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ABSTRACT

Fermionic Quantum Information in Surface Acoustic Waves

Hugo Vincent Lepage

Quantum computers are on the verge of revolutionising modern technology by providing
scientists with unparalleled computational resources. With quantum-mechanical phenomena
such as the superposition principle and entanglement, these computers could solve certain
computational problems that are otherwise impossible for even the most powerful classical
supercomputers. One of the major challenges standing in the way of this computing revolution
is the accurate control of quantum bits. Quantum systems are extremely fragile and, by their
nature, cannot be measured without destroying their quantum state.

I wrote a numerical program to solve the time-dependent Schrödinger equation, the
differential equation that describes the evolution of wave functions. The advantage of my
code over other solvers is its speed. I used graphics processing units (GPUs), a technology
that has only recently matured, to accelerate high-performance computing. Hardware-
acceleration allows me to solve complex time-evolution problems within days rather than
years. Such an exceptional speedup has enabled me to calculate the behaviour of single
electrons in semiconductor devices. Electrons are particularly interesting because they are
ubiquitous in modern technology, as well as being fundamental quantum particles. Using the
simulations produced by my code, I track the time evolution of an electron wave function
as it propagates along quantum circuits. By animating the evolution of the wave function, I
am able to visualise the wave function of electrons propagating in space and time. This is a
remarkable tool for studying the behaviour of quantum particles in nanodevices. I focused
my thesis on the realistic modelling of devices that are readily available in a laboratory or on
designs that could be fabricated in the near future. I began by modelling single electrons as
quantum bits. I provide a definition for an optimal qubit and lay out the set of operations
required to manipulate the quantum information carried by the electron.
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In all my simulations, I aim to model experimentally realistic devices. I calculated the
electrostatic potential of a real nanodevice and simulated the time-evolution of a single
electron. I show that it is possible to create a single-electron beam splitter by tuning the
voltages applied to various parts of the device and I calculate the range of voltages in
which quantum information is preserved and manipulated accurately. These results were
verified experimentally by collaborators at the Institut Néel and were published in Nature
Communications 10, 4557 (2019).

Using my code, I developed a framework for general measurements of electron qubits
and provided a design for a semiconductor device capable of performing positive-operator
valued measures (POVMs). A POVM is a powerful measurement technique in quantum
mechanics that allows quantum information to be manipulated in interesting ways. The
proposed setup is suggested as an implementation of entanglement distillation, which is a
useful error correction tool that transforms an arbitrary entangled state into a pure Bell pair.
Entanglement is one of the most fascinating aspects of quantum mechanics and it remains a
challenge to generate perfectly entangled particle pairs. An experimentally viable method for
distilling – or perfecting – entanglement is crucial for the design of quantum computers or
quantum communication systems. Using this design, I introduced a protocol to use electrons,
rather than photons, in quantum-optics-like systems. These results were published in Phys.
Rev. A 96, 052305 (2017).

Going beyond single-particle behaviour, I compare different methods for generating
entanglement between electron-spin qubits using the power-of-SWAP operation. By using
realistic experimental parameters in my simulations, I demonstrate that generating entan-
glement via electron-electron collisions in a harmonic channel cannot be implemented for
multidimensional systems. These findings go against what researchers thought was possible
and put forward the need for new solutions to particle entanglement. I provide an alternative
by demonstrating that a method based on the exchange energy is more viable than previously
thought. I present a semiconductor device structure and an electrostatic potential that experi-
mental groups can use in order to obtain the most efficient entangling quantum logic gates.
These findings were published in Phys. Rev. A 101, 022329 (2020).

The results presented in this thesis provide a comprehensive description of the control of
single electrons in a surface-acoustic-wave-based quantum circuit. However, work in this
field is far from over. I present various research paths for future projects. These include going
beyond the time-dependent Schrödinger equation to capture more complicated dynamics,
using different hardware solutions to further accelerate numerical problem solving, and
studying new systems of interest to extend this project beyond semiconductor physics.
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1
INTRODUCTION

Calculating tools have been used for thousands of years to help us tackle complex problems.
As early as 2700–2300 BCE, Mesopotamian scholars were using an early form of the abacus
to aid them in computational tasks such as addition and subtraction in a sexagesimal base
system. Over several millennia, number systems evolved to include different base systems,
a well defined ordered set of numbers, the concept of zero, and a modern labelling system
amongst other improvements [82]. However, computation tools did not evolve much from
the original abacus. The first century CE marks the earliest archaeological record of a Roman
“pocket abacus”. This small metal plate with sliding beads, each of which is associated to
a different order of magnitude, was not very different from the Babylonian bead abacus in
function. Although the abacus was helpful to evaluate larger arithmetic problems, it did not
compute anything itself; it was merely a tool to help humans calculate. It wasn’t until the
end of the European Renaissance that true calculating machines were developed. Gears and
levers were assembled into a so-called “calculating clock” that could perform arithmetical
operations such as addition and subtraction purely mechanically, with minimal input from
the user.

Throughout the years of the industrial revolution, mechanical calculators were developed
to handle more difficult problems and to count to larger numbers. Between the years 1834 and
1836, the English mathematician and inventor Charles Babbage drafted the theoretical design
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for the Analytical Engine. This machine would be the first capable of universal computations
since memory and processing power were theoretically unlimited. The engine would also be
capable of complex algorithms owing to its ability to process conditional statements. It was
Ada Lovelace, an English mathematician, who first understood the possibilities and future of
computing machines. Together, Charles Babbage and Ada Lovelace are recognised as the
father of the computer and the first computer programmer.

It wasn’t until the early 20th century, when electricity had become widely available,
that the development of electromechanical calculating machines opened a new realm of
possibilities for such devices. These calculators were initially used mostly for accounting
purposes. During the second world war, the need for more complex operations to be carried
out led to the development of modern computers as we know them. The British Colossus
Mk1 (1943), the first electronic digital programmable computer, and the American ENIAC
(1946), the first Turing-complete device, were constructed for the purposes of decryption and
ballistic-trajectory calculations, respectively [82, 71, 42].

When transistors replaced vacuum tubes in computer designs in 1955, it became an engi-
neering problem to increase computer performance. The miniaturization of microelectronic
components on integrated circuits led Gordon Moore to propose the famous “Moore’s Law”
in 1965 stating that semiconductor complexity would double annually. This law was revised
in 1975 when Moore suggested that this rate would decrease around 1980 to a complexity
doubling every two years [30]. Moore’s prediction has been accurate over the decades since
its inception, however, at the time of writing this thesis, semiconductor transistors have
reached a size of approximately 10nm and are predicted to reach their physical limit due to
quantum tunnelling at 5nm. This limit effectively marks the end of Moore’s Law and the end
of high-paced advancements in classical computing performance [91, 152, 135]. Although
computational resources may be stunted for classical systems, a new era of computing is on
the horizon through the development of quantum computers.

1.1 Quantum Computing

The Church-Turing-Deutsch (CTD) principle [46, 154] states that: “every finitely realisable
physical system can be perfectly simulated by a universal model computing machine op-
erating by finite means.” In other words, there could exist a computation tool capable of
simulating any finite physical process. A quantum system can simulate itself, but can also
be used to simulate a different system of equivalent complexity. Since the complexity of a
quantum system increases exponentially with the number of particles, computing resources
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are not limited by classical standards [1]. Complex problems with a high dimensionality are
no longer impossible to solve at a practical level.

The exploitation of quantum systems can also be tailored to specific tasks through the
use of quantum algorithms. Two of the most well known algorithms are Shor’s algorithm
for finding the prime factors [16, 142] of large integers and Grover’s algorithm for inverting
functions. In a more applied sense, Grover’s algorithm could be used for searching large data
structures [73].

Analogous to the fundamental unit of information of a classical computer, the binary
digit, or bit, defined by a 0 or a 1, the basic unit of information of a quantum computer is
the quantum bit, named qubit. A qubit is an arbitrary superposition of a two-level quantum
state α |0⟩+β |1⟩, where α and β are complex numbers [162, 136]. There exist additional
schemes for other units of information such as the qutrit for 3-level systems or the qudit for
arbitrary d-level quantum systems, each offering their advantages and drawbacks. However,
these unit systems are beyond the scope of this research.

A qubit can be encoded onto many physical systems. Proposed quantum computing
platforms include the optical manipulation of atoms [155] or ions [52], the use of super-
conducting Josephson junctions [58, 145], and quantum dots in GaAs [144]. Quantum
information can also be carried by single photons and single electrons [112]. In this thesis,
I am mainly focused on single electrons as the carriers of quantum information. Single-
electron qubits are often referred to as spin or charge qubits, but as is discussed by Owen et
al., the dynamics of an electron are complex and the spin and charge components are not
independent [122]. It was shown that the spin-orbit interaction (SOI) causes a coherent-state
spin qubit to precess around the Bloch sphere. This precession is especially relevant when
two electron qubits interact with each other as it can cause them to be entangled conditionally,
thus effectively acting as a two-qubit gate. A definition of the Bloch sphere is presented in
Sec. 1.1.3.

1.1.1 Why Quantum Computers?

In recent years, quantum technologies have gained an enormous amount of attention. Claims
that quantum computers would be exponentially faster than any technology currently available
has led to the inception of terms such as “quantum supremacy” [126] and, in a less extreme
version, “quantum advantage”. Quantum supremacy defines a threshold at which it becomes
impossible for a classical computer to simulate – and therefore verify – the results produced
by a quantum computer. The problem that the computers are attempting to solve do not need
to be useful in any practical way to demonstrate quantum supremacy. Quantum advantage
relaxes the definition of supremacy, simply requiring that a quantum computer be faster at
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a given task than its classical counterpart. Quantum advantage is more straightforward to
verify since a classical computer can calculate the solution to the problem and therefore
validate the accuracy of the quantum computation. In 2019, Google claimed that they had
achieved quantum supremacy using their superconducting processor [7], stating that:

Our Sycamore processor takes about 200 seconds to sample one instance of
a quantum circuit a million times – our benchmarks currently indicate that
the equivalent task for a state-of-the-art classical supercomputer would take
approximately 10,000 years. This dramatic increase in speed compared to all
known classical algorithms is an experimental realization of quantum supremacy
for this specific computational task, heralding a much-anticipated computing
paradigm.

Given these bold definitions as well the hype that has been generated around quantum
computers, it is easy to be deceived in thinking that this technology is the Holy Grail of
information science and that every computer will be quantum in the next few years. From
claims that “a quantum computer could break 2048-bit RSA encryption in 8 hours”[56]
to pop culture references, quantum computers are made out to be some magical do-all
device with seemingly no limits. Although it is important to remain skeptical towards
extraordinary claims, one shouldn’t discard quantum computers since their true potential
could be revolutionary in many fields of science as well as industry. The most straightforward
implementation of quantum computers – simulating quantum systems – has already led to
breakthroughs in physics, chemistry, and nanotechnology. In this section, I will go over the
realistic advantages of a quantum computer, the motivation behind the extensive research in
the field, and the limitations of this technology[1].

The acceleration attributed to quantum computers comes from algorithms reducing the
complexity of a certain set of problems. This does not necessarily imply that quantum
computers run faster or can accomplish basic operations or clock cycles in less time. Instead,
the use of quantum computers changes the way problems scale. When discussing the
computational complexity of a problem, it is useful to use Big O notation, which describes
the growth rate of a problem in the limit when it is large. For example, searching for a
particular element in an unordered list of N elements is of order O(N). Given that there is no
structure in the data, one would have to check every entry, one by one, to find the correct
answer. On average, a solution is found after N/2 queries, but this problem scales linearly with
N. Running Grover’s algorithm on a quantum computer would reduce the complexity of the
search problem to O(

√
N) [73, 74]. Another famous example of the acceleration provided

by quantum computers is the Deutsch–Jozsa algorithm[47]. The problem statement goes as
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follows: a black box takes an N-bit input and outputs a single binary digit (either a 0 or a
1). The function within the black box is either constant (it always outputs a 0 or always a 1)
or it is balanced (half of the inputs yield a 0 and half yield a 1). In order to test whether the
function is constant or balanced without uncertainty, a classical computer requires O(2N)

trial input states. This exponential scaling with the number of input bits quickly makes this
problem impossible for even the most advanced supercomputers. However, by using the
Deutsch-Jozsa algorithm on quantum computers, the solution can be found exactly in one
query, reducing the problem to O(1).[47]

Fig. 1.1 Relation between the different complexity classes. The boundaries of BQP are not
well defined.

Although quantum computers will not provide a speedup to every type of decision
problem, they are expected to reduce the complexity of problems from the bounded-error
quantum polynomial time (BQP) class. Figure 1.1 illustrates the expected relation between
BQP and other computational complexity classes. Complexity classes are a useful tool
to compare the difficulty of a computational problem [70, 6]. The field of computational
complexity theory is thriving, with the P versus NP problem being one of the Millennium
Prize Problems offered by the Clay Institute [37]. The complexity classes compared in Fig.
1.1 are the following:

P problems: The class of problems that can be solved in deterministic way by a
computer in polynomial time. Example: Calculating the greatest common divisor (gcd)
between two integers will have at most a complexity of O(N2) for a number of size N
[95]. Note that two integers are said to be coprime if their gcd is 1.
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NP problems: Nondeterministic polynomial problems are those that are verifiable
in polynomial time using a deterministic machine. Ones whose solutions are easy to
verify. Example: The decision version of the travelling salesman problem. Given a
number of cities and the relative distances between them, is there a path with total
length less than x? Although the problem itself is hard to solve, the verification of
the solution, once found, is possible in polynomial time. In this case, the distances
between cities for the final path are summed and compared to x.

NP-complete problems: This subset of the NP class shares the same solution to any
problem within NP-complete. If a solution that is more efficient than a brute force
approach can be found, the same solution can be used for all other problems. Example:
Solving an N×N Sudoku is hard, but can be verified in polynomial time. The solution
to an arbitrary Sudoku can be mapped onto the full travelling salesman problem [69],
graph coloring [85], bin packing [19], and many other combinatorial, graph, and game
problems.

BQP problems: Problems in the bounded-error quantum polynomial class are solv-
able by a quantum computer in polynomial time. The solution to a BQP problem
does not need to be found using a deterministic algorithm, meaning that the an-
swer produced is always correct. BQP requires that the probabilistic error rate of
an algorithm be at most 1/3 for all instances [118]. Example: Shor’s algorithm
reduces the complexity class for factoring prime numbers from sub-exponential to
O((logN)2(log logN)(log loglogN)), which is polynomial in logN [142].

PSPACE problems: This class represents the set of decision problems that are solved
using a polynomial amount of space. This is a limitation on storage space for finding
the solution to the problem. Although algorithms in PSPACE are not explicitly bounded
in time, finite space requirements also imply finite time requirements [6, 35]. Example:
Generalized chess and Go, played on an N ×N grid, are examples of games that
require a polynomial storage space. The solution to these games are not found in
polynomial time. Both of these games require algorithms with time complexity that
scales exponentially with the size of the grid [146].

There are several real-world application problems that could, in principle, be solved by
classical computers but in practice require an unreasonable amount of time or computational
resources. One of the most well known problems is large integer factorisation [16]. The com-
plexity of finding the prime factors of large composite numbers exceeds the computational
capacity of classical computers. This principle is currently the basis for the RSA encryption
algorithm [130].
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Another problem that is not realistically solved by current computers is the simulation
of many-body quantum systems. The complexity of such a problem grows exponentially
with the number of particles in the simulation such that the state of a system of N particles
with m accessible energy levels is described by an mN-dimensional complex vector with a
Hamiltonian represented by an mN×mN matrix. For example, an N-particle system where
each particle has two levels would require more bits than there are atoms in the observable
universe to simulate classically if N > 300. There are many reasons for simulating physical
systems, both quantum and classical. Simulations allow us to analyze simpler models of
the physical systems and quantify the effects of assumptions and constraints on the model.
Simulations also provide insight into systems that are otherwise inaccessible experimentally
owing to technological or even physical limitations. For example, simulations provide the
full wave function |ψ⟩ of a quantum system whereas an experimental setup can only measure
the probability of an outcome A, | ⟨ψA|ψ⟩ |2. A quantum system can be set up, manipulated
and have its properties measured to acquire information related to its state after manipulation.
Richard Feynman used this idea to propose the possibility of exploiting quantum mechanical
processes to store data and operate on it to execute computational tasks [60]. Feynman’s
suggestion went on to launch the entire field of quantum computing.

1.1.2 DiVincenzo Criteria

In 1985, Deutsch first described a set of properties that a universal quantum computer should
possess.[46] In 2000, DiVincenzo expanded and formalized these requirements and proposed
a set of 5+2 criteria necessary for the physical realisation of a quantum computer [49]. The
two supplementary conditions concern the implementation of quantum communication. The
seven criteria as presented by DiVincenzo [49] are the following:

1. A scalable physical system with well-characterized qubits.

Well-characterized qubits imply well-defined two-level quantum systems (|0⟩ and |1⟩)
with known dynamics and a good description of the coupling to other degrees of
freedom. If a qubit has the capacity to access more than two levels, the probability
of the system going to these higher states should be small. Scalability requires that
the general state of a many-qubit system composed of N qubits span the entire 2N-
dimensional complex vector space. That is to say that multiple qubits can become
entangled and their combined Hilbert space cannot be written as a product of individual
states.

2. The ability to initialise the state of the qubits to a simple fiducial state.
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Before starting the quantum computation, the system should be set to a simple ini-
tial state such as |000...0⟩. This fiducial, or reference state, must be known before
manipulating the system for computation. One way to obtain a simple initial state is
to let the system evolve naturally and have it cool down to the Hamiltonian ground
state. Another approach for initialising electron-spin qubits is to place them in a strong
magnetic field forcing them to align with it. More techniques and their advantages are
described further in the following references: [49, 159, 140, 106, 84].

3. Long relevant decoherence times, much longer than the gate operation time.

The dynamics of a qubit in contact with its environment, or decoherence, must be
limited in comparison to the time taken by a computational gate to act on the qubit.
Simply put, the decoherence time is the time taken by a system in a state |ψ⟩ =
a |0⟩+b |1⟩ to transform into the mixed state ρ = |a|2 |0⟩⟨0|+ |b|2 |1⟩⟨1|. The use of
error correcting codes can lessen the effect of decoherence but the decoherence times
must remain long compared to the gate operation time.

4. A “universal” set of quantum gates.

A quantum computer should be programmable in that algorithms should be imple-
mented in a controllable and reliable way. Similar to a classical computer, where
computational operations are executed by a set of logic gates, a quantum computer
must be operated using new quantum gates. It has been shown that a set of single-qubit
gates performing unitary operations on the quantum state, such as the Hadamard gate,
and two-qubit entangling gates, such as the CNOT, CPHASE, or root-of-SWAP gates,
set sequentially are sufficient to implement any quantum algorithm [11, 48].

5. A qubit-specific measurement capability.

The readout process is essential to any quantum computer if the result of a computation
is to be known. As such, it must be possible to measure the state of each qubit output
from the computer. Although the best reliability is desirable, a perfect efficiency in
readout operations is not a requirement for quantum computers. In the case of sub-
100% efficiency, multiple computations can be performed to increase the reliability of
the result.

6. The ability to interconvert stationary and flying qubits.

For quantum computers to communicate with other quantum information systems, there
must exist a quantum channel along which quantum information can be transmitted.
The computer must be able to convert quantum information from stationary qubits
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executing the computation to flying qubits. Flying qubits are simply defined as moving
qubits; these are typically photon qubits but can also be moving electron-charge qubits
or electron-spin qubits.

7. The ability faithfully to transmit flying qubits between specified locations.

For tasks like quantum cryptography, only requirement 7 of the two extra requirements
is sufficient since flying qubits can be created and detected directly.

Although each of these criteria must be considered and addressed, the main focus of this
thesis will be on the 4th and the 6th requirements.

1.1.3 Bloch Sphere Representation

The state of a qubit is represented as a superposition of two basis states {|0⟩ , |1⟩}

|ψ⟩= α |0⟩+β |1⟩ (1.1)

where α and β are complex constants with unit normalization imposing that

| α |2 + | β |2= 1. (1.2)

A convenient geometrical representation of the qubit state space known as the Bloch
sphere provides a simple visualization of two-level pure states. The wave function of the
qubit is rewritten as

|ψ⟩= cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (1.3)

where the polar angle θ ranges from 0≤ θ ≤ π and the azimuthal angle φ ranges from
0≤ φ ≤ 2π and the basis states |0⟩ and |1⟩ are respectively located at the north and south
poles of the sphere. A graphical representation of the Bloch sphere is shown in Figure 1.2.

The Bloch sphere is particularly useful for representing a state changed by a single-qubit
unitary operation. It can be shown that any unitary operation on a pure state (ignoring global
phase changes) can be represented as a rotation on the Bloch sphere.
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Fig. 1.2 Graphical representation of a given pure state |ψ⟩ on the surface of the Bloch sphere.

1.2 Semiconductor Devices

There are many physical systems capable of forming qubits such as superconductors, ion
traps, optical devices and semiconductor devices. My research is focused on semiconductor
devices, which integrate well with current technology and are part of a mature industry.
When opting for semiconductor based quantum computers, an important consideration
is the wealth of knowledge and the expertise available on the properties and fabrication
techniques of semiconductors. The ubiquity of semiconducting materials in almost all of
modern electronics has pushed the industry to optimize their fabrication. Manufacturing
techniques offer the possibility of relatively inexpensive development of quantum computing
and quantum communication technologies and the existing knowledge base indicates a viable
scalability from a few to many qubits.

The materials studied in this research project are gallium arsenide (GaAs) and aluminium
gallium arsenide (AlxGa1−xAs) as crystals arranged in a layered heterostructure. The differ-
ence in band gap of GaAs and AlGaAs forces electrons to be confined in a two-dimensional
electron gas (2DEG) at the interface between the two materials. Metallic gates at the surface
of the device can generate electric fields which deplete certain regions of the quantum well
located in a thin layer of GaAs.

A defining property of gallium arsenide as opposed to silicon is its piezoelectric nature.
The piezoelectric effect is the modulation of electric charge in a material due to an applied
mechanical stress. A piezoelectric potential can be generated in several materials including
semiconductor crystals of the group III-V such as GaAs. Section 1.3 describes how a
propagating sinusoidal stress wave can create an electric potential with the ability to carry
electrons at a constant and reliable rate.
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1.2.1 Crystal Structures

In this section, I will give a brief overview of crystal structures with a focus on gallium
arsenide crystals. The scope of the work in this thesis does not cover crystal sturctures in
depth, but it is important to understand the origin of certain values for the parameters used in
my simulations.

In atoms, electrons are distributed among orbital shells and subshells around the nucleus.
Electrons are indistinguishable particles and carry the same charge and base mass, however,
when structured in an atom, they will have different levels of energy. These electrons are
arranged in subshells labelled s, p, d, and f . Each subshell contains an odd number of
orbitals and twice that amount of electrons allowed per shell. This doubling is to allow both
electron spins to exist in the same orbital.

s→ 1 orbital (2 electrons maximum)

p→ 3 orbitals (6 electrons maximum)

d→ 5 orbitals (10 electrons maximum)

f → 7 orbitals (14 electrons maximum)

In this thesis, most of the work involves gallium arsenide semiconductors. The electron
configuration of these elements is:

Ga (31 electrons): 1s22s22p63s23p63d104s24p1

As (33 electrons): 1s22s22p63s23p63d104s24p3

where the subshells identified in blue correspond to the core electrons and those colored red
correspond to the valence electrons. The number preceding the shell label keeps track of
the number of shells in the atom. The exponent indicates the number of electrons in that
particular subshell. In the case of GaAs, electrons with principal number 4 are the outermost
(valence) electrons. Figure 1.3 illustrated the shape of the s and p orbitals. The tetrahedral
structure of GaAs, formed by one s orbital and three p orbitals causes the atoms to become
sp3 hybridised. A linear combination of the s and p orbitals generates four sp3 orbitals:



12 INTRODUCTION

ψ
sp3

1 =
1
2
(ψs +ψ

px +ψ
py +ψ

pz) ,

ψ
sp3

2 =
1
2
(ψs +ψ

px−ψ
py−ψ

pz) ,

ψ
sp3

3 =
1
2
(ψs−ψ

px−ψ
py +ψ

pz) ,

ψ
sp3

4 =
1
2
(ψs−ψ

px +ψ
py−ψ

pz) .

(1.4)

Fig. 1.3 Illustration of the first s and p electron subshells. Image taken with permission from
Khan Academy.[90]

A Bravais lattice is defined as an infinite arrangement of discrete points – or lattice sites –
that follow a set of regular translations in a vector space. The lattice is unchanged by any
translation vector given by

−→
T mno = m−→a1 +n−→a2 +o−→a3 m,n,o ∈ Z (1.5)

where −→a1 , −→a2 , and −→a3 are primitive translation vectors that define the unit cell.
In a GaAs crystal, Ga atoms are anions (negatively charged) and As atoms are cations

(positively charged). The crystal structure of GaAs is called zincblende, a face-centered
cubic (FCC) structure. An illustration of the zincblende unit cell is shown in Fig. 1.4.
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Fig. 1.4 Zincblende unit cell. Anions (Ga) are illustrated in yellow and cations (As) are grey.
There are eight atoms in this unit cell. The four anions are divided into 8× 1/8 corner atoms
and 6×1/2 face atoms. The individual cations are located at the front bottom left, back bottom
right, front top right, and back top left. Public domain image taken from Wikipedia[163].

1.2.2 GaAs Band Structure

Finding the wave function of a many-particle system scales exponentially with the number
of particles. For large lattice structures, the electronic band structure can be approximated
using the tight-binding model [36]. In this method, electrons in the conduction band are
delocalised and are approximated as free electrons. Electrons in the valence band are “tightly
bound” to the atom to which they belong.

Considering one unit cell for GaAs, the eight s and p orbitals define the bands of the
zincblende structure. The Hamiltonian for these eight states is given by
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|φs1⟩ |φpx1⟩ |φpy1⟩ |φpz1⟩ |φs2⟩ |φpx2⟩ |φpy2⟩ |φpz2⟩

|φs1⟩ Es1 0 0 0 Vssg1 Vspg2 Vspg3 Vspg4

|φpx1⟩ 0 Ep1 0 0 −Vspg2 Vxxg1 Vxyg4 Vxyg3

|φpy1⟩ 0 0 Ep1 0 −Vspg3 Vxyg4 Vxxg1 Vxyg2

|φpz1⟩ 0 0 0 Ep1 −Vspg4 Vxyg3 Vxyg2 Vxxg1

|φs2⟩ Vssg∗1 −Vspg∗2 −Vspg∗3 −Vspg∗4 Es2 0 0 0

|φpx2⟩ Vspg∗2 Vxxg∗1 Vxyg∗4 Vxyg∗3 0 Ep2 0 0

|φpy2⟩ Vspg∗3 Vxyg∗4 Vxxg∗1 Vxyg∗2 0 0 Ep2 0

|φpz2⟩ Vspg∗4 Vxyg∗3 Vxyg∗2 Vxxg∗1 0 0 0 Ep2

where Es and Ep correspond to the energy of the s and p states, V is a molecular orbital
overlap parameter, and g is a parameter defined by the position of the atoms within the GaAs
unit cell. Solving the eigenvalue problem for this Hamiltonian gives the eigenvalues at a
given point k of the wave vector. Figure 1.5 shows the energy bands of GaAs along high
symmetry lines of the zincblende structure.

Fig. 1.5 GaAs band structure. All eight energy bands are ploted along high symmetry lines
of the Brillouin zone. Only the bands relevant to calculating the effective electron and hole
mass have been labeled.
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For free electrons, the curvature of the energy E is determined by the wave vector k as

E =
h̄2k2

2m
, (1.6)

where m is the mass of an electron. Differentiating Eq. 1.6 with respect to k twice, defines
the effective mass m∗ as a function of E .

1
m∗

=
1
h̄2

d2E

dk2 . (1.7)

Focussing on a number of k points near the Γ point (the centre of the Brillouin zone), the
values of energy can be fit using a quadratic polynomial. The results can be used to find E

and therefore deduce the effective mass of the particle m∗ [92]. In this work, the effective
mass for single electrons in GaAs devices is m∗e = 0.067me where me is the mass of an
electron in free space.

1.3 Surface Acoustic Waves

Surface acoustic waves (SAWs) were first described by Lord Rayleigh in 1885 and often bear
the name Rayleigh waves. They consist of acoustic modes propagating along the surface
of an elastic material. The amplitude of a SAW typically decays exponentially with depth
into the bulk. Figure 1.6 illustrates the different types of acoustic waves and their associated
distortion patterns in a material. Rayleigh waves are made up of a longitudinal propagation
as well as a vertical sheer component. The resulting motion for particles in the material is a
retrograde elliptical path. Mechanical strain applied to a piezoelectric material triggers an
accumulation of charge [44] so a periodic surface acoustic wave can be accompanied by a
propagating periodic electric potential.

The modulation of an electric potential in a layered semiconductor substrate can be used
to create a new dimension of confinement for electrons in the conduction band. Since the
sinusoidal potential is propagating, electrons are trapped in moving quantum dots. By tuning
the amplitude of the SAW, it has been shown that the number of electrons per minimum can
be carefully controlled and single electron transport is achieved.[86, 111, 79]

In 2011, McNeil et al. demonstrated that a single electron in GaAs could be carried
reliably by a surface acoustic wave back and forth across a depleted channel several times and
that the same electron could travel a cumulative distance of over 0.25mm without error.[111]
A reliable control of electrons over large distances is crucial for transporting qubits between
corresponding parts of a quantum circuit that are not in neighbouring quantum dots.[111, 12]
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Fig. 1.6 Different Types of seismic waves. P-type and S-type waves are longitudinal and
transverse waves respectively. Love waves and Rayleigh waves are surface acoustic waves
where the motion of particles follows a different pattern. The surface acoustic waves
used in this study are Rayleigh waves. Image taken with permission from Encyclopedia
Britannica.[120]
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In 2000, Barnes et al. proposed a scheme that uses SAW-based devices as quantum
processors where single electrons trapped in the SAW minima act as spin or charge qubits
[12]. A schematic of single and two qubit operations in a SAW-based quantum computation
scheme can be seen in Figure 1.7. Here, magnetic split gates act as single qubit gates and
two qubit gates are achieved by bringing together adjacent channels thus allowing qubits to
interact via a tunnelling barrier. As stated by the DiVincenzo criteria discussed in Sec. 1.1.2,
a series of single- and two-qubit operations are sufficient to construct a universal quantum
computer. The propagation speed of a surface acoustic wave in GaAs is approximately
2800m/s and a SAW-driven device typically operates at a frequency of ∼3GHz, allowing a
SAW-based quantum processor to perform operations billions of times per second.

Fig. 1.7 Example quantum circuit based on the surface acoustic wave quantum computer
[139].

In GaAs, surface acoustic waves are generated via a radio frequency alternating current
applied to interdigital transducers (IDTs). IDTs are interlocked metallic electrodes deposited
on the surface of the substrate. When an alternating current is applied to one set of fingers
while the other set is grounded, a periodic propagating strain wave is generated at the surface
of the piezoelectric material. A diagram of SAW generation from IDTs can be seen in Fig.
1.8.
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Fig. 1.8 Surface acoustic waves are generated by electrically modulating interdigitated
transducers (IDT) using radio frequency (RF) currents and propagate along a semiconductor
device. Image taken with permission of the SAWtrain network [133].

1.4 Outline

In this chapter, I presented the motivation for studying quantum-information systems. I
discussed how the scalable physical implementation of qubits in a material whose fabrica-
tion techniques are well known and part of a mature industry is paramount for the realistic
development of a quantum computer. I introduced the key concepts needed to study semi-
conductor systems and described the way in which surface acoustic waves can be used to
physically carry single-electron qubits across a device. In the rest of my thesis, I present a
comprehensive study on the use of single electrons as qubits for a quantum computer. My
results describe the manipulation of quantum information including the optimal definition of
a qubit, single-qubit operations and two-qubit entanglement generation.

In Chapter 2, I introduce the numerical methods available for solving physical problems
on current classical computation systems. I compare various discretisation methods for
making the quantum evolution problem finite and the limitations of each method. I then go
on to explore the use of graphics processing units (GPUs) to parallelise the solutions to the
differential equations and accelerate computation times. I provide a comparison to traditional
computation methods and discuss the different hardware and software solutions currently
available.

In Chapter 3, I describe the two-level system used to define a quantum bit. Here, the
spatial state of a single electron is mapped to the Bloch Sphere. I show a method for changing
the state of a qubit through the application of rapid electric pulses. I describe the experimental
shortcomings of electric pulse generation and how these can be overcome by shaping the
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pulses differently. This chapter provides the theoretical tools for single qubit manipulation,
satisfying one part of the universal set of quantum gates required by the DiVincenzo criteria.

In Chapter 4, I apply my single qubit simulations to modelling real semiconductor
devices. This chapter includes work done in collaboration with Dr. Hermann Edlbauer and Dr.
Christopher Bäuerle from the Intitut Néel, Centre national de la recherche scientifique (CNRS)
in France. While the researchers at the CNRS fabricated and measured the semiconductor
device, I provide the theoretical foundations and the numerical results that accurately describe
the behaviour of this device. By modelling the single-electron transport process, I pinpoint the
sources of excitation that introduce unwanted errors in the quantum state of the electron. By
running parameter sweeps, I uncover ways to minimize excitations and ensure a high-fidelity
device.

Moving beyond what is currently realisable experimentally, I present a framework for
general quantum measurements in Chapter 5. Inspired by the technology presented in
Chapter 4, I designed a circuit capable of realising a positive-operator-valued measure
(POVM), a generalisaion of projective measurements. I present a comparison of this circuit
with current POVM implementations in photonic systems. Once again, I strive to keep
realistic parameters and experimental applicability in mind. In this chapter, I identify the
main challenges when using electrons instead of photons for a POVM device and I provide
readily available solutions to those challenges.

In Chapter 6, I formulate an entanglement generation scheme based on the exchange
interaction. I present two-dimensional two-particle simulations that push my state-of-the-art
GPUs to their limit. This chapter is once more aimed at the experimental implementation
of quantum operations. Using realistic device parameters, I simulate the root-of-SWAP
operation – a maximally entangling operation – performed using different methods. I outline
the benefits and disadvantages of each method and advocate the use of current experimental
devices to carry out the two-qubit gate operation.

Finally, in Chapter 7, I lay out the future development plans for my quantum simulations.
This further work is a collection of ideas that I had during my PhD but did not have
time to complete as well as suggestions from colleagues and fellow researchers during
conferences and collaborative work. Both the development of new software features and
the implementation of the code on novel hardware platforms can make for interesting and
exciting PhD projects.





2
NUMERICAL METHODS

The quantum systems I study in this thesis are dynamical in nature, meaning the state of
a system goes through a time evolution and is changed into a different state. The partial
differential equation describing the non-relativistic evolution of a quantum system is the time
dependent Schrödinger equation and is given by

ih̄
∂ψ (t)

∂ t
= Ĥψ (t) (2.1)

where ψ (t) is the wave function for an arbitrary quantum system of one or many particles
and Ĥ is the Hamiltonian of the quantum system. The formal solution to Equation 2.1 is
given by

ψ
(
t ′
)
= Û

(
t ′, t

)
ψ (t) (2.2)

for an initial state ψ(t) and a final state ψ(t ′). The time evolution operator Û(t ′, t) is
described by

Û
(
t ′, t

)
= T exp

(
− i

h̄

∫ t ′

t
Ĥ(τ)dτ

)
(2.3)

where T provides time ordering. Analytic solutions to equation 2.3 only exist for a
few simple cases and the time evolution operator is, in general, difficult to solve. Since the
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systems we are interested in are complex, I rely on numerical solutions to study their time
evolution.

Computers operate using finite computational resources such as memory, storage space,
transfer bandwidths, and processing speeds. It is therefore necessary to discretise the
simulated system both in space and in time. In my work, I used the finite difference method
for spatial discretisation and the staggered leapfrog method for temporal discretisation. This
method is advantageous since it is parallelisable, which allows hardware acceleration through
the use of parallel-processing capabilities of graphical processing units.

2.1 Discretisation Methods

No current system is capable of simulating the time evolution of continuous physical systems
numerically. Time-evolution problems must therefore be discretised in both time and space.
In this section, I discuss various discretisation methods and argue for the use of the finite-
difference method for spatial discretisation and the staggered leapfrog method for temporal
discretisation as these methods offer a good balance between computational efficiency, speed,
and accuracy.

2.1.1 Spatial Discretisation

The finite difference method limits the wave function to an ordered, real, lattice space. Let us
consider the example of a single particle. The Hamiltonian of a single spinless particle in
one dimension is given by

Ĥψ (x) =
(
− h̄2

2m∗
∂ 2

∂x2 +V (x)
)

ψ (x) = Eψ (x) , (2.4)

where m∗ is the effective mass of the particle and V (x) is the external potential function.
To find Ĥψ (x) numerically, we can discretize the wave function and use the Taylor expansion
to find its derivatives. The Taylor expansion of the wave function is given by

ψ (x+∆x) = ψ (x)+
∂ψ (x)

∂x
∆x+

∂ 2ψ (x)
∂x2

∆x2

2
+

∂ 3ψ (x)
∂x3

∆x3

3!
+ ... (2.5)

and

ψ (x−∆x) = ψ (x)− ∂ψ (x)
∂x

∆x+
∂ 2ψ (x)

∂x2
∆x2

2
− ∂ 3ψ (x)

∂x3
∆x3

3!
+ ... (2.6)
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Adding Eq. 2.5 and Eq. 2.6 and rearranging the terms, we obtain an expression for the
second order spatial derivative of the wave function:

∂ 2ψ (x)
∂x2 =

ψ (x+∆x)−2ψ (x)+ψ (x−∆x)
∆x2 +O

(
∆x2) . (2.7)

Substituting Eq. 2.7 into the time-independent Schrödinger equation (TISE) and using a
discretised wave function, we get(

− h̄2

2m∗∆x2

)
(ψn+1−2ψn +ψn−1)+Vnψn = Eψn, (2.8)

where n is an index of the position lattice. This equation can be expressed as a matrix
from which the eigenvalues and eigenvectors can be found numerically. This eigenvalue
decomposition problem is represented by

V1 +a b
b V2 +a b

b V3 +a . . .
. . . . . .





ψ1

ψ2
...

ψn
...

ψN


=



ε1

ε

...
εn
...

εN


, (2.9)

where

a =
h̄2

m∗∆x2 and b =− h̄2

2m∗∆x2

and where εn corresponds to the eigen energy associated to the eigen vector ψn.
The diagonalisation of the tri-diagonal matrix in Eq. 2.9 allows us to find the eigenvalues

and eigenfunctions of a given 1D system. The same methodology can be applied to higher-
dimensional or multi-particle systems. In such cases, the complexity of the matrix from
Eq. 2.9 increases. Each additional dimension or particle adds non-zero diagonals to the
Hamiltonian. Solving the TISE eigenvalue problem is useful for finding the initial state of a
wave function. As the complexity of the system increases or as the lattice becomes larger, it
may be too computationally demanding to solve the matrix diagonalisation directly. Under
certain circumstances, it is possible to reduce the size of the matrix by solving the eigenvalue
problem in momentum-space instead of real-space. This matrix is not sparse and, if the
system is near its ground state, only a few momentum modes contribute to the wave function.

The final aspect to consider in the discretisation of the Hamiltonian is the boundary
conditions imposed on the edges of the simulation space. A detailed description of the
different type of boundary conditions used in this work is provided in Sec. 2.3.
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2.1.2 Temporal Discretisation

The most commonly known temporal discretisation method is the Euler method, which
uses the first term of the Taylor expansion as a linear approximation to the solution for
small time steps [34]. Equation 2.3 is solved, which is unconditionally divergent under
the Euler method. Increasing the number of terms used in the Taylor expansion helps the
approximation approach the solution but rapidly becomes computationally demanding.

The Crank-Nicolson method offers a stable and norm-preserving approximation to Eq. 2.3
by applying a Cayley transformation to the exponential [43]. Although the Crank-Nicolson
method is unconditionally stable [151], it does not provide an explicit solution to Û (t ′, t) and
requires a matrix inversion of the Hamiltonian at every time step. While there exist many
algorithms specifically written to handle matrix inversions, this process can be extremely
slow for large Hamiltonians.

Maestri et al. proposed a method that involves taking a pair of Taylor expansions at
different time steps and subtracting them [107]. This method is not unconditionally stable
but offers an explicit solution to Eq. 2.3 and produces accurate results for small values
of ∆t. Here, I present a revised derivation of the staggered leapfrog numerical method
for two spinless particles in one dimension. Starting with the two-particle time-dependent
Schrödinger equation and using natural units (h̄ = c = me = 1) we have

i
∂

∂ t
ψ (x1,x2, t) = Ĥψ (x1,x2, t) =

(
− 1

2m1

∂ 2

∂x2
1
− 1

2m2

∂ 2

∂x2
2
+V (x1,x2)

)
ψ (x1,x2, t) ,

(2.10)
where m1 and m2 are the masses of both particles 1 and 2 respectively. Using the finite
difference method presented in Sec. 2.1.1, the wave function is dicretized spatially. The
discrete wave function is defined as

ψ (x1,x2, t) = ψ (r∆x1,s∆x2,n∆t)≡ ψ
n
r,s ∀(r,s,n) ∈ Z, (2.11)

where r and s are spatial indices for particles 1 and 2 and n is the discrete time index. Plugging
Equation 2.11 into Equation 2.10 yields

Ĥψ =− 1
2m1

(
ψr+1,s−2ψr,s +ψr−1,s

∆x2
1

)
− 1

2m2

(
ψr,s+1−2ψr,s +ψr,s−1

∆x2
2

)
+Vr,sψr,s.

(2.12)
For the purpose of simplicity, let us assume that the lattice spacing is defined equally for
both particles, i.e. ∆x1 = ∆x2 = ∆x. Time dependence can now be added to the system.
When deriving the staggered leapfrog method, it is important to consider the two previous
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time steps of the system’s time evolution. As will be discussed later in this section, the
wave function can be split into its real and imaginary components and each part of the wave
function is solved for every other time step. The real and imaginary components are evaluated
at different (staggered) time steps sequentially and “leapfrog” each other. The time evolution
of the wave function is described by

ψ
(n+1)
r,s −ψ

(n−1)
r,s =

(
e−i∆tH− ei∆tH

)
ψ

n
r,s =−2i∆tHψ

n
r,s +O

(
∆t2) . (2.13)

Keeping only the leading non zero-term of the Taylor expansion in Eq. 2.13 and replacing
the Hamiltonian by the expression in Eq. 2.12 we get

ψ
(n+1)
r,s = ψ

(n−1)
r,s −2i

{[(
1

m1
+

1
m2

)
∆t

∆x2 +∆tVr,s

]
ψ

n
r,s

− 1
2

∆t
∆x2

[
1

m1
(ψr+1,s +ψr−1,s)+

1
m2

(ψr,s+1 +ψr,s−1)

]}
.

(2.14)

It is now possible to separate the wave function into its real and imaginary parts:

ψ
n
r,s = un

r,s + i vn
r,s. (2.15)

The real and imaginary components of Equation 2.14 are

un+1
r,s = un−1

r,s +2

{[(
1

m1
+

1
m2

)
λ +∆tVr,s

]
vn

r,s−
1
2

λ

[
1

m1

(
vn

r+1,s + vn
r−1,s

)
+

1
m2

(
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r,s+1 + vn
r,s−1

)]}

(2.16a)

vn+1
r,s = vn−1

r,s −2
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1
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)
λ +∆tVr,s

]
un

r,s−
1
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1
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(
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r+1,s +un
r−1,s

)
+

1
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(
un

r,s+1 +un
r,s−1

)]}
(2.16b)

Evaluated at staggered times of one half time step, both real and imaginary components of
the wave function are represented by[

un
r,s , vn

r,s

]
=
[
Reψ (x, t) , Imψ

(
x, t + 1

2∆t
)]
. (2.17)

Assuming a sufficiently small time step ∆t, the minor time discrepancy 1
2∆t can be ignored

and both parts of the wave function are combined to obtain the new wave function after time
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evolution. The staggered leapfrog method is not unconditionally convergent and must satisfy
the stability criterion

∆t <
h̄(

h̄2

m

)(
1

∆x2 +
1

∆y2 +
1

∆z2

)
+Vmax

(2.18)

for each particle, where Vmax is the maximum value of the potential. As a result, the norm of
the wave function is not strictly conserved, in general. To make sure the solutions calculated
by my solver did not diverge significantly, I monitored the norm at every time step. Deviations
from unity for the simulations presented in this work were usually on the order of 0.1% or
less.

2.2 Potential Layout and Initial Eigenstates

One of the biggest challenges when solving quantum-mechanical problems is to ensure that
the simulations reflect realistic experimental devices. The underlying electrostatic potential
in Equations 2.4 and 2.10 must therefore be estimated accurately. In this thesis, I used two
methods for calculating the underlying potential. For theoretical proposals such as those in
Chapters 3 and 5, I used functional potentials. These functions can be coded directly into
the time dependent solver and provide a more meaningful interpretation of the confinements
required for certain quantum operations. By contrast, when simulating actual experimental
devices such as the one fabricated by the CNRS [54, 149] and presented in Chapter 4, I used
the commercial Poisson-Schrödinger solver NextNano++ [21].

2.2.1 Functional Potentials

Much of the work in this thesis consists of developing a theoretical framework for quantum
operations on single-electron qubits. As such, it is a good idea to remain general and not force
an implementation that is specific to a certain laboratory or fabrication method. Because
of the historical expertise, with Prof. Crispin Barnes at the head of my research group,
most of the examples presented here are related to flying electron qubits carried by surface
acoustic waves in gallium arsenide heterostructures. However, the concepts developed here
are applicable to other materials, such as silicon, and other qubit implementations such as
static charge qubits, static spin qubits, topological insulator qubits, and many more.

The simulations in this thesis only consider electrons already in the conduction band.
Therefore, we only require a one band Hamiltonian. A single function is enough to describe
the electrostatic potential. For example, a double-quantum-dot potential can by described by



2.3 Boundary Conditions 27

the sum of a harmonic potential and a Gaussian function,

V (x,y) =
1
2

m∗ω2
x x2 +

1
2

m∗ω2
y y2 +ATBm∗e

− x2

2σ2
TB , (2.19)

where ωx and ωy describe the amplitude of the parabolic confinement and ATB and σTB

characterise the amplitude and width of the Gaussian central barrier. Numerically, Eq. 2.19
is straightforward to implement and a sample of code is shown in Listing 2.1.

1 V = 0.5 * Mass1 * w2X * powf(x, 2.0) + 0.5 * Mass1 * w2Y * powf(y, 2.0)

2 + ATB1*Mass1*expf(-s2TB1*powf(x, 2.0) / 2.0)

3 + detuneX * Mass1 * x;

Listing 2.1 Double quantum dot functional potential from Eq. 2.19 implemented on the GPU
CUDA kernel.

In Chapter 5, the spin of the electron was considered and two bands were used since the
spin-up and spin-down configurations could experience different potentials. In this case, two
different electric potentials and two magnetic potentials were defined.

2.3 Boundary Conditions

As with most finite-element solvers, this code requires boundary conditions to constrain the
solutions of the differential equations to a finite domain. In most cases, we want to keep the
non-zero parts of the wave function sufficiently far away from the edge of the simulation
domain in order to avoid boundary effects introducing errors in the simulations. Since my
goal is to simulate realistic devices, I must ensure that hard walls or wave-function leakage is
not artificially introduced. In this work, I used three different types of boundary conditions.
Dirichlet or “hard wall” boundaries were used most of the time since they are the most cost
effective computationally and provide an easy way of identifying reflection errors. Absorbing
boundary conditions were used when the wave function could escape the region of interest.
In this scenario, the normalisation of the wave function was not preserved in an attempt to
reduce the complexity of the simulation. The part of the electron outside the simulation
domain is of no interest and its time evolution does not need to be fully solved quantum
mechanically. Periodic boundaries are useful for simulating tubes or connected parts of a
device on a 2D lattice. Although periodic boundary conditions are not presented directly in
this thesis, they played an important role in the design of the measurement device presented
in Chapter 5.
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2.3.1 Dirichlet Boundary Conditions

By default, Dirichlet boundary conditions are used. These conditions specify that the wave
function ψ(x) takes a value of 0 on the boundary of the simulation domain Ω [39]. We
require that

ψ(xxx) = 0 ∀xxx ∈ ∂Ω, (2.20)

where ∂Ω is the boundary of the domain. Numerically, this is simply implemented by setting
the value of ψ(xxx) to zero. GPU kernel code for a one-particle example in 3D is given by
Listing 2.2.

1 if (i<0 || j<0 || k<0 )

2 return 0.0;

3 else if (i >= Nx || j >= Ny || k >= Nz )

4 return 0.0;

5 else {

6 if (real)

7 return Psi[k + j*Nz + i*Nz*Ny].x;

8 else

9 return Psi[k + j*Nz + i*Nz*Ny].y;

10 }

Listing 2.2 Dirichlet boundary conditions implemented on the GPU CUDA kernel. The
boundaries of the simulation domain are determined by the three dimensional indices x, y,
and z range from 0 to Nx, Ny, and Nz respectively.

A visual example of a one-dimensional Gaussian wave packet interacting with a Dirichlet
boundary is presented in Fig. 2.1. Here, the wave function ψ(x) is initialised in the state

ψ(x) =
(

ω

π

)1/4
e−

ωx2
2 +ikx, (2.21)

in an infinite square potential well

V (x) =

0 −L
2 < x < L

2

∞ otherwise.
(2.22)

Since this simulation was done for illustration purposes only, the exact numerical values of
the parameters are not important. We see from Figure 2.1 that non-zero parts of the wave
function are reflected by the hard walls. The norm of the wave function is fully preserved at
each time step of the simulation.
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Fig. 2.1 A Gaussian wave packet is initialised in a 1D square well with initial momentum.
As the wave function encounters the infinite wall, it is reflected. Self interference can be
observed. Once the wave has fully reflected, it regains its original shape. The direction of
motion of the wave function is indicated by a blue arrow.

When calculating the results presented in the later chapters of this thesis, I tailored the
electrostatic potentials in order to avoid such reflections that would cause the electrons to
exhibit an unphysical behaviour. To guarantee that at no point the particle was affected by the
boundary conditions, I checked that the value wave function was zero (below floating point
accuracy) for all lattice sites near the boundary. If at any point the values grew to be larger
than numerical errors, the simulation was considered invalid and the domain was extended
before solving the time-dependent Schrödinger equation (TDSE).

2.3.2 Absorbing Boundary Conditions

In some situations, the electron might be able to escape the confining potential defined by
a semiconductor device or the surface acoustic wave. It is computationally impossible to
simulate large spatial domains. In these situations, it might be favourable to use absorbing
boundary conditions. We focus on the part of the wave function that is still in the region of
interest, but we don’t want parts of the wave to be reflected back into our simulation space.
By using absorbing boundary conditions, it is possible to efficiently use computing power on
the region of interest whilst simultaneously avoiding unphysical wave reflections introduced
by Dirichlet boundary conditions. Here, we require that the derivative of the wave function
ψ(x) take on the value of 0 at the boundary of the simulation domain Ω. We have that

∂ψ(x)
∂n

= 0 ∀x ∈ ∂Ω, (2.23)

where n is the unit vector normal to the boundary’s surface.
One way to absorb a wave packet at the boundary is to use Von Neumann boundary

conditions [137, 129, 57]. To implement Von Neumann boundary conditions, the wave is
matched with one of equal velocity and opposite phase. The destructive interference cancels
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the wave and only the parts that have not interacted with the boundary remain. This method
can be complicated for arbitrary potentials since the wave function at the boundary is difficult
to predict.

In this work, I used a method similar to references [138, 100, 165, 166, 117], where
I let the particle evolve in imaginary time in an absorbing layer near the boundary. The
Schrödiger equation becomes a simple diffusion equation and the wave function disappears
without any reflections occurring. It is important to note that absorbing boundary conditions
will not preserve the normalisation of the wave function and that, if these calculations are
done numerically, renormalisation should not be introduced. Such a renormalisation would
amplify numerical fluctuations and lead to erroneous results. Figure 2.2 illustrates a wave
packet vanishing completely when crossing an absorbing boundary.

Fig. 2.2 A Gaussian wave packet is initialised in a 1D square well with initial momentum.
The wave function passes through an absorbing region and its norm is no longer preserved.
After some time, the entire wave function has left the simulation domain. The direction of
motion of the wave function is indicated by a blue arrow.

2.3.3 Periodic Boundary Conditions

Another boundary that can be very useful to reduce computation time is the periodic boundary.
Here, two opposing boundaries are mapped onto each other providing an infinite simulation
domain via the compactification of one or many dimensions. Although periodic boundary
conditions do not always represent physically realistic systems, they can be useful in a variety
of situations. First, it is possible to represent cylindrical symmetry on a two-dimensional
plane using periodic boundary conditions. Second, three-dimensional-like behaviour can be
approximated by a single two-dimensional plane using periodic boundaries. For example,
two planes at different heights that cross each other – similar to a road interchange – can
be simulated entirely within one plane. Figure 2.3 shows a wave packet crossing a periodic
boundary where the negative and positive extremes of the x dimension have been folded onto
each other.
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Fig. 2.3 A Gaussian wave packet is initialised in a 1D square well with initial momentum. The
wave function is transmitted from the right boundary to the left boundary through periodic
boundary conditions. The norm of the wave function is preserved throughout the simulation.
The direction of motion of the wave function is indicated by a blue arrow.

2.4 Sliding-Window Simulation Domain

In certain cases, it is computationally beneficial to use a restricted simulation domain that
is allowed to move over a larger area of interest. A semiconductor device is typically a
few microns in length, but the desired spatial resolution of the wave function can be one
nanometer or less. For large simulations, computational resources can become a limiting
factor and time is wasted calculating the evolution of the wave function where it is zero.
Instead, a sliding window domain can be used. Here, I find the solution to the Schrödinger
equation for only a slice of the device. As the electron progresses through the device, the
window is updated to keep the non-zero wave function lattice sites at the center of the domain.

Figure 2.4 shows two simulations of an electron being transported across a static potential
by a surface acoustic wave. The underlying potential is a doubly-angled channel that takes the
particle from y = 0nm to y = 200nm. In the left panel, the simulation domain spans the entire
device and the wave function is only nonzero over a small fraction of the domain. An added
benefit of a sliding window is that the wave function does not need to be initialised with a
momentum component. Both simulations in Fig. 2.4 were initialised with zero momentum.
A comparison between both panels shows that the surface acoustic wave provided an added
momentum to the static wave function and caused the electron to oscillate in the x dimension
within the SAW potential. This can be seen by the variable distance between the expected
position of the electron in the left panel. By contrast, in the right panel, the sliding window
simulation domain moved at the same speed as the SAW. Since the inertial reference frame
is with respect to the surface acoustic wave, the default state of the electron is to move with
the SAW. Sliding window simulations were used for all dynamic calculations in Chapter 6.
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Fig. 2.4 Expected value of the position of a single-particle wave function as it travels across
an electrostatic potential. A surface acoustic wave creates a confining potential in the x
dimension and travels in the positive x direction.

2.5 Natural Units

Numerical calculations performed on modern computing systems typically use a floating-
point system (floats) or double-precision numbers (doubles) for a greater number of signifi-
cant digits. Other forms of numerical systems, such as complex numbers, are simply formed
as arrays of floats or doubles. Because of the finite number of significant digits, it can be
useful to use the natural unit system. In this system, orders of magnitude are centered around
one. The advantage of the natural unit system is twofold. First, operations with floating-point
numbers of the same order minimise the risk of truncating trailing digits. For example, when
calculating the norm of the wave function, the sum of very small values divided another very
small value should equal unity. However, this value may be smaller because of the truncation
of trailing numbers. The second advantage is the rapid verification of nonsensical answers
output from the simulations. It is hard for humans to have an intuitive understanding of
numbers on the order of Planck’s constant. A divergent solution may not appear immediately
and would require post-processing to uncover. Using natural units, it is immediately apparent
when a solution starts to diverge and parameters start drifting by orders of magnitude.

In this work, I set the reduced Planck constant [29] and the mass of an electron in free
space to be equal to one.

me = 9.10938216×10−31 kg→ 1 (2.24)

h̄ = 1.054571817×10−34 J · s→ 1

= 6.582119569×10−16 eV · s→ 1
(2.25)
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The time-dependent Schrödinger equation is then expressed as

⤹
ih̄

∂

∂ t
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(
− h̄2

2m
∇

2 +V
)

ψ

i
∂

∂ t
ψ =

(
−1

2
∇

2 +V
)

ψ

(2.26)

The dimensions of the variables of interest must be scaled and expressed in terms of new
units. In the simulations presented in this thesis, length is expressed in terms of nanometers.
Units of time and energy are expressed as different powers of length. Table 2.1 offers a
convenient conversion factor between units of energy, time, and momentum typically used in
nanoscale experiments and the corresponding natural units.

Quantity SI Units Conversion Factor Numerical Conversion Natural Units

Energy [V ] = meV me
h̄2 1.312342×10−2 1

nm2

Time [t] = ps h̄
me

1.157676×102 nm2

Momentum [p] = kgm
s

1
h̄ 9.482522×1024 1

nm

Table 2.1 Numerical conversion factors required when going from the International System
of Units (SI) to Natural Units (NU).

2.6 GPU Acceleration

As discussed in this chapter, discretising large systems can lead to complex problems
requiring a large amount of computational operations due to the rapid increase of spatial
nodes. Graphics processing units (GPUs) are specially designed to process many operations
simultaneously by splitting independent operations into blocks and executing them in parallel.
Originally designed to rapidly create real-time images to be output to a display, GPUs are
now optimised to make use of their parallel processing ability for processing large data
structure and performing high performance computations. As a result, graphics cards offer a
relatively inexpensive way of exploiting the equivalent of a small-scale supercomputer.

Modern GPUs have several thousand cores and can run on the order of 1013 floating-point
operations per second (FLOPS). Figure 2.5 shows a comparison in the theoretical FLOPS
achieved by Intel’s most advanced central processing units (CPUs) and NVIDIA’s GPUs.

Parallelising large tasks on a GPU can lead to a significant decrease in computational
time compared to single- or multi-threaded CPU processing. To get a better idea of the use
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Fig. 2.5 Theoretical floating-point operations per second comparison between the mod-
ern, most advanced CPUs and GPUs. Image adapted from Nvidia CUDA programming
guide.[119]

of parallel computing on GPUs, let us consider the simple case of vector addition. For this
task, two arrays of size N, a⃗ and b⃗, are added to produce the resulting vector c⃗. A sample
code in C to be executed by the CPU would look like the following:

1 for(int i = 0; i < N; ++i)

2 {

3 c[i] = a[i] + b[i];

4 }

Listing 2.3 CPU vector addition

The CPU executes this code in series. When encountering the for loop, it will execute
each step of the loop in a sequential order. An equivalent expanded view of the CPU
processing can be seen in the following code:

1 c[0] = a[0] + b[0];

2 c[1] = a[1] + b[1];
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3 c[2] = a[2] + b[2];

4 ...

5 c[N-1] = a[N-1] + b[N-1];

Listing 2.4 CPU vector addition (expanded code)

Since each step of the vector addition operation is independent from another, the output
result is no different if the operations are executed out of order. For such tasks, GPUs can split
iterative processes and execute each operation on one of many computing cores. Independent
operations are processed simultaneously to gain a greater time efficiency. A sample OpenCL
code for vector addition can be seen below:

1 kernel void myVectorAddition(global float *a, global float *b, global ←↩
float *c)

2 {

3 i = get_global_id(0);

4 c[i] = a[i] + b[i];

5 }

Listing 2.5 GPU vector addition

Here, each thread is assigned a global index by the GPU kernel. Each work-group, or
block of computing cores, can access and identify a thread using the get_global_id(d)
function where d identifies the dimension of the problem. Since most graphics cards are
designed to render scenes or images intended for display, GPUs are optimized to work in
one, two, or three dimensions. Systems with higher dimensionality must be adapted to work
within these constraints.

GPU acceleration is a powerful tool when applied to the staggered leapfrog method. In
this case, the relevant equations to be solved in parallel are Eq. 2.16a and Eq. 2.16b. The
temporal iterative process of the staggered leapfrog method must be solved sequentially since
each time step depends on the previous, however, the nodes of the array generated by spatial
discretization are independent from each other within one time step. Each node of the wave
function can be solved in any given order. The possibility of accelerating simulations of the
TDSE through the use of parallel processing is another reason why the staggered leapfrog
method is desirable.

Data precision is an important factor to consider when performing numerical computa-
tions. The two main precision formats used to store floating-point values are single-precision
and double-precision. Single floats use 4 bytes of computer memory and usually offer an
accuracy of 7-8 decimal points, whereas double floats take, as the name suggests, 8 bytes
of memory and can store 15-16 decimal places. Accuracy is desirable in physical simula-
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tions, but the use of double-precision numbers at least doubles the necessary computational
resources and requires longer running times. Furthermore, certain graphics cards are par-
ticularly affected by using double precision as will be discussed later in this section. The
simulations in this thesis were done using single-precision floats to take advantage of faster
computation times. A comparative test solving the same problems using double-precision
values showed no change in the accuracy of the result.

2.6.1 CUDA vs OpenCL

Finally, there are many hardware platforms as well as application programming interfaces
(APIs) to choose from when deciding to use GPUs for computational purposes. There are
currently three main graphics cards manufacturers: AMD, Intel, and Nvidia. Intel GPUs are
mainly marketed towards high power efficiency desktop and mobile devices. The computing
power of Intel devices is not sufficient for the needs of this research. AMD and Nvidia both
offer high-end products capable of increasing computational performance over CPUs and
both device families come with their set of advantages and drawbacks. Nvidia devices are
better supported by different platforms such as Windows and Linux through well maintained
drivers, however, most Nvidia cards are not optimized for handling double precision floats
and are even slowed down to promote Nvidia’s more powerful Tesla devices. AMD, on
the other hand, typically offers a more inexpensive product that can perform operations on
floating point or double precision equally. AMD’s driver support for Linux devices usually
trails behind a few years.

The most developed APIs available for scientific computing on GPUs are CUDA, Mi-
crosoft DirectCompute, and OpenCL. CUDA is a well developed and well maintained parallel
computing platform offered by Nvidia and is available on different platforms, however, it
can only run on Nvidia hardware. DirectCompute is developed by Microsoft and released
alongside the DirectX environment. It supports all hardware manufacturers, but it is tied to
Windows systems only. OpenCL, maintained by the Khronos Group, offers the best balance
by supporting all major card manufacturers and multiple operating systems (Windows, Linux,
and MacOS). Other graphics card APIs such as OpenGL or Project Vulkan are designed for
computer graphics processing and are not optimal for scientific simulations. In this research,
I used a combination of OpenCL and CUDA. I originally used OpenCL, which produced the
results for Chapter 5, for its versatility and compatibility with AMD graphics cards. I then
used CUDA for the remaining simulations and the results of Chapters 3, 4, and 6 because of
its constant development and active userbase. The results in Chapter 3 were produced using
an NVIDIA GTX 970 GPU. The results in Chapter 4 were obtained with an NVIDIA GTX
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1080Ti GPU. In Chapter 5, I used an AMD Radeon R9 390 GPU. Finally, in Chapter 6, I
used an NVIDIA RTX 2080Ti GPU.

2.7 Example

As a preliminary check, I compare the results of my code to a well-known quantum phenom-
ena, the double-slit experiment. Figure 2.6 shows the time evolution of a single-particle wave
function initialised as two Gaussian wave packets separated in space. The exact parameters
used to generate Fig. 2.6 as well as a simplified code of the staggered leapfrog method can
be found in Appendix A. As expected, an interference pattern is observed matching both
analytical calculations and experimental observations. It is important to note that in this
particular case, additional interference fringes can be observed. This is due to the particle’s
wave function being reflected off the hard wall boundaries.

Fig. 2.6 A single particle wave function propagates from two slits. Interference patterns
emerge both from self interference and from reflections of the wave function on the hard wall
boundaries of the simulation domain.





3
SINGLE-ELECTRON MANIPULATION

Using the methods and tools presented in Chapter 2, I model the states of single particles
and the way quantum information is encoded in them. In this research, I investigate single
electrons as a physical platform for quantum information processing. In this chapter, I lay the
groundwork for defining qubits using electrons. I define an electron qubit in a simple, static,
double quantum dot. Simpler models are useful tools to gain insight into the behaviour and
dynamics of particles in various systems. They are also a useful method to compare the results
of numerical simulations against analytical predictions – an essential confirmation before
moving on to more complex problems. The double quantum dot is also a natural starting
point since most of the further work in this thesis relates to electrons being transported in
parallel quantum channels by surface acoustic waves, thus creating moving double quantum
dots.

3.1 The Electron Qubit

There are two main ways to encode quantum information using single electrons. First, two
spatially separated states can be created from the energy eigenstates of the electron. This
type of system is referred to as a charge qubit [22, 65]. In a semiconductor, a charge qubit
can manifest itself as localised states in a double quantum dot. The |0⟩ and |1⟩ basis states
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are defined as the particle’s presence in one or the other quantum dot. An advantage of the
charge qubit include the clear readout owing to the localisation of the wave function of the
electron. This localisation can also be used to control any interactions with neighbouring
qubits. Two-qubit operations can be turned on and off by controlling the spacial proximity of
the electrons. Another advantage of charge qubit devices is that all the parameters controlling
the quantum information can be adjusted by applying surface gate voltages. A second type
of qubit is the spin qubit [124, 75]. In this case, the two spin states |↑⟩ and |↓⟩ form the basis
of the qubit. Spin qubits are a natural candidate for quantum information processing since
these are the two only possible states of the system. As opposed to charge qubits, careful
engineering is not required to ensure other states are not present. However, the dynamics of
charge qubits are important for spin qubits when two-qubit gate are constructed or when the
qubits are transported.

In this chapter, I will focus on the charge qubit, since I am interested in the dynamic
propagation of electrons in circuits and therefore the evolution of fermionic wave functions
in quantum circuits. Experimental devices capable of creating, manipulating, and reading
charge qubits currently exist and offer results capable of validating my simulations [149].
Comparisons to experimental results are presented in Chapter 4.

3.1.1 The “Optimal” Qubit

In experimental works, it is often assumed that the wave functions of the basis states of a
single electron in a double quantum dot, ψ0(x) and ψ1(x), are fully localised in one or the
other quantum dot and equivalent to the ground state eigenvector of a single quantum dot
[77, 72, 51]. While this assumption is convenient for defining the spatial extent of the qubit
and setting up the experimental layout, it introduces errors in the readout process, which
measures the probability of the electron being in a particular quantum dot. In this case, the
non-zero overlap between the two states as well as the presence of higher excitation states
give rise to coherent oscillations typically on timescales faster than the qubit oscillation
itself [87], ultimately inducing a loss of fidelity in gate operations. This issue is critical
for practical implementations of quantum computation and schemes like bang-bang pulse
sequences have been proposed in order to mitigate unwanted rotations around the Bloch
sphere [158, 114]. However, such schemes involve additional gate operations that increase
the overall operation time. Instead, the optimisation of the qubit basis states reduces the
presence of high energy states and allows the coherent oscillations of the particle between
the two quantum dots to be predicted and controlled.
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For simplicity, let us define the double quantum dot potential as

VDQD(x) = Ax2 +Bexp
(−x2

2σ

)
. (3.1)

This functional form for VDQD allows the control of the DQD by varying the harmonic
confinement A and the tunnel barrier height B and width σ . The energy difference ∆ =

EAB−EB is defined by the energy of the bonding ground state EB and the antibonding first
excited state EAB. An electric detuning between the two quantum dots is introduced via a
linear bias voltage:

Vbias(x) =Vslope
x
w
, (3.2)

where w is defined as the width between the two quantum dots.
Given the double quantum dot potential in Eq. 3.1, let us define the optimal qubit basis

two states ψ0(x) and ψ1(x). In order to make the readout measurement of arbitrary qubit
states ψ(x) = αψ0(x)+βψ1(x) as straightforward as possible, these basis states should be
maximally localised in either one of the other double quantum dot. In order to avoid complex,
high frequency oscillations between both states, ψ0(x) and ψ1(x) are defined as a linear
combinations of the two lowest eigenstates of the unbiased DQD system, that is, the bonding
and anti-bonding states ψB(x,ε) and ψAB(x,ε) for detuning value ε . Detuning is defined as
the potential energy difference between the minimum of each quantum dot. Hence, the qubit
basis states are defined as

L,R(x,ε) = αεψ
B(x,ε)±βεψ

AB(x,ε), (3.3)

where αε and βε are complex variables, | αε |2 + | βε |2= 1. The parameters αε and βε are
chosen such that the integrals ∫ 0

−∞

| L(x,ε) |2 dx (3.4a)∫
∞

0
| R(x,ε) |2 dx (3.4b)

are maximised. The natural detuning value for a symmetric system is ε = 0. An unbi-
ased system provides the optimal readout probabilities for both |0⟩ and |1⟩ qubit basis
states. It follows that the optimal values for the parameters αε and βε are also symmetric
when ε = 0. When considering parity inversion symmetry for Vbias(x, t) = 0, we have that
R(−x,0) = L(x,0) with ψB(−x,0) = ψB(x,0) and ψAB(−x,0) = −ψAB(x,0). Therefore,
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the coefficients are | α0 |=| β0 |= 1/
√

2 and the optimal charge qubits are defined as

ψ0(x),ψ1(x) = L,R(x,0) =
ψB(x,0)±ψAB(x,0)√

2
. (3.5)

Fig. 3.1 Ideal DQD qubit. Top panel: Wave function of the ground state, first excited state and
the logical formed using Eq. 3.5 Bottom panel: Ground and first excited state in momentum
space.

This definition for qubits is optimal in the sense that the wave function is maximally
and symmetrically localised on the quantum dots while being described by only two energy
eigenstates. Although the basis states are not completely localised on a single dot, since there
is a non-zero overlap between the two wave functions, they maximise the average probability
of a successful readout. Further localisation of the states lead to higher-energy states which
in turn affect the fidelity of quantum operations on the qubit. Figure 3.1 illustrates the wave
function of the logical |0⟩ basis state formed using Eq. 3.5. The lower panel in Fig. 3.1
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shows that solving the Schrödinger equation in momentum space can significantly reduce the
computational complexity of the problem since only a few momentum states are non-zero.

3.1.2 Qubit Rotations

In Sec. 3.1.1, I defined a qubit basis for an electron in a double quantum dot. In order to
have complete control of this qubit, a general rotation scheme must be defined. Given the
Hamiltonian in Eq. 2.4, a general rotation Rn⃗(α(t)) of angle α on the Bloch sphere around
a vector n⃗ is given by the solution to the time-dependent Schrödinger equation:

Rn⃗(α(t)) = T̂ exp
[

1
ih̄

∫ t

0
Ĥ(t ′)dt ′

]
, (3.6)

where T̂ is a time-ordering operator. Such rotations are performed by applying an electric
bias pulse of a fixed amplitude A = λε for a duration tp to the double quantum dot. Different
values of A lead to different axes of rotation, which can be combined to apply a general
rotation. Here, ε is the electric potential detuning between the two dots and λ is a propor-
tionality constant relating the voltage applied to surface gates and the resulting change in
electric potential. An instantaneous switch between the A = 0 and A = λε bias states is gen-
erally preferred as this simplifies the dynamics rotations [97]. However, large instantaneous
potential changes can cause further complicaions such as Landau-Zener transitions. In the
case of instantaneous bias switching, the dynamic detuning ε(t) is described by a set of
step-functions. The resulting rotation Rn⃗(t) can be expressed analytically as a rotation of the
qubit state on the Bloch sphere. The direction of the rotation is determined by the energy
eigenstates of the system’s Hamiltonian, including ε(t), and the rate of rotation is defined by
the energy difference between the two eigenstates. For a given detuning ε , the unitary time
evolution of the qubit is

Rn⃗(α(t)) ∝ exp
[
−i

(∆,0,ε) · σ⃗
2h̄

t
]
, (3.7)

where ∆ is the energy difference between the two first energy eigenstates and σ⃗ are the Pauli
matrices [118]. The vector (∆,0,ε) defines the rotation’s axis as well as its frequency. When
the symmetric and anti-symmetric eigenstates have different eigenenergies, ∆ > 0 and the
qubit undergoes a natural preccession around the Bloch sphere. Both the frequency and the
axis of rotation can be adjusted experimentally by applying voltages to surface gates and
modulating ε . Although applying a voltage to surface gates is straightforward, implementing
a perfect square pulse is technically challenging. Pulse pattern generator electronics have a
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finite frequency bandwidth and a rising time τ greater than ten picoseconds. In this specific
case, a step-function decomposition is not possible and, in general, Eq. 3.6 must be solved
numerically.

In the case of a non-square pulse, the dynamics of the time evolution of Eq. 3.6 differ
from Eq. 3.7 [63]. Arbitrary rotations around the Bloch sphere are possible, however, the
more complex dynamics during the finite rise and fall of the pulse must be taken into account.
These dynamics are currently being studied in ongoing research and are beyond the scope
of this thesis. Experimentally, increasing both the pulse duration and amplitude reverse the
effects of finite pulse times. These modified operations are still rotations on the Bloch sphere
since the instantaneous Hamiltonian is expressed in terms of σx and σz matrices. Therefore,
the effective operation is composed of rotations and is itself a rotation.

In order to be able to perform arbitrary qubit rotations, a series of up to five square pulses
of alternating amplitudes are concatenated. In general, the fastest rotation operation time is
obtained by applying a voltage that gives ε =±∆. Here, the axes of rotation during the pulse
are along the vectors (±1,0,1) of the Bloch sphere. Let us label these new axes as x⃗′ and z⃗′

respectively. These new coordinates are rotated by −π

4 around y⃗ with respect to the x⃗ and z⃗
axes of the Bloch sphere.

An arbitrary rotation by an angle α is performed around the n⃗ axis using

Rn⃗(α) = R
x⃗′

(
π

2
−φ

)
R

z⃗′
(θ)R

x⃗′
(α)R

z⃗′
(−θ)R

x⃗′

(
φ − π

2

)
, (3.8)

where θ and φ are the polar and azimuthal angles on the Bloch sphere of R⃗y(−π

4 ) applied
onto n⃗.

While it is necessary to use a five-pulse train in order to perform an arbitrary rotation, a
simpler pulse shape can be found for some common specific operations, such as initialisation
from ground state to qubit |0⟩ or |1⟩.

3.1.3 State Preparation

Before any quantum operation, the qubit must be initialised to a well defined fiducial state,
generally either |0⟩ or |1⟩. For a generic experiment involving a charge qubit, the initial state
of the electron is expected to be in the ground state of Eq. 2.4. However, such a state is not
part of the qubit’s computational basis and an initial rotation is thus needed. From the ground
state, the R

z⃗′
(π) rotation is used to rotate the wave function to the |0⟩ state. Alternatively, a

R
x⃗′
(π) rotation can be used to initialise a qubit from the ground state to the |1⟩ state. Both of

these operations are achieved with a single voltage pulse.
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3.1.4 Single Axis Rotations

Any single qubit operation can be expressed in terms of rotations around three perpendicular
axes. The control sequence for rotations around the x⃗, y⃗, and z⃗ axes of the Bloch sphere are
given by

R⃗x(α) = R
x⃗′

(
π

2

)
R

z⃗′

(
3π

4

)
R

x⃗′
(α)R

z⃗′

(
5π

4

)
R

x⃗′

(
3π

2

)
, (3.9a)

R⃗y(α) = R
z⃗′

(
π

2

)
R

x⃗′
(α)R

z⃗′

(
3π

2

)
, (3.9b)

R⃗z(α) = R
x⃗′

(
π

2

)
R

z⃗′

(
1π

4

)
R

x⃗′
(α)R

z⃗′

(
7π

4

)
R

x⃗′

(
3π

2

)
. (3.9c)

At zero detuning, the spatial overlap between the two basis states ψ0(x) and ψ1(x)
implies that a σz rotation occurs automatically with a period of Tz =

h̄
∆

. For a single qubit,
no pulsing is required to achieve this rotation. For multiple qubits, an idle σz rotation is not
as straightforward. Realistically, multiple double quantum dots are not identical and the
energy difference ∆, although experimentally tunable, is not necessarily the same for each
dot, leading to different σz periods. In this case, each qubit can be delayed with respect to its
neighbours by applying a single square pulse over a 2π rotation. The period of this delay
rotation is determined by ε via the amplitude of the pulse.

Instead of using the x⃗, y⃗,⃗z basis, it is favourable to use the rotated x⃗′, y⃗, z⃗′ basis, which is
more natural for the detuned system. In this rotated basis, fewer pulses are required to define
logic gates. R

x⃗′
,R

z⃗′
are achieved with a single pulse, while R⃗y requires a three-pulse train, as

in Eq. 3.9b. Typical quantum logic gates are defined as

X = R⃗x(π), (3.10)

Y = R⃗y(π), (3.11)

Z = R⃗z(π), (3.12)

H = Rz⃗′(π), (3.13)

Rφ = R⃗z(φ). (3.14)

3.1.5 Correcting for Finite Rise Time

To account for the imperfect realistic pulse shape due to rise time and limited bandwidth, the
bias voltage and pulse duration have to be adjusted. This adjustment depends on the single
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pulse rotation angle and rise time, but not on the input state. Therefore, it is sufficient to
optimise a single pulse for a given rise time and range of desired rotations. These adjusted
pulses are concatenated into a pulse train to achieve arbitrary qubit rotations of high fidelity.
Using a method of gradient descent, it is possible to numerically find the correct adjustments
depending on rise time. This allows experimentalists to apply the ideal control sequence by
simply changing the amplitude and duration of each square pulse in the train, thus avoiding
complicated pulse shapes while retaining high fidelity.

3.2 Readout

DiVincenzo’s 5th criterion requires a quantum state to be measurable. In experimental setups,
it is the probability of finding the electron in one of the dots which is accessible and measured
rather than the qubit superposition coefficients. For example, one can monitor the current
through a quantum point contact to detect the presence of an electron in a quantum dot [9].
This shift is proportional to an effective charge that is related to the probability distribution
in the double dot structure. We can relate this probability to the wave function coefficients
[115].

Both qubit basis states defined in Eq. 3.5 can be written in terms of their spatial extent in
the left (ϕiL(x)) and right (ϕiR(x)) quantum dots as

ψ0(x) = ϕ0L(x)+ϕ0R(x) (3.15a)

ψ1(x) = ϕ1L(x)+ϕ1R(x) (3.15b)

The basis states ψ0(x) and ψ1(x) are orthonormal, which gives

0 =
∫

ψ
∗
0 (x)ψ1(x)dx

=
∫

ϕ
∗
0L(x)ϕ1L(x)dx+

∫
ϕ
∗
0L(x)ϕ1R(x)dx+

∫
ϕ
∗
0R(x)ϕ1L(x)dx+

∫
ϕ
∗
0R(x)ϕ1R(x)dx

=
∫

ϕ
∗
0L(x)ϕ1L(x)dx+

∫
ϕ
∗
0R(x)ϕ1R(x)dx.

(3.16)

For an unbiased system, the optimal qubit basis states ψ0(x) and ψ1(x) are symmetrical.
The optimal qubit basis defined in Eq. 3.5 once again turns out to be the best suited. The

qubit states ψ0(x) and ψ1(x) are mirror images of each other. This means ψ0(x) has the same
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spatial distribution in the left (right) dot as ψ1(x) has in the right (left) dot, which leads to∫
ϕ
∗
0L(x)ϕ1L(x)dx =

∫
ϕ
∗
0R(x)ϕ1R(x)dx = 0. (3.17)

Any arbitrary state can be written as a linear combination of the two qubit basis states and,
thus, their left and right spatial contributions are written as

ψ(x) = αψ0(x)+βψ1(x) = α

(
ϕ0L(x)+ϕ0R(x)

)
+β

(
ϕ1L(x)+ϕ1R(x)

)
. (3.18)

As an example, the probability PR of finding the particle in the right quantum dot is

PR =
∫

∞

0
ψ
∗(x)ψ(x)dx =

∫
∞

0

(
α
∗
ϕ
∗
0R(x)+β

∗
ϕ
∗
1R(x)

)(
αϕ0R(x)+βϕ1R(x)

)
dx. (3.19)

Using Eq. 3.17, the probability reduces to

PR = |α|2
∫

∞

0
ϕ
∗
0R(x)ϕ0R(x)dx + |β |2

∫
∞

0
ϕ
∗
1R(x)ϕ1R(x)dx≡ |α|2P0R + |β |2P1R, (3.20)

where the probabilities P0R and P1R refer to the qubit state |0⟩ and |1⟩ being located in the
right quantum dot. Although one may think it is desirable to have only one computational
state per dot, therefore minimising the other, a finite spatial overlap is require to perform
single-qubit unitary operations. Applying the normalisation condition |α|2 + |β |2 = 1 to
Eq. 3.20 yields

|β |2 = PR−P0

P1−P0
, (3.21)

This equation relates |β | to the probability PR of finding the particle in the right quantum dot.
Similarly,

|α|2 = PL−P0

P1−P0
. (3.22)

This concludes the definition of an optimal basis for a single-electron charge qubit. I
defined a two-level system with the states ψ0(x) and ψ1(x) in Eq. 3.5 and I described how to
initialise, rotate, and measure the qubit.

3.3 Coherent and Squeezed States

The double quantum dot system described in this chapter is assumed to be static. However,
in the rest of this thesis, I investigate electrons carried by surface acoustic waves. Because
of the constant confinement generated by the SAW potential, a moving quantum dot is no
different from a static one if the observer’s inertial frame of reference is boosted to match that
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of the SAW. Differences arise when the underlying electrostatic potential forces the quantum
dot out of its resting position. In Chapters 4, 5, and 6, I simulate circuits with channels
that bend and couple to other channels via tunnel barriers. A non-adiabatic change in the
underlying potential causes the electron carried by the SAW to become excited and exist in
a superposition of higher-energy excited states [103, 167, 147, 109]. Investigating simple
models of harmonic channels, I found that the excitations produced in the single-electron
wave function matched optical coherent states [26, 25].

The ground-state wave function of a single particle carried by a SAW along a straight
harmonic channel generates the same pattern as the vacuum state of laser light. A sharp
tapering or thickening of this harmonic channel, created by applying different voltages to
surface gates, creates an oscillating state similar to the optical squeezed vacuum state. A
double bend in the channel, causing the particle to be displaced spatially, imparts momentum
to the electron, causing it to oscillate in the harmonic channel while preserving its Gaussian
shape. This behaviour is similar to a Glauber state for optical systems. Combining a tapered
or thickened channel with a positional displacement creates oscillatory patterns that match
optical amplitude-squeezed states and phase-squeezed states. All of these coherent states are
shown in Fig. 3.2 for both experimental observations for laser light and simulation results for
a single-electron wave function in a SAW potential.

It is important to consider the presence of coherent states when the underlying potential
is changing. This is not to say that these states should be avoided. When accounted for
correctly, they do not produce any loss in qubit fidelity, nor do they disrupt quantum-logic-
gate operations. The creation of a coherent state is reversable and the ground state can be
recovered from any of the states in Fig. 3.2.



3.3 Coherent and Squeezed States 49

 

articles 

Of the various methods that have been proposed to reconstruct 
the quantum state numerically from the set of measured distribu-
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fact that the distributions Ph41) are the marginals of the Wigner 
function W(x, y) in rotated coordinates; 
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where y0 = - xsin8 + ycos8. Therefore W(x, y) can be obtained 
from the set P9 by back-projection via the inverse Radon transform2• 

The second method furnishes the elements of the density matrix in 
the Fock basis via integration of the distributions P9 over a set of 
pattern functions3A. In contrast to the inverse Radon transform, this 
procedure does not involve any filtering of the experimental data 
and also allows an estimation of the propagation of statistical errors. 

The experiment 
The experimental set-up is shown in Fig. 1. Central to the experi-
ment is a monolithic standing-wave lithium-niobate optical 
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parametric oscillator (OPA) 13•24, pumped by a frequency-doubled 
continuous-wave Nd: YAG laser (1,064 nm). The infrared laser 
wave is filtered by a high-finesse mode-cleaning cavity, which 
transmits 75% of the laser power. Its narrow linewidth of 170 kHz 
suppresses the high-frequency technical noise of the laser, yielding a 
shot-noise-limited local oscillator for light powers in the milliwatt 
range at frequencies ;:,,1 MHz (ref. 13). The pump wave 2w (power 
-20-30 mW) for the OPA is generated by resonant second 
harmonic generation. 

In the past OPAs have been frequently used as sources of non-
classical light10•13•25- 28• Operated below threshold, the OPA is a 
source of squeezed vacuum. We studied the field's spectral comp-
nents around a frequency offset by D./21r = 1.5 or 2.5 MHz from the 
optical frequency w, to·avoid low-frequency laser excess noise. To 
generate bright light (that is, with non-vanishing average electric 
field at the frequencies w ± D.), we employ the OPA in a dual port 
configuration28 • A very weak wave split off the main laser beam is 
phase-modulated by an electro-optic modulator (EOM) at the 
frequency D. (modulation index {3 « 1) and injected into the 
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Fig. 3.2 Left: Coherent and squeezed states for laser light in a vacuum. From top to bottom,
the different states are (i) vacuum state, (ii) squeezed vacuum state, (iii) Glauber state, (iv)
amplitude-squeezed state (v) phase-squeezed state. This image was adapted from [26] and
[25]. Right: Time-dependent simulations for a single-electron in a moving quantum dot.
Each optical coherent state can be reproduced using electrons.





4
SINGLE-ELECTRON BEAM SPLITTER

In this chapter, I investigate DiVincenzo’s 6th criterion, which requires the transmission of
quantum information between stationary nodes [49]. My aim is to model a real semiconductor
device and study the quantum information processing that can be performed on single
electrons as they are in transit. Several approaches have demonstrated successful transmission
of quantum states in solid-state devices such as in quantum-dot (QD) arrays [62, 66, 113]
or microwave-coupled superconducting qubits [108, 131]. Here, I will combine the single-
electron control methods presented in Chapter 3 with the surface-acoustic-wave techniques
presented in Sec. 1.3. Experimentally, SAW-driven single-electron-transport devices are still
in their early stages, but some groups have shown that it is possible to carry the particles
reliably from one quantum dot to another [111, 79, 20]. From Sec. 1.3, we know that
surface acoustic waves strongly modulate the electric potential in piezoelectric materials.
In semiconductor heterostructures, such as GaAs/AlGaAs, SAWs can thus be employed to
transfer individual electrons between distant quantum dots. This transfer mechanism makes
SAW technologies a promising candidate to convey quantum information through a circuit
of quantum logic gates [156, 14].

Figure 4.1 provides a three-dimensional schematic rendering of the electron transport
process. A sinusoidal surface acoustic wave propagates along the device, creating a periodic
train of minima capable of carrying electrons. This SAW train conveys single electrons from
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Fig. 4.1 3D rendering of a Single-electron beam splitter. Schottky gates (golden) create an
electrostatic potential that guides the electron through the device. The central gate is tuned to
allow the electron to coherently tunnel between both channels. Image adapted from [53]

one quantum dot to another along channels or “quantum rails” defined by metallic Schottky
gates. Improving upon a simple transport process, one can apply voltages to the metallic
gates and perform simple quantum information processing on the electrons whilst in transit.
A quantum operation that is of particular interest is the generation of a superposition state via
a tuneable beam splitter. Such a beam splitter can be used to create a spatial superposition
for charge qubits or a spin-polarising beam splitter can couple the charge and spin states of
spin qubits.

This work was a collaborative effort with various researchers at the Insitut Néel, Centre
national de la recherche scientifique (CNRS) and the Université Grenoble Alpes. In particular,
Dr. Hermann Edlbauer and Dr. Shintaro Takada are responsible for the experimental device
fabrication, operation, and measurement. The findings in this chapter have been published in
Nature Communications 10, 4557 (2019) [149].

4.1 Ideal Model

Typically, a beam splitter is used in optics to spatially separate a beam of light into two parts.
Quantum mechanically, the wave function of a single photon can be split into a superposition
of two spatial states. In 2001, Knill, Laflamme, and Millburn (KLM) put forward a scheme
capable of universal quantum computation using only beam splitter and phase shifters on
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single photons [94]. The same ideas put forward in the KLM scheme can be applied to single
electrons. Electric or magnetic fields replace the phase shifters and a carefully tuned potential
barrier can act as a beam splitter.

The ideal single-electron beam splitter is one where a single interaction between the
particle and the barrier creates a spatial separation between two parts of the wave function. A
repetition of the same operation should cause the wave function to return to a single beam,
which is spatially localised. Figure 4.2 illustrates the path of a single-electron wave function
as it interacts with a beam splitter twice. In this particular case, adjusting the phase of the
separate parts of the wave function can cause the beam to be collimated on one side or the
other of the beam splitter.

Fig. 4.2 Trajectory of a single-electron wave function as it encounters a beam splitter at
y = 100nm (dashed magenta line). The electron interacts with the beam splitter twice, once
at x = 100nm and once at x = 100nm. The phase of the wave function is chosen to maximize
the wave function exiting in the lower part of the beam splitter. The underlying potential is
an infinite square well with boundaries at y =−50nm and y = 250nm.

The operation presented in Fig. 4.2 is one of a 50/50 beam splitter, which splits the wave
function into equal parts. The fraction of the wave function that is split is controlled by the
height of the potential tunnel barrier (identified in magenta in Fig. 4.2). Experimentally,
the amplitude of the tunnel barrier can be difficult to control precisely. In such a case, the
desired superposition state can be achieved through multiple small operations. Although
repeated operations increase the risk of introducing errors, as long as the process is coherent,
the resulting state will be identical to a single operation.
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4.2 Experimental Setup

The SAW-driven single-electron beam splitter is realised via surface electrodes forming a de-
pleted potential landscape in the two-dimensional electron gas (2DEG) of
a GaAs/AlGaAs heterostructure. An interdigital transducer (IDT) is used to send a fi-
nite SAW train towards our single-electron circuit as shown schematically in Fig. 4.3a.
The SAW allows the transport of a single electron from one gate-defined QD (source) to
another stationary QD (receiver) through a circuit of quantum rails. Figure 4.3b shows a
scanning-electron-microscopy (SEM) image of a source QD with a schematic description of
the electrical connections. To detect the presence of an electron, a quantum point contact
(QPC) is placed next to the QD. By biasing this QPC at a sensitive working point, an electron
leaving or entering the QD can be detected by a jump in the current, IQPC [61].

a

b c

IDT SAW train Single-electron circuit

2DEGAlGaAs GaAs

VU

VL

VT

VB
AIQPC

QD
QR

200 nm

2 μm

Upper QR: U

Lower QR: L

Electron in QD

Surface electrodes

Pulse

Fig. 4.3 Experimental setup. (a) Schematic showing an interdigital transducer (IDT) generat-
ing a SAW train propagating towards the single-electron circuit. (b) SEM image of the upper
source quantum dot (QD), which is coupled to the quantum rail (QR) with the schematically
indicated electrical connections. (c) SEM image showing the tunnel-coupled quantum rails
with schematically indicated transport paths, U and L.

A SEM image of the whole single-electron circuit is shown in Fig. 4.3c. The device
consists of two quantum rails having a total length of 22 µm. The transport channels are
coupled along a region of 2 µm by a tunnel barrier defined by a 20-nm-wide surface gate.
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This tunnel coupled region is the primary focus of my simulations since it is where critical
quantum operations are performed. It is the 20 nm tunnel barrier that is responsible for the
beam-splitter operation.

4.3 Time-Dependent Solutions

Using the exact device geometry from Sec. 4.2, I used the commercial software NextNano
[21] to calculate the underlying electrostatic potential. Assuming that the charge density
is constant across the 2DEG, it is possible to use experimental fabrication parameters to
calculate the potential. Following the methods of Hou et al. [80], a frozen charge layer
and deep boundary conditions were used. The donor concentration was calculated to be
1.6×1010cm−2 in the doping layer and the surface charge concentration was 1.3×1010cm−2.
The exact fabrication parameters for this device can be found in Appendix C. This information,
combined with the voltages applied to the Schottky gates, allows the potential to be calculated.
The surface acoustic wave potential is superimposed over the electrostatic potential as a
propagating sinusoidal wave. Using Coulomb-blockade measurements, the experimental
amplitude of the SAW was estimated to 15 meV [149]. In my simulations, I varied the SAW
amplitude to test for a variety of cases.

The experimental device described in Sec. 4.2 is a single-electron beam splitter. As
such, an incoming electron wave function from one of the channels leaves the tunnel-coupled
region in a superposition state between the upper and lower exit channels. The probability
amplitude of the states in the superposition are determined by the voltage bias between gates
VU and VL, as seen in Fig. 4.3. In a system where quantum coherence has been preserved,
coherent oscillations should be observed when varying VU and VL. Instead, experimental
observations point towards the single electrons being in a thermal equilibrium. When the
detuning is ∆ =VU−VL = 0 V, the directional coupler leads to a 50-50 superposition between
both channels. Alternatively, when the voltage is set such that ∆ < 0 V, the potential in the
lower channel is more negative and pushes the electronic wave function to the upper channel.
Likewise, when ∆ > 0 V, the wave function is more present in the lower channel.

For simplicity and since the device geometry is symmetrical, the particle is always
injected from the upper left channel in my simulations. An example voltage configuration
can be seen in Appendix D.

The top panel in Fig. 4.4 shows the dependence of the transfer probability in the upper
or lower channel on the detuning ∆. As expected, for a large bias, the wave function is
completely confined to a single channel. For an unbiased system, the quantum rails are
electrostatically aligned and the superposition between both rails is equal. A concern that
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is highlighted by Fig. 4.4 is the width of the probability transition. Here, it takes a change
of about 200 mV for the electron to go from one channel to the other completely. For a
ground-state system, this transition should be much narrower. In order for the simulations
(black lines in Fig. 4.4) to match experimental results (red and blue circles), higher excited
states were used. The bottom panel in Fig. 4.4 shows the energy spacing between the sites as
well as their relative weight in the combined wave function. The occupation of higher energy
states can be approximated with a Fermi function:

PU(∆)≈
1

exp(−∆/σ)+1
, (4.1)

where PU is the probability of finding the particle in the upper channel and σ is some
parameter related to the excitation of the electron.
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Fig. 4.4 Partitioning the wave function of an electron in flight. Top panel: Probability, P, for
a single electron to end up in the upper (U) or lower (L) quantum rail for different values of
potential detuning, ∆ =VU −VL. Red and blue circles indicate experimental results and the
black lines show the predictions from simulations. Bottom panel: One-dimensional slices
of the electric potential, U , along the double-well potential for different values of detuning.
Horizontal lines indicate the instantaneous energy eigenstates of the double quantum dot.
The occupation of these states to reproduce the results in the top panel is represented by the
opacity of the lines.
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In an ideal setting, given the device geometry, the electron wave function remains in a low
energy state for the entire transport process. This ensures that the beam-splitter operation is
coherent and reproducible. Given the electrostatic potential calculated, it would be expected
for the transition from the upper channel to the lower channel to be rapid as the detuning
∆ =VU −VL is swept. Furthermore, only a very specific potential landscape would lead to a
single transition such as the one shown in Fig. 4.4. Coherent oscillations should cause the
probability of detecting the electron in the upper or lower channel to vary multiple times
between 0 and 100%. The frequency at which this transition occurs is closely related to the
height of the tunnel barrier separating the two quantum rails and the voltage applied to the
gate VT .

A deviation from the ideal setting occurs when the particle is excited into higher energy
states. The excited states of the electron can overcome the tunnel barrier more easily. This
causes the detection of the electron in the upper or lower channel to transition over a larger
range of detuning voltages. Figure 4.5 shows the transition widths for various levels of
excitation. The black line represents an adiabatic transport process where the single electron
remains in the instantaneous ground state of the potential at all times. It shows a very sharp
transition over a small range of detuning values. As the energy of the electron is increased,
the width of the transition becomes broader. The final simulated transition curve at ε = 6.70
meV corresponds to the the experimental data fitted in Fig. 4.4.

Fig. 4.5 Probability P (U and L) to find the electron in the upper and lower channels
respectively as a function of the detuning ∆ = VU −VL. Each solid marker represents a
time-dependent simulation outcome. The solid and dashed lines are fits using Eq. 4.1.

Here, the energy of the single electron is determined using an exponential distribution
over the instantaneous eigenstates at the center of the tunnel coupled wire. Each state
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contributes to the single-electron wave function with probability

pi ∝ exp
(
−Ei−E0

ε

)
, (4.2)

where Ei corresponds to the eigenenergy of the ith excited state and E0 corresponds to the
energy of the ground state. The parameter ε serves as a label for the energy of a particular
state configuration and is quoted in Fig. 4.5. The exponential state distribution in Eq. 4.2
leads to detection probability transitions that closely match experimental data. However,
such a distribution does not arise simply from the propagation of the electron through the
device potential. Assuming that the electron is originally in its ground state when it is
picked up by the surface acoustic, the resulting state distribution after its propagation to the
center of the tunnel coupled region is shown in red in Fig. 4.6. For comparison, the state
distribution according to Eq. 4.2 is illustrated in black. Although the expectation value for
the energy of the particle is not significantly different in both cases, the probability transition
for the time-evolved excited state does not match experimental results. This is especially
true when the detuning is set such that the particle should transition from the upper (lower)
injection channel to the lower (upper) one. Experimentally, when the detuning is strong,
this probability goes to 100%. However, time-dependent simulations show that at least part
of the wave function remains in the channel with a high potential, reducing the transition
probability from 100%. The match between the probability distribution given by Eq. 4.2
and experiments suggests that relaxation of the electron wave function occurs in the tunnel
coupled region.

Time-dependent simulations of the SAW-driven quantum mechanical propagation of
the electron are used in order to identify the source of electron wave function excitations.
The change in the potential landscape causes a rapid reconfiguration of the eigenstates
in the moving quantum dot leading to Landau-Zener transitions into higher energy states
[103, 167]. These Landau-Zener transitions occur when there is a sharp non-adiabatic change
in the potential. Since the underlying potential is static, sharp changes are determined by
the geometry of the device. Kinks, bends, and the widening of the quantum channels at
the injection point into the tunnel coupled region is where excitations are most likely to
occur. These observations were also observed experimentally in previous investigations of
SAW-driven electron transport [87]. For the device used in this chapter, there are three main
areas that introduce excitations. Assuming that the single electron is initially in the upper left
quantum dot (see Fig. 4.3), the first area is at the bend when the channel is angled downwards.
This bend is progressive at the level of the 2DEG and does not contribute more than a 3%
contribution loss of the ground state to the total wave function of the electron. The second
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Fig. 4.6 Instantaneous energy eigenstate occupation for the time-evolved injected electron
(red) and the relaxed electron wave function (black) as found using Eq. 4.2. The time
evolution of the wave function for both electrons is shown in Fig. 4.7. The position x = 0µm
corresponds to the center of the tunnel coupled region.

area is the entrance of the tunnel-coupled wire. Here, many Schottky gates cause an abrupt
change in the electrostatic potential. Both the new angle in the direction of motion and the
broadening of the channel confinement caused by the close proximity of the second channel
introduce many Landau-Zener-type excitations and generate the distribution of states shown
in Fig. 4.6. The third area of excitation is at the exit of the tunnel-coupled wire. Similar
to the entrance, an abrupt change in the electrostatic potential shifts the angle at which the
electron is travelling and restores a tight confinement. An added source of error that is present
at the exit of the tunnel-coupled wire is displacement of the electron into a different SAW
minimum. When the potential ramp is steeper than the SAW confinement, a part of the wave
function is ejected back into the tunnelling area, over the SAW maximum. This leads to
measurement time delays. A brief discussion on time-of-flight measurments is found in Sec.
4.4.2. Figure 4.7 shows the time evolution of the single-particle wave function.

I do not consider the final bend in the exit channel, just before the reciever quantum dot,
as a source of error since any further excitation introduced at that location do not affect the
probabilities of detecting the electron in either channel. Since the bend is not sharp enough
to cause the electron to hop to a different SAW minimum, it does not affect the measurement
outcome. Nevertheless, Landau-Zener transitions introduced in this region would need to
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Fig. 4.7 Single-electron wave function propagation in the directional coupler. Surface-gate
voltages are set such that the electrostatic potential is symmetric with no detuning (∆ = 0.
Initially, the particle in located in the upper left channel and is carried by a surface acoustic
wave across the device. The wave function is illustrated in red. Somewhere in the tunnel
coupled region, the electron is assumed to have relaxed to a lower energy state. The wave
function for the relaxed state is shown in black. A comparison between the instantaneous
energy eigenstates of the injected and relaxed wave function can be seen in Fig. 4.6. The
relaxed wave function continues to propagate, creating a 50-50 superposition between the
upper and lower exit channels.

be taken into account if such a beam splitter was linked to other devices carrying out more
quantum operations.

4.4 Discussion

In this chapter, I investigated the accurate control of a single electron and the quantum
information it carries. I performed simulations of realistic single-electron transport in
semiconductor devices and compared the results to experimental observations. Although
high-efficiency single-electron transport is possible for surface-acoustic-wave systems, the
coherence of the quantum states is not fully preserved. The two main error mechanisms
observed here are unwanted excitations in regions where the electrostatic potential varies
sharply and relaxation of these excited states. Both contribute to the loss of coherent
oscillations and ultimately the degradation of quantum state fidelity. By simulating different
configurations, it is possible to find ways to mitigate these error mechanisms and recover
coherent processes.
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Fig. 4.8 The effects of SAW amplitude on excitations of the single-electron wave function.
(a) Qubit fidelity as the electron propagates across the tunnel-coupled wire. For higher SAW
amplitudes, the fidelity remains close to 100%. (b) Single-electron wave function at selected
times (grey dashed vertical lines) when carried by a SAW with a 17 meV amplitude. This
corresponds to the estimated SAW amplitude used experimentally. (c) Single-electron wave
function at selected times (grey dashed vertical lines) when carried by a SAW with a 45 meV
amplitude. Coherent oscillations between the upper and lower channel are observed.
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4.4.1 Minimising Errors

Simulations of the transport process revealed that the main source of charge excitation is
located at the entrance of the tunnel-coupled wire. In Sec. 4.3, I discussed the causes
of excitations and determined that the bend in the channel’s direction does not contribute
significantly to altering the wave function of the electron. Excitations here arise from the
abrupt lowering of the electrostatic potential in addition to the widening of the confinement
within the channel. A carefully tailored tunnel barrier can ensure that the confinement change
is gradual. To minimise the effect of the potential drop, a larger SAW amplitude can increase
the particle confinement. Figure 4.8 shows a comparison of the single-electron transport
process using different SAW amplitudes. The fidelity in panel (a) is defined as the overlap
between the electron wave function and the instantaneous ground state and first excited
state within the moving double quantum dot. A SAW amplitude of 17 meV, as is used in
experiments, is insufficient to maintain a consistent confinement of the electron and the
fidelity drops to near 0 % as the particle enters the tunnel-coupled wire. The excitations
caused by the electrostatic potential are further illustrated in panel (b), which shows the
electron wave function at several timestamps. Although a 50-50 superposition is created
by the directional coupler, this device does not act as a quantum beam splitter. The charge
state is not preserved and a repeated operation does not collimate the electron wave function
into one channel. Using the same device geometry as well as the same surface-gate voltages,
it is possible to recover coherent behaviour by increasing the SAW amplitude. Panel (c)
in Fig. 4.8 shows that the wave function of the particle remains in its lower energy states
and oscillates periodically between the two channels. It is important to note that although
the potential and gate voltages are symmetric, the outcome of the beam-splitter is not a
50-50 superposition. This is because in the presence of coherent oscillations, the probability
of measuring an electron in the upper or lower exit channel does not only depend on the
detuning between the two, but also the phase of the oscillations. Here, the height of the
tunnel barrier between the two channels plays an important role in determining the outcome
of the directional coupler operation. In an ideal case, all gates could be held constant and
only the voltage applied to the tunnel barrier gate VT (see Fig. 4.3) would be necessary to
control the transition of the single electron from the upper to the lower channel.

4.4.2 Time-of-Flight Measurements

A next step for this work, both theoretically and experimentally is to investigate the time
of flight of the single electron throughout the device. Experimentally, loading an electron
into a specific minimum of the SAW train via a voltage-pulse trigger was demonstrated
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[149]. However, it is unclear if the electron remained in the same SAW minimum as it
travelled across the semiconductor device. If the change in potential in the tunnel-coupled
wire is greater than the amplitude of the SAW, the electron can escape its minimum and hop
into a neighbouring one. This is especially problematic for the exit ramp out of the tunnel
coupled region since the electron can be kicked back into the next SAW minimum repeatedly.
Increasing the amplitude of the surface acoustic wave is once again a possible solution to
increase the confinement within a single minimum. However, a large SAW amplitude cannot
be used as a blanket solution to all error processes. Nanoscale devices become unstable when
exposed to large modulations [64] and the loading of a single electron is impractical for large
SAW amplitudes. Instead, a more careful engineering of the device geometry is required to
minimise the variation of the electrostatic potential background between the tunnel-coupled
wire and the injection and exit channels. Changes can include a modified device geometry or
an adjusted voltage applied to surface gates.





5
PROTOCOL FOR FERMIONIC

POSITIVE-OPERATOR-VALUED

MEASURES

One of the benefits of studying theory and simulations is the possibility of going beyond what
is currently accessible experimentally, such as the device presented in Chapter 4. A more
complex circuit is useful for quantum information processing and quantum computing, but
also allows the study of foundational questions. In this chapter, I present a more fundamental
examination of the quantum behaviour of electrons.

Since its inception, the field of quantum mechanics has produced many interesting
and often counterintuitive results. Although quantum theory has been extensively studied,
there are still many aspects of the theory that are heavily debated. Not only do different
interpretations of quantum mechanics cause lots of controversy, but the measurement process
itself is often misunderstood. In quantum physics, a state is represented by a wave function, a
complex-valued probability amplitude describing the physical properties of a system. Many
physicists even question the existence of the wave function in physical reality, but this is an
ontological question which beyond the scope of this thesis. The work in this chapter follows
closely the publication generated in Phys. Rev. A 101, 022329 (2020) [8].
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Consider a general wave function |ψ⟩ and an associated observable M. An observable
could be, for example, the spin of an electron or the polarisation of a photon, i.e. a measurable
property of the system in study. If we were to measure the observable M of |ψ⟩, we would
find the output in one of the orthogonal eigenstates |Mi⟩ of the measurement observable. In
the Copenhagen interpretation of quantum mechanics, this is described by the “collapse”
of the wave function onto one of the possible measurement outcomes. This definition of
measurements is called projective measurements or Von Neumann measurements and has
been shown to be too restrictive. Projective measurements fail to describe a broad range of
fascinating quantum phenomena including non-demolition [24], weak [3], and continuous
[50] measurements. For a more generalised theory of quantum measurement, one can use a
positive-operator-valued measure (POVM).

5.1 Positive-Operator-Valued Measures

In projective measurement theory, an observable M has an associated operator M̂i, which is
written in terms of its eigenvectors |i⟩ and eigenvalues λi as

M̂ =
N

∑
i=1

λi |i⟩⟨i| . (5.1)

The eigenvectors |i⟩ form a complete orthonormal basis. A single projective measurement
operator is defined as M̂ = |i⟩⟨i|. Each projective measurement operator has an associated
outcome probability, which is defined as

Pi = ⟨ψ|M̂†
i M̂i |ψ⟩=| ⟨i|ψ⟩ |2 . (5.2)

A shortcoming with the projective measurement is that a detector, or measurement device,
cannot distinguish between nonorthogonal states using a single measurement. Consider an
initial state that is in an arbitrary superposition of two states |u⟩ and |v⟩,

|ψ0⟩= (α |u⟩+β |v⟩) |M0⟩ . (5.3)

Here, |M0⟩ is the state of the detector before it has interacted with the quantum state. After a
measurement of M, the final state becomes

|ψ f ⟩= α |u⟩ |Mu⟩+β |v⟩ |Mv⟩ . (5.4)
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Since both |ψ0⟩ and |ψ f ⟩ must be normalised, we have that

⟨ψ0|ψ0⟩−⟨ψ f |ψ f ⟩= 0 (5.5)

and therefore

α
†
β ⟨u|v⟩(1−⟨Mu|Mv⟩)−αβ

† ⟨v|u⟩(1−⟨Mv|Mu⟩) = 0. (5.6)

One way of satisfying this normalisation condition is to have the states |u⟩ and |v⟩ be
orthogonal. However, if these states are not orthogonal and ⟨u|v⟩ ≠ 0, the only way to satisfy
this condition is to have the measurement outcomes of M be the same, or ⟨Mv|Mu⟩= 1. This
makes it impossible for projective measurements to distinguish non-orthogonal states. It is
possible to measure states in a non-orthogonal basis sometimes by defining a set of so-called
Kraus operators M̂i [118, 101], as long as they satisfy

IM =
N

∑
i=1

M̂†
i M̂i. (5.7)

The outcome of a POVM with M̂i is the normalised state

|ψi⟩=
M̂i |ψ⟩√
⟨ψ|M̂†

i M̂i |ψ⟩
, (5.8)

with probability
Pi = ⟨ψ|M̂†

i M̂i |ψ⟩ , (5.9)

where ⟨ψi|ψ j⟩ ≠ δi, j. This allows the POVM to distinguish non-orthogonal states. However,
there is a possibility that the POVM yields no information at all. A POVM is a tool that allows
the investigation of some of the strangest quantum phenomena and provides information
about a system that normal projective measurements could never uncover [118].

5.1.1 Ahnert & Payne POVM

A variety of techniques have been proposed [13, 4, 5] and demonstrated [164, 15] for POVMs
in optical systems. A breakthrough in the development of implementable POVMs was made
by S. E. Ahnert and M. C. Payne at the Cavendish Laboratory (AP POVMs) [4, 5]. They made
POVMs accessible to optics technologies based on single-photon polarisation states. Their
proposal described a single setup for the general implementation of POVMs. The AP POVM
implementation consists of two nested polarising Mach-Zehnder interferometers which are
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joined by polarising beam splitters. Local operations are performed on the polarisation state
of the photon qubit in the different arms of the interferometer using electro-optical phase
modulators, wave plates, and mirrors, as shown in Fig. 5.1.

Fig. 5.1 AP POVM from reference [4]. Qubit rotations of the POVM are denoted by shaded
rectangles, the phase shifts by open rectangles and the spatial degrees of freedom by the
states |i⟩, |s1,2⟩, |t1,2,3,4⟩ or |p1,2⟩. Single and double diagonal lines indicate polarizing
beam-splitters and reflecting mirrors respectively.

A photon entering the system with a polarisation state |Ψ⟩ = α |0⟩+β |1⟩ leaves the
interferometer in a superposition of spatial states:

∑
j
|Ψ j⟩

∣∣p j
〉
= ∑

j
M̂ j |Ψ⟩

∣∣p j
〉
, (5.10)

where
M̂1 = cos(θ1)eiφ1 |0⟩⟨0|+ cos(θ2)eiφ2 |1⟩⟨1| , (5.11a)

M̂2 = sin(θ1)eiφ3 |0⟩⟨0|+ sin(θ2)eiφ4 |1⟩⟨1| (5.11b)

are the Kraus operators of the POVM. The states |p1⟩ and |p2⟩ denote the spatially decoupled
output paths such that a specific Kraus operation is performed on the polarisation state of
the photon, conditioned on whether the photon exits the interferometer from output |p1⟩ or
|p2⟩. Non-diagonal Kraus operators can be created by applying unitary operations to the
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input and outputs of Fig. 5.1. Note that generally M̂1M̂2 |Ψ⟩ ̸= 0 and M̂1M̂1 |Ψ⟩ ̸= M̂1 |Ψ⟩.
As discussed in 5.1, the operators are not necessarily orthogonal and a POVM is different
from a projective operation. Whilst the Kraus operators must satisfy:

∑M̂†
i M̂i = 1̂, (5.12)

the individual Kraus operators, M̂i, are not necessarily unitary. In the rest of this chapter, I
will expand the AP POVM to include fermionic particles with non-zero mass. The protocol
described here is useful to many quantum information systems that use electrons as their
physical platform. Furthermore, current semiconductor devices, such as the one decribed in
Chapter 4 can be chained to create a POVM.

5.2 Unitary evolution of a massive particle

The interferometric scheme presented in Sec. 5.1.1 provides a template for demonstrating
POVMs using photons. However, similar techniques can be applied to perform general
measurements in quantum systems based on electrons. In this section, I will map the AP
POVM to a fermionic system. To do so, I present processes which describes the individual
unitary operations shown in Fig. 5.1 for spin-1

2 qubits in semiconductor heterostructures.
Together, these processes form a toolkit allowing coherent particle propagation, spin rotations
and spin-dependent particle translation on massive particles.

The transformation of spatial propagation from photonic to fermionic states is not straight-
forward. Whilst a photon can pass through free space without dispersing significantly, the
wave function of a massive particle – such as an ion or an electron – will disperse. Most
optical devices, including the polarising Mach-Zehnder Interferometer (MZI), rely on self-
interference of spatially well-defined qubit states. These systems are especially sensitive to
dispersion since repeated operations will not lead to the same outcomes. Figure 5.2 shows a
staggered leapfrog time-evolution for the wave packet of a massive particle passing through
a MZI. Spin-dependent beam splitters are inserted at the junctions. The device curvature as
well as the initial wave packet shape and momentum distribution are chosen to maximise
the output probability density in the upper exit port of the MZI (labelled by b1 in Fig. 5.2).
Nevertheless, over 5% of the probability density disperses to unwanted locations of the MZI
and the shape of the wave packet is significantly distorted. This places an upper bound of
95% on the spin-qubit fidelity of a single polarising MZI. Additionally, the AP POVM relies
on the spatial separation of the output states and any distortion of the spatial wave packet
inhibits optimal control. The dramatic reduction in the fidelity of the qubit operation presents
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Fig. 5.2 Mach-Zehnder interferometer for free massive particles at four different time steps.
The potential is infinite in the striped area and zero elsewhere. The beam-splitters of the MZI
are indicated with grey diagonal lines.

a challenge for the implementation of quantum protocols, highlighting the need for a more
sophisticated approach.

In order to successfully replicate the AP POVM presented in Fig. 5.1 using massive
particles, three main requirements must be satisfied. First, the particle must match the free
dispersiveless propagation of a photon through the interferometer. Second, qubit rotations,
such as the arbitrary polarisation rotations using a combination of birefringent wave plates,
must be possible. Third, the wave function of the particle must be spatially separated like the
photon, which is split into a pair of polarised modes using polarising beam splitters.

5.2.1 Dispersion-free propagation

To satisfy the first condition using massive particles, the dispersion of the states has to
be eliminated. This can be obtained with Gaussian wave packets in harmonic confining
potentials. Such potentials have been used successfully in ion traps to perform coherent
diabatic ion transport [23, 81], but equivalent potentials can be achieved in semiconductors by
either electrostatically defining quantum dots using Schottky surface gates [87, 45, 153, 157]
or lithographically confining charges in doped regions separated by tunnel barriers [59].
Using the staggered leapfrog algorithm presented in Chapter 2, simulations confirm that
spatial propagation can be obtained in a manner that both preserves the fidelity of the
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operation and keeps the shape of the wave packet intact. There are two main ways of
preventing dispersion. First, the minima of the harmonic potentials can be shifted, displacing
the wave packet and generating a coherent state. A rapid update of the underlying potential
puts the wave function in a coherent state that is displaced from the ground state. The
wave packet oscillates about the new potential minimum and can be coherently displaced
to a new spatial location. Secondly, by moving the minima of the harmonic potentials in
an adiabatic manner, it is possible to preserve the structure of the ground state whilst the
qubit is transported between the optical component analogues. In this work, I found that
an optimal way to adiabatically transport electrons non-dispersively is to use propagating
SAW potentials. A ground-state electron (near Gaussian) trapped in the minimum of a
sinusoidal SAW potential is transported coherently through the device at the propagation
speed of the SAW. As discussed in Chapters 2, 3, and 4, the underlying potential can be
defined by Schottky gates at the surface of a semiconductor device. This underlying potential
adiabatically shifts the center of mass of the ground state in the SAW frame of reference,
which effectively enables linear-optics like spatial control of the electron qubits.

5.2.2 Arbitrary Qubit Rotations

Arbitrary polarisation rotations for spin-1
2 particles can be described by time-ordered unitary

operators:
R̂k̂ = T exp

{[
iλ (t)σk̂kkt

]}
, (5.13)

where λ (t) is some time-dependent strength parameter and σk̂kk are the Pauli matrices. Such
unitary operations can be realised using a magnetic field with the Hamiltonian

Ĥrot =−µµµ ·BBB(t), (5.14)

where µµµ is the magnetic dipole moment of the particle and the magnetic field BBB(t) is uniform
over the particle wave packet [111, 67]. Spin-rotations of SAW qubits have been studied
in previous works [12]. Charged qubits moving in a magnetic field naturally experience
a Lorentz force. However, for SAW carried electrons in semiconductor heterostructures,
this force is counteracted greatly by the device confinement [122, 121]. Electromagnetic
corrections can also be applied as suggested in Phys. Rev. B 62, 8410 (2000) [12]. Other
techniques for spin rotations include using a DC magnetic field to lift the spin degeneracy
and applying an oscillating perpendicular magnetic field set in resonance between the two
spin states [10]. Yet another technique uses electron spin resonance (ESR), where a pulse of
microwaves becomes resonant with the upper and lower Zeeman-split spin states [89].



72 PROTOCOL FOR FERMIONIC POSITIVE-OPERATOR-VALUED MEASURES

5.2.3 Spin Polarisation

Although solid-state physics present several possibilities to select the spin of an electron
(Pauli blockade [125] or spin filtering [124]), implementing a spin splitter is difficult in
practice, owing to the generally small dimensions of devices and the intrinsic nature of the
spin. However, several structures, materials or techniques can be used to channel dedicated
spin orientations.

Antidots [168] or quantum spin hall systems [88] are commonly used to create spin-
polarised channels at the edges of structures with a minimum number of gates and simplified
geometry. These have been realised in graphene [148] but also in semiconductors. More
generally, it is possible to utilise materials with strong spin-orbit interaction to generate spin
currents out of charge current. Another approach is to scatter the wave packet off of a narrow
magnetic semiconductor barrier, such as europium oxide (EuO) [132, 40, 76], which acts
as a spin filter, only transmitting a specific electron spin polarisation. Furthermore, new
types of materials, like topological insulators, possess intrinsic properties that allow locking
spin states to specific transport directions [96]. Finally, there exist a number of schemes
for the projective measurement of fermion spin [84, 12, 141, 110, 68, 55, 160]. These
schemes implement spin-dependent translations of the qubits followed by a single particle
charge readout. Technologies for projective spin measurements are based on magnetic
readout (utilising the spin-valve effect), double occupation readout (utilising spin-dependent
tunneling) or Stern-Gerlach readout.

5.3 Example POVM

In this section, a POVM is implemented on a single-electron spin-1/2 qubit with an initially
arbitrary spin polarisation. In this case, the massive wave packet undergoes Procrustean
entanglement distillation, which transforms an arbitrary entanglement state into a pure Bell
pair. Procrustean entanglement distillation is discussed further is Sec. 5.4. The single particle
subject to the POVM is one part of a joint initial state of the form

|ΨA,B⟩= cos(60◦) |↓A⟩ |↓B⟩+ isin(60◦) |↑A⟩ |↑B⟩ . (5.15)

The spatial degree of freedom is labelled by |i⟩, |s1,2⟩, |t1,2,3,4⟩ and |p1,2⟩, as in Fig. 5.1.
An underlying potential is necessary in order to achieve the confinement necessary for the
double interferometer. It can be implemented with Schottky gates, as described above, or by
etching the semiconductor material. The contour lines in Fig. 5.3 show such an electrostatic
potential. The pattern produced by applying voltages to the Schottky gates defines the circuit
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along which the single-particle wave function is confined. A sinusoidal surface acoustic
wave carried the electron across the device and maintains a constant confinement along the
direction of motion. The SAW potential is not included in Fig. 5.3.
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Caption: Nested Mach-Zehnder Interferometer for massive particles. The electrostatic potential of the proposed semiconductor device is 
represented by grey contour lines. Red dashed lines indicate the position of the spin-based beam-splitters. After each beam-splitter, a magnetic 
field, represented by the blue shaded areas, is applied to rotate the spin of the particle. In the simulation presented, the electron wave function 
was split with equal probability between $\ket{p_1}$ and $\ket{p_2}$ with fidelity >99.5%.

|p2i|p1i

Fig. 5.3 Simulation of a massive wavepacket travelling through a POVM device. The paths
|s1⟩, |s2⟩, |t1⟩, |t2⟩, |t3⟩, |t4⟩, |p1⟩, and |p2⟩ correspond to those from Fig. 5.1. The electrostatic
potential of the proposed semiconductor device is represented by grey contour lines. Dashed
lines indicate the position of the spin beam-splitters. After each beam-splitter, a magnetic
field, represented by the shaded areas, is applied for spin rotations according to Fig. 5.1. The
arrow in the projected Bloch spheres indicate the wavefunction’s spin orientation in their
respective regions. In the simulation presented, the electron wave function is split with equal
probability between the |p1⟩ and |p2⟩ outputs.

In Fig. 5.3, the two-dimensional electron wave function is traced out in the x dimension.
The plot shows the probability distribution in the y dimension as a function of time, t. Because
of the strong confinement of the SAW potential, the particle distribution and movement in
the x direction is minimal. Hence, the particle’s position in x can be accurately estimated by
x = v · t, where v is the speed of sound in the material.

The electron initially exists in the ground state of the SAW minimum, in the spatial state
|i⟩. The direction of motion is changed, and it is incident on the first polarising beam splitter.
Here, the electron is split into its spin components in a superposition of the spatial states
|s1⟩ and |s2⟩. Two magnetic fields are applied to the respective components indicated by
the shaded areas in Fig. 5.3. |s1⟩ and |s2⟩ are then incident on two more splitters forming a
new superposition of the states |t1⟩, |t2⟩, |t3⟩, and |t4⟩. |t4⟩ is not occupied for this specific
POVM. Again, magnetic fields (shaded areas) are applied to implement local phase shifts
and spin-rotations on the individual spatial components of the electron. Following these
magnetic fields, the spatial components |t2⟩ and |t3⟩ are interfered on a beam-splitter, forming
an output component |p1⟩. Similarly, |t1⟩ and |t4⟩ are interfered to form |p2⟩. Hence, Fig. 5.3
shows how an input wave function |ψA⟩ |i⟩ is transformed into a spatial superposition given
by M̂1 |ψA⟩ |p1⟩+ M̂2 |ψA⟩ |p2⟩.
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In a 2D structure, |p1⟩ has to be trapped in a quantum dot such that |t1⟩ and |t4⟩ can
evolve around it. However, recent successes in creating rolled-up semiconductor nanotubes
[127, 134, 28] and layered quantum well structures [102, 143, 41] would allow output arms
to continue to evolve through space, by enabling periodic boundary conditions, and finite 3D
movement respectively. For certain applications, such as entanglement distillation presented
here, there is no need to preserve both outputs. Only the output involving the pure Bell pair
should be preserved and other outputs can be discarded via post selection.

By utilising the stability of a wave packet carried by a SAW, and by optimising the device
parameters, my simulations are able to demonstrate experimentally achievable high fidelity
POVMs. In this example, the Hamiltonian was tailored to provide a total POVM fidelity
of > 99.5%. This, however, is not an upper bound since further parameter optimisation
could lead to even greater fidelities. Moreover, whilst this example demonstrated a specific
implementation, the extension to a general POVM with more than two Kraus operators
is straightforward [5]. Nested polarising Mach-Zehnder interferometers can be connected
together by inserting the output states at |p1⟩ and |p2⟩ into subsequent interferometers in
order to generate a POVM with any combination of Kraus operators.

5.4 Procrustean Entanglement Distillation

As presented in Sec. 5.3, one use of POVMs is found in the implementation of Bennett’s
Procrustean entanglement distillation [17]. This protocol allows a subset of pure state qubit
pairs to be discarded from a weakly entangled ensemble, such that the remaining particle
pairs are more entangled. Significantly, Bennett’s method can be local and non-iterative as
the entanglement distillation is achieved through the application of a single POVM on only
one of the particles.

For the arbitrarily entangled state,

|ΨA,B⟩= α |0A⟩|0B⟩+β |1A⟩|1B⟩ , (5.16)

shared between, say, Alice and Bob, Procrustean entanglement distillation is achieved by
applying a POVM to just Alice’s particle. This POVM creates the maximally entangled Bell
state:

|ΨA,B⟩=
1√
2

(
|0A⟩|0B⟩± |1A⟩|1B⟩

)
. (5.17)

with probability
Pdist = 2

[
1−max(|α|2, |β |2)

]
. (5.18)
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The parameters for the massive particle POVM can be adjusted to carry out the Pro-
crustean entanglement distillation protocol described above. For simplicity, let’s introduce
two new parameters ϕ and γ . For a known initial state of the form of Eq. 5.16, these new
parameters are set such that

α ≡ cos(ϕ) (5.19)

and
β ≡ exp(iγ)sin(ϕ). (5.20)

The POVM parameters are set according to Table 5.1. Alice inserts a detector at the |p2⟩
output and passes her particle through the POVM. The wave function output at |p1⟩, is then
acted on by the operator

M̂A
1 = tan(ϕ) |0⟩⟨0|+ |1⟩⟨1| (5.21)

if kπ−π/4≤ ϕ ≤ kπ +π/4 (for integer k), and

M̂A
1 = |0⟩⟨0|+ cot(ϕ) |1⟩⟨1| (5.22)

otherwise. The two-particle state is output as

|Ψ1⟩=
1√
2
(|1A⟩|1B⟩+ |0A⟩|0B⟩) (5.23)

with probability
P1 = 1−|cos(2ϕ)|= 2(1−max(|α|2, |β |2)). (5.24)

The choice of these parameters allows Alice to locally distill the entanglement she shares
with Bob by passing her particle ensemble through the device in Fig. 5.1. The successful
creation of a Bell state at the |p1⟩ output can be heralded by the lack of detection of a particle
at the |p2⟩ output.

φ1 0
φ2 0
φ3 −γ

φ4 −γ

θ1 Re{[arccos(tan(ϕ))]}
θ2 Re{[arccos(cot(ϕ))]}

Table 5.1 POVM parameters for the implementation of entanglement distillation of the state
in Eq. 5.16.
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5.5 Discussion

In this chapter, I developed a methodology for the implementation of massive spin-1/2 qubit
POVMs. The POVM builds on the framework of the AP double interferometer POVM [4].
This toolkit effectively translates the optical components from the AP POVM into processes
which are suitable for electrons in surface acoustic wave systems. The use of ground-state
wave functions of SAW minima eliminates the dispersion of the particle wave packets. Owing
to the difficulty in controlling photon-photon interactions, linear-optics-like processing of
massive (more easily interacting) particles is valuable for quantum computational aspirations
or quantum cryptography with hybrid systems.

The Procrustean distillation protocol presented here assumes that the initial pure state
is known. Experimentally, it is likely that processes which produce entangled massive
states produce ensembles of particle pairs with a distribution of entanglement strengths.
Whilst there exist theoretical methods for the entanglement distillation and purification of
mixed states [18, 116, 123], these methods are iterative and require two-qubit operations.
Owing to the experimental difficulties in the application of such operations, it is valuable
to investigate the effect of the non-iterative single-qubit protocol on realistic particle pair
ensembles. By selecting a subset of the particles from the ensemble, one can optimise
the POVM configuration to maximise the entropy of entanglement of the pairs in the final
ensemble. The subset of particles used in the optimisation is consumed. However, the
remaining ensemble can pass through the optimised POVM, in order to generate a reduced
ensemble of higher pairwise entanglement.
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ENTANGLEMENT GENERATION VIA THE√

SWAP OPERATION

In chapters 3, 4, and 5, I discussed various ways to control single electrons, define them as
qubits and perform single-qubit operations. As stated by DiVincenzo’s criteria, both single-
qubit operations and two-qubit operations are required for universal quantum computing.
In this final results chapter, I present simulations for a realistic implementation of one of
the fundamental two-qubit gates – the

√
SWAP gate. The results presented in this chapter

were published in 2020 in the journal Physical Review A under the title “Entanglement
generation via power-of-SWAP operations between dynamic electron-spin qubits”.[104]
The simulations, analysis and discussion in this chapter were a collaborative effort between
myself and Aleksander Lasek in the Cavendish Laboratory. His contributions to improve
the solver to operate in momentum space were essential to the work in this chapter. It
provided the numerical speedup required to sweep over simulation parameters and find
accurate configurations to carry out the root-of-SWAP operation. Aleksander Lasek and I are
co-authors of the publication and are listed as having contributed equally to the work.

To follow logically with the rest of the work in this thesis, I use single electrons as my
qubits. These qubits are carried by a surface acoustic wave across a GaAs heterostructure.
This implementation is not aimed at developing a fully SAW-driven quantum computer.
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However, using this method, useful quantum operations can be performed on-the-fly while
electrons are carried from one part of a quantum circuit to another. Figure 6.1 illustrates a
schematic of the transport circuit. Here, electrons originally trapped by the source quantum
dots labelled VS1 and VS2 are transported along parallel channels defined by metallic surface
gates. When the potential barrier separating the two channels is low, the single electrons in
the channels are allowed to tunnel through the barrier into the other channel. When only one
electron is trapped in the surface acoustic wave, this device can be used as a beam splitter.
The details of the single-electron beam splitter are described in Chapter 4 of this thesis. In
this Chapter, I will consider the case where an electron is present in each channel. When
tunnelling is allowed to occur, electron-electron interactions generate entanglement between
the two particles. Here, I will discuss the process of entanglement generation using the
root-of-SWAP operation.

Fig. 6.1 Schematic of the power-of-SWAP device. Schottky gates (golden) are tuned to
generate the electrostatic potential confinement required to obtain the desired power-of-
SWAP. For simplicity, I refer to the dimension along which the operation is performed as the
x-dimension and the direction of motion of the SAW as the y-dimension. The inset figure
shows a cross section of the potential layout alongside a trace of the initial state of the wave
function along the x-dimension. At the interaction region, the two channels are coupled by
reducing the tunnel barrier height ∼3meV.

Using the two-qubit basis |00⟩ , |01⟩ , |10⟩ , and |11⟩, the Power-of-SWAP operation for
nth power is represented by the matrix:
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SWAPn =


1 0 0 0
0 1

2(1+ eiπn) 1
2(1− eiπn) 0

0 1
2(1− eiπn) 1

2(1+ eiπn) 0
0 0 0 1

 . (6.1)

For a root-of-SWAP, n = 1
2 and the matrix representation is:

√
SWAP =


1 0 0 0
0 1

2(1+ i) 1
2(1− i) 0

0 1
2(1− i) 1

2(1+ i) 0
0 0 0 1

 . (6.2)

Once again, I am interested in the time-dependent dynamics of the quantum system.
However, I now have to consider two particles. This effectively doubles the number of
dimensions to consider and squares the size of the wave function. A simple solution to handle
the increased size of the problem is to reduce it to one spatial dimension. A two-particle
system of N lattice sites in 1D contains N2 complex entries rather than N4 as is the case in 2D.
As I will show later in this chapter, this reduction to one dimension is an oversimplification
that masks certain effects that are crucial to the two-particle interaction.

6.1 Hubbard Model and Exchange Interaction

To describe quantum dynamics in the device shown in Figure 6.1, I use a two-particle
Hamiltonian of the form

Ĥ = ∑
i=1,2

(
p̂2

i
2mi

+V̂D(ri)+V̂SAW(t,ri)

)
+V̂C(r1,r2), (6.3)

where V̂C(r1,r2) is the two-particle Coulomb potential, V̂SAW(t,r) is the SAW potential
carrying the electrons along the channels and V̂D(r) is the eletrostatic potential created by
the device itself. The potential V̂D(r) is made up of two parallel harmonic channels running
along the y-dimension. These two channels are separated by a Gaussian barrier. At the center
of the device, the two channels are coupled via a Gaussian tunnel barrier. Surface acoustic
waves propagating in the x dimension modulate the potential and form a moving double
quantum dot.

A cross section of the double quantum dot along the x dimension is illustrated in the
inset of Figure 6.1. The potential barrier separating the two channels must be carefully
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tuned as there exists a trade off between the spatial localisation of the electrons and the
interaction between them. A high barrier separates the electrons spatially, minimising the
overlap in their wave function. This is useful for single qubit control and readout operations
but doesn’t allow entanglement to be generated quickly. By contrast, a low potential barrier
with a non-negligible overlap in the two-particle wave function lets the particles entangle
quickly, but can reduce the fidelity of measurements. Since the region of measurements is not
necessarily the same as the region of the exchange interaction, the issue with measurement
fidelity may not be a significant problem.

Since the two-dimensional two-particle problem is computationally demanding, it is
important to limit the simulation domain to a minimal number of points. Here, I use a
sliding-window domain since the two-particle wave function is expected to remain confined
by the double quantum dot. I can therefore focus all computational requirements on the DQD
area and move the simulation domain with it, reducing the problem to that of a static DQD.
By boosting the reference frame to match the velocity of the SAW, which is constant, I treat
V̂SAW(t,r) as a time-independent confining potential along the channel direction.

The evolution of the two-particle state can be modelled with the Hubbard approach
for short range Coulomb interaction without magnetic fields [12]. I find the eigenstates
of the boosted time-independent Hamiltonian using a number basis derived from second
quantization. With these states, it is possible to derive the two-particle wave functions when
the barrier between both channels is static. Using second quantisation, the full set of basis
states of the system with two spin-1/2 fermions occupying ith and jth out of N spatial sites
respectively, is given by

|↑↑⟩i j = c†
i↑c

†
j↑ |0⟩ , i ̸= j,

|↓↓⟩i j = c†
i↓c

†
j↓ |0⟩ , i ̸= j,

|↑↓⟩i j = c†
i↑c

†
j↓ |0⟩ ,

|↓↑⟩i j = c†
i↓c

†
j↑ |0⟩ .

(6.4)

The fermionic creation operators obey the anticommutation relation {c†
is1
,c†

js2
} = 0.

Therefore, the basis states are also related by |↓↑⟩i j =−|↑↓⟩ ji. With N = 2, the basis states
of the Hubbard two-site model are obtained analytically. The simplified two-site Hamiltonian



6.1 Hubbard Model and Exchange Interaction 81

in the second quantisation basis from Eq. 6.4 has the form

Ĥ =



V 0 0 0 0 0
0 V 0 0 0 0
0 0 0 0 −tLR −tLR

0 0 0 0 tLR tLR

0 0 −tLR tLR U 0
0 0 −tLR tLR 0 U


, (6.5)

where tLR is the hopping term

tLR = ⟨↑|L
p̂2

2m
|↑⟩R = ⟨↓|L

p̂2

2m
|↓⟩R , (6.6)

U is the on-site energy

U =
e2

4πε
⟨↑↓|LL

1
r
|↑↓⟩LL = ⟨↑↓|RR

1
r
|↑↓⟩RR , (6.7)

and

V =
e2

4πε
⟨↑↑|LR

1
r
|↑↑⟩LR = ⟨↓↓|LR

1
r
|↓↓⟩LR . (6.8)

Solving the eigenvalue problem for the Hamiltonian in Eq. 6.5 gives the eigenenergies
associated with the singlet and triplet states and defines the frequency of the SWAP operation
in terms of U and tLR:

J =
1

4π h̄

(
−U +

√
U2 +16t2

LR

)
=

ET−ES

2π h̄
. (6.9)

Initially, the electrons in both channels of the device in Fig. 6.1 are assumed to be in a
separable spin state. At this stage, there is a high potential barrier between the channels and
the particles are too far apart to interact. Let us also assume they are in eigenstates of the
z-axis spin. The spin part of the wave function can thus be labelled |s1⟩|s2⟩, meaning that the
first electron is in the spin state s1, and the second one is in the spin state s2. For a double-dot
potential, the two-particle ground state is symmetric in spatial coordinates, described by
a spatial wave function |ΨS(r1,r2)⟩, while the first excited state is anti-symmetric, with a
spatial wave function |ΨA(r1,r2)⟩. The spin-antisymmetric combination is called a singlet
state |S⟩, which corresponds to the ground state with energy ES, and the symmetric state is
called a triplet state |T⟩, corresponding to the first excited state with energy ET:

|S⟩= 1√
2
|ΨS(r1,r2)⟩(|↑⟩|↓⟩− |↓⟩|↑⟩) (6.10)
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|T⟩= 1√
2
|ΨA(r1,r2)⟩(|↑⟩|↓⟩+ |↓⟩|↑⟩) . (6.11)

Figure 6.2 illustrates these basis states and how they can be combined to form a localised
qubit. A linear combination of the spatially symmetric and antisymmetric states |ΨS⟩ and
|ΨA⟩ generates |ΨLR⟩, a two-particle state where the first particle is located on the left (L)
and the second on the right (R). Here, the left and right channels are defined as the region
where x is negative and positive respectively, taking x = 0 to be between the two channels.
In panels (a), (b), and (c), the y dimension has been traced out and the axes labels x1 and
x2 refer to the spatial extent in the x dimension of the wave function of particles 1 and 2
respectively. In panel (d), it is the x dimension that is traced out. These dimensions relative
to the device and one-dimensional potential are shown in Fig. 6.1.

Fig. 6.2 Two-particle initial spatial wave functions. (a) Ground state |ΨS⟩ (y1 = 0 and y2 = 0).
(b) First excited state |ΨA⟩ (y1 = 0 and y2 = 0). (c) Combination of the ground state and first
excited state |ΨLR⟩. The first particle is localized in the left channel and the second particle
is localized in the right channel (y1 = 0 and y2 = 0). (d) Gaussian spread of both particles in
the y-dimension (x1 = 0 and x2 = 0). All four panels show the wave function divided by its
extremum, with the z-axis in arbitrary units.

The double-dot potential of the gate region is chosen such that an equal linear combination
of these states has both particles well localised in different channels. This results in the
eigenstates of initial high tunnel barrier and those of the gate region having a high overlap.
The disturbance introduced by adiabatically changing the tunnel barrier in the SAW reference
frame is reduced by minimizing the amplitude and abruptness of the spatially changing
potential.
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We can write down combined space and spin states as |s1s2⟩LR, with particle 1 being in
the left channel with spin s1 and particle 2 being in the right channel with spin s2. They are
linear combinations of the triplet and singlet states:

|↓↑⟩LR =
1√
2
(|T⟩+ |S⟩)

=
1√
2

(
|ΨRL(r1,r2)⟩ |↑⟩|↓⟩− |ΨLR(r1,r2)⟩ |↓⟩|↑⟩

)
,

(6.12)

|↑↓⟩LR =
1√
2
(|T⟩− |S⟩)

=
1√
2

(
|ΨLR(r1,r2)⟩ |↑⟩|↓⟩− |ΨRL(r1,r2)⟩ |↓⟩|↑⟩

)
,

(6.13)

where |ΨLR(r1,r2)⟩ denotes a spatial state with particle 1 in the left channel (negative x)
and particle 2 in the right channel (positive x). These take the form

|ΨRL(r1,r2)⟩=
1√
2

(
|ΨS(r1,r2)⟩+ |ΨA(r1,r2)⟩

)
, (6.14)

|ΨLR(r1,r2)⟩=
1√
2

(
|ΨS(r1,r2)⟩− |ΨA(r1,r2)⟩

)
. (6.15)

A system placed in such a linear superposition oscillates coherently with the period,
2π h̄/(ET−ES), determined by the energy difference between the ground state and first
excited state. This period was derived in Eq. 6.9. A full SWAP operation takes half of this
period whilst the root-of-SWAP operation takes a quarter of it, i.e. half the duration of a
SWAP. In the limit where the on-site Coulomb energy is much greater than the hopping
energy, the doubly-occupied states have vanishingly small probability amplitudes and can be
ignored [12]. The state during the time evolution is

|ψ(t)⟩= 1√
2

{
|T⟩+ exp

(−it
h̄

∆E
)
|S⟩

}
, (6.16)

where ∆E = ET−ES. This description of the power-of-SWAP operation allows the probabil-
ities of observing spin-up (spin-down) particles in the left (right) channels after the operation
to be calculated. The probability of measuring a swapped state, assuming an initial state
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|↑↓⟩LR and a fixed time of interaction τ , is given by

PSWAP (J) = | ⟨ψ(t = τ)| ↓↑⟩LR |2

= sin2
(

1
2

J · τ
)
,

(6.17)

where J = ∆E/(2π h̄). This probability, given an input state, depends only on the energy
difference between the triplet and singlet states, which in turn is a function of the device
potential. For simplicity and computational resource optimisation, a spinless model is
considered from hereon. Since the potential does not have any explicit spin dependence,
because of a weak Lorentz term, single-qubit spin rotations do not occur.

6.2 Entanglement Generation via Electron Collisions

In a previously suggested root-of-SWAP scheme [121], two electrons travel in individual
channels separated by a high potential barrier, such that there is no wave-function overlap.
The potential barrier abruptly (or diabatically) changes in the SAW reference frame such that
the two channels are joined to create a global potential minimum between them. Without
the presence of the barrier, both electrons fall towards one another in a harmonic oscillator
potential and interact via the Coulomb force. Once the operation is completed, the cen-
tral barrier is reintroduced, causing the reappearance of separate decoupled channels. As
the quantum states of particles in layered semiconductor technologies are confined in the
dimension perpendicular to the quantum wells, which has a constant potential throughout
the device, the third dimension does not significantly affect the operation. However, the
previous reduction to one dimensional simulations presented in Owen et al. [121] is an
oversimplification, as the possible spatial dynamics in the second dimension strongly affect
the electron-electron interactions.

In our paper (Phys. Rev. A 101, 022329), [104] we simulate this single-shot (i.e. in a
single collision) entanglement generation. We find that under current experimentally realistic
parameters, it is impossible to generate a root-of-SWAP, or any significant entanglement over
the x-dimension.

Figure 6.3 shows snapshots of the two-electron wave function undergoing a single
collision in two dimensions. The wave function remains fully separable along the x dimension.
However, in the y dimension, it transitions from a Gaussian-like low-energy state to a more
spread-out entangled state. This is conflicting with the desired outcome of generating a
maximally entangled state in the x dimension. The operation is effectively a SWAP instead
of a root-of-SWAP, with the additional downside of exciting higher-energy states in the y
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Fig. 6.3 Entanglement generation via the collision of two electrons. Top and middle row:
trace over the x-dimension and y-dimension respectively for the initial state (left), root-of-
SWAP state (centre), and SWAP state (right) of the wave function. Bottom row: trace over
the second particle for the initial state (left), root-of-SWAP state (centre), and SWAP state
(right) of the wave function. Coordinates are chosen to be in the SAW frame of reference
with y = 0 corresponding to a SAW minimum and x = 0 the middle of the harmonic channel.
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dimension. These unwanted spatial excitations of the wave function lead to lowering the
spatial fidelity of the operation and thus it is not possible to concatenate multiple operations
for useful quantum information processing. Excitations in the y dimension also prevent
the restoration of the wave function to its original state by applying the SWAP twice, a
fundamental property of this operation. The energy of the available states in y do not, in
general, have the same splitting as in x. Even if the wave function projected along the x
dimension is restored, perturbations in y affect future entangling operations.

Increasing the y confinement does not prevent this behaviour until the SAW amplitude
is increased by a factor on the order of 103, where the problem effectively reduces to one
dimension. However, such a confinement would require SAW amplitudes on the order of 104

meV, which is experimentally unrealistic.[150] Varying the x confinement over a wide range
also does not solve the issue. Therefore, the conclusion is that the collision method is unable
to produce the root-of-SWAP operation in a realistic two-dimensional scenario.

6.3 Entanglement Generation via Coulomb Tunnelling

Although a single-shot root-of-SWAP scheme for two electrons in moving quantum dots is
not viable, two-qubit operations and entanglement generation is not impossible. Building on
a proposal from Barnes et al. [12], it is possible to use an exchange-interaction method for
the generation of entanglement between two electrons in a SAW system. In this scheme, the
two particles undergo a continuous power-of-SWAP, which can be tuned to halt at any desired
fraction of the complete SWAP. As described in Sec. 6.1, the two electrons occupy adjacent
channels separated by a high potential barrier, suppressing any wave function overlap. As the
electrons travel across the device, they enter a region in which the potential barrier between
them is lower. They are allowed to tunnel through to the other channel at a rate that is
determined in part by the barrier height and in part by the Coulomb force, thus allowing for
the control of the power-of-SWAP gate by tuning the appropriate Schottky gates. Figure
6.4 shows snapshots of the wave function during an entangling operation with realistic
experimental parameters. When the potential barrier is low, the two-particle state undergoes
coherent oscillations between the initial state and the fully swapped state. The duration of
the two-particle operation is determined by the length of the tunnel-coupled region. Since
the speed of a SAW is constant in a given material, the operation is identical for all incoming
electron pairs.
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Fig. 6.4 Entanglement generation using the Coulomb tunneling method. Top and middle
row: trace over the x-dimension and y-dimension respectively for the initial state (left),
root-of-SWAP state (center), and SWAP state (right) of the wave function. Bottom row:
trace over the second particle for the initial state (left), root-of-SWAP state (centre), and
SWAP state (right) of the wave function. Coordinates are chosen to be in the SAW frame
of reference with y = 0 corresponding to a SAW minimum and x = 0 the peak of the tunnel
barrier.
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Starting with Eq. 6.17, and assuming that J is exponentially dependent on the tunnel
barrier height ATB, and time of interaction τ is fixed, the probability of the final state being
swapped with respect to the initial state has the following dependence on the tunnel barrier:

PSWAP (ATB,τ) = sin2
(

1
2

J0 · e−b·ATB · τ
)
, (6.18)

where J0 and b are numerically determined parameters. Figure 6.5 shows a fit of the time-
dependent numerical simulation data (See Appendix B for the exact values of the parameters)
with the analytical prediction from Eq. 6.18. It is important to note that although Eq. 6.18 can
describe the behaviour of a power-of-SWAP under ideal conditions, a numerical approach
is required to account for more realistic scenarios. These can include the presence of
impurities in the quantum channels as well as a finite transition length between the low
and high tunnel barrier heights. The inset in Fig. 6.5 shows the probability amplitude of
the computational basis states as well as double occupancy states during the root-of-SWAP
operation. Interactions between the electrons are initially prohibited by the high potential
barrier separating them. As they are carried through the tunnel-coupled region, the electrons
become entangled. Upon leaving the region of low potential barrier, the particles can no
longer interact and the probability amplitudes become constant.

Fig. 6.5 Probability of SWAP as a function of tunnel barrier height for fixed interaction
duration. Time evolution simulation results (circles) are fit using Equation 6.17 (solid
line). The parameters J0 = 2.888ps−1 and b = 0.933meV−1 were found numerically. The
inset figure illustrates the occupation of the computational basis states as well as the double
occupancy states. In this example, the input state |↑↓⟩LR undergoes a root-of-SWAP operation
with finite tunnel barrier potential ramps.
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A noteworthy observation is that although the interaction between the two particles
depends exponentially on the height of the tunnel barrier separating them, the probability
of a SWAP operation oscillates. Because of this, the gradient of the curve seen in Fig. 6.5
is smaller and the operation is more controllable experimentally. The SWAP probability
around PSWAP = 0.5 varies with the tunnel barrier height at a rate of 8.07× 10−4 µeV−1.
This allows for an experimentally viable tunability of the quantum gate via the control of the
tunnel barrier height. Assuming a device temperature of 300 mK, tunnel barrier variations
due to thermal fluctuations will decrease the root-of-SWAP fidelity by < 0.1%. This error
could be reduced by increasing the height of the tunnel barrier, at the cost of extending the
operation time.

6.3.1 Comparison to Analytical 2-site Models

To solve the dynamics of the power-of-SWAP operation in a heterostructure SAW-based
device, including the 2D spatial extent of the wave function and a time-dependent potential,
numerical simulations must be used. However, to avoid lengthy and complicated computa-
tions, ∆E can be estimated using simplified two-site models, thus getting an approximation
for the power-of-SWAP extent via Eq. 6.17.

Assuming a tight-binding-like model, where electrons can tunnel between the quantum
dots, we can estimate the full 2D time evolution by applying the Hund-Mulliken model
for molecular orbitals.[33] This model builds a two-particle basis from right- and left-
localised single-particle states |φ±⟩. The states are orthonormalised to |Φ±⟩ = (|φ±⟩ −
g |φ∓⟩)/(

√
1−2Sg+g2), where S = ⟨φ± | φ∓⟩ is the wave function overlap and g = (1−√

1−S2)/S. The singly- and doubly-occupied two-particle basis is constructed with direct
products:

|Ψs
∓⟩=

1√
2
(|Φ+⟩|Φ−⟩∓ |Φ−⟩|Φ+⟩) ,

|Ψd
∓⟩= |Φ∓⟩|Φ∓⟩ .

(6.19)

The Hamiltonian in this basis has the form:

Ĥ =


V− 0 −

√
2th 0

0 V+ −
√

2th 0
0 −

√
2th U X

0 −
√

2th X U

 , (6.20)
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where each entry is defined as:

U =
e2

4πε
⟨Ψd
±|

1
r
|Ψd
±⟩ , (6.21)

X =
e2

4πε
⟨Ψd
±|

1
r
|Ψd
∓⟩ , (6.22)

V+ =
e2

4πε
⟨Ψs

+|
1
r
|Ψs

+⟩ , (6.23)

V− =
e2

4πε
⟨Ψs
−|

1
r
|Ψs
−⟩ , (6.24)

and th is the hopping term

th = ⟨Φ±|
p̂2

2m
|Φ∓⟩−

e2

4
√

2πε
⟨Ψs

+|
1
r
|Ψd
±⟩ . (6.25)

Here, ε is the relative permittivity of GaAs and e is the electric charge of an electron.
Solving the eigenvalue problem for the Hund-Mulliken Hamiltonian in Eq. 6.20, gives the

eigenenergies associated with the singlet and triplet states and define the SWAP frequency in
terms of U and th:

J =
1

2π h̄

[
V−−V++

1
2

(√
U2

h +16t2
h −Uh

)]
=

ET−ES

2π h̄
, (6.26)

where Uh =U−V++X .
Alternatively, the evolution of the two-particle state can also be modelled with the

Hubbard approach for short range Coulomb interaction.[12] Without magnetic fields, the
simplified 2-site Hamiltonian in the second quantisation basis from Eq. 6.4 is described in
Sec. 6.1

Solving the eigenvalue problems for this Hamiltonian, gives the eigenenergies associated
with the singlet and triplet states and defines the SWAP frequency in terms of U and tLR:

J =
1

4π h̄

(
−U +

√
U2 +16t2

LR

)
=

ET−ES

2π h̄
. (6.27)

For realistic Hamiltonians, it is impossible to obtain U analytically. Instead, this pa-
rameter must be calculated numerically. To avoid unphysical results introduced by the 1/r
factor in Eq. 6.7, a softened Coulomb potential is used [121] both for the models and the
numerical simulations. This softening is implemented by assuming that the wave function
has a Gaussian spread in the third dimension, with a standard deviation of ∆z. Since the
semiconductor heterostructure is of constant width in the z dimension and is made up of the
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same material, it is safe to assume that the wave function spread ∆z is constant everywhere in
the device. The effective Coulomb potential becomes

VC(r) =
e2

4
√

2πε∆zU(−1
2 ,0,

r2

2∆2
z
)
, (6.28)

where U is the confluent hypergeometric function of the second kind.[161, 2] The integral
representation of this function, also referred to as the Kummer U function, is

U(a,b,z) =
1

Γ(a)

∫
∞

0
e−ztta−1(1+ t)b−a−1dt. (6.29)

Both the Hubbard model and the Hund-Mulliken method described above are compared
to the full two-dimensional simulation results for a range of ∆z. The comparison of both
analytical models with the numerical simulations is shown in Fig. 6.6. Comparing the
frequency of the SWAP operation between the time-dependent numerical solver and the
energy difference found by solving the time-independent eigenvalue problem numerically
shows a close match. This is to be expected if the underlying potential remains constant.
Since the initial wave function is a superposition of the two first eigenstates, the period of
oscillation can be found analytically. This match serves as further validation that the time-
dependent simulations are accurate and that the calculations with a time-varying potential
such as the ones that produced the inset in Fig. 6.5 can be trusted. It is important to note that,
because of the time-varying potential, the inset in Fig. 6.5 can not be calculated using the
simpler and faster eigenvalue solver.

Both models calculated from Eq. 6.9 and Eq. 6.26 show significant discrepancy for most
values of ∆z. Moreover, the Hund-Mulliken model predicts negative frequencies for ∆z < 1
nm. Although both models provide a reasonable qualitative prediction of the two-particle
dynamics for Gaussian spread of ∆z∼ 10−100 nm, a more sophisticated numerical approach,
such as the one provided with my simulations, is required to obtain precise quantitative
dynamics.

6.4 Discussion

The two-qubit entangling operation is an essential building block of a quantum informa-
tion processor and of the the DiVincenzo criteria listed in Sec. 1.1.2. In the early 2000s,
two schemes were proposed to implement the power-of-SWAP operation to generate en-
tanglement between electron-spin qubits [12, 33]. These proposals suggested using the
exchange interaction between the single electrons to entangle them. Both papers provided
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Fig. 6.6 Comparison to analytical models. Power-of-SWAP frequency as a function of
effective wave function spread in the z-dimension. Coulomb softening accounts for the finite
z-dimension and plays an important role in determining the rate of the exchange interaction.

analytical solutions that predicted the eigenvalues associated with the two-level systems
and therefore the period of the gate operation. In this chapter, I showed numerically that
surface-gate-controlled flying electron-spin qubits are able to generate entanglement through
the power-of-SWAP operation in a reliable and stable fashion. Once again, the problem
of wave function dispersion can be solved through the use of SAWs, which generate the
potential confinement needed to preserve the wave function’s profile. While the behaviour
of an ideal system can be predicted exactly by solving the eigenvalue problem for the two-
particle two-site Hamiltonian and assuming that the electrons are initialised to and remain
in a combination of triplet and singlet states, the advantage of my numerical methods is
to simulate realistic entangling operations. In any real setup, the interaction between the
two particles is not controlled instantaneously. A two-site analytical model is insufficient to
capture the complete dynamics of a changing potential.

In 2012, Owen et al. proposed a new method for entangling qubits [121] that built upon
the work of Burkard et al. [33] and Barnes et al. [12]. This method had two electrons “fall”
towards each other in a single harmonic potential and entangle in a single-shot operation.
The appeal of this method is that the finite response time of the surface gates is no longer
a problem since there are relatively long periods of time when the two particles are not
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interacting. The central barrier gate can be turned on and off when the two electrons are
far apart. This paper was also the first to provide numerical simulations for experimentally
realistic potentials. However, the more sophisticated simulations presented in this chapter
have shown that the original calculations in one dimension were an oversimplification of
the problem. When solving for the two-particle dynamics in one dimension only, even
with a softened Coulomb potential, the particles would interact strongly and entangle. By
contrast, in two dimensions, the particles repel each other and simply swap channels without
entangling. Furthermore, the displacement of the wave function in the new dimension prevent
the wave function from returning to its initial state since the oscillations in this dimension do
not have the same period as that of the SWAP operation. To recover the desired behaviour,
the confinement in the new dimension must be increased to levels that far exceed what is
possible experimentally. This leads to the conclusion that a continuous approach based on
the exchange interaction is more stable.

The two-particle simulations presented in this chapter use experimentally realistic param-
eters and potential layouts. They show that root-of-SWAP devices are readily realisable using
current semiconductor fabrication techniques. These results provide new evidence that an
entangling root-of-SWAP gate based on the exchange interaction is experimentally viable in
SAW-based semiconductor heterostructures. As with the rest of this thesis, these simulations
were focused on the experimental parameters of GaAs-based devices. However, the same
behaviour is expected in other SAW-based semiconductor devices. Moreover, these findings
can be generalised to systems that do not include SAWs. Static quantum dots, confined in
every dimension and separated by a tunnel barrier, interact in the same way. Such a tunnel
barrier can be modulated using fast microwave pulses [31]. A static root-of-SWAP gate was
recently realised with high fidelity using phosphorus donors in silicon [78], proving that
such systems are achievable experimentally. Coherent spin-state SWAP operations between
electron-spin qubits in a quadruple array of semiconductor quantum dots were also achieved
[83].





7
CONCLUSION

In 2000, the original idea for a universal quantum computer using electrons trapped in
surface acoustic waves was put forward [12]. Since then, many physical implementations of
quantum computers have been introduced. Systems such as superconducting qubits [7, 38]
and electron-spin qubits in phosphorous donors in silicon [157, 32] have gained significant
traction in both the academic and industrial scene. Although it would seem that SAW-based
systems are not currently ahead of the race to build a quantum computer, many of the
concepts developed for the SAW platform are useful for designing specific components
of quantum information systems. As quantum computers become larger, both in number
of qubits and in size, coupling distant qubits becomes increasingly challenging. It is a
requirement for universal quantum computation to be able to entangle any qubit with any
other qubit. Therefore, a solution must be found to transport quantum information to different
parts of a computer without the need to carry out many quantum operations, each acting as a
source for errors.

In this thesis, I extensively covered the transport of single-electron qubits and the pro-
cessing of their quantum information using surface acoustic waves. Electron qubits trapped
in static quantum dots are displaced by the electric potential modulation generated by SAWs
in piezoelectric materials. The constant confinement caused by the SAW solves the problems
of wave function dispersion and scattering typically associated with massive particles.
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I started by defining the optimal two level system for a charge qubit in a double quantum
dot. Although this step may seem trivial, it is crucial to have a definition that is both realisable
experimentally and scalable to future systems. Although a two-level system defined by
the energy eigenstates of a particle in a double quantum dot is not directly accessible by
experimentalists, I provide a straightforward method for initialising and rotating a single-
electron qubit.

I am interested in transporting quantum information over distances on the scale of
nanodevices and performing on-the-fly quantum operations. Much of the work in this thesis
was inspired by quantum information processing in optical systems. Using surface acoustic
waves, it is possible to replicate established devices and frameworks using massive fermionic
particles. A key component of optical system is the beam splitter. Such a device can be
designed using a shallow tunnel barrier between two quantum channels. The SAW potential
guides single electrons through the tunnel-coupled region and defines the operation time.
Surface gates creating the underlying electrostatic potential control the transmission and
reflection coefficients of the beam splitter. Although there are still many challenges to
overcome experimentally before a high-fidelity beam splitter can be made, simulations such
as the ones presented in this thesis offer cost-effective solutions to experimental problems.

Once again inspired by optical quantum information processing, I put forward a scheme
for performing a positive-operator-valued measure using massive particles. By chaining beam
splitters together, a nested Mach-Zehnder interferometer is created. Local magnetic fields
cause electron-spin-polarisation rotations, thus fulfilling all the requirements for realising
Ahnert and Payne’s POVM.

Semiconductor devices can also support multiple particles. In this case, interacting
particles become entangled and each particle can be carried to a different part of a larger
system. In this work, I present the root-of-SWAP operation as a maximally entangling
operation. However, the idea of generating entanglement between flying electron qubits is
essential to the realistic scaling of a large quantum computer.

7.1 Further Work

My code has produced a large amount of results, both in theoretical development and
alongside experimental advances. When designing this software, I always kept expandability
and modular additions in mind. As new research requires different devices to be modelled or
more complex operations to be simulated, the simple addition of an electrostatic potential
file or a tailored Hamiltonian is sufficient to adapt the master code. However, there is still



7.1 Further Work 97

much work that can be made to expand the scope of this base code. In this section, I list a
few project ideas that are realisable with current methods and technologies.

7.1.1 Solving the Lindblad Master Equation

In this work, I iteratively solved the time-dependent Schrödinger equation for complex
systems. This method allowed me to get the accurate time evolution of a single or few-
particle wave function. Although the wave function is a useful mathematical tool to study
the behaviour of quantum particles, it does not intrinsically deal with decoherence. Since the
effects due to the environment are not built into the Schrödinger equation, approximations
must be made to simulate the coupling of system particles to external ones. An alternative
approach is to solve a master equation for the density matrix ρ of the system rather than its
wave function ψ . In this case, the most general solution to an open system is given by the
Lindblad master equation [105, 27] :

∂ρ

∂ t
=− i

h̄

[
Ĥ,ρ

]
+∑

m,n
hmn

(
ÂmρÂ†

n−
1
2

{
Â†

nÂm,ρ
})

, (7.1)

where Â is an arbitrary Hermitian operator (also called Lindblad operator), h is the coefficient
matrix of the system and the density matrix is defined as

ρ = ∑
j

p j |ψ j⟩⟨ψ j| . (7.2)

Although solving Eq. 7.1 instead of the time-dependent Schrödinger equation (Eq. 2.1)
provides information about the decoherence of the quantum system coupling to the environ-
ment, it significantly increases the computational complexity of a given problem. A system
described by a wave function of size N requires a density matrix of size N2 to be iterated.
This increased complexity is on the same order as adding a particle to the system or solving
a problem in an extra dimension. It is therefore possible to solve the Lindblad equation using
state-of-the-art GPUs for problems of slightly reduced complexity.

7.1.2 Quantum Media Conversion

The Bloch sphere described in Section 1.1.3 is typically used to represent electron spin states
or electron charge qubit states. There exists a similar representation for photon polarisation
qubits called the Poincaré sphere. A quantum state transfer from electron spins to photon
polarisation and vice versa bridges the two spheres and provides a possible resolution to the
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6th and 7th DiVincenzo criteria. In 2008, Kosaka et al. demonstrated that it was possible to
coherently transfer an arbitrary superposition state from light polarization to electron spins
[98, 99]. It is therefore possible to establish a one-to-one mapping between the Bloch and
Poincaré spheres as illustrated in Figure 7.1.

Fig. 7.1 Representations of the Bloch and Poincaré spheres. A one-to-one mapping can be
found for every state on the spheres.

The quantum state of a single photon emitted from an electron-hole recombination is
determined by selection rules. These rules arise from the conservation of angular momentum
between electron spin and photon polarisation helicity [93]. A schematic of the quantum
state of light emitted from an electron-hole recombination in a four-band model can be seen
in Fig. 7.2. It has been shown that careful engineering of the material band structure can lead
to a depletion of light holes [98] and thus generate a one-to-one mapping of electron-spin to
photon-polarization pure states.

Using a modified version of the staggered-leapfrog algorithm could lead to a more
complete theoretical description of the recombination process and light emission. Although
the spin to polarisation mapping has a simple set of rules, the effects of momentum in the
electron on the emitted photon have not been studied thoroughly. A study of quantum media
conversion between electrons and photons is not only useful for quantum communication
applications, but also provides a new way of linking different parts of a quantum computer
together. The SAW-driven quantum bus described in this thesis offers a robust way of
transporting quantum information, but it is limited to relatively short distances. The speed
of photons would allow distant components to be entangled or even allow the transport of
quantum information between two separate computers.
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Fig. 7.2 Schematic of the electronic band structure in a semiconductor material (right) and the
selection rules for electron-hole recombination with single photon emission in a four-band
model (left).

7.1.3 FPGA Programming

A field-programmable gate array (FPGA) is a collection of integrated circuits on a chip.
These circuits can be configured to perform specific tasks very quickly and with minimal
computational overhead. Similar to an application-specific integrated circuit (ASIC), an
FPGA uses a hardware description language to physically configure the array of logic
gates on the chip. However, as opposed to ASICs, FPGAs are reconfigurable after their
manufacturing, which makes them more versatile and often less expensive for small-scale
production volumes.

Owing to their flexibility, high-bandwidth, and computational speed, FPGAs are widely
used in avionics guidance systems for aerospace and defence technologies, real-time signal
processing, and computer vision. Other common applications include high-performance
computing applied to bioinformatics, data mining systems, Monte Carlo simulations, and
stochastic simulations of chemistry. Recently, companies such as Intel and Microsoft have
started using FPGAs to accelerate computationally intensive systems such as data centres
and AI research. Most of these applications rely on the FPGA’s ability to process very large
amounts of data as fast as possible.

In this thesis, I used GPUs as a hardware platform for accelerating numerical solutions
to the time-dependent Schrödinger equation. As a future project, FPGA hardware could be
introduced to physics simulations as a novel tool to solve problems that are currently out
of reach for traditional CPU or GPU calculations. The simulation of quantum systems is
a task that would greatly benefit from FPGA acceleration. The integrated components on
FPGAs are particularly useful for this kind of simulation. A large amount of digital signal
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processors (DSPs) on-board allows for efficient Fourier Transforms (for momentum-based
solutions) and moving average filters (for spatial solutions) without the large overhead that
accompanies these algorithms in CPUs and GPUs. I have observed that these are the limiting
steps in my quantum simulations and thus have preliminary evidence that FPGA systems
would provide a significant acceleration over current GPU implementations. Eliminating this
GPU bottleneck opens up the possibility of simulating more complicated systems in shorter
times.

With the arrival of noisy intermediate-scale quantum computers, the need for validation
of these systems is now evident. Currently, it is impossible to test if systems of a few
particles are controlled accurately. Many quantum-computer simulators are currently being
developed [128], but these all assume well defined qubit states, which is not necessarily
the case for many experimental systems. With a new FPGA-based technology, it would be
possible to investigate quantum systems at the hardware level and possibly even simulate
some biochemical molecules.

Furthermore, a more complete numerical model for quantum mechanical simulations
would allow for an intuitive investigation of the foundations of quantum mechanics. There
are still some fascinating and paradoxical phenomena that are being discovered in the field
of quantum mechanics, but experimentally, it is difficult to create an apparatus capable of
showing these strange results. Experimentalists are often uncertain if their equipment will
yield the precision required to observe the quantum nature of particles. By extending my
current quantum solver to include decoherence and making adequate hardware available, it
will be possible to test the viability of experimental setups.
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A
DOUBLE-SLIT SIMULATION CODE

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 x = np.linspace(-200, 200, 1000)

5 dx = x[1] - x[0]

6 w = 0.1

7 xoffset = 40

8 re = ((w/np.pi)**(1/4)*np.exp(-w*(x-xoffset)**2/2) + (w/np.pi)**(1/4)*←↩
np.exp(-w*(x+xoffset)**2/2))/2

9 im = np.zeros(len(x))

10 V = np.zeros(len(x))

11 dt = 0.005

12 N = 100000

13 PrintStep = 100

14 aa = dt/dx**2

15 bb = 2*dt

16
17 psi2 = np.zeros((int(N/PrintStep),len(x)))

18 k = 0

19 for i in range(0, N):

20 if i % 2:
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21 for j in range(1,len(x)-2):

22 im[j] = im[j] + V[j]*bb*re[j] + aa*(2*re[j] - (re[j-1] + re[j←↩
+1]))

23 else:

24 for j in range(1,len(x)-2):

25 re[j] = re[j] - (V[j]*bb*im[j] + aa*(2*im[j] - (im[j-1] + im[j←↩
+1])))

26
27 if (i % PrintStep) == 0:

28 psi2[k] = re**2 + im**2

29 k = k + 1

30
31 plt.imshow(np.transpose(psi2), extent=[0,100,-200,200], aspect=0.1, ←↩

cmap='inferno', vmin=0, vmax=0.01)

32 plt.xlabel('x (nm)')

33 plt.ylabel('y (nm)')

34 # plt.savefig('DoubleSlit.png', dpi=600)

35 plt.show()

Listing A.1 Python solver for the double slit experiment



B
ROOT-OF-SWAP PARAMETERS

Parameter Value range
Distance between channels 80 nm
Tunnel coupled region start yd = 36 nm
Tunnel coupled region end yu = 144 nm
Interaction time τ = 36 ps
SAW amplitude ASAW = 25 meV
SAW wavelength λ = 1µm
SAW velocity v = 3 nm / ps
Harmonic channel confinement ω2

x = 0.002 meV
nm2me

Electron effective mass 0.067 me
Relative permitivitty (GaAs) 13.1
Gaussian tunneling barrier amplitude A1 = 15.3 meV
Gaussian tunneling barrier width σ1 = 30 - 40 nm
Gaussian barrier amplitude A2 = 510 meV
Gaussian barrier width σ2 = 0.8 nm
Transition between barrier heights σy = 10 nm
Coulomb softening ∆z = 10 - 100 nm

Table B.1 Ranges of parameter values used in simulations.
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Explicit form of the potentials used in Eq. 6.3, in terms of the parameters above, in the
reference frame of the SAW:

VD(x,y) =
me

2
ω

2
x x2 +A1 exp

(−x2

2σ2
1

)
+

A2

2
exp

(−x2

2σ2
2

)
×
(

2− tanh
(

y− yd

σy

)
− tanh

(
−y− yu

σy

))
,

(B.1)

VSAW(x, t) =
ASAW

2

(
1− cos

(
x− tv

λ

))
, (B.2)

VC(r) =
e2

4
√

2πε∆zU(−1
2 ,0,

r2

2∆2
z
)
, (B.3)

where U is the confluent hypergeometric function of the second kind, which encapsulates a
Gaussian spread with standard deviation ∆z in the z-dimension:

U(a,b,z) =
1

Γ(a)

∫
∞

0
e−ztta−1(1+ t)b−a−1dt. (B.4)



C
HETEROSTRUCTURE LAYERS

Layer Material Thickness (nm)
GaAs 50.0
GaAs 5.0
AlAs 5.0
GaAs 650.0
Al0.34Ga0.66As 45.0
Si-Delta 0.0
Al0.34Ga0.66As 4.0
Al0.34Ga0.66As 46.0
GaAs 5.0

Table C.1 GaAs-AlGaAs heterostructure fabrication thickness.





D
SURFACE GATE CONFIGURATION

 

 

 

 

 

 

  

-1.19 V -1.35 V 

-0.95 V -0.95 V 

-0.95 V -0.95 V 

-1.17 V -1.27 V 

-0.95 V 

-0.95 V 

-0.95 V 

-0.95 V -0.95 V 

-0.80 V 

-0.95 V 

-0.95 V 

-0.95 V 

-0.95 V 

-0.81 V 

-0.81 V 

-0.80 V 

-0.88 V 

-0.96 V 

-0.84 V 

-0.96 V 

-0.90 V 

pulsing gate 

pulsing gate … 0 V; not used for directional coupler operation 

Sweep: 

VU from -1.3 to -1.5 V 

Sweep: 

VL from -1.5 to -1.3 V 
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