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1. Introduction

In his important papers [16], [17], Wiles proved in most cases the so-called main con-
jecture for the cyclotomic Zp-extension of any totally real base field F , for all odd
primes p, and for all abelian characters of Gal(Q̄/F) (we say most cases because his
work only establishes the main conjecture up to µ-invariants for those abelian char-
acters whose order is divisible by p). It would be technically too difficult for us in
these introductory lectures to attempt to explain his proof in this generality. Instead,
we have chosen the much more modest path of giving a sketch of his proof in the very
special case that F = Q, and for all abelian characters of Q of p-power conductor.
In fact, our account of Wiles’ proof in this case has been directly inspired by a series
of lectures on this theme, which we attended, given by Chris Skinner in an instruc-
tional conference held at the Centre of Mathematical Sciences, Zhejiang University,
Hangzhou, China, in August 2004. As Skinner’s lectures were not written up, we
thought it worthwhile to give here his account, insisting however that all inaccuracies
in our version are of our own making. We remark that the proof as we have presented it
here, makes use of the Ferrero-Washington theorem, asserting that µ = 0 for the field
obtained by adjoining all p-power roots of unity to Q. However, we are grateful to
C. Skinner for many helpful comments on our notes, including pointing put to us that
a simple variant of the proof presented here avoids the use of the Ferrero-Washington
theorem. We also stress that Wiles, in his work on the general case, had to overcome
many addtional technical difficulties, for example the existence of the so-called trivial
zeroes of p-adic L-function, and the fact that Leopoldt’s conjecture is unknown for
arbitrary totally real base fields. Moreover, at that time, it was not even known how to
formulate the µ-invariant part of the main conjecture when the order of the character
is divisible by p, whereas today we know how to do it in terms of K-theory. We also
mention that other proofs of the main conjecture are known in this special case when
F = Q (see [10], [14], [4]), but none of these generalise to base fields other than
Q. Finally, we thank the Department of Mathematics at POSTECH, South Korea, for
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providing us with excellent working conditions during the preparation of the written
version of our lectures.

In what follows, F will denote a totally real number field, and p is an odd prime.
We write �p for the set of primes of F above p. As always, µp∞ is the group of all
p-power roots of unity. The cyclotomic character is denoted by

χF : Gal(Q̄/F)→ Z×p ,

so that σ(ζ ) = ζχF (σ ) for all σ in the Galois group and ζ in µp∞ . Let δ be the exten-
sion degree [F(µp) : F], and put� = Gal(F(µp)/F). The cyclotomic Zp-extension
of F contained in F(µp∞) is denoted by Fcyc and we put � = Gal(Fcyc/F) so that
� � Zp. Recall that Leopoldt’s conjecture for F is equivalent to the assertion that
Fcyc is the unique Zp-extension of F . Finally for a complex variable s, ζ(F, s) will
denote the complex zeta function of F , which is defined by

ζ(F, s) =
∏

v

(1− (Nv)−s)−1, Re(s) > 1.

In this first section, we state the “main conjecture” for our totally real number field
F , but restricting our attention to powers of the Teichmüller character of F , rather
than arbitrary abelian characters. Our starting point is the following theorem proved
by Siegel [15].

Theorem 1.1 (Siegel). For all even integers n > 0, we have ζ(F, 1− n) ∈ Q.

Siegel gave some nice formulae which allow one to compute these values by hand in
some cases. For instance, if F = Q(θ), where θ is a root of x3 − 9x + 1, and F has
discriminant 3× 107. We have

ζ(F,−1) = ±1, ζ(F,−3) = ±3 · 5 · 37

2
.

Definition 1.2. Let G be any profinite group. The Iwasawa algebra 	(G) of G, is
defined as

	(G) = lim←−
U

,Zp[G/U ],

where U runs over all open normal subgroups of G.

The ring 	(G) has a second interpretation as the ring of Zp-valued measures on G.

Thus, given any continuous function f : G → Cp, where Cp = ˆ̄Qp, is the completion
of the algebraic closure of Qp for the p-adic topology, one can define the integral∫

G f dµ in Cp.

2. ppp-adic LLL-functions

In this section, we state the theorem of Cassou-Noguès–Deligne–Ribet, (but only in
the special case we need) in various equivalent forms. Define

F∞ = F(µp∞), F∞ = F(µp∞)
+, G = Gal(F∞/F), G = Gal(F∞/F).
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Definition 2.1. An element µ of the fraction ring of 	(G) is a pseudo-measure if
(σ − 1)µ ∈ 	(G) for all σ in G.

We also put
ζ (p)(F, s) = ζ(F, s)×

∏

v |p
(1− (Nv)−s). (1)

Two different proofs of the following theorem were given about the same time by
Deligne–Ribet [5] and P. Cassou-Noguès [3].

Theorem 2.2 (Deligne–Ribet, Cassou-Nogués). There exists a unique pseudo-
measure µF,p on G such that, for all even integers k > 0, we have

∫

G
χ k

F dµF,p = ζ (p)(F, 1− k).

There are several alternative ways of expressing this p-adic zeta function. We first
explain the definition in terms of branches. We have

Gal(F∞/F) = �× �,
where � is isomorphic to Gal(F(µp)/F) and � is isomorphic to Gal(Fcyc/F). Put

ωF = χF |�, κF = χF |� .

It is traditional to call ωF the Teichmüller character of F . The distinct characters of�
are given by the ω j

F ( j = 0, . . . , δ−1). For s in Zp and j even, the p-adic L-function

L F,p(s, ω
j
F) is defined as follows.

Definition 2.3. For j even, L F,p(1− s, ω j
F) =

∫
G ω

j
Fκ

s
F dµF,p.

It is immediate from the definition and the above theorem that, for all integers k > 0
with k ≡ j mod (p − 1), we have

L F,p(1− k, ω j
F) = ζ (p)(F, 1− k).

The method of proof of the theorem shows more generally that, for all integers k > 0,
we have

L F,p(1− k, ω j
F) = L(p)(F, 1− k, ω j−k

F ); (2)

here L(F, s, ω j−k
F ) denotes the complex L-function of ω j−k

F , and L(p)(F, s, ω j−k
F )

means this complex L-function with the Euler factors of the primes dividing p
removed.
There is yet another way of expressing these p-adic L-functions. We note that

	(G) = Zp[�′][[�]], where �′ = Gal(F(µp)
+/F).

Let e
ω

j
F

( j even) be the idempotent of ω j
F in Zp[�′]. Then

Zp[�′] =
⊕

j mod δ
j even

e
ω

j
F

Zp[�′],



116 J. Coates and R. Sujatha

and evaluation at w j
F defines a Zp-isomorphism from e

ω
j
F
Zp[�′] to Zp. Thus there is

a canonical decomposition

	(G) �
⊕

j mod δ
j even

	(�).

Now fix a topological generator γ of �. There is a unique Zp-algebra isomorphism
from 	(�) onto Zp[[T ]] which maps γ to 1+ T . Define

u = χF (γ ).

Hence the theorem of Cassou-Noguès–Deligne–Ribet can be stated as follows.

Theorem 2.4. For each even integer j mod δ, there exists W
ω

j
F
(T ) in Zp[[T ]] such

that

L F,p(s, ω
j
F) =





W
ω

j
F
(us − 1) if j �≡ 0 mod δ

(W
ω

j
F
(us − 1))/(u1−s − 1) if j ≡ 0 mod δ.

3. Statement of the “Main Conjecture”

We now give the statement of the “main conjecture” (Wiles’ theorem) in various
equivalent forms, but just for the even powers of ωF . It turns out to be natural to
consider two arithmetic G-modules when one formulates this main conjecture. First,
let M∞ be the maximal abelian p-extension of F∞, which is unramified outside the
primes of F above p. Put

Y∞ = Gal(M∞/F∞). (3)

Then Y∞ is a compact Zp-module, which can be endowed with a continuous action
of G = Gal(F∞/F) by defining σ(y) = σ̃ yσ̃−1, σ ∈ G, y ∈ Y∞), where σ̃ denotes
any lifting of σ to Gal(M∞/F). This G-action extends by linearity and continuity to
an action of the Iwasawa algebra 	(G). It is easy to see that Y∞ is finitely generated
over 	(G). A module N over 	(G) is said to be 	(G)-torsion if every element of N
is annihilated by a non-zero divisor in 	(G).

Theorem 3.1 (Iwasawa [8]). The module Y∞ is 	(G)-torsion.

For the second module, let L∞ be the maximal unramified abelian p-extension of
F∞ = F(µp∞), and put

X∞ = Gal(L∞/F∞). (4)

Analogously, X∞ is also a module over the Iwasawa algebra 	(G). It is finitely
generated over 	(G), and we have:

Theorem 3.2 (Iwasawa). The module X∞ is 	(G)-torsion.
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Since p is odd, we can decompose X∞ as

X∞ = X+∞ ⊕ X−∞,

where X ε∞ (ε = ±1) denotes the submodule of X∞ on which the complex conjuga-
tion in G acts by ε.Very little is known about X+∞ (Greenberg has conjectured that X+∞
is finite for all F and all p, but no progress has been made towards the proof). How-
ever, there is a well-known connexion between the 	(G)-modules Y∞ and X−∞. If V
is any 	(G)-module, then we can change the action of G as follows. Firstly, we can
define the new action of G by inverting the old action, i.e. defining σ−1(m) to be the
new action of σ in G on m in V . We denote this new 	(G)-module by V •. Secondly,
we can twist by the inverse of the cyclotomic character, i.e. taking the new action of
σ on m to be χF(σ )

−1σ(m). We denote this new 	(G)-module by V (−1). The proof
of the following theorem uses both Kummer theory and the fact that all primes of F
above p are ramified in Fcyc.

Theorem 3.3. There is a 	(G)-homomorphism from (X−∞)• to Y∞(−1), with finite
kernel and cokernel.

Thanks to this theorem, we can state the “main conjecture” in two equivalent forms.
As G = �′ × �, where �′ is cyclic of order dividing p − 1, there is a classical
structure theory for finitely generated torsion 	(G)-modules (cf. [2], [4, Appendix]).
It asserts that, if V is any finitely generated torsion	(G)-module, there exists an exact
sequence of 	(G)-modules

0→
r⊕

i=1

	(G)/ fi	(G)→ V → D→ 0,

where f1, . . . , fr are non-zero divisors in 	(G), and D is finite. Note that the map
on the left is injective because the module ⊕r

i=1	(G)/ fi	(G) has no non-zero finite
	(G)-submodule. We then define the characteristic ideal charG(V ) of V by:

charG(V ) = f1 . . . fr	(G).

The kernel of the augmentation homomorphism 	(G)→ Zp is denoted by I (G).

Theorem 3.4 (“Main Conjecture”-first version). We have

charG(Y∞) = µF,p I (G),

where µF,p is the Deligne-Ribet–Cassou–Noguès pseudo-measure on G.

For the second version, we break the modules Y∞ and X∞ into eigenspaces for the
action of� = Gal(F(µp)/F). If V is any	(G)-module, then we can decompose it as

V =
⊕

j mod δ

V ( j), where V ( j) = e
ω

j
F

V .

We view each V ( j) separately as a	(�)-module. Recall that we have fixed a topologi-
cal generator γ of �, which gives rise to an isomorphism of rings

	(�) � Zp[[T ]].
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Analogously to the above, we can define the characteristic ideal char�(M) of any
finitely generated torsion 	(�)-module M . We recall that W

ω
j
F

denotes the power

series in Zp[[T ]] which gives the p-adic L-function L F,p(s, ω
j
F) as explained in the

last result of §2.

Theorem 3.5 (“Main Conjecture”-second version). Let i be any odd integer mod δ.
Then

char�(X (−i)∞ ) = W
ωi+1

F
(T )Zp[[T ]]. (5)

To prove the equivalence of the two versions, we note that if Hi (T ) is a generator
of the characteristic ideal of X (−i)∞ (i odd), then Hi (u(1+ T )−1 − 1) is a generator of
the characteristic ideal of Y (i+1)∞ .

4. Overview of the proof of the main conjecture when F = QF = QF = Q

In the remainder of these notes, we shall explain Wiles’ proof of Theorem 3.5, but
only in the special case when F = Q. It is fair to say that the principles of the proof
remain the same for an arbitrary totally real field F . Nevertheless, there are dramatic
simplifications which occur when F = Q (for example Lemma 4.1 below does not
have an elementary proof for fields other than Q, nor do we know for such fields
the analogue of the Ferrero-Washington theorem nor Leopoldt’s conjecture). Also, for
F = Q, we need only work with elliptic modular forms rather than Hilbert modular
forms.

We assume from now on that F = Q, so that δ = p − 1. We also simply write χ
and ω rather than χQ and ωQ. Moreover, we choose γ to be the unique topological
generator of � such that χ(γ ) = 1+ p. We have the classical formula

ζ(Q, 1− k) = −Bk/k (k = 2, 4, 6 . . . )

where the Bernoulli numbers are defined by the expansion

t/(et − 1) =
∞∑

n=0

Bntn/n!.

We begin with a classical lemma, which enables us to discard two eigenspaces in
the proof of Theorem 3.5 (and these eigenspaces cause technical difficulties in Wiles’
proof).

Lemma 4.1. If i ≡ ±1 mod (p − 1), we have that X (−i)∞ = 0 and Wωi (T ) is a unit in
Zp[[T ]]. Thus the assertion (5) holds for these two eigenspaces.

Proof. We first consider the case when i ≡ −1 mod (p − 1). The fact that Wω0(T )
is a unit in Zp[[T ]] can be seen, for example, using the classical von Staudt Clausen
theorem, which asserts that ordp(Bp−1) = −1. Then

Wω0((1+ p)2−p − 1) = (1+ p)p−1 − 1)× LQ,p(2− p, ω0) = Bp−1

p − 1
(1− p p−2).
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Since ordp((1 + p)p−1 − 1) = 1, it follows that Wω0((1 + p)2−p − 1) is a p-adic
unit, and hence Wω0(T ) is a unit in Zp[[T ]]. On the other hand, class field theory
for Q proves that Qcyc is the maximal abelian p-extension of Q unramified outside
p, whence it follows easily that Y 0∞ = 0, where Y∞ is given by (3) above. Since Y∞
is pseudo-isomorphic to (X∞)•(1) by Theorem 3.3, we conclude that X (1)∞ is finite.
In fact, it is well-known that X−∞ has no non-zero finite �-submodule, and so it follows
that X (1)∞ = 0. Next assume that i ≡ 1 mod (p − 1), and that p �= 3. Then ω2 �= ω0,
and we have

Wω2((1+ p)−1 − 1) = LQ,p(−1, ω2) = −B2

2
(1− p).

Since B2 = 1/6, we see that Wω2((1+ p)−1− 1) is a p-adic unit, and so Wω2(T ) is a
unit in Zp[[T ]]. On the other hand, a classical argument in Iwasawa theory shows that

(X (−1)∞ )� = C(−1), (6)

where C denotes the p-primary subgroup of the class group of Q(µp). Then, using

Nakayama’s lemma, it will follow from (6), that X (−1)∞ = 0, provided we can show
that C(−1) = 0. To prove this last assertion, we note that the classical theorem of
Stickelberger shows that C(−1) is annihilated by L(Q, 0, ω). However,

L(Q, 0, ω) = LQ,p(0, ω2) = Wω2(0),

and this last quantity is a p-adic unit because Wω2(T ) is a unit in Zp[[T ]]. This com-
pletes the proof of the lemma. �

From now on, i will be an odd integer mod (p − 1) satisfying

i �≡ −1 mod (p − 1). (7)

If d is in Z×p , we write d = ω(d)(1+ p)ed , with ed in Zp.

The strategy for proving Theorem 3.5 is as follows. Let	 = Zp[[T ]] be the ring of
formal power series in T with coefficients in Zp. We recall that the Iwasawa algebra
	(�) is identified with 	 by mapping our canonical generator γ to (1 + T ). In view
of Lemma 4.1 and the analytic class number formula, it can be shown by a classical
argument going back to Iwasawa that it suffices to prove that, for all odd integers
i mod p − 1, with i �≡ ±1 mod p − 1, we have

char�(X (−i)∞ ) ⊂ Wω(i+1) (T )	. (8)

The proof employs techniques from modular forms to prove this assertion, and we
quickly give some indications now of the underlying ideas. Let E (i)(T ) be the element
of the formal power series ring 	[[q]], which is defined by

E (i)(T ) = A(i)0 (T )+
∞∑

n=1

A(i)n (T )q
n, (9)
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where

A(i)0 (T ) = Wωi+1 ((1+ T )−1− 1)/2, with LQ,p(s, ω
i+1) = Wωi+1 ((1+ p)s − 1),

(10)
and

A(i)n (T ) =
∑

d|n
(d,p)=1

ωi(d)(1+ T )ed (n ≥ 1);

here we are viewing ω as a Dirichlet character modulo p in the usual fashion, and
as above, we have written d = ω(d)(1 + p)ed . This formal power series is the pri-
maeval example of a Hida family (see [7]). For each integer k ≥ 2, and any inte-
ger j mod (p − 1), let Mk(p, ω j ,Zp) denote the space of classical modular forms
of level p, character ω j , and with coefficients in Zp. We recall that the 	-module
M(1, ωi ,	) of Hida modular forms of level 1, character ωi , with coefficients in 	
is defined to be the 	-submodule of 	[[q]] consisting of f such that φk( f ) belongs
to Mk(p, ω1+i−k,Zp), for all but a finite number of integers k ≥ 2. Here φk is the
Zp-algebra homomorphism from 	[[q]] to 	 defined by

φk

( ∞∑

n=1

an(T )q
n

)
=
∞∑

n=1

an((1+ p)k−1 − 1)qn . (11)

For each prime l, we have the Hecke operators Tl in End	(M(1, ωi ,Zp)), and also
the operators Sl for all l (see [7]). In the next section, we shall give the proof of the
following theorem, which is basic for all of our subsequent arguments.

Theorem 4.2. Assume (7). Then E (i)(T ) belongs to M(1, ωi,	). Moreover, we have
Tp(E (i)(T )) = E (i)(T ), and for each prime l �= p,

Tl(E (i)(T )) = (1+ ωi(l)(1+ T )el )E (i)(T ),
Sl(E (i)(T )) = ωi(l)l−1(1+ T )elE (i)(T ).

We recall that a classical modular form is said to be ordinary at p if its p-th Fourier
coefficient is a p-adic unit. Let Mord(1, ωi ,	) denote the space of ordinary 	-adic
modular forms of level 1 and character ωi . By definition, it is the 	-submodule con-
sisting of all f in M(1, ωi ,	) such that φk( f ) is a classical ordinary modular form
for all but a finite number of integers k ≥ 2. An important theorem of Hida (see [7])
asserts that Mord(1, ωi,	) is a free 	-module of finite rank. Since the Hecke oper-
ator Tp fixes E (i)(T ), it follows that E (i)(T ) belongs to Mord(1, ωi ,	), and in view
of the above theorem, this leads to the definition of the Eisenstein ideal, which plays
a central role in Wiles’ proof. Let Hi be the 	-subalgebra of the endomorphism ring
of Mord(1, ωi ,	) which is generated by the identity, the Hecke operators Tl for all
primes l, and by the Sl for all primes l �= p.

Definition 4.3. The Eisenstein ideal Ii is the ideal of Hi generated by Tp − 1 and
Tl − 1− ωi(l)(1+ T )el , Sl − ωi(l)l−1(1+ T )el for all primes l �= p.

It is clear from Theorem 4.2 that E (i)(T ) is annihilated by the Eisenstein ideal Ii .
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Although the Eisenstein ideal is an ideal in the Hecke algebra Hi , we need rather
to work with the corresponding Hecke algebra for the ordinary 	-adic cusp forms.
Recall that S(1, ωi,	) denotes the 	-submodule of M(1, ωi ,	) consisting of all f
such that, for all but a finite number of integers k ≥ 2, φk( f ) belongs to the space
Sk(p, ωi+1−k,Zp) of classical cusp forms of level p, character ωi+1−k , weight k, and
with coefficients in Zp. Also, define

Sord(1, ωi ,	) = S(1, ωi ,	) ∩Mord(1, ωi,	).

Then the operators Tl (l any prime) and Sl (l any prime �= p) leave Sord(1, ωi ,	)

stable. We can therefore define Ti to be the 	-subalgebra of End	(Sord(1, ωi ,	))

which is generated by the identity, Tl (for all l) and the Sl (for all l �= p). Moreover,
restriction to the subspace Sord(1, ωi ,	) clearly gives a canonical surjection from Hi

onto Ti , which allows us to view Ti as a Hi -module.
The first key step in the proof of (8) is the following:

Theorem 4.4. For all odd integers i with i �≡ −1 mod (p − 1), we have

char	(Ti/IiTi) ⊂ A(i)0 (T )	. (12)

To complete the proof of (8), one has to relate the 	-module Ti/Ii Ti to the
	-module X (−i)∞ . This is a beautiful and highly non-trivial argument, which seems to
have been inspired by Ribet’s work [13]. We explain it in some detail in the latter part
of these notes. To carry it out, one is forced to enlarge the ring 	, first by replacing 	
by the ring 	O = O[[T ]], where O is the ring of integers of some finite extension of
Qp, and then by replacing 	O by the integral closure R of 	 in some finite extension
of the fraction field of 	O.

5. Eisenstein Families

The proof of Theorem 4.2 is entirely elementary, and we now give it. We continue to
assume that i is an odd integer mod (p − 1), satisfying (7). Throughout, k will be an
integer ≥ 2, and, if f (T ) is any element of	, we recall that φk( f ) = f ((1+ p)k−1−
1). The Weierstrass preparation theorem in 	 shows that φk( f ) = 0 for infinitely
many integers k ≥ 2 if and only if f = 0.

Put

φk(E (i)(T )) =
∞∑

n=0

a(k)n qn .

From the definition of E (i)(T ), we have

(i) a(k)0 = φk(A
(i)
0 (T )) = LQ,p(1− k, ωi+1)/2 = L(p)(Q, 1− k, ωi+1−k)/2, (13)

(ii) a(k)n = φk(A
(I )
n (T )) =

∑

d|n
(d,p)=1

ωi+1−k(d)dk−1 (n ≥ 1). (14)
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We first show that E (i)(T ) belongs to M(1, ωi ,	). Suppose first that ωi+1−k �= 1, or
equivalently that ωi+1−k has conductor p. It follows that

a(k)0 = 1/2 L(Q, 1− k, ωi+1−k), ca(k)n =
∑

d|n
ωi+1−k(d)dk−1 (n ≥ 1).

Thus φk(E (i)(T )) is the classical Eisenstein series of weight k, level p, and character
ωi+1−k . On the other hand, if ωi+1−k = 1, we see that

φk(E (i)(T )) = Ek(z)− pk−1 Ek(pz)

where Ek is the classical Eisenstein series of weight k and level 1 given by

Ek = ζ(Q, 1− k)/2 +
∞∑

n=1




∑

d|n
dk−1



 qn. (15)

Hence in all cases, φk(E (i)(T )) belongs to Mk(p, ωi+1−k,Zp), and this shows that
E (i)(T ) is in M(1, ωi ,	).

For simplicity, write Tl for both the classical and 	-adic Hecke operator attached
to a prime number l. To show that TpE (i)(T ) = E (i)(T ), we must prove that

Tp φk(E (i)(T )) = φk(E (i)(T ))

for all integers k ≥ 2. In other words, we must prove that a(k)n = a(k)np for all integers

n ≥ 1. But this last equation is obvious from the explicit expression (ii) above for a(k)n

when n ≥ 1.
Now assume that l is a prime different from p. By the defintion of the Hecke oper-

ator Tl , we have

Tl(E (i)(T )) =
∞∑

n=0

B(i)n (T )qn,

where
B(i)n (T ) = A(i)nl (T )+ δlω

i(l)ωi(l)(1+ T )el A(i)n/l (T );
here δl = 0 or 1, according as (l, n) = 1 or l|n. Thus, to prove the assertion of
Theorem 4.2 for the operator Tl , we must show that, for all n ≥ 0, we have

B(i)n (T ) = (1+ ωi (l)(1+ T )el ) A(i)n (T ). (16)

This last equation is obvious when n = 0, and so we may assume that n > 0. Suppose
first that (l, n) = 1. In view of this last assertion, every positive divisor of nl is of the
form j or j l, where j runs over all positive divisors of n. But, by definition, we then
have

B(i)n (T ) = A(i)nl (T ) =
∑

j |n
( j,p)=1

ωi ( j)(1+ T )el +
∑

j |n
( j,p)=1

ωi( j l)(1+ T )e jl .
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Since e jl = e j + el, the equation (16) follows immediately in this case. Next suppose
that l|n. Since δl = 1 in this case, we see immediately that

B(i)n (T ) =
∑

d|nl
(d,p)=1

ωi(d)(1+ T )ed +
∑

j l|n
( j,p)=1

ωi( j l)(1+ T )e jl .

Now we clearly have
∑

d|nl
(d,p)=1

ωi(d)(1+ T )ed =
∑

d1|n
(d1,p)=1

ωi(d1)(1+ T )ed1 +
∑

d2|n
(d2,p)=1

d2�n

ωi(d2)(1+ T )ed2 .

Since
∑

b|n
(b,p)=1

ωi(bl)(1+ T )ebl =
∑

j l|n
( j,p)=1

ωi( j l)(1+ T )e jl +
∑

d2|nl
(d2,p)=1

d2�n

ωi (d2)(1+ T )ed2 ,

we see that we have again established equation (16). The proof of the final assertion
of Theorem 4.2 is straightforward and we omit the details.

6. Ribet’s theorem

Our aim in this section is to give a proof of Ribet’s theorem, which will serve as an
introduction to Wiles’ proof [17] of the Main Conjecture (Theorem 3.4).

We continue to assume that our base field F = Q, and we put K = Q(µp).

As earlier, � = Gal(K/Q), and ω is the character giving the action of � on µp. Let
C denote the p-primary subgroup of the ideal class group of K . Then, as before, we
have the decomposition

C =
⊕

i mod (p−1)

C(i),

where C(i) = eωiC.
Theorem 6.1 (Ribet [13]). Assume k is an even number with 2 ≤ k ≤ p − 3. If an
odd prime p divides the numerator of ζ(Q, 1− k), then C(1−k) �= 0.

We are grateful to Skinner for communicating to us the following elegant variant of
Ribet’s original proof. We may assume that p > 7, since

ζ(Q,−1) = −1/12, ζ(Q,−3) = 1/120.

Also,
ζ(Q,−5) = −1/252.

Hence the classical Eisenstein series E4 and E6 (see (15)) have p-adic integral Fourier
expansions, with constant terms which are p-adic units. As k is even, we can find
integers a, b ≥ 0 so that k = 4a + 6b. Put g = Ea

4 Eb
6 , and define

h = Ek − (a0(g)
−1ζ(Q, 1− k)/2)g,
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where a0(g) denotes the constant term of the q-expansion of g. In general, if f is any
classical modular form, we write

∑∞
n=0 an( f )qn, for its Fourier expansion.

Since p is assumed to divide the numerator of ζ(Q, 1− k), we conclude that

an(h) ≡ an(Ek)mod p (n ≥ 1).

In particular, we obtain

ap(h) ≡ 1+ pk−1 ≡ 1 mod p

al(h) ≡ 1+ lk−1 ≡ 1+ ωk−1(l)mod p (l �= p). (17)

Let Sord
k (p,Zp) denote the space of ordinary cusp forms of weight k, level p and

coefficients in Zp. The Hecke operators Tl (l any prime) and Sl (l any prime
�= p) leave Sord

k (p,Zp) stable, and we define Tk,p to be the Zp-subalgebra of
End Zp(S

ord
k (p,Zp)) generated by these operators and the identity endomorphism.

Since Sord
k (p,Zp) is a free Zp-module of finite rank, Tk is also a free Zp-module

of finite rank. If t is in Tk,p, we shall follow classical notation and write f |t for the
image under t of an element f of Sord

k (p,Zp). We now define a Zp-algebra homo-
morphism

πk : Tk,p → Fp

by
πk(t) = a1(h|t) mod p. (18)

Let M = Ker (πk). Since (17) shows that, for all primes l �= p, we have

πk(Tl) ≡ al(h) ≡ 1+ ωk−1(l) mod p, (19)

we see immediately that, for all l �= p,

Tl − 1− ωk−1(l) ∈M. (20)

Take p to be any minimal prime of Tk,p which is contained in M. Since Tk,p/p is a
commutative ring that is free of finite rank as a Zp-module, it has Krull dimension 1.
We can therefore find an injective ring homomorphisn

ψ : Tk,p/p ↪→ Q̄p.

Write O for the ring of integers of the field of fractions of the image of ψ. Clearly
O has Krull dimension one as p is minimal. By the duality between Hecke algebras
and modular forms (see for example, [1, 6.5]), it is a classical result (see [6, pp. 325–
328]) that the element ψ ∈ Hom O(Tk,p/p,O) corresponds to a primitive eigenform
f ∈ Sord

k (p,O) such that
Tl( f ) = al( f ) · f

where al( f ) = ψ(Tl) for all primes l. On the other hand, if π is a uniformiser of O,
then

al( f ) ≡ 1+ ωk−1(l) mod π, l �= p, and ap( f ) ≡ 1 mod π. (21)
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Since f is a primitive eigenform, there is an associated irreducible Galois represen-
tation (see [1, §6])

ρ = ρ f : GQ → GL2(K )

where K is the fraction field of O. Choosing a lattice stable under GQ, we may assume
that

ρ : GQ → GL2(O).
Let Dp denote the decomposition group at p. By the hypothesis that f is ordinary, we
have (see [11])

ρ|Dp
�

(
ψ1 ∗
0 ψ2

)
.

where ψ2 is an unramified character with ψ2(Frobp) = ap( f ), and Frobp is the
Frobenius at p. By conjugating with the element

( 0 1
1 0

)
, we may write

ρ|Dp
=

(
ψ2 0

∗ ψ1

)
. (22)

Further, as ρ is unramified outside p, we have

det(ρ(Frobl)) = lk−1, l �= p,

and hence
det(ρ) = χ k−1,

where, as before, χ = χQ is the cyclotomic character. Thus, as ψ2|Ip
= 1, we have

ψ1|Ip
= det ρ|Ip

= χ k−1
|Ip

.

But ω = χ mod π , and hence

ψ1|Ip
≡ ωk−1 mod π, and ωk−1 �≡ 1 mod π as k is even.

We therefore conclude that there exists an element σ0 ∈ I p such that ψ2(σ0) = 1 and
ψ1(σ0) = α, with α ∈ O× and α �≡ 1 mod π. As ρ(σ0) has distinct eigenvalues 1
and α, we can choose a new O-basis for the representation ρ such that (22) remains
valid and we have

ρ(σ0) =
(

1 0
0 α

)
, (23)

For σ in Gal(Q̄/Q), write

ρ(σ) =
(

aσ bσ
cσ dσ

)
.

By (22), we have bσ = 0 for σ in I p, and as ρ is unramified outside p, bσ = 0 for
σ in Il (l �= p). Further, as ρ is irreducible, there exists an element τ in Gal(Q̄/Q)
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such that bτ �= 0. Let τ0 be an element in Gal(Q̄/Q) with the property that ordπ(bτ0)

is minimal among all such choices of τ , and put n = ordπ(bτ0). Replacing ρ by
(

1 0
0 πn

)
ρ

(
1 0
0 π−n

)
,

we may assume that n = 0, in other words, that bτ0 belongs to O×. Put F = O/πO
and let

ρ̄ : Gal(Q̄/Q)→ GL2(F)

be the residual representation of ρ mod π. By (21), we have

Trace(ρ̄) = 1+ ωk−1; det(ρ̄) = ωk−1. (24)

Let ρ̄ss be the semi-simplification of the residual representation ρ̄. Since ρ̄ss and
1 ⊕ ωk−1 are two semi-simple representations over F with the same characteristic
polynomials, thanks to (24), we conclude from the Brauer-Nesbitt theorem, that

ρ̄ss = 1⊕ ωk−1.

From (22) and (23),and the fact that ωk−1 is ramified at p, we conclude that ρ̄ is of
the form (

1 0

0 ωk−1

)
,

(
1 0

∗ ωk−1

)
, or

(
1 ∗
0 ωk−1

)
, (25)

with the second two possibilities non-split. From the non-vanishing of b̄τ0,we see that
it must be the third possibility. In other words, we have

ρ̄(σ ) =
(

1 b̄σ
0 ωi(σ )

)

for all σ in Gal(Q̄/Q). Let F(ω1−k) denote the F-vector space of dimension one on
which Gal(Q̄/Q) acts via the character ω1−k .Define a map h in H1(GQ,F(ω

1−k)) by

h : Gal(Q̄/Q)→ F(ω1−k)

σ �→ ω1−k(σ )b̄σ .

As

bστ = bτ + bσω
k−1(τ ),

it follows that h is a 1-cocycle on Gal(Q̄/Q) with values in F(ω1−k). Moreover, h is
an unramified cocycle because bσ = 0 for all σ in I p, and also in Il , for all l �= p
any prime, because the representation ρ is unramified outside p. Thus we obtain an
unramified 1-cocycle in h̄ in H1(Gal(Q̄/Q,F(ω1−k)). On the other hand, as � =
Gal(Q(µp)/Q) has order prime to p, we see that

H1(Gal(Q̄/Q,F(ω1−k)) = Hom�(Gal(Q̄/Q(µp)),F(ω
1−k)).

Moreover, as b̄τ0 is not zero, it is plain that h̄ is non-zero. Hence, by class field theory,
we must have Hom�(C(1−k),F(ω1−k)) is not equal to zero. Thus C(1−k) �= 0, thereby
proving Ribet’s theorem. �
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7. 			-adic setting for the main conjecture

The aim of this section is to prove Theorem 4.4, and thus we fix for the rest of this
section an odd integer i with i �≡ −1 mod (p − 1).

Let O be the ring of integers of a finite extension of Qp, and 	O the ring of
formal power series in T with coefficients in O. We can then consider the spaces
Mord(1, ωi ,	O) ⊇ Sord(1, ωi ,	O), and define the objects Hi , Ti , Ii made with 	
replaced by 	O. It is then very easy to see that it suffices to prove the assertion in
Theorem 4.4 with 	 replaced by 	O . Thus, from now on, we shall work with the
objects formed with 	O, with O sufficiently large.

We must invoke the Ferrero-Washington theorem, which asserts that p does not
divide the power series A(i)0 (T ). Thus, taking O sufficiently large, we can write

A(i)0 (T ) =
ni∏

r=1

(T − α(i)j )B
(i)
0 (T ),

where all of the roots α(i)j belong to O, and B(i)0 (T ) is a unit in	O. Choose an integer
m > 0 with m ≡ 0 mod (p − 1) such that

{α(i)j : j = 1, . . . , ni} ∩ {(α(i)j + 1)(1+ p)m − 1 : j = 1, . . . , ni } = ∅. (26)

We now define

H = E (i)((1+ T )(1+ p)−m − 1) · Em .

Put

H =
∞∑

n=0

a0(H)q
n .

Lemma 7.1. H belongs to M(1, ωi ,	O). Moreover, the formal power series a0(H)
has no zero in common with A(i)0 (T ).

Proof. We deduce from (9) with i = 1 that

a0(H) = A(i)0 ((1+ T )(1+ p)−m − 1) · ζ(Q, 1− m)/2,

and conclude from (26) that a0(H) has no zero in common with A(i)0 (T ).
Since ωm = 1, we see immediately that φk(H) belongs to Mk(p, ωi+1−k,Zp) for

all sufficiently large integers k. Thus H belongs to M(1, ωi ,	O) and the proof of the
lemma is complete. �

Recall the Hida operator e on M(1, ωi ,	O) defined by the formula

e = lim
n→∞Tn!

p . (27)

where Tp is now the Hecke operator of p on M(1, ωi ,	O). We have [7]

Mord(1, ωi ,	O) = eM(1, ωi ,	O), Sord(1, ωi,	O) = eS(1, ωi ,	O).
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We then make the crucial definition

H ′ = e (a0(H)E (i) − A(i)0 H), (28)

so that H ′ belongs to Mord(1, ωi ,	O).

Lemma 7.2. In fact, H ′ belongs to Sord(1, ωi ,	O).

Proof. By construction a0(H ′) = 0. The assertion then follows from a general
theorem of Wiles (see [16] and [1, §7]). �

Now let p = (T −α(i)j )	O for some j , and put m = ordp(A
(i)
0 (T )). It follows from

Lemma 7.1 that ordp(a0(H)) = 0, or equivalently that a0(H)−1 belongs to	O,p, the
localisation of 	O at p. The Hecke algebra

Ti,p = Ti ⊗	O 	O,p

acts on
Sord(1, ωi ,	O)⊗	O 	O,p,

and we define the 	O,p-homomorphism

�i : Ti,p→ 	O,p/pm

by
�i (t) = a0(H)

−1 · a1(H
′|t)mod pm .

Lemma 7.3. We have �i (t) = a1(E (i)|t)mod pm . In particular Ii is contained in the
kernel of �i . Also, �i is surjective.

Proof. We have e E (i) = E (i), and so

H ′ = a0(H)E (i) − A(i)0 e H.

Thus
H ′|t = a0(H)(E (i)|t)− A(i)0 (e H |t).

Since A(i)0 ·	O = pm, the first assertion of the lemma follows. The second assertion
is then clear because Ii annihilates E (i). Finally, the surjectivity of�i is plain because
Ti contains the identity endomorphism. �

In view of the above lemma, we see that there is a surjective homomorphism

Ti,p/IiTi,p→ 	O,p/pm .

As this is true for every root of A(i)0 (T ), it follows that

char	O (Ti/IiTi ) ⊆ A(i)0 (T )	O.

This completes the proof of Theorem 4.4. �
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8. First part of the proof of the main conjecture

We continue to assume that i is an odd integer with i �≡ −1 mod (p − 1). Recall that
our goal is to prove that

char	(X
(−i)∞ ) ⊂ A(i)0 ((1+ T )−1 − 1)	, (29)

since, as remarked earlier (see Lemma 4.1, (8) and (10)), this implies the main con-
jecture (Theorem 3.5) by a classical argument due to Iwasawa [9].

In order to carry out our subsequent arguments, we have to enlarge the ring 	O.
The reason for this is the following. Let q1, . . . , qs be the minimal prime ideals of the
Hecke algebra Ti defined using 	O. By a theorem of Hida [7, Theorem 7, Chap. 7,
p. 221], all of the quotient rings T1/q j ( j = 1, . . . , s) are contained in the integral
closure R of 	O in a suitable finite extension of the quotient field of 	O . We shall
henceforth consider the spaces

Mord(1, ωi , R) ⊇ Sord(1, ωi , R),

and the endomorphism algebras Hi , Ti , and the Eisenstein ideal Ii , made by replacing
	O by the ring R. It follows that for this new Hecke algebra Ti with respect to the
ring R, we have ring isomorphisms

η j : Ti/q j � R (1 ≤ j ≤ s) (30)

for every minimal prime ideal q j of Ti . By the usual duality (see [7, Theorem 5,
Chap. 7]), there then exists unique normalized ordinary eigenforms

f j =
∞∑

k=1

ck( f j ) qk (1 ≤ j ≤ s),

whose Fourier coefficients ck( f j ) (k ≥ 1) are in R, such that

η j (Tl) = cl( f j ) (31)

for all prime numbers l. We remark that each homomorphism φk on 	O has a finite
number of extensions to the ring R, and each of the f j ’s can be specialised under all
these extensions to classical modular forms [7].

It is clear from the definition of the Eisenstein ideal that there is a natural surjection
as R-algebras from R onto Ti/Ii Ti , giving rise to an isomorphism

λi : R/Ji � Ti/IiTi (32)

for some ideal Ji of R. We now fix for the rest of this section a prime ideal P of height
one in R. Exactly the same arguments as those used to prove Theorem 4.4 show that
again we have

ordP(charR(Ti/Ii Ti)) ≥ ordP(A(i)0 (T )); (33)

here for any finitely generated torsion R-module M , charR(M) denotes its characteri-
stic ideal.
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The next important step in the proof of the main conjecture is to relate

ordP(charR(R/Ji)) = ordP(charR(Ti/IiTi )) (34)

to charR(X
(−i)∞ ⊗	 R) by an elaboration to the R-adic setting of Ribet’s arguments,

as set out in §6. First, we note that we may assume from now on that

ordP(A(i)0 ) > 0,

since otherwise there is nothing to prove in (29). In view of (32), it follows that
P ⊃ Ji .

Put
Ti,P = Ti ⊗R RP ,

where RP is the localization of R at P.Write q1, . . . , qn for the minimal prime ideals
of the localized Hecke algebra Ti,P . By a result of Hida [7, Theorem 4, Chap. 7], the
algebra Ti , and therefore also its localization Ti,P has no nilpotent elements. Thus
the natural R-algebra map

Ti,P →
n∏

j=1

Ti,P/q j �
n∏

j=1

RP (35)

is injective. Note also that RP is an integrally closed, local, Noetherian domain of
Krull dimension one, and hence is a discrete valuation ring.

Let us suppose that the indices are chosen so that the normalized ordinary eigen-
forms f1, . . . , fn correspond via (31) to those minimal prime ideals of Ti which, via
localization give q1, . . . , qn in Ti,P . Thanks to Hida (see [7, §7.5, Chap. 7]), there
exist irreducible Galois representations

ρ j : Gal(Q̄/Q)→ Aut(Vj ), ( j ≤ 1 ≤ n) (36)

where the Vj are vector spaces of dimension two over the fraction field of R, such that
ρ j is unramified outside of p and

Trace ρ j (Frobl) = cl( f j ) (l �= p). (37)

Moreover, we have
det ρ j = θi ,

where
θi : Gal(Q̄/Q)→ R×

is the unique homomorphism which factors through the quotient�×�, and is defined
on this quotient by

θi|� = ωi , θi(γ ) = 1+ T , (38)

where, as before, γ is our fixed topological generator of �.
Let Dp denote the decomposition group of a fixed prime of Q̄ above p and I p its

inertial subgroup. Since f1, . . . , fn are ordinary eigenforms, a theorem of Wiles [16]
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asserts that we can find an RP -basis of M j such that the restriction of ρ j to Dp relative
to this basis is of the form

ρ j|Dp
=

(
�
( j)
1 ∗
0 �

( j)
2

)

where �( j)
i and �( j)

2 are homomorphisms from Dp to R×P , with �( j)
2 |Ip

= 1. Conju-

gating by the matrix
( 0 1

1 0

)
, we may assume that

ρ j |Dp
=

(
�
( j)
2 0

∗ �
( j)
1

)
. (39)

We make one further modification of our RP -basis of M j . Since p is totally ramified in

Q(µp∞),we can fix a lifting γ̃ of γ to I p whose image in� is trivial. As�( j)
2 (γ̃ ) = 1,

and
�
( j)
2 �

( j)
1 = det ρ j |Dp

= θi |Dp
,

we obtain �( j)
1 (γ̃ ) = 1+ T . Since ρ j (γ̃ ) has the distinct eigenvalues 1 and 1 + T , it

is easy to see that we can choose a new basis of M j such that (39) still remains true
and, in addition,

ρ j (γ̃ ) =
(

1 0
0 1+ T

)
. (40)

Let w j be the basis element of M j , such that

ρ j (γ̃ )w j = (1+ T )w j . (41)

Define

V =
n⊕

j=1

Vj , M =
n⊕

j=1

M j , (42)

and

ρ =
n⊕

j=1

ρ j : Gal(Q̄/Q)→
n⊕

j=1

AutRP (M j ), (43)

and consider the element w in M defined as

w = w1 +w2 · · · + wn. (44)

We now consider the image, which we denote by �P , of the localized Hecke algebra
Ti,P in

∏n
j=1 RP under the injective map (35). Note that the image of the Hecke

operator Tp is a unit under (35) because the f j are ordinary eigenforms. Hence, by
(37) and (31), we conclude that �P is the RP -subalgebra generated by the identity
and all the 





n⊕

j=1

Trace(ρ j (Frobl), l �= p




 . (45)
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Similarly, we define

� ⊆
n⊕

j=1

R (46)

to be the R-subalgebra generated by the identity and the elements (45).

Definition 8.1. RP = �P [Gal(Q̄)/Q)],R = �[Gal(Q̄/Q)].

Of course, RP is a �P-algebra, and V and M (cf. (42)) have natural structures as
RP -modules with Gal(Q̄/Q) acting via ρ. Clearly, the homomorphism ρ of (43) can
be extended by �P -linearity to a map

ρ : RP →
n⊕

j=1

End RP (M j ). (47)

Obviously RP is non-commutative.

Definition 8.2. L = Rw and LP = RPw.

Recalling that RP is a discrete valuation ring, it is clear that LP is a free RP -module
of finite rank, since it is a submodule of the free RP -module M .

Lemma 8.3. The element T does not lie in the ideal P of R.

Proof. Assume T lies in P . As P is a prime ideal, its intersection with 	O would
then be T	O. Thus as we have assumed that ordP(A(i)0 (T )) > 0, it would follow that

A(i)0 (0) = 0, and hence L(0, ωi) = 0. But by (10),

A(i)0 (0) = L(Q, 0, ωi),

and the complex L-value on the right hand side is well-known to be non-zero. This
contradiction completes the proof of the lemma. �

Definition 8.4. The elements ε1 and ε2 in RP are defined as

ε1 = −1

T
(γ̃ − (1+ T )), ε2 = 1

T
(γ̃ − 1).

Obviously, we have
ε1 + ε2 = 1. (48)

Also,

ρ(ε1) =
⊕

j

(
1 0
0 0

)
, ρ(ε2) =

⊕

j

(
0 0
0 1

)
. (49)

The following lemma is then obvious:

Lemma 8.5. For all v in LP , we have

ε2
i v = εi v (i = 1, 2), ε1ε2v = ε2ε1v = 0. (50)

�
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Definition 8.6. L1,P = ε1LP , L2,P = ε2LP .

Plainly L1,P and L2,P are �P -modules such that LP = L1,P ⊕ L2,P . As �P is
commutative, the �P -Fitting ideals of both L1,P and L2,P are defined (see [12]).

Lemma 8.7. The �P -module L2,P is free of rank one, generated by w. In particular,
the �P -Fitting ideal of L2,P is zero.

Proof. First note that �Pw = �Pε2w, since ε2w = w. Hence �Pw ⊆ L2,P =
ε2LP . To prove the converse, for r in R, we write

ρ(r) =
⊕

j

(
ar, j br, j

cr, j dr, j

)
∈

⊕

j

M2(RP ),

whence

ρ(ε2r)w =
n∑

j=1

dr, jw j .

But dr, j = Trace ρ j (ε2r), so that ⊕ j dr, j is in �P . Thus ε2RPw is contained in
�Pw, proving that L2,P = �Pw.

To show that L2,P is free as a�P -module, suppose t �= 0 is an element of�P such
that tL2,P = 0. Then ρ j (tε2r)w j = 0 for all r in RP and 1 ≤ j ≤ n. Let j be such
that the j -th component of t is non-zero. Then we must have ρ j (tε2r)w j = 0 for all r
in RP . But then ρ j (ε2r) annihilates the whole of M j . By (49), this clearly implies that
ρ j is reducible as a representation of Gal(Q̄/Q), which contradicts the irreducibility
of the ρ j ’s. Finally, as the �P -annihilator if L2,P is zero, its �P -Fitting ideal is also
zero (see [12]). This completes the proof. �

Recall that we have extended ρ to a �P -linear homomorphism from RP to
⊕End RP (M j ) (47). For each r in RP , we can restrict ρ(r) to obtain a �P -linear
endomorphism of LP = RPw, which we denote by ρ̃(r). Since L1,P and L2,P are
�P -modules with LP = L1,P ⊕ L2,P , we can therefore write

ρ̃(r) =
(
Ar Br

Cr Dr

)
, (51)

where Ar belongs to Hom�P (L1,P ,L1,P), Br ∈ Hom�P (L2,P ,L1,P), Cr ∈
Hom�P (L1,P ,L2,P ), Dr ∈ Hom�P (L2,P ,L2,P).Note that by the previous lemma,
Hom�P (L2,P ,L2,P ) � �P .

We define Ii,P to be the ideal of �P which is the image of IiTi,P under the injec-
tion (35). Note that Ii,P is the ideal of �P generated by all elements of the form

⊕

j

(Traceρ j (Frobl)− 1− θi(Frobl)). (52)

Here we recall that
θi(Frobl) = ωi(l)(1+ T )el .
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Lemma 8.8. The following assertions hold:

(i) Bσ = 0 for all σ in the decomposition group Dp.
(ii) The �P -submodule of M generated by the images of all the maps Br , with r

ranging over R is equal to L1,P .
(iii) For σ in Gal(Q̄/Q), Dσ ≡ θi (σ )mod Ii,P , where θi is given by (38), and we

view Dσ as an element of �P .
(iv) For each r in R, the image of Cr is contained in Ii,Pw.
(v) For σ in Gal(Q̄/Q), we have

ρ̃(σ ) ≡
(

1 Bσ
0 θi(σ )

)
mod Ii,P . (53)

(vi) L1,P/Ii,PL1,P is stable under Gal(Q̄/Q) and this action is trivial.

Proof. Assertion (i) is clear from (39). Turning to (ii), we note that for each r in R,
we have

rw ∈ ImBr ⊕ ImDr ⊆ L1,P ⊕ L2,P .

Indeed, this is clear if r belongs to �P , and it is also plain for r in Gal(Q̄/Q), since
the component w j of w is an element of our fixed RP -basis of M j . Also, since Dr is
isomorphic to �P by the previous lemma, we conclude that the image of Dr = L2,P
for any r in RP . Assertion (ii) now follows from the fact that LP = RP .w.
We next prove (iii). For each r in RP , we have by (52),

⊕

j

(Trace ρ j (ε2r)) ≡ (1⊕ θ1)(ε2r)mod Ii,P , (54)

where 1 denotes the trivial character. The left hand side of (54) is easily seen to be Dr ,
which we continue to view as an element of �P . On the other hand, we have

1(ε2) = 0, θi (ε2) = 1.

Hence the right hand side of (54) is equal to θi (r), establishing (iii).
Turning to (iv), note that we have the identity

Drr ′ = DrDr ′ + CrBr ′

for all elements r, r ′ in RP . Since θi is a character, it follows from (iii) that

Im CrBr ′ ⊆ Ii,PL2,P .

As the image of the Br ′ fills up the whole of L1,P as r ′ varies, we conclude that
Im Cr ⊂ Ii,PL2,P , proving (iv).
To establish (v) and (vi), we must show that Aσ mod Ii,P is the identity map for any
σ in Gal(Q̄/Q). Suppose

ρ(σ) = ⊕
(

aσ, j bσ, j

cσ, j dσ, j

)
in

n⊕

j=1

GL2(RP ).
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The action of Aσ on the element ε1rw in L1,P is given by multiplication by aσ =
⊕aσ, j . But aσ, j = Trace(ρ j (ε1σ)) as

ρ j (ε1σ) =
(

aσ, j bσ, j

0 0

)
.

On the other hand, by (52), we have

aσ, j ≡ Trace(1+ θi)(ε1σ) = 1 mod Ii,P ,

because
θi(ε1) = 0, 1(ε1) = 1.

This completes the proof. �

9. Completion of the proof

We continue to assume that i is an odd integer with i �≡ −1 mod p − 1. We now give
an equivalent form of (29) which fits in better with our present arguments. Define Ri

to be R endowed with the following action of Gal(Q̄/Q):

σ(r) = θi (σ )r,

where θi is the character (38). The Pontryagin dual

∨
Ri = Hom (Ri ,Qp/Zp)

is therefore a discrete p-primary abelian group on which Gal(Q̄/Q) acts via θ−1
i . For

each subfield K of Q̄, define the subgroup of unramified cocycles by

H1
nr(K,

∨
Ri ) = Ker

(
H1(Gal(Q̄/K), ∨Ri )→

∏

v

H1(Iv ,
∨
Ri )

)
,

where the product is taken over all non-archimedean primes v of K, and Iv
denotes the inertial subgroup of some fixed prime of Q̄ above v . We recall that
X∞ = Gal(L∞/F∞), where L∞ is the maximal unramifed abelian p-extension of
F∞. As is explained at the beginning of §3, there is a natural action of G = �×� on
X∞. We define

V∞ = X•∞,
where as in §3, the dot means that the G-action on X∞ has been inverted. Define

Seli (R) = H1
nr(Gal(Q̄/Q),

∨
Ri ), Zi (R) = Hom (Seli(R),Qp/Zp). (55)

Lemma 9.1.
Zi(R) = V (i)∞ ⊗	(�) R.

Proof. Note that (
∨
Ri )

� = 0 since i is not congruent to zero modulo p − 1. Hence

H j (G, ∨Ri ) = H j (�, (
∨
Ri )

�) = 0 ( j ≥ 0). (56)
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Thus

H1(Gal(Q̄/Q),
∨
Ri ) � H1(Gal(Q̄/F∞),

∨
Ri )

G .

As p is totally ramified in Q(µp∞), one sees easily that this induces an isomorphism

Seli (R) � H1
nr(Gal(Q̄/F∞),

∨
Ri )

G = Hom G(X∞,
∨
Ri ).

But recalling that G acts on
∨
Ri by θ−1

i , we see that

Hom G(X∞,
∨
Ri ) = Hom	(�)(V

(i)∞ ,
∨
Ri ).

But

Hom	(�)(V
(i)∞ ,
∨
Ri ) = Hom	(�)(V

(i)∞ ,

Hom (R,Qp/Zp)) = Hom (V (i)∞ ⊗	(�) R,Qp/Zp),

and this completes the proof. �

Since V (i)∞ is X (−i)∞ with its �-action inverted, we conclude that, in order to
prove (29), it suffices to show that for every prime ideal P of R of height one, we
have

ordP (charR Zi (R)) ≥ ordP (A(i)0 (T )). (57)

Define

N = Im(L→ LP/Ii,PLP),

N1 = N ∩ L1,P/Ii,PL1,P and N2 = N ∩ L2,P/Ii,PL2,P . (58)

If V is any Gal(Q̄/Q)-module, which is also an R-module, we write V (θ−1
i ) for V

with the new Galois action defined by

σ ◦ v = θ 1
i (σ ) · σv,

where the action σv on the right is the old Galois action. Put

X = Hom R(N1(θ
−1
i ),

∨
Ri ).

Since Gal(Q̄/Q) acts trivially on N1, it is clear that each β in X is a Gal(Q̄/Q)-
homomorphism. Given any β in X, we define a map

cβ : Gal(Q̄/Q)→ ∨
Ri

by the formula
cβ(σ) = β(Bσ (w).θi(σ )

−1 mod Ii,P), (59)

where Bσ is the homomorphism given in (51), and hence the right hand side of (59)
does indeed lie in β(N1). For σ, τ in Gal(Q̄/Q), we conclude from (53) that

Bστ (w) = (Bτ (w)+ Bσ (w) θi(τ )) mod Ii,P .
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Recalling that Gal(Q̄/Q) acts on
∨
Ri via θ−1

i , it follows immediately that cβ is in fact

a 1-cocycle, and we denote its class in H1(Gal(Q̄/Q),
∨
Ri ) by cβ. We can therefore

define a homomorphism

� : X→ H1(Gal(Q̄/Q),
∨
Ri ) (60)

by �(β) = cβ.

Lemma 9.2. The image of � is contained in H1
nr(Gal(Q̄/Q,

∨
Ri ) = Seli (R).

Proof. Since the Galois representations ρ j (see (36)) are unramified outside p, and
Bσ = 0 for all σ in the decomposition group Dp by Lemma (8.8), assertion (i) is
clear. �

Proposition 9.3. The map� is injective after tensoring with the localisation RP of R.

Proof. If β is any element of X, we have the extension of Gal(Q̄/Q)-modules

0→ N1(θ
−1
i )→ N (θ−1

i )→ N2(θ
−1
i )→ 0,

which clearly further gives rise to the extension

0→ N1(θ
−1
i )/Ker β → N (θ−1

i )/Ker β → N2(θ
−1
i )→ 0. (61)

Since N2 can be identified with the module (R/Ji) · w, the cohomology class of the
extension (61) in H1(Gal(Q̄/Q),N1(θ

−1
i )/Ker β) is given by the class of the cocycle

d(σ ) = θi (σ )
−1σw −wmod (Ker β). (62)

Obviously, we have
β(d(σ )) = cβ(σ). (63)

Assume now that β in X is such that cβ is a coboundary, i.e. there exists t in
∨
Ri

such that
cβ(σ) = (θi(σ )

−1 − 1)t for all σ in Gal(Q̄/Q).

Since i is odd, we can choose σ0 in Gal(Q̄/Q) such that (θi(σ0)
−1− 1) is a unit in R.

Hence
β(s) = t, where s = (θi (σ0)

−1 − 1)−1d(σ0).

It follows easily that d itself is a coboundary. Hence the extension (61) is split, and so
there exists a Gal(Q̄/Q)-surjection

N (θ−1
i )/Ker β → N1(θ

−1
i )/Ker β. (64)

Recalling that N is cyclic and generated by w, it follows that the module on the right
of (64) is cyclic with generator x , say. By virtue of (41), it follows that the module
on the left of (64) is annihilated by (γ̃ − 1), and so x is also annihilated by (γ̃ − 1).
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As Gal(Q̄/Q) acts trivially on N1, we conclude that x is annihilated by ((1+T )−1−1)
and so also T · x = 0. Hence

TN1(θ
−1
i ) ⊂ Ker β. (65)

We now define

X′ = {β in X such that cβ is a coboundary}.
Under the natural pairing

N1 ×X→ ∨
Ri ,

X′ is dual to N1(θ
−1
i )/W , where

W =
⋂

β∈X′
Ker β.

However by (65),
W ⊃ TN1(θ

−1
i ).

Thus T ·X′ = 0, whence X′P = 0, since T �∈ P. This proves that the map� is injective
after tensoring with RP over R and the proof of the proposition is complete. �

Note that as an R-module, we have

X = Hom R(N1(θ
−1
i ),

∨
Ri ) = Hom (N1,Qp/Zp),

and so, dualizing the map �, we obtain a homomorphism of R-modules

∨
� : Zi (R)→→ N1,

which is surjective after localisation at P by Proposition 9.3. Thus, for every prime
ideal P of height one of R, we have

ordP charRP (Zi(R)P) ≥ ordP charRP ((N1)P). (66)

We recall that, by (32) and (35), we have the isomorphism of RP -algebras

RP/Ji,P � �P/Ii,P�P . (67)

Using this isomorphism, we can view the�P -module L1,P/IPL1,P as a module over
RP which is annihilated by Ji,P . By arguments from commutative algebra, we shall
then prove at the end of this section the following key lemma.

Lemma 9.4. For every prime ideal P of height 1 of R, the RP -Fitting ideal of
L1,P/Ii,P L1,P is contained in Ji,P .

Assuming this lemma, we shall complete the proof of (57), and hence also the proof
of the main conjecture. As the RP -Fitting ideal of L1,P/Ii,P L1,P is contained in Ji,P
Proposition 17 of [12] allows us to conclude that

charRP (L1,P/Ii,PL1,P ) ⊆ Ji,P . (68)
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Combining this last inclusion with (66), and noting that

(N1)P = L1,P/Ii,P ,L1,P

we have
ordP (Zi (R)P) ≥ ordP Ji,P . (69)

Recall that the Hecke algebra Ti,P is isomorphic to �P and hence by (67) and
Theorem 4.4, we have

ordP Ji,P := ordP(char(RP/Ji,P) ≥ ordP A(i)0 (T ), (70)

which proves (57) and therefore the main conjecture.
We are very grateful to F. Nuccio for providing us with the following proof of

Lemma 9.4. Recall that there is a natural ring homomorphism from RP to�P making
�P an RP algebra and note that �P is a flat RP -module as it is free of finite rank
over RP . On the other hand, defining L1 ⊂ L1 to be the R-submodule L1 = ε1 R.w,
so that

L1,P ⊗�,P �P = L1,P .

Since �P is a flat RP -module, and L1,P is RP -faithful, it follows from [2, Chap. 1,
§2, Cor. 2], that

ann�,P (L1,P) = 0.

Hence by Corollary 14 of [12], we have that the �P -Fitting ideal satisfies

Fitt�P (L1,P/Ii,PL1,P) ⊂ Ii,P .

Hence, by [12, Lemma 10], we obtain

Fitt�P/Ii,P (L1,P/Ii,PL1,P) = 0.

Invoking the ring isomorphism (67), we conclude that

FittRP/Ji,P (L1,P/Ii,PL1,P) = 0.

Since L1,P is a faithful RP -module, we can apply Lemma 10 of [12] once more to
complete the proof of Lemma 9.4. �
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Math., 51 (1979) 29–59.

[4] J. Coates and R. Sujatha, Cyclotomic fields and zeta values, Springer Monographs in
Mathematics, Springer (2006).



140 J. Coates and R. Sujatha

[5] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally
real fields, Invent. Math., 59 (1980) 227–286.

[6] H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp
forms, Amer. J. Math., 110 (1988) 323–382.

[7] H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical
Society Student Texts 26, Cambridge University Press, Cambridge (1993).

[8] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. Math., 98 (1973)
246–326.

[9] K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univer-
sity Press (1972).

[10] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math., 76 (1984)
179–330.

[11] B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Comp.
Math., 59 (1986) 231–264.

[12] F. Nuccio, Fitting Ideals (this volume).
[13] K. Ribet, A modular construction of unramified p-extensions of Q(µp), Invent. Math.,

34 (1976) 151–162.
[14] K. Rubin, The Main Conjecture Appendix in S. Lang Cyclotomic fields I and II, Com-

bined second edition, Graduate Texts in Mathematics, 121, Springer-Verlag, New York
(1990).

[15] C. Seigel, Berechnung von Zeta-funktionen an ganzzahligen Stellen, Nach. Akad. Wiss.
Göttingen, (1969) 87–102.

[16] A. Wiles, On ordinary	-adic representations associated to modular foms, Invent. Math.,
94 (1988) 529–573.

[17] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990)
493–540.


