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Abstract

Purpose

Three related male English Cocker Spaniels (ECS) were reported to be congenitally blind.

Examination of one of these revealed complete retinal detachment. A presumptive diagno-

sis of retinal dysplasia (RD) was provided and pedigree analysis was suggestive of an X-

linked mode of inheritance. We sought to investigate the genetic basis of RD in this family of

ECS.

Methods

Following whole genome sequencing (WGS) of the one remaining male RD-affected ECS,

two distinct investigative approaches were employed: a candidate gene approach and a

whole genome approach. In the candidate gene approach, COL9A2, COL9A3, NHEJ1, RS1

and NDP genes were investigated based on their known associations with RD and retinal

detachment in dogs and humans. In the whole genome approach, affected WGS was com-

pared with 814 unaffected canids to identify candidate variants, which were filtered based

on appropriate segregation and predicted pathogenic effects followed by subsequent inves-

tigation of gene function. Candidate variants were tested for appropriate segregation in the

ECS family and association with disease was assessed using samples from a total of 180

ECS.

Results

The same variant in NDP (c.653_654insC, p.Met114Hisfs*16) that was predicted to result

in 15 aberrant amino acids before a premature stop in norrin protein, was identified indepen-

dently by both approaches and was shown to segregate appropriately within the ECS family.

Association of this variant with X-linked RD was significant (P = 0.0056).
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Conclusions

For the first time, we report a variant associated with canine X-linked RD. NDP variants are

already known to cause X-linked RD, along with other abnormalities, in human Norrie dis-

ease. Thus, the dog may serve as a useful large animal model for research.

Introduction

Retinal dysplasia (RD) is a developmental disorder that is defined as abnormal differentiation

of the retina with proliferation of one or more of its components [1]. It has been described in

multiple dog breeds and can be subdivided into focal, multifocal, geographic and total retinal

dysplasia types [2]. RD can present as a nonsyndromic form such as that described in the Bed-

lington and Sealyham Terriers or it can present as a syndromic RD such as in oculoskeletal

dysplasia described in the Labrador Retriever, Samoyed and Northern Inuit dog [3–7]. Genetic

variants associated with oculoskeletal dysplasia have been identified in all of these breeds [7,

8]. Total RD presents clinically as total retinal detachment. This can be associated with non-

attachment due to failure of contact between the neurosensory retina and retinal pigment epi-

thelium during embryogenesis or due to complete detachment of the retina. It may also be

seen in conjunction with microphthalmos, vitreal dysplasia, leukocoria and a rotary-searching

nystagmus [2].

Retinal detachment has also been reported as a clinical feature in Collie Eye Anomaly

(CEA) in multiple breeds [9]. CEA is characterized by regional hypoplasia of the choroid. In

severe cases and especially those with colobomas, affected dogs can develop retinal detach-

ments, intraocular haemorrhage and subsequent blindness [9, 10]. The genetic variant for

CEA has been identified in non-homologous end joining factor 1 (NHEJ1) [11]. The mode of

inheritance of total RD and CEA has been reported to be autosomal recessive in all breeds [3,

4, 7, 8, 10]. Although other retinal pathologies have been found to be X-linked in dogs, such as

XLPRA in the Siberian Husky as well as other breeds, to the author’s knowledge an X-linked

RD has not been reported before [12].

Many genetic disorders that affect humans have an equivalent disease that is recognised in

the dog [13]. Retinal diseases that can result in blindness in people that are known to be X-

linked include retinoschisis and NDP (norrin cystine knot growth factor)-related retinopathies

[14, 15]. Retinoschisis can present in infants as young as two months of age but more com-

monly presents in males at five years and upwards with macular dysfunction. In more severe

forms of the disease retinal detachment can occur with a variable reported incidence of 16.6–

30% [14, 16, 17]. Variants in XLRS1 (X-linked (juvenile) retinoschisis 1) have previously been

associated with retinoschisis [18–20].

NDP-related retinopathies are characterised by a spectrum of fibrous and vascular changes

of the retina at birth that progress and cause varying degrees of visual impairment in males.

The most severe phenotype described is Norrie disease that presents clinically with a grey-yel-

low fibrovascular mass (pseudoglioma) secondary to retinal vascular dysgenesis and retinal

detachment with congenital blindness [21]. Cognitive impairment and behavioural distur-

bances occur in approximately 33% and 45% of people with the disease respectively. Progres-

sive sensorineural hearing loss usually develops, with one study revealing 85–90% of patients

experiencing the onset of hearing loss by their mid-20s and cryptorchidism has also been

rarely reported in cases of Norrie disease [22–24]. Associated genetic variants have been iden-

tified within NDP, which encodes a small, presumably secreted protein (norrin), with a
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cysteine-knot motif [25]. Greater than 100 different disease-causing NDP variants have been

identified in humans to date [26]. In mice, norrin has been shown to play important roles in

angiogenesis, not only in development of the eye but also the ear, brain, and female reproduc-

tive system [27].

Here we describe a novel form of RD associated with a variant in NDP in the English

Cocker Spaniel (ECS), a small dog of the gundog breed, first recognised as a separate variety in

1893 [28]. In a family of ECS where three of the males were reported to be congenitally blind

and pedigree analysis was suggestive of an X-linked mode of inheritance, we sought to investi-

gate the genetic basis of the RD. Using two distinctive investigative approaches; a candidate

gene approach and a whole genome sequencing (WGS) approach, we identified a provocative

candidate variant. To the best of our knowledge, this is the first description of canine X-linked

RD and the first time a variant in NDP has been associated with any disease in the dog. These

findings also reveal the dog as a potential large animal model for studying NDP-related reti-

nopathies in humans.

Materials and methods

Ethics statement

All dogs used for this study were privately owned pet dogs that were examined at the owners’

request following informed and written owner consent. Buccal mucosal swab sampling was

performed following written owner consent and no in vivo experiments were undertaken. All

clinical examinations were conducted as part of routine ophthalmic examination and not spe-

cifically for research purposes. All sample collection was approved by the Animal Health Trust

Ethics Committee (04–2018).

Animals used

In this study a total of 1260 samples of 178 breeds were used. This consisted of DNA samples

from one affected ECS, nine related ECS, 170 unaffected ECS, 264 unaffected dogs, WGS data

from an additional 814 canids and clinical information only from two more affected ECS.

Affected dogs were defined as those with RD in the form of retinal detachment. Twelve related

ECS from two litters (three affected and nine unaffected) were included in the study. DNA was

collected from ten of the twelve dogs, including one affected. The remaining two affected were

deceased and were therefore unavailable for DNA collection.

DNA samples from an additional 170 unaffected ECS and from 264 unaffected dogs of 93

other breeds that were previously collected for unrelated research projects were used in the

candidate variant genotyping.

WGS data from 814 canids were used as ‘controls’ in the whole genome approach. These

comprised two distinct groups: WGS data from 198 unaffected dogs (comprising of 98 breeds

and multiple crossbreeds) previously sequenced by the authors for other studies, and WGS

from 616 canids of unknown phenotypes (comprising 122 dog breeds, multiple crossbreeds,

and eight wolves, of unknown clinical status) derived from the Dog Biomedical Variant Data-

base Consortium (DBVDC) [29].

Clinical investigation

Ocular examinations were performed on all twelve related ECS, between 2010–2018, at the Ani-

mal Health Trust (AHT) veterinary hospital’s ophthalmology department, by veterinary oph-

thalmologists, due to owners’ concerns of visual impairment in three of the males. The original

two affected males were examined at 6 weeks old in 2010, whilst the affected case was examined
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at 6weeks, 12 weeks and 12 months old in 2017–18. Five generation pedigrees were obtained for

all related ECS (Fig 1). Ocular ultrasonography was performed in the three affected males. The

sire of the second litter had been examined for hereditary eye diseases as part of the British Vet-

erinary Associated/Kennel Club/International Sheep Dog Society Eye Scheme.

Ocular examination

All ophthalmic examinations performed in the study included: vision assessment via maze

testing and visual responses; rebound tonometry (TonoVetTM iCare, FI-01510 Vantaa, Fin-

land); slit-lamp biomicroscopy (Kowa SL-17, Torrance, California, USA); and direct and indi-

rect ophthalmoscopy (Welch Allyn Ltd, Ashby de la Zouch, Leicestershire, UK and Keeler

Professional, Windsor, Surrey, UK) after dilation with 1% tropicamide (Minims, Bausch &

Lomb, Kingston-upon-Thames, Surrey, UK). B-mode ocular ultrasound was performed on

the three affected ECS (Easoate MyLabONE, 10-18MHz 30mm linear probe, Imotek, Somer-

sham, Cambs, UK). Topical anaesthetic 0.5% proxymetacaine (Minims, Bausch & Lomb,

Kingston-upon-Thames, Surrey, UK) was instilled in the eyes prior to ocular ultrasonography.

Carbomer gel (Viscotears, Bausch & Lomb, Kingston-upon-Thames, Surrey, UK) was used as

a coupling medium for ocular ultrasonography, and the probe was placed in a horizontal posi-

tion in contact with the central cornea and axial eye length was measured from the corneal

endothelium to the internal sclera. Fundus photography was performed in four ECS (RetCam

Shuttle, Clarity, Macclesfield, Cheshire, UK).

DNA extraction

DNA was extracted from the buccal mucosal swabs using the QIAamp DNA Blood Mini Kit

(Qiagen, Manchester, UK) according to the manufacturer’s instructions. DNA concentration

and purity were determined by using the NanoDrop 1000 spectrophotometer (Thermo Fisher

Fig 1. Pedigree of RD affected and related ECS. RD-affected and obligate carriers (sires and dams of the RD-affected ECS), and

the dog(s) from which DNA was available are indicated in the legend. Segregation is consistent with an X-linked autosomal

recessive mode of inheritance.

https://doi.org/10.1371/journal.pone.0251071.g001
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Scientific, Loughborough, UK) and/or the Qubit fluorometer with the Qubit dsDNA broad

range (BR) Assay Kit (Invitrogen, Loughborough, UK). Initial primers for the candidate gene

approach were designed using Primer3 and purchased from Integrated DNA Technologies

(IDT, Leuven, Belgium) [30].

Whole genome sequencing

WGS of DNA from one RD-affected ECS was outsourced to Edinburgh Genomics, UK. Illu-

mina sequencing of a TruSeq Nano library on a HiSeq X sequencing platform and paired-end

sequencing generated with read lengths of 150 base pairs and approximately 30x coverage of

the dog genome. Reads were then aligned to the canine reference genome (CanFam3.1) using

the Burrows-Wheeler Aligner and variant calls were made using GATK (HaplotypeCaller) [31,

32]. The WGS was also visualised and manually interrogated using Integrative Genomics

Viewer (IGV) [33].WGS data from this dog is available from the European Nucleotide Archive

(ENA, Accession number: PRJEB39869).

Candidate gene approach

Five candidate genes that have been associated with retinal detachment in dogs or X-linked

retinal detachments in humans were selected (NHEJ1, COL9A3, COL9A2, RS1 and NDP) [7, 8,

11, 18, 34]. Using IGV, the exons and introns of each candidate gene and 5000bp of flanking

DNA were examined for single nucleotide variants (SNVs), insertions and deletions using

WGS from an unaffected American cocker spaniel and the CanFam3.1 for reference and com-

parison. The potential variants were filtered by consideration of their genomic context (i.e. if

they are within coding or exonic sequence, or are splice site variants), their presence in the

control genomes, their location with respect to repetitive regions and their mapping quality

score. Ensembl genome browser, PolyPhen and Provean were used to further analyse potential

causal variants to predict pathogenicity [35–37]. PredictProtein and Swiss-Model were used to

assess structural differences between the normal and altered NDP protein [38, 39].

Whole genome approach

WGS from 198 dogs were processed through the same analysis pipeline as the ECS case. Geno-

mic Variant Call Format (VCF) files from 199 canine WGS (198 “controls” and one ECS case)

were combined using HaplotypeCaller into a multi-sample VCF file. For cross-genome analy-

sis, Variant Effect Predictor (VEP) was run on the multi-sample file. Two greyhounds were

affected with a similar phenotype and were therefore omitted from the multi-sample file. Vari-

ants predicted to result in premature start/stop codons, splicing variants, nonsense variants,

coding insertions or deletions, or missense variants predicted by Polyphen and Provean to be

pathogenic were retained for further investigation [35, 37]. The remaining variants were then

filtered based on appropriate segregation (homozygous for the risk-variant in the case and

homozygous wild type or heterozygous for the risk variant in the controls). The DBVDC

genome dataset containing 616 additional canids was used for additional variant filtering

based on appropriate segregation. Pubmed, OMIM, Retnet and Varelect were used to investi-

gate gene function, expression and phenotype of remaining variants [40–42].

Candidate variant genotyping

Candidate variants that remained after filtering were investigated further by Sanger sequenc-

ing of the 10 related ECS (1 affected and 9 unaffected ECS) and appropriate segregation for an

autosomal recessive or X-linked mode of inheritance was assessed (S1 Appendix).

PLOS ONE NDP variant associated with X-linked retinal dysplasia in the English cocker spaniel

PLOS ONE | https://doi.org/10.1371/journal.pone.0251071 May 4, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0251071


The remaining candidate variant in NDP was genotyped in 170 ECS and 264 dogs of 93

breeds, using allele specific probes in an allelic discrimination assay. Custom primers designed

to be 135 base pairs in length (forward: 5’-GGAGAGGATGTACCGGTAGGT; reverse: ACTT
CGGCTGCGCTGTT) and allele-specific probes (variant: FAM-CCTCATGCCCCCCCG; refer-

ence: VIC-AGCCTCATGCCCCCCG) (Thermo Fisher Scientific, Loughborough, UK) were

used. Reactions were carried out in 8 μL volumes including 4 μL LUNA Universal qPCR Mas-

ter Mix (New England Biolabs), 1.4 μL MQ, 0.4 μL DMSO, 0.2 μL of primers and 2 μL genomic

DNA. Cycling parameters were 25˚C for 30 seconds, 95˚C for 3 minutes, 40 cycles of 95˚C for

3 seconds and 60˚C for 10 seconds, and finally 25˚C for 30 seconds.

Statistics

Using Microsoft Excel, a Fisher’s exact test using a 2 x 2 contingency table was used to assess

significance of association of the candidate variant with RD using the one affected and 170

unaffected ECS. Statistical significance was set at P� 0.05.

Results

Clinical findings

The related ECS were all purebred dogs that resided in the UK. A pedigree was established of

those related ECS (Fig 1). In the original litter examined (seven puppies), two males were

found to have behavioural signs suggestive of severe visual deficits (determined by observing

their movements in unfamiliar surroundings), absent pupillary light reflexes, wandering nys-

tagmus, darkened irises, and extensive posterior segment haemorrhage. Ocular ultrasonogra-

phy revealed total retinal detachment and increased echogenicity within posterior segment in

all eyes. The globe diameters (anterior to posterior) were comparable with their normal litter

mates at 16mm in all dogs except one affected dog, whose globes were 15mm OU. Both males

were euthanised, one dog when less than one year old due to behavioural abnormalities and

blindness, the other at six years old due to suspected glaucoma and aggression. One male was

found to be bilaterally cryptorchid on clinical examination.

The sire of the second litter had no abnormalities detected on ocular examination. In the

second litter examined (four puppies), one male displayed behavioural signs suggestive of

severe visual deficits (determined by observing his movements in unfamiliar surroundings),

and was found to have absent dazzle and pupillary light reflexes, a wandering nystagmus, cor-

neal endothelial opacities ventrally in the right eye, darkened irises, hyphema of the right eye

and extensive posterior segment haemorrhage in both eyes, with the retina in the left eye

appearing detached and as a fibrovascular retrolental mass (Figs 2 and 3). Ocular ultrasonogra-

phy revealed total retinal detachment and increased echogenicity within the posterior segment

in both eyes. The left globe appeared microphthalmic with an anterior-posterior diameter of

16.42mm versus 21.88mm in the right eye. The affected male was subsequently re-examined,

the left eye appeared relatively unchanged whereas the corneal pathology had advanced to dif-

fuse corneal degeneration with neovascularisation and dense crystalline stromal deposits in

the right eye (Fig 4). Microphakia was evident along with incipient nuclear cataract being pres-

ent (Fig 5). On clinical examination the dog was found to be cryptorchid at 10 months old.

Identification of candidate variants by a candidate gene approach

Manual visual inspection of the DNA sequence of the five candidate genes, comparing the

affected ECS with 1 unaffected dog and the CanFam3.1 reference using IGV, identified 196

variants that were initially narrowed down to 12 potential variants by the manual interrogation
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described above. This was then further narrowed down on the basis of predicted pathogenicity

(using Provean and Polyphen-2) to two potential variants. The first was a missense variant in

exon seven in COL9A3 (c.1240G>C, p.Asp414His), predicted to be “probably damaging” by

PolyPhen and “neutral” by Provean. The second was a frameshift variant in NDP
(c.338_339insC), that was predicted to result in 15 aberrant amino acids before a premature

stop in norrin protein (p.Met114Hisfs�16), resulting in a loss of the last five amino acids. Each

of the aberrant amino acids was independently assessed for pathogenicity using PolyPhen-2

and Provean (Table): four changes were predicted to be “Probably Damaging” by PolyPhen-2

and nine changes were predicted to be “Deleterious” by Provean (Table 1). The NDP protein is

made up of 133 amino acids; therefore, 15.0% of the protein is predicted to be either changed

or lost. In addition, significant structural differences between the wildtype and altered proteins

are predicted (Fig 6).

Identification of candidate variants by a whole genome sequencing

approach

WGS data from the RD-affected ECS was compared to those from 198 unaffected control dogs

of 98 other breeds. There was a total of 27,874,423 variants in at least one of these genomes.

These variants were first filtered based on predicted effect on a protein using the Ensembl Var-

iant Effect Predictor (VEP) [43, 44], resulting in 530 variants. These variants were further

Fig 2. Ocular defects associated with affected ECS. Showing RD-affected male with hyphema of the right eye.

https://doi.org/10.1371/journal.pone.0251071.g002
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filtered based on appropriate segregation for an autosomal recessive mode of inheritance

which resulted in 23 remaining variants (Table 2).

Of the 23 variants only 14 were within known genes that had human orthologues. Five of

these variants were found in the additional 648 canid genomes within the DBVDC and were

excluded from further investigation. This resulted in 9 variants in 9 individual genes. Gene

function was investigated using Pubmed, OMIM, Retnet and Varelect. Only two of these genes

were known to be involved in retinal development: NDP and FJX1 (four jointed box kinase 1).

The variant in NDP was identical to that discovered by the candidate gene approach

(c.338_339insC). The variant in FJX1 was a frameshift variant (c.199_260del).

Genotyping the candidate variants

Sanger sequencing was used to genotype the nine related ECS and the one RD-affected dog for

which DNA was available. The RD-affected dog was homozygous for two of the variant alleles

(NDP, COL9A3) but was homozygous for the wildtype FJX1 allele with sanger sequencing.

Manual inspection of the FJX1 variant region in the affected WGS revealed highly repetitive

sequence and reads with poor alignment with CanFam3.1, and the calling of this as a variant is

therefore, a false positive. Three unaffected ECS were also homozygous for the COL9A3 vari-

ant, whereas all nine unaffected dogs were either heterozygous or homozygous for the wildtype

NDP allele and all nine unaffected dogs were homozygous wild type for FJX1. Therefore, only

the NDP variant segregated appropriately for an autosomal recessive or X-linked mode of

inheritance among the nine related ECS (Fig 6). An allelic discrimination assay was then per-

formed in the additional 170 unaffected ECS and 264 unaffected dogs of 93 other breeds. All

Fig 3. Ocular defects associated with affected ECS. Showing the retinal detachment as a fibrovascular mass.

https://doi.org/10.1371/journal.pone.0251071.g003
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these dogs were homozygous for the wild type allele. Association of the NDP variant with RD

was significant (P = 0.0056).

Discussion

In this study, two different approaches, candidate-gene and whole genome, were used to iden-

tify a single exonic insertion variant in NDP which was shown to be associated with X-linked

RD in the ECS. This variant is predicted to result in a 15 residue shift in the reading frame, a

premature stop codon and norrin protein truncated by five residues, out of a normal length of

133 amino acids. While structural variants near exons would have been detected in the candi-

date gene approach, our current whole genome analysis pipeline does not detect structural var-

iants. It is, therefore, worth noting that the presence of structural variation causing disease in

this study cannot be fully excluded. In addition, the canine genome is not well annotated with

regulatory regions and lncRNAs, and these were therefore not investigated and cannot be

excluded. Indeed, a lncRNA (NDP-AS1) on the reverse strand is annotated on the human

genome build GRCh38.p13), but it is unclear if the canine genome shares this feature, and if it

does whether the variant described here affects the NDP protein, the lncRNA or both. It is also

worth noting linkage disequilibrium (LD) was not investigated due the small number of WGS

available for ECS in this study (four in total including the case), which was considered too few

Fig 4. Ocular defects associated with affected ECS. Showing corneal and lenticular abnormalities.

https://doi.org/10.1371/journal.pone.0251071.g004
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Fig 5. Ocular defects associated with affected ECS. Showing corneal and lenticular abnormalities.

https://doi.org/10.1371/journal.pone.0251071.g005

Table 1. Predicted pathogenicity.

Amino acid change PolyPhen Result PolyPhen Score Provean Result Provean Score (Threshold <-2.5)

M114H Possibly Damaging 0.566 Neutral -0.102

R115E Possibly Damaging 0.462 Neutral -0.647

L116A Possibly Damaging 0.816 Deleterious -3.109

T117H Probably Damaging 0.974 Deleterious -3.353

A118R Probably Damaging 0.958 Neutral -1.118

T119H Probably Damaging 0.974 Neutral -1.647

Y120L Possibly Damaging 0.816 Deleterious -8

R121P Possibly Damaging 0.827 Deleterious -4.941

Y122V Possibly Damaging 0.816 Deleterious -6.235

I123H Possibly Damaging 0.944 Deleterious -6.882

L124P Probably Damaging 0.974 Neutral -1.588

S125L Possibly Damaging 0.633 Deleterious -3.176

C126L Possibly Damaging 0.462 Deleterious -10

H127S Possibly Damaging 0.462 Neutral 2.255

C128L Possibly Damaging 0.462 Deleterious -7.118

https://doi.org/10.1371/journal.pone.0251071.t001
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Fig 6. Comparison of the wildtype (A) and altered protein (B). Using PredictProtein reveal that the two proteins are expected to

differ throughout with regards to secondary structure, protein binding and conservation. In addition, modelling of both proteins

using Swiss-Model (C) reveal that in the altered molecule, the 15 amino acids at the C-terminus, involved in the shifted reading

frame, do not align with the N-terminus (white and red in C) of the wildtype protein at all, and also do not align with any other

known protein structures.

https://doi.org/10.1371/journal.pone.0251071.g006
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samples for an accurate estimate of LD in the breed in general and especially in the vicinity of

the variant of interest by the authors.

This is the first time a variant in NDP has been described in the dog and the first time X-

linked RD has been reported in the dog. The results suggest that this variant is likely to be pri-

vate to this family of ECS as it was not identified in the additional 170 ECS and the 1078 other

non-ECS canids. The pedigree analysis was helpful in determining it was most likely a reces-

sive condition as only a small proportion of the progeny was affected and, because it was only

observed in male progeny, a X-linked mode of inheritance was also hypothesized. This nar-

rowed down the potential candidate genes to be investigated. Genomic material was only avail-

able from one affected as the other two affected were deceased. The low number of affected

animals is a limiting factor for this study. Ocular tissue from RD-affected ECS would also be

helpful for assessing changes in the mRNA and protein expression within the retina of these

dogs in comparison to age matched control dog retinas. Further work is required to prove this

is the causal variants of RD in the ECS, although the predicted effect on the protein is support-

ive of this hypothesis.

WGS is a very useful and cost-effective method of identifying variants, when faced with a

small number of affected cases. Unlike genome wide association studies, a small number, or

even a single case may be sufficient to identify underlying variant as in this study. If successful,

WGS can help identify risk variants early on in the disease emergence process, hence eliminat-

ing it before the disease becomes widespread within the population, which is especially impor-

tant in dogs due to high levels of inbreeding, popular sire effects and relatively fast turnover of

progeny [45, 46]. A limitation to using WGS as with other sequencing techniques, is the inher-

ent difficulty in the detection of structural variants, for example, transposons, inversions, or

large insertions and deletions which our current WGS pipeline cannot identify. Genome-wide

association studies can be useful in identifying the approximate location of the disease variant

even when there is a large structural variant, so its use in combination with WGS could help

mitigate this limitation. Unfortunately, due to our low case numbers, this was not possible in

this study. It is therefore worth noting that the presence of structural variation causing disease

cannot be fully excluded.

The candidate gene approach was considered appropriate for this study because similar

phenotypes had been reported in humans and dogs which have been shown to be associated

with a limited number of genes. This approach is useful when trying to identify the genetic

basis of a disease thought to be of simple inheritance using only a small number of cases [47].

It requires existing knowledge about the known or presumed biology of the phenotype under

investigation, either in other breeds of dog or in other species, which was available in this

instance [48]. This method is however biased and limited, as it only includes genes known to

be associated with the relevant phenotype, meaning variants in novel genes not previously

associated with the phenotype will go undetected [49]. A whole genome approach was also

used, which does not require prior knowledge of gene candidacy and thus is considered a less

biased approach compared to candidate gene analysis [50].

NDP encodes for norrin, a cysteine knot growth factor, that is required for angiogenesis in

the eye, ear, brain and female reproductive system [47]. Norrin is an atypical Wnt (wingless-

related integration site) ligand, that has binding sites for both Fz4 (Frizzled 4) and LRP5/6
(low-density lipoprotein receptor-related protein) which activates β-catenin signalling, that

plays a central role in retinal vascularisation [47, 51]. Its structure is a semi-circular shaped

homodimer linked through three intermolecular disulphide bonds. Disease-causing variants

will affect the protein folding and stabilisation of the norrin structure and hence affect protein

function [52].
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Over 100 disease-causing NDP variants have been reported in humans [26]. Analysis of

gnomAD data within the equivalent human C-terminal region affected by the frameshift and

truncation (X:43809045–43809107, based on genome build GRCh37/hg19) revealed eight vari-

ants. Of these, three are missense, five are synonymous and none are truncating. However,

analysis of the ClinVar data in gnomAD revealed five additional “likely pathogenic” variants,

including three missense and two nonsense/stop gained variants [53]. These variants can result

in inherited retinopathies including Norrie disease, X-linked familial exudative vitreoretinopa-

thy, retinopathy of prematurity and Coat’s disease [54]. Retinal detachment has been reported

in all of these conditions to varying degrees at different clinical stages [55–57]. Retinal detach-

ment in Norrie disease has even been reported in utero during the third trimester in a known

carrier of the condition [58]. The affected ECS males were examined at 6 weeks old, although

blindness was suspected earlier than this. Puppies open their eyes at approximately two weeks

of age [59]. In the affected ECS, retinal detachment was suspected to be congenital, but this

cannot be confirmed.

Histopathological characterisation is usually not possible in humans with NDP-related reti-

nopathies. Therefore Ndph (Norrie disease homologue)-knockout mice have been used as a

small animal model to study early histopathological changes [60]. In mice with targeted inacti-

vation of Ndp, histological data suggest retrolental structures and a disorganized ganglion cell

layer as primary pathogenic events [61]. Histopathology of the retina and posterior segment of

an RD-affected ECS would be useful to better identify the phenotypic characteristics of this

type of RD in the dog. No ocular tissue was available from the affected dog in this study, so the

pathogenesis can only be hypothesised based on the clinical findings observed. Although there

were subtle ophthalmic differences in the three affected dogs, the overall ocular changes were

similar, as they all shared the congenital blindness, extensive posterior segment haemorrhage

and the retinal detachment. The congenital retinal detachments in the form of fibrovascular

retrolental masses and extensive vitreal haemorrhage, is more similar to that described in clini-

cal cases of human Norrie disease than the other inherited retinopathies associated with NDP
variants [62, 63].

Cognitive impairment, behavioural disturbances and progressive sensorineural hearing loss

have been described in humans with Norrie disease. The two affected males of the initial litter

of ECS were euthanised early in life due to behavioural abnormalities that were thought to be

related to their lack of vision. The affected male in the second litter was not reported to show

behavioural abnormalities. No males were reported to have any hearing impairment, although

brainstem auditory evoked response testing was not performed to confirm this, in the affected

ECS to confirm this. Hearing loss is reported to develop in humans in their early twenties so it

is possible that the affected males had not yet reached an appropriate age for this to have devel-

oped and the one surviving affected male could develop hearing loss as he continues to mature

[22].

This is the first time a variant in NDP has been associated with a retinal disease in the dog

and also the first X-linked RD to be reported in the dog. Therefore, this study also suggests the

dog may serve as a useful model for understanding human NDP-related retinopathies and the

development of gene and other therapies.
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André, Danika Bannasch, Doreen Becker, Brian Davis, Cord Drögemüller, Kari Ekenstedt,
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