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We conduct a systematic comparison of technology cost forecasts
produced by expert elicitation methods and model-based meth-
ods. Our focus is on energy technologies due to their importance
for energy and climate policy. We assess the performance of sev-
eral forecasting methods by generating probabilistic technology
cost forecasts rooted at various years in the past and then com-
paring these with observed costs in 2019. We do this for six tech-
nologies for which both observed and elicited data are available.
The model-based methods use either deployment (Wright’s law)
or time (Moore’s law) to forecast costs. We show that, overall,
model-based forecasting methods outperformed elicitation meth-
ods. Their 2019 cost forecast ranges contained the observed values
much more often than elicitations, and their forecast medians were
closer to observed costs. However, all methods underestimated
technological progress in almost all technologies, likely as a result
of structural change across the energy sector due to widespread
policies and social and market forces. We also produce forecasts
of 2030 costs using the two types of methods for 10 energy tech-
nologies. We find that elicitations generally yield narrower uncer-
tainty ranges than model-based methods. Model-based 2030
forecasts are lower for more modular technologies and higher for
less modular ones. Future research should focus on further method
development and validation to better reflect structural changes in
the market and correlations across technologies.

expert elicitation | model-based technology forecasts | energy transition |
energy technology costs | uncertainty

Designing robust and cost-effective policies and business plans
to promote a carbon-neutral, sustainable economic system

requires estimating the future cost of technologies that may play a
significant role in the energy transition. The future of these and
other technologies is notoriously hard to predict because the in-
novation process, that is, the “process by which technology is
conceived, developed, codified, and deployed” (1), is part of a
complex adaptive system (2) and is made up of interconnected
actors and institutions (3, 4). Different frameworks for analyzing
technology innovation and its determinants consider the innova-
tion process at the level of nations (5), sectors (6), and technol-
ogies (2, 7, 8) and highlight different actors and relationships. And
several relevant additional literatures contribute to a holistic un-
derstanding of different aspects of the innovation process. For
example, the multi-level perspective is used to understand socio-
technical transitions from niches to regimes and shines a light on
evolutionary, interpretive, and contextual processes and the role of
agency (9). The economics of innovation literature focuses on
mechanisms such as market demand (induced innovation) (10),
knowledge spillovers from multiple areas of technology over time
(11), and learning by doing during production or use (12). Finally,
complexity economics emphasizes the organic and nonequilibrium

nature of innovation (13). These approaches and literatures not
only inform our understanding of the innovation process but also
provide (sometimes implicitly and sometimes explicitly) a con-
ceptual basis that guides how researchers, analysts, and policy-
makers forecast technological change.
A range of probabilistic forecasting methods have been de-

veloped and used to generate estimates of future technology costs.
Two high-level types of approaches have been most often used to
generate quantitative forecasts: expert-based and model-based
approaches. Broadly speaking, expert-based approaches involve
different ways of obtaining information from knowledgeable in-
dividuals who may have differing opinions and/or knowledge
about the relative importance of various drivers of innovation and
how they may evolve. Experts make implicit judgments about the
underlying drivers of change when producing their forecasts and
can take into account both public information about observed
costs as well as information that may not yet be widely available or
codified (14). Expert-based approaches are often the only source
of information available to analysts when data on a given technology
has not yet been collected—as is generally the case for emerging
technologies. By contrast, model-based approaches explicitly use one
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or more variables from available observed data to approximate the
impact of the full set of drivers of innovation on technology costs,
implicitly assuming that the rate of change in the past will be the best
predictor of the rate of change in the future.
Expert- and model-based approaches can be used to produce

deterministic or probabilistic cost forecasts. Notably, there are
increasing calls to better understand and incorporate uncertainty
in energy systems and policy modeling (15–20). Despite this,
most integrated assessment models (IAMs) of economic activity
and the climate (21–23), policy analyses, and industry perspec-
tives rely on deterministic forecasts of energy technology costs or
(in some cases) scenario analysis to inform public policy design
or investment decisions. Even though expert- and model-based
forecasting methods are increasingly used, we know very little about
their relative performance when compared to observed costs.
This paper presents a systematic analysis of the relative per-

formance of probabilistic cost forecasts from expert-based methods
and model-based methods. We specifically focus on one expert-
based method—expert elicitations (EEs)—and four model-based
methods—two based on Wright’s law (which model costs as a
function of deployment) and two based on Moore’s law (which
model costs as a function of time). SI Appendix, Table S1 sum-
marizes these methods and illustrates their links with the different
innovation theories and concepts, including necessarily brief and
stylized notes on the underlying intuition or mechanism behind
each method.
We assess the performance of these forecasting methods by

generating probabilistic technology cost forecasts rooted at var-
ious years in the past. We then compare these with observed
costs in 2019 for six energy technologies for which both observed
and elicited data are available. Although our analysis directly in-
forms energy and climate technologies, which is an important area
of research and policy, the general approach we develop and
implement is applicable to other technology areas. We also
compare probabilistic 2030 cost forecasts generated using these
methods to each other for 10 technologies. The closest analysis to
this part of our work is that by Neij (24), which compares expe-
rience curves (Wright’s law), expert judgments, and “bottom-up
analysis” for some technologies. We build on this analysis and
significantly expand it by focusing on EEs (which were not yet
available at the time) and including recent and more rigorous
probabilistic model-based forecasting methods. Assessing the rel-
ative performance of expert-based and model-based forecasting
methods in the energy space can help understand their suitability
for important technology foresight tasks in research and practice,
such as those needed in integrated assessment modeling and
broader policy analysis.
To systematically compare the performance of expert elicita-

tion forecasts and model-based forecasts using Wright’s and
Moore’s laws, we undertake the following four analytical steps.
First, we collect, harmonize, and make available a large number

of data points on the costs of 32 energy technologies relevant to
support the energy transition. These data points include 25 sets of
data from EEs conducted between 2007 and 2016 and cover a
range of geographies (reference Dataset S1 for details) and 25 sets
of observed technology data including the evolution of cost and
deployment over different periods of time. This data collection
effort was possible thanks to the growing literature on both ob-
served data and, more markedly, energy technology EEs since
2007. SI Appendix, section 2 includes details on the observed data
and indicates how to access the repository of data collected.
Second, we build on past work (25–29) to develop probabilistic

forecasts using EEs and model-based approaches. We generate
four different kinds of model-based forecast—two using Wright’s
law and two using Moore’s law. For each of these two laws, we
characterize uncertainty and project it forward using two dif-
ferent methods, which we call the Stochastic Shock method and
the Stochastic Exponent method, respectively, as detailed below.

Third, we assess the performance of probabilistic forecasts made
using these five methods from various dates in the past. We con-
trast their 2019 forecasts with observed costs for the subset of six
energy technologies for which the necessary data are available.
Given the probabilistic nature of these forecasts, we assess their
performance by comparing both the median values of their 2019
forecasts and the forecast ranges with the average observed 2019
costs.
Fourth, we compare the five expert- and model-based proba-

bilistic forecasts of technology costs in 2030—an important mile-
stone in the energy transition (30)—to each other and reflect on
their differences. This latter part of the analysis is possible for 10
energy technologies.
The urgency of developing policies for deep decarbonization

(as outlined in the Intergovernmental Panel on Climate Change
[IPCC] 1.5 °C report) (30) makes this systematic analysis timely
and necessary. We conclude the paper with reflections about im-
portant avenues for future research on technology cost forecasting.

Technology Forecasting and Energy
Technological trajectories are complex and cannot be fully char-
acterized by any single indicator (28, 31). Yet, for some specific
purposes, knowledge of a few key technology characteristics can
be extremely useful. In the context of climate change mitigation
and energy policy, one of the most informative indicators is unit
cost—the cost per unit of energy or functional capacity. Under-
standing the range of future costs of energy technologies is es-
sential for the design of cost-effective and robust energy and
decarbonization policies (20). As previously mentioned, the two
most commonly used classes of methods to make technology cost
forecasts in general—and in the energy sector in particular—are
expert-based methods and model-based methods (16, 32–34).

Model-Based Methods. The use of model-based approaches to
estimate future technology costs has a long history. The various
approaches can be understood in terms of three elements: a) the
“underlying model” of technological change—that is, the func-
tional form or relationship between dependent and independent
variables; b) the way uncertainty is characterized and used to
project the underlying model forward in time to generate fore-
casts; and c) the way forecasting method performance is evalu-
ated using forecast error models.
Functional forms. The first underlying model we consider describes
the process of learning by doing and is known as Wright’s law
(i.e., learning curve or experience curve). Based on an empirical
pattern originally identified in 1936 by Wright (35), it postulates
that for a given technology, each doubling of experience is as-
sociated with a reduction of cost by some fixed, technology-
specific percentage called the “learning rate” (36). “Experience” in
this context means the sum total of humanity’s experience with the
technology in all aspects of its development, deployment, and use. It
is often proxied by cumulative production or cumulative deploy-
ment. The intuition behind Wright’s law model is that expending
effort on a technology generally leads to updates and improvements.
This pattern is observed across many technologies (37).
The second model we consider is known as Moore’s law, since

it was first observed in 1965 by Intel Corporation founder Gor-
don Moore (38). Emerging from the empirical observation that
computer chips improved at roughly a constant rate, Moore’s law
(as it is currently interpreted) states that each year the cost of a
given technology falls by some fixed, technology-specific percentage,
which we call the “progress rate” here (i.e., costs decrease expo-
nentially with time). This model represents the idea that as time
passes, in most cases, technology improves and costs decrease.
Both Wright’s law and Moore’s law methods are widely used,

despite their known limitations. These include the fact that they
do not capture explicitly the various complex, interconnected
innovation processes that ultimately result in technology cost
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reductions, including research and development, economies of
scale, and knowledge spillovers, among others (39, 40). These
model-based methods also rely on empirical relationships that
capture correlations without implying causation (37, 41). For ex-
ample, they are known to suffer from omitted variable bias since
exogenous technological change from spillovers takes place along-
side deployment, and learning by doing takes place alongside the
passing of time. There is, of course, a dependency between time
and deployment; in cases in which deployment increases expo-
nentially over time, both relationships are to a large extent cap-
turing the other (42). Nearly exponential deployment is very
common for technologies, so it is usually hard to determine whether
Wright or Moore’s law is a better fit for observed data. Thus, for
some technology areas, Wright’s andMoore’s laws yield very similar
forecasts. However, given the history of energy policy and the
strong role of governments, deployment rates often vary signifi-
cantly over time, making Wright’s law potentially more useful.
Several other model-based methods have been proposed and

developed, though these are less well known and less used. They
include the following: Goddard’s law, which considers the rate at
which costs change as a function of economies of scale (43); the
Sinclair–Klepper–Cohen model, which considers costs as a joint
function of deployment and scale (44); Nordhaus’s model, which
is a mixture of Moore’s and Wright’s laws (45); and the two-
factor learning curve literature, which forecasts cost as a joint
function of deployment and accumulated knowledge from re-
search and development (46, 47) (reference SI Appendix, Table
S1 for more detail). A few model-based studies have also in-
cluded additional factors beyond learning by doing and research
and development, for example, ref. 41.
Characterization of uncertainty.Model-based forecasting approaches
also differ in how they characterize uncertainty. For a given func-
tional form, the simplest way to generate a forecast is to estimate
the value of the primary “technological change” parameter (e.g.,
the learning rate in Wright’s law or progress rate in Moore’s law).
This is often done using a simple regression procedure applied to
observed data for a given technology, with multifactor models
having two or more such parameters. The relevant parameter is
then used to project technological change forward in a determin-
istic manner, producing a point forecast for a given technology.
In this case, the technological change parameter is assumed to
be both known with certainty and constant throughout the
technology’s lifetime.
Probabilistic forecasts build upon this basic method by intro-

ducing uncertainty in different ways. In the context of techno-
logical change, uncertainty arises from three distinct sources:
uncertainty because of measurement error (since we can never
know the “true” value of any given parameter), uncertainty be-
cause of innovation being an intrinsically uncertain process (en-
dogenous uncertainty), and uncertainty because of unforeseeable
events elsewhere in the economy (exogenous uncertainty). These
three sources can be incorporated into forecasts by, respectively,
assuming that the technological change parameter is uncertain
(e.g., ref. 48); assuming that, in addition, it may change over time
(e.g., ref. 25); and by adding extra “noise” terms to the model, for
example, periodic shocks representing unforeseeable fluctuations
in the economy (e.g., refs. 27 and 49).
Once an uncertainty specification has been selected, proba-

bilistic forecasts may be generated either analytically or by
Monte Carlo methods (i.e., randomly generating a large number
of deterministic forecasts and then aggregating these to form a
probabilistic forecast). Typically, a central estimate of the tech-
nological change parameter is obtained, plus a few small varia-
tions around it. These variations can be informed by an error
distribution produced by the regression procedure used to esti-
mate the central parameter value and are used to create a small
number of deterministic forecasts used for scenario analysis.

The literature estimating future energy technology costs in this
way using Wright’s law, Moore’s law, or two-factor learning curves
is vast. For example, Rubin et al. (47) review one-factor and some
two-factor learning rates for 11 electricity generation technologies,
Schmidt et al. (50) present experience curves for 11 electrical
energy storage technologies, Weiss et al. (51) estimate average
learning rates for 15 energy demand technologies and 13 energy
supply technologies, and Malhotra and Schmidt (52) collect data
on experience curves for 12 energy technologies. Many studies
have focused on individual technologies, such as wind power (53,
54), solar power (25, 55), and electric vehicles (56). Wright’s law
has also been used to assess the costs and benefits of specific
energy policies, including the cost effectiveness of a California
residential solar photovoltaic (PV) subsidy (57), the expected costs
of subsidizing solar or wind technologies until they are competitive
with alternatives (25, 58), and the design of feed-in tariffs for re-
newable technologies (59). Another common use of projections
based on Wright’s law is in various IAMs, including many of those
used in the IPCC reports and in other prominent analyses as a way
of endogenizing technological change (60, 61). Cost reductions
due to technological change have also been modeled as a function
of time in IAMs (e.g., ref. 62).
Statistical testing of model-based methods. Understanding the reli-
ability of each methods’ forecasts is critical for several reasons.
Natural variation in technologies’ historical data series can lead
to large uncertainty in estimated model parameters (63); statis-
tical model identification is often difficult due to correlations
between variables (45, 64), and using endogenous or exogenous
technological change in energy models leads to very different
results and policy implications (60, 65).
To shed light on these issues, a strategy of collecting data and

systematically backtesting various forecasting models was pro-
posed (66), and several studies advanced this approach (27–29).
The underlying idea is that each technology’s evolution over time is
likely the result of sufficiently similar mechanisms that technolo-
gies can be treated as a set of nearly identical independent ex-
periments whose data may therefore be pooled and analyzed to
produce inferences about the future (i.e., out-of-sample forecasts).
The first such study used a set of 12 technologies (67) fol-

lowing which Nagy et al. (28) undertook a major effort to as-
semble data and conducted a more comprehensive analysis. They
collected long, sequential time series data for 62 technologies
and performed hindcasting experiments with several candidate
models. This work led to a greater understanding of the role of
error models in assessing forecast performance and to a focus on
Wright’s and Moore’s laws in future forecasting efforts because
of their superior performance in hindcasting tests. Farmer and
Lafond (27) and Lafond et al. (29) extended this work by devel-
oping and testing one specific method for characterizing uncer-
tainty, which we use in this paper and describe in more detail
below. All the probabilistic forecasting studies doing statistical
testing suggest that further development of these methods is both
possible and desirable.

Forecasting Uncertainty Using Model-Based Methods in This Work.
To make probabilistic cost forecasts, we use two functional
forms—Wright’s and Moore’s laws—plus two methods of pro-
jecting uncertainty forward, yielding a total of four model-based
methods (see Methods for more details). The first uncertainty
projection method we use is the first-difference stochastic model
developed in refs. 27 and 29, which we call the Stochastic Shock
method. This model assumes there is a stable but uncertain
technological change trend, on top of which periodic stochastic
shocks occur, impacting costs repeatedly over time. The model is
calibrated using differences between sequential observations in
each technology’s data series.
The second uncertainty projection method we use is a modi-

fication of the method proposed by ref. 25. The original method
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involves calculating the frequency with which learning rates (for
Wright’s law) or progress rates (for Moore’s law) are observed in
a given technology’s data series, using a combinatorial approach,
and then using the resulting distributions to project uncertainty
forward. However, using all start/end year combinations to cal-
culate these distributions pools together observations that are
not entirely comparable since ranges overlap and vary in length.
To avoid potential biases related to double counting, we use only
single-period learning and progress rate observations; we call this
modified method the Stochastic Exponent method. We fit nor-
mal distributions to the observed progress exponent distributions
and generate forecast distributions in a Monte Carlo method
style. Each single forecast is made by sequentially picking prog-
ress exponents from the relevant normal distribution and projec-
ting costs forward, year by year, until the time horizon is reached;
then, these are aggregated to form the final forecast distribution.

Expert-Based Methods. Expert-based approaches, which include
EEs, are a different class of forecasting methods (SI Appendix,
Table S1). They can be used to offer insights into the future of
technologies for which historical deployment and cost data are
not yet available or commercialized (14, 68), are designed to
always provide probabilistic estimates of future cost developments
(69), and do not assume that previous trajectories will continue
and do not preclude the identification of technology surprises or
discontinuities.
Among the expert-based approaches, EEs have been the most

widely used method to estimate probabilistic future technology
costs in the energy sector. Because of this relative richness of
data, we focus our analysis of expert-based methods on EEs. EEs
are structured surveys of experts who are asked to provide
probabilistic estimates of future costs by using the best available
information to them at the time of the elicitation (16, 32), which
is likely to include different types of observed data. It is impor-
tant to note that in some cases, this same observed data may
serve as input to some of the model-based methods.
The EE method was pioneered in the 1960s and 1970s to

support decision-making in the presence of extreme or unlikely
events (70). EEs have often been applied to forecast technology
cost and performance to support decision-making under uncer-
tainty (16). In the past decade, an increasing number of expert
elicitation studies were conducted on energy technologies (14)
including (among others) nuclear power (71), wind energy (32),
solar energy (72), water electrolysis (73), and energy storage (74).
EEs are of particular interest when data are sparse or missing

or the technologies are emerging. However, they are time con-
suming and may differ in terms of the elicitation protocol and
methods for administering the survey (Dataset S1). Research has
suggested that in-person interviews have the advantage of allowing
experts and researchers to have in-depth discussions and ask
clarification questions but may be subject to small sample sizes
and cognitive biases (72). Other research has shown that although
online instruments are often pilot tested and can enable a broader
representation of experts, which can reduce biases (33), challenges
can remain since questions cannot be tailored in real time to adapt
to respondent preferences and understanding. Some effort has
also been devoted to understanding quantitatively the EE design
factors that lead to systematic differences in uncertainty estimates
from energy technology expert elicitations. For example, ref. 33
explores the role of elicitation mode, expert characteristics, and
research and development (R&D) scenario variables in deter-
mining the uncertainty range surrounding energy technology cost
forecasts using the largest set of EE studies available as of 2015. In
the same vein, other work has investigated the extent to which
elicitations focused on aggregate- versus component-level costs
are associated with differences in elicited cost forecasts (75, 76).
Another important consideration related to EE design is that, given
that experts are busy and have limited time available, they are

necessarily asked to provide estimates about a limited number of
points in time. This means that using EE forecasts for specific
policy or investment decisions and comparisons (such as the ones
in this paper) often involves interpolating or extrapolating
elicitation data over time.
Beyond questions about elicitation design, using EE outputs

often requires making difficult decisions about whether or not to
aggregate expert elicitations and, if so, how. While offering in-
sights that are more easily interpreted by policymakers and other
analysts, aggregating across experts presents limitations and draw-
backs that must be considered when it comes to the communication
of results as discussed in refs. 76 and 14. The aggregation, inter-
polation, and extrapolation methods used in this work are discussed
in Methods.
Despite the significant and growing research on model-based

and expert elicitation forecasts in energy technologies and other
technological areas, we are not aware of any research collecting
and systematically comparing the performance of those types of
approaches to observed values or each other in the future.

Results
Data Collection and Harmonization. The first step and contribution
of our analysis is a large collection of data on energy technology
costs, which we make available as detailed in SI Appendix, section
3. These include 25 sets of data from EEs on energy technologies
conducted between 2007 and 2016 and covering a range of ge-
ographies and 25 sets of observed energy technology data in-
cluding cost, deployment, and time. Dataset S1 lists all the EE
data sources by technology, including information about how the
data points were described in the original sources and the cost
metrics available for each technology. Dataset S2 lists all the
references and links for both the EE and observed data. Note
that due to the need for both elicitation and sufficient prior ob-
served data on the same technology, forecast comparison analyses
were only possible for much smaller subsets of technologies than
those in the complete data set.

Probabilistic Forecasts of Energy Technology Costs. The second step
of our analysis is to generate probability distribution functions of
estimated costs from model-based and expert-based methods as
detailed in Methods. This allows us to compare the probabilistic
2019 cost forecasts from both methods to observed average 2019
costs as well as to compare the 2030 probabilistic cost forecasts
generated using the different methods to each other. Here, we
highlight a few key aspects of the forecast generation process.
To build the expert elicitation forecasts for the comparison we

a) fit one of three types of continuous probability distributions to
the discontinuous probabilistic data points provided by each
expert, b) aggregate the resulting continuous individual expert
distributions for each technology assigning equal weights to each
expert using the method in ref. 26, and c) when the time points
provided by the experts did not coincide with our 2019 and 2030
forecasting horizons, we use an exponential fit between the two
time horizons provided by the experts to either interpolate or
extrapolate as required (SI Appendix, section 3).
To build the model-based forecasts, we generate probabilistic

estimates fromWright’s law using the Stochastic Shock (W1) and
the Stochastic Exponent (W2) methods and from Moore’s law
using the Stochastic Shock (M1) and the Stochastic Exponent
(M2) methods (Table 1). Three important features of the model-
based forecasting process should be mentioned.
First, to apply Wright’s law model, one needs to make as-

sumptions about the future level of deployment. In this work, we
assume recent historical growth trends continue into the future
and persist for the duration of the forecasts: we extrapolate
deployment using the compound average annual growth rate
(CAAGR) observed over the 10-y period prior to each forecast.
The W1 and W2 forecasts are therefore conditional upon these
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specified levels of deployment. We refer to this as a “continua-
tion of past trends deployment scenario,” which is tantamount to
saying that deployment, R&D funding, and other variables
continue the historical trajectory of the previous 10 y. We depart
from this general rule in the case of two technologies because the
calculated average rate of deployment over the 10-y time period
may be too high compared to even the most ambitious deploy-
ment scenarios for those two technologies (see Methods).
Second, in the computation of the 2019 model-based forecasts,

we only use observed data up to the year of the elicitation with
which the forecasts are to be compared. In other words, if the
elicitation for a given technology was conducted in (let us say)
2010, we produce the model-based forecast of 2019 costs using
observed data up to 2010 only, even if observed data are avail-
able beyond 2010. This allows us to compare the EEs with
model-based estimates that do not enjoy the benefit of additional
years of data that were not available to the experts when they
made their forecasts.
And third, although in many cases we found that relevant

observed data were not available to generate model-based fore-
casts, in other cases we had to make choices about which data to
include. The details on the data selection for nuclear power, off-
shore wind, and two electrolysis technologies can be found in SI
Appendix, section 3.

Comparison of the Methods’ Performance Forecasting 2019 Costs.
Fig. 1 presents the systematic comparison of expert-based and
model-based probabilistic forecasts with observed 2019 costs.
The figure shows average 2019 observed costs and the probabi-
listic 2019 EE, W1, M1, W2, and M2 forecasts for the six energy
technologies for which both elicitation and sufficient prior ob-
served data are available. The horizontal axis shows the cost and
the cost units, and the different colors on the vertical axis denote
the forecast method. The whiskers represent the fifth to 95th
percentile range, the short sides of the rectangular box the 25th
to 75th percentile range, and the line dividing the rectangular
box the 50th percentile (the median). The corresponding average
observed 2019 cost is shown with a dashed gray vertical line in
each of the six plots.
From left to right and from top to bottom, the technology

forecasts are listed starting with the oldest forecast. The oldest
forecasts are for nuclear power, which use an expert elicitation
from 2009 and, correspondingly, observed data up to 2009 to pro-
duce the model-based forecasts. The most recent forecasts are for
alkaline electrolysis cells (AEC) and proton exchange membrane
(PEM) electrolysis cells, which are based on an expert elicitation
from, and observed data up to, 2016.
Fig. 2 shows the log of the ratio of the 50th percentile of the

cost forecast and the observed cost value. This is a dimensionless
metric for characterizing the performance of the different methods,
which allows us to systematically compare the size of the uncer-
tainty ranges and the distance between the forecast medians and

the observed average values. The line encompasses the log of the
ratio of the 95th and fifth forecast percentiles and the observed
value.
There are three main takeaways from the performance com-

parison shown in Figs. 1 and 2.
First, we find that, for this set of energy technologies, model-

based forecasts outperform EE-based forecasts in terms of their
ability to capture the 2019 observed value within the forecasted
2019 uncertainty range. Concretely, almost all model-based ap-
proaches produced fifth to 95th percentile ranges for 2019 that
included the observed values for all six technologies. The only
exception was the M2 method on solar PV, which failed to in-
clude the observed value, although only by very little (Fig. 2).
Notably, the Stochastic Shock method (W1, M1) produced 25th
to 75th percentile ranges that captured the average 2019 value in
all technologies but PV. In contrast, the fifth to 95th percentile
range of the EE 2019 forecasts only contained the observed cost
value for the two wind technologies (i.e., onshore and offshore
wind). Model-based methods also outperformed elicitations in
that they produced forecast medians that were closer to the
observed 2019 values. Specifically, model-based medians were
closer to the observed costs than the EE medians for all tech-
nologies except offshore wind and the W2 model-based forecast
for PEM electrolysis.
Second, in almost all cases, both the EE and the model-based

forecast medians are higher than the observed 2019 costs—they
underestimated technological progress over this forecasting pe-
riod. The notable exception is nuclear power, in which the finding
is reversed—all forecast medians are lower than the observed cost.
The W2 forecast medians for the two electrolysis technologies are
outliers; reference SI Appendix, section 4 for a detailed discussion
of the uncertainty ranges generated by W2 and M2 in this case.
Third, for four out of the six technologies, the fifth to 95th

percentile range of the 2019 forecast was larger for the model-
based methods than for EEs (Figs. 1 and 2). This was not the
case for solar PV and onshore wind. Note that the fifth to 95th
percentile ranges for EE and model-based forecasts for onshore
wind were very close. The fact that model-based forecasts tend to
generate fifth to 95th percentile uncertainty ranges that are
generally larger or equal to those of EEs may partly explain the
first finding discussed above. It is important to point out that the
EEs all included steps in the elicitation protocol aimed at
reducing expert overconfidence.
Determining why all methods underestimated technological

progress in all technologies except nuclear when generating 2019
forecast medians is hampered by the fact that our analysis was
possible only for a small number of technologies. However, we
can hypothesize a few possibilities. These include unforeseen
changes in the industry structure and/or policy and/or an un-
derestimation of the level of deployment. The five energy tech-
nologies for which forecast medians were higher than observed
2019 costs are likely correlated, that is, subject to a common set

Table 1. Overview of the five forecasting methods in this study

Forecasting approach Method name

Summary

Explanatory variable characterization of uncertainty

Model based Wright 1 (W1) Cumulative experience Stochastic Shocks: an uncertain yet stable progress trend (Wright or
Moore) is estimated, in addition to which random shocks occur each

period; shocks accumulate over time.
Moore 1 (M1) Time

Wright 2 (W2) Cumulative experience Stochastic Exponents: each period a new progress exponent (Wright
or Moore) is randomly selected from a fixed probability distribution.Moore 2 (M2) Time

Expert based EE Several experts estimate cost distributions at (at least) two different points in time. Individual
expert distributions are aggregated to form a single distribution at each date, and a smooth

exponential trend is assumed to connect the two.
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of underlying drivers related to decarbonization policies, investor
perceptions and preferences, firm expectations, and societal
pressures. It is therefore possible that the forecasting period used
for our systematic comparison was one in which a range of un-
derlying drivers of innovation changed to result in faster innovation

across those five technologies. Along similar lines, for elicitations,
under- or overestimation of technological change can occur if ex-
perts cannot foresee increases or decreases in policy support, de-
ployment, or regulation for this particular set of technologies. As
previous research suggests, it is also not surprising to see nuclear

Fig. 1. Comparison of the expert elicitation and model-based 2019 forecasts for six energy technologies with the corresponding average 2019 realized
values. The year listed in brackets below the name of the technology indicates the year in which the EE was conducted and, consequently, the latest observed
data included as input to the model-based forecasts. The far-right whisker (the 95th percentile) of the W2 distribution for water electrolysis AEC and PEM is
shown inside a gray band; this indicates that the x-axis was extended to include said forecast.

Fig. 2. Forecast errors of the five methods in 2019. The forecast error is a dimensionless performance metric. The dots represent the log of the ratio of the
forecasted 50th percentile and the corresponding observed average 2019 value. The top of each line represents the log of the ratio of the 95th percentile with
the realized value, while the bottom represents the log of the ratio of the fifth percentile with the realized value; the lines span the distances between these
two forecast error extremities. The error of the forecast median for PEM using method W2 is −3.1, which is excluded for readability. Forecast horizon means
the time horizon from the elicited year to 2019.
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evolve differently (52, 77, 78) from other technologies. In other
words, this faster pace of innovation in most of the energy tech-
nologies covered compared to the forecasts is likely the result of
structural change across the energy sector due to widespread pol-
icies and social and market forces.
Importantly, our results do not necessarily imply that EE

forecasts will be less accurate than model-based forecasts for all
technologies. Indeed, SI Appendix, section 5 and Fig. S3) shows
three additional EE technology cost forecasts (bioelectricity,
lithium-ion batteries, and biodiesel) whose fifth to 95th percen-
tile ranges included the 2019 observed values. These are not
shown in the main body of the paper because no observed data
were available to generate comparable model-based forecasts. It
is of course possible that, had model-based forecasts been
available, they would have been more accurate than these EE
forecasts, or vice versa. In SI Appendix, section 6, we include an
additional robustness check with different observed data inputs
for the model-based forecasts for offshore wind—not including
experience from onshore wind. The results are consistent with
those shown in Figs. 1 and 2.
This comparison of different methods’ performance represents

only a first step, yet an important one. As more data becomes
available, future research could further test whether model-based
approaches outperform EEs in other technologies building on the
approach presented here. We note that the ability to compare the
performance of forecasts from different methods is directly de-
termined by data collection efforts, pointing to the need for con-
tinued data collection to enable comparisons for a larger group of
technologies. Two other important subjects of future research are,
first, how to develop model-based forecasts for technologies that
may be correlated due to structural changes in the underlying
markets, and second, how to further reduce overconfidence in EEs.

Model-Based and Elicitation Forecasts of 2030 Energy Technology
Costs. We also compare probabilistic EE and model-based 2030
cost forecasts with each other (as 2030 costs are not yet known)
for the 10 energy technologies for which the necessary data are
available. Fig. 3 shows the median and the fifth to 95th percentile
ranges of the W1, M1, and EE forecasts to the year 2030 for
onshore wind, offshore wind, crystalline silicon PV modules,
thin-film PV modules, concentrating solar power (CSP), all PV
modules, bioelectricity, nuclear power, AEC, and PEM elec-
trolysis cells. 2030 forecasts using W2 and M2 forecasts are not
presented here to increase readability, but they are shown in SI
Appendix, section 7 and Fig. S5.
To generate the model-based forecasts for 2030, we rely on all

the data available as of late 2020—that is, we do not shorten the
time series to match the year of the expert elicitation as we did in
Figs. 1 and 2. The objective of the comparison to 2030 is to
summarize what is known today about the possible range of 2030
costs and to identify differences between EE and model-based
forecasts going forward. Fig. 3 includes two different estimates
for crystalline silicon (c-Si) PV costs, one relying on the full set of
observed data for c-Si PV (Fig. 3C) and one relying on observed
data since 2006 only (Fig. 3D, Left). We do this because the data
available for thin-film PV covers only the period 2006 to 2019, so
the most meaningful comparison with c-Si may be one that uses
data beginning in 2006 also. This illustrates the importance and
nuance of data choices underpinning the model-based forecasts.
And as previously noted, SI Appendix, section 3 contains details
regarding the data used as input for model-based methods in the
case of offshore wind. We also conducted a sensitivity analysis
with two additional deployment scenarios: one in which we use a
deployment scenario consistent with the International Energy
Agency’s (IEA) Stated Policies Scenario and one that is consis-
tent with the IEA’s Sustainable Development Scenario (reference
SI Appendix, section 8 for more information). Fig. 4 compares
2030 cost estimates of those subtechnologies that are more mature

and established (i.e., “dominant”) with those that are typically
emerging, or with a much lower market share (i.e., “novel”).
Three main insights emerge.
First, the uncertainty ranges (i.e., the 5th to 95th percentile

range) for the 2030 forecasts generated using W1 and M1 are
generally larger than those for the EE forecasts. This is similar to
what was observed in Figs. 1 and 2 for the 2019 forecasts. The
results for W2 and M2 are largely consistent (SI Appendix, sec-
tion 8 and Fig. S5 and related discussion). While we cannot yet
determine the accuracy of these forecasts when compared to
observed 2030 costs, the smaller 2030 EE forecast ranges may be
less likely to include them. Given the focus in the expert elici-
tation literature on addressing overconfidence, the fact that EE
forecasts generally have smaller uncertainty ranges compared to
those from model-based methods again suggests that additional
research to reduce overconfidence would be useful.
Second, for nine out of the 10 technologies, the model-based

2030 cost forecasts have lower medians than the EE forecasts;
nuclear power is the one exception in which EE forecasts are
lower than model-based forecasts. For all technologies except
bioelectricity, the EE forecast medians in 2030 are lower than
the observed cost of the technology in the year when the EE was
carried out (listed in the gray bands in Fig. 3), reflecting a gen-
eral expectation from experts of cost reductions, although with
substantial differences across technologies. The W1 and M1
forecast medians in 2030 are lower than the 2019 average costs
for all technologies except nuclear power (and, in the case of W1,
AEC also, though the difference is small). Reference SI Ap-
pendix, section 8 for more discussion on the uncertainty ranges
generated using W2 and M2. Importantly, the W1 (and W2)
findings presented here are robust to the different deployment
assumptions used in the sensitivity analysis as discussed in SI
Appendix, section 8.
Third, as illustrated in Fig. 4, “novel” subtechnologies gener-

ally have higher 2030 EE forecast medians and are characterized
by larger uncertainty ranges than the EE forecasts for the cor-
responding dominant technologies. The comparison across all
subtechnologies using all five forecasting methods was possible
only for wind power, for which the comparatively novel sub-
technology (offshore) has achieved significant diffusion already.
This fact points to the particular value of EEs as a source of
information to get an initial understanding of the future costs of
technologies for which cost data are not available. Only as time
progresses will we get a better sense of whether or not these com-
paratively novel technologies will “catch up” with their currently
dominant technology counterparts by 2030 in terms of the costs. See
more discussion in SI Appendix, section 9.
The results discussed suggest that EE 2030 forecasts should

not be used for those technologies that have experienced sig-
nificant cost reductions between the time of the expert elicitation
and 2019. For several of the technologies covered in Fig. 3
(specifically Fig. 3 A, C, D, and F), the 2019 observed costs are
already lower than the 2030 EE median forecasts. In these cases,
model-based forecasts, which reflect information from the last 6
to 10 y, are preferable.
One possible explanation for the fact that most model-based

forecasts were lower than EE forecasts emerges from the liter-
ature on the role of technology modularity or complexity (52, 78,
79) as determinants of technology innovation trajectories. Large-
scale nuclear power plants and (to some extent) bioelectricity and
CSP plants would fall into the category of less modular technolo-
gies compared to solar panels and batteries, for instance. Model-
based 2030 cost forecast medians are lower than those from elic-
itations for more “modular” technologies and higher for the least
modular technology (nuclear). They are closer to each other for
the two technologies that are arguably in a midrange of modularity
(CSP and bioelectricity). However, statistically testing this hy-
pothesis is not within the scope of this paper. The fact that experts
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Fig. 3. Comparison of probabilistic 2030 cost forecasts using EEs and model-based methods. For each of the 10 technologies, (A) onshore wind, (B) offshore
wind, (C) crystalline Si PV, (D) crystalline Si PV and thin-film PV, (E) concentrating solar power, (F) all PV module, (G) bioelectricity, (H) nuclear electricity, (I)
water electrolysis AEC, and (J) water electrolysis PEM, the lines from 2019 to 2030 show the 5th, 50th, and 95th percentile forecast using the W1 method (the
red and orange lines) and the M1 method (the purple and light purple lines), with the underlying observed data used to make them shown in blue circles. For each
of the 10 technologies, the gray band on the right-hand side shows the EE forecast and the year in which the EE was conducted. The box with black borders with
whiskers in this gray area indicates the 5th, 10th, 50th, 90th, and 95th percentiles (from the bottom to the top). The data sources for all forecasts are included in SI
Appendix, section 3. For nuclear, the elicited data were overnight capital cost (Dataset S1); this was first converted into levelized capital cost, then augmented with
operations and maintenance cost data in order to produce meaningful comparisons with the model-based forecasts (which rely on observed levelized cost of
electricity data). Nuclear power here includes both light water reactors and Gen IV designs. We include two different c-SI PV forecasts. C uses the full observed time
series, and D uses a time series that matches the length of the thin-film observed data. For more information on the sources of data, reference Dataset S2.
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expect faster cost reductions for less modular technologies com-
pared to model-based methods may also be due to the following:
additional information they may possess about scientific break-
throughs, the industry, and/or policies; unawareness about the
correlations between modularity and technological change; and/or
bias and overconfidence. This indicates the need for future work
to further test this finding using different metrics to account for
modularity and/or complexity (e.g., ref. 79) as more data becomes
available.

Discussion, Areas for Future Research, and Policy
Implications
The increased availability of information on future energy tech-
nology costs, both in terms of forecasts made using observed data
and data collected through EEs, provides a unique opportunity to
introduce considerations on uncertainty around technical change

into energy and climate change mitigation policies. It also enables
us to conduct a systematic comparison of the relative performance
of probabilistic technology cost forecasts generated by different
expert-based and model-based methodologies with 2019 observed
costs. Such a comparison is essential to ensure researchers and
analysts have empirically grounded evidence to support assump-
tions in IAMs, cost benefit analyses, and broader policy design
efforts. Undertaking this type of comparison to assess the per-
formance of different forecasting methods should become much
more common among modelers and forecasting practitioners. We
also compare different longer-term (2030) model-based and
expert-based forecasts with each other.
To perform this analysis, we undertook a major effort to collect

up-to-date data on observed energy technology costs and elicited
data on the future costs of energy technologies. We used these
data to generate comparable forecasts from EEs and four types of

Fig. 4. Comparison of the forecasted 2030 costs of “dominant” and “novel” technologies for different technology classes using expert elicitation forecasts
and model-based forecasts. The 2030 probabilistic forecasts using model-based methods rely on all the data available (not just up to the year of the elici-
tation). (Bottom, Right) Indicates the colors that correspond to the five different forecasting methods.
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model-based forecasting methods. We make this dataset available
to modelers, researchers, and policy makers as detailed in SI
Appendix, section 3.
Four key findings emerge from our research.
First, the comparison of EE and model-based forecasts with

observed 2019 costs over a short time frame (a maximum of 10 y)
shows that model-based approaches outperformed EEs. More
specifically, the fifth to 95th percentile range of the four model-
based approaches were much more likely to contain the observed
value than that of EE forecasts. Among the model-based methods,
the ones that more often captured 2019 observed costs were those
using the Stochastic Shock method for characterizing uncertainty,
with both Wright’s and Moore’s laws. We also find that the 2019
medians of model-based forecasts were closer to the average ob-
served 2019 cost for five out of the six technologies. This com-
parison was possible only for a small number of technologies;
furthermore, some of the EE forecasts included the observed
value. For these reasons, additional research is needed to further
validate these results on model-based methods outperforming EEs.
Second, both the EE and model-based methods under-

estimated technological progress in most of the energy technol-
ogies analyzed in this paper. For five of the six technologies, the
methods produced 2019 cost forecast medians that were higher
than the observed 2019 costs. This could be because these spe-
cific energy technologies are likely correlated. Indeed, it can be
argued that in the period between 2009 and 2019, the energy
sector underwent a structural change because of widespread pol-
icies and social and market forces common to all technologies
(with nuclear being an exception). Given that our analysis is fo-
cused on this specific period and on correlated energy technolo-
gies, the extent to which this faster pace of progress compared to
forecasts will continue (or not) in the future remains to be seen.
Third, in the majority of cases, EEs yielded fifth to 95th per-

centile uncertainty ranges that were significantly smaller than the
uncertainty ranges produced with model-based methods, for both
the short-term (2019) and longer-term (2030) forecasts. This can
perhaps be attributed to the documented issue of expert over-
confidence (80). Combined with the finding that EE forecasts
were less likely to contain the average observed 2019 costs when
compared to model-based forecasts, this result has at least two
implications: a) additional research investigating how to reduce
expert overconfidence would be useful, and b) when sufficient and
reliable observed data are available, there would have to be very
compelling reasons to select the EE method to generate forecasts.
For emerging technologies, there is often little observed data that
can be used to generate model-based forecasts, which means
that expert-based methods may be the only option. We also find
that for nine of 10 technologies, the medians of the 2030 EE
forecasts are higher than those generated by the model-based
methods. As suggested by recent literature, this could be due to
a possible empirical relationship between technology characteris-
tics (i.e., higher modularity) and (faster) innovation.
Fourth, our analysis highlights the value of testing different

methods systematically to improve our understanding of the fu-
ture of energy systems. Despite the relatively short forecasting
horizon, the fifth to 95th ranges for all model-based PV module
forecasts barely captured the 2019 realized values. This not-
withstanding the fact that about four decades of observed costs
of PV modules is available.
Taken together, these insights point to various worthwhile

avenues for future research. With respect to EEs, previous re-
search has shown that involving experts with diverse backgrounds
and experiences and using different elicitation methods (i.e., face
to face, mail, online survey) with carefully designed protocols
matching the method (81) can help reduce overconfidence. This
paper highlights the need to continue methodological improve-
ments to reduce overconfidence. In addition, given the fast cost
reductions in many important energy technologies, relying on

older expert elicitation data would ignore relevant information.
More broadly, and as previously mentioned, the paper raises
questions about the value of conducting elicitations when reli-
able observed data are available to generate model-based fore-
casts when there are no specific reasons to do so.
With respect to model-based methods, this work highlights the

challenge of finding (and collecting) data for many key energy
technologies. It also calls for increased efforts in data collection
and publication by international organizations and other entities.
In addition, the underestimation of technological progress points
to the value of further method development to reflect structural
changes and technology correlations.
Lastly, given the large uncertainty ranges and major policy

decisions associated with the energy transition and with addressing
climate change, we hope this paper will stimulate much more
research in this area. As more data becomes available and more
time passes, additional research comparing the performance of
different probabilistic forecasting approaches with observed values
across a wider range of technologies building on the approach
proposed in this analysis will be possible and valuable.

Methods
Data Collection. To produce probabilistic technology cost forecasts, we col-
lected two types of data. First, we collected data on the evolution of cost and
performance of energy technologies over time along with installed capacity
or cumulative production. These are required to generate the model-based
forecasts of future costs. We obtained this data from a range of databases
(e.g., International Renewable Energy Agency [IRENA]), research articles [e.g.,
Nagy et al. (28)], and research organization reports [e.g., Fraunhofer (82) and
Lawrence Berkeley National Laboratory (83)]. Second, we collected forecasts of
future costs and performance (typically around 2030) using EEs from academic
publications e.g., Verdolini et al. (14)]. Dataset S2 includes an overview of the
technologies for which observed data were available (a total of 32 observed
datasets in energy technologies), the time period covered, and the source.

Producing Probabilistic Forecasts. We first describe the two underlying
technological change models used in this paper, and then we describe the
two uncertainty characterization methods and then finally, the expert elic-
itation forecast generation method.

Wright’s and Moore’s Laws and Energy Technologies. Wright’s law postulates
that cost decreases at a rate that depends on the cumulative production as
described by the following:

yt = AX−w
t , [1]

in which yt is the technology cost in year t, A is a constant, Xt is cumulative
production, and w is the Wright exponent (or learning exponent). This ex-
ponent is then used to calculate the “learning rate,” defined as r = 1 − 2-w.
This rate is interpreted as the percentage reduction in costs associated with
each doubling of cumulative production.

Moore’s law describes the exponential decrease in cost yt of a technology
as a function of time according to the following:

yt = Be−μt , [2]

in which B is a constant, t is the year, and μ is the Moore exponent (or
progress rate).

Developing Model-Based Forecasts with the Stochastic Exponent Method. This
method uses the difference equation form of Wright’s law (where t stands
for time in years):

yt+1 = yt(Xt+1
Xt

)−Wt+1
[3]

and of Moore’s law:

yt+1 = yte−μtt+1 . [4]

To implement the Stochastic Exponent method, we first calculate all inter-
annual exponents observed in the data for a particular technology (Wright
exponents forW2 andMoore exponents forM2). For example, if we have 11 y
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of observed data for a technology, we can generate 10 exponents for both
Wright’s and Moore’s law. Then, for each law, we fit a normal distribution to
the sample of exponents obtained to create a Wright exponent distribution
and Moore exponent distribution. These calculated exponent distributions
are then used to generate cost forecast distributions for the technology by
simulating large numbers of cost sample paths (we used 10,000 per forecast).
Each sample path is generated by sequentially picking exponents from the
corresponding exponent distribution for each year of the forecast and ap-
plying either the Wright’s law or Moore’s law difference equation, as shown
above, until the forecast horizon is reached. The sample paths are then
aggregated to approximate a single probabilistic forecast in the target year.

For the application ofW2, it is necessary to assume a deployment scenario.
In most cases, we used the CAAGR of cumulative experience (either installed
capacity or electricity generation) observedover the 10ybefore the forecast year
to specify a future deployment scenario. There are two exceptions though: the
PV and wind 2030 forecasts; in these cases, we used the CAAGR observed over
the most recent 5 y instead (SI Appendix, section 8). This method implicitly
assumes that deployment, R&D funding, and other variables continue on their
recent historical trajectories for the entire duration of the forecasting period.
We conducted a sensitivity analysis for the Wright’s law forecasts using two
additional deployment scenarios as detailed in SI Appendix, section 8.

To generate the model-based forecasts for the 2019 comparisons, we only
use observed data up to the year of the elicitation with which the model-
based forecast is to be compared, but for the 2030 forecasts, we use all
available data.

Importantly, the model-based forecasts using both the Stochastic Shock
and Stochastic Exponent methods can be produced only in those cases for
which we have at least ∼6 y of sequential annual technology data. This is
because these methods infer cost trends from interannual cost differences,
and at least around five samples are required for model calibration.

Developing Model-Based Forecasts with the Stochastic Shock Method. The
Stochastic Shock method was developed and statistically tested by Farmer
and Lafond (27) and by Lafond et al. (29) for Moore’s and Wright’s laws,
respectively. The model represents the idea that in each year, technological
progress occurs according to a stable underlying trend (either Moore’s or
Wright’s law), and, in addition to this cost development, there is an exog-
enous shock that also impacts the cost. The magnitude of both the under-
lying trend and the stochastic shocks are specific to each technology and are
determined by calibration using observed data. The periodic random shocks
accumulate over time, giving rise to a probability distribution of forecast
costs that grows wider over time (in log space, though not necessarily
nonlog space, depending on the magnitude of the progress trend). In the
simplest version of the model, the periodic shocks are independent and
identically distributed (I.I.D.), but we use an augmented version in which
they are correlated from one period to the next.

For Moore’s law, the model is as follows:

yt+1 = yte−μeυt+1+θυt , [5]

in which μ is the Moore exponent, υt ∼ N(O, σ2) are I.I.D. noise terms, and θ is
an autocorrelation parameter. Following (27), we set θ = 0.63.

For Wright’s law, the corresponding model is as follows:

yt+1 = yt(Xt+1
Xt

)−weut+1+ρut , [6]

in which w is the Wright exponent, ut ∼N (0,σu
2) are I.I.D. noise terms, X is

the future deployment scenario (which is the same as that used for W2 as
described in the previous section), and ρ is the autocorrelation parameter.
Following ref. 29, we set ρ= 0.19. For a given technology, the parameters are
estimated by using the observed data to perform an ordinary least squares
regression through the origin. As such, the calibration relies on differences
between sequential data points, which limits the data sources available for
analysis (since many sources provide nonsequential data).

A hindcasting procedure was implemented in refs. 27 and 29 to statistically
test the ability of these models to forecast observed progress trends. For this,
a dataset of more than 50 technologies was used, spanning a variety of
forecasting periods. For each model, many subsamples of data were used to
make many forecasts for all technologies, and the resulting forecast errors
were pooled to form an aggregate forecast error distribution. This was then
compared to the forecast error distribution expected to arise from the model.
In these two papers, the empirical and theoretical error distributions were a
close match, indicating that the models did a good job at forecasting
out-of-sample progress trends. Global values of the autocorrelation parame-
ters (θ and ρ) for all technologies were estimated using the pooled sets of
forecast errors.

Finally, refs. 27 and 29 derived analytical expressions for the forecast error
distributions implied by each model in terms of all the estimated parame-
ters. In this paper, we use the observed data for each technology to estimate
all relevant parameters and then calculate the required percentiles of the
probabilistic forecasts using these analytical expressions. The resulting
forecasts thus take account of the underlying progress trends and observed
volatility in different technologies’ historical records as well as the future
deployment scenario (for Wright’s law) or time horizon (for Moore’s law).

Developing Expert Elicitation Forecasts: Forecasting 2019 and 2030 Costs by
Aggregating, Interpolating, and Extrapolating EE Estimates. It is important
to note, first, that there are not large numbers of EEs in energy technologies
[the first one we are aware of was published in 2008 (84)]. Second, many EEs
only present cost estimates for one point in time, making it impossible to
observe how cost distributions are expected to change over time. However,
this is required in order to infer a distribution of costs at some intermediate
year. Thus, we can only generate probabilistic 2019 cost forecasts for the
subset of the expert elicitation studies that included information on tech-
nology costs in at least 2 y (Dataset S1).

In order to obtain estimated expert elicitation forecasts in 2019, we in-
terpolate costs between 2010 and 2030 (nuclear and PV) or extrapolate costs
between 2020 and 2030 (wind and water electrolysis) using an exponential
functional form. This step is necessary for the comparison with model-based
forecasts and realized costs in 2019 (reference SI Appendix, section 3 for
further details).

Data Availability. The dataset containing all the expert elicitation and ob-
served data collected and harmonized have been deposited in Technology
Matrix Tool (https://tm.innopaths.eu/). The MATLAB code developed and
applied for the Stochastic Exponent forecasts and the EE forecasts (using
onshore wind as an example) is available on GitHub (https://github.com/
jmeng-env/forecast-technological-change). All other study data are included
in the article and/or supporting information.
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