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ABSTRACT 

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are 

regarded as viable candidates for future high-performance optoelectronic and electronic 

devices due to their chemical stability, low dimensionality, direct bandgap and favourable 

electronic mobilities. Their direct bandgap facilitates strong light coupling, yielding 

photoluminescence (PL). Their quantum confined nature produces tightly bound excitons 

that exhibit intriguing many-body phenomena. 2D excitons may be transferred to other 

emissive materials in a heterostructure system. This has applications in e.g., photon 

harvesting with luminescent solar concentrators (LSCs). Newly prepared monolayers are 

however susceptible to chalcogen atom vacancies, which quench bright excitons and trap 

mobile charges, amounting to material with poor PL yields and low mobilities, which is 

of little practical use. Post-fabrication defect passivation schemes offer a means to recover 

and enhance optical and electronic properties of newly fabricated monolayers. This thesis 

presents a novel surface treatment based on oleic acid (OA) ligands, which unlike 

previously reported schemes, is applicable to both sulphide and selenide TMDs. As 

separate studies, we investigate the effects of OA on monolayer tungsten disulphide 

(WS2) and molybdenum diselenide (MoSe2). Steady state and time resolved PL (TRPL) 

microscopy uncover the photophysics of PL enhancement by OA treatment, and provides 

insights into the surface passivation mechanism. Electronic measurements of 2D TMD 

field effect transistors support the conclusions drawn from optical measurements. The 

following study reports exciton transfer from a 2D TMD absorber to a quantum dot (QD) 

emitter in a 2D-QD heterostructure. WS2 is harnessed as an optical antenna, from which 

excitons are funnelled to near infrared (NIR) lead sulphide-cadmium sulphide QDs. This 

describes the opposite process to what has been reported for similar hybrid systems, 

where 2D TMDs quench excitons. Steady state PL techniques confirm excitation energy 

transfer (ET), and the ET mechanism. TRPL studies reveal ET dynamics and confirm ET 

efficiency. Combining steady state PL and TRPL elucidates the ET pathway and 

competing loss channels. Finally, the concept of an LSC based on 2D-QD heterostructure 

luminophores is developed with the aid of Monte Carlo light transport simulations. Using 

an idealised luminophore model, Heterostructure LSC performance is compared to other 

LSCs based on typical luminophore materials namely, Lumogen Red 305 dye and NIR 

QDs.  
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1 Introduction 

The isolation of single layer graphene from bulk graphite via `scotch tape’ exfoliation, 

and subsequent characterisation has ushered in a new era of research into atomically thin 

layered nanomaterials, otherwise referred to as 2D materials.1 Over recent years, the area 

of 2D materials has rapidly developed into one of the most active fields in condensed 

matter physics, chemistry, electronics and materials science.2 The reasons for the field’s 

rapid ascension lie in the remarkable mechanical, optical and electronic properties, as 

well as chemical stability displayed by a number of these materials. In particular, their 

strong light coupling yields a wealth of interesting fundamental physical processes. From 

a device perspective, this highly efficient light-matter interaction compounded with low 

dimensionality firmly places 2D materials as potential candidates for applications in 

future optoelectronic technologies.2–5  

 Graphene, the most prolific of this class of materials, is known to have 

extraordinary electronic transport properties and wide-band absorption of 

electromagnetic radiation on account of its linear `zero gap’ band structure. Graphene’s 

lack of a band gap however means that it can neither be switched off or re-emit absorbed 

light (i.e., photoluminesce). The application of graphene to optoelectronic and electronic 

devices is thus restricted where semiconductors are essential.3,5   

 Transition metal dichalcogenides (TMDs) are an alternative class of layered 

materials that can be processed into 2D monolayers in the same manner as graphene. A 

number of TMDs are semiconducting, transitioning from indirect bandgap to direct 

bandgap semiconductors in the monolayer limit. Consequently, these monolayer TMDs 

possess photoluminescence (PL) with strong wide-band absorption from the visible to 
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near infrared (NIR) spectral region.3,5,6 These properties compounded with their 

potentially high charge carrier mobilities7 are essential for high performance electronics 

and optoelectronic applications, which include: light emission; light detection; light 

harvesting; photovoltaics (PV) and; single photon emission and detection for quantum 

information processing.3,5,8–12  

 Realising the full potential of TMDs for a number of optoelectronic technologies 

requires monolayers of high optical quality as given by bright, uniform, efficient PL. In 

spite of this, newly fabricated monolayer TMDs exhibit extremely low PL yields.3–5 A 

leading explanation for this outcome is the prevalence of point defects,13 namely, 

chalcogen vacancies14–16 and oxygen substitutions17,18 within the monolayer’s crystal 

lattice. The loss of optical energy (i.e. PL) in the form of excitons is known to occur via 

inter-bandgap defect or `trap’ states associated with chalcogen vacancies.19–21 Although 

the mechanism for defect-assisted PL quenching is yet to be fully understood,19 defect 

`repair’ or `passivation’ offers a means to avert optical losses and thereby fully harness 

the luminescent properties of monolayer TMDs. Towards this end, a number of 

passivation schemes have been developed to improve PL yields in monolayer TMDs. 

These methods include solution-based or `wet’ chemical treatments, which have been 

successful in enhancing monolayer PL, but are however limited to sulphur based 

TMDs.20–24 The leading example of this is treatment with 

bis(trifluoromethane)sulfonimide (TFSI) `super-acid’, which greatly improves PL 

emission in sulphur based TMDs i.e. molybdenum disulphide (MoS2) and tungsten 

disulphide (WS2) monolayers,20 but quenches PL in their selenium based counterparts, 

molybdenum diselenide (MoSe2)  and tungsten diselenide (WSe2).
25 

 Monolayer TMDs may also be combined with other nanomaterials with strong 

light-matter interaction such as quantum dots (QDs) to realise heterostructures with 

improved light detection and light harvesting capabilities enabled by interfacial charge or 

energy transfer at the heterostructure interface.26  

 In this thesis, we present a novel `wet’ chemical passivation scheme based oleic 

acid (OA), a long chain organic acid commonly used to terminate surface defects in 

colloidal nanocrystal QDs. We find that OA treatment drastically enhances PL yields and 

improves electrical transport characteristics in both sulphur and selenium based group VI 

TMDs, WS2
27 and MoSe2.

28 To demonstrate how the luminescent properties of monolayer 

TMDs may be utilised, we developed and characterised a photon energy down-conversion 

2D TMD-quantum dot (2D-QD) heterostructure, in which a monolayer TMD absorber 
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directly funnels optically generated excitons to near infrared (NIR) QD emitters.29 This 

novel system is unlike other 2D-QD heterostructures studied in the wider literature, where 

QD excitons are quenched by a 2D TMD exciton sink.30–36 As well as lighting and other 

optoelectronic device applications, the heterostructure system developed herein could be 

applied to photon management technologies for light harvesting, particularly luminescent 

solar concentrators (LSCs). We go on to simulate light transport in 2D-QD based LSC 

using Monte Carlo (MC) raytracing. The details and structure of this thesis are outlined 

as follows: 

 Chapter 2 covers the scientific foundation and background knowledge 

pertaining to the experimental work presented in the later chapters. The chapter begins 

with basic band theory, inorganic semiconductor physics, the exciton and quantum 

confinement in nanocrystals. We move onto the optoelectronic properties of 2D TMDs, 

which includes: their structural and electronic properties; 2D confined excitons; PL; 

defects and their impact on optoelectronic quality and; existing defect passivation 

techniques for improving optoelectronic performance. Next, we introduce 2D field effect 

transistors and other 2D TMD based (optoelectronic) devices. This follows with a brief 

review on 2D TMD-quantum dot (2D-QD) energy transfer heterostructures and the 

underlying energy transfer mechanisms. We then introduce the concept of a luminescent 

solar concentrator (LSC) based on the 2D TMD absorber and QD emitter heterostructure 

system. Finally, TMD monolayer preparation techniques are summarised.   

 Chapter 3 introduces the main experimental techniques used in this thesis. First, 

a detailed description of the TMD monolayer preparation method is provided. This is 

followed with an overview of the steady state and time resolved optical spectroscopy 

techniques employed in this work. The last section describes the Monte Carlo raytracing 

method for simulating light transport in LSCs. 

 Chapter 4 provides the first demonstration of OA treatment for enhancing PL 

and electronic transport properties in a sulphur based TMD monolayer, WS2. Steady state 

PL microscopy reveals that OA treatment produces monolayers with bright PL 

comparable to TFSI treatment. High laser excitation intensities give rise to bright charged 

exciton (trion) emission in OA treated monolayers, which is otherwise undetected with 

TFSI treatment. Probing the PL dynamics of OA treated monolayers reveals non-trap 

limited exciton dynamics, unlike those treated with TFSI. Electronic measurements of 

OA treated WS2 field effect transistors (FETs) show an improvement in carrier mobilities 

and reduced charge trap density. These results point to defect passivation, where OA 
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ligands terminate chalcogen vacancies as seen in colloidal lead sulphide (PbS) QDs, for 

example.     

 Chapter 5 extends OA treatment to a selenide based TMD, MoSe2. Steady state 

PL measurements show that OA treatment greatly enhances PL, improving spatial 

uniformity in brightness and reducing emission linewidth. A combination of steady state 

excitation intensity dependent PL and time resolved PL measurements reveal trap free 

exciton dynamics dominated by neutral exciton recombination in OA treated monolayers. 

MoSe2 FETs show reduced charge trap density and increased on-off ratios when treated. 

The combination of enhanced optical and electronic properties due to OA treatment serve 

as strong evidence for defect passivation by OA ligands. The possibility of defect 

passivation via oleate group coordination to molybdenum dangling bonds at chalcogen 

(Se) vacancies is discussed. Importantly however, this study establishes OA treatment as 

the first solution based chemical passivation scheme applicable to both group VI TMD 

selenide and sulphide monolayers. 

 Chapter 6 explores energy transfer (ET) from monolayer WS2 to NIR emitting 

lead sulphide-cadmium sulphide (PbS-CdS) QDs in a luminescent 2D-QD 

heterostructure. Due to its high absorption cross-section in the visible region, monolayer 

WS2 serves as an optical antenna from which high energy excitons are generated and 

funnelled to high PL yield NIR QD emitters, where exciton emission energy is 

downshifted over hundreds of milli electron volts (meV). The ET process was 

characterised using a combination of steady state and time resolved PL microscopy. Time 

resolved PL measurements reveal a 2D to QD ET rate that outcompetes intrinsic PL 

quenching by defect states in the TMD monolayer, thus allowing for efficient energy 

transfer (58%). We find that the WS2 band-edge to trap state exciton transfer channel acts 

as a parasitic energy pathway that requires passivation to further enhance ET efficiency. 

The results demonstrate, for the first time, the use of QDs as tuneable high PL emitters to 

modify TMD monolayer emission properties. This has applications in e.g., lighting, and 

artificial light harvesting.  

 Chapter 7 investigates the potential application of the 2D-QD ET system as a 

luminophore material for artificial light harvesting with LSCs via Monte Carlo light 

transport simulations. The validity of the simulations is discussed in detail. Further 

recommendations for refining the simulations are made towards the development of a 

predictive tool to for 2D-QD heterostructure LSC design. 
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 Chapter 8 Summarises the key findings of the work presented in this thesis and 

provides recommendations for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Luminescent Harnessing of 2D Transition Metal Dichalcogenide Excitons 

6 

2 Background 

 This chapter provides the essential background knowledge and terminology 

required to navigate the research presented in this thesis. In section 2.1, we briefly recap 

the origin of band structure in solids along with some basic principles and concepts in 

semiconductor physics, namely doping and importantly, the exciton. 

  In section 2.2., we go on to introduce quantum confinement, which is extremely 

relevant towards understanding the origins of the electronic structure and optoelectronic 

properties of semiconducting nanomaterials such as monolayer transition metal 

dichalcogenides. Nanocrystal quantum dots (QDs) are used as a model system to explain 

quantum confinement effects. Section 2.3 covers the optoelectronic properties of 2D 

TMDs in considerable depth. The section begins with the structural and electronic 

properties of the 2D TMDs of interest, followed with a detailed overview of excitons in 

2D TMDs, photoluminescence, defects, and their effects on optical and electronic 

performance of 2D TMDs. We briefly review recent work on defect passivation 

techniques for improving the optoelectronic quality of these materials as a prelude to 

chapters 4 and 5.  

 Section 2.4 introduces 2D TMD-based field effect transistors (2D-FETs) and 

their performance characteristics. This is deemed necessary as 2D-FET characteristics are 

used as a measure of electronic performance of surface treated monolayers in chapters 4-

5. Section 2.5 summarises optoelectronic device applications of 2D TMDs for light 

emission, photovoltaics (PV) and photodetection. 

 Section 2.6. provides a brief review of notable studies on 2D TMD-Quantum dot 

(2D-QD) energy transfer (ET) heterostructures. The main energy transfer mechanisms in 

these systems are outlined. Section 2.7 introduces the concept of a luminescent solar 

concentrator (LSC) based on a heterostructure luminophore comprising of a 2D TMD 

absorber and a near infrared (NIR) nanocrystal QD emitter. The section first details the 

working principle and performance parameters of LSCs prior to detailing the added 

advantage of the novel luminophore system. Finally, in section 2.8, various TMD 

monolayer preparation techniques are summarised. 
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2.1 Introduction to Inorganic Semiconductor Physics 

 

 Electrons in an individual atom have well-defined discrete energy-levels within 

orbitals. In accordance with the Pauli exclusion principle, each energy level can be 

occupied by two electrons provided that they have opposite spin. We consider two 

separate atoms that have electrons occupying the same energy level. Bringing them 

together subdivides this energy level, so that no more than two electrons occupy the same 

level. In the same way, tightly packing many atoms in a solid splits the atomic orbitals 

into numerous closely spaced energy levels, effectively forming a continuum or band of 

allowed states that electrons can occupy as shown in Figure 2.1 below. Between these 

allowed states are forbidden states.37    

 

Figure 2.1: Energy band formation in a solid. Closely packing individual atoms leads to 

subdivision of electronic states amounting to continuous bands in a solid. Adapted from G. 

Parker.37 

 The highest occupied band is known as the valence band (VB) which contains 

valence electrons, whereas the lowest unoccupied band is the conduction band (CB). The 

energy difference between the band edges, that is the bandgap (Eg), defines a solid as a 

metal, semiconductor or insulator. Semiconductors have a small non-zero bandgap, (Eg 

~0.5-3 eV). The relative position of the CB minimum and VB maximum in momentum 

space characterises a semiconductor as direct or indirect. This has profound implications 

for a semiconductor’s optoelectronic properties, which we uncover subsequently on the 

topic of semiconducting 2D TMDs. At absolute zero temperature, T = 0 K, 

semiconductors become insulators, with a filled VB and empty CB.37 At room 

temperature, few valence electrons are thermally excited across the bandgap to the CB, 

leaving positively charged `holes’ in the VB. These free charges are able to partake in 

electrical or thermal conduction. In pure or intrinsic semiconductors however, the number 
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of charge carriers is small in comparison to metals. For example, silicon (Si) has 1.4×1010 

electrons cm-3 in the conduction band at 300 K, whereas a typical metal has ~1034 

electrons cm-3. The conductivity of intrinsic semiconductors can be modified by doping, 

which involves introducing of a small number of impurity atoms. Taking the example of 

Si, which has four valence electrons, a small number of group V atoms (e.g., phosphorus, 

P) can be introduced into the lattice. Each phosphorus atom has five valence electrons, 

four of which are covalently bound in the Si lattice, leaving one weakly bound electron. 

This excess electron sits in a ̀ donor’ level just below the conduction band edge, requiring 

little energy to promote it. Such a semiconductor is known as n-type. On the other hand, 

a group III element such as boron (B) can be introduced into the Si lattice. Each boron 

atom has three valence electrons, leaving an absent bonding electron in the lattice. This 

introduces an electron acceptor level just above the valence band, where valence electrons 

can be easily promoted, leaving holes in the valence band as dominant charge carriers. 

These are known as p-type semiconductors.37  

 

Figure 2.2: Inorganic semiconductor band structure schematic. a) and b) show band 

diagram of n and p type semiconductors (SC) with respective positions of electron donor and 

acceptor levels relative to conduction and valence bands; c) and d) show energy-momentum 

diagrams of direct and indirect bandgap semiconductors. In a direct bandgap SC, conduction 

band minima and valence band maxima share the same momentum value, while in an indirect 

semiconductor, these values differ. Adapted with permission from Dr. Raj Pandya. 
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2.1.1 Excitons 

 

 Excitation of a negatively charged electron from a semiconductor’s valence band 

to conduction band, by e.g., photon absorption, leaves a hole in the valence band. The 

electron-hole pair are bound by Coulombic interaction. This excited state can be described 

as a quasi-particle bound state between electron and hole, also referred to as the exciton. 

In a direct bandgap semiconductor, excitons directly recombine, re-emitting a photon at 

a wavelength corresponding to the semiconductor bandgap in a process known as 

photoluminescence (PL), which is illustrated in Figure 2.3 below.  

 

Figure 2.3: Exciton generation and recombination in a direct bandgap semiconductor. 

(1) exciton generation from photon absorption, and (2) subsequent exciton recombination 

resulting in PL. 

 The strong dielectric screening in bulk semiconductors results in reduced 

binding energy between electron and hole, down to the order of ~10 meV, that is, low 

enough to be thermally dissociated into individual charges at room temperature. Excitons 

in such systems are hence indistinguishable from charge carriers at room temperature. 

These excitons are classified as ̀ Mott-Wannier excitons’.38 In materials with significantly 

lower dielectric constants e.g. organic semiconductors, exciton binding energies range 

within 100s of meV. These excitons are termed `Frenkel excitons’.39 

2.2 Quantum Confinement in Semiconducting Nanocrystals 

 

 Quantum confinement defines the changes in a bulk semiconductor’s 

optoelectronic properties when its size is reduced below the characteristic electron-hole 

separation distance, i.e., the exciton Bohr radius- a property unique to the bulk material. 
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Confining the exciton’s spatial extent restricts the bulk semiconductor’s continuous 

energy bands to discrete energy levels as per a semiconducting nanocrystal, or quantum 

dot (QD). Figure 2.4. illustrates the phenomenon. The quantization of energy states in 

QDs is reminiscent of the discrete electronic energy levels in individual atoms. Due to 

confinement in all directions, the excited state energy levels in a QD are well 

approximated by the `particle in a box’ infinite potential well model. Following this 

model, the excited state energy levels of a QD, E, are directly related to its diameter, L, 

such that E ∝ 1/L2. As a consequence, the QD bandgap, Eg, and thus PL emission 

wavelength, can be tuned by controlling nanocrystal size.40,41 

 

 

Figure 2.4: Effects of quantum confinement on electronic structure in nanocrystals. a) 

Bulk semiconductor with continuous conduction and valence band structure; b) Discretised 

energy states of electrons (e) and holes (h) in nanocrystal due to quantum confinement.  

Reproduced with permission form Dr. Jesse Allardice. 

 In essence, the electronic structure and resulting optoelectronic properties of 

zero (0D) dimensional QDs arise from confinement of exciton movement in all three (x, 

y, z) directions. In the next section, we find that exciton confinement in the out-of-plane 

direction (z) plays a critical role in defining the unique optoelectronic properties of two 

dimensional (2D) semiconducting transition metal dichalcogenides (TMDs). 
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2.3 Optoelectronic Properties of 2D TMDs 

2.3.1 Structural and Electronic Properties 

 

 Transition metal dichalcogenides (TMDs) are a class of materials generalised by 

the chemical formula MX2, where M is the transition metal (e.g., Molybdenum (Mo) ) 

and X is the chalcogen (e.g. Sulphur (S)).5 TMDs vary from metallic to semiconducting.5,6 

This thesis is concerned with semiconducting TMDs, particularly, group-VI TMDs (M = 

Mo, W; X = S, Se), which are known to transition from indirect bandgap semiconductors 

as bulk crystals to direct bandgap semiconductors as monolayers.3,5,6  

 

Figure 2.5: Structural and electronic properties of 2D TMDs. a) 3D representation of 

typical MX2 layered structure with chalcogen atoms in yellow and metal atoms in grey; b) 

Hexagonal structure of a single layer; c) (LHS) Hexagonal Brillouin Zone with high symmetry 

points labelled. (RHS) theoretical band structure of (i) bulk and (ii) monolayer TMD crystals. 

Taken from Berkelbach et al.2;d) Raman spectra of bulk and 1-6 layer MoS2. Taken from Wang 

et al.5  

 Figure 2.5.a shows the layered TMD structure in the form X-M-X, where the 

chalcogen atoms lie in two hexagonal planes separated by a plane of metal atoms. 

Adjacent layers of thickness ~ 0.6-0.7 nm are held together by weak out-of-plane 
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interlayer van der Waals interactions to form the bulk crystal. 3,5,6 Figure 2.5.b, shows the 

hexagonal lattice structure from above. The hexagonal lattice structure translates, via 

Fourier transform, into a hexagonal Brillouin zone (BZ) in reciprocal space, shown in 

Figure 2.5.c, left-hand side (LHS). The high symmetry points are labelled Γ, K and K’ at 

the corners of the hexagonal BZ. Theoretical studies6,42 show that the indirect to direct 

semiconductor transition occurs at K and K’ points (i.e. K points) due to quantum 

confinement in the out-of-plane (z) direction and the resulting changes to the atomic 

orbitals in the valence and conduction bands. The right-hand side (RHS) of Figure 2.5.c 

shows the theoretical band structures of (i) bulk and (ii) monolayer TMD crystals 

transitioning from an indirect to direct semiconductor. The valence states at the K points 

are dominated by transition metal d orbitals, which have weak interlayer coupling, and 

are therefore unaffected by the number of layers present. In contrast, the valence states 

about the Γ point possess a large proportion of antibonding chalcogen pz orbitals 

hybridized with transition metal d orbitals and exhibit strong interlayer coupling. In a 

bulk crystal, multiple layers in close proximity cause strong interlayer interaction between 

chalcogen pz orbitals, raising the energy of the valence band at the Γ point, while the 

direct transitions at the K points remain relatively unchanged. In similar fashion, the 

conduction band is lowered within in the path between the Γ and K points, resulting in an 

indirect band gap away from the K points.  As the layers are separated, the interlayer 

coupling between chalcogen orbitals is reduced, lowering the energy of the valence band 

at the Γ point, leaving the direct gap at the K points unaffected as the monolayer limit is 

approached.2,5,6,42 In essence, a reduction in the number of layers causes a movement in 

the conduction band minimum (CBM) from the point between the K and Γ point to the K 

points in the Brillouin zone, shifting the lowest energy transition from an indirect to a 

direct one in the monolayer limit.4   

 Raman spectroscopy has been shown to be a powerful non-destructive tool for 

distinguishing TMD monolayers from multilayers.43 Inelastic scattering of incoming 

photons (from e.g. laser excitation) by the TMD lattice gives rise to distinct Raman 

modes, E1
2g and A1g, representing in-plane and out-of-plane vibrational modes 

respectively. As shown in Figure 2.5.d, the spectral difference between these modes 

reduces monotonically with fewer layers. The E1
2g mode blue-shifts, due to reduced di-

electric screening, whereas the A1g mode red-shifts due to the reduced stiffening effect by 

van-der Waals forces on atomic vibrations. The general underlying principles of Raman 

spectroscopy are provided in Chapter 3, section 3.2.2. 
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2.3.2 Excitons in 2D TMDs 

 

Figure 2.6: Excitons in 2D TMDs. a) Measured room temperature absorption spectrum of 

monolayer WS2 showing `A’ and `B’ resonance peaks. b) Illustration of electric field lines 

between electron and hole in a 3D bulk material versus a 2D monolayer; c) Minimised 

screening and confinement in the 2D-plane increases exciton binding energy and bandgap 

energy. Reproduced from Chernikov et al.44 d) Optical absorption spectrum of a generalised 

2D material with excited states (n = 1,2 etc.) given by sharp resonance features. The lowest 

transition (n = 1) corresponds to the optical bandgap energy Eg, which combined with the 

exciton binding energy EB, yields the free particle bandgap energy, E. Inset figure shows the 

excited state energy levels. Reproduced from Wang et al. 45  

 Optical absorption in monolayer TMDs is dominated by direct transitions 

between valence and conduction band states, forming excitons that are strongly localised 

about the K points in the Brillouin zone.3,45 The sharp `A’ and `B’ resonance features (i.e. 

excitonic peaks) in the exemplary WS2 monolayer absorption spectrum, shown in Figure 

2.6.a, characterises the highly excitonic nature of these materials.3 The inset of Figure 

2.6.a depicts the direct exciton transition upon optical absorption. We delve into the 

origins of this behaviour with the aid of Dr. Palacios-Berraqero’s introductory thesis 

chapter on 2-d Based Quantum Technologies,46 which provides an excellent overview on 



Luminescent Harnessing of 2D Transition Metal Dichalcogenide Excitons 

14 

excitons in 2D TMDs. Further insights are gleaned from a study by Chernikov et al.44 and 

a review by Wang et al.45  on Excitons in atomically thin transition metal 

dichalcogenides. Other recent articles are also referenced.   

 In the monolayer limit, excitons are strongly confined to the monolayer’s 2D 

plane, minimizing the effective separation between electron and hole, specifically in the 

out-of-plane (z) direction. Excitons also experience massively reduced dielectric 

screening of the electric field between electron-hole pairs compared to excitons within a 

3D bulk crystal, where the electron-hole pair’s electric field is screened by the combined 

dielectric properties of multiple layers. In the monolayer limit however, the electron-hole 

electric field only extends into air and the underlying substrate, which have low dielectric 

constants in comparison to the TMD bulk crystal. The combination of spatial and 

dielectric confinement greatly enhances coulomb interaction between electron and hole, 

resulting in large exciton binding energies of the order of 0.5 eV, and an increase in 

quasiparticle band gap energy as illustrated in Figure 2.6.b-c. These tightly bound 

`Frenkel-like’ excitons dominate the optical properties of atomically thin TMDs, 

presenting strong excitonic features that are detectable even in room temperature spectral 

measurements. Figure 2.6.d shows the optical absorption spectrum of a generalised 2D 

material with strong resonance features typical of monolayer TMDs. The inset figure 

shows an energy band diagram with excited states labelled n = 1,2, etc. The resonance 

features represent the excitonic transitions in the material. The strong excitonic effects in 

monolayer TMDs causes significant intraband transfer of oscillator strength from higher 

states (n >1) to the fundamental exciton state (n =1). This results in strong absorption at 

the lowest exciton state, as exemplified by the sharp `A’ excitonic peak of WS2 in Figure 

2.6.a. The lowest `A’ exciton transition (Figure 2.6.a) or intergap transition (Figure 

2.6.d), defines the monolayer TMD optical bandgap energy, which is (e.g.) Eg ~ 2.0 eV 

for WS2. For materials that generate excitons with the large binding energies, it is 

important to differentiate optical bandgap energy Eg from the free particle or electronic 

bandgap energy E. The free particle band gap, E, is defined as the energy required to 

generate a free unbound electron and hole in the continuum of states.  Eg is related to E 

via the exciton binding energy EB such that Eg = E - EB.45 Eg for monolayer TMDs can be 

easily obtained by measuring optical absorption spectra, or radiative recombination 

energy via photoluminescence spectroscopy. Monolayer TMD electronic gaps have also 

been determined theoretically47–50 and experimentally via scanning tunnelling 
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microscopy (STM).17,18,51  We note that the terms `optical bandgap energy’ is used 

interchangeably with `bandgap’ or `optical gap’ in this thesis.  

 While neutral excitons (i.e., single electron-hole pairs) dominate the optical 

properties of monolayer TMDs, the strong confinement in these materials enables the 

formation of higher order multi-exciton and charged exciton complexes, making them a 

useful medium for studying fundamental many-body exciton-exciton or exciton charge 

interactions. These complexes include biexcitons,52–54 consisting of two electrons and two 

holes, and trions,55–57 consisting of (e.g.) two electrons and one hole or vice-versa. Trions 

are particularly prevalent in monolayer TMDs, showing signatures in room temperature 

PL spectra.58,59 Trions form as a result of binding between excess charges from 

uncontrolled n-type (electron) or p-type (hole) doping, and (neutral) excitons,55 producing 

negatively or positively charged excited states. Doping may be induced by the 

monolayer’s substrate material (e.g. Si-SiO2) or adsorbant molecules such as oxygen (O2) 

and ambient water (H2O).18,60 Formation of trions and other complexes can however be 

manipulated by tuning charge density via electrostatic gating61–63 or controlled chemical 

doping.64–66 A notable study by Barbone et al.62 recently reported on neutral and charged 

biexciton formation in a gated charge tuneable tungsten diselenide (WSe2) based device. 

Figure 2.7. below illustrates the exciton complexes observed in monolayer TMDs. 

 

Figure 2.7: Excitonic species in 2D TMDs. Illustration of exciton (X), trion (T), neutral 

biexciton (XX) and charged biexciton (XT). Taken from Hao et al.54  
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2.3.3 Photoluminescence in 2D TMDs  

 

 Photoluminescence (PL) is defined as re-emission of absorbed photons by a 

material. In a semiconductor, recombination of electrically or optically generated 

electron-hole pairs produces photons. This occurs more efficiently in direct bandgap 

semiconductors compared with indirect bandgap semiconductors. The efficiency of 

radiative electron-hole recombination is given by the ratio of absorbed photons to emitted 

photons i.e. PL quantum efficiency (PLQE) or PL quantum yield (PLQY).20 In 

semiconducting TMDs, the transition from indirect bandgap bulk crystal to direct 

bandgap monolayer is accompanied with orders of magnitude increase in PLQE.3,6,45   

 

Figure 2.8: Emergence of PL in WS2. a) Normalized PL spectra of 1–5-layer WS2 showing 

evolution of peaks from direct `A’, `B’ exciton transitions and indirect `I’ exciton transitions; 

b) PLQY of `A’ and `I’ transitions as a function of number of layers. Figures a-b adapted from 

Zhao et al.67; c) Typical PL spectrum of WS2 showing neutral exciton (XO) and trion (XT) 

contributions represented by single Gaussian fits. Figure c adapted from Chow et al.68  

 Figure 2.8.a shows the evolution of WS2 PL with reducing number of layers. We 

observe the increasing prominence of the PL peak associated with the `A’ excitonic 

transition, and a simultaneous reduction of the indirect `I’ peak as the monolayer limit is 

approached. Figure 2.8.b shows that WS2 undergoes an increase in `A’ peak PLQE in 

excess of 100-fold when transitioning from bi-layer to monolayer, in accordance with the 
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indirect-direct bandgap shift. The large oscillator strengths of the lowest `A’ excitonic 

transitions leads to high neutral exciton radiative recombination rates and hence short 

radiative lifetimes3 ranging within few picoseconds as demonstrated via low temperature 

PL lifetime measurements69,70 and theoretical calculations.71 Room temperature PL in 

monolayer TMDs is dominated by direct radiative recombination of neutral `A’ excitons 

with significant contributions from trions and other bound states (e.g. biexcitons) at lower 

energies.67 Figure 2.8.c shows an exemplary monolayer WS2 PL spectrum with neutral 

exciton (XO) and trion (XT) components represented by single Gaussian peak fits.  

Additional low energy signatures in monolayer TMD PL spectra may also arise as a result 

of radiative exciton recombination from sub-gap states. Sub-gap states, also referred to 

as inter-gap states (IGS) or trap states are associated with atomic vacancies within the 

monolayer crystal lattice.17,72 Atomic vacancies are subsequently discussed further due to 

their profound influence on the optical and electronic performance of monolayer TMDs.15  

2.3.4 Defects in 2D TMDs 

 

 In spite of the dramatic increase in PLQE observed when transitioning from 

multi-layer to monolayer TMDs, newly prepared or pristine monolayers have low 

PLQEs, often below ~1%.73,74 Low PLQEs in pristine monolayers are often accompanied 

with low electronic mobilities, thus limiting their practical applications in optoelectronic 

devices. The poor optical and electronic performance of pristine monolayer TMDs are 

attributed to externally induced disorder and intrinsic structural defects.13,15,18 

 External sources of disorder, shown in Figure 2.9.a, originate from the 

underlying substrate and ambient adsorbates. Substrate induced disorder includes surface 

strain, and unintentional doping. Ambient adsorbates such as water molecules and 

charged impurities also contribute to unintentional doping. These external perturbations 

cause charge scattering and trapping, and local band structure modifications, which 

hamper electronic mobilities and quench monolayer PL respectively.13 Charged 

impurities and substrate doping introduce free charge carriers, converting bright neutral 

excitons to trions, which have lower radiative efficiency, resulting in an overall reduction 

in PLQE.19,75  

 Intrinsic structural defects, shown in Figure 2.9.b, include grain boundaries, edge 

terminations and point defects i.e., atomic vacancies, anti-sites and substitutions.13,76 

Grain boundaries induce local strain, altering local electronic structure in chemical vapour 
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deposition (CVD) grown large area polycrystalline monolayers. 43 In the absence of grain 

boundaries, as per the single crystal monolayers studied in this thesis, point defects 

persist. Chalcogen vacancies are predicted to be the prevalent form of point defects in 

monolayer TMDs.13,15,76,77 The low formation energy of chalcogen vacancies is often 

cited as the reason for their abundance.13,15,72,76,77 Transmission electron microscopy 

(TEM) and scanning tunnelling microscopy (STM) studies have been used to 

experimentally identify chalcogen vacancies in monolayer TMDs.14,78–81 Sulphur vacancy 

densities of the order of ~1013 cm-2 have been reported in mechanically exfoliated MoS2 

and CVD prepared WS2 respectively.79,80 A number of these studies incorporate 

theoretical computations to confirm sub-gap states associated with chalcogen 

vacancies.14,78–80 An important study by Zhou et al.14 characterises intrinsic defects in 

monolayer MoS2
14 via scanning tunnelling electron microscopy (STEM). Figure 2.9.c 

shows the resulting atomic resolution dark field (ADF) images of common point defects 

identified,14 namely: sulphur vacancies (VS); vacancy complexes of single Mo and three 

S (VMoS3); anti-sites of Mo replacing S2 (MoS2) and; S2 replacing Mo (S2Mo). STM studies 

by Schuler et al.81,82 probe the local electronic structure in the vicinity of chalcogen 

vacancies (VS) in monolayer WS2 via scanning tunnelling spectroscopy (STS), revealing 

defect associated inter-gap states, as shown in Figure 2.9.d (red peaks at ~0.35-0.75 V). 

PL studies68,80 also detect low energy emission from chalcogen vacancy induced sub-

optical gap states in WS2. Figure 2.9.e shows low temperature PL emission from defect 

states located in CVD WS2 monolayer edges.80 Figure 2.9.f shows room temperature 

emission from chalcogen vacancy induced defect states (XD) in mechanically exfoliated 

WS2, where defects were created via argon plasma treatment over the periods tplasma.68 

Chalcogen vacancies in pristine monolayers are predicted to trap free charge carriers, 

reducing electronic mobilities, and act as PL quenching sites where neutral excitons are 

more likely to non-radiatively recombine.16,19,83 Recently however, a study combining 

STS, atomic force microscopy (AFM) and theoretical calculations argues in favour of 

oxygen substitutions at chalcogen sites as dominant point defects in monolayer TMDs.17 

Interestingly, unlike chalcogen vacancies, oxygen substitutions are shown to have no 

associated sub-gap state. The nature of point defects and their charge carrier trapping and 

PL quenching mechanisms are yet to be fully understood.16,19 To this end, a first-

principles study by Li et al.16 sought to identify possible mechanisms for defect-assisted 

charge carrier trapping and non-radiative exciton recombination in WSe2 monolayers. In 

spite of the challenges posed by extrinsic disorder and intrinsic defects, significant 
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advances have been made in improving the optoelectronic properties of monolayer 

TMDs, which we go on to review briefly.  

 

Figure 2.9: Defects TMD monolayers. a) Extrinsic disorder and; b) Intrinsic defects in 2D 

TMDs. Adapted from Rhodes et al.13; c) ADF images of common point defects in monolayer 

MoS2, clockwise: Vs, VMoS3, MoS2 and S2Mo. Adapted from Zhou et al.14 d) STS spectra on 

sulphur vacancy (red) and pristine WS2 (grey). In-gap vacancy states (~0.35-0.75 V) indicated. 

Reproduced from Schuler et al.81 e) Defect emission in WS2 at low temperatures. Reproduced 

from Carozo et al.80 f) Normalized room temperature PL of Ar plasma monolayer WS2 treated 

over period tplasma with defect-related exciton transition (XD). Image adapted from Chow et al.68  
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2.3.5 Improving optoelectronic performance of 2D TMDs 

 

 Eliminating the detrimental effects of intrinsic defects and extrinsic disorder on 

the optical (and electronic) performance of TMD monolayers holds the key to fully 

harnessing their luminescent properties for practical applications in optoelectronic 

devices.4 As previously highlighted, non-radiative exciton recombination in pristine 

monolayers has been attributed to substrate induced strain, unintentional doping, 

chalcogen (i.e. S and Se) vacancies,20,84 atomic substitutions17,18  and trion formation.20,75 

Methods to improve material performance broadly take two routes; encapsulation with 

hexagonal boron nitride (hBN) and chemical treatments.28 

 Encapsulation exploits the atomically flat dielectric properties of hBN, using it 

as an encapsulation medium85,86 or sub-layer87 that isolates TMD monolayers from 

sources of extrinsic disorder i.e., substrate induced strain, and unintentional doping. This 

preserves monolayer intrinsic properties, improving optical quality as given by reduced 

spectral linewidths,86 as shown in Figure 2.10.a, and increased spatial homogeneity in PL 

intensity.85 HBN encapsulated WS2 shows slightly improved PL, although at high optical 

excitation intensities, indicating little effect on PLQE.88 Importantly however, hBN 

encapsulation has been shown to markedly improve electronic mobilities in MoS2.
13 

 A number of chemical treatments have been proposed to improve PLQEs in 

newly prepared monolayer TMDs. The vast majority of these treatments enhance PLQEs 

in sulphur based TMDs, MoS2 and WS2. Such methods include the use of p-doping agents 

such as 2,3,5,6-tetrafluoro 7,7,8,8-tetracyanoquinodimethane (F4TCNQ),66,23 hydrogen 

peroxide,24 or deposition of a defect passivating titanyl phthalocyanine (TiOPc) 

monolayer charge transfer interface.89 These electron withdrawing species supress trion 

formation between electrons and neutral excitons, improving neutral exciton 

recombination. The most prominent treatment to date utilizes `super acid’ 

bis(trifluoromethane)sulfonimide (TFSI)20,21,25 to drastically increase PLQEs in MoS2 

and WS2 monolayers. Figure 2.10.b shows an exemplary increase in PL intensity 

observed in MoS2 treated with TFSI under low power optical excitation.20 The authors of 

the initial study20 cited chalcogen vacancy passivation by TFSI as the reason for the 

observed improvements. Recently however, the same authors concluded that TFSI rather 

behaves as a strong p-doping agent.75 Separate studies also show that TFSI withdraws 

electrons occupying sub-gap sulphur vacancy (trap) states, leaving them unoccupied as 

opposed to passivating them.90,91 Under room temperature excitation, trapped excitons 
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acquire sufficient thermal energy to `de-trap’ to the band-edge, where they radiatively 

recombine as illustrated in Figure 2.10.c.91 The photodynamic process of PL enhancement 

due to TFSI treatment is detailed further in Chapter 4 (Section 4.3-4.4). An in-depth 

discussion on the surface chemistry of TFSI is given in section 4.5. Consistent with its 

strong electron withdrawing nature, TFSI has been shown to reduce electronic mobilities 

in n-type MoS2 and WS2.
90 TFSI is also known to quench PLQEs in selenide TMDs, 

MoSe2 and WSe2.
25 Unlike for sulphide TMDs, treatments for as-prepared selenide 

TMDs are lacking thus far, with a single study that reports on structural repair of defect-

rich CVD grown MoSe2 via exposure to hydrobromic acid (HBr) vapour, yielding 

enhanced PL as shown in Figure 2.10.d.92 Chapter 5, section 5.1. provides further details 

on this study.  

 

Figure 2.10: Enhancing PL in 2D TMDs. a) 2D TMD PL linewidth narrowing via hBN 

encapsulation. Adapted from Cadiz et al.86; b) Room temperature PL spectra of as-exfoliated 

and TFSI treated MoS2. Taken from Amani et al.20 c) Proposed exciton dynamics in TFSI 

treated MoS2. Taken from Goodman et al.91; d) Room temperature PL spectra of as-grown and 

HBr treated MoSe2. Taken from Han et al.92  
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2.4 Electronic Device Applications of 2D TMDs: 2D FETs 

  

 A Field Effect Transistor (FET) is a three terminal system consisting of a 

semiconducting channel between source and drain electrodes. Current between source 

and drain (IDS)  is controlled electrostatically via a gate electrode, which is isolated from 

the channel semiconductor by an insulating dielectric material.93 IDS is adjusted by 

modulation of electric resistance of the semiconductor channel between drain and source 

electrodes by an applied gate voltage (VG) via the dielectric interface. The applied VG 

generates an electric field, attracting minority charge carriers in the semiconductor, 

forming a conductive channel between source and drain. This describes the on state of 

the transistor. The off state corresponds to VG = 0.93 FETs are integral to modern electronic 

devices where efficient, rapid switching between on (1) and off (0) states is required for 

digital information processing and data storage.7  

 There are ongoing efforts to integrate 2D TMDs as channel materials in future 

high performance FETs.7 Figure 2.11.a shows a typical back gated FET architecture with 

a 2D TMD channel (2D FET). In this arrangement, the gate electrode addresses the source 

and drain via an insulating substrate e.g. Si-SiO2.
93  

 

Figure 2.11: 2D FET device architecture and transfer characteristics. a) Structure for back-

gated 2D FET with Si gate; b) Typical transfer characteristic for n-type 2D TMD channel FET. 

Adapted from Jing et al.93  

 FET performance is assessed using the transfer characteristic and output 

characteristic. For the transfer characteristic, the current flowing between drain and 

source (IDS) is monitored against applied gate voltage (VG) for a specific voltage between 

drain and source (VDS). Figure 2.11.b shows a typical transfer characteristic for an n-type 
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2D TMD channel FET.  For the output characteristic, IDS is monitored against VDS for 

different VG.93 

 In chapters 4 and 5 of this thesis, 2D FETs were fabricated and measured to 

evaluate the impact of chemical treatments on monolayer electronic transport properties 

and overall device performance. In this work, we focus on the operational parameters 

obtainable from 2D FET transfer characteristics only.  This includes off and on state 

currents, Ioff and Ion; on-off current ratio, Ion/Ioff; threshold voltage, Vth; subthreshold 

swing, SS and; field effect mobility, µ. We refer to Figure 2.11.b for clarity. Ioff should be 

minimal to abate parasitic standby power losses and Ion should be high enough to power 

the transistor output circuitry. Ion/Ioff quantifies the magnitude of the difference between 

on and off states, which should exceed 105 for digital logic applications. Vth is equal to VG 

at the transition from off to on state. Subthreshold swing, SS is the inverse of the 

subthreshold slope, S, which is the gradient of the log-linear regime within the 

subthreshold region. SS simply quantifies the VG required to increase drain current (ID) 

by a decade. As such, S and SS indicate FET switching efficacy and switching speed. 

Field effect mobility, µ estimates the average charge carrier velocity across the channel 

at a given electric field, and is estimated via the transconductance equation below:93 

𝜇 = [
𝑑𝐼𝐷𝑆

𝑑𝑉𝐺
] × [

𝐿

𝑊𝐶𝐺𝑉𝐷𝑆
] (2.1) 

where L and W are the channel length and width, respectively. CG is the capacitance per 

unit area between gate electrode and semiconducting channel.  

2.5 Optoelectronic Device Applications of 2D TMDs  

 

 Here, we summarise some applications of 2D TMDs in optoelectronic devices 

for light emission, photovoltaics (PV) and, photodetection.   

 Whereas photoluminescence is defined as photon re-emission due to optical 

excitation, electroluminescence (EL) describes photon emission induced by electrical 

stimulation. Electroluminescence is central to light emitting applications, namely, light 

emitting diodes (LEDs) and laser diodes.94  A key figure of merit for LEDs is the external 

quantum efficiency (EQE), which is defined as the ratio of emitted photons to injected 

electrons. Monolayer TMDs are considered as attractive for light emission applications 

due to their direct band gap. Consequently, a number of 2D TMD based LED device 
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concepts have been reported. EL from monolayer MoS2 was initially demonstrated by 

direct injection of hot electrons via metal/TMD Schottky junction.95 EL derived from 

electrostatically driven exciton formation and radiative recombination was also achieved 

via simultaneous bi-polar carrier injection into monolayer WSe2 in a lateral p-n junction 

device configuration (Figure 2.12.a).9,96,97 Vertical van der Waals heterostructure based 

excitonic LEDs, consisting of graphene electrodes and hBN tunnel barriers encapsulating 

monolayer MoS2 or WS2 have also been demonstrated.8 A slightly modified vertical 

heterostructure device arrangement, as shown in Figure 2.12.c, has enabled electrically 

driven quantum light emission from monolayer WSe2.
12 Due to non-radiative 

recombination however, room temperature EQEs of TMD monolayer based LEDs 

typically lie within ~0.1-1%,8,9,12,94 which is essentially the same order of magnitude as 

their PLQEs, thereby emphasising the need for improvements in optical quality of starting 

material.  

 

Figure 2.12: 2D TMD based LED device architectures. a) Lateral p-n junction LED with 

metal contacts; b) Graphene/hBN/TMD/hBN/graphene vertical van der Waals heterostructure 

LED; c) Graphene/hBN/TMD quantum LED. Adapted from Mueller et al. 94   

 Photovoltaic (PV) cells convert solar light into electricity via the photovoltaic 

effect.  The photovoltaic effect is based on the separation of photogenerated electron-hole 

pairs, or exciton dissociation by the electric field of electrostatically defined lateral or 

vertical p-n junctions.94   Ultimately, the key parameter for PV converters is the power 

conversion efficiency η, and is defined as the ratio of output electrical power Pel to 

incident optical power, POpt, that is η = Pel/POpt. TMD monolayers are regarded as 

promising candidates for single-junction and heterojunction tandem cells for thin-film PV 

energy conversion devices due to their strong, broad band absorbance, which overlap well 

with the solar spectrum (Figure 2.13.a),11 and potentially high  PLQEs.20,94   Theoretical 

calculations predict power conversion efficiencies of over 25% using these materials,98 

thus exceeding the performance of conventional Silicon based PV technologies. Recently 

however, studies on lateral p-n junction diodes based on monolayer WSe2 showed 

photovoltaic response with power conversion efficiencies ranging within 0.1 – 1% under 
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white light illumination.9,96 Vertical p-n junction PV devices based on van der Waals 

TMD heterostructures have also been demonsrated,99–101 notably using an optimised 

MoS2/WSe2 heterojunction (Figure 2.13.b), yielding 3.4% power conversion efficiency 

under monochromatic light.102 Evidently, power conversion efficiencies of TMD 

monolayer and heterostructure based PV devices have so far remained below the 

predicted value. This has been attributed to: energy losses associated with charge 

separation of tightly bound excitons; poor carrier transport due to charge trapping and; 

inefficient carrier extraction at metal contacts.94,103 While this presents a clear case for 

further improvements in device engineering and material quality, the energy penalty 

inflicted by exciton dissociation is however unavoidable.94 Alternatively, 2D TMD 

excitons may be harnessed differently in light management applications for  traditional 

silicon PV technology, which we propose in section 2.7. 

 

Figure 2.13: 2D TMDs for Photovoltaics. a) Absorbance spectra of 2D TMDs and graphene 

overlapped with AM1.5G solar flux. Taken from Bernardi et al.11; b) Schematic layout of 

vertical heterojunction PV device with lateral contacts. Taken from Popischil et al.103  

 Photodetectors convert light into electrical signals and are central to the 

operation of optical communications, imaging, and sensing devices. The sensitivity of a 

photodetector is given by the photoresponsivity, R = Iph/Popt, i.e. the ratio of output 

electrical current Iph, to input optical power Popt.
103 Monolayer TMD based photodetectors 

can operate on the basis of the photovoltaic effect, however, with low photoresponsivities 

(~10-1 A/W). 9,94 The application of an external bias, as per a 2D TMD phototransistor, 

can be used to detect changes in conductance due to photogenerated carriers with 

substantially improved photoresponsivities (>103 A/W).104 Photoresponsivities can be 

enhanced further by incorporating other  TMD materials105 or quantum dots106–115 as 

charge transfer (CT) interfaces in hybrid photodetection devices. A review by Popischil 

et al.103 provides further reading on the operating principles of TMD-based 

photodetectors. 
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2.6 2D-QD Energy Transfer Heterostructures  

 

 2D TMDs can be combined with other nanomaterials such as quantum dots 

(QDs) to tune their optoelectronic properties. Combining these materials in 

heterostructures gives rise to useful interfacial phenomena, namely charge transfer (CT) 

and exciton transfer, i.e. energy transfer (ET) under optical or electrical stimulation.26 CT 

simply refers to charge tunnelling from one species to another. As mentioned previously, 

CT between 2D TMDs and QDs has applications in photodetection.106–115 

 Nonradiative ET between QDs and 2D TMDs in heterostructures has also been 

studied for applications in light intensity modulation, colour modulation, light harvesting, 

and light detection. To date, these studies have been limited to exciton transfer from 0D 

QD donor to 2D TMD acceptor.30–36 ET may occur via a donor-acceptor dipole-dipole 

coupling mechanism as per Förster resonance energy transfer (FRET), or direct 

simultaneous electron-hole tunnelling i.e. Dexter energy transfer (DET).116 Before 

delving into the mechanisms of ET, we first outline a selection of notable studies on QD→ 

2D ET heterostructures.  

 Prins et al.30 first reported on nonradiative ET from cadmium selenide/ cadmium 

zinc sulphide (CdSe/CdZnS) QDs to few layer and monolayer MoS2, revealing increased 

transfer efficiency as a function of reduced number of layers. This outcome was attributed 

to reduced dielectric screening approaching the monolayer limit. Raja et al.31 later 

investigated the role of absorption and screening in ET from QDs to MoS2 using 

experiment and theoretical predictions. This work provided further physical explanations 

for the observations previously made by Prins et al. Prasai et al.32 demonstrated electronic 

modulation of nonradiative ET from core-shell Cadmium Sulphide Selenide (CdS1-xSex) 

QDs to MoS2 via electrostatically gating the TMD, thereby selectively tuning the QD PL 

intensity with an externally applied gate voltage. Using transient absorption (TA) 

spectroscopy, Li et al.33 probed ET from caesium lead bromide (CsPbBr3) QDs to 

monolayer WS2, revealing an efficient, `ultrafast’ ET process occurring within ~100 ps 

of excitation. Supporting PL spectra showed emission quenching in donor CsPbBr3 PL 

and a concomitant enhancement in acceptor WS2 PL, consistent with non-radiative ET. 

Liu et al.36 probed nonradiative ET between cadmium selenide/ zinc sulphide QDs and 

monolayer TMDs (MoS2, WS2 and WSe2) using time resolved PL spectroscopy.  
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Figure 2.14: Nonradiative ET from QD to TMD upon optical excitation. Taken from Liu 

et al. 36  

 The majority of the previously cited studies explicitly attribute ET to FRET-like 

dipole-dipole coupling processes,30–32,36 which are inherently long-range i.e. > 1 nm 

between donor and acceptor. Close proximity between species (≤ 1 nm) however presents 

the  required conditions for DET.116 We outline the distinctive features of FRET and DET 

in the next subsection. 

2.6.1 Förster Resonance Energy Transfer (FRET) 

 

 FRET is defined as nonradiative transfer of excitation energy from a donor 

molecule to an acceptor molecule via coulombic dipole-dipole interaction, resulting in a 

quenched donor excited state lifetime.117 FRET involves the transfer of a ̀ virtual’ photon, 

and can be envisioned as photon emission by the donor and subsequent absorption by the 

acceptor.118 Assuming the point dipole approximation, where the spatial extent of donor 

and acceptor are neglected, the FRET rate, kFRET, follows the relationship:  

𝑘𝐹𝑅𝐸𝑇 ∝
𝑓𝐷𝑓𝐴
𝑑6𝜈2

𝐽 
(2.2) 

where fD and fA are the donor and acceptor species oscillator strengths respectively; d is 

their physical separation; ν is the photon frequency and J is the overlap integral between 

area normalized donor emission and acceptor absorption, which indicates the presence of 

acceptor states that are energetically resonant to donor excited states. In the case of FRET, 

J is related to the acceptor extinction coefficient, and is therefore a function of acceptor 

oscillator strength.116 Strictly speaking, the length-scale for FRET rate is inherently 

dependent on acceptor molecule geometry. For further reading, Martinez et al.119 provide 

a generalised theory for Förster-like nonradiative ET between nanostructures of differing 
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dimensions. Importantly however, the critical distance between donor and acceptor is 

defined by the Förster radius, R0, that is the separation distance at which there is a 50% 

probability of ET. For the point dipole approximation, R0 is expressed as: 

𝑅0
6 =

9𝑙𝑛10

128𝜋5𝑁𝐴

𝜅2𝑃𝐿𝑄𝐸𝐷

𝑛4
𝐽 (2.3) 

where NA is Avogadro’s number, n is the refractive index, PLQED is the donor 

photoluminescence quantum efficiency and κ2 is the dipole orientation factor.117 

Typically, Förster radii range within few nm, however R0 > 10 nm have been 

demonstrated with acceptor materials that have strong light coupling.116 For example, 

Prins et al.30 estimated a R0 value of 19 nm for a single layer MoS2 acceptor and 

CdSe/CdZnS QD donor.  

2.6.2 Dexter Energy Transfer (DET)  

 

 Dexter energy transfer (DET) describes an electron exchange interaction 

between donor and acceptor. This exchange can be regarded as simultaneous electron-

hole tunnelling from donor to acceptor species.120 The DET rate, kDET, follows the 

relationship:  

𝑘𝐷𝐸𝑇 ∝ 𝑒
−2𝑑
𝐿 𝐽 

(2.4) 

where d is the separation distance between donor and acceptor molecules, L is the 

characteristic wave function decay length (e.g., van der Waals radius). As with FRET, 

there is dependence on spectral overlap, J to satisfy the resonance condition, however the 

associated oscillator strengths are not important for DET.116 Considering the exponential 

dependence on separation distance, d, DET can only be effective at close proximities, 

where there is sufficient donor-acceptor charge orbital (i.e. wave function) overlap. 

Typically, DET occurs within ≤ 1nm. 
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Figure 2.15: Nonradiative energy transfer mechanisms. Schematic illustration of a) Donor-

acceptor dipole-dipole interaction in FRET and; b) Dexter ET showing donor-acceptor wave 

function overlap. Adapted  from Li et al. 26  

2.7 Concept:  2D-QD heterostructure based LSCs 

 

 As previously highlighted, integrating monolayer semiconducting TMDs into 

solar PV cells poses formidable engineering challenges. Importantly, the energy penalty 

incurred by the necessary separation of tightly bound excitons into individual charges 

presents a major practical limitation. Considering this, we propose an alternative means 

to harness the excitonic properties of monolayer TMDs for light harvesting by integrating 

them into luminescent solar concentrators (LSCs). We first introduce LSCs and their 

underlying concepts. 

 Rather than replace the well-established Si based PV technology altogether, 

complementary photon management strategies can be employed to enhance performance 

of traditional PV energy conversion systems. A notable example of such strategies 

involves photon multiplication with singlet fission materials, which could break the 

efficiency limit i.e. the Shockley-Queissier limit of a single junction PV cell.121 For our 

interests however, we look at light concentration with LSCs. LSCs can improve photon 

capture and reduce PV device area leading to reduced material and transport costs 

associated with PV module production.  

 LSCs consist of luminophores embedded in a transparent polymer waveguide. 

The luminophores absorb incident high energy light and re-emit it at an energy matching 

the optical gap of silicon PV (~ 1.1 eV). The down-shifted light is internally reflected by 

the waveguide and concentrated at the edges where Si-PV cells are located.122 Figure 2.16 

shows a concept application of LSCs as façade integrated photovoltaic windows. LSCs 

can concentrate diffuse light which is entropically forbidden in geometric light 
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concentration schemes based on mirrors and lenses. Also, unlike geometric concentrators, 

LSCs are not sensitive to the directionality of incoming light, which negates the need for 

solar tracking devices and therefore could provide further PV system cost reductions.123 

 

Figure 2.16: LSC as façade embedded photovoltaic window. Solar light (hν1) absorbed by 

luminophores, re-emitted (hν2) and internally reflected to edge PV. Adapted from Meinardi et 

al.122  

 The theoretical limit of light concentration by an LSC is directly related to the 

energy loss that occurs between photon absorption and re-emission by a luminophore, 

i.e., the Stokes shift. From thermodynamic considerations, the limit of concentration Cth 

is given in terms of photon wavelength λ as: 124 

𝐶𝑡ℎ =
𝜆1
2

𝜆2
2 𝑒𝑥𝑝 [

ℎ𝑐

𝑘𝐵𝑇
(
1

𝜆1
−

1

𝜆2
)] (2.5) 

where h, kB, T and c are the Planck’s constant, Boltzmann’s constant, absolute 

temperature and the speed of light. Subscripts 1 and 2 represent incident and re-emitted 

light respectively. In theory, an LSC based on luminophores with 80 nm Stokes shift has 

a maximum concentration factor of ~ 3400 at room temperature. In reality LSC 

concentration factors remain orders of magnitude below the theoretical limit due to 

inherent optical losses associated with typical luminophore materials and the optical 

cavity. In practice the concentration factor, C, is computed as: 123  

𝐶 = 𝐺𝜂𝑜𝑝𝑡 (2.6) 

where G is the geometric gain factor, which is the ratio of the LSC frontal area incident 

to incoming irradiation, A1 and the combined area of its edges, A2. The optical efficiency, 
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ηopt is given by the ratio of photon fluxes at the LSC edges Φ2 to the incoming incident 

photon flux Φ1, that is 

𝜂𝑜𝑝𝑡 =
𝛷2

𝛷1
 (2.7) 

The optical efficiency represents a combination of efficiency terms as shown in equation 

2.7 below. This gives a clear picture of the exact optical loss mechanisms at play in 

LSCs:125 

𝜂𝑜𝑝𝑡 = (1 − 𝑅)𝜂𝑡𝑟𝑎𝑝𝜂ℎ𝑜𝑠𝑡𝜂𝑇𝐼𝑅𝜂𝑎𝑏𝑠𝜂𝑃𝐿𝑄𝐸𝜂𝑟𝑒𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 (2.8) 

where R is the Fresnel reflection coefficient of light incident to the LSC surface; ηtrap is 

the waveguide light trapping efficiency; ηhost is the transport efficiency of waveguided 

photons; ηTIR is the internal reflection efficiency of the waveguide surface; ηabs is the 

fraction of incoming light absorbed by the luminophores; ηPLQE is the luminophore PLQE 

and ηreabsorption accounts for photon losses due to reabsorption by neighbouring 

luminophores.  The first four terms of equation 2.8 can be represented by a single term 

for waveguide efficiency i.e., ηwaveguide. Improving ηwaveguide is a matter of optical cavity 

engineering. We concern ourselves with optical losses due to the luminophore, 

particularly reabsorption ηreabsorption. Reabsorption accounts for significant optical losses 

in LSCs and occurs because of overlapping emission and absorption spectra in typical 

luminophores as shown in Figure 2.17.a. Reabsorption increases the likelihood of non-

radiative and `escape cone’ losses. Escape cone losses occur when light is emitted at an 

angle below the critical angle of the waveguide.125  

 Eliminating reabsorption altogether requires luminophores with a sizeable 

Stokes shift (ΔE) between absorption and emission as illustrated in Figure 2.17.b. Various 

studies have demonstrated LSCs based on Stokes shift engineered materials, namely core-

shell QDs.126–130 We consider an alternative luminophore system based on monolayer 

TMDs hybridized with NIR emitting QDs. In this instance, we combine the large 

absorption cross section of 2D TMDs with high PLQE of nanocrystal QDs. Unlike other  

2D-QD heterostructures discussed in the wider literature,30–36 the monolayer TMD 

absorbs high energy visible photons, generating excitons, which are funnelled to the NIR 

QD emitter via a nonradiative ET process. This induces a large Stokes shift of hundreds 

of meV (i.e., hundreds of nm) between absorption and emission events, eliminating 

reabsorption. Chapter 6 reports on the development and optical characterisation of this 

type of 2D-QD ET heterostructure consisting of a monolayer WS2 absorber and lead 
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sulphide-cadmium sulphide (PbS-CdS) QD emitters. Due to time constraints, full 

development of a 2D-QD LSC remains a task for future research endeavours. Towards 

the realisation of this technology, the concept is developed further in Chapter 7 using light 

transport simulations to predict LSC performance under solar irradiation. LSC 

simulations were  performed using a Monte Carlo ray tracing algorithm as commonly 

practiced.131  The ray tracing algorithm is detailed in the chapter 3, section 3.4. 

 

Figure 2.17: Eliminating reabsorption in LSC luminophores via Stokes shift engineering. 

Illustration of luminophores with a) high reabsorption due to overlapping absorption and PL 

spectra i.e., low Stokes shift, ΔE and b) zero reabsorption due to well separated absorption and 

PL spectra i.e. large ΔE. 

 

2.8 TMD Monolayer Preparation Methods 

 

 Single layer TMDs can be isolated from their bulk counterparts by overcoming 

the weak interlayer forces. This is the basis of `top down’ monolayer synthesis, which 

start with the bulk material and end with the monolayer.5 As with graphene,1 the 

renowned `scotch tape’ method otherwise known as micromechanical cleavage, can be 

used to produce single layer TMDs. The method involves repeatedly exfoliating bulk 

material and depositing the exfoliate onto a desired substrate, whereupon microscopic 

monolayer flakes are identified by optical contrast using a microscope.132,133  While this 

method produces high quality single crystals suitable for fundamental studies2,134 and 

single device fabrication and characterisation,135 it is highly unscalable. Moreover, 

monolayer yields are often low and flake lateral dimensions range only within a few 

microns (< 10 µm). As an alternative to scotch tape, gel-assisted exfoliation (with e.g. 

PF-X4 film) has been shown to produce larger sized monolayers (> 20 µm) free of tape 
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residue.136 This technique has however been shown to produce fewer flakes compared 

with the scotch tape method.  

 Mechanical cleavage can be enhanced using a gold intermediary to produce large 

monolayers with lateral sizes in the 100s µm – 100s mm range at high yields.137–140 Gold 

mediated exfoliation utilises gold’s affinity to chalcogen atoms in the TMD lattice.141 

Magda et al.137 demonstrated a method in which thermal release tape was used to directly 

deposit mechanically cleaved TMD bulk crystal onto an atomically flat gold coated 

substrate. The gold coated substrate was heated, removing the thermal tape prior to 

ultrasonication in acetone to remove excess bulk TMD crystal. Optical contrast 

microscopy133 revealed monolayers with lateral sizes of few hundred microns. To transfer 

monolayers, thermal tape was attached to the TMD/gold sample and immersed in 

potassium iodide (KI) to etch the underlying gold layer. The TMD supported on thermal 

tape was then deposited onto the target substrate and heated, peeling the thermal tape. 

Alternatively, a spin-coated layer of poly(methyl methacrylate) (PMMA) on the gold 

coated substrate has been shown to be an effective monolayer transfer medium.138 

Following gold etch and target substrate deposition, the PMMA layer was removed by 

soaking in acetone. Liu et al.139 presented a modified gold mediated exfoliation technique 

for production of centimetre scale TMD monolayers. An atomically smooth thin gold film 

was evaporated onto a polished silicon wafer and stripped away with thermal release tape 

and a polyvinylpyrrolidone (PVP) interfacial layer. The gold-coated layer was used to 

exfoliate TMD material from a low defect density flux grown bulk crystal. The exfoliate 

was deposited onto a target substrate and heated, removing the thermal release tape. The 

substrate was then immersed in deionised water to dissolve the PVP. Finally, the gold 

was etched by immersion in KI solution, leaving large macroscopic monolayer(s). Liu et 

al.’s method is shown in Figure 2.18 for its noteworthy result. Desai et al.140 provided a 

simplified gold mediated exfoliation technique, where TMD bulk crystal cleavaged onto 

cleanroom tape was coated with a thin gold layer (~50 -100 nm) via thermal evaporation. 

The TMD/gold coated tape was exfoliated with thermal release tape, which was placed 

onto the target substrate. Heating the substrate peeled off the thermal release tape leaving 

the TMD monolayers between the substrate and gold. The gold was then etched away by 

immersing in KI and subsequently cleaned with solvent, leaving multiple monolayers 

with lateral dimensions of few hundred microns. Desai et al.’s method is used in this 

thesis for its simplicity, high throughput capability, high yield and adequately sized 

monolayers. Specific details of the methodology are given in chapter 3, section 3.1. 
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Figure 2.18: Modified gold exfoliation technique for production of centimetre scale TMD 

monolayers. Image reproduced from article by Liu et al.139  

 Liquid phase exfoliation (LPE) enables scalable production of single to few layer 

TMD nanosheet colloidal suspensions. Well stabilized TMD nanosheet suspensions have 

been investigated in various studies for their potential use as semiconducting inks for 

flexible, printable optoelectronic devices.10,142 The main methods for LPE of bulk TMDs 

are ion intercalation and ultrasonication.143 Ion intercalation typically involves mixing 

bulk TMD powder in a solution containing ionic compounds.5 The ions intercalate 

between the TMD layers, weakening the interlayer attraction. Agitation from e.g. heat, 

separates the layers to form an exfoliated dispersion.143 Ultrasonication of bulk TMD 

powder in a solvent or aqueous surfactant mechanically exfoliates layered crystals by 

hydrodynamic shear forces induced by cavitation, which form due to rapid pressure 

fluctuations.144,145 Solvents with the appropriate surface energy prevent nanosheet re-

aggregation.143 On the other hand, surfactants stabilize the nanosheet dispersions by 

electrostatic repulsion of adsorbed surfactant molecules encapsulating the nanosheets.144 

Figure 2.19 overleaf illustrates the LPE methods described. 
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Figure 2.19: Liquid phase exfoliation of 2D materials. a) Illustration of TMD LPE via ion 

intercalation and agitation; b) Sonication assisted LPE for TMD nanosheet production. Good 

solvents with correct surface energy prevent re-agglomeration of nanosheets over long periods. 

Bad solvents result in nanosheet precipitation. Image reproduced from review article by 

Nicolisi et al.143  

  Wafer-scale fabrication of high-performance flexible electronics and 

optoelectronics requires continuous large-area uniform monolayers, which cannot be 

achieved using the `top down’ methods previously described. Epitaxial growth via 

chemical vapour deposition (CVD) is poised to enable controlled `bottom up’ synthesis 

of wafer-scale TMD monolayers from precursor materials.5 The CVD monolayer TMD 

growth methods reported in the wider literature are variations of powder-based CVD and 

metal-organic CVD.77 For the sake of brevity, we provide a short general overview of the 

two principal techniques. Powder-based CVD involves positioning precursor powders 

upstream of substrates in a quartz tube furnace as shown in Figure 2.20.a. A carrier gas 

transports the vaporized precursor material under steady flow conditions to the nearby 

substrates where they nucleate, forming crystalline films. In metal-organic CVD, volatile 

metal-organic precursors are introduced into a stream of carrier gases flowing into a 

reactor where they react with inflowing gaseous hydrogen chalcogenides (H2S, H2Se), 

forming crystalline films on a target surface (Figure 2.20.b).77 Detailed insights into 

recent advances in CVD growth of TMDs can be found in a review article by Zhang et 

al.146  
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Figure 2.20: CVD techniques for wafer scale monolayer TMD production. a) Powder-

based CVD; b) Metal-Organic CVD. Image reproduced from Briggs et al.77  
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3 Experimental Methods 

 In this chapter, we introduce the key sample preparation methods and optical 

characterisation techniques used in the series of work presented in this thesis. We first 

describe TMD monolayer preparation. This is followed with a general overview of 

photoluminescence (PL) microscopy; Raman microscopy; absorption microscopy; UV-

Vis absorption spectroscopy; photoluminescence excitation (PLE) microscopy and; time 

correlated single photon counting (TCSPC) microscopy. We note the extensive use of 

microscopy techniques, which is owed to the micron-scale TMD monolayer samples 

studied. Microscopy techniques enable accurate spatial resolution of the sample’s spectral 

properties. PL microscopy is described in particular detail because of its central role in 

the development of the experimental work detailed in this thesis. A Monte Carlo (MC) 

raytracing algorithm for simulating and visualising photon transport in luminescent solar 

concentrators (LSCs) in Chapter 7 is also described. Sample preparation procedures 

specific to each chapter, namely: chemical treatments with TFSI `super acid’ (Chapter 4) 

and oleic acid (Chapter 4 and 5) and; 2D-QD heterostructure preparation (Chapter 6) are 

given in a sample preparation section within the main body of the respective chapters. 

Ancillary sample preparation procedures, namely: TFSI preparation (Chapter 4); field 

effect transistor (FET) fabrication (Chapter 4 and 5); quantum dot (QD) synthesis 

(Chapter 6) are given in a methods section at the end of each of the respective chapters. 

Descriptions of optical and electronic characterisation setups, including measurement 

parameters used are provided in the dedicated methods sections.  

 Monolayer exfoliation was carried out between the Cambridge Graphene Centre 

(CGC) cleanrooms and Cavendish labs by the author. PL microscopy was performed in 

the CGC by the author. Raman microscopy in Chapters 4 and 5 was performed in the 

CGC and Nano Doctoral Training Centre (DTC) Raman suites respectively by the author. 

Confocal absorption microscopy in Chapters 4 and 6 was performed by Cyan Williams 

(Vignolini group, Department of Chemistry). TCSPC microscopy in Chapters 4 and 6 

were performed chiefly by Dr. Geraud Delport (Stranks lab, Optoelectronics). The PLE 

setup used in Chapter 6 was built by Nicolas Gauriot (Rao group, Optoelectronics). PLE 

measurements were performed by the author in the Rao group’s Uberfast lab. The TCSPC 
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microscope setup used in Chapter 5 was built by Nicolas Gauriot and measurements were 

performed by the author in the Uberfast lab. FETs in Chapters 4 and 5 were fabricated 

and characterised by Dr. Alexander Webber (Electrical Engineering (EE) Department) 

and Dr. Ye Fan (Hofmann group, EE department) in EE cleanrooms. QDs used in chapter 

6 were synthesised by Dr. James Xiao and characterised for UV-Vis absorption and PL 

by the author in Cavendish labs. 2D-QD heterostructures in Chapter 6 were fabricated by 

the author in Cavendish labs. The MC raytracing algorithm used in Chapter 7 was 

developed by the author. Tomi Baikie provided a more physically accurate LSC 

simulation for comparison.  

3.1 TMD Monolayer Preparation 

3.1.1 Gold Mediated TMD Monolayer Exfoliation 

 

Prior to TMD monolayer exfoliation, all substrates were cleaned using a standard glass 

cleaning method described as follows: sonication in acetone for ~15 minutes; sonication 

in isopropyl alcohol (IPA) for 15 minutes and; surface treatment in oxygen (O2) plasma 

etcher to enhance monolayer adhesion to the substrate surface.  

 We employed a gold mediated exfoliation technique by Desai et al.,140 for the 

production of large area (~100 µm lateral dimensions) TMD monolayers. TMD bulk 

crystals were purchased from 2D semiconductors. Other materials and chemicals 

pertaining to monolayer exfoliation were purchased from Sigma-Aldrich. Figure 3.1, 

taken from Desai et al.,140 illustrates the process. Figure 3.2 shows exemplary WS2 

monolayers on silicon-silicon dioxide (90 nm oxide layer). 

 

Figure 3.1: Gold mediated exfoliation technique for production large area TMD 

monolayers. Taken from Desai et al.140  
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A thick TMD layer was first pealed from its crystal using low density clean-room tape. 

The thick layer was then sandwiched with another piece of tape and pealed apart. This 

exfoliation process was repeated until the crystal was visibly thin. We now describe the 

remainder of the process with the aid of Figure 3.1:  

 

0. The tape with a thin layer of bulk material was secured onto an evaporation mask 

with the exfoliated bulk material exposed. 

 

1. The evaporation mask was placed in a thermal evaporator where a thin gold layer 

(~100 – 150 nm) was deposited onto the bulk material on tape under vacuum 

conditions. 

 

2. Following gold evaporation, thermal release tape was adhered onto the gold 

coated TMD exfoliate and pealed, leaving the top-most layer of TMD attached to 

the gold on thermal release tape. 

 

3. The thermal release tape was secured onto the newly cleaned plasma etched target 

substrate, sandwiching the gold and underlying monolayers between the substrate 

and thermal release tape. 

 

4. The substrate was placed on a hot plate and heated to 125 °C, pealing the thermal 

release tape, leaving the TMD monolayers in-between a top gold layer and bottom 

substrate. 

 

5. The excess gold was removed by immersing the substrate in potassium iodide (KI) 

and Iodine (I2) standard gold etch (Sigma Aldrich) and gently swirled for ~5 

minutes. The sample was then rinsed in deionised water and sonicated for 10 

minutes in acetone and left to rinse in IPA for 5 minutes. Samples were then dried 

with a nitrogen (N2) gun. 

 

6. Monolayers were identified using optical contrast.133 Figure 3.2 shows an 

exemplary WS2 monolayer on silicon-silicon dioxide (90 nm oxide layer) 

substrate obtained via the gold mediated exfoliation method described. 
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Figure 3.2: Exemplary gold exfoliated WS2 monolayer on Si-SiO2 (90 nm) substrate. Red 

arrows indicate monolayer regions. Scale bar represents 100 µm. 

 

3.2 Steady State Optical Characterisation Techniques 

3.2.1 Photoluminescence Microscopy 

 

Photon absorption by a direct bandgap semiconductor generates excitons. Excitons 

eventually recombine, emitting PL as they transition from excited state to ground state. 

In general, PL spectroscopy enables characterisation of emissive excited states in 

luminescent materials.  

 In this work we employ PL microscopy to provide steady state emission 

properties of TMD monolayers. PL microscopy can be used to identify TMD monolayers 

on account of their direct optical gap. PL mapping provides spatial information on a 

material’s optical quality in terms of spatial homogeneity in brightness and spectral 

linewidth. While PL microscopy is inherently steady state, it can provide initial insights 

into exciton recombination dynamics via excitation intensity dependent PL studies. PL 

microscopy was performed using an industry standard Renishaw Invia confocal setup 

shown in Figure 3.3. An air-cooled Argon (Ar) ion source provided a continuous wave 

(CW) 514.5 nm laser beam. A motorized piezo sample stage enabled PL mapping.  
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Figure 3.3: Renishaw Invia PL/ Raman microscope. Green and red arrows denote excitation 

and detection paths respectively. Reproduced with permission from the Cambridge Graphene 

Centre. 

 Following Figure 3.3, the laser beam is guided by a series of mirrors and focused 

onto the sample via the microscope objective. The diffraction limited beam spot size on 

the sample is dependent on the excitation wavelength and the objective’s numerical 

aperture (NA). PL from the sample is reflected back into the objective where a mirror 

mounted in the microscope reflects the PL into the spectrometer. Within the spectrometer, 

the PL signal is collimated and reflected by a triangular mirror onto a PL diffraction 

grating. The diffraction grating disperses the components of the PL signal. The dispersed 

PL signal is then reflected onto a Peltier cooled charged couple device (CCD) detector. 

The system is operated via a dedicated computer using Renishaw’s proprietary data 

acquisition `Wire’ software interface where PL spectra and PL maps are visualised. The 

software interface allows the user to manipulate measurement parameters. Laser power 

is adjusted via a series of enclosed neutral density (ND) filters in the laser path leading 

up the laser beam entry point of the spectrometer housing. The ND filters are controlled 

using the software interface, where the user selects the percentage of laser power directed 

onto the sample. Laser power can be tuned further by manually adjusting the input 

electrical power with a dial. Laser power to the sample was accurately measured by 

placing a photodiode underneath a low objective. Power readings were taken with a 

dedicated power meter.  
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 PL spectra of bulk colloidal quantum dots in a cuvette were obtained using a 

fluorimeter, which operates on the same principle as the system previously described. In 

this case free space excitation was provided by a high voltage lamp via a monochromator.  

3.2.2 Raman Microscopy 

 

 The interaction between a molecule and incoming monochromatic light (e.g., 

from a laser) results in elastic and inelastic light scattering. In the former case, light is 

scattered at the frequency of incident radiation, which is known also as Rayleigh 

scattering. In the latter, scattered light is shifted in frequency by the vibrational energy 

gained or lost in the molecule. This is called Raman scattering. If the scattered light gains 

vibrational energy as a result of energy loss in the molecule, this is referred to as anti-

Stokes Raman scattering. Conversely, if the scattered light loses vibrational energy owing 

to an energy gain in the molecule, this is called Stokes Raman scattering. The shift in 

energy (or frequency) is known as the Raman shift.147 The Raman shift gives information 

on the lattice vibrations in a material. As discussed previously in chapter 2, the technique 

can be used to distinguish monolayer TMDs from their multi-layer or bulk counterparts.6 

In this thesis, Raman microscopy was mainly used to detect changes in TMD monolayer 

lattice vibrations due to surface chemical treatments (Chapters 4 and 5). Raman spectra 

were obtained using the same setup described in 3.4.1 (Figure 3.3). A Raman filter was 

used to filter out Rayleigh scattering components (see Figure 3.3.). Raman gratings were 

used for signal dispersion.  

3.2.3 Absorption Microscopy 

 

 Steady state absorption spectra of monolayer TMDs were measured with an 

inverted microscope. A schematic of the setup is provided in Figure 3.4. Incident white 

light from a halogen source (blue arrows) is reflected by a mirror onto an objective, which 

focuses the beam directly onto the sample on a transmissive substrate (e.g., quartz). The 

transmitted light (red) is divided with a beam splitter, directing one component to a CCD 

camera to visualize the sample, and the other to an optical fiber connected to a 

spectrometer, where the components of the transmitted light are dispersed via diffraction 

grating prior to detection. The resulting transmission spectrum is visualized on a 

dedicated software interface. The proportion of light absorbed by the sample (Abs) is 
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computed from the transmission spectrum (T) using the relationship: Abs = 1- T - R, 

where reflection is considered negligible i.e.  R ≈ 0. Prior to measuring the sample, a 

reference or baseline transmission measurement was taken on a blank substrate. The 

reference was subtracted from the sample transmission spectrum before converting to 

Abs. 

 

Figure 3.4: Inverted microscope schematic. Blue and red arrows denote incident light and 

transmitted light respectively. 

 

3.2.4 UV-Vis Absorption Spectroscopy  

 

 The absorption spectrum of suspended bulk material can be obtained using UV-

Vis absorption spectroscopy. In general, a UV-Vis spectrometer consists of a white light 

source, monochromator, sample compartment and detectors (e.g., CCD) linked to data 

logging software. The white light is focused onto the monochromator which may consist 

of a movable prism or diffraction grating coupled with a movable mirror to select or scan 

wavelengths. The monochromated light is divided with a beam splitter, directing one 

component of light to the sample in a transparent cell and the other to a reference cell 

containing the suspension’s solvent. Sample and reference cells are held in separate 

compartments. For each wavelength, the intensities of light transmitted via the reference 

(I0) and sample (I) cells are measured by separate detectors. The detectors convert the 

transmitted light intensities to absorbance signals A, via the Beer Lambert law: 𝐴 =
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 − 𝑙𝑜𝑔 (
𝐼

𝐼0
) =  𝛼 × 𝑙 × 𝑐. Where α is the extinction or absorption coefficient; l is the cell 

path length and c is the material concentration.148   

 

3.2.5  Photoluminescence Excitation Microscopy   

 

 In general, photoluminescence excitation (PLE) spectroscopy operates by 

detecting emission of a sample at a fixed wavelength with e.g., a CCD camera, and 

sweeping the excitation wavelength using e.g., white light via monochromator or variable 

laser source. This allows one to ascertain the excitation wavelengths that contribute the 

sample’s emission, thus revealing its emissive excited states, i.e., the material’s PL 

excitation spectrum. For an emissive material, the PLE spectrum overlaps its absorption 

spectrum. PLE also provides a convenient means to characterise energy transfer in 

luminescent hybrid systems in which excitonic energy is known to transfer non-

radiatively from a donor molecule the to the acceptor molecule’s band edge. By detecting 

the acceptor’s PL and scanning the excitation wavelengths resonant to the donor, energy 

transfer is characterised by the presence of the donor’s resonant features, most notably 

it’s excitonic peaks, in the acceptor’s PLE spectrum. The steady state nature of this 

technique makes PLE spectroscopy a simple, yet powerful tool for detecting energy 

transfer in hybrid systems such as the 2D TMD donor-QD acceptor heterostructure 

studied in Chapter 6.  

 

3.3 Time Resolved Photoluminescence Spectroscopy  

3.3.1 Time Correlated Single Photon Counting Microscopy 

 

 Time resolved photoluminescence (TRPL) spectroscopy provides insights into 

the dynamics of emissive excited states in a material. In this work, the PL dynamics of 

TMD monolayers were measured with a commonly used TRPL technique known as time 

correlated single photon counting (TCSPC) microscopy. Following Wahl,149 the 

operating principle of TCSPC involves recording a single photon’s arrival time with 

respect to a trigger pulse from the excitation laser. Photon counts are binned according to 
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their arrival times relative to the trigger pulse and sorted into a histogram. The statistical 

distribution given by the histogram is interpreted as the material’s transient PL profile as 

illustrated in Figure 3.5.  

 

Figure 3.5: Time correlated single photon counting. a) Illustration of photon arrival times 

relative to trigger pulse shown as `start-stop’ times; b) Histogram of arrival times, with photon 

counts in each time bin given by vertical lines. Adapted from Wahl.149 

 Due to the uncertainty of a single photon event, high repetition pulsed excitation 

is required for the collection of a sufficient number of photon events over multiple cycles, 

which in turn enables accurate reconstruction of a material’s time dependent PL profile. 

Photon detection is commonly provided by a single photon avalanche diode (SPAD) or 

photomultiplier tube (PMT). For accurate TCSPC measurements, the probability of 

recording more than one photon per excitation cycle must be kept low to prevent photon 

pile-up, which we go on to explain. For a given excitation cycle, while a photon is being 

processed by the detector, it experiences a dead-time in which another photon event 

cannot be detected. Should the number of excited photons per cycle > 1, the resulting 

histogram will be skewed in favour of earlier arriving photons, amounting to an inaccurate 

representation of the sample’s PL decay profile.149 Photon pile-up can be avoided by 

keeping the photon detection rate to ~5% of the excitation pulse rate.  This can be 

achieved by attenuating excitation intensity to the sample using e.g., neutral density 

filters.  

 The resolution of any TCSPC measurement is limited to the sensitivity of the 

detector. Instrument sensitivity is given by the width of the instrument response function 

(IRF). This can easily be measured by detecting the laser excitation scatter. The narrower 

the IRF, the more sensitive the detector. In this work, TCSPC enabled time resolved 

characterisation of PL decay channels present the monolayer TMDs, namely: i) direct 

optical transitions from the lowest vibrational state to ground state i.e., direct band gap 
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recombination; ii) emission from intermediate sub-gap or `trap’ states to ground state; ii) 

PL quenching due to native non-radiative trap states or the presence of exciton acceptors. 

3.4 Simulating Photon Transport in LSCs: Monte Carlo Method 

  

 The Monte Carlo (MC) method is a numerical technique that incorporates 

random numbers and applicable stochastic data to find approximate solutions to 

mathematical problems.150 In principle, the method involves randomly sampling a 

probability distribution function (PDF). To do this, a random number ξ, drawn from a 

uniform distribution [0,1] is equated to the cumulative distribution function (CDF) i.e., 

the integral of the PDF as shown in Equation 3.1. The CDF expression can then be re-

arranged for the sought-after random variable. Sampling the variable repeatedly 

reproduces the original PDF.151 

 𝜉 = ∫ 𝑃(𝑥)𝑑𝑥 ⟹ 𝑋
𝑋

𝑎

                                    (3.1) 

 The inherently random events that take place in LSCs, e.g., absorption and 

emission are well approximated by MC based algorithms. Raytracing tracks the path of 

photons, factoring in the random physical interactions with their environment, based on 

mathematical equations and spectral data governing e.g., light absorption and emission 

trajectory to name a few. Where wave effects can be ignored, LSC Monte Carlo raytracing 

simulations provide reasonable predictions whilst avoiding the complexities introduced 

by radiative transfer equations.151,152 

 The MC algorithm described here was initially intended as an exercise for 

understanding the basic principles of LSCs. In chapter 7, the algorithm is used to provide 

approximate visualization of photon transport in various LSCs. The code was written in 

FORTRAN 90, with post-processing in Matlab. FORTRAN 90 was chosen for 

computational speed. The algorithm was inspired by existing Matlab-based simulators 

written by Dr. Maja Gajic151 and Dr. Rowan MacQueen,153 respectively. Dr. Gajic’s code 

is available on the Mathsworks website.154 Dr. MacQueen’s code was provided by Dr. 

Nathaniel Davis.  
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3.4.1 Monte Carlo LSC Raytracing simulation algorithm 

 

 

Figure 3.6: Schematic representation of MC LSC raytracing algorithm 
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3.4.1.1 General Overview  

 Figure 3.6 shows the flow chart for the MC raytracing algorithm. The code 

comprises of a module containing various subroutines, and a main script. Subroutines 

consist of multiple processes and decisions. For clarity and brevity some subroutines are 

represented as a single process. The key subroutines are enclosed in dotted lines. The 

main script calls back each subroutine in the order shown in the figure. The algorithm is 

split into two parts (1) and (2). In (1), randomly sampled solar photons are narrowed down 

to an array of photons initially absorbed by the luminophores, with externally reflected 

and transmitted unabsorbed photons removed and accounted for.  In (2), each absorbed 

photon is processed in the `LSC loop’, where the algorithm determines the fate of each 

photon i.e., if it transmits via an edge or escape cone, or is lost because of non-radiative 

reabsorption. Each fate is recorded to compute LSC performance. Prior to providing an 

overview of the subroutines, the general simulation assumptions are detailed. 

3.4.1.2 Assumptions 

 All incoming solar photons have normal incidence to the top surface of the LSC. 

Scattering and absorption by the waveguide material is ignored. Wave effects such as 

interference and diffraction are ignored. The luminophore’s refractive index is the same 

as the host waveguide material. The waveguide refractive index is constant irrespective 

of photon wavelength. Luminophores are dispersed homogenously throughout the host 

matrix, hence the absorption spectrum is constant throughout the LSC cross section.155 

Luminophore quantum yields (QY) are constant regardless of concentration and incoming 

photon energy. LSCs are square slabs of length L and thickness d. Refraction between air 

and LSC boundary is ignored, which is acceptable for incoming photons at normal 

incidence and outgoing edge photons. For simplicity, if the incidence angle, α, between 

an emitted photon and the LSC boundary normal exceeds the critical angle, θcrit, the 

photon is waveguided to the LSC edge. Otherwise, if α<θcrit, the photon is transmitted via 

an escape cone. A more refined approach considers a photon with α slightly less than θcrit, 

(i.e., α~θcrit) to have a some probability of internal reflection before being refracted via 

an escape cone after a predicted number of waveguide reflections.155 Such a photon 

therefore stands a chance of being collected if emission occurs close to an LSC edge. In 

any case, efficiency gains from these partially reflected photons are minimal due to the 

likelihood of transmission via escape cones, unless they are reabsorbed and emitted at 

α>θcrit.
155 Consequently, the simplifications made amount to slight underestimates for 
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edge photons. Finally, edge reflections are switched off to `collect’ photons for 

performance calculations.  

3.4.1.3 Subroutines 

Photon generation and incident photon striking locations 

 In the first step, incident photons (λi) are randomly sampled from the AM 1.5g 

spectrum (NREL),156 shown in Figure 3.7.a. In doing so, the solar spectrum i.e., the 

probability density function (PDF) is converted to a normalized cumulative distribution 

function (CDF) by numerical integration. Figure 3.7.b shows the resulting CDF. By 

equating the CDF to a random number, ξ, drawn from a uniform distribution (0<ξ<1), a 

photon of wavelength λi and flux, Fi(λi) can be randomly sampled from the PDF. 

Typically, for LSC simulations N =10,000 random photons are initialized. The randomly 

selected photons are stored in an array. In the next step, each photon is allocated an initial 

striking coordinate on the LSC incident surface. This is done by randomly selecting xo 

and yo points from a grid, while zo is the LSC thickness. The grid is defined by the LSC 

side lengths (Lx and Ly), each divided into N points, resulting in an N×N grid. 

 

Figure 3.7: AM1.5G Solar spectrum. a) Full solar spectrum PDF of flux against 

wavelength156; b) CDF derived from numerical integration.   
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Removing external reflections 

 Once incident striking positions are determined, a weight of the array of incident 

solar photons is removed by simulating external reflection. This is done by associating 

each incident photon with a random number, ξ, and comparing it to the probability of 

reflection. This probability is given by Fresnel reflection coefficient, R in equations 3.2. 

 𝑅 = [
(𝑛 − 1)

(𝑛 + 1 )
]
2

                        (3.2) 

, where n is the waveguide refractive index. If ξ < R, the photon is rejected and counted. 

This random rejection process leaves an updated array of non-reflected photons and their 

initial coordinates to be passed into the initial absorption subroutine. Typically, 

waveguide materials such as PMMA have a refractive index of 1.5, hence roughly ~4% 

of incident photons are externally reflected. 

Initial absorption 

 This subroutine removes the portion of incident photons that are not absorbed. 

Here, the absorption path length, s, is computed and compared to the LSC thickness tLSC. 

The absorption path length, s, is the distance a photon of wavelength λ will travel before 

being absorbed. The decadic Beer Lambert law (Equation 3.3) is used to calculate s:  

 𝐴 = 1 − 10−𝜀(𝜆)𝑐𝑧                        (3.3) 

, where A is fractional absorbance spectrum, c and ε(λ) are the luminophore concentration 

and molar extinction coefficient, and z is the path length. A is essentially a CDF which 

gives the probability of a photon being absorbed before or at a distance z. Therefore, the 

associated PDF is determined by taking the spatial derivative of equation 3.3 to get: 

 
𝑑𝐴

𝑑𝑠
= 𝜀(𝜆)𝑐10−𝜀(𝜆)𝑐𝑧                        (3.4) 

To sample the PDF, its integral (Equation 3.3) is simply set to ξ [0,1]. Then, by 

rearranging for z, the randomized path length for each photon can be determined via 

equation 3.5. Replacing z with s we obtain 

 𝑠 =  
−𝑙𝑜𝑔10(𝜉)

𝜀(𝜆)𝑐
                        (3.5) 

If s < tLSC the incident photon (λ) is absorbed. The photon’s z coordinate is updated to zo 

= tLSC - s. The initial coordinates xo and yo are maintained and the absorbed photon counter 
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is updated. Absorbed photons and their coordinates are stored in an array for passing into 

the LSC loop (2). If s > tLSC the photon is transmitted and counted. 

Moving emitted photons 

 Each initially absorbed photon (λ) and their spatial information is now processed 

in the LSC loop (2). The first subroutine in (2), called `Move Photon’ is responsible for 

propagating emitted photons in random directions. The routine first determines if an 

absorbed photon is emitted by comparing a random number, ξ to the luminophore QY set 

by the user. If ξ > QY, the photon is lost non-radiatively and counted. However, if ξ < 

QY, an emission event is counted, and the photon wavelength is updated by random 

selection from the luminophore’s emission spectrum CDF. The extinction coefficient ε(λ) 

at the new wavelength, λ, is used to compute a new path length, s, via equation 3.5. This 

is used in combination with the luminophore emission angles to project the photon. Here 

we assume the isotropic spherical emission angles, which suits the dye and QD emitters 

simulated in Chapter 7. The azimuthal angle, ϕ and zenith angle, θ are randomly sampled 

as: ϕ = 2πξ, where 0≤ ϕ≤ 2π and θ = cos-1(2ξ -1), where 0≤ θ ≤ π. These are used to 

compute direction cosines via equations 3.6-3.8:  

 𝜇𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙                                    (3.6) 

 𝜇𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙                                    (3.7) 

 𝜇𝑧 = 𝑐𝑜𝑠𝜃                                    (3.8) 

The new x, y and z projected coordinates are then calculated as:  

 𝑥𝑝 = 𝑥𝑜 + 𝜇𝑥𝑠                                     (3.9) 

 𝑦𝑝 = 𝑦𝑜 + 𝜇𝑦𝑠                                   (3.10) 

 𝑧𝑝 = 𝑧𝑜 + 𝜇𝑧𝑠                                  (3.11) 

Once the photon’s spatial and spectral information is updated, the algorithm determines 

if the photon’s new position lies within the bounds of the LSC. If so, the photon is 

reabsorbed and reprocessed by the ̀ Move Photon’ subroutine. If not, the algorithm checks 

for an internal reflection at the LSC boundary by calling the `Surface Interaction’ 

subroutine.  
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Surface interactions 

 The `Surface Interaction’ subroutine plays the critical role of simulating photon 

waveguiding to the LSC edge by internal reflection. Within the subroutine another 

subroutine known as `Which Surface’ first is called. This returns the face, f, which the 

photon reflects off or transmits through the LSC boundary. As a visual aid, Figure 3.8 

shows the LSC in 3D cartesian space with faces and plane normal vectors labeled.  

 

Figure 3.8: Region bound by LSC in 3D space. 

Using 3D vector geometry, `Which Surface’ first checks for plane intersections by the 

photon ray. A second check is performed to confirm that the plane intersection point lies 

on the LSC boundary. Once f is known, another embedded subroutine, `IS TIR’ is called 

to determine whether photon is transmitted or internally reflected at the boundary. This 

is done by comparing the photon’s angle of incidence with the plane, α, to the critical 

angle, θcrit = sin-1(1/n). The incidence angle, α, is simply derived from the direction 

cosines. For example, for a photon incident to the z plane, α = cos-1(|µz|). If α < θcrit, it is 

transmitted through the face and a photon counter for that face is updated accordingly. 

Transmission through top and bottom surfaces are counted as escape cone losses. If α > 

θcrit the photon is internally reflected, and its positional information is updated using 3D 

vector geometry. The algorithm then determines whether the new coordinates (xp, yp, zp) 

lie within the bounds of the LSC. If so, the photon is reabsorbed and processed by the 

`Move Photon’ subroutine. If not, then the photon interacts with another surface and the 

`Surface Interaction’ procedure is repeated.  

 Here, we provide an exemplary procedure of how a photon is waveguided by 

total internal reflection (TIR). We consider a photon reflected between the z plane 

boundaries, f6 and f5, as shown in Figure 3.9 overleaf.  
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Figure 3.9: Illustration of waveguiding calculations performed by raytracing algorithm 

First, the algorithm determines the initial point of intersection Pi between the vector 

connecting positions Po and P1, and the boundary plane f6. Po is the origin of the photon 

from within the LSC and P1, is the end point of the projected ray. The plane equation for 

f6 is simply z = 0. The parametric equation of the vector connecting Po and P1 is:  

 𝑟(𝑡)  =  𝑃𝑜 +  𝑡 𝑃𝑜𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                    (3.12) 

, which is expanded to the equations for the point of intersection on the plane: 

 𝑥𝑖 = 𝑥𝑜 +  𝑡 𝑃𝑜𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (1)                                  (3.13) 

 𝑦𝑖 = 𝑦𝑜 +  𝑡 𝑃𝑜𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (2)                                  (3.14) 

 𝑧𝑖 = 𝑧𝑜 +  𝑡 𝑃𝑜𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (3)                                  (3.15)                 
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Setting equation 3.15 to zero yields the plane equation, zi = 0. The parameter t is then 

calculated and substituted into the other equations to determine the coordinates of 

intersection. Now, the position of the photon must be reflected around the intersection 

point, Pi, about the plane z = 0 (green arrow) so that Pnew = [xp, yp, -zp], with x and y 

components unchanged as shown in Figure 3.9. 

 Using the same procedure, the second point of intersection, Pi’, between the 

reflected ray connecting Pi and Pnew, and the plane boundary f5 is computed. In this case, 

the plane equation for f5 is z = tLSC. Equation 3.15 is set to zi = tLSC and the origin of the 

reflected ray is updated to the previous intersection point at f6, so that Po = Pi. The ray’s 

end point is also updated so that P1 = Pnew. As previous, t is calculated from equation 3.15 

and substituted into equations 3.13 and 3.14 to calculate the coordinates of Pi’. The 

subsequent Pnew’ is obtained via reflection around the intersection point, Pi’, about the 

plane z = tLSC (purple arrow) so that Pnew’ = [xp, yp, 2tLSC –(-zp)] as shown in Figure 3.9.  

 The process repeats in the photon’s projected direction until it is reabsorbed (i.e., 

Pnew lies within the LSC bounds), or reaches the LSC edge. The path of waveguided 

photon is tracked by tracing the intersection points. Figure 3.10 below shows the 

simulated 3D path of a single waveguided photon traversing the LSC. 

 

Figure 3.10: Simulated path of single waveguided photon traversing LSC 

The fully annotated code can be made available upon reasonable request from the author. 
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4 Enhancing 

Photoluminescence and 

Mobilities in WS2 

Monolayers with Oleic Acid 

Ligands 

 Many potential applications of monolayer transition metal dichalcogenides 

(TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. 

However, the PL yield of as prepared TMD monolayers is low and believed to be limited 

by defect sites and uncontrolled doping. This has led to a large effort to develop chemical 

passivation methods to improve PL and mobilities. The most successful of these 

treatments is based on the non-oxidizing organic ‘super-acid’ 

bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright 

monolayers of molybdenum disulphide (MoS2) and tungsten disulphide (WS2), but with 

trap limited PL dynamics and no significant improvements in field effect mobilities. Here, 

using steady-state and time-resolved PL microscopy we demonstrate that treatment of 

WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright 

neutral exciton emission comparable to TFSI treated monolayers. At high excitation 

densities the OA treatment allows for bright trion emission, which has not been 

demonstrated with previous chemical treatments. We show that unlike the TFSI 

treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect 

transistors show an increase in mobilities with the OA treatment. These results suggest 

that OA serves to passivate defect sites in the WS2 monolayers, in a manner akin to the 

passivation of colloidal quantum dots with OA ligands. Our results open up a new 

pathway to passivate and tune defects in monolayer TMDs using simple `wet’ chemistry 

techniques, allowing for trap free electronic properties and bright neutral exciton and trion 

emission. 
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The work detailed in this chapter is adapted from an article published in ACS Nano 

Letters: Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; 

Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y.; Li, Z.; Vignolini, S.; 

Stranks, S.D.; Rao, A. Enhancing Photoluminescence and Mobilities in WS2 Monolayers 

with Oleic Acid Ligands. Nano Lett. 2019, 19 (9), 6299–6307. 

https://doi.org/10.1021/acs.nanolett.9b02431.[27]27 

 

 All the work in this chapter was performed by the author except where stated. 

Dr. Alexander Webber and Dr. Ye Fan prepared WS2 transistors, measured their 

respective electronic characteristics and provided detailed analysis of the resulting data 

(Section 4.6, paragraphs 1 and 3); Dr. Delport measured TRPL; Cyan Williams performed 

absorption microscopy and; Dr. James Xiao contributed to the discussion on the surface 

chemistry that gives rise to observed improvements in optical and electronic properties in 

WS2 monolayers upon OA treatment (Section 4.5, paragraph 2). 

4.1 Background and Motivation 

 

 TMDs are a class of layered materials which have garnered intense research 

interest due to their unique optical, electronic and catalytic properties. 6,3,157 TMD bulk 

crystals consist of monolayers bound by weak Van der Waals interactions, which can be 

overcome via dry mechanical cleavage (e.g. scotch tape method 1) or via liquid phase 

exfoliation.158,143 Also, there are numerous ongoing efforts to directly grow highly 

crystalline few or monolayer TMD films in particular by chemical vapour deposition 

(CVD).159,77 Many of these materials show a transition from indirect bandgap in the bulk 

material to a direct bandgap in the monolayer limit.6,3 The direct bandgap, high absorption 

coefficient and potentially high carrier mobilities of TMD monolayers hold great 

potential for optoelectronic applications such as photodetectors, light emitting diodes 

(LEDs) and photovoltaics.3 Reduced dielectric screening in TMD monolayers in contrast 

to the bulk crystal gives rise to tightly bound excitons at room temperature.56,160 This 

provides an interesting arena to study many-body exciton-exciton and exciton-carrier 

interactions that result in diverse multi-exciton52,161 and charged exciton species 55,62 

respectively. A number of potential applications of TMDs, such as in optoelectronic 

https://doi.org/10.1021/acs.nanolett.9b02431
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devices, quantum light sources162 or on-chip quantum information processing,63,163,164 are 

dependent on having materials of high optical quality. In particular, there is a need for 

materials with high photoluminescence quantum efficiencies (PLQE) and also tuneable 

emission properties. This raises a fundamental challenge for TMDs, because as exfoliated 

or CVD prepared monolayers show extremely low PLQE, typically ~0.001-5%.73,74 There 

have been various proposals for the cause of the non-radiative exciton recombination such 

as trion formation,66 the presence of chalcogen vacancies, 20 or other atomic substitutions. 

15,18 However, the exact nature of the defects and the mechanism by which they quench 

PLQE is still debated. 20,25,21,91,84,165 This has led to a number of treatments being proposed 

to enhance the PLQE of monolayer TMDs, most commonly MoS2 and WS2. For instance, 

studies have sought to improve PL via surface treatments using electron withdrawing 

dopants such as 2,3,5,6-tetrafluoro 7,7,8,8-tetracyanoquinodimethane (F4TCNQ)66,23 and 

hydrogen peroxide.24 Monolayer deposition of titanyl phthalocyanine (TiOPc) as a charge 

transfer interface also increases PL yield in MoS2.
89 These are proposed to reduce electron 

density, suppressing low PLQE trion formation therefore promoting neutral exciton 

recombination. Other studies have sought to preserve the intrinsic optical properties of 

TMDs via exfoliation onto hexagonal boron nitride (hBN)87 or hBN encapsulation, 85,86 

which isolates monolayers from doping and disorder induced by the underlying substrate 

(e.g. Si-SiO2). This has been shown to result in more uniformly distributed dominant 

neutral exciton PL with narrow homogeneous spectral linewidth free of substrate effects, 

which otherwise manifest as inhomogeneous contributions in monolayer TMD PL 

spectra85. While hBN encapsulation improves overall optical quality, however large 

increase in PL at low excitation intensities has not been demonstrated. Hoshi et al.88 have 

demonstrated that hBN encapsulation suppresses exciton-exciton annihilation rates in 

monolayer WS2 as indicated by large PL enhancement at high excitation intensities 

compared with non-encapsulated monolayers. Most notably, surface treatment with non-

oxidizing organic `super acid’ bis(trifluoromethane)sulfonimide (TFSI) has been shown 

to yield very bright PL from monolayer MoS2 and WS2. While the exact mechanism of 

the PL enhancement is still debated, it has been shown that the TFSI treatment reduces 

the extent of n-type behaviour in MoS2,
20 which is consistent with the observed 

suppression of trion formation 166. The authors of ref. 20 20 have recently demonstrated 

PL enhancement and exciton dynamics similar to TFSI treated MoS2 and WS2 via electric 

gating.75 The application of a negative bias is said to de-dope the intrinsically n-type 

materials, which suppresses trion formation thus enhancing radiative recombination of 
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the neutral exciton. By comparing the exciton dynamics of TFSI treated and gated TMDs, 

the authors conclude that TFSI acts as an electron drawing species which suppresses trion 

formation. However, it has been shown that the TFSI treatment leads to trap limited PL 

dynamics 91 and does not give rise to improved mobilities in field-effect transistors.20 In 

addition, the harsh nature of TFSI necessitates additional fabrication steps to protect 

commonly used electrode materials such as nickel.20 Lastly, while treatments like the 

TFSI boost neutral exciton PL, they do not lead to bright trion emission, which would be 

of use in applications such as optical readout of trions for spintronics.167 Thus, an 

alternative benign chemical treatment that simultaneously improves PL and mobilities 

whilst easing device fabrication would provide an attractive means to functionalise and 

passivate monolayer TMDs.   

 Here, we demonstrate that a simple long-chain acid, oleic acid (OA) can greatly 

enhance the PL of monolayer WS2 yielding bright neutral exciton emission comparable 

to TFSI treated monolayers. In addition, OA allows for bright trion emission and an 

increase in field effect mobilities. We also show that in comparison to previous TFSI 

treatment, where PL is trap limited, the OA treatment yields predominantly trap free PL 

characteristics. Our demonstration that a weak acid can be used to passivate and tune the 

properties of monolayers WS2, draws parallels to the surface treatment of inorganic 

colloidal quantum dots, such as cadmium sulphide (CdS) and lead sulphide (PbS), where 

long-chain acids and in particular OA are used to passivate surfaces, and thus opens a 

range of options for passivating and tuning the properties of monolayer TMDs.       

4.2  Sample Preparation   

 

 WS2 Monolayers were exfoliated via gold assisted exfoliation technique140 

described in chapter 3 (section 3.1) onto silicon-silicon dioxide (Si-SiO2) with 90 nm 

oxide layer and quartz substrates. Monolayers on Si-SiO2 were used for PL maps, Raman 

spectroscopy and electronic characterisation. Samples on quartz were used for steady 

state absorption microscopy, excitation dependent steady state PL, and time-resolved PL 

measurements. All measurements were performed at room temperature. After initial 

characterisation of untreated (i.e., `pristine’) monolayers, samples were chemically 

treated. OA treated samples were immersed in degassed OA in a tightly closed vial 

overnight in a nitrogen (N2) glovebox on a hot plate set at 25 °C for ~12 hours. After OA 

treatment, samples were rinsed with anhydrous toluene and dried with a N2 gun. TFSI in 
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1,2 dichloroethane (DCE) solution was prepared using a procedure described in section 

4.8.1. Following Kim et al. 21, in a N2 glovebox, TFSI treated samples were immersed in 

a 0.2 mg ml -1 TFSI-DCE solution in a tightly closed vial for 40 minutes at room 

temperature. After treatment, samples were removed and dried with a N2 gun. 

4.3 Steady State Photoluminescence  

 

 Figures 4.1.a and c show the scatter plot for peak PL emission intensities and 

their corresponding spectral positions extracted from PL maps of multiple WS2 

monolayers on Si-SiO2 (90 nm) before and after surface treatment with OA and TFSI 

respectively. Maps were measured at 135 W cm-2. Figure 4.1.b and d show representative 

PL spectra, for points, which correspond to the median PL intensity of exemplary 

monolayers before and after treatment. Median enhancement factors, Δmedian of 40× and 

9× were calculated for OA and TFSI treatment, respectively. Table 4.1 shows key 

statistics that accompany PL enhancement, namely: average enhancement across the 

monolayers (Δave) i.e., the ratio of post- and pre-treatment peak PL counts; standard 

deviation in PL intensity (σcounts); average emission peak wavelength (λave); and standard 

deviation in peak wavelength (σλ). The untreated case is indicated by (*) where 

appropriate. The data presented in Figure 4.1 and Table 4.1 were derived from non-fitted 

raw PL spectra. 

 

Table 4.1: WS2 monolayer PL enhancement statistics derived from PL maps. Characteristics 

prior to treatment marked with (*). 

Treatment Δave σcounts λave σλ 

OA 27 116 % 618.3 nm*→614.2 nm 1.57 nm*→0.57 nm 

TFSI 10 87.3 % 618.4 nm*→617 nm 2.16 nm*→1.29 nm 
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Figure 4.1: WS2 PL enhancement statistics. a) and c) PL enhancement scatter plot showing 

maximum untreated monolayer PL counts (blue) and peak OA (red) and TFSI (green) 

maximum treated monolayer PL counts measured at 135Wcm-2. Data derived from non-fitted 

raw spectra from PL maps; b) and d) Raw PL spectra for points that represent the median peak 

PL counts before (blue) and after OA (red) and TFSI (green) treatment on exemplary 

monolayers. 

 For the data collected the OA treated samples show a higher average 

enhancement factor compared to TFSI treated samples. The standard deviation in PL 

intensity, σcounts, reveals that TFSI treatment results in a more spatially homogeneous 

brightness, as compared to the OA case. Better spectral uniformity is achieved with OA 

treatment as quantified by ~58% reduction in σλ, compared with a ~40% reduction in σλ 

with TFSI. The spectral narrowing in OA treated monolayers is potentially due to changes 

in strain induced by ligand coordination. The statistical data derived from the PL maps 

clearly reveals that the OA treatment significantly improves the PL of the WS2 

monolayer.  

 In order to understand the exciton dynamics that underpin the PL enhancement 

with the OA treatment, we study the excitation intensity dependent PL of the monolayers. 

Due to experimental limitations, the excitation power was limited to low (0.018 W cm-2-

0.3 W cm-2) and high (110 W cm-2- 5820 W cm-2) regimes, making sure to remain below 
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9000 W cm-2 to avoid thermal damage.168,25 We first comment on the spectral changes 

that occur in the samples in response to increasing excitation intensity as shown in Figure 

4.2 a-c.  

 

Figure 4.2: PL excitation intensity spectra. a-c) Raw PL spectra of pristine, OA and TFSI 

treated samples taken with 514nm CW laser. 

 Figure 4.2.a shows noticeable changes in spectral shape with increasing 

excitation intensity in the pristine monolayer. The spectra appear to broaden and red-shift. 

This spectral red-shift with increasing excitation intensity in pristine monolayers has been 

attributed to trion (X-) formation, which occurs as a result of binding between excess 

charges in the conduction band from photoionized native n-dopants and neutral excitons 

(X).59 With large binding energies of the order of 10s meV due  to reduced screening in 

monolayers, these quasi-particles can be observed and studied at ambient conditions.55 

The perceived red-shift and spectral broadening as a function of excitation intensity is 

caused by the contributions of trions alongside excitons. The close overlap between the 

excitons and trions makes deconvoluting the pristine WS2 PL spectra challenging, which 

prevents resolution of the relative contributions from excitons and trions.  

 Figure 4.2.b shows comparable data for the OA treated monolayer. In the high 

excitation intensity regime (102-104 W cm-2), in addition to the neutral exciton peak 

(which does not shift in energy), a red-shifting peak, ζ, emerges. The well separated ζ 

feature enables spectral fitting with Gaussians and thus further characterisation of the 

feature, as shown in Figure 4.5 and subsequently discussed. 

 Figure 4.2.c shows the spectra for the TFSI treated sample, where the single 

narrow emission peak throughout the series indicates dominant neutral exciton 

recombination, which is consistent with what has been reported in ref 20.20 We also note 

the narrower spectral linewidth in OA treated WS2 on Si-SiO2 shown in Figure 4.1.b 

compared with that on quartz (Figure 4.2.b) at similar excitation intensities. The 
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differences in spectral linewidth are potentially due to variations in strain and/or dielectric 

environment between the substrates. These factors may also contribute to spectral 

broadening,87 which in this case appears to be more present on quartz. For clarity, the 

normalized spectra are shown below in Figure 4.3. 

 

Figure 4.3: PL spectra of OA treated monolayers on Si-SiO2 and quartz. Spectra show 

broader spectral linewidth on quartz compared with Si-SiO2 potentially due to differences in 

strain/ dielectric environments experienced by the monolayers. 

 Figure 4.4.a-b shows the steady state excitation intensity dependence series over 

four orders of magnitude derived from the spectra shown in Figure 4.2.a-c. Figure 4.4.a 

shows a log-log plot of the PL intensity dependence as a function of excitation intensity 

for each sample. We note that under low power excitation, the brightness of the OA 

treated sample is comparable to the TFSI treated sample. The gradients of the series in 

the two regions give insight to the recombination regimes present. The gradient values 

are the exponent to a power law fit given by I = Pm.25 Figure 4.4.b shows the ratio of PL 

to excitation intensity (γ), which serves as a relative PLQE value. 
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Figure 4.4: WS2 PL excitation intensity series. a) Excitation series derived from PL integrals 

from a-c for pristine (blue), OA (red) and TFSI (green) treated monolayers; b) Ratio of PL 

integral to excitation intensity i.e., relative PLQE (γ) variation with excitation intensity for 

pristine (blue), OA (red) and TFSI (green) treated monolayers. 

 At low intensities, the pristine sample shows near-linear behaviour (m1=0.99) 

with respect to excitation intensity, as expected of band-edge to ground-state 

recombination, and little variation in its low γ ratios reflective of inherently low PLQE. 

At high intensities the trend become sub-linear (m2 = 0.84). This suggests the presence of 

non-radiative exciton-exciton annihilation, however, given its low effective PLQE (i.e., 

low γ), non-radiative defect assisted processes dominate exciton dynamics in both 

regimes.  

 When treated with OA, PL enhancement under low excitation intensity is 

comparable to the TFSI case, but with a power law exponent close to the pristine case (m1 

= 1.1). The γ ratio increases only slightly, indicating predominant radiative neutral exciton 

recombination directly from the band edge in the low intensity regime. At high laser 

intensities the power law diminishes more drastically than the pristine case (m2 = 0.62).  

 Interestingly, the TFSI treated sample shows super-linear (m1 = 1.45) behaviour 

and increasing γ ratio (i.e., relative PLQE) at low intensity. This manifests itself as a 

dependence of the relative PLQE on excitation intensity, as seen in Figure 4.4.b. 

Goodman et al.’s 91 study on long-lived trapped excitons in defect states best explains this 

observed super-linear behaviour. At the low end of the low intensity regime, a proportion 

of excitons decay from traps to the ground state over a long period (~µs). These long-

lived low energy transitions form part of the tail-end region of the PL spectra.80 Available 

ambient thermal energy at room temperature statistically favours de-trapping for a 
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significant proportion of trapped excitons, which return to the band edge and recombine 

radiatively to the ground state. With increasing excitation density, traps become saturated 

causing any further excitations to radiatively recombine directly from the band edge. 

Hence, the super-linear behaviour and increasing γ ratio in the low intensity regime 

characterises the process of trap state filling prior to predominant radiative recombination 

where the effective PLQE (γ) saturates. The diminishing γ ratio in the high intensity 

regime signifies the onset of exciton-exciton annihilation.20, 25 

 To characterise the excitonic species that give rise to the additional low energy 

PL peak (ζ) in OA treated WS2 PL shown in Figure 4.2.b, a two Gaussian model was used 

to fit the low energy species (ζ) and neutral exciton (X). Gaussian fits are shown in Figure 

4.5. Figure 4.6.a shows the power laws of the low energy species (ζ) and neutral exciton 

(X). Both fits follow the same near-linear power laws with mx1= mζ1 = 1.1 in the low 

intensity regime. In the high intensity regime, two distinct sub-linear power laws arise 

with mx2 = 0.36 and mζ2 = 0.75.  

 

Figure 4.5: Two Gaussian model fits of low energy species (ζ) and neutral exciton (X) PL 

peaks in OA treated monolayer WS2 PL spectra 

 In the low intensity regime, the identical power law indicates that contributions 

from both species to overall PL are close in magnitude as confirmed in figure 4.6.d. Figure 

4.6.b also shows that their relative PLQE (γ) in this regime are close in magnitude. In 

addition, Figure 4.6.c shows little spectral movement of either contribution which is 

indicative of strong spectral overlap at low excitation intensities. The identical power 

laws, similar relative PLQE, spectral overlap and proportional PL contribution of the fits 

makes it difficult to confirm the presence of trions in the low intensity regime, which is 

reasonable as photoionization of native n-dopants is less likely at low excitation intensity 
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as shown in previous studies.59 This implies the dominance of neutral exciton 

recombination at low excitation intensities.   

 In the high power regime however, where photoionization is more likely,59,53 

Figure 4.6.d shows an increase in ζ/X ratio , which is a notable characteristic of trion 

emission.58 The power law and γ ratio (Figure 4.6.a-b) reveal more efficient evolution of 

ζ emission in this regime. A study by Paradisanos et al.53 shows trion emission in 

monolayer WS2 at high excitation intensity, with a power law of m=0.9, which is close to 

the value obtained for the ζ feature (mζ2 =0.75) in Figure 4.6.a. 

 

Figure 4.6: Trion emission characterisation. a) Excitation series derived from Gaussian fit 

integrals of neutral exciton (X) and ζ peaks from OA treated WS2 PL spectra shown in  Figure 

4.5; b) Ratio of neutral exciton (X) and ζ Gaussian fit integrals to excitation intensity i.e. 

relative PLQE (γ) variation with excitation intensity; c) Spectral locations of neutral exciton 

(X) and ζ peaks as a function of excitation intensity; d) Ratio of ζ and neutral exciton (X) peaks 

fitted from OA sample PL spectra to show increasing ζ PL intensity to neutral exciton PL with 

increasing laser excitation intensity, indicating the presence of trions at high excitation 

intensities. 

  Identifying ζ as trion emission partly explains the drastic reduction in overall 

relative PLQE (γ) and neutral exciton relative PLQE seen in Figure 4.4.b and Figure 4.6.b 

respectively. Given the inherently lower PLQE of trions compared to neutral excitons, 
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the reduction in overall radiative recombination rate due in part to trion generation in the 

high excitation intensity regime is plausible. In effect, a combination of exciton-exciton 

annihilation, trion generation and any persisting defect related non-radiative decay 

mechanisms should account for the overall reduction in γ seen in the OA treated sample’s 

PL excitation intensity series. The increased availability of photoionized carriers at high 

intensities increases the likelihood of a higher proportion of neutral excitons binding to 

these charges to form trions. The noticeable redshift of the ζ peak at high intensities shown 

in Figure 4.6.c is another characteristic of trion behaviour.59 The subsequently observed 

n-type behaviour, improved current density and mobilities derived from OA treated FET 

measurements in section 4.6 indicate an increase in freely moving charges available to 

form trions. The combination of the factors discussed serve as sufficient evidence to 

identify the low energy feature ζ as trion emission. 

4.4 Time Resolved Photoluminescence  

 

 To explore the photophysics of the treatment further we turn to time-resolved PL 

microscopy, which is described in the experimental methods (Chapter 3, section 3.3). 

Figure 4.7 shows normalized time resolved PL signals of untreated and treated samples 

at room temperature under low power excitation (0.67 W cm-2). Bi-exponential decay fits 

best describe the decay dynamics observed, with a fast component τ1 and a slow 

component τ2. The time resolved data analysed in this section places emphasis on the fast 

component, τ1, as this represents the decay time associated with direct radiative transitions 

from band-edge to ground state, while the slow component τ2 is associated with the decay 

of trapped excitons from trap to ground state, which occurs over long periods (~µs).91 

 The fast decay (τ1~64 ps) of the pristine sample indicates a pronounced onset of 

non-radiative recombination at early times, consistent with the intrinsically low PLQE. 

The OA and TFSI treated samples show signal growth beyond the instrument response 

function (IRF) region. While the exact nature of this growth in the PL signal is unclear, it 

might be related to trapping and detrapping dynamics at early times. The OA treatment 

gives rise to a 4× increase in lifetime for the fast decay component (τ1~248 ps) versus the 

pristine sample, close to the TFSI-treated sample (τ1~310 ps), which is expected by nature 

of the improved PLQE for these samples and suggests a suppression of the early time 

quenching observed in the pristine sample. 
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Figure 4.7:Transient PL spectra of chemically treated WS2. Pristine (blue), OA (red) and 

TFSI (green) treated WS2 TRPL signals with bi-exponential decay fits (black dashed lines), 

measured at 0.67 W cm-2 pump intensity with 405 nm excitation.  

   

 Figure 4.8.a-c overleaf shows time-resolved PL decay spectra at all fluences 

measured for each sample along with bi-exponential decay fits. Figure 4.8.d shows the 

absorption spectrum of monolayer WS2 on quartz, which was used in combination with 

excitation intensities to compute initial carrier concentrations (n0) for Figure 4.9.a-b. 
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Figure 4.8:Transient PL series spectra of chemically treated WS2 and WS2 absorption 

spectrum. (a-c) Time resolved photoluminescence signals for pristine (blue), OA treated 

(red) and TFSI (green) treated samples with bi-exponential decay fits (black dashed lines); 

d) Absorption spectrum of pristine WS2 as a function of wavelength (bottom axis) and 

photon energy (top axis). 

  

 

Figure 4.9:Transient PL series of chemically treated WS2.Variation of fast decay 

component, τ1 (a) and τ2 (b), with initial carrier concentration derived from absorption data 

in figure 4.8.d at pump wavelength (405nm) and pump intensities (Wcm-2). 
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 Figure 4.9.a-b shows the variation in the fast (τ1) and slow (τ2) decay component 

as a function of initial carrier concentration (n0). Time constants were taken from decay 

fits shown in Figure 4.8.a-c. As shown in Figure 4.8.a-b, at the maximum intensity 

(842 W cm-2), the OA treated and pristine decay signal fit a single exponential decay, 

while the TFSI signals follow the bi-exponential model throughout the series. The 

extremely fast initial decay times (~10s of picoseconds) in the pristine samples even at 

the low end of the initial carrier concentration range implies the presence of a strong 

quenching channel. Further reduction in τ1 as a function of n0 confirms the presence of 

exciton-exciton annihilation. 

  The continuous reduction in τ1 as a function of n0 in the OA treated sample 

implies non-trap limited movement of excitons that are able to annihilate even at low 

carrier concentrations. At higher excitation intensities the formation of low PLQE trions, 

as seen in Figure 4.2.b, will contribute to the sharp reduction in τ1. The TFSI treated 

sample’s gradual increase in τ1 at lower initial carrier concentrations agrees with the 

increase in relative PLQE (γ) in the low intensity (steady state) excitation regime shown 

in Figure 4.4.a. At low excitation densities a proportion of trap states are filled, and any 

further transition from the band edge to those states is forbidden, which promotes direct 

recombination from the band edge with τ1. As carrier concentrations increase, trap states 

are filled giving rise to dominant radiative recombination from the band edge as indicated 

by the saturated τ1 value. The reduction in τ1 at high carrier concentrations signals the 

onset of exciton-exciton annihilation.25 The trapped exciton decay, τ2, shown in Figure 

4.9.b shows a similar trend. 

 To summarise the photophysical measurements presented so far, the OA 

treatment is found to greatly increase the PL of monolayer WS2, with average increases 

higher than TSFI treatment. At higher excitation intensities a pronounced trion peak 

emerges, which is not found in TFSI treated samples. Both steady-state and time-resolved 

measurements indicate that the OA treatment leads to trap-free excitonic behaviour in 

contrast to TFSI treatment where trap limited behaviour is observed, consistent with 

previous reports. This suggests that the mechanism of PL enhancement for the OA and 

TFSI are quite different.  

 

 



Luminescent Harnessing of 2D Transition Metal Dichalcogenide Excitons 

72 

4.5 Discussion on Surface Chemistry 

 

Various studies identify chalcogen point defects, which manifest themselves as sub-gap 

states through which non-radiative emission occurs, as the prime cause of poor quantum 

yields in pristine TMD monolayers.72,169 Chalcogen point defect passivation via surface 

treatment is often used as the basis to explain the observed PL improvements with TFSI 

treatment. While the exact mechanism of such treatment is unclear,20,165,84 it has been 

suggested that TFSI being a `super acid’ (pKa = -12.3) protonates the native n-doped 

monolayer surface, removing excess dopants or charges occupying existing trap/defect 

states.20 The freeing up of defect sites gives rise to the trap limited exciton dynamics, as 

has been discussed by Goodman et al.91 Atallah et al.170 however proposed that electrons 

in the n-type TMD material reduce protons (H+) to hydrogen (H2), leaving the TFSI 

counter-ion ([(CF3SO2)2N]-) to passivate the positively charged defect sites. The 

observation of excitons decaying to the trap states by Goodman et al.,91 is however, at 

odds with the notion of passivation of point defects by the TFSI counter-ion, as true 

passivation would block the movement of excitons to trap states and thus promote direct 

band-edge recombination. In contrast, as we have shown in Figures 4.4 and 4.9, the OA 

treatment leads to non-trap limited exciton dynamics, while also giving high PL yield. 

This suggests that the OA is passivating defect sites.  

 OA is a weak acid, and unlike TFSI, cannot effectively protonate the monolayer 

TMD surface and reduce n-doping (this is confirmed by the transistor measurements 

described in Section 4.6). The electron-rich carboxylic acid moiety is a good coordinating 

group and OA is commonly used as ligands in stabilizing colloidal quantum dots, 

providing steric and electronic passivation of surface defects e.g. dangling bonds caused 

by sulphur vacancies on lead sulphide (PbS) quantum dots.171,172,173 It is therefore 

reasonable to speculate that the observed improvements in emission could be due to 

similar passivation, where the carboxylate group behaves as a Lewis base, coordinating 

to the electrophilic metal (W) atom at the S vacancy forming a dative covalent bond as 

illustrated in Figure 4.10. The W atoms in WS2 possess an unfilled d-orbital, due to the 

energetic gap between the 6s and 5d orbitals. The empty d orbital does not contribute to 

covalent bonding and the band structure within monolayer WS2. The empty orbital 

provides a binding site for OA as a ligand. At vacancy sites, the ligand attachment 

increases localised electron density and provides mitigation for the non-radiative loss 

channels at defect sites which are normally electron deficient. This increased electron 
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density at these sites may contribute towards the observed additional trion formation at 

higher excitation intensities. In addition, binding of oleic acid to the monolayer surface 

provides a hydrophobic long alkyl chain providing a steric and dielectric barrier towards 

other mechanisms of non-radiative loss mechanisms such as interactions with adsorbates 

including oxygen and water. 

 

Figure 4.10: Illustration of S vacancy passivation by OA coordination. OA ligand 

coordinating to tungsten (W) atom at chalcogen vacancy in WS2 monolayer (LHS) and 

resulting PL enhancement (RHS). 

 

4.6 Structural and Electronic Characterisation 

 

 Lastly, we explore what impact the OA treatment has on charge transport and 

structural characteristics in WS2. Figure 4.11.a shows the Raman spectra of a WS2 

monolayer channel in an exemplary transistor before and after OA treatment. The 

conservation of characteristic E1
2g (355 cm-1) and A1g (417 cm-1) vibrational peak 

positions confirms no discernible structural changes due to treatment. Figure 4.11.b-c 

show the transfer characteristics of the same monolayer WS2 field effect transistor (FET) 

before and after OA treatment.  

 After OA treatment the on-state current, measured at back gate voltage VG = 

25 V, consistently improves for all of the devices studied (6 devices in total) from an 

average of 11 nA before to 290 nA after (Figure 4.11.b, inset). The device maintains n-

type behaviour. This confirms that the OA does not significantly dope the monolayer, as 

is the case for TFSI 75. The field effect mobility improves from 5x10-4 cm2/Vs to 1x10-

2 cm2/Vs, a factor of 20, after OA treatment. The absolute values of field effect mobility 
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are likely limited by contact resistance and could be further improved using recent 

developments in contact engineering such as van der Waals contacts.174 

 

Figure 4.11: Structural and electronic characterisation of OA treated WS2 FETs. a) 

Raman spectra of a WS2 transistor before and after OA treatment; b-c) Transfer characteristics 

of a WS2 transistor measured on the same flake before and after OA treatment at VDS=10V. The 

arrows indicate the gate voltage sweep direction. Inset (b): On state current ID at back gate 

voltage VG=25V for 6 devices before (red) and after (blue) OA treatment. Inset (c) Image of 

transistor structure with scale bar measuring 20 µm. 

 The subthreshold swing decreases from 16 V/dec to 8 V/dec (Figure 4.11.b), 

indicating a reduction in the interface charge trap density in the presence of ligands, which 

supports the notion of ligands passivating traps. The increase in drain current may also 

be due to an injection of charges from the electron rich coordinating ligand carboxylate 

group to the conduction band of the electron deficient metal species at a vacancy. The 

transfer characteristics confirm that at VG = 0 V there are mobile electrons available in 

the conduction band to form trions with excitons under high intensity photoexcitation as 

previously described. It should be noted that the contact regions did not need protection 

during oleic acid treatment and all of the devices studied showed similar behaviour 

(Figure 4.11.b, inset). By contrast, TFSI is known to etch several common contact metals 

and protective layers were required to prevent deterioration of the contact region during 

treatment in previous studies.20  When using TFSI without a protective layer a very low 

yield of working devices is obtained. For the single measurable device, a shift from n-

type to p-type field effect behaviour is observed as shown in Figure 4.12, with an initial 

FET electron mobility of 5x10-3 cm2/Vs switching to 2 x10-3 cm2/Vs FET hole mobility 

once treated. This change in transport behaviour is consistent with Lien et al.’s 

observation of hole-doping by TFSI on TMD FETs with palladium (Pd) contacts.75 

Importantly however, the results show that it is possible to dramatically improve the PL 

of monolayer WS2 while improving mobility and reducing charge trapping without 

additional device fabrication steps using OA. 
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Figure 4.12: Electronic characterisation of TFSI treated WS2 FET. Transfer characteristics 

of a WS2 transistor before (blue) and after (green) TFSI treatment, showing a transition from 

intrinsic n-type transport characteristics to p-type characteristics. 

 

4.7 Conclusions 

 

 In conclusion, we have demonstrated the ability to significantly increase PL in 

monolayer WS2 via surface treatment with OA ligands. Statistical analysis shows that OA 

treatment improves spectral uniformity as compared to untreated and TFSI treated 

samples. Steady state excitation intensity and time resolved pump intensity studies reveal 

trap free exciton dynamics, unlike the trap limited dynamics observed in TFSI treated 

samples, 91 which is taken as an indication of defect passivation by the ligands. In support 

of this hypothesis, electrical transport characteristics of OA treated WS2 transistors show 

an increase in field effect mobilities, reduced charge trap density and no detectable 

additional doping upon treatment with OA. At increased excitation densities we observe 

bright trion emission, which is not observed with TFSI treatment. These bright trions may 

be of interest for future spintronics and quantum information applications. Although 

future experimental and theoretical work are required to elucidate the exact chemical 

changes that accompany OA treatment, we hypothesise that the carboxylate group forms 

a dative covalent bond with the electrophilic metal atom (W) at a chalcogen vacancy, 

similar to the passivation of PbS quantum dots with OA. This trap state passivation by 

the ligand forbids non-radiative trap-assisted exciton decay, promoting direct radiative 

band edge recombination. Our results open up a new pathway to passivate and tune 
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defects in monolayer TMDs using simple `wet’ chemistry techniques, allowing for trap 

free electronic properties and bright neutral exciton and trion emission. 

4.8 Methods 

4.8.1 ‘Super-acid’ Bis(trifluoromethane)sulfonimide (TFSI) Preparation 

 

 Following the method described by Amani et al. 20, 2 mg/ml of acid was prepared 

in a nitrogen glovebox by dissolving 20 mg of TFSI crystals in 10 mL 1,2-

dicholoroethane (DCE). Further dilution produced a 0.2 mg/mL solution of acid.  

4.8.2 Steady State Photoluminescence Microscopy 

 

 All samples were characterised via steady state PL to confirm monolayer 

identity. PL spectroscopy was performed using the Renishaw Invia confocal setup 

described in chapter 3, section 3.3.1. A 50× objective (NA = 0.75) was used. The 

diffraction limited beam spot size was estimated as 0.84 µm. PL signals were collected in 

reflection via notch filter and dispersed with a 600 l/mm grating prior to detection. Laser 

power to the sample was measured directly under a 5× objective with a Thorlabs S130C 

photodiode connected to a PM100D optical power meter. 

 PL maps were generated from multiple WS2 monolayers before and after 

respective chemical treatments. For the OA treated sample, 5 monolayers on a single 

substrate were mapped prior to treatment. Following treatment two out of five were 

delaminated, most likely due to surface tension effects exerted by OA. The remaining 3 

treated monolayers were measured for PL and compared to their untreated cases. For 

TFSI, 5 untreated monolayers on a single substrate were mapped and remained intact 

following treatment. Maps were generated with 0.5 µm resolution and 0.5 s integration 

time at 0.75 µW with cosmic ray correction engaged via the microscope’s WIRE 

software.  

 Excitation intensity dependent PL measurements were performed on the WS2 

monolayers deposited on quartz. Care was taken to measure PL in the same locations 

prior to and following treatment. The spatial x, y and z position of the measurement site 

and photodiode were recorded to accurately switch between photodiode and monolayer 

location for each measurement using the WIRE software piezo stage control interface. PL 
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signals were scaled up to 500 s integration time, which was used on the lowest excitation 

intensity measurement. Dark counts were measured for each integration time and 

subtracted from raw PL data.  

 Trion and neutral exciton emission were deconvoluted from OA treated WS2 PL 

signals with dark counts subtracted using a procedure written in Matlab, which 

incorporates the `gauss2’ two Gaussian model fit. Further information on the Gaussian 

model is available on the mathsworks website. 

4.8.3 Steady State Confocal Absorption Microscopy 

 

 The absorption spectra of monolayer WS2 on quartz were measured with a Zeiss 

axiovert inverted microscope described in chapter 3, section 3.3.3. Measurements were 

made in transmission mode using a halogen white light source via a Zeiss EC Epiplan 

Apochromat 50x objective (numerical aperture (NA) = 0.95) forming a collection area 

diameter measured at 10µm, with the field of view and aperture fully opened. Light 

transmitted via the sample was split via beam splitter, with one component directed to a 

CCD camera (DCC3240C, Thorlabs) and the other coupled to a UV600 nm optical fibre 

(200-800 nm spectral range) connected to a spectrometer (Avaspec-HS2048, Avantes).  

4.8.4 Time Resolved Photoluminescence Microscopy 

 

 Time resolved PL measurements were performed on the samples on quartz 

before and after treatment. A PicoQuant Microtime 200 confocal time correlated single 

photon counting (TCSPC) microscope setup was used. Excitation was provided from a 

405 nm pulsed laser via 20× objective (NA = 0.4), with estimated diffraction limited spot 

size of ~1.23 µm. All TRPL data was obtained with 20 MHz repetition rate and 25 ps 

resolution. PL signals were integrated for 300 s and collected in transmission. PL was 

detected with a photomultiplier tube (PMT).  The instrument response function (IRF) was 

measured with a blank quartz substrate. Power was measured using an inbuilt 

photodetector at each intensity and read via the microscope’s software interface. Care was 

taken to ensure that excitation was performed in the same spot on the monolayers prior 

to and following treatment. PL decay data were fitted with the aid of an openly available  

Matlab based deconvolution procedure, fluofit devised by Jorg Enderlein.175 
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4.8.5 Transistor Preparation and Characterisation 

 

 As-exfoliated isolated WS2 flakes on doped Si (used as global back gate) covered 

with 90 nm of thermally grown SiO2 were identified through optical microscopy and PL 

spectroscopy. Electrical contacts were defined by electron beam lithography followed by 

thermal evaporation of indium/gold (In/Au) (10 nm/80 nm). Transfer characteristics were 

measured with a source drain bias of VDS=10 V using a Keithley 4200-SCS parameter 

analyser and probe station under dark ambient conditions. 

4.8.6 FET Raman Characterisation  

 

 Field effect transistors (FETs) were characterised via Raman spectroscopy with 

the Renishaw Invia confocal setup described in section 3.3.1, at 0.7 µW with 50× 

objective. The Raman signal was collected in reflection via notch filter and dispersed via 

2400 l/mm grating prior to detection. 
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5 Giant Photoluminescence 

Enhancement in MoSe2 

Monolayers treated with 

Oleic Acid 

The inherently low photoluminescence (PL) yields in as prepared transition metal 

dichalcogenide (TMD) monolayers are broadly accepted to be the result of atomic 

vacancies (i.e., defects) and uncontrolled doping, which give rise to non-radiative exciton 

decay pathways. While a number of chemical passivation schemes have been successfully 

developed to improve PL in sulphur based TMDs i.e., molybdenum disulphide (MoS2) 

and tungsten disulphide (WS2) monolayers, solution based chemical passivation schemes 

for improving PL yields in selenium (Se) based TMDs are lacking in comparison, with 

only one known study that uses hydrobromic acid (HBr) vapour to improve PL yields in 

chemical vapour deposited (CVD) molybdenum diselenide (MoSe2). In this chapter, we 

demonstrate that treatment with oleic acid (OA) provides a simple wet chemical 

passivation method for selenium based TMDs, particularly monolayer MoSe2, enhancing 

PL yield by an average of 58-fold, while also enhancing spectral uniformity across the 

material and reducing emission linewidth. Excitation intensity dependent PL reveals trap-

free PL dynamics dominated by neutral exciton recombination. Time-resolved PL 

(TRPL) studies reveal significantly increased PL lifetimes, with pump intensity 

dependent TRPL measurements also confirming trap free PL dynamics in OA treated 

MoSe2. Field effect transistors show reduced charge trap density and improved on-off 

ratios after treatment with OA. These results indicate defect passivation by OA, which 

we hypothesise act as ligands, passivating chalcogen defects through oleate coordination 

to molybdenum (Mo) dangling bonds. 

 

 

 



Chapter 5: Giant Photoluminescence Enhancement in MoSe2 Monolayers treated with Oleic Acid 

Arelo Obuadum Abiola Tanoh - June 2021   81 

 

The work detailed in this chapter is adapted from an article published in RSC Nanoscale 

Advances: Tanoh, A. O. A.; Alexander-Webber, J.; Fan, Y.; Gauriot, N.; Xiao, J.; Pandya, 

R.; Li, Z.; Hofmann, S.; Rao, A. Giant Photoluminescence Enhancement in MoSe2 

Monolayers treated with Oleic Acid. Nanoscale Adv. 2021, Advance Article. 

https://doi.org/10.1039/D0NA01014F.[28]28 

 

All the work in this chapter was performed by the author except where stated. Dr. 

Alexander Webber and Dr. Fan prepared MoSe2 transistors, measured their respective 

electronic characteristics and provided an analysis of the resulting data (Section 5.6); N. 

Gauriot built the time resolved photoluminescence (TRPL) setup; Dr. James Xiao 

contributed to the discussion on the surface chemistry that gives rise to observed 

improvements in optical and electronic properties in MoSe2 monolayers when treated 

with OA (Section 5.5, paragraph 2). 

 

5.1 Background and Motivation  

 

 In spite of the range of chemical treatments for sulphur based TMDs as discussed 

and demonstrated in the previous chapter, there has been little success in developing 

treatments for selenium based TMDs i.e.,  molybdenum diselenide (MoSe2) and tungsten 

diselenide (WSe2).
25 For instance, TFSI is also known to quench PL in both these 

materials instead of enhancing it.25 Han et al.92 however achieved 30-fold enhancement 

of defect rich CVD MoSe2 PL at room temperature via exposure to hydrobromic acid 

(HBr) vapour. The authors attributed this outcome to p-doping by the HBr combined with 

structural repair of chalcogen vacancies. Structural repair was reported to occur via the 

replacement of oxygen substitutions by bromine (Br) ions at selenium (Se) vacancies 

which acts to suppress trapped exciton states, thus eliminating non-radiative pathways. 

Recently, high PLQE in as-prepared CVD WSe2 has been demonstrated via solvent 

evaporation-mediated decoupling (SEMD),176 whereby the solvent evaporation process 

assists in the separation of as-grown synthetic monolayers from the underlying substrate. 

This serves as alternative to polymer assisted transfer methods, which involve the use of 

harsh chemicals e.g., hydrofluoric acid (HF). The drastic improvement in optical quality 

https://doi.org/10.1039/D0NA01014F
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compared to standard CVD monolayer transfer techniques is considered to be related to 

overcoming substrate induced mechanical strain, which can introduce band structure 

modifications that reduce PL.176,177 These methods however, do not provide the ease of 

processing that simple solution based chemical approaches do and rely on specific growth 

conditions, restricting their general purpose application. 

 Here, we extend oleic acid (OA) treatment to MoSe2 monolayers. We 

demonstrate that OA treatment of MoSe2 greatly enhances neutral exciton PL, yielding 

trap-free PL dynamics. In addition, OA treated MoSe2 monolayer field effect transistors 

(FETs) exhibit marked improvement in transfer characteristics. The reduced subthreshold 

swing (SS) indicates reduced charge trap density and hence improved current on/off 

ratios. These results highlight the versatility of OA treatment and provides a simple 

solution based chemical passivation protocol for selenide based TMDs. 

5.2 Sample Preparation 

 

 MoSe2 Monolayers were exfoliated from their bulk crystal via the gold assisted 

exfoliation technique 140 described in chapter 3 (section 3.1) onto silicon-silicon dioxide 

(Si-SiO2) with 90 nm oxide layer and thin (170 µm) glass slides. Monolayers on Si-SiO2 

were used for PL maps and electronic characterisation, while those on glass were used 

for excitation dependent PL studies, time-resolved PL (TRPL) measurements and Raman 

microscopy. All measurements were performed at room temperature. After initial optical 

and electronic characterisation of untreated (i.e., `pristine’) monolayers, samples were 

chemically treated. Samples were coated with OA via drop-casting in a nitrogen (N2) 

glovebox and left for ~12 hours on a hot plate set at 25 °C. After OA treatment, samples 

were rinsed with anhydrous toluene and dried with a N2 gun before further optical and 

electronic characterisation. 

5.3 Steady State Photoluminescence 

 

 Figure 5.1.a shows the scatter plot of spectral peak position and corresponding 

PL emission integrals extracted from PL maps of multiple MoSe2 monolayers on Si-SiO2 

substrates before and after OA treatment. Maps were measured at 126 W cm-2. Figure 

5.1.b shows the PL spectra for points on an exemplary monolayer that correspond to the 
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median PL enhancement, Δmedian, where Δ = PL after treatment/ PL before treatment. Table 5.1 

shows statistical information derived from figure 5.1.a, namely: average PL enhancement 

across the monolayers (Δave); standard deviation in PL integral (σPL); average emission 

peak wavelength (λave); and standard deviation in peak wavelength (σλ). The untreated 

case is indicated by (*).  

 

Table 5.1: MoSe2 monolayer PL enhancement statistics derived from PL maps. 

Characteristics prior to treatment marked with (*). 

Δave σPL λave σλ 

58 56%*→ 29% 794 nm*→787 nm 3.31 nm*→1.02 nm 

 

 

Figure 5.1: MoSe2 PL enhancement statistics. a) PL enhancement scatter plot showing 

untreated monolayer PL integrals (blue) and OA treated monolayer PL integrals (red); b) Raw 

PL spectra for points that represent the median PL integrals before (blue) and after OA 

treatment (red) on an exemplary monolayer 

 An average PL enhancement of 58-fold is observed upon OA treatment. The 

standard deviation in PL intensity decreases from 56% to 29%. This demonstrates that 

OA treatment improves overall PL emission and spatial homogeneity in brightness. 

Spectral linewidth narrowing is also observed with an average blue shift λave of 7 nm with 

improved spectral uniformity given by a 69% reduction in σλ from the untreated to the 

treated case. The median PL enhancement was calculated as Δmedian ~ 61-fold.  

 Figure 5.2. shows the normalized median spectra (circles) from Figure 5.1.b, 

with single Gaussian peaks (solid lines) fitted to estimate the change in spectral linewidth 
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between untreated (blue) and treated (red) cases. The spectra show a blue shift in spectral 

peak of 12 nm (798 nm → 786 nm) and reduction in full width half maximum (FWHM) 

of 5.5 nm (27.2 nm →  21.7 nm) from the untreated to treated case. As previously 

observed in OA treated WS2,
27 the spectral blue-shift and line-width narrowing of MoSe2 

PL may be attributed to changes in strain induced by ligand coordination. These results 

however establish of the efficacy of the OA treatment to enhance the PL properties of 

MoSe2.  

 

Figure 5.2: Comparing FWHM of pristine OA treated MoSe2 PL spectra. Normalized 

median spectra (circles) from Figure 5.1.b, with single Gaussian peaks (solid lines) fitted to 

estimate the change in FWHM from untreated (blue) to OA treated (red) case. 

 To probe the exciton dynamics that accompany the PL enhancement, we first 

look at the excitation intensity dependent room temperature PL of a monolayer before 

and after OA treatment. Figures 5.3-5.4 show the results derived from a room temperature 

steady state excitation intensity dependent PL series over five orders of magnitude. 

Intensities range between 0.018 W cm-2 and 909 W cm-2, staying well below 9000 W cm-

2 to avoid thermal damage.20 We first look for any spectral changes that may occur as a 

result of increasing excitation intensity. Figure 5.3.a shows no noticeable changes in 

spectral properties in the untreated monolayer under increasing excitation intensity. When 

treated with OA, Figure 5.3.b shows overall spectral narrowing compared to the untreated 

case, however no additional spectral components are observed, unlike the case of OA 

treated WS2, which shows strong trion contribution at high excitation intensities.27 
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Figure 5.3: MoSe2 PL excitation intensity spectra. a) untreated and; b) OA treated MoSe2 

 Figure 5.4.a shows a log-log plot of PL integral as a function of excitation 

intensity for untreated (blue) and treated (red) samples, derived from the spectra in Figure 

5.3. The gradients (m) of the series represent the exponent to the power law fit, I = Pm.25 

As such the m values indicate the exciton recombination regimes observed. Figure 5.4.b. 

shows the ratio of PL to excitation intensity (γ), which serves as a relative PLQE value.  

 

Figure 5.4: MoSe2 PL excitation intensity series. a) PL excitation intensity series for 

untreated (blue) and OA treated (red) monolayers; b) Ratio of PL integral to excitation intensity 

i.e., relative PLQE (γ) as a function of excitation intensity for untreated (blue) and OA treated 

(red) monolayers. 

 At low intensities, the untreated sample shows slight super-linear behaviour (m1 

~ 1.05), which is indicative of some degree of exciton trapping27 between 0.06 W cm-2 

and 0.8 W cm-2. This suggests a lack of non-radiative exciton-exciton annihilation, as 

given by the little variation γ ratio values between 1 W cm-2 and 10 W cm-2, albeit with 

low PLQE. Beyond 10 W cm-2, the trend becomes sublinear (m2 ~ 0.76), indicating the 

onset of non-radiative exciton-exciton annihilation.20,21,25,75 However, non-radiative trap 
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assisted recombination processes dominate throughout the series, given the low PLQE of 

untreated TMD monolayers.20,21,23–25,27,66,75,84,89    

 When treated with OA, the emission follows a sub-linear power law exponent of 

m1 ~ 0.89 even at lower intensities, signifying the immediate onset of non-radiative 

exciton-exciton annihilation and becomes more drastic at higher excitation intensities 

where m2 ~ 0.73. These trends are reflected in the γ ratio which shows a general gradual 

reduction between 0.02 W cm-2 and 0.76 W cm-2 before sharply decreasing thereafter due 

to intensified exciton-exciton annihilation. The immediate onset of exciton-exciton 

annihilation seen in the OA treated sample is consistent with trap-free exciton diffusion, 

similar to what has been observed with OA treated WS2.
27 The increase in relative PLQE, 

γ, by an average factor of ~17 between 0.02 and 0.1 W cm-2 also confirms significant 

reduction in non-radiative recombination via trap states. 

 We attempt to characterise the exciton species that contribute to PL of OA 

treated MoSe2. Figure 5.5 a-c shows the results obtained from deconvoluting each PL 

spectrum in the OA treated MoSe2 excitation intensity series (Figure 5.3.b). As per 

previous studies27,53,59 Gaussian fits were used to identify the emissive excitonic species 

in the spectra. All fits are shown in Figure 5.5. Figure 5.6.a shows the raw PL spectrum 

(red) taken in the high intensity regime (455 W cm-2), where trion emission has been 

observed in OA treated WS2 monolayers.27 The dashed maroon and pink Gaussian fits 

represent the neutral exciton (X) and a low energy species (ζ) respectively. Figure 5.6.b 

shows the excitation intensity series of X and ζ. It is clear that assigned neutral exciton 

(X) and lower energy species (ζ) obey the same recombination dynamics, with the same 

power law exponents (m) seen in Figure 5.4.a. Figure 5.6.c shows the ratio of ζ to X as a 

function of excitation intensity, which remains fairly constant and < 1 throughout the 

series.  
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Figure 5.5: Two Gaussian model fits of low energy species (ζ) and neutral exciton (X) PL 

peaks in OA treated monolayer MoSe2 PL spectra 

 

 

Figure 5.6: Exciton species characterisation in OA treated MoSe2. a) Raw PL spectrum of 

OA treated MoSe2 (red) taken in the high intensity regime (455 W cm-2). Dashed maroon and 

pink Gaussian fits represent the neutral exciton (X) and a low energy species (ζ) respectively; 

b) Excitation intensity series of neutral exciton (X) and low energy species (ζ); c) Ratio of ζ to 

X as a function of excitation intensity.  
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The constant ζ/X < 1 ratio indicates the dominance of neutral excitons compared to low 

energy species such as trions58 throughout the series. Trions in particular, evolve from the 

binding of neutral excitons with free photoionized charges and have been characterised 

in room temperature WS2 PL measurements, which show the growth of a broadening and 

red-shifting low energy feature as a function of increasing excitation intensity.27,53,58,59 

While strong neutral exciton contributions are observed throughout the series, easily 

discernible trion evolution is not apparent in both pristine and OA treated MoSe2 PL 

spectra. A recent study on exciton and trion dynamics in MoSe2 concluded that trion 

formation is suppressed at room temperature due to changes in localisation effects.178 To 

this end, OA treatment simply improves neutral exciton PL by reducing the density of 

non-radiative channels which may take the form of trap states caused by chalcogen 

vacancies. As per the work cited,178 identifying the effects of OA treatment on trion 

emission on MoSe2 would require low temperature PL studies. 

5.4 Time Resolved Photoluminescence 

 

 To gain further insights into the exciton dynamics present in OA treated MoSe2 

we employ time-resolved photoluminescence (TRPL) microscopy. Figure 5.7 shows 

normalized PL decay signals at room temperature under comparable low intensity 550 

nm, 5 MHz pulsed laser excitation. Pulsed excitation intensities used were 0.054 W cm-2 

and 0.064 W cm-2 for pristine (blue) and OA treated (red) cases respectively. Both signals 

are best described by a bi-exponential decay model (black dashed lines) consisting of a 

fast τ1 and slow τ2 components. The pristine sample (blue) PL decays with τ1 ~ 1.07 ns 

and τ2 ~ 3.06 ns. For the OA treated case (red), PL lifetimes are extended by a factor of 

3x and 3.8x versus the pristine sample for fast and slow decays respectively with τ1 ~ 3.3 

ns and τ2 ~ 12.07 ns.  The overall increase in PL lifetimes due to OA treatment versus the 

pristine case reveals a suppression of non-radiative decay channels. 
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Figure 5.7: Transient PL spectra of pristine and OA treated MoSe2. Pristine (blue) and OA 

treated (red) MoSe2 monolayers with bi-exponential decay fits (black dashed lines) measured 

at pump intensities; 0.054 W cm-2 (Pristine sample) and 0.064 W cm-2 (OA sample) with 550 

nm, 5 MHz pulsed excitation. 

 Figure 5.8.a-b shows time-resolved PL decay spectra at all fluences measured 

for each untreated (blue) and OA treated (red) samples with bi-exponential decay fits 

(dashed lines). Decay fits provided time constants (τ) shown in Figure 5.9 as a function 

of initial carrier concentration (no). Initial carrier concentrations were computed using 

openly available MoSe2 steady state absorption data.28 

 

Figure 5.8: Transient PL series spectra of pristine and OA treated MoSe2. a) TRPL signal 

of pristine MoSe2 with bi-exponential decay fits (red dashed lines); b) TRPL signal for OA 

treated MoSe2 with bi-exponential decay fits (blue dashed lines). 

 Figure 5.9.a shows the variation in fast decay component τ1 as a function of 

initial carrier concentration n0 over four orders of magnitude. Figure 5.9.b shows the 
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equivalent data for slow decay component, τ2. The excitation intensities used fall within 

the range used for the steady state excitation intensity series shown in Figure 5.4.   

 

Figure 5.9: Transient PL series of chemically treated WS2. a) Variation of fast PL decay 

component, τ1, with initial carrier concentration and pump intensities (W cm-2); b) Variation of 

slow PL decay component, τ2, with initial carrier concentration and pump intensities (W cm-2). 

 The pristine case shows very little variation in τ1 over the range of n0, which 

indicates exciton trapping. In contrast, OA treated MoSe2 shows a general reduction in τ1 

over the n0 range measured. This lies in agreement with the sub-linear trend measured 

within the same excitation intensity regime shown in Figure 5.4.a, which points to the 

immediate onset of exciton-exciton annihilation at low excitation fluences. Accordingly, 

the observed reduction in τ1 as a function of n0 in the OA treated sample implies non-trap 

limited movement of excitons and thus provides further evidence for trap state passivation 

due to OA treatment. For slow decay component, τ2, the pristine case shows a general 

increase in lifetime as a function of n0 in accordance with trap state filling. Conversely, 

the OA treated sample shows a reduction τ2 as a function of no, following a similar trend 

to its fast component, τ1. 

 In summary, the steady state PL measurements presented shows that OA 

treatment greatly enhances the PL of monolayer MoSe2 and its optical quality in terms of 

emission linewidth and spatial homogeneity in brightness. Steady state excitation 

intensity dependent PL and TRPL studies reveal trap-free neutral exciton movement in 

OA treated MoSe2. The observed enhanced PL and trap free exciton annihilation 

dynamics combined support the hypothesis of true defect passivation by OA. 
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5.5 Discussion on Surface Chemistry 

 

 The exact surface chemistry that gives rise to the observed optical improvement 

is not fully clear at the moment and future experimental and theoretical studies will be 

required to understand the underlying mechanism. We however consider that the 

treatment mechanism would be linked to passivation of chalcogen defects through oleate 

coordination to Mo dangling bonds as illustrated in Figure 5.10. We however note that 

Raman spectra of pristine and OA treated MoSe2 in Figure 5.11 show no distinguishable 

structural changes. Chemical passivation of these vacancy sites suppresses excitonic trap 

states, resulting in vastly improved PL efficiency due to band-edge recombination. In 

addition, formation of an OA layer with bulky alkyl chains may provide an insulating 

encapsulant of the TMD monolayer analogous to hBN encapsulation, resulting in better 

protection from reactive species formed from atmospheric oxygen and water, and external 

trap states introduced by adsorbants.  

 

 

Figure 5.10: Illustration of Se vacancy passivation by OA coordination. OA ligand 

coordinating to Molybdenum (Mo) atom at chalcogen vacancy in MoSe2 monolayer (LHS) and 

resulting (median) PL enhancement (RHS). 
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Figure 5.11: Raman characterisation of OA treated MoSe2. Pristine (blue) and OA treated 

(red) monolayers deposited on glass substrate. 

 

5.6 Electronic Characterisation 

 

 Finally, to assess the impact of OA treatment on the electronic properties of 

monolayer MoSe2, we test back-gated field effect transistors (FETs). Figure 5.12.a shows 

the predominantly n-type transfer characteristics of MoSe2 before OA passivation, 

consistent with previous reports.179 After OA treatment n-type transfer characteristics are 

preserved. There is a relatively small threshold voltage (Vth) shift from Vth,Untreated = 4.8 ± 

1 V to Vth,OA = 1.3 ± 2.3 V (Figure 5.12.b) indicating no substantial change in doping 

induced by the OA treatment. After OA treatment, devices consistently show an improved 

subthreshold swing (SS) from SSUntreated = 4 ± 0.9 V/dec to SSOA = 1 ± 0.1 V/dec (Figure 

5.12.c), which indicates a reduction in interface charge trap density and is consistent with 

the notion of defect passivation by OA.  A higher on-state current, due to reduced charge 

trapping, and larger off-state resistance after OA treatment leads to an improved on-off 

current ratio up to ~5x104
 (Figure 5.12.d). 
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Figure 5.12: Electronic characterisation of OA treated MoSe2 FETs. a) Transfer 

characteristics of the same back-gated monolayer MoSe2 field effect transistor before (blue) 

and after (red) OA treatment. b) Threshold voltage, c) Subthreshold swing, d) On-off current 

ratio for three MoSe2 transistors before (blue) and after (red) OA treatment. 

 

5.7 Conclusions 

 

 In conclusion, we have established OA surface treatment of MoSe2 as an 

effective means of achieving drastically improved PL yield and trap free PL dynamics as 

compared with untreated monolayers. PL statistics reveal that OA treatment yields 

monolayers of improved optical quality by way of bright spatially homogenous PL with 

narrow spectral linewidth. A steady state excitation intensity dependent PL series reveals 

significantly improved `PLQE’ with trap-free exciton dynamics, which is taken as initial 

evidence of passivation of non-radiative trap states by OA ligands. Analysis of the 

excitonic species present in the excitation intensity series verifies dominant neutral 

exciton recombination in OA treated MoSe2 under low to high excitation intensities. 

Consistent with improved steady state PL, time resolved PL studies reveal significantly 

improved PL lifetimes. The reduction in PL lifetimes as a function of initial carrier 

concentration also indicates trap free exciton movement, which further supports the 
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hypothesis of PL enhancement as a result of ligand passivation. By way of surface 

chemical interaction between OA and monolayer MoSe2, we hypothesise that the OA 

ligands coordinate to Mo dangling bonds at Se vacancies, which are known to be exciton 

trap states, and thus passivating them and yielding increased radiative efficiency. The 

insulating ligands may also protect the monolayer from atmosphere induced doping and 

surface induced strain, thus acting as an encapsulant, which may also contribute the PL 

linewidth narrowing. OA treated MoSe2 based FETs show no significant additional 

doping. However, we observe a considerable improvement in subthreshold swing with 

orders of magnitude increase in on-off ratio, which provides further evidence of trap or 

defect passivation by OA. In essence, the result shows that OA treatment is an effective, 

simple and versatile `wet’ chemistry technique than can improve the PL characteristics 

of a selenide based TMD. Combined with previous studies on sulphur based TMDs, these 

results establish the ‘ligand’ based passivation approach as a universal defect treatment 

protocol for both sulphide and selenide based TMDs. 

5.8  Methods 

5.8.1 Steady state Photoluminescence Microscopy 

 

 PL spectroscopy was performed on the Renishaw Invia confocal setup described 

in chapter 3, section 3.3.1, via 50× objective (NA = 0.75). Signals were collected in 

reflection via notch filter. The diffraction limited beam spot size was estimated as 

0.84 µm. PL signal was dispersed via a 600 l/mm grating prior to detection with inbuilt 

CCD detector. Laser power was measured directly via 5× objective with a Thorlabs 

S130C photodiode and PM100D power meter. 

 PL maps were generated from multiple MoSe2 monolayers before and after OA 

treatment. Maps were generated with 1 × 1 µm resolution and 0.5 s integration time with 

0.7 µW laser power. A single Gaussian fit from the standard peak fit library in Origin lab 

was used in Figure 5.2 to estimate changes in FWHM between untreated and OA treated 

MoSe2 PL signals. 

 Steady state intensity dependent PL measurements were performed on the 

MoSe2 monolayers on glass slide. Care was taken to measure PL in the same locations 

prior to and following treatment. The spatial x, y and z locations of the measurement site 

and photodiode were recorded to accurately switch between photodiode and monolayer 
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location for each PL measurement using the WIRE software piezo stage control interface. 

PL signals were scaled up to 500 s integration time as used on the lowest excitation 

intensity. Dark counts were measured for each measurement in the series with the same 

integration time and subtracted from raw PL data.  

 Exciton species in Figures 5.5-5.6 were deconvoluted from OA treated MoSe2 

PL signals with dark counts subtracted using a procedure written in Matlab, which 

incorporates the `gauss2’ two Gaussian model fit. Further information on the Gaussian 

model is available on the mathsworks website. 

5.8.2 Time resolved Photoluminescence Microscopy 

 

 TRPL measurements were performed with a custom-built inverted PL 

microscope setup equipped with a motorized piezo stage. Excitation was provided by a 

pulsed super continuum white light source (Fianium Whitelase) filtered via a Bentham 

TMc 300 monochromator. A 550 nm pulsed laser provided sample excitation via a 60x 

oil objective. This produced a 10 µm diameter confocal laser spot on the sample. The 

laser spot size was measured using the image created on an EMCCD camera 

(Photometrics QuantEMTM 512SC). The laser repetition rate was set to 5 MHz with 11.4 

ps time steps to obtain PL decay data. The MoSe2 PL was collected using a MPD visible 

single photon avalanche diode (Vis-SPAD) via 750 nm long pass and 900 short pass 

filters, completely filtering out laser excitation and allowing for collection of MoSe2 PL 

only. Further precaution was taken to remove any long wave component of the excitation 

line using a 650 nm short pass filter. All signals were scaled up to 3000 s, which was used 

in the lowest excitation intensity measurement. Laser power was measured in the 

excitation line using a Thorlabs S130C photodiode and PM100D power meter. Laser 

excitation power was regulated using a series of neutral density filters. The instrument 

response function was measured with a blank glass cover slide as used for the sample.  

 PL decay time constants in Figure 5.9 were fitted using a model developed in 

Origin, which consists of a Gaussian (as the IRF) convoluted with a bi- exponential decay. 
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5.8.3 Raman Microscopy 

 

 MoSe2 monolayers on thin glass cover slides were characterised via Raman 

spectroscopy using a Renishaw Invia confocal setup similar to what is described in 

chapter 3, section 3.3.1. Excitation was provided using a 530 nm CW laser via 50× 

objective (NA = 0.75), producing an estimated diffraction limited beam spot size of 0.86 

µm. The Raman signal was collected in reflection via notch filter and dispersed with a 

1800 l/mm grating prior to detection with an inbuilt CCD camera. 

5.8.4 Transistor fabrication and characterisation 

 

 After exfoliation and transfer onto Si - SiO2 (90nm) isolated monolayer MoSe2 

flakes were identified and electrodes with a typical channel length of 4µm were patterned 

using e-beam lithography and thermal evaporation of Pd:Au (20nm:80nm) followed by 

lift-off in acetone. Transfer characteristics were measured using a Keithley 4200 SCS 

connected to a probe station. The global back-gate was swept from negative to positive 

voltages and the current was measured under a source-drain bias of 5V. 
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6 Directed Energy Transfer 

from Monolayer WS2 to 

Near-Infrared Emitting 

PbS-CdS Quantum Dots 

Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and 

inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer useful charge 

and energy transfer pathways which could form the basis of future optoelectronic devices. 

To date, most has focused on charge transfer and energy transfer from QDs to TMDs, i.e., 

from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D 

material, specifically exploring energy transfer from monolayer tungsten disulphide 

(WS2) to near infrared (NIR) emitting lead sulphide-cadmium sulphide (PbS-CdS) QDs. 

The high absorption cross section of WS2 in the visible region combined with the 

potentially high photoluminescence (PL) efficiency of PbS QD systems, make this an 

interesting donor-acceptor system that can effectively use the WS2 as an antenna and the 

QD as a tuneable emitter, in this case downshifting the emission energy over hundreds of 

milli electron volts (meV). We study the energy transfer process using photoluminescence 

excitation (PLE) and PL microscopy, and show that 58% of the QD PL arises due to 

energy transfer from the WS2. Time resolved photoluminescence (TRPL) microscopy 

studies show that the energy transfer process is faster than the intrinsic PL quenching by 

trap states in the WS2, thus allowing for efficient energy transfer.  Our results establish 

that QDs could be used as tuneable and high PL efficiency emitters to modify the emission 

properties of TMDs. Such TMD/QD heterostructures could have applications in light 

emitting technologies, artificial light harvesting systems or be used to read out the state 

of TMD devices optically in various logic and computing applications. 
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The work detailed in this chapter is adapted from an article published in ACS Nano: 

Tanoh, A. O. A.; Gauriot, N.; Delport, G.; Xiao, J.; Pandya, R.; Sung, J.; Allardice, J.; Li, 

Z.; Williams, C. A.; Baldwin, A.; Stranks, S. D.; Rao, A. Directed Energy Transfer from 

Monolayer WS2 to Near-Infrared Emitting PbS-CdS Quantum Dots. ACS Nano. 2020, 14 

(11), 15374–15384. https://doi.org/10.1021/acsnano.0c05818. [29]29 

 

All the work in this chapter was performed by the author except where stated. Nicolas 

Gauriot built photoluminescence excitation (PLE) setup and devised dedicated PLE data 

logging software/ control interface in Python; Dr. James Xiao synthesised colloidal 

quantum dots (QDs); Dr. Delport and Alan Baldwin measured TRPL and; Cyan Williams 

performed confocal absorption microscopy on monolayer WS2. 

 

6.1 Background and Motivation 

 

 Monolayer transition metal dichalcogenides (TMDs), which are derived from 

their layered bulk crystals via dry mechanical cleavage1 or liquid phase exfoliation180,143 

have attracted a great deal of research interest due to their distinctive optical, electronic 

and catalytic properties.6,3,157 Monolayer TMDs can also be obtained via epitaxial growth 

methods, in particular chemical vapour deposition (CVD),159,77 which is an area of 

ongoing research. A number of monolayer TMDs such as tungsten disulphide (WS2) have 

a direct optical gap.3 This property compounded with high absorption coefficients, high 

carrier mobilities3 and potentially high photoluminescence quantum efficiency20,21,27 

(PLQE) promise great potential for their application in optoelectronic devices namely 

photodetectors, light emitting diodes (LEDs) and photovoltaics (PV).181 The reduced 

dielectric screening in the monolayer limit compared to their bulk counterparts gives rise 

to tightly bound electron-hole pairs (i.e. excitons) with binding energies of the order of 

hundreds of meV at room temperature.56,160 As a consequence, monolayer TMDs provide 

a convenient medium to study diverse excitonic species that arise via exciton-exciton or 

exciton-charge interaction.56,2,62,44 Alternatively, these tightly bound excitons can be 

funnelled to other fluorescent media where they recombine radiatively at lower energy, 

thus tuning the emission properties of TMD excitons. Nanocrystal quantum dots (QDs), 

https://doi.org/10.1021/acsnano.0c05818
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for example, provide a convenient, colour tuneable high PLQE emission medium40,182 to 

which transferred 2D TMD excitons might be funnelled. 

 The exciton funnelling i.e., nonradiative energy transfer (ET) process can occur 

via two main mechanisms, namely  Förster resonance energy transfer117 (FRET) and 

Dexter energy transfer (DET).116 FRET is a long-range process (~1-11 nm)117 that occurs 

via dipole-dipole coupling, where the electromagnetic near-field of an oscillating 

transition dipole in the donor induces a transition dipole in the acceptor. Consequently, 

FRET between donor and acceptor systems is dependent on their physical separation and 

to a large extent, the overlap of emission and absorption spectra.116,117,32 On  the other 

hand, DET involves direct simultaneous tunnelling of electron hole pairs from the donor 

to acceptor due to donor-acceptor charge orbital overlap. As such, DET is strongly 

distance dependent and requires extremely close proximity between donor and acceptor 

molecules (≤ 1nm).116,183  

 A considerable amount of research into 2D-QD heterostructures has focused on 

interfacial charge transfer (CT) between QDs and monolayer TMDs for applications in 

photodetectors108–115 and phototransistors.106,107 To date, studies on energy transfer in 2D-

QD heterostructures for light harvesting and light sensing applications have mainly 

focused on 0D→2D exciton transfer where monolayer TMDs or graphene are used as 

efficient exciton sinks to which optically or electrically generated excitons from QD 

emitters are non-radiatively transferred.30–36,114  

 Here, we demonstrate efficient ET from 2D TMDs to 0D QDs. We present a 

down–shifting heterostructure system, where monolayer tungsten disulphide (WS2) acts 

as an antenna from which optically generated excitons are funnelled to lower energy lead 

sulphide-cadmium sulphide (PbS-CdS) near infrared (NIR) QD emitters. 

Photoluminescence excitation (PLE) studies confirm 2D→0D ET. Probing the underlying 

photophysics via time resolved optical microscopy reveals a fast, non-radiative ET 

process that out-competes intrinsic exciton trapping in monolayer WS2. These results 

establish ET from 2D TMDs to 0D QDs as an efficient means to control excitonic 

behaviour, allowing for tuning of emission energies and construction of artificial light-

harvesting systems.     
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6.2  Heterostructure Preparation 

 

 Figure 6.1 (1-6) shows the sample fabrication process from the initial exfoliated 

monolayers to the heterostructure. Monolayer WS2 on thin (170 µm) 22 mm x 22 mm 

glass slides were exfoliated via the gold assisted technique (see Chapter 3, section 

3.1.1).140 A single QD layer was deposited onto the sample surface using a conventional 

layer-by-layer method (1-3).184-185 Sample preparation is detailed as follows: 

 

1) In a nitrogen (N2) glovebox, the monolayer samples were spin coated at 

1000 rpm for 50 seconds with 200 µL of 20 mM 1,3 benzene dithiol 

dissolved in acetonitrile to forma a linker layer. The choice of ligand 

ensures strong adhesion of QDs. 

 

2) A dilute 200 µL suspension of 0.5 mg/ml oleic acid (OA)-capped PbS-

CdS QDs in toluene was spin coated at 500 rpm for 60 s;  

 

3) Excess nanocrystal and ligand material was rinsed off by spin coating 

toluene on the sample at 500 rpm for 60 s. A waiting time of 5 minutes 

was observed between steps.  

 

4) The sample was encapsulated using a top 18 mm x 18 mm thin glass slide 

with double sided tape at the edges to hold the top slide in place. Gaps 

between the bottom and top glass slides were sealed with epoxy.  

 

5) The encapsulated sample was left to dry over 24 hours in the N2 

environment. 
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Figure 6.1: Heterostructure preparation. Cartoon Illustration of heterostructure sample 

fabrication process in a nitrogen environment.  

   

6.3 Steady State Optical Characterisation 

 

 We first investigate the steady state optical properties of the heterostructure and 

its constituent materials. Figure 6.2.a shows the absorption and PL spectra of a WS2 

monolayer. The absorption spectrum of the WS2 monolayer (light blue circles) clearly 

reveals `A’, `B’ and `C’ excitonic peaks positioned at 2.0 eV (617 nm), 2.4 eV (512 nm) 

and 2.88 eV (430 nm) respectively. The PL spectrum (dark blue dashed line) is well 

overlapped with the `A’ exciton band. The absorption and PL spectra of the QDs in 

colloidal suspension are plotted in Figure 6.2.b. The colloidal PbS-CdS absorption 

spectrum (solid black line) reveals an absorption peak at 1.76 eV (704 nm) while the PL 

spectrum (black dotted line) exhibits the red-shifted peak position at 1.38 eV (900 nm). 

Interestingly and importantly, the WS2 PL lies firmly within PbS-CdS absorption 

spectrum, which is a key requirement for efficient FRET. Consequently, PbS-CdS QDs 

and WS2 monolayer were carefully chosen as an efficient energy transfer pair. 
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Figure 6.2: Steady state optical characterisation of heterostructure components. a) 

Monolayer WS2 normalized absorption (light blue circles with solid dark blue line as guide to 

eye) and PL (dashed dark blue line); b) Colloidal PbS-CdS normalized absorption (black solid 

line) and PL (black dashed line) spectra. 

 An additional factor considered was the absorption cross sections of the 

constituent donor and acceptor materials. The TMD monolayer’s role as an optical 

antenna and exciton generation medium requires that it has a higher absorption cross 

section compared to the nanocrystal emitter. Whereas the absorption cross sections of 

monolayer tungsten disulphide (WS2) and other TMDs in the visible region are not very 

well documented, the absorption coefficient σgs of few layer (1-3 monolayers) MoS2 

obtained from a study on non-linear optical performance of MoS2 films by Zhang et al180 

gives a value of σgs = 4.7 x 10-15 cm2 for 515 nm pulsed excitation. We estimate the 

absorption cross section for a MoS2 monolayer by simply dividing σgs = 4.7 x 10-15 cm2 

by the maximum number of layers (n = 3) in the sample quoted to give σgs ≈ 1.6 x 10-15 

cm2 at 515 nm. We note that the absorption of monolayer WS2 is similar in magnitude to 

MoS2 at 515 nm25 and hence estimate that their absorption cross sections are comparable 

at 515 nm. Moreover, considering the transition from indirect to direct optical gap from 

few layer to monolayer TMD, the actual value of absorption cross section should exceed 

this estimation. Following Cademartiri et al.,186 we compute the absorption cross section 

of a single QD via Equation 6.1 using the molar extinction coefficient,  εA  [M-1 cm-1] 

estimated later in section 6.3.1. Units are provided in square brackets for clarity.  

 𝜎 =  
2303 [𝑐𝑚3𝐿−1]

𝑁𝐴 [𝑚𝑜𝑙−1]
𝜀𝐴(𝜆) [𝐿 𝑚𝑜𝑙−1𝑐𝑚−1] (6.1) 
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Where NA is the Avogadro number. This yields a value of σ ≈ 8.74 x 10-17 cm2 at 515 nm. 

Given the estimations made and the shape of the monolayer WS2 absorption spectrum 

(Figure 6.2.a), we consider that the WS2 absorption cross-section exceeds that of the QDs 

by a large factor in the ~ 400 nm – 650 nm range. 

  Figure 6.3 illustrates confocal PL measurements performed with the sample 

placed upside down. This was done to excite the monolayer WS2 directly via the thin 

glass slide and avoid shadowing by the QDs altogether. Optically addressing the 

monolayer first ensures efficient generation and funnelling of TMD excitons to the QDs 

as illustrated in the inset image. This results in considerable QD PL enhancement in the 

heterostructure as subsequently discussed in detail for Figure 6.4. Exciting the QDs 

directly would otherwise cause sub-optimal exciton generation and funnelling due to 

absorption of a proportion of incoming photons by the shadowing QDs, amounting to less 

prominent QD PL enhancement.  

 

Figure 6.3: Confocal PL characterisation of heterostructure. Cartoon Illustration of initial 

confocal PL characterisation in air via 50x objective. Sample is flipped to avoid shadowing by 

QDs, and to ensure efficient generation and transfer of 2D excitons to the QD. Inset image 

depicts excitation energy funnelling from WS2 monolayer to PbS-CdS QD.  

 The steady state confocal PL spectra of QD film on the bare substrate (black) 

and the heterostructure (red) are plotted in Figure 6.4. While the QD film on the bare 

substrate shows a broad Gaussian PL peak in the NIR region centred at 1.38 eV (900 nm), 

the heterostructure exhibits two distinctive PL peaks i.e., the narrow WS2 PL peak in the 

visible region centred at 2.0 eV (~619 nm) and a broad QD PL peak in the NIR region at 

1.42 eV (870 nm). We note that the QD PL spectrum of the heterostructure is blue-shifted 

by 30 nm and enhanced by a factor of 2.6. The observed blue shift in the heterostructure’s 

QD PL on the WS2 monolayer compared to the bare substrate may be attributed to the 

following possibilities: i) a difference in dielectric environment between the surfaces; ii) 

a difference in QD aggregation concentration of the QD film between the surfaces or; iii) 
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a combination of both factors. We also note that it is possible that the PL yield of the QDs 

on the WS2 monolayer is higher than those on the bare substrate as a result of the 

aforementioned factors. Whereas ascertaining the nature of the heterostructure’s surface 

morphology and dielectric properties could offer additional explanation towards the 

observed changes in QD emission properties between the bare substrate and TMD 

monolayer surface, the scope of this work is confined to investigating the possibility of 

ET of WS2 excitons to the QDs as evidenced by the QD PL enhancement on the 

monolayer surface. 116 Hence, we seek to verify the notion of 2D→ QD ET via further 

optical characterisation studies. 

 

Figure 6.4: Heterostructure steady state PL spectrum. PL spectra of WS2/PbS-CdS 2D-QD 

heterostructure (red) and PbS-CdS film (black) measured with 514.5 nm CW laser at 80.2 W 

cm-2. 

 Figure 6.5.a shows the optical micrograph (left) of a WS2 flake and confocal 

NIR (QD) PL map (right) from the same region obtained upon excitation at 514.5 nm. 

The colour bar represents the PL integral in the 780 - 960 nm spectral range. Enhanced 

NIR PL from QDs is obtained in the vicinity of the monolayer (dashed line) whereas QD 

PL in the bulk flakes (solid line) is quenched. The difference in NIR PL intensity between 

monolayer and bulk flakes suggests that the WS2 monolayer serves as the ET donor, while 

the bulk quenches excitons. Figure 6.5.b. shows the QD PL spectra from the 

heterostructure (red) and bare substrate (black) extracted from points marked `x’ on the 

QD PL map in Figure 2.a., RHS. Lime green dashed lines are single Gaussian peak fits. 

The QD PL spectrum of the heterostructure is blue-shifted by 47 nm compared with the 
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QD on bare substrate. We also observe a QD PL enhancement factor of 5.2, which we 

attribute to energy funnelling from the directly excited WS2 monolayer. 

 

Figure 6.5: QD PL enhancement on WS2. a) Optical micrograph of a WS2 flake (left) 

showing monolayer (red dotted outline), multilayers (blue outline) and bulk crystal (black 

outline) with corresponding confocal NIR PL map of QD emission from the heterostructure 

(right) measured with 514.5 nm CW laser at 80.2 W/cm2. RHS scale bar represents 50 µm; b) 

QD PL spectra from heterostructure (red) and bare substrate (black) taken from points marked 

`x’ in Figure 6.5.a, RHS. Green dashed lined represent single Gaussian peak fits; 

To delve into the possibility ET from the WS2 monolayer to PbS-CdS QDs, we 

employ wide-field photoluminescence excitation (PLE) microscopy. We recorded the PL 

intensity integrated over the NIR region (800-1000 nm), exclusively corresponding to PL 

from the QDs, and scanned the excitation wavelength across 560-680 nm, mainly 

resonant to WS2 at low fluence (c.a., ~0.006 µJ/cm2 at 620 nm). The PLE spectra shown 

in Figure 6.6.a were taken on the heterostructure (red) and in an area with QDs only 

(black) away from the heterostructure. We note that the PLE data is normalized with 

respect to the mean values at wavelengths non-resonant to the WS2 donor (670-700 nm) 

to account for the increase in QD emission due to resonant 2D→QD ET only, discounting 

the effects of other previously discussed factors that may contribute to improved QD 

emission on the heterostructure. The unscaled PLE data is shown in Appendix 1. 

 Unlike the PLE spectrum of QD only area (black), the PLE spectrum of the 

heterostructure (red) clearly reveals the signature `A’ excitonic peak centred at 616 nm 

(~2.0 eV), indicative of a significant contribution of excitation from the underlying WS2. 

Furthermore, as shown in Figure 6.6.b, the resulting PLE spectrum (red line) obtained by 

subtracting the normalized QD PLE spectrum (Figure 6.6.a, black) from that of 
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heterostructure (Figure 6.6.a, red) is almost perfectly overlapped with a typical WS2 

absorption spectrum (blue circles). This is strong evidence for energy transfer from WS2 

monolayer to the QDs. 

 

Figure 6.6: Heterostructure confocal PLE spectra. a) Normalized PLE spectra of 

heterostructure (red) and QD (control) obtained via scanning wavelengths about the WS2 `A’ 

exciton (616 nm) and detecting QD PL (900 nm). PLE spectra normalized by the average signal 

between 670 nm and 700 nm; b) Normalized `subtract’ (red) signal derived via subtraction of 

QD PLE signal from heterostructure PLE signal in Fig. 6.6.a and overlapped with typical WS2 

absorption spectrum (blue circles).  

 To quantify ET from WS2 monolayer to QD, we calculated the 

photoluminescence contribution, PLctr as a function of excitation wavelength using PLE 

data shown in Figure 6.6.a. We derive PLctr using the key underlying assumption of 

constant QD PLQE as informed by Vavilov’s rule,187 which states that PLQE is 

independent of excitation wavelength. This is regarded as a reasonable assumption for 

the wavelength range presented in the PLE data shown in Figure 6.6 (560 – 680 nm). We 

consider the photoluminescence excitation (PLE) of the QD at resonant and non-resonant 

excitation wavelengths to the underlying WS2 monolayer i.e., PLEλ* and PLEλ 

respectively. In each case the PLE from the QD emission detection is given by equations 

6.2 and 6.3: 

𝑃𝐿𝐸𝜆∗ =
𝑃𝐿𝜆∗

𝜑𝜆∗
= 𝐴𝑏𝑠𝜆∗ × 𝑃𝐿𝑄𝐸 (6.2) 

 

𝑃𝐿𝐸𝜆 =
𝑃𝐿𝜆

𝜑𝜆
= 𝐴𝑏𝑠𝜆 × 𝑃𝐿𝑄𝐸 (6.3) 
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Where φ and Abs are the number of photons injected per second and absorption of the 

QDs respectively. By dividing equation 6.2 by equation 6.3 we obtain: 

𝑃𝐿𝐸𝜆∗

𝑃𝐿𝐸𝜆
= (

𝜑𝜆

𝜑𝜆∗
)
𝑃𝐿𝜆∗

𝑃𝐿𝜆
= (

𝐴𝑏𝑠𝜆∗

𝐴𝑏𝑠𝜆
) (6.4) 

Hence, we obtain an absorption ratio (R) equivalent to the ratio of (WS2) resonant PLE to 

non-resonant PLE: 

𝑅 =
𝑃𝐿𝐸𝜆∗

𝑃𝐿𝐸𝜆
= (

𝜑𝜆

𝜑𝜆∗
)
𝑃𝐿𝜆∗

𝑃𝐿𝜆
= (

𝐴𝑏𝑠𝜆∗

𝐴𝑏𝑠𝜆
) (6.5) 

By comparing the R values on the heterostructure and the QD control, we can identify an 

additional contribution to the QD absorption i.e., ΔR from the underlying WS2. 

𝛥𝑅 = 𝑅𝐻𝑒𝑡 − 𝑅𝑄𝐷 (6.6) 

Expressing equation 6.6 as a proportion of the heterostructure R value (RHet), we obtain 

the contribution of PL by the WS2 to the QDs. 

𝑃𝐿𝑐𝑡𝑟 = (
𝑅𝐻𝑒𝑡 − 𝑅𝑄𝐷

𝑅𝐻𝑒𝑡
) =  (

𝛥𝑅

𝑅𝐻𝑒𝑡
) (6.7) 

Figure 6.7. shows that PLctr is maximized at 616 nm with a value of 58% and reduces 

considerably thereafter at lower energies least resonant to the donor WS2. 

 

Figure 6.7: QD PL contribution from 2D WS2. Estimated contribution to QD PL (PLctr) by 

the WS2 monolayer as a function of excitation wavelength with peak value of 58% at 616 nm 

(~2.0 eV ). 
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 As an additional experiment, further PLE measurements were carried out on a 

series of heterostructures with different QD-2D surface attachment thiol ligands. As well 

as the heterostructure based on 1,3 benzenedithiol (BDT), 1,4 butanedithiol (BuDT) and 

1,6 hexanedithiol (HDT) were also studied.  Figure 6.8. shows the normalized wide field 

PLE spectra of WS2/PbS-CdS heterostructures based on the different surface attachment 

ligands. Table 6.1 lists the ligands and their lengths.  

 

Figure 6.8: PLE of heterostructures with different surface attachment ligands. 

Normalized PLE spectra of heterostructures with varying QD-2D surface ligands – 1,3 

benzenedithiol (BDT) (red), 1,4 butanedithiol (BuDT) (green) and hexanedithiol (HDT) 

(black). Dashed lines represent control (QD only) PLE signals. 

 

Table 6.1: Dithiol ligands and corresponding lengths. (*) indicates value estimated using 

calculated dithiol ligand lengths from ref 188 (Mispelon et al.188, Table 1, p. 18566) and the 

known bond angle of the hexagonal planar benzene ring. 

Ligand Length Reference 

1,3 Benzene dithiol (BDT) 0.47 nm * 

1,4 Butane dithiol (BuDT) 0.68 nm 189 

1,6 Hexane dithiol (HDT) 0.95 nm 189 

 

 In Figure 6.8. we observe a difference in the of the WS2 resonant peak, which is 

due to the variation in size of the WS2 monolayers used, The BDT sample has the largest 
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monolayer and hence the most prominent `A’ exciton signal with least contribution of the 

QD emission shoulder blue of the WS2 excitonic peak, unlike the other samples. All 

signals show the WS2 `A’ excitonic peak in the expected spectral region (614 – 620 nm), 

confirming 2D → QD ET. 

 From table 6.1, we notice that all surface attachment ligands used are of lengths 

< 1 nm and thus, in principle, lie within range for ET via exciton tunnelling (i.e., DET). 

Although charge orbital overlap between  the monolayer TMD donor and QD acceptor is 

a possibility at such separation distances, their respective large oscillator strengths highly 

favours ET via FRET116 over DET. To verify this notion, in section 6.3.1 we quantify the 

likelihood of FRET as the dominant 2D→QD ET mechanism observed in the 

heterostructures by estimating the theoretical Förster radius (or FRET radius), R0, which 

is defined  as the distance between donor and acceptor through which there is a 50% 

probability of excitation transfer.116 

6.3.1 Characterising ET Mechanism: Förster Radius Estimation 

 

 Considering the 2D TMD as an array of point-like emitters and the QD film as 

an array of point-like absorbers, the FRET radius, R0, is defined in equation 7.117 This 

system is also well approximated by a 2D quantum well donor and nanoparticle acceptors, 

which follows a d-6 distance dependence for non-radiative energy transfer.119 

𝑅0
6 =

9𝑙𝑛10

128𝜋5𝑁𝐴

𝜅2𝑃𝐿𝑄𝐸𝐷

𝑛4
𝐽 (6.8) 

NA is Avogadro’s number, n is the refractive index of the medium surrounding the FRET 

pair, PLQED is the donor’s intrinsic photoluminescence quantum efficiency and κ2 is the 

dipole orientation factor, which is equal to 2/3 for randomly oriented dipoles.190 J is the 

overlap integral between the area normalized emission spectrum,117 FD and acceptor 

absorption, as given by the acceptor molar extinction coefficient, εA.  

𝐽 = ∫ 𝐹𝐷(𝜆)𝜀𝐴(𝜆)𝜆
4 𝑑𝜆

∞

0

 (6.9) 

It must be noted that J is evaluated with the wavelength in [nm] and εA in [M-1 cm-1]. To 

compute R0, we must calculate the overlap integral J from measured εA(λ) and FD(λ) data. 

The molar extinction coefficient is obtained via Beer Lambert’s law (equation 6.10) for 
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absorbance, A of a 0.1 mg ml-1 suspension of QDs in toluene of molar concentration c, 

measured with a 1 cm path length, l, cuvette.  

𝐴(𝜆) = 𝜀𝐴(𝜆)𝑐𝑙 (6.10) 

However, to obtain the molar extinction coefficient, the molar concentration, c of QDs in 

[M] is needed. The first step in calculating c involves estimating the QD size by solving 

equation 6.10 provided by Moreels et al.191 for PbS QDs of diameter D of band gap 

energy, Eg. Since the QDs used consist mainly of a PbS core as per the modified 

preparation method originally developed by Neo et al.192, the use of equation 6.11 is 

considered reasonable. For the QDs used, where Eg ~ 1.76 eV, we obtain D ~ 2.4 nm. 

𝐸𝑔 = 0.41 + 
1

0.0252𝐷2 + 0.283𝐷
 (6.11) 

We then calculate the QD volume assuming a spherical shape. This is followed by 

multiplying the volume by the density of PbS (7.6 g cm-3) to obtain the mass of a single 

QD. Multiplying the mass of a single QD by the Avogadro number yields an estimate for 

the QD molar mass, Mr ~ 33128 g mol-1. Dividing the known QD concentration of 0.1 g 

L-1 (i.e., 0.1 mg mL-1) by the estimated QD molar mass Mr, yields c ~ 3.02 × 10-6 M. We 

rearrange equation 6.9 for the molar extinction coefficient (εA) in [M-1 cm-1]. Figure 6.9 

below shows εA along with area normalized donor emission, FD as functions of 

wavelength (λ). 

 

Figure 6.9: QD extinction coefficient and normalized WS2 PL. (Left axis) Molar extinction 

coefficient of 3.02 × 10-6 M PbS-CdS QDs in toluene measured with 1 cm cuvette. (Right axis) 

Area normalized WS2 emission spectrum, FD used to calculate overlap integral, J. 
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 From the data shown in Figure 6.9, the overlap integral is estimated via equation 

6.9 as J ≈ 1.23 × 1015 M-1 cm-1 nm4. Using a simplified version of equation 6.8 below 

(equation 6.11) we estimate R0 [nm] by assuming a vacuum between the emitter and 

absorber, i.e., n = 1 and orientation factor κ2 = 2/3. For the ideal system, we assume the 

TMD donor to have unity PLQE. This approximation is considered reasonable as we 

subsequently discover (in section 6.4) that the energy transfer rate from WS2 band edge 

to QD band edge outcompetes the intrinsic exciton quenching in WS2.  

𝑅0 = 0.0211 (
𝜅2𝑃𝐿𝑄𝐸𝐷

𝑛4
𝐽)

1
6

 (6.12) 

From equation 6.12, we obtain R0 ≈ 6.5 nm, which exceeds the ligand separation 

distances between donor TMD and acceptor QD listed in table 6.1. This result emphasizes 

the significance of the oscillator strength of the constituent heterostructure materials (i.e., 

TMD donor and QD acceptor) over their physical separation distance, even at low 

proximity. This strongly suggests FRET as the dominant ET mechanism observed in the 

heterostructures measured in Figure 6.8.  In addition, whereas short ligands such as BDT 

have previously been shown to improve CT between QDs,193 the CdS shell encapsulating 

the PbS core is known to suppress CT.194 

6.4 Time Resolved Optical Characterisation 

 

 To gain further insight into the dynamics of the ET process observed from PLE 

we turn to time resolved PL (TRPL) microscopy, where we detect changes in emission 

decay from WS2 using a 509 nm pulsed laser excitation. Excitation is filtered from the 

detection line with a 510 nm long pass filter, while QD emission is removed using a 700 

nm short-pass filter, allowing for WS2 monolayer PL detection only. We distinguish bare 

WS2 from WS2 in the heterostructure by referring to the former as `pristine’ WS2. 
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Figure 6.10: Pristine WS2 and heterostructure low excitation fluence visible TRPL decay 

spectra. Low fluence time resolved WS2 PL decay signals from pristine (blue) and 

heterostructure (red) samples measured with 509 nm pulsed excitation at 0.01 µJ/cm2. 

Exponential decay fits are shown as dotted black lines. Grey dashed line represents Instrument 

response function (IRF). The quenched (red) PL lifetime lies below the sensitivity of the 

detector (as shown by the signal that appears to decay quicker than the IRF), which is indicative 

of a fast quenching channel. 

 Figure 6.10 shows the normalized time resolved PL decay signals of the pristine 

monolayer and heterostructure under low fluence excitation (0.01 µJ cm-2). The transient 

PL profile of pristine WS2 shows a bi-exponential decay profile consisting of fast and 

slow components. On the other hand, we observe that the fast component of the 

heterostructure’s PL profile is quenched below the detector’s initial response function 

(IRF). The two PL decay components observed in the pristine monolayer can be attributed 

to direct band-edge to ground state excitons transitions and exciton trapping 

respectively.27 In contrast, the much faster PL kinetics observed in the heterostructure 

suggests an additional efficient fast decaying process present in this system. In fact, this 

quenching observed in the heterostructure is in accordance with what is expected of the 

PL dynamics of the donor in a nonradiative ET system.62  

 Figure 6.11 shows an excitation fluence series performed on both pristine and 

heterostructure samples. The pristine case shows a general increase in PL lifetime with 

fluence, which is indicative of `trap’ or `defect’ state filling. This trap limited behaviour 

has also been observed in WS2 and MoS2 monolayers treated with 

bis(trifluoromethane)sulfonimide (TFSI).91,27 
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Figure 6.11: Pristine WS2 and heterostructure visible TRPL excitation fluence series 

spectra. Time resolved WS2 PL excitation fluence series from pristine (blue) and 

heterostructure (red) samples. Pristine WS2 PL decay signals show general increase in lifetime 

as a function of pump fluence due to exciton trapping. All WS2 PL decay signals in 

heterostructure quenched below the sensitivity of the detector due to fast exciton transfer. 

Heterostructure PL decay signals therefore appear faster than instrument response function 

(IRF) (grey dash-dot line). 

The apparent increase in the fast component of the PL lifetime with fluence is due to 

trapping and de-trapping of excitons to the band edge prior to recombination to the ground 

state. The long-lived component is due to radiative transitions from the trap to ground 

state.91 Increasing the excitation fluence would lead to saturation of trap states, forbidding 

further trapping and promoting dominant band-edge to ground state recombination. The 

fluence series presented in Figure 6.11 however lies below trap-state saturation. This is 

given by the increasing fast PL component lifetimes as a function of fluence. Trap-state 

saturation would otherwise be characterised by a constant fast PL component  with 

increasing excitation fluence.27 Further increases in fluence would lead to an eventual 

reduction in fast PL component lifetime, signalling the onset of exciton-exciton 

annihilation.27 Interestingly, in the heterostructure case, the fast PL components are 

quenched below the IRF throughout the series. This outcome suggests that ET rate 

outcompetes  the intrinsic exciton trapping rate in monolayer WS2, which occurs on a 

time scale of few picoseconds.71,91  We therefore predict that the 2D→QD ET occurs at a 

faster or similar time-scale. 
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 The observation of a concomitant growth in QD PL lifetime with WS2 PL 

quenching would provide further confirmation of ET. However, as recently discussed, it 

is likely that the ET process occurs on a timescale faster than intrinsic trapping in the 

monolayer TMD (i.e., few ps), too fast to be detected by time-correlated single photon 

counting (TCSPC) as employed in this study, and perhaps even too fast for Streak Camera 

measurements.  As further confirmation of this hypothesis, Figure 6.12 below shows the 

normalized time resolved PL (TRPL) decay signals for a heterostructure (red) prepared 

on spectrosil compared with the QDs on the bare substrate (black). Excitation was 

provided using the 509 nm pulsed laser at 0.5 MHz repetition rate and 200 ps resolution. 

The excitation signal was filtered out using a 510 nm long pass filter and QD emission 

was isolated with an 800 nm long pass filter, removing any signal from the underlying 

WS2. The heterostructure decay clearly shows the IRF component convoluted with the 

long-lived QD PL decay at early time. This indicates the occurrence of a phenomenon 

much faster than the sensitivity of the setup. Therefore, the expected increase in QD life-

time due to ET from the underlying WS2 occurs at a much earlier time than what is 

detectable by the TRPL setup available to us. 

 

Figure 6.12: QD and heterostructure NIR TRPL decay spectra. QD TRPL decay spectra 

of heterostructure (red) and bare substrate (black) measured with 509 nm pulsed excitation at 

0.5 MHz. The early time signal in heterostructure PL decay convoluted with IRF confirms that 

ET phenomenon faster than resolution of TCSPC setup available for this study.   
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6.4.1 Comparing Time Resolved and Steady State PL measurements  

 

 Steady state PL measurements provide information on the spectral changes that 

occur in the WS2 monolayer PL from the pristine to heterostructure case. Also, comparing 

steady state PL with TRPL data at similar excitation intensity provides a better 

understanding of exciton recombination pathways present in the heterostructure.  

 Figure 6.13.a shows a scatter plot of monolayer WS2 (visible) PL integrals (y-

axis) with the corresponding PL peak wavelengths (x-axis), extracted from spatial PL 

maps of the sample in pristine (blue) and heterostructure (red) forms.  Figure 6.13.d shows 

the 64 µm × 48 µm rectangular region (orange dashed line) within the monolayer (red 

dashed line) where PL maps were taken before and after QD deposition. A spatial 

resolution of 2 µm × 2 µm was used. PL maps were measured with a 514 nm continuous 

wave (CW) laser excitation at 80.2 W cm-2 intensity for good signal to noise ratio. It is 

known that different types of excitons exist in atomically thin nanomaterials (i.e., 

monolayer WS2). Accordingly, it is of importance to understand how different types of 

excitons behave and contribute differently when ET occurs. We begin with analysing 

steady state PL spectra as it gives an indication of the types of excitons present. Figure 

6.13.b shows the PL spectra of an exemplary point on the monolayer in pristine (blue) 

and heterostructure (red) form. The spectra were deconvoluted with Gaussian peaks, 

which represent the neutral exciton (NE) and lower energy species (X2) such as trions, 

which are characterised by broad low energy features in monolayer TMD spectra.11,27 X2 

may also arise from eventual radiative recombination of neutral excitons trapped in sub-

gap states. Upon recombination to the ground state, these excitons can bind with electrons 

to form trions, which is known to occur in n-type TMDs such as WS2. 
27,59 

 Figure 6.13.c shows the fitted time resolved PL of pristine (blue) and 

heterostructure (red) cases at high excitation intensity (3.2 µJ cm-2 → 63.4 W cm-2). Table 

6.2 shows the fitted PL lifetimes (τ) of pristine and heterostructure samples at low and 

high intensity excitation and ET efficiencies. ET efficiencies were computed via equation 

6.13. We verify the use of equation 6.12 with a full derivation provided in Appendix 2. 

Heterostructure lifetimes are denoted by an apostrophe. Given that the fast component of 

the heterostructure’s WS2 PL lifetime (τ1’) is limited by the IRF, the fitted values 

presented in table 6.2 represent an upper bound.  
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 𝜂𝐸𝑇 =  1 −
𝜏1
′

𝜏1
                      (6.13) 

 

 

Figure 6.13: Comparing PL and TRPL spectra of pristine and heterostructure samples. 

a) Scatter plots of monolayer WS2 (visible) PL integrals and the corresponding PL peak 

wavelengths extracted from spatial PL maps of the sample in pristine (blue) and heterostructure 

(red) form. PL measured with 514 nm continuous wave (CW) laser excitation at 80.2 W cm-2 

intensity; b) WS2 PL spectra of an exemplary on the monolayer in pristine (blue) and 

heterostructure (red) cases. Spectra are deconvoluted with Gaussian peaks which represent the 

neutral exciton (dashed lines) and a lower energy species X2 (dotted lines); c) TRPL decay 

spectra of pristine (blue) and heterostructure (red), measured with 509 nm excitation at 63.4 W 

cm-2 intensity. Black dashed lines represent decay fits. IRF given by grey dot-dash line; d) 

Monolayer is outlined with red dashed line on LHS. RHS shows 64 µm x 48 µm rectangular 

PL map region (orange dashed line).  
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Table 6.2: Fitted PL lifetimes of pristine and heterostructure samples and resulting 

estimates for ET efficiencies. Fast components of WS2 PL decay in heterostructure τ1’ and 

transfer efficiencies ηET represent upper and lower bound values respectively due to limitations 

in instrument sensitivity. High intensity excitation values used for comparison with steady state 

PL are italicised. 

Intensity 

Pristine 

𝝉𝟏 

Heterostructure 

𝝉𝟏
′  

Pristine 

𝝉𝟐 

Heterostructure 

𝝉𝟐
′  

𝜼𝑬𝑻 

0.21 W cm-2 0.456 ns 0.26 ns 3.63 ns 3.64 ns 42% 

63.4 W cm-2 0.62 ns 0.26 ns 2.95 ns 2.9 ns 58% 

  

 Statistical analysis of the scatter data in Figure 6.13.a reveals an average PL 

quenching, ΔPLAVE ~ 50%, and spectral blue shift ΔλAVE ~ 7 nm from the pristine to the 

heterostructure case. The spectra in Figure 6.13.b shows that the NE component quenches 

by 50%, whereas X2 quenches by 76%. An overall quenching of 67% was computed from 

the raw PL spectra. The large X2 quenching helps to explain the spectral narrowing in the 

red signal and the general blue shift in Figure 6.13.a. Interestingly, the difference in 

quenching between the NE and X2 species leaves 26% of quenched excitons unaccounted 

for. This implies an additional exciton recombination pathway. As X2 may arise from 

slow exciton recombination from trap states, the excess quenching of X2 excitons could 

be explained as non-radiative trap→QD transfer. Table 6.2 however reveals that the slow 

decay component (τ2) associated with trap-ground state transition remains practically 

unchanged between the pristine and heterostructure case for a given excitation intensity, 

i.e., τ2 ~ τ2’. WS2 trap state to QD exciton transfer requires that τ2’ < τ2 and therefore 

negates this possibility. This suggests that the excess quenched excitons may dissipate 

via some other non-radiative pathway.  

 On the other hand, table 6.2 shows that the fast component of the bi-exponential 

decay, which is associated with neutral exciton recombination,27 is quenched by 58% 

from τ1~0.62 ns in the pristine monolayer to τ1’ ~0.26 ns in the heterostructure case. This 

lies in close agreement to the 50% NE quenching estimated in steady state PL. The strong 

fast PL decay lifetime quenching shows that ET occurs via neutral excitons transitioning 

from the WS2 band edge to the QD acceptor, while intrinsic exciton trapping in the donor 

and other non-radiative losses compete with this process.  This justifies the use of fast 

decay components (τ1, τ1’) to compute the lower bound ET efficiencies shown in table 6.2 
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via equation 6.13. As previously highlighted, exciton trapping and de-trapping in the 

donor gives rise to increasing τ1 as a function of fluence, which manifests as an apparent 

increase in ηET as a function of fluence. While non-radiative pathways are yet to be 

uncovered, passivating trap states to improve donor PLQE should lead to more efficient 

ET from the WS2 donor band edge to the QD acceptor.  

 Figure 6.14 below provides a clear illustration of radiative exciton pathways in 

pristine (LHS) and heterostructure (RHS) cases, derived from the PL/TRPL comparison 

in Figure 6.13.a-c and supported by the TRPL fluence series in Figure 6.11. 

 

Figure 6.14: Radiative exciton pathways in pristine WS2 and heterostructure. Energy level 

diagram illustrating radiative exciton pathways in pristine WS2 (LHS) and in heterostructure 

(RHS).  Blue arrows represent initial excitation, orange arrows represent WS2 excitons and red 

arrows represent down-shifted excitons that recombine at lower energy in the PbS-CdS QD. 

 In pristine WS2, upon excitation from the ground state, a proportion of excitons 

instantaneously transition from the band edge to trap states on the order of few 

picoseconds91 at trapping rate kTR, while others recombine radiatively from the band edge 

to ground state at the rate kD. Those excitons that are trapped in sub-gap states radiatively 

recombine to the ground state over long periods on the order of nanoseconds 91 at rate k2. 

In the heterostructure, excitons preferentially transfer from the WS2 band edge to the QD 

at rate kET, such that kET > kTR, thus quenching the fast component τ1 lifetime below the 

IRF. This also explains the sizeable quenching of X2 in the steady state PL spectra (Figure 

6.13.b) as there are fewer excitons being trapped in the presence of an acceptor QD. Band 

edge excitons that are not trapped, transferred or lost via some other non-radiative 

process, recombine radiatively to the ground state at kD over tens to hundreds of 

picoseconds,71 which is below the instrument response. The remaining emission from 

direct band edge recombination as shown in Figure 6.13.b, strongly suggests that the 

2D→QD transfer pathway becomes saturated. As with trap states, the QD band edge can 
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become saturated, forbidding further incoming excitons, which may return to the WS2 

band-edge and radiatively recombine or dissipate via a non-radiative process as suggested 

by the `lost’ quenched excitons identified from Figure 6.13.b. 

6.5 Summary of Optical Characterisation Measurements 

 

 To summarise the results from optical measurements presented, PLE studies 

confirm ET from monolayer 2D WS2 to 0D QDs. Further PLE studies on heterostructures 

with differing surface attachment thiol ligands show ET. Whereas all ligand lengths lie 

within tunnelling distances favourable for DET (< 1 nm), the large oscillator strengths of 

the 2D TMD donor and QD acceptor favour FRET, as given by the large theoretical 

Förster radius computed. The CdS shell surrounding the PbS core in the QDs provides an 

additional tunnelling barrier, thus supporting FRET as the dominant ET process observed. 

Time resolved PL provide further confirmation of non-radiative ET by virtue of strong 

quenching of donor WS2 PL in the presence of the acceptor QDs. TRPL studies also 

strongly indicate that this transfer process is faster than intrinsic early time trapping of 

excitons in the WS2 monolayer, which would otherwise lead to radiative or non-radiative 

exciton recombination via trap states in the pristine monolayer. Comparing high 

excitation intensity PL and TRPL measurements provides a clearer understanding of 

radiative recombination pathways for excitons in the TMD-QD heterostructure. The 

comparison implies that intrinsic exciton trapping in the TMD monolayer and a non-

radiative process compete with ET from 2D to QD. Further analysis also suggests that the 

exciton transfer channel can become saturated at high excitation intensities. 

 

Figure 6.15: Illustration of ET process in 2D-QD heterostructure 
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6.6 Conclusions 

 

In conclusion, we have demonstrated the ability to transfer excitons from monolayer WS2 

to NIR PbS-CdS QD emitters. PLE studies provide confirmation of ET, with 58% of QD 

PL donated by monolayer WS2. The large oscillator strengths of the donor TMD and 

acceptor QD lead to a large Förster radius, suggesting FRET as the dominant ET 

mechanism.  TRPL studies reveal that the ET process is faster than intrinsic exciton 

trapping in monolayer WS2.  A comparative study between high excitation steady state 

PL and TRPL confirms exciton transfer from the WS2 band edge to the PbS-CdS band 

edge, while intrinsic exciton trapping in the donor and other non-radiative channels act 

as competing pathways. Residual emission from the donor in the heterostructure suggests 

that the ET pathway can be saturated at high excitation intensities. Future studies of such 

heterostructures could provide a clearer understanding of non-radiative loss mechanisms 

via more sensitive methods such as femtosecond transient absorption (TA) and high 

resolution TRPL. Trap state passivation via monolayer TMD surface treatments can be 

used to drastically reduce exciton trapping rates, not only enhancing ET, but isolating 

non-radiative loss pathways so that they can be better understood. The TMD/QD 

heterostructures demonstrated here combine the high absorption cross-section of 

monolayer TMDs with the high quality and highly tuneable optical properties of QDs.  

The ability to tune emission properties of monolayer TMDs using high PLQE QD emitters 

has potential device applications in areas such as in light emitting technologies namely 

displays and solid-state lighting and lasers.32,182 Such structures could also be used to read 

out the state of TMD devices optically in various logic and computing applications. The 

heterostructure could also be integrated into artificial light harvesting systems such as 

luminescent solar concentrators (LSCs) for the purposes of enhancing light capture in 

conventional PV technologies. This concept is developed further in the next chapter.   
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6.7 Methods  

6.7.1 Quantum Dot Synthesis 

 

 Lead-sulphide/cadmium sulphide QDs were synthesised by Dr. James Xiao 

using previously reported methods with slight modifications. PbS QD synthesis was 

carried out following Hines & Scholes,195 and cation exchange for CdS encapsulation was 

performed using the technique described by Neo et al.192 All chemicals were purchased 

from Sigma Aldrcih or Romil and used as received. Full details of the synthesis proccess 

can be found in the published article.29 

6.7.2  Steady State Optical Characterisation   

6.7.2.1 Absorption and PL Spectroscopy 

 

 The absorption spectrum of colloidal QDs shown in Figure 6.2.b was measured 

using a Shimadzu UV-VIS spectrometer. 0.1 mg/ml solution of colloidal QDs in toluene 

in a 1 cm cuvette was placed in an integrating sphere. An identical cuvette filled with 

toluene was used as a reference. Steady state QD PL in the same figure was obtained 

using a fluororemter (Edinburgh Instruments), with 0.1 mg/ml solution deposited in a 1 

mm cuvette. Excitation wavelength was set to 500 nm and PL was detected with an 

indium gallium arsenide (InGaAS) array.  

6.7.2.2 Steady state Absorption Microscopy 

 

 The absorption spectrum of monolayer WS2 on quartz substrate was measured 

with a Zeiss axiovert inverted microscope in transmission using a halogen white light 

source via Zeiss EC Epiplan Apochromat 50x objective (numerical aperture (NA) = 0.95) 

forming a wide-field collection area diameter of 10 µm. Light transmitted via the sample 

was split with a beam splitter, with one component directed to a CCD camera 

(DCC3240C, Thorlabs) and the other coupled to a UV 600 nm optical fibre (200-800 nm 

spectral range) connected to a spectrometer (Avaspec-HS2048, Avantes). 

 

 



Chapter 6: Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS-CdS Quantum 

Dots 

Arelo Obuadum Abiola Tanoh - June 2021   123 

6.7.2.3 Steady state Photoluminescence Microscopy 

 

 PL microscopy was performed using a Renishaw Invia confocal setup equipped 

with motorized piezo stage. Laser excitation was from an air-cooled Ar-ion (Argon ion) 

514.5 nm continuous wave (CW) laser via 50x objective (NA = 0.75). The sample was 

excited upside down to ensure that the monolayer was excited first via the thin substrate 

to avoid shadowing by the QDs once deposited. Signals were collected in reflection via 

notch filter. The diffraction limited beam spot size was estimated as 0.84 µm. PL signal 

was dispersed via 600 l/mm grating prior to detection with inbuilt CCD detector. Laser 

power was measured directly via 5x objective with a Thorlabs S130C photodiode and 

PM100D power meter. The detection wavelength range for PL measurements were 

selected using the setup’s inbuilt WIRE software. The Vis-NIR PL spectrum (Figure 6.4) 

was generated with 10 s integration at a single spot on the heterostructure. The 

corresponding QD PL spectrum was taken at a location away from the heterostructure. 

The NIR PL map (Figure 6.5.a.) was generated with 8 µm resolution and 2 s integration. 

The Vis PL maps from which scatter data in figure 6.13.a were derived, was generated 

with 2 µm resolution and 0.5 s integration. All PL microscopy measurements were 

performed at 0.44 µW (80.2 W/cm2).  

 Excitonic species shown in Figure 6.13.b were deconvoluted from pristine and 

heterostructure PL spectra using a procedure written in Matlab. The code incorporates the 

`gauss2’ two Gaussian model fit. Further information on the Gaussian model is available 

via the mathsworks website. 

6.7.2.4 Photoluminescence Excitation Microscopy  

 

 PLE measurements were performed using a custom-built inverted PL 

microscope setup. The inverted microscope arrangement enabled excitation of WS2 

monolayer first via the thin glass slide hence avoiding shadowing by the QDs. Variable 

wavelength excitation was provided by a pulsed super continuum white light source 

(Fianium Whitelase) via a Bentham TMc 300 monochromator. The optical image of the 

heterostructure was acquired using 600 nm laser light at low power via 60x oil objective, 

producing a 200 µm circular wide field image on an EMCCD camera (Photometrics 

QuantEMTM 512SC). A QD PL image of the heterostructure was obtained by filtering out 

the excitation wavelengths using a combination of 750 nm and 800 nm long pass filters. 
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Further precaution was taken to remove any long wave component in the excitation line 

using a 750 nm short pass filter. An example of the QD PL image is shown below in 

Figure 6.16, which was recorded using 620 nm excitation at 10 MHz pulse rate (~0.006 

µJ/cm2 fluence) and 20 s integration time. The region of interest was isolated by closing 

an iris in the detection line just before the camera.  

 

Figure 6.16: Heterostructure FRET image. Heterostructure QD PL image at 620 nm (LHS) 

excitation and monolayer optical image (RHS). QD PL clearly enhanced on TMD monolayer. 

 The procedure for obtaining PLE spectra are as follows: i) The laser excitation 

via the monochromator was swept between the visible and NIR range. Given that the 

optics in the system were optimized for 600 nm and above, excitation was varied between 

580 nm and 710 nm with 2 nm resolution. Each excitation was integrated for 20 s using 

10 MHz pulses; ii) the wide field PL signal at each excitation was recorded, producing a 

spectrum of raw PL signal as a function of excitation wavelength; iii) the background 

signal was obtained by covering the detector and repeating i)-ii). The excitation power 

was recorded simultaneously using a Thorlabs S130C photodiode placed in the excitation 

line just before the sample, and a PM100D power meter interfaced with data logging 

software; iv) finally, the raw data was post-processed in Origin where the background 

spectrum was subtracted from the raw PL spectrum and normalized by the number of 

photons injected at each wavelength. Finally, the PLE spectrum was corrected with a 

system calibration file based on the PLE and absorption spectra of a high PLQE NIR dye. 

We note that the camera, monochromator, and power meter are controlled externally via 

the data logging software interface written in Python.  
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6.7.3 Time Resolved Photoluminescence Microscopy 

 

TRPL measurements were performed with an industry standard PicoQuant Microtime 

200 confocal time correlated single photon counting (TCSPC) setup using a 509 nm 

pulsed laser excitation via an inverted 20x air objective (NA = 0.4), with estimated 

diffraction limited spot size of 1.55 µm. The repetition rate was set to 20 MHz with 25 ps 

resolution to obtain PL decay data. Signals were collected in transmission and detected 

with a single photon avalanche diode (SPAD). Laser excitation was filtered out with a 

510 nm long pass, and the NIR region of both pristine and heterostructure PL were filtered 

out using a 700 nm short pass filter, allowing for collection of WS2 PL only. All signals 

were scaled up to 1500 s, which was used on the lowest fluence measurement in the 

fluence series. Power was measured using an inbuilt photodetector at each fluence, which 

was previously calibrated in the same experimental conditions using a standard external 

power-meter. Care was taken to ensure that measurements were made on the same spot 

on the monolayer before and after QD deposition. The instrument response function was 

measured with a blank glass cover slide. PL decay time constants were fitted using a 

model developed in Origin, which consists of a Gaussian (as the IRF) convoluted with a 

double exponential decay. 
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7 Simulating Light harvesting 

with 2D-QD based LSC 

 We develop the concept of a luminescent solar concentrator (LSC) based on the 

previously characterised 2D-QD heterostructure using Monte Carlo (MC) light transport 

simulations. The heterostructure’s perceived potential as LSC luminophore material is 

inspired by the large Stokes shift between 2D transition metal dichalcogenide (TMD) 

absorption and quantum dot (QD) emission spectra. Such a large Stokes shift promises 

minimal losses associated with reabsorption i.e., escape cone and non-radiative losses, 

potentially boosting LSC efficiencies and concentration factors. Here, we consider a 

heterostructure luminophore system comprised of monolayer tungsten disulphide (WS2) 

and near infrared (NIR) PbS-CdS (1.24 eV) QDs. Using an idealised heterostructure 

luminophore model, we simulate LSCs under direct solar irradiation. From this we obtain 

optical performance parameters, and a visual representation of photon transport via 

raytracing. A key model assumption dictates absorption by the TMD and emission by the 

QD only, with zero absorption or reabsorption by the QD. Comparisons are made to 

typical luminophore materials, namely Lumogen Red 305 (LR305) dye and a NIR PbS-

CdS (1.37 eV) QD, both of which have spectral overlap. LSC performance parameters 

are computed as a function of luminophore concentration under unity and sub-unity 

(80%) luminophore quantum yield (QY) conditions. Simulation results reveal superior 

all-round performance with the heterostructure, which emphasizes the importance of the 

large Stokes shift. The physical validity of heterostructure model is appraised. From this 

we identify the model’s limitations and offer further suggestions to improve its physical 

validity for future development of a computational tool for heterostructure LSC design. 
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7.1 Background & Motivation 

 

 Luminescent solar concentrators (LSCs) are examples of light management 

technologies that are intended to enhance light capture in silicon-based photovoltaics 

(PV). The basics of LSCs have been introduced in Chapter 2. As discussed there, 

typically, LSCs are square slabs of transparent waveguide material, such as PMMA, 

doped with luminophores, which absorb incident light and emit PL. The emission is 

waveguided by internal reflection and concentrated at the LSC edges, where PV panels 

of reduced size are located. The concentration of incoming photon flux enables reduced 

PV panel area. LSCs can concentrate diffuse light and are insensitive to the directionality 

of incoming photons, potentially providing major cost reductions for standard PV systems 

that rely on solar tracking for optimized light capture.  The key limitations to LSC 

development are the optical losses associated with the waveguide and luminophore 

material. Losses attributed to the luminophore include photon reabsorption and sub-unity 

PL quantum yields (QY). Reabsorption is characterised by an overlap between a 

luminophore’s absorption and emission spectra. Reabsorption aggravates nonradiative 

(NRD) losses, with sub-unity QY luminophores, and escape cone (EC) losses. EC losses 

arise due to emission directed below the waveguide’s critical angle. Reabsorption can be 

eliminated by engineering a large Stoke’s shift between absorption and emission. We 

consider the previously studied 2D-QD ET heterostructure to be a potentially viable LSC 

luminophore. With correct engineering, the system could be fine-tuned for predominant 

absorption by the 2D monolayer and emission by the QD respectively, forcing a large 

enough stokes shift. To give credence to our projection, we simulate light transport in 

LSCs based on WS2/PbS-CdS (1.24 eV) heterostructures using the Monte Carlo (MC) 

method described in Chapter 3, section 3.4. We also simulate LSCs based on 

luminophores with lower Stoke’s shift for compassion, namely Lumogen R305 (LR305) 

and PbS-CdS (1.37 eV) NIR emitting nanocrystal QDs.  
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7.2 Details of Study  

 

 This study is split into two parts. In part I, we perform a parameter study where 

we investigate the effects of varying luminophore concentrations on LSC optical 

efficiencies (ηopt), assuming unity and sub-unity (80%) QY. We then explore the internal 

efficiencies and loss mechanisms for each LSC type. Part I uses a non-raytracing code 

written by Rowan McQueen153 in Matlab for its ability to process large arrays of input 

parameters. In part II, we visualise photon transport for each LSC type with fixed 

luminophore concentrations. Part II employs the ray-tracing algorithm described in 

chapter 3, section 3.4.1.  For the same input data, the two algorithms show close 

agreement, within 1% error (See Appendix 2). To supplement part II, a more physically 

accurate visualization of photon transport in a heterostructure LSC is provided using 

raytracing software developed by Tomi Baikie. The general simulation assumptions are 

detailed in chapter 3, section 3.4.1.2. An additional set of assumptions are included for 

modelling the heterostructure luminophore, as detailed below: 

• The 2D TMD component of the heterostructure has a characteristic dimension of 

50 nm, which lies within the range for large area liquid phase exfoliated 

monolayers.196 For simplicity, we assume square monolayers with no defects. 

• Heterostructures are assumed to have an extremely low concentration of QDs, 

such that photons are absorbed exclusively by the 2D and emitted by the QDs, 

forcing the large Stoke’s shift. This is justified by the fact that the absorption cross 

section of monolayer WS2 exceeds the PbS-CdS QD in the visible region, as 

previously established.29 Also, the sheer difference in projected area between a 

large WS2 monolayer (~50 nm) and an individual QD (~ 3.3 nm) tells us that the 

monolayer will absorb a much larger proportion of an incoming photon flux. Any 

light absorbed by the QD is considered negligible in comparison. 

• 100% FRET efficiency from 2D to QD. 

• The LSC optical cavity is a square waveguide with side length, L = 100 cm, and 

thickness d = 1 cm, giving a geometric ratio (G = L/4d) of 25. An LSC of these 

dimensions could be used in a building façade. 

N.B: LR305 extinction data was measured previously by Dr. Nathaniel Davis. Details of 

WS2 Monolayer molar extinction estimations are given in Appendix 4. Extinction data 

for PbS-CdS (1.37) eV QDs was estimated in Chapter 6, section 6.3.1. 
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7.3 Part I: Parameter Study 

  

 Figure 7.1.a-c shows the input molar extinction and emission data for LR305, 

PbS-CdS (1.37 eV) QDs and the 2D-QD heterostructure. The Stokes shift, that is the 

difference between the lowest energy excitonic peaks and emission peaks are calculated 

as 36 nm, 196 nm, and 385 nm for LR305, PbS-CdS (1.37 eV) QDs and the 

heterostructure, respectively.   

 

Figure 7.1: LSC simulation input luminophore extinction and emission data. a) LR305; b) 

PbS-CdS (1.37 eV); c) WS2/ PbS-CdS (1.24 eV).  

 LSC Optical efficiency, ηopt is the ratio of edge photon flux, Φ2, to incident 

photon flux on the LSC planar surface, Φ1, (ηopt = Φ2/Φ1). Figure 7.2 shows ηopt, as a 

function of luminophore concentration for LR305 (red), PbS-CdS (black) and the 

heterostructure (blue). Solid lines and dashed lines represent unity and sub-unity (80%) 

QY conditions, respectively. A practical Luminophore concentration range between 1 µM 

– 1 M is defined.  We refer to ηopt values at 0.18 mM (dotted vertical line) for comparison 

between unity and sub-unity QY conditions. 

 LR305 presents the bench-mark case, having the lowest Stokes shift and 

extinction values. At unity QY, ηopt increases to an optimum value of ~20 % at ~0.3 mM 

and reduces gradually due to a rise in EC losses induced by higher rates of reabsorption 
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with increasing concentrations. Optical losses are intensified when non-radiative losses 

are accounted for (QY = 80%). The combination of EC and non-radiative events causes 

an 8% drop in ηopt at 0.18 mM and a steeper decline thereafter. To verify validity of the 

simulations, we note that the calculated optical efficiency at 0.2 mM (ηopt ~ 18.9%) 

matches closely with LR305 LSC performance measurements and simulations by 

Vishwanathan et al.197 The authors reported simulated and experimental results of 

ηopt~18% and 19% respectively for QY = 95%. 

 

Figure 7.2: Graph of optical efficiency, ηopt, as a function of luminophore concentration 

at unity and sub-unity luminophore QY. Trends for LR305, PbS-CdS (1.37 eV) and WS2/ 

PbS-CdS (1.24 eV) given in red, black, and blue, respectively. Solid and dotted lines represent 

unity and sub-unity (80%) QY conditions. Vertical dotted line denotes 0.18 mM concentration. 

 The PbS-CdS (1.37 eV) luminophore presents the intermediate case, with 

sizeable Stokes shift and extinction values. For unity QY, there is a steep increase in ηopt.  

At higher concentrations ηopt attains a fairly constant value of ~42% - the maximum for 

all the cases simulated. This outcome is explained by the broad absorption spectrum of 

PbS-CdS shown in Figure 7.1.b. At high concentrations, PbS-CdS (1.37 eV) absorbs the 

most solar photons along the LSC cross section. Reabsorption in PbS-CdS however 

persists due to the small spectral overlap. Once non-radiative losses are factored in (QY 

= 80%), the effects of reabsorption are severe, reducing ηopt by ~12%, from ~36% to 24% 

at 0.18 mM. This shows that slightest spectral overlap can have significant undesirable 

impacts on optical performance.  
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 For the heterostructure, unlike the other luminophores, considerably high ηopt, 

and hence concentration factors (C) are attainable at low material concentrations (e.g., 

ηopt ~32.3% at 3.6 µM for QY = 100%), which has positive cost implications. This is 

owed to the large extinction values of 2D TMD absorber. The increase in ηopt is gradual, 

with no defined peak or constant value in the concentration range. In the unity QY case, 

absorbed photons experience a single emission event with no further reabsorption. 

Without reabsorption, EC losses are simply a function of the sub-critical emission angle 

imposed by the waveguide refractive index. Also, due to the absence of reabsorption, the 

heterostructure is least impacted by non-radiative losses for all concentrations simulated. 

Optical efficiency, ηopt decreases by ~6% from ~ 34% to 28% at 0.18 mM, and rises 

steadily, outperforming all other luminophores with QY = 80%.  

 We now look into the internal loss mechanisms as a function of luminophore 

concentration. Beforehand, we define Internal performance parameters. The reabsorption 

ratio, R* is the ratio of reabsorbed photons to initially absorbed photons, abso. Internal 

quantum efficiency, η* is the ratio of edge photons to abso, i.e., η* = Φ2/abso. Escape 

cone (EC) and nonradiative (NRD) losses are expressed as proportions of absorbed 

photons, i.e., EC* = EC/abso, and NRD* = NRD/abso.   

 Figure 7.3.a-d shows the LSC internal performance parameters for luminophores 

with QY = 100%. In this instance, losses are attributed to escape cones (EC*) only. 

Unsurprisingly, as shown in Figure 7.3.a., LR305 is the most susceptible to reabsorption 

owing to the large spectral overlap (Figure 7.1.a.). From Figure 7.3.b we notice that as 

LR305 concentrations increase, amplified reabsorption causes a growth in EC* (orange 

line) at the expense of a declining η* (red line). We identify a point, η* = EC*, beyond 

which EC losses exceed edge photons. This further explains the gradual decline in ηopt 

shown in Figure 7.2 (solid red line). Figure 7.3.a (black line) shows that reabsorption (R*) 

persists with PbS-CdS, which is due to the slight spectral overlap (Figure 7.1.b). The 

sizeable Stoke’s shift however limits the extent of reabsorption, keeping η* and EC* 

fairly constant at high concentrations and maintaining EC* desirably below η* as shown 

in in Figure 7.3.c. For the heterostructure, Figure 7.3.d shows that η* is constant at 

~74.5%, outperforming the other luminophores. Again, due to the absence of reabsorption 

(Figure 7.3.a, blue line), EC losses are limited to the waveguide refractive index.  
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Figure 7.3: LSC internal performance parameters for luminophore QY = 100%. a) Ratio 

of reabsorbed to initially absorbed photons (R*) for LR305 (red), PbS-CdS (1.37 eV) (black) 

and WS2/ PbS-CdS (1.24 eV) (blue) luminophores. (b-d) Internal quantum efficiencies (η*) 

(red), escape cone losses (EC*) (orange) as function of luminophore concentrations for (b) 

LR305, (c) PbS-CdS (1.37 eV) and (d) WS2/ PbS-CdS (1.24 eV). 

 The internal performance parameters shown in Figure 7.4.a-d factor in non-

radiative losses (QY = 80%). Comparing Figures 7.3.a and 7.4.a, there is a large reduction 

in R* with LR305. This is because further reabsorption is suppressed by non-radiative 

losses. Figure 7.4.b shows that the impact of non-radiative losses on LR305’s η* values 

is profound. The large spectral overlap intensifies NRD*, which grows rapidly with 

concentration, dramatically exceeding the impact of EC* and quenching η*. With PbS-

CdS (1.37 eV) R* is reduced slightly in the presence of non-radiative losses (Figure 

7.4.a). Due to the slight spectral overlap (Figure 7.1.b), Figure 7.4.c shows that NRD* 

quickly becomes the dominant contributor to the decline in η* as QD concentrations 

increase. Considering the heterostructure, as shown in Figure 7.4.d, zero reabsorption 

ensures that NRD* and EC* losses are constant throughout the concentration range, being 

limited only to the luminophore QY and waveguide refractive index, respectively, leaving 

a favourable η* value of ~60% for all concentrations. 
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Figure 7.4: LSC internal performance parameters for luminophore QY = 80%. a) Ratio of 

reabsorbed to initially absorbed photons (R*) for LR305 (red), PbS-CdS (1.37 eV) (black) and 

WS2/ PbS-CdS (1.24 eV) (blue) luminophores. (b-d) Internal quantum efficiencies (η*) (red), 

escape cone losses (EC*) (orange), non-radiative losses (NRD*) (grey) as function of 

luminophore concentrations for (b) LR305, (c) PbS-CdS (1.37 eV) and (d) WS2/ PbS-CdS (1.24 

eV). 

 

7.4  Part II: Visualising photon transport 

 

 Figures 7.5-7.7 overleaf show the paths of waveguided photons for each LSC, 

as calculated by the raytracing algorithm, initialized with 500 AM1.5G solar photons, 

unity QY and c = 0.18 mM. The top isometric views clearly show waveguiding to the 

edges and bottom cross-sectional views show the distribution of edge photons and escape 

cone losses. A larger density of edge photons is observed in the heterostructure and PbS-

CdS (1.37 eV) LSCs compared to the LR305, which is simply due to their larger 

extinction values.  

 Table 7.1 summarises the LSC performance parameters corresponding to 

Figures 7.5-7.7 using 10,000 AM1.5G solar photons. Results for QY = 80% are also 
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included. Concentration factors are computed simply as C = ηopt×G. The values presented 

can be verified in Figures 7.2-7.4.  

 

Figure 7.5: LR305 LSC raytracing graphics. (Top) isometric view of photon paths. 

(Bottom) cross sectional view of edge photons and top and bottom escape cone photons.   

 

 

Figure 7.6: PbS-CdS (1.37 eV) LSC raytracing graphics. (Top) isometric view of photon 

paths. (Bottom) cross sectional view of edge photons and top and bottom escape cone photons. 
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Figure 7.7: Heterostructure LSC raytracing graphics. (Top) isometric view of photon paths. 

(Bottom) cross sectional view of edge photons and top and bottom escape cone photons.   

 

Table 7.1: Output performance data from raytracing simulations. Input parameters:  

10,000 AM1.5G photons, 0.18 mM concentration.  

QY = 100% 

Luminophore ηopt (%) C η* (%) EC* (%) NRD* (%) 

LR305 19.8 4.9 59.8 40.2 0.0 

PbS-CdS (1.37 eV) 34.4 8.6 60.0 40.0 0.0 

WS2/ PbS-CdS (1.24 eV) 34.9 8.7 74.7 25.3 0.0 

QY = 80% 

Luminophore ηopt (%) C η* (%) EC* (%) NRD* (%) 

LR305 11.9 3.0 36.2 26.9 36.9 

PbS-CdS (1.37 eV) 23.8 6.0 41.6 28.0 30.4 

WS2/ PbS-CdS (1.24 eV) 27.6 6.9 59.6 20.4 20.0 
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 Finally, Figure 7.8 shows photon transport in the WS2/PbS-CdS (1.24 eV) 

heterostructure LSC, calculated with a more physically accurate simulator that factors 

contributions from partially (internally) reflected photons. As explained in section 

3.4.1.2, partially reflected photons are those with an incidence angle, α slightly less than 

the critical angle, that is, α~θcrit. These photons have some probability, P<1 of being 

internally reflected before being refracted via an escape cone after a number of waveguide 

reflections, and therefore stand a chance of being collected at an edge if emitted nearby. 

Efficiency gains from  partially reflected photons are however minimal due to the high 

probability of EC transmission unless they are reabsorbed and emitted at α>θcrit.
155 

 

Figure 7.8: Supplementary Heterostructure LSC raytracing graphics. (Top) Isometric 

view of incoming photons and internally reflected NIR (black) photons. (Bottom) Cross-

sectional view showing incident, reflected, transmitted and EC photons.  

 Input parameters were 10,000 AM1.5G solar photons, 3.6 µM concentration and 

unity QY. For clarity, 500 photon paths are displayed. Coloured rays represent visible 

photons. Black rays represent NIR photons. The isometric view shows the internal 

reflection paths clearly.  The cross-sectional view shows incident, reflected, transmitted 

and, top and bottom EC photons. This simulation yields ηopt = 34% and η*= 74%. This 

lies in close agreement with an equivalent simulation using the less complex raytracing 

algorithm developed herein which yields ηopt = 32.2% and η*= 74.9%.  The close 

agreement between simulations shows that the effects of partially reflected photons are 
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marginal, particularly in the case of the heterostructure model used, where reabsorption 

is assumed to be absent. 

7.5 Summary and critical analysis  

 

 Light transport in LSCs based on LR305, PbS-CdS (1.37 eV) and heterostructure 

WS2/PbS-CdS (1.24 eV) luminophores were simulated assuming unity and sub-unity 

(80%) luminophore QY and constant LSC geometric ratio (G = 25). Optical efficiencies 

ηopt and internal performance parameters were assessed as a function of luminophore 

concentration. Internal parameters include internal quantum efficiency (η*), escape cone 

losses (EC*) and non-radiative losses (NRD*). The simulations predict that the 

heterostructure LSC yields the best all-round optical performance due to the large 

absorption cross-section of the 2D WS2 component, and importantly the large Stokes shift 

and zero overlap between its absorption and emission spectra. The heterostructure’s large 

molar extinction values enable respectable optical efficiencies at low luminophore 

concentrations (~ few µM), with ηopt ~32.3 % and ηopt ~21% for QY = 100% and QY = 

80% respectively. The heterostructure’s zero spectral overlap eliminates reabsorption, 

limiting escape cones losses (EC*) and non-radiative (NRD*) losses to the wave-guide 

refractive index and luminophore QY, respectively. This results in favourable LSC 

internal efficiencies for all concentrations, with η* ~ 74.5% and η*~ 60% for QY = 100% 

and QY = 80% respectively, outperforming all other luminophores. A more physically 

accurate simulation of the heterostructure LSC shows that contributions from partially 

reflected photons are marginal, which is due to the lack of reabsorption. Where 

reabsorption may be present, efficiency gains from reabsorption of partially reflected 

photons may be apparent, however such gains are known to be slight.155 In any case, for 

a real system with sub-unity QY, these gains will be counteracted. 

 The performance predictions for the heterostructure LSC’s look promising 

chiefly due to the key assumption of zero absorption/reabsorption by the QD component. 

Strictly speaking, for a real system, even with low QD concentration per monolayer, there 

will be some reabsorption by the QDs, and increasingly so at higher luminophore 

concentrations. We therefore propose that the heterostructure model assumptions made 

herein are well suited for a heterostructure LSC with low luminophore concentrations, 

within the µM range, which we found yields favourable performance compared with the 

other luminophores. Going forward, a more refined heterostructure model that captures 
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reabsorption by the QD emitters should be developed. In doing so, the ratio of QD to 2D 

projected area to the incoming photon flux, should be factored in to predict the extent of 

absorption/ reabsorption by the QDs. For example, the projected area ratio χ could be 

attached to a probability of absorption by either species.  A full understanding of the 

heterostructure’s underlying photophysics is needed to refine the heterostructure model, 

which calls for further optical studies as concluded is the previous chapter. Ultimately, a 

heterostructure LSCs must be synthesised and tested to verify the validity of the model 

and resulting simulations. A realistic heterostructure model could serve as a powerful 

design tool for 2D-QD heterostructure based LSCs. Due to time constraints, the non-

trivial tasks of synthesising heterostructure LSCs and refining the heterostructure model 

are recommended for future work. 

7.6 Conclusions 

 

In conclusion, the Monte Carlo light transport simulations predict that the WS2/PbS-CdS 

(1.24 eV) heterostructure luminophores yield superior all-round LSC optical performance 

compared with LR305 dye and PbS-CdS (1.37 eV) nanocrystal luminophores for all 

concentrations simulated. This is due to the high molar extinction of the monolayer TMD 

component, zero spectral overlap between TMD absorption and QD emission and 

assumed absence of absorption/ reabsorption by the QD emitters as deemed appropriate 

for a low concentration of QDs per 2D monolayer. Realistically, since reabsorption by 

QDs is likely to become more significant at higher heterostructure concentrations, we 

rationalise that the heterostructure model used best approximates a heterostructure LSC 

with low luminophore concentrations. Towards simulating real behaviour of a 

heterostructure system, we recommend the development of a refined heterostructure 

model that factors in the ratio of QD to 2D TMD projected area to the incoming photon 

flux in order to quantify absorption/reabsorption by the QDs. The photophysics of the 

heterostructure must be fully uncovered to aid further model refinement. Importantly 

however, an actual heterostructure LSC must be developed and tested to verify the 

validity of the model. A physically accurate model could be a useful design tool for 2D-

QD heterostructure based LSCs. Refining the heterostructure model and suspending the 

heterostructures in a polymer matrix to fabricate the LSC present formidable tasks worthy 

of further study at post-graduate level. 
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8 Summary and Outlook 

8.1 Summary 

 

 The chemical stability, potentially high electronic mobilities, direct bandgap and 

(thus) strong light-coupling of a number of monolayer transition metal dichalcogenides 

(TMDs) hold great promise for future electronic and optoelectronic device applications. 

In spite of their promise, significant challenges to realising the full technological potential 

of 2D TMDs persist. A key challenge lies in the production of defect free, optically perfect 

material with high photoluminescence quantum efficiencies (PLQEs) (or PL quantum 

yields (PLQYs)). The prevalence of intrinsic defects in newly prepared TMD monolayers, 

either via mechanical cleavage or epitaxial growth, amounts to material of poor optical 

quality i.e., low PLQE.  Chalcogen vacancies, which are the most pervasive of such 

defects, are known to act as charge traps, where excitons quench non-radiatively due to 

charge separation, or form low PLQE trions with trapped charges. Vacancies also trap 

mobile charge carriers, hampering electronic mobilities.  

 Towards meeting the challenges posed by the detrimental effects of defects, 

Chapters 4-5 of this thesis detailed a novel chemical surface passivation technique based 

on oleic acid (OA) ligands. Unlike other treatments reported in the wider literature, OA 

is shown to enhance PL and transport characteristics in newly exfoliated (i.e., pristine) 

sulphur and selenium group VI TMDs, tungsten disulphide (WS2) and molybdenum 

diselenide (MoSe2).  

 Chapter 4 compared the effects of OA and bis(trifluoromethane)sulfonimide 

(TFSI) treatment on WS2 PL emission at room temperature. PL map statistics revealed 

higher average PL enhancement and improved spectral uniformity with OA treatment 

compared with TFSI. PL excitation intensity dependent studies and time resolved pump 

intensity studies showed trap free exciton dynamics in OA treated WS2. Trap free exciton 

movement was characterised by a reduction in PL yields and PL lifetimes as excitation 

intensities (or initial carrier populations) were increased. This lies in contrast to the trap-

limited exciton dynamics observed in TFSI treated samples. Exciton trapping was 

characterised by an increase or stagnation91 in PL yields and PL lifetimes in spite of 
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increased excitation intensity, prior to decline at the onset of exciton-exciton annihilation. 

Electron withdrawal or p-doping by TFSI `frees up’ trap states. Excitons occupy and 

recombine over long periods or become thermally activated to the band edge, and 

transition radiatively to the ground state.75,91 Whereas TFSI treatment gives rise to trap-

mediated radiative band-edge recombination of thermally activated excitons,91 OA is 

perceived to passivate trap states, forbidding trap-assisted exciton decay altogether, 

promoting radiative direct band-edge recombination. In support of the notion of defect 

passivation by OA, electronic transport measurements of OA treated WS2 transistors 

showed reduced charge trap density, increased field effect mobilities, and no detectable 

doping. Bright trion emission was also observed at high excitation intensities in OA 

treated WS2 only, which is of potential interest for spintronic applications. By way of 

surface chemistry, we hypothesised that the OA ligand forms a dative covalent bond with 

the electrophilic metal atom at a chalcogen vacancy, terminating trap states and improving 

band-edge PL, much like surface defect passivation by OA in colloidal quantum dot (QD) 

nanocrystals. This prediction however remains to be verified experimentally.  

 Chapter 5 confirmed OA’s ability to enhance PL in selenium TMDs. This is 

unlike TFSI, which quenches their PL.25 Here, we investigated large PL enhancement in 

OA treated MoSe2 using steady state and time resolved PL measurements. As previously 

done with WS2, electronic characteristics of OA treated MoSe2 were also measured. 

Statistical analysis of OA treated MoSe2 PL map data revealed bright spatially 

homogenous PL, with narrow spectral linewidth. Steady state excitation dependent PL 

studies showed significantly improved neutral exciton PL yields, which reduces with 

excitation intensity, as indicative of trap-free exciton dynamics. Time resolved PL 

(TRPL) spectra showed increased PL lifetimes in treated samples under low pump 

fluence. Pump intensity studies revealed a reduction in carrier lifetime with increased 

carrier concentration, consistent with trap-free exciton movement. As in the previous 

study, trap-free exciton movement is considered an indicator of trap state passivation by 

OA ligands. The likelihood defect passivation by the ligands was again supported by FET 

measurements, which showed improved on-off ratios and subthreshold swing, both of 

which confirmed a reduction in charge trap density. The initial hypothesis for defect 

passivation is maintained, whereby OA ligands coordinate chalcogen defect sites, 

terminating traps and improving radiative PL yields. We also speculated that the 

insulating ligands encapsulate the monolayer, in similar fashion to hexagonal boronitride 
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h-BN, protecting it from external sources of disorder such as adsorbants and strain, 

thereby improving spectral linewidths. 

 The many-body phenomena exhibited by tightly bound TMD excitons are of 

great fundamental research interest. From a device application perspective however, these 

excitons could be transferred to other emissive materials with strong light coupling and 

high PL quantum yields (PLQY) such as quantum dots (QDs). This has applications in 

e.g., light conversion, and artificial light harvesting with luminescent solar concentrators 

(LSCs).  

 Chapter 6 detailed the optical characterisation of a photon energy down-

conversion system consisting of a 2D WS2 absorber combined with a near infrared (NIR) 

lead sulphide-cadmium sulphide QD emitter. Previous studies on similar heterostructure 

systems report on QD exciton quenching by a 2D TMD exciton sink for light detection 

applications. This chapter studied the reverse process, taking advantage of large 

absorption cross section of monolayer WS2, from which excitons generated by visible 

light coupling are nonradiatively transferred to high PLQE nanocrystal NIR QD emitters. 

Photoluminescence excitation (PLE) studies provided initial confirmation of efficient 

(~58%) 2D to QD excitation energy transfer (ET). The combined large oscillator strengths 

of the constituent TMD exciton donor and QD acceptor amounts to a large theoretical ET 

radius consistent with Förster resonance energy transfer (FRET). Interestingly, TRPL 

studies showed that 2D to QD ET rates exceed intrinsic exciton trapping rates in 

monolayer WS2. A comparison between high excitation intensity steady state PL and 

TRPL confirmed direct exciton transfer from the WS2 band edge to the PbS-CdS band 

edge. Intrinsic exciton trapping in the TMD donor and other non-radiative channels 

merely act as competing ET pathways.  

 Chapter 7 developed the concept of an LSC based on the 2D-QD heterostructure 

using Monte Carlo light transport simulations. The 2D-QD heterostructure is considered 

as a viable candidate for LSC luminophore material due to the large Stokes shift between 

2D absorption and QD emission spectra. This combined with zero spectral overlap can 

eliminate reabsorption losses seen in typical luminophore materials which have low 

Stokes shift and large spectral overlap. The luminophore was assumed to have a large 

area 2D absorber. A key model assumption was no absorption/ reabsorption by the QD 

emitter. This was deemed appropriate for a low concentration of QDs per 2D monolayer 

for two reasons. Firstly, for such low concentrations per monolayer, the projected area of 

the 2D vastly exceeds that of the few QDs. Secondly, the absorption cross section of the 
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2D is larger than the QD’s by orders of magnitude.29 Therefore, any light absorbed by the 

QDs was assumed negligible in comparison to the 2D. LSCs based on WS2/PbS-CdS 

(1.24 eV) heterostructure, Lumogen Red 305 (LR305) dye and PbS-CdS (1.37 eV) were 

simulated assuming unity and sub-unity luminophore PLQYs. The resulting performance 

characteristics were computed as a function of luminophore concentration ranging 

between 1 µM – 1 M. The simulations essentially predicted that the heterostructure LSC 

outperforms all other LSC types for the entire concentration range simulated. This was 

attributed to the large absorption of the 2D component, large Stokes shift with zero 

spectral overlap, and importantly, the assumption of no reabsorption by the QD emitters. 

While the latter assumption was deemed appropriate for low luminophore concentrations, 

in reality, QD absorption/reabsorption is bound to become progressively significant with 

increasing concentrations. Going forward, further refinements to the luminophore model 

were recommended to capture real behaviour. 

8.2 Outlook 

 

  Further experimental work is required to elucidate the surface chemistry of OA 

treatment. Fourier transform infrared scanning near near-field optical microscopy (FTIR-

SNOM) could provide high resolution identification vibrational modes associated 

carboxylate group coordination at chalcogen vacancies. Alternatively, X-ray 

photoelectron spectroscopy (XPS) could be used to identify signatures of carboxylate 

group-TMD surface attachment. Such methods in combination with theoretical 

calculations ought to be employed to verify or correct the initial hypothesis of vacancy 

termination by the ligands, thus refining our initial understanding of the mechanism. 

While questions surrounding this mechanism remain, trion emission in OA treated WS2 

has recently raised some external interest within the spintronics research community. This 

has garnered an ongoing collaborative effort led by Makoto Kohda (Tohuku University, 

Japan) to investigate trion spin-polarization lifetimes in OA treated WS2 at cryogenic 

temperatures. 

 Future studies on the 2D-QD ET heterostructure are required to clarify non-

radiative loss channels. This should be done using more sensitive spectroscopy techniques 

such as femtosecond transient absorption (TA) and high resolution TRPL. Passivating 

trap states in the monolayer TMD absorber via e.g., OA treatment, could be used to 

drastically reduce exciton trapping losses, and improve ET efficiencies. Importantly, this 
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is predicted to sufficiently isolate the non-radiative pathways, enabling better 

understanding of their exciton quenching mechanism, which could offer practical answers 

towards circumventing these losses to boost ET efficiencies. 

 To simulate the real behaviour of a heterostructure LSC luminophore, we 

initially suggest a model that factors in the ratio of QD to 2D TMD projected area (χ) to 

an incoming photon flux in order to quantify the likelihood of absorption or reabsorption 

by a QD. For example, this ratio χ could be associated to a probability of absorption by 

either species. Better understanding of the real heterostructure through additional optical 

characterisation studies should offer further improvements to the simulation model. 

Ultimately however, an actual heterostructure LSC ought to be developed and measured, 

which would serve to refine the model and verify the validity of simulation results. 

Suspending the heterostructures in a polymer matrix presents formidable practical 

challenges, which will require long-term research endeavours. A seemingly viable, but 

non-trivial intermediate step would be to suspend the heterostructure in liquid phase for 

bulk steady state and time resolved optical characterisation. 
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APPENDIX 1: PHOTOLUMINESCENCE EXCITATION (PLE) 

SPECTRA NORMALIZATION  

 

 

Figure 10.1: Heterostructure PLE spectrum normalization. a) Unscaled 

heterostructure (red) and PbS-CdS (black) PLE data. b) Heterostructure and PbS-CdS 

PLE normalized to mean PLE values off-resonant to underlying WS2 donor (670-700 

nm). 
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APPENDIX 2: 2D-QD ENERGY TRANSFER EFFICIENCY 

DERIVATION 

 

Figure 10.2: Radiative exciton pathways in pristine WS2 and heterostructure 

Following the RHS of Figure 10.2, WS2 donor PL kinetics in the heterostructure can be 

described via the following set of related ordinary differential equations (ODEs): 

 
𝑑𝐷∗

𝑑𝑡
=  −(𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇)𝐷

∗                    (10.1) 

 

 
𝑑𝑇𝑟

𝑑𝑡
=  𝑘𝑇𝑅𝐷∗ − 𝑘2𝑇𝑟                                   (10.2) 

Where D* and Tr represent the WS2 donor and trap state exciton populations respectively. 

The constants kD, kTR, kET and k2 represent the donor’s intrinsic recombination rate; 

intrinsic trapping rate; donor-acceptor energy transfer (ET) rate; and trap-ground state 

recombination rate respectively. By integration we arrive at the solutions to equations 

10.1 and 10.2. 

 𝐷∗(𝑡) =  𝐷0
∗𝑒−(𝑘𝐷+𝑘𝑇𝑅+ 𝑘𝐸𝑇)𝑡                                 (10.3) 

 

 𝑇𝑟(𝑡) =
𝑘𝑇𝑅𝐷0

∗

[𝑘2 − (𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇)]
(𝑒−(𝑘𝐷+𝑘𝑇𝑅+ 𝑘𝐸𝑇)𝑡 − 𝑒−𝑘2𝑡)            (10.4) 

 

Where D*0 represents the initial donor population. As such, the PL dynamics in the 

heterostructure can be defined as the sum of donor and trap population decay terms given 

by equations 10.3 and 10.4: 
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 𝑃𝐿(𝑡) = 𝐷∗(𝑡) + 𝑇𝑟(𝑡)                                   (10.5) 

i.e., 

 

𝑃𝐿(𝑡) = 𝐷0
∗𝑒−(𝑘𝐷+𝑘𝑇𝑅+ 𝑘𝐸𝑇)𝑡 + 

(
𝑘𝑇𝑅𝐷0

∗

[𝑘2 − (𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇)]
(𝑒−(𝑘𝐷+𝑘𝑇𝑅+ 𝑘𝐸𝑇)𝑡 − 𝑒−𝑘2𝑡)) 

(10.6) 

In the absence of the QD acceptor the pristine WS2 kinetics can be modelled by setting 

the transfer term kET = 0 so that: 

 𝑃𝐿(𝑡) = 𝐷0
∗𝑒−(𝑘𝐷+𝑘𝑇𝑅)𝑡 + (

𝑘𝑇𝑅𝐷0
∗

[𝑘2 − (𝑘𝐷 + 𝑘𝑇𝑅)]
(𝑒−(𝑘𝐷+𝑘𝑇𝑅)𝑡 − 𝑒−𝑘2𝑡)) (10.7) 

The PL dynamics described by equations 10.6 and 10.7 consist of fast and slow decay 

components. In the pristine case (equation 10.7), at short time, i.e., t → 0, the fast decay 

time constant is given by: 

 𝜏1~
1

(𝑘𝐷 + 𝑘𝑇𝑅)⁄                                  (10.8)  

Similarly, in the heterostructure case (equation 10.6): 

 𝜏1
′~1

(𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇)
⁄                                 (10.9) 

At long time i.e., t → ∞, given that the slow decay component (τ2) remains unchanged for 

a given fluence (Table 6.2), the slow decay time in both pristine and heterostructure cases 

is given as: 

 𝜏2~𝜏2
′~1

(𝑘2)
⁄                                 (10.10) 

From equations 10.8 and 10.9, we can deduce the ET rate, kET, as: 

 𝑘𝐸𝑇 = (𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇) − (𝑘𝐷 + 𝑘𝑇𝑅)                      (10.11)  

The ET efficiency can then be determined in terms of rate constants. Using equations 

10.8, 10.9 and 10.11, the ET efficiency can then be simplified in terms of fast decay time 

constants to obtain equation 6.12, chapter 6:  

 𝜂𝐸𝑇 =
𝑘𝐸𝑇

(𝑘𝐷 + 𝑘𝑇𝑅 + 𝑘𝐸𝑇)
=  1 −

𝜏1
′

𝜏1
 

                  

(10.12)  
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APPENDIX 3: LSC SIMULATION VALIDATION TESTS 

 

Table 10.1: LSC simulation validation tests. Input parameters: Quantum Yield, QY 

= 80%; concentration, c = 0.18 mM. A.T (Arelo Tanoh); R.M. (Rowan Mac Queen) 

Luminophore ηopt (A.T F90) ηopt (RM, Matlab) Error (%) 

LR305 11.92 11.5 0.42 

PbS-CdS (1.37 eV) 23.84 23.34 0.5 

WS2/PbS-CdS (1.24 eV) 27.6 27.27 0.33 
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APPENDIX 4: PREPARING MONOLAYER WS2 MOLAR 

EXTINCTION DATA 

 We refer to the work of Paton et al.198 to estimate molar extinction coefficients 

ε(λ) for a monolayer WS2 suspension from a single monolayer absorption measurement. 

The authors derive the expression below, which relates the optical absorption coefficients 

of TMD nanosheet dispersions α(λ) to intrinsic monolayer absorption, AML(λ).  The full 

derivation is provided in the work cited. 

 𝜶(𝝀) =
𝟑𝒍𝒐𝒈𝟏𝟎𝒆

𝟖𝝆𝑵𝑺𝒅𝒐
𝑨𝑴𝑳(𝝀)                               (10.13) 

Where ρNS is the nanosheet (or monolayer) density is quoted in [g L-1] and do is the 

monolayer thickness in [cm]. The units of α(λ) are therefore in [Lg-1 cm-1]. Converting 

α(λ) in [Lg-1 cm-1] to ε(λ) in [M-1 cm-1] is simply a matter of multiplying by the molar 

mass, MrML [g mol-1] of a monolayer as shown in Equation 10.14 below. 

 𝜺(𝝀) =
𝟑𝒍𝒐𝒈𝟏𝟎𝒆

𝟖𝝆𝑵𝑺𝒅𝒐
𝑨𝑴𝑳(𝝀)𝑴𝒓𝑴𝑳                           (10.14) 

The monolayer molar mass, MrML, needs to be estimated. This is done via the equation: 

 𝑴𝒓𝑴𝑳 = 𝑵𝑨𝜴𝑴𝑳𝝆𝑴𝑳𝒅𝒐                           (10.15) 

, where NA is the Avogadro number in [mol-1], ΩML is the monolayer area [cm2] and ρML 

is the monolayer density in [g cm-3].  

 As an example, estimate the extinction coefficients for a square 50 nm × 50 nm 

WS2 monolayer of thickness ~ 0.7 nm. First, the monolayer molecular mass is estimated 

via Equation 10.15.  Table 10.2. shows the input values and the result. 

 

Table 10.2: Estimating WS2 monolayer molar mass 

NA 6.022×1023 [mol-1] 

ΩML (50×10-7)2 [cm2] 

ρML 7.5 [g cm-3] 

do 0.7×10-7 [cm] 

MrML 7.9×106 [g mol-1] 
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 Now, using equation 10.14, the extinction coefficient is estimated using fitted monolayer 

extinction data. First however, it is important to note that ρNS is 7500 [g L-1] or 1000×ρML. 

Absorption data was fitted using the three Gaussian model, Gauss 3 in Matlab. Figure 10.4.1 a-c 

shows the fitting process. Figure 10.3.d shows the resulting estimated extinction spectrum used 

for LSC simulations in chapter 7.  

 

Figure 10.3: Preparing Monolayer WS2 molar extinction data. a) Three Gaussian fitting; b) 

Fitted absorption overlapping raw data; c) Fitted absorption data; d) Estimated molar extinction 

spectrum. 

 


