therefore,

Section 2 will introduce the CryoMan cascade refrigeration cycle and

provide a basis for the subsequent surrogate optimization to take

place. Section 3 will cover the construction of surrogate models,

detailing the incorporation of dimensionality reduction techniques.

Section 4 describes the specific optimization problem, and the subse-

quent transcription to surrogate model space. Finally, Section 5 pre-

sents the results of the surrogate optimization of the CryoMan

cascade cycle both with and without the use of resampling tech-

niques, both of which are thoroughly compared with the result of the

previous rigorous optimization scheme, demonstrating the efficiency

of the currently proposed methodology.

2 | CRYOMAN CASCADE LNG
REFRIGERATION CYCLE

2.1 | Introduction to the CryoMan Cascade cycle

Figure 1 shows the configuration of the CryoMan Cascade cycle. This

new cascade configuration is developed based on the CryoMan pro-

cess developed by Kim and Zheng at the University of Manchester,34

a single mixed refrigerant (SMR) cycle for LNG production at small

scale. The promising performance of the CryoMan SMR cycle, saving

8% in shaft work demand against the PRICO® cycle,35 motivated the

development of the CryoMan Cascade cycle. In terms of its configura-

tion, the precooling cycle in the CryoMan Cascade configuration uti-

lizes a “heavy” mixed refrigerant that comprises of ethane, propane

and n-butane, to cool down the natural gas stream and the refrigerant

stream from the liquefaction cycle. This heavy refrigerant provides

cooling, in a series of two multistream heat exchangers (MSHEs), at

two evaporating pressures (low pressure (LP) heavy refrigerant and

high pressure (HP) heavy refrigerant). The liquefaction cycle uses a

lighter range of hydrocarbons as refrigerant: methane, ethane and

propane, plus nitrogen. This “light” mixed refrigerant is partially con-

densed in the precooling cycle. A phase separator splits the refrigerant

into vapor and liquid streams; a portion of vapor is mixed with a por-

tion of the liquid stream to create LP light refrigerant, and the remain-

der of each phase is mixed together to create HP light refrigerant.

Thus, the resulting compositions of both LP light refrigerant and HP

light refrigerant are different from those obtained by phase separation

alone. Each refrigerant stream provides cooling at independent evapo-

rating pressures. There are a total of six stages for refrigerant com-

pression: three for compression of the heavy refrigerant, and three for

compression of the light refrigerant.

Almeida-Trasvina and Smith16 assessed the performance of the

CryoMan Cascade cycle, in terms of energy efficiency, against three

commercial benchmarks, the C3MR, DMR and ConocoPhillips Cas-

cade cycles. All four cascade cycles were optimized for minimum shaft

work demand. The performance of the CryoMan Cascade cycle

(25.97 MW�MTPA LNG�1) was equivalent to shaft work savings of

13.7% and 4.9% compared to the C3MR cycle (30.09 MW�MTPA

LNG�1) and the DMR cycle (27.32 MW�MTPA LNG�1), respectively.

The potential shaft work savings offered by the CryoMan Cascade

cycle would represent minor structural modifications in comparison to

the DMR cycle. These structural changes imply that the first MSHE in

the liquefaction cycle may require a more sophisticated internal

design, as it would now require the accommodation of two cold
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streams, each at a different pressure, to cool down the tube bundle of

hot streams. These complications with the internal design of the

MSHE mean that the CryoMan Cascade could be more attractive for

grassroot designs, as opposed to retrofit projects. The CryoMan Cas-

cade has not yet been applied industrially, but the potential economic

benefits associated to its performance could be of enough industrial

interest to develop this cascade configuration (saving up to billions of

pounds annually estimated based on the current energy cost price).

The optimization in Almeida-Trasvina and Smith16 was carried out

using a genetic algorithm and a nonlinear optimization algorithm (SQP);

the computational time required to perform the optimization was 17 h

on average. As the feasible input region is disjoint (i.e., multiple discrete

feasible subregions) due to the process constraints, sensitivity analysis

was performed prior to optimization in order to narrow down the solu-

tion space. Sensitivity analysis took 3 weeks due to the large number of

input variables (29 in this case). While the 1–2 s required for the multiple

recycle loops inherent in the cascade cycle to converge can be seen as

reasonably cheap, what causes the excessive optimization times men-

tioned here is the need for an evolutionary algorithm (EA) to locate a

good initial solution for SQP optimization (as shown later in Section 4.2,

3000 samples were generated randomly, none of them was feasible). As

evolutionary and other stochastic search optimization techniques require

many function evaluations, this in combination with the 1–2 s evaluation

time results in a large optimization time over 3 weeks.16 In industrial

practical application, however, updating optimal solution is often required

to complete within hours (e.g., 4 h specified by Shell) given the frequent

variation of natural gas composition.

2.2 | Introduction to the rigorous model

The full list of input and output variables in the CryoMan cascade

refrigeration cycle is presented in Table 2. As shown in Table 2, the

CryoMan cascade refrigeration cycle consists of 29 inputs and 13 out-

puts. The outputs concerned with the energy demand of the process,

that is, those concerning shaft work, sum to produce the objective of

the optimization problem. The remaining outputs such as the four

MSHE approach temperatures, four vapor fractions, and four com-

pression ratios, serve to enforce process constraints. The rigorous

model consists of four MSHEs, six compressors, two pumps, and two

flash units. Natural gas is assumed to enter at an ambient temperature

of 24.85�C and atmospheric pressure. It exits the process under atmo-

spheric pressure at �162.3�C as a liquid. The Peng–Robinson equa-

tion of state is used as the thermodynamic property model. The

model makes use of two separate recycle operations within HYSYS

which enable the mass and energy balance of recycle streams to con-

verge before any data regarding the process is returned. The full list

of the upper and lower bound of the input variables is presented in

Table 2. A more detailed introduction to this rigorous model can be

found in Section 3 in.16 The original HYSYS code for the CryoMan

cascade rigorous model can be shared upon request.

3 | METHODOLOGY

3.1 | Construction of GP-based surrogate models

The surrogate modeling procedure used takes advantage of the GP

framework for function approximation. GPs specify a probabilistic model,

with the method facilitating a major benefit over other surrogate model-

ing techniques such as ANNs through the evaluation of prediction uncer-

tainties. Although uncertainties are not included in the current work,

given that the data is generated by the rigorous model, this advantage

can be extremely useful if process data is directly compiled from a genu-

ine chemical plant in which significant measurement noise is embedded.

In the absence of measurement noise, another key aspect is that GPs,

with no assumed noise in measurements, provide interpolation through

data points, and are therefore more sample efficient that other tech-

niques such as ANNs. In other words, to construct an accurate GP, it

requires much less data compared to that required by an ANN. As gener-

ating data from a rigorous model could be also time consuming, particu-

larly if the feasible solution space is disjoint, this advantage allows a GP-

F IGURE 1 CryoMan Cascade cycle.
LNG, liquefied natural gas [Color figure
can be viewed at wileyonlinelibrary.com]
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based surrogate model to be constructed within a comparatively short

time period.36

A GP is defined as a collection of random variables, any finite

number of which have a joint Gaussian distribution, specified by a

mean function m(x) and covariance function k(x, x*).
37 This mean func-

tion is often defined as a constant 0 for computational simplicity as

well as functional flexibility through the specification of as little infor-

mation regarding the underlying function as possible. By conditioning

training data on this joint Gaussian distribution, a resulting function

approximation can be derived.

f x�ð Þ�GP 0,k x,x�ð Þð Þ ð1Þ

The use of a covariance function (or kernel) describes how the

variance of two points in input space is effected by the distance

between them. A common covariance function is the squared-

exponential function as follows37:

k x,x�ð Þ¼ σ2
Yd
i¼1

exp �θi xi�x�i
� �2� �

ð2Þ

where x ∈ ℝd and x� ∈ ℝd are two input vectors of design variables,

σ ∈ ℝ and θ ∈ ℝd are covariance function hyperparameters. The

covariance function shown in Equation (2) is used to produce a covari-

ance matrix of size n�m between two datasets X ∈ ℝd�n and

X� ∈ ℝd�m defined as K(X, X*), where n is the number of training

points and m is the number of prediction points (i.e., new points of

which the output needs to be predicted).

By conditioning the Gaussian prior distribution on the inputs and

selected outputs of the CryoMan cascade refrigeration cycle, a

TABLE 2 Inputs and outputs of the CryoMan cascade refrigeration cycle

Inputs

Heavy mixed refrigerant (HMR)
precooling cycle

HMR
bounds

Light mixed refrigerant (LMR)
liquefaction cycle

LMR
bounds Outputs

HMR flow rate (kg/s) [480, 600] LMR flow rate (kg/s) [300,

400]

HMR shaft work (1st stage)

HMR discharge pressure (bar) [10, 20] LMR discharge pressure (bar) [25, 50] HMR shaft work (2nd stage)

HMR flow rate split fraction (�) [0.3, 0.2] LMR HP evaporating pressure (bar) [2.5, 8] HMR shaft work (3rd stage)

HMR HP evaporating pressure (bar) [3, 8.5] LMR LP evaporating pressure (bar) [1.2, 3] HMR shaft work (pump)

HMR LP evaporating pressure (bar) [1.2, 3] NG stream precooling temp (1st

MSHE) (K)

[125,

155]

LMR shaft work (1st stage)

HMR 2nd stage compression ratio (�) [1, 3.5] LMR HP stream precooling temp (1st

MSHE) (K)

[125,

160]

LMR shaft work (2nd stage)

NG stream precooling temp (1st

MSHE) (K)

[250, 270] LMR LP stream precooling temp (1st

MSHE) (K)

[125,

155]

LMR shaft work (3rd stage)

HMR stream precooling temp (1st

MSHE) (K)

[250, 270] LMR LP stream precooling temp (2nd

MSHE) (K)

[105,

118]

LMR shaft work (pump)

LMR stream precooling temp (1st

MSHE) (K)

[250, 270] LMR LP stream outlet temp (1st

MSHE) (K)

[195,

228]

ΔTmin HMR cycle (1st MSHE)

NG stream precooling temp (2nd

MSHE) (K)

[215, 242] LMR 2nd stage compression ratio (�) [1, 3.5] ΔTmin HMR cycle (2nd MSHE)

HMR stream precooling temp (2nd

MSHE) (K)

[215, 242] LMR flash vapor split fraction (�) [0.6, 0.9] ΔTmin LMR cycle (1st MSHE)

LMR stream precooling temp (2nd

MSHE) (K)

[215, 242] LMR flash liquid split fraction (�) [0.4, 0.8] ΔTmin LMR cycle (2nd MSHE)

HMR composition (Ethane) (mol

fraction)

[0.15,

0.32]

LMR composition (Methane) (mole

fraction)

[0.3, 0.47] LMR vapor fraction inlet compressor

(1st stage)

HMR composition (Propane) (mol

fraction)

[0.38,

0.65]

LMR composition (Ethane) (mole

fraction)

[0.25, 0.5] LMR vapor fraction inlet compressor

(2nd stage)

LMR composition (Propane) (mole

fraction)

[0.1, 0.27] HMR vapor fraction inlet compressor

(1st stage)

HMR vapor fraction inlet compressor

(2nd stage)

LMR compression ratio (1st stage)

LMR compression ratio (2nd stage)

HMR compression ratio (1st stage)

HMR compression ratio (2nd stage)
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posterior distribution representing the underlying process model can

be derived. The resulting surrogate model representing each process

output has the form of a Gaussian distribution as follows37:

f� jX�,X,f�N K X�,Xð ÞK X,Xð Þ�1f,K X�,X�ð Þ�K X�,Xð ÞK X,Xð Þ�1K X,X�ð Þ
� �

ð3Þ

where K is the covariance matrix relating input data X and data to be

evaluated X*, f is the corresponding output vector of input data, and f*

is the vector of function evaluations taken from the posterior distribu-

tion. Equation (3) is derived through conditioning the prior GP distri-

bution (Equation 1) on a set of test data, resulting in the posterior

distribution shown.37 Observations of a GP derived from Equation (3)

result not in scalar values but instead in mean and variances that

describe probability distributions, in particular a Gaussian distribution,

over possible function values.

Initially, data sampled from the rigorous HYSYS model is used to

create and train a GP model to correlate the inputs and total shaft

work (raw data can be shared upon request). As constraints also need

to be enforced, GPs are used to model each individual constraint con-

sisting of four minimum MSHE approach temperatures, a vapor frac-

tion, and a compression ratio. A separate GP model must be created

for each specific output, objective or constraint, as GPs can most

commonly only predict single outputs. As a result, the current surro-

gate model in total consists of seven separate GPs, which use the

same inputs (i.e., 29 design variables) but each returns an approxima-

tion of their respective rigorous output. This combination of GPs

defines the surrogate model. The modeled outputs are listed below:

• Total shaft work (MW): objective function

• MSHE ΔTmin 1 (�C): process constraint

• MSHE ΔTmin 2 (�C): process constraint

• MSHE ΔTmin 3 (�C): process constraint

• MSHE ΔTmin 4 (�C): process constraint

• Refrigerant vapor fraction at inlet of single compressor: process

constraint

• Compression ratio of single compressor: process constraint

It is worth noticing that for the outputs concerning process con-

straints, the constraint violation is modeled as opposed to the process

output itself. A more detailed explanation of this implementation as

well as its advantage is presented in Section 3.4.

3.2 | Dimensionality reduction

While the output dimension of the surrogate model has been reduced

from 20 to 7 as described in Section 3.1, the input dimension remains

high. Therefore, to reduce the number of inputs to each GP, take

advantage of underlying relations between input variables and enable

more efficient modeling, PLS, a widely used dimensionality reduction

technique, is exploited in this work.

PLS is a machine learning method to reduce a large number of

input variables to a smaller dimensional latent representation, specifi-

cally via a linear combination. By incorporating information about the

respective outputs, the original input space can be reduced into a

latent space with minimal loss of information. In this study, PLS per-

forms dimensionality reduction through the projection of the input

data matrix X ∈ ℝn�29, where n is the number of data points, and out-

put matrix Y ∈ ℝn�1 (either the objective or a constraint) onto lower

dimensional latent structures. The latent structures are chosen to

maximize the covariance between each of the latent structures them-

selves, thus capturing the most information possible from this reduced

dimension representation.38 Mathematically, the general PLS transfor-

mation is as follows:

X¼TPT þE ð4Þ

Y¼UQT þF ð5Þ

where T ∈ ℝn�l and U ∈ ℝn�l representing the latent projection of

inputs X and outputs Y respectively to l dimensions as opposed to this

original 29 in the case of the inputs. The output dimension in this case

is not reduced as it is already at a minimum value of 1 pertaining to

the output of each GP. P ∈ ℝd�l and Q ∈ ℝp�l represent loading

matrices that perform the projection onto the latent input and output

space respectively. E and F are the error terms.

To effectively reduce the input dimension meanwhile minimizing

the loss information, in this study, the latent dimension l is chosen

such that 95% of the variance between the inputs and the outputs is

explained by the latent variables. This allows for the majority of infor-

mation from the input space to be maintained while minimizing the

amount of latent variables projected to. In this work, PLS only reduces

the dimension of input variables X, as the output variable Y of each

GP is only one dimensional, thus cannot be further reduced. An

advantage of the PLS method over other methods of unsupervised

dimensionality reduction such as principal component analysis (PCA)

is that PLS allows for the incorporation and consideration of the out-

put variables. Whereas other unsupervised methods such as PCA pro-

ject the input variables onto a latent space with no consideration onto

their effect of the resulting outputs.

3.3 | Kriging partial least squares

Now attention is turned to combining the two previously mentioned

modeling techniques of GPs and PLS. Kriging partial least squares

(KPLS) is a GP architecture, introduced by Bouhlel et al.39 Motivation

for the method stems from the selection of hyperparameters θ in

Equation (2). As the length of the vector θ increases with the number

of input variables, the Gaussian process hyperparameter selection

problem becomes increasingly more complex.

Through the integration of PLS within the covariance function

(Equation 2), the two respective inputs x and x* are projected onto a

lower dimension latent space as shown in Equation (6). Subsequently,
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there exists fewer hyperparameters and this reduced problem

becomes considerably easier. This not only facilitates more rapid and

efficient training of high dimensional GPs, but also enables a better

choice of hyperparameters through a simplified optimization

landscape.

k x,x�ð Þ¼ σ2
Yh
l¼1

Yd
i¼1

exp �θl w lð Þ
�i xi�w lð Þ

�i x
�
i

� �2� �
ð6Þ

Equation (6) shows the PLS extension of the squared exponential

covariance function previously shown in Equation (2), where l is the

dimension of the latent space and w(l) are vectors derived from PLS

describing the lth principal directions in X space that maximize the

covariance between X and y. h is the total dimension of the latent

space (i.e., total number of principal components). For an extended

discussion into KPLS interested readers can see.39 In the context of

updating each GP in the presence of new data, PLS weights are first

calculated and subsequently optimal hyperparameters are found.

The final surrogate model structure is specified by 7, separate,

reduced dimension GPs. Each representing either the total shaft work

objective function, or a process constraint violation (Figure 2). This

completes the construction of the current surrogate model. Specifi-

cally, implementation of the KPLS was carried out in Python 3.7.4

using the SMT Toolbox package40 on an Intel i7 8th Gen processor.

3.4 | Optimization of the surrogate model

Once constructed, attention is now turned to the subsequent optimi-

zation of the CryoMan cascade cycle by exploiting the surrogate

model. The objective function to be minimized is the total shaft work

of the compressors within the process. A number of important

constraints must be enforced to ensure the resulting set of operating

conditions are not only physically realizable but also safe within an

industrial context. The optimization problem is described as follows:

minϕ
XN
i¼1

Wi ϕð Þ
 !

=mLNG ð7Þ

s:t: ΔTi
min ϕð Þ≥2oC ΔTi

min ϕð Þ ∈ MSHEΔTmin ð8Þ

Prat ϕð Þ≤3:5 ð9Þ

Xm
j¼1

xj ϕð Þ¼1 xj ϕð Þ ∈ XMR ð10Þ

VFref ϕð Þ¼1:00 ð11Þ

lb≤ϕ≤ub ð12Þ

The specific shaft work shown in Equation (7) is defined as the

sum of the individual shaft works Wi(ϕ) from each of process com-

pressors divided by the mass flow rate of LNG mLNG. This is the objec-

tive function to be minimized. The 29 inputs to the rigorous model,

shown previously in Table 2, are represented by ϕ with the set of

inputs having corresponding upper and lower bounds ub and lb,

respectively (Equation 12). Constraints include: minimum approach

temperatures for each of the MSHEs ΔTmin
i(ϕ) respectively where

MSHEΔTmin is the set of all approach temperatures within the process

(Equation 8) ensuring feasible heat transfer between refrigerant and

natural gas streams, maximum compression ratios Prat(ϕ) (Equation 9)

to discourage mechanical damage to compressors, valid molar compo-

sitions represented by xj(ϕ) (Equation 10), and no wetness within

F IGURE 2 Surrogate model structure
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compressors to reduce mechanical damage to turbine blades which is

enforced by constraining vapor fractions at the inlet of compressors

VFref(ϕ) to one (Equation 11).

The problem is transcribed to surrogate model space using a

weighted penalty approach as follows:

minϕ GPSW ϕð Þþwcon

X6
i¼1

max GPi ϕð Þ,0ð Þ ð13Þ

s:t: lb≤ϕ≤ub ð14Þ

where GPSW is the GP modeling the total specific shaft work. The use

of a weighted penalty approach enables stochastic search optimiza-

tion to be used to optimize the highly nonlinear process objective and

constraints as opposed to traditional deterministic methods that solve

the KKT matrix and may result in suboptimal local solutions. Each con-

straint GP returns a positive value if the respective constraint is vio-

lated, increasing linearly as the violation increases. Taking an MSHE

approach temperature, for example, if the return temperature itself is

0.5�C, the GP will instead return a value of 1.5 representing the con-

straint violation. However, negative values representing feasibility can

still be returned from the GP, that is, with an approach temperature

>2�C. The magnitude of this negative value has no practical meaning

as no feasible solution can be more feasible than another feasible

solution. Thus, the max operator is used to limit values to either posi-

tive real numbers or 0.

By modeling the constraints in this way, the sharp transition in

the GP landscape that results from modeling flat area of 0 violation to

a linear penalty is avoided by instead modeling the complete positive

and negative constraint landscape, and constricting penalties to posi-

tive values outside of the GP using the max operator. wcon specifies

the magnitude of the constraint penalty which is able to be changed

throughout the optimization scheme as described below in

Section 3.5.

To optimize the surrogate model, an evolutionary algorithm is

taken advantage of, enabling search throughout the high dimen-

sional disjoint search space. Through the creation of a population

of solutions over which operations such as mutations, crossover

and selection occur, the bounded optimization problem described

in Equations (13) and (14) can be solved. While evolutionary algo-

rithms have been proven very successful on highly nonlinear prob-

lems, their convergence to a final solution can also be relatively

passive. Therefore, following the evolutionary algorithm, the best

solution within the population was used as an initial guess for a tra-

ditional Newton-based BFGS solver in order to gain a final set of

decision variables. An advantage of GPs over neural networks is

that when applying deterministic optimization solvers, it is compu-

tationally straightforward to calculate the gradient of a GP, particu-

larly when the kernel function is squared exponential which is itself

infinitely differentiable; whereas calculating the gradient of a neu-

ral network requires more computation. This was implemented in

Python 3.7.4 using a custom evolutionary algorithm solver* and the

package SciPy for the BFGS solver.

As previously mentioned, the variance of a prediction was not

used within each GP prediction. This is due to the fact that while PLS

aids the training of GPs, the number of input variables to each GP

remains the same. With a relatively large number of optimization vari-

ables the variance term in a GP prediction (i.e., output) can dominate

making its incorporation into the problem increasingly challenging.

This motivates the use of a considered data resampling regime follow-

ing the optimization of the surrogate model in order to maximize use-

ful information obtained after each optimization.

3.5 | Iterative data resampling

In order to improve the accuracy of the surrogate model, while also

converging to an optimal solution for Equation (13), an iterative

resampling regime is taken advantage of in order to guide the surro-

gate model optimization toward promising regions.

The main aspect of a surrogate model resampling regime is to

iteratively solve the optimization problem described by Equations (13)

and (14), then evaluate this solution or some nearby solutions within

the rigorous Aspen HYSYS model. This new dataset is then used to

retrain the GP surrogate models based on the new information. The

optimization is then performed again on the resulting surrogate

model, and the entire procedure is iteratively repeated. Through this

approach, information is gained regarding the underlying rigorous

model in promising regions around plausibly optimal solutions (rather

than sampling over 5.3 � 108 points to explore the entire high dimen-

sional solution space). The resampling regime used in this study con-

sists of three main features:

• Annealing the penalty parameter wcon from a low to high value.

Initially the GP surrogate models are not completely accurate over

the entire optimization landscape as both the objective function

and the constraints have minimal information, resulting in solutions

that are deemed feasible with respect to the surrogate constraints,

however, when evaluated are in fact infeasible. By initializing wcon

small, we allow the resampling regime to explore promising areas

of low objective value and gain information about constraint viola-

tions. Subsequently, as this weight is increased throughout the

overall resampling regime, the optimization scheme transitions

from an exploratory nature to the more rigid enforcement of con-

straint violations in order to gain a valid final solution.

• Local resampling. When a promising solution is located, additional

samples are generated from the Aspen HYSYS model around this

solution. This local region is defined as ±5% of the overall bounds

centered around this promising solution. Only 50 data points are

sampled using an efficient, space-filling, sampling regime within

this local region. To further investigate this region, GPs are con-

structed using only this resampled data, and optimized within these

constricted bounds. The secondary solution generated from this

subproblem is used to update the original dataset along with a pro-

portion of the 50 resampled data points selected at random. This

allows for this promising region to be modeled more accurately in
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subsequent iterations. If a false positive situation occurs and there

is no feasible solution or rather no feasible solution of worth in this

region then the scheme simply returns to optimizing over the com-

plete original bounds.

• Refining solution. If the subsequent solution after local resampling

and optimization is feasible and still has a comparatively low objec-

tive value, a third phase begins. Similar to the local resampling,

another 50 data points are generated from the Aspen HYSYS

model, this time within more constricted bounds of ±2.5% of the

overall bounds centered around the most recent data point. Con-

structing a further refined GP and performing optimization within

further constricted bounds allows for a final solution to be

obtained, as an accurate representation of the nonlinearities of the

rigorous model are able to be captured.

It is vital to emphasize that the introduction of this three-phase

resampling approach is attributed to the high dimensional, nonlinear

and disjoint solution space caused by a series of hard feasibility con-

straints, thus traditional resampling frameworks mainly applied to low

dimensional continuous optimization problems are not applicable to

the current study. A flowchart detailing the overall surrogate optimi-

zation scheme is detailed in Figure 3.

In this work, data resampling was implemented in Python 3.7.4

which was linked to Aspen HYSYS using the COM interface allowing

for interaction between the rigorous model and the optimization

implementation within Python.

4 | RESULTS AND DISCUSSION

To demonstrate the efficiency of the proposed dimensionality reduc-

tion and surrogate modeling framework, two case studies are pro-

vided to optimize the CryoMan Cascade refrigeration cycle. The first

case study will test the accuracy of the surrogate model with the use

of prior domain knowledge in the form of constricted bounds on the

input variables to the process. These constricted bounds are gener-

ated at a significant time cost through extensive sensitivity analysis.

Due to this time-consuming sensitivity analysis step, the second

case study will test the surrogate model without the incorporation of

prior domain knowledge, that is, over the complete range of possible

F IGURE 3 Flowchart describing the overall surrogate model resampling optimization scheme. Abbreviations: LHS, Latin hypercube sample;
BFGS, Broyden–Fletcher–Goldfarb–Shanno
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operating conditions. Subsequently, the resampling regime described

in Section 3.5 is incorporated into the optimization scheme in order to

gain an accurate optimal solution.

4.1 | Case study 1—Surrogate modeling with prior
domain knowledge

Within the first case study the structure of the surrogate model

was constructed using data points sampled within the narrow sea-

rch space identified from the prior domain knowledge (i.e., our pre-

vious sensitivity analysis16). Extensive sensitivity analyses were

carried out on the degrees of freedom to identify a region of the

solution space in which the CryoMan Cascade cycle performs well

in terms of energy efficiency. Both the precooling and liquefaction

cycle were analyzed. Shaft work demand and feasibility in the

MSHE (ΔT ≥ ΔTmin) were used as indicators to help define the solu-

tion space to be searched with the genetic algorithm. These sensi-

tivity analyses include parametric studies in which a single degree

of freedom is varied while the rest remained the same. Studies on

refrigerant composition were also performed: the mole fraction of

each component was allowed to changed, while the relative contri-

bution of the remaining components is kept fixed. For a given initial

composition, Equation (15) calculates the relative contribution ϕj of

each component xj; Equation (16) calculates the mole fraction of

components xj as component xi is varied. Interactions between

degrees of freedom were also accounted for by simultaneously

varying two degrees of freedom, for example, refrigerant composi-

tion and refrigerant condensing pressure.

ϕj ¼
xinitialj

1�xinitiali

� 	 xi,xj ∈ XMR ð15Þ

xcalcj ¼ϕj� 1�xvariedi

� 	 ð16Þ

As a result, once the narrow solution space is found, only 350 fea-

sible data points (generated at considerable computational cost

approximately 40 min as most points sampled are still infeasible

within this region) and 500 infeasible data points distributed through-

out this 29-dimensional subspace are used to construct the surrogate

model. No resampling regime is used as prior knowledge has been

incorporated for model construction. The model is directly used to

optimize the process. The evolutionary algorithm employed for

surrogate model optimization used tournament selection with a

tournament size of 2 to combat elitism within the population and

maintain global representation. A single crossover was used to gener-

ate new generations. The mutation rate was set as 0.05 and the prob-

ability of an individual surviving to the next generation was set as

0.95. The number of generations was set as 600 after a number of

test runs assessing convergence. The optimal solution generated

through the surrogate model was then evaluated within the rigorous

Aspen HYSYS simulation and the accuracy of the outputs compared.

The results are as follows with Table 3, demonstrating the optimal

output as predicted from the surrogate model when compared to the

verification from the rigorous Aspen HYSYS model.

With the rigorous optimization conducted in our previous work,

directly optimizing the Aspen HYSYS model returned a valid solution

with a respective shaft work of 144.7 MW.16 In spite of the slightly

lower (i.e., 1.8%) total energy cost compared to that identified by the

surrogate model, this rigorous solution was obtained in a time of

approximately 17 h as opposed to the surrogate model time of 1 h

(40 min for data sampling and 10 min for surrogate model construc-

tion and optimization) conducted in this study. Due to the frequent

feedstock variation, updating the process operating conditions must

be completed within a short time frame (e.g., 4 h in industrial plants).

As a result, the computational cost (i.e., 17 h) required for rigorous

model optimization is not practical. Using the surrogate model-based

approach as presented in this work, on the other hand, is much more

promising.

From Table 3, it can be seen that the surrogate solution obtains a

solution with shaft work similar to that of the rigorous optimization,

albeit slightly higher. The optimal solution identified in this model suc-

cessfully satisfied all the constraints with the exception of mis-

predicting the vapor fraction on entry to the third compressor (VF3).

This constraint can be considered important with respect to the

mechanical integrity of compressors. Any liquid on entry will cause

mechanical damage contributing to possibly catastrophic and unsafe

scenarios as well as increased long-term maintenance costs. All other

constraints after rigorous validation remain feasible. Most importantly

of these are the highly nonlinear temperature differences. Any posi-

tive real value can represent feasible heat transfer; however, a mini-

mum of 2�C is enforced to ensure economic viability with respect to

the size of the MSHEs. It is possible for HYSYS to return a negative

value for approach temperature which would represent a physical

impossibility.

From Table 3, it is concluded that not only is the solution gained

from the surrogate model physically realizable but also feasible with

respect to the minimum approach temperature. The results show that

TABLE 3 Results of the Kriging
partial least squares surrogate model
superstructure without resampling

SWtotal VF3 P3
rat ΔTmin 1 ΔTmin 2 ΔTmin 3 ΔTmin 4

Unit (MW) (�) (�)
(K)

Constraint NA =1 ≤3.5 ≥2

Surrogate model prediction 146.3 0.994 3.01 2.60 3.99 2.52 2.82

Aspen HYSYS output 147.4 0.983 3.05 2.73 2.92 2.10 2.23

Notes: The optimal solution predicted by this surrogate model is validated against the rigorous model. VF

stands for vapor fraction, and Prat stands for compression ratio.
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GPs can be used to accurately represent the total shaft work as well

as accurately represent highly nonlinear constraints for the purposes

of optimization. To ensure reliability and safety within an industrial

setting, small errors in the prediction such as that which occur with

the vapor fraction in this case study, must be avoided. It can be

hypothesized that the introduction of resampling may reduce these

small errors, specifically around promising regions.

However, despite the promising result, the current surrogate

model is built upon data carefully sampled from a narrow range deter-

mined using the prior domain knowledge. As explained before,

obtaining this domain knowledge is extremely time consuming

(i.e., 3 weeks for the comprehensive sensitivity analysis). As a result,

when considering the prior domain knowledge integrated within this

solution in the form of the refined data sampling and optimization

bounds, this approach can be seen as infeasible when considering the

overall timeframe to gain the solution (i.e., 3 weeks for sensitivity

analysis and 1 h for surrogate modeling and optimization) if such prior

knowledge does not exist. Therefore, to extend the applicability of

the current surrogate modeling strategy and to gain a solution not

only comparable with the original rigorous optimization but also with-

out the necessity of prior domain knowledge (i.e., over the complete

initial sampling and optimization bounds), a resampling regime is

essential to enable accurate operational optimization of large-scale

LNG refrigeration cycles. Nevertheless, this initial case study has con-

firmed that the CryoMan cascade cycle can be accurately modeled by

a set of reduced dimension GPs.

4.2 | Case study 2—Surrogate modeling and data
resampling

The second case study will now test the model accuracy and optimiza-

tion scheme without the incorporation of prior domain knowledge,

that is, without reduced optimization bounds as well as without the

initially selected dataset. Firstly, only 3000 data points were sparsely

collected from the broad 29-dimensional solution space (approxi-

mately 1.3 points sampled per dimension) using a Latin hypercube

sample, taking approximately 1 h. The initial number of points was

chosen due to the aforementioned time constraint of 4 h relating to

operational optimization, allowing for an optimal solution to be

located within the remaining hours. This is then reduced to 100 data

points based on minimal constraint violation. From this initial sam-

pling, we noticed that none of the original 3000 data points were fea-

sible in the context of the optimization problem, illustrating the need

for a resampling regime without prior information and that the under-

lying feasible solution space is not continuous. The surrogate model

was constructed using the 100 infeasible data points and was subse-

quently exploited to predict the initial optimal operation condition.

The resampling optimization scheme shown in Figure 3 was then

used to generate optimal candidates. If a solution gained is deemed

promising with respect to the constraint violation, that is, does not

violate any constraints or lies near the boundary of a constraint, then

it is further investigated through additional sampling of the rigorous

model in this region. Initially, new bounds of 5% of the original bounds

are used for resampling, centered around the previously generated

promising solution. However, if after another iteration of optimization,

this resampling the solution remains promising, the bounds are again

lowered to 2.5% and sampling is performed. This layered approach

allows for promising regions, particularly around the boundary of con-

straints, to be modeled and explored to sufficient accuracy. In total,

43 resampling and optimization iterations were performed consisting

of either just the addition of a single data point, a sampled set of

refined data points, or a sampled set of further refined data points

(decided by the resampling framework as shown in Figure 3). The total

resampling time for the scheme was 37 min until the surrogate model

identified a better solution compared to the previous rigorous optimal

result.16 When considering the time to generate the initial sample of

an hour, the total time for the entire surrogate optimization without

prior domain knowledge was 97 min.

As previously mentioned, an advantage of GPs over other

methods of surrogate modeling is that uncertainty can be obtained

from a prediction. However, in this situation due to the large number

of design variables, the uncertainty term was found to dominate the

objective function as the optimization is forced to explore the entire

search space containing large areas of uncertainty, therefore slowing

down convergence as significantly more resampling iterations would

be needed to converge on an optimal solution. Therefore, only the

mean value of each of the GP predictions was used. The initial aver-

age prediction error of the surrogate model across the complete sea-

rch space was calculated as 4.3%; however, it should be noted that

this technique only needs to improve the accuracy of the objective in

areas of interest, identified via optimization and thus a global predic-

tion accuracy is of less importance than the result of the final solution.

Finally, the results for this optimization scheme are as follows.

From Table 4, it is concluded that with the use of the surrogate

optimization regime a slightly better optimal solution was able to be

found compared the rigorous optimization approach (i.e., saving 0.2%

energy cost). When comparing Table 3 and Table 4, within the first

TABLE 4 Results of the Kriging
partial least squares surrogate model
superstructure with resampling

SWtotal VF3 P3
rat ΔTmin 1 ΔTmin 2 ΔTmin 3 ΔTmin 4

Unit (MW) (�) (�)
(K)

Constraint (�) =1 ≤3.5 ≥2

Surrogate model prediction 144.81 0.995 3.52 2.06 2.00 2.05 2.11

Aspen HYSYS output 144.37 0.995 3.50 2.01 2.00 2.02 2.04

Notes: The optimal solution predicted by this surrogate model is validated against the rigorous model. VF

stands for vapor fraction, and Prat stands for compression ratio.
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case-study the model was unable to find a solution wherein all con-

straints are active. This can be attributed to the lack of resampling,

resulting in slightly inaccurate predictions on the boundary of the pro-

cess constraints inhibiting the optimization algorithm from finding a

solution with active constraints. However, in the second case-study

with the inclusion of resampling it can be seen that the solution does

involve a number of active constraints. Through the annealing of the

constraint penalty parameter ωcon, the algorithm located a number of

solutions on the boundary of, or near a constraint. As the representa-

tion of these constraint functions iteratively improved with more

datapoints, the constraints were able to be modeled more accurately

and a solution on the boundary was located.

Most importantly, the resampling framework identified the final

optimal solution within only 36 min. When considering the time taken

to generate the training data points, the overall surrogate modeling

and optimization time from start to finish was 97 min, significantly

shorter than that spent for rigorous optimization (i.e., over 3 weeks

including sensitivity analysis to reduce search space and 17 h for sto-

chastic optimization). This directly suggests that the current surrogate

modeling and resampling framework can enable an efficient opera-

tional optimization and online planning for the CryoMan cascade

refrigeration cycle when its operating conditions are required to

update within a short time frame.

As shown in Table 4, it can be seen that the prediction error of

the outputs is much less than the first case study, owing to an

increased amount of data in promising regions, generated by the

resampling regime. The objective, and all constraints are able to be

modeled accurately, allowing for a solution to be found on the bound-

ary of each constraint where an optimal solution would traditionally

be expected to be found. When comparing the first and the second

case study, it can be seen that the introduction of resampling enables

more accurate predictions with respect to both the shaft work as well

as the constraints allowing for improved optimization results. The

resulting shaft work value improves on the shaft work value without

TABLE 5 Optimized design variables
of case study 1 and case study 2

Design variable Unit Case study 1 Case study 2

HMR flowrate (kg/s) 550 600

HMR discharge pressure (bar) 14.5 12.9

HMR flow rate split fraction (–) 0.659 0.645

HMR HP evaporating pressure (bar) 3.77 4.36

HMR LP evaporating pressure (bar) 1.21 1.48

HMR 2nd stage compression ratio (–) 1.79 2.18

NG stream precooling temp (1st MSHE) (K) 261 262

HMR stream precooling temp (1st MSHE) (K) 260 263

LMR stream precooling temp (1st MSHE) (K) 262 262

NG stream precooling temp (2nd MSHE) (K) 230 233

HMR stream precooling temp (2nd MSHE) (K) 233 232

LMR stream precooling temp (2nd MSHE) (K) 234 231

HMR composition (ethane) (mole fraction) 0.152 0.171

HMR composition (Propane) (mole fraction) 0.510 0.536

LMR flow rate (kg/s) 388 379

LMR discharge pressure (bar) 27.9 26.1

LMR HP evaporating pressure (bar) 2.71 2.96

LMR LP evaporating pressure (bar) 1.59 1.52

NG stream precooling temp (1st MSHE) (K) 150 148

LMR HP stream precooling temp (1st MSHE) (K) 154 156

LMR LP stream precooling temp (1st MSHE) (K) 147 151

LMR LP stream precooling temp (2nd MSHE) (K) 110 109

LMR LP stream outlet temperature (1st MSHE) (K) 226 221

LMR 2nd stage compression ratio (–) 3.47 3.50

LMR flash vapor split fraction (–) 0.833 0.813

LMR flash liquid split fraction (–) 0.482 0.514

LMR composition (nitrogen) (mole fraction) 0.0620 0.0590

LMR composition (methane) (mole fraction) 0.367 0.356

LMR composition (ethane) (mole fraction) 0.346 0.344

Abbreviations: HMR, heavy mixed refrigerant; HP, high pressure; LMR, light mixed refrigerant; LP, low

pressure; MSHE, multistream heat exchanger; NG, natural gas.
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resampling by 2.09%, saving a significant amount of energy. The inclu-

sion of this framework can be attributed to this reduced shaft-work

value, as most commonly optimal solutions are observed on the

boundary of constraints (i.e., constraints are active). In producing a

solution on the boundary of constraints we can be reasonably confi-

dent that this framework has located an improved optimal solution

through a better representation of these constraint functions as

opposed to this happening per-chance. However, with the introduc-

tion of resampling comes associated drawbacks, namely the increased

computational cost of generating additional samples. There is clearly a

tradeoff that must be balanced, too many additional samples will make

the resampling regime inefficient and only undermines the process of

surrogate modeling. While the lack of resampling completely may

result in infeasible operating conditions or a suboptimal solution.

In an industrial setting, if prior knowledge is available, for exam-

ple, in an existing well-established LNG refrigeration process, then

optimizing a surrogate model itself will be the better approach due to

increased time savings. However, if the process is still under investiga-

tion or many process alternatives are being considered at the design

stage, then the integration of resampling and surrogate optimization

can significantly decrease the time for process optimization without

the need of prior knowledge. This will accelerate the procedure to

evaluate and develop novel configurations which must be optimized

to ensure a fair comparison. Finally, the optimal operating conditions

identified in case study 1 and case study 2 are summarized in Table 5.

5 | CONCLUSIONS

The optimization of the energy demand for large-scale refrigeration

cycles is an important problem, particularly when considering the

design, online planning, and operational optimization of promising

configurations such as that of the CryoMan cascade refrigeration

cycle. Current rigorous model-based optimization schemes have run-

times on the order of weeks for a single refrigeration cycle, slowing

down development times and preventing the use of operational opti-

mization which must take place every few hours. This article combines

the following techniques within a surrogate modeling framework in

order to reduce the optimization time from 3 weeks to 2 h while also

improving on the solution gained when optimizing the rigorous model:

• GPs to model process objectives and constraints;

• PLS to reduce the input dimension to each GP;

• evolutionary algorithm to optimize nonlinear, computationally eco-

nomic surrogate model; and

• an iterative data resampling regime to improve the accuracy of sur-

rogate model and guide subsequent optimization.

Based on significant improvements in process optimization time,

operational optimization and improved rapid assessment of process

alternatives is enabled for large-scale LNG production processes.

Therefore, significant energy savings can be made not only when

compared to existing LNG systems but also when compared to the

current optimization techniques used to evaluate novel refrigeration

cycles. Assessing the accuracy of surrogate models, built upon

datapoints sampled in specific regions is an aspect of the work we

wish to note. Due to this behavior induced by our specific methodol-

ogy, the surrogate model is indeed accurate in optimal regions of sea-

rch space. However, achieving global surrogate model accuracy is not

the goal in this methodology and creating a perfect global approxima-

tion may bring about original issues that we wish to address such as

computational expense and extreme nonlinearity. The optimization of

processes implemented within process simulators is a considered task,

to ensure success many moving parts were combined in this work. By

starting with a difficult case-study, we encountered many issues that

were incrementally addressed while performing this work; however,

there is no standard procedure for large-scale surrogate optimization

as of yet. We hope that by presenting the aspects we deemed most

useful in this work, such as the use of dimensionality reduction, more

attention will be paid to the use of surrogate optimization for larger,

more complex systems and concepts which find success across a

broad number of case studies will emerge. While success in this

domain does rely on the overall iterative approach taken, it also

relies on the choice of approximating model itself. With the rapid

growth of machine learning particularly in the context of chemical

engineering, there is significant scope for new structures such as

graph neural networks, Bayesian neural networks and sparse GPs

to name a few. Of particular relevance will be the performance of

these new surrogate models over a large number of decision vari-

ables. The inclusion of hybrid, or physics informed data-driven

models is also an interesting direction to further improve the accu-

racy of the surrogate model. This also raises a number of interesting

questions regarding how to maintain the computational benefits of

a surrogate model while also including a computationally cheap and

tractable source of prior physical knowledge. A possible route for

future work may also involve the investigation of real-time optimi-

zation of large-scale LNG plants, as well as how specific approaches

into the optimization of the subproblem effects convergence. The

methodology presented here is also transferable to generic large-

scale (e.g., high dimensional) physically constrained processes.

Investigating the problem under the framework of DGO may also

be interesting, particularly as the large number of input variables

provides a barrier to existing approaches.

ENDNOTE

* Found at https://github.com/tomrsavage/evolutionaryalgorithm
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