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Abstract
Aim: To explore spatiotemporal changes in Hyacinth Macaw Anodorhynchus hyacin-
thinus distribution and the impacts of land use change over 25 years, across its vast 
range in central/eastern South America.
Location: Brazil, Bolivia and Paraguay, South America, covering almost 3 million km2.
Methods: We use a novel, multi-temporal species distribution model, to combine 
both year-specific occurrence records and land use/cover data in a single model that 
is subsequently projected over a land cover time series. We investigate changes in 
geographic range over 25 years and potential drivers of range extent at multiple spa-
tial scales (10 and 30 km) and time-lags (current and 10 years previously). We also as-
sess protected area coverage and impacts from degazettement within the remaining 
range and highlight priority areas to search for undiscovered populations.
Results: The modelled range of the species increased by 75,000  km2 to over 
500,000 km2 between 1995 and 2019, during which period agriculture and pasture 
increased by 600,000 km2 within the species' extent of occurrence. Habitat suitabil-
ity was influenced most strongly by distribution of palms, forest cover and changes 
in pasture over 10 years and usually by predictors measured at larger spatial scales. 
Just 8% of the macaw's modelled range falls within protected areas, and more than 
20,500 km2 of protected areas overlapping with the range have been degazetted in 
the last 40 years. We highlight key areas to search for undiscovered populations in 
under-sampled and remote areas, especially led by community citizen science initia-
tives involving indigenous groups and protected area staff.
Main conclusions: Novel modelling methods, combining multi-temporal occurrence 
records and land cover data, appropriate for small sample sizes per year, have re-
vealed habitat dynamics and changes to the range of this threatened species over 
25 years. The method may have wide applicability for a range of species, including 
elusive and poorly studied species.
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1  | INTRODUC TION

Conservation biology faces huge challenges in regions that are 
species-rich but data-poor (Richardson & Whittaker,  2010). Vital 
species-specific metrics such as extent of occurrence, area of occu-
pancy, population size and trajectory, which correlate strongly with 
extinction risk (IUCN,  2016), are lacking for vast numbers of spe-
cies and are particularly difficult to obtain in large-ranged taxa that 
cross biogeographic and political boundaries (Shaney et al., 2017). 
Increasingly, however, statistical modelling methods, together with 
data sources from remote sensors and citizen science, are being used 
to supplement sparse existing information (Lang et  al.,  2015). The 
proliferation of remote-sensed and land cover predictors in species 
distribution models (Bradley & Fleishman,  2008; He et  al.,  2015), 
facilitated by cloud-based platforms such as Google Earth Engine, 
have paved the way for the incorporation of time series analysis into 
species modelling (Amiri et al., 2020; Cord & Rödder, 2011; Radeloff 
et al., 2019). Remote-sensed data play a crucial role in mapping land 
conversion to agriculture, one of the prime threats facing verte-
brates (Hoffmann et al., 2010). New land cover products, illuminat-
ing relationships between land use changes and species occurrence 
patterns at both regional (mapBiomas Project,  2019) and global 
scales (Chen et al., 2015; Hansen et al., 2013), are therefore crucial 
additions to the conservation toolbox. Although there is a rising in-
terest in the use of metrics from species distribution models, such as 
extent of occurrence, to evaluate extinction risk (Syfert et al., 2014), 
challenges remain in the use of time series of predictors, either di-
rectly from remote sensing, or classified land cover to infer changes 
in range size over time (Breiner et al., 2017). Metrics representing 
changes in population or range size are fundamental to the IUCN 
Red List criteria (IUCN,  2016) and crucial data gaps remain, espe-
cially in large-ranged, hard-to-study species.

The Hyacinth Macaw Anodorhynchus hyacinthinus, the world's 
largest parrot, has a distribution that spans 2,850,000  km2 in 
mainly data-poor and sometimes largely inaccessible regions of 
Brazil, Paraguay and Bolivia (BirdLife International, 2019). Its range 
cuts across biogeographical provinces with very different topog-
raphy, vegetation and climate (Collar et  al.,  1992), including the 
Pantanal, Cerrado and Amazonia biomes, in each of which the spe-
cies holds genetically distinct populations (de Almeida et al., 2019; 
Faria et al., 2008; Presti et al., 2015). In the past hundred years, its 
population has declined due to exploitation for the pet trade and 
feather ornamentation and because of the impacts of habitat loss, 
fragmentation and degradation (Collar et al., 1992; Faria et al., 2008; 
Machado et al., 2008). Its patchy distribution in remote and inaccessi-
ble habitats, high daily and seasonal mobility, and longevity have im-
peded research aimed at understanding its conservation status and 
needs. Its diet ties it to a number of palm species; it depends heavily 
on Sterculia apetala trees for nest sites, and it shows a clear prefer-
ence for open wooded, riparian and forest-edge habitats, often near 
pastures (Guedes,  2004; Pinho & Nogueira,  2003; Scherer-Neto 
et al., 2019; da Silva et al., 2019; Tella et al., 2020; Yamashita, 1997), 
but the precise factors governing its responses to land use change, 

and how these might differ in different parts of its huge range, are 
unknown (BirdLife International,  2019). Nevertheless, owing to 
population increases in the Pantanal (e.g. Pinho & Nogueira, 2003; 
Scherer-Neto et al., 2019), where it is a major draw for ecotourists 
and in places managed accordingly, the Hyacinth Macaw was down-
graded to Least Concern on the Brazilian Red List of threatened spe-
cies (ICMBio, 2018; Machado et al., 2008) and from Endangered to 
Vulnerable on the global IUCN Red List (BirdLife International, 2019). 
These changes in designated status may technically have been justi-
fied; however, the Pantanal represents <7% of the species’ historical 
range in Brazil, and there remains uncertainty about the status of 
all other populations, particularly given their recently demonstrated 
mutualism with palm species (Tella et al., 2020). If these populations 
are to be protected and their conservation status improved, then the 
first requirement is to clarify their current extent, the status of the 
habitats they occupy and the likelihood that undetected populations 
exist outside its known range.

We seek to address these knowledge gaps using multi-temporal 
land use/cover data within a species distribution model framework, 
aimed at unravelling relationships with land use change across space 
and time. Specifically, we ask: (1) How have land use dynamics over 
the last 30 years affected occupancy within its range and over what 
spatial and decadal scales have these acted? (2) How has the range 
of the Hyacinth Macaw changed within the Pantanal, Cerrado and 
Amazonia biomes over this time period? (3) What are the remaining 
knowledge gaps, in terms of possible undiscovered populations, and 
management gaps, in terms of effective protected areas?

2  | METHODS

2.1 | Species distribution modelling

We employed a novel modelling approach to create a single distribu-
tion model from multi-annual, high-resolution land use/cover data 
and palm species habitat suitability. From this model, we infer the 
importance of spatial and temporal landscape dynamics in determin-
ing distribution, as well as gauging changes in distribution across the 
Pantanal, Cerrado and Amazonia biomes over 25 years.

2.1.1 | Species occurrence records

We collated 4,157 Hyacinth Macaw occurrence data points 
(Table S1a, S1b in supporting information) from four main sources: (a) 
ICMBio (5%), the Brazilian Biodiversity Institute and National Parks 
Authority affiliated to the Ministry of the Environment (including 
the Brazilian Important Bird Area programme; De Luca et al., 2009); 
(b) WikiAves (59%), a Brazilian citizen science records database; (c) 
eBird (33%), an online database of bird observation records, mainly 
contributed by amateur birdwatchers (Sullivan et al., 2014); and (d) 
museum specimen data and literature-based records (3%), including 
Collar et al.  (1992), Dornas et al.  (2013), Moreira Rios et al.  (2020) 
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and VertNet (Constable et al., 2010). Given the difficulty of extract-
ing exact coordinates from WikiAves (records are assigned to munic-
ipal centroids by default), we manually extracted exact coordinates 
only where these represented the only known records within a mu-
nicipality. We further checked all occurrence records and discarded 
twelve, indicated by the observers as likely to involve escaped or 
released confiscated individuals or else flagged as potential iden-
tification errors, where no physical evidence was provided. Given 
that a single location is assigned to each eBird checklist irrespective 
of the length or duration of the birdwatching trip, we also filtered 
eBird records to include only those with a transect length <10 km 
or duration <6 hr. To reduce sampling bias, exact spatial duplicates 
were removed from both datasets and thinned as described below 
(Fourcade et al., 2014). We also used eBird checklists (n = 27,148) 
from the study area that lacked observations of Hyacinth Macaws 
in order to validate our presence records and to inform our search 
for areas that might hold unknown populations of the species. We 
only used checklists marked “complete,” that is, where birders con-
firmed that all known species had been recorded on the trip. These 
“eBird absences” were distributed across many of the gaps among 
the Hyacinth Macaw presence points post-2010 (Figure 1a), provid-
ing some confidence that we have a relatively complete set of points 
for the current habitat model.

Given the date range of the predictors (see below), we only 
used occurrence records from 1995 to 2019, therefore removing 

all undated records (Table S1b). We also removed any record within 
500 m of an urban centre or a delimited urban boundary (as poten-
tially representing records in flight or erroneous locations), using the 
Brazilian government's official spatial data (IBGE, 2019). However, 
we acknowledge that a few genuine urban records may have been 
eliminated by this measure.

2.1.2 | Predictors used in the model

All but one of our predictors are based on mapBiomas, a high-
resolution, annual, classified land cover map for Brazil, produced 
from Landsat images at a 30 m resolution from 1985 to 2019, ac-
cessed via Google Earth Engine map (Map Biomas Project, 2019). We 
combined classes of cover/use into forest, natural non-forest (mainly 
Cerrado savanna habitat), wetlands, pasture (including pasture mo-
saic) and agriculture (including temporary and permanent crops) for 
each year. To understand how different temporal and spatial scales 
of land cover and land cover change influence the Hyacinth Macaw's 
distribution, we calculated the proportion of each combined land 
cover class within 10 and 30 km windows for each year and as the 
difference in proportion of each cover class at 10-year intervals, 
approximately one generation length of the macaw (10.3  years; 
BirdLife International, 2019). Therefore, we constructed 20 predic-
tors (five cover classes, two spatial scales, two time periods) for each 

F I G U R E  1   (a) Study area showing all occurrence points of Hyacinth Macaw Anodorhynchus hyacinthinus, grouped by year of record, and 
eBird absences; (b) modelled distributions of seven palms and one tree of importance for diet and nesting, respectively, summed and overlaid 
with biomes; used as a predictor in macaw distribution models
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year between 1995 and 2019, accounting for a 10-year lag since the 
start of mapBiomas data in 1985 (Figure  S1). Data were exported 
from Google Earth Engine at 1 km resolution. Aware that the macaw 
is specialized on the fruits of several palms, for example Acrocomia 
and Attalea spp. (summarized in Collar et  al.,  1992; see also Tella 
et  al.,  2020), we also included a combined palm/tree occurrence 
predictor layer, consisting of the summed habitat suitability values 
from eight separate species distribution models for seven palms 
(Acrocomia aculeata, Acrocomia totai, Attalea eichleri, Attalea maripa, 
Attalea phalerata, Attalea speciosa and Syagrus coronata) as well as 
one tree species (Sterculia apetala) known to be important for food 
and nesting, respectively (Collar et al., 1992; Johnson et al., 1997; 
Pinho & Nogueira, 2003; Pizo et al., 2008; Yamashita, 1997).

We combined 3,804 (median = 456) occurrence records (Table S2 
in supporting information) from the Botanical Information and 
Ecology Network (BIEN; Maitner et  al.,  2018), Global Biodiversity 
Information Facility (GBIF) and Balselv et  al.  (2019), and modelled 
distributions in Maxent using the same methods outlined below (see 
also Appendix S1), with climate variables from WorldClim v2.0 (Fick 
& Hijmans, 2017) and elevation and slope calculated from a digital 
elevation model (Jarvis et al., 2008) at 1 km resolution (Table S2). 
The raw habitat suitability values from all models (all averaged AUC 
results were >0.75) were set to 0 below a 10-percentile presence 
threshold and then summed to create a combined palm/tree pres-
ence layer (Figure 1b).

2.1.3 | Modelling methods

We set the modelling area to a convex hull around all the occur-
rence points and the BirdLife International range map (BirdLife 
International, 2019), with an additional buffer of 50 km. This area 
was used to train models and predict geographic range extent and 
is slightly larger than that encompassing all known occurrence re-
cords. Given that there were too few occurrence records to train 
annual models—occurrence records are skewed towards more re-
cent years, with only three years prior to 2015 having >10 records 
(Table S1b)—we trained a single model on data from all years, with 
predictor values selected from the year corresponding to the year of 
the record (Milanesi et al., 2020). This assumes that the relationship 
between distribution and the predictors has not changed over time, 
but we consider this reasonable in the space of 25 years. We thinned 
records to a distance of 5 km, a distance which lessened bias due 
to records being clumped in areas of higher sighting activity while 
also maintaining sufficient records for modelling. Where multiple re-
cords existed at the same location for multiple years, we attempted 
to maintain the same distribution of records across the years as in 
the original dataset, resulting in a final set of 225 occurrence records 
(Table S1a, S1b). For the background data, we randomly sampled 10 
sets of 10,000 pseudoabsences over the modelling area (Barbet-
Massin et al., 2012), across all years of the predictors.

We built models using Maxent, an often-used method (Merow 
et al., 2013; Phillips & Dudík, 2008), with a record of high performance 

for species distribution models (Elith et al., 2006; Wisz et al., 2008). 
We tuned the model with eight different combinations of features 
consisting of linear, product, quadratic, hinge and threshold trans-
formations of the predictors (Appendix S1), across seven values of 
the regularization parameter (0.5 to 3.5, in steps of 0.5) using maxnet 
package in R (Phillips et al., 2017) for each of the 10 pseudoabsence 
datasets. We evaluated model performance with fourfold spatial 
cross-validation using a double checkerboard pattern at two spatial 
scales to prevent spatial autocorrelation inflating evaluation metrics 
(Roberts et al., 2017). This approach, as implemented in the ENMeval 
package (Muscarella et  al.,  2014), spatially separates testing and 
training data. We present averaged AUC, Tjur R2 (Tjur, 2009) biserial 
correlation and Boyce index (Di Cola et al., 2017) scores across the 
folds for each pseudoabsence run. The best model was chosen on 
highest AUC value and ties at three significant figures were broken 
with values of Tjur's R2. Modelling scripts are available as supple-
mentary files for Google Earth Engine and R (Appendix S1, in sup-
plementary information). R code relied on the following packages, in 
addition to those stated above: dismo (Hijmans et al., 2020), raster 
(Hijmans,  2020) and sf (Pebesma,  2018). The best model for each 
pseudoabsence dataset was projected onto the time series of land 
cover predictors, from 1995 to 2019, and averaged to create a single 
annual prediction of macaw distribution. To constrain predictions to 
within suitable dispersion distances to occurrence points, we multi-
plied the averaged model with a distance-based penalty raster, with 
values assigned between 0 and 1 from a Gaussian decay function 
with a standard deviation of 250 km based on distance to nearest oc-
currence record, following similar methods in Thornhill et al. (2017). 
To create annual binary presence‒absence maps, we applied a 
10-percentile presence value threshold on the averaged model out-
puts (Galante et al., 2018), corresponding to the maximum thresh-
old value of all years with more than 10 presence points. This single 
threshold produces a conservative range, approximating more to the 
actual occupied area, while also overcoming the difficulty of select-
ing a year-specific threshold without sufficient presence points.

2.2 | Land cover changes within the range

We used variable importance to indicate key potential drivers of dis-
tribution, as assessed by the variable permutation importance from 
the Maxent Java implementation (Phillips & Dudík, 2008). Finally, we 
used partial response curves to determine the direction of the most 
influential variables. For each year, we quantified the change in range 
size within the Pantanal, Cerrado and Amazonia biomes using biome 
delimitations provided with mapBiomas (mapBiomas Project, 2019).

2.3 | Priority search areas and protected  
area coverage

We estimated the proportion of the most recent modelled range 
which is covered by protected areas (UNEP-WCMC & IUCN, 2019). 
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We calculated coverage of protected areas in IUCN categories I‒IV 
(representing strongest protection on paper), categories V‒VI (in-
cluding sustainable use) and indigenous reserves. Where Brazilian 
protected area designations did not report IUCN categories, they 
were matched according to Bernard et al. (2014). We also calculated 
the amount and timing of, and reasons for, protected area degazette-
ment from 1900 to 2014 within the Hyacinth Macaw's range, using 
spatial data published in Pack et  al.  (2016). Finally, we identified 
broad areas to search for undocumented populations of Hyacinth 
Macaw. From the thresholded modelled area corresponding to the 
latest year (2019), that is, highly suitable habitat for the macaw, we 
excluded areas within a 50 km radius around both eBird absences 
and positive macaw sightings within the last two decades in order to 
direct searches where no evidence exists for macaw presence or ab-
sence. This radius represents a feasible distance travelled by groups 
of similar macaw species within a day (Scherer-Neto et  al.,  2019). 
Therefore, these broad areas represent regions apparently unvisited 
by birdwatchers, without recent recorded presences of Hyacinth 
Macaw (although some have old records), but within suitable habitat 
as predicted by the model.

3  | RESULTS

3.1 | Modelled range maps

The best-tuned single, multi-annual models performed well across all 
ten pseudoabsence data runs, with metrics averaged across all runs 
and folds scoring 0.80 (±0.03 SD) for test AUC, 0.2 (±0.02) for test 
biserial correlation, 0.33 (±0.02) for test Tjur R2 and 0.9 (± 0.06) for 
test Boyce Index (Figure S2, Table S3). Evaluation metrics generally 
decreased with increased regularization across all features except 

for Boyce index (Figure S2), while hinge features alone, or all features 
combined, performed best, although results within the top five tun-
ing runs were generally within three significant figures of each other 
(Table S3). All the predicted models across the 25-year series of land 
use data showed a clear separation between three main areas of high 
habitat suitability, approximately within each of the three biomes 
making up its habitat: Pantanal, Cerrado and Amazonia (Figure  2), 
with gaps in the Cerrado‒Amazonia ecotonal region between the 
states of Pará and Mato Grosso and in the Cerrado‒Pantanal eco-
tonal region.

3.2 | Decadal changes in habitat suitability and land 
cover within the range

The predicted suitable habitat for the macaw expanded from 
431,071  km2 in 1995 to 507,802  km2 in 2019 with different pat-
terns of distributional change in each of the three biomes. In the 
Pantanal, the predicted area expanded southwards, in the Cerrado it 
showed increased fragmentation, whereas suitability in the Amazon 
expanded along rivers (Figure 2). Over this period, the total amount 
of suitable area in the Pantanal remained relatively stable, whereas 
suitable area increased steadily in the Amazon between 2000 and 
2015, equating to an increase of 81,220 km2 by 2019. In the Cerrado 
suitable habitat decreased to a low in 2005, before closing in 2019 
at 11,750 km2 less than in 1995 (Figure 3). In terms of land use over 
the last 30 years or three-generation lengths of the macaw, within 
the modelled area (in effect, the macaw's extent of occurrence), 
agriculture has expanded by over 225,000  km2 and pasture by 
380,000 km2, while forest has declined by 400,000 km2 and savanna 
by 220,000 km2, with pasture and agriculture combined equating to 
over 30% of this area by 2019. Fragmentation of forest and savanna 

F I G U R E  2   Modelled distributions of Hyacinth Macaw for 1995, 2007 and 2019, based on land cover models
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areas has increased strongly over this period (Figure S1a). Habitat 
change in the form of increasing pasture, with a corresponding de-
crease in forest, was most rapid from the early 1990s through to 
the early 2000s, markedly levelling off just before 2010, while ag-
riculture increased more steadily throughout the period (Figure S3 
in supporting information). The areas of most substantial habi-
tat change concern conversion to pasture in the Amazon and the 
Cerrado bordering the Pantanal (Figure S1b).

3.3 | Likely drivers of habitat suitability and 
range change

Three of the 21 predictors showed notably high importance values 
(Figure 4): presence of palms; presence of forest at the 10 km scale; 
and changes in pasture over 10 years. In general, the predictors at 
the wider landscape scale of 30 km were more important than those 
at the 10 km scale, as were predictors describing habitat types at 

F I G U R E  3   Change in suitable area of 
Hyacinth Macaw distribution 1995‒2019 
in the Pantanal, Cerrado and Amazonia 
biomes

F I G U R E  4   (a) Mean variable 
importance (± standard deviation) of 
the 10 most important variables across 
all pseudoabsence runs in the Hyacinth 
Macaw distribution model, and (b) 
corresponding response curves for each 
run, with mean response in bold
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the present time rather than those describing land cover changes 
over the previous decade. In terms of direction of responses, habitat 
suitability increased with increasing presence of palms, decreased 
with increasing forest presence at the smaller landscape scale after a 
period of stability and showed a unimodal response to change in pro-
portion of pasture, with suitability decreasing with gain in pasture 
after reaching a peak (Figure 4). Response patterns were generally 
similar at both landscape scales in terms of direction.

3.4 | Priority areas and protected area coverage

Over 310,000 km2 of protected areas (117,000  km2 in IUCN cat-
egories I‒IV) overlap to some degree with the Hyacinth Macaw's 
predicted current (2019) distribution, but mostly at its periphery 
(Figure 5a), so that only approximately 8% of the range is currently 
protected. Moreover, between 1971 and 2014, nine protected areas 
within this range, almost all within IUCN categories I‒IV, lost more 
than 21,500 km2 owing to downsizing, downgrading or degazetting 
(Figure 5b, Table 1). Four degazettement events were due to land 
claims or rural settlements and four to industrial or hydropower in-
frastructure, with more than half occurring since 2000. A further 
six areas have active degazettement proposals, threatening a further 
10,500 km2 (Table 1). Areas where undetected macaw populations 
may persist were broadly delimited in eight regions in the Brazilian 
states of Pará, Maranhão, Tocantins/Goiás and Mato Grosso/Mato 
Grosso do Sul (Figure 5d). These regions have suitable current land 
cover and climate but no recent observations of Hyacinth Macaws 
and have not been visited by birdwatchers using eBird. Areas with 
similar conditions, but with known absences from eBird, were high-
lighted as sites of possible local extinction (Figure 5d).

4  | DISCUSSION

Species such as the Hyacinth Macaw, with vast and hard-to-access 
ranges, are very difficult to study comprehensively, resulting in a 
scarcity of ecological metrics required for range-wide conservation 
planning. Our modelling approach combined multi-temporal occur-
rence records with year-specific land use/cover data to assess range 
change and potential drivers of distribution. There is a growing re-
alization of the important role that land cover data plays within spe-
cies distribution modelling (Chauvier et al., 2021; Kort et al., 2020), 
especially at different temporal and spatial scales as a proxy for key 
processes of ecosystem functioning controlling species distribu-
tion and abundance patterns (Arenas-Castro et al., 2019). However, 
incorporating time series of land cover data has followed different 
approaches, for example, by calculating seasonal variation in land 
cover (or vegetation indices) at occurrence points (e.g. annual varia-
tion; Devenish et al., 2020; Radeloff et al., 2019), constructing multi-
ple models at multiple points over a time series (Carone et al., 2014; 
Gschweng et  al.,  2012) or similarly to our approach, by pooling 
multi-temporal species locations with year-specific predictor data 

(Li et al., 2017; Milanesi et al., 2020). Whereas the former methods 
rely on sufficient observations for each time period to build success-
ful models, the latter combines data into a single model, making it 
suitable for using land cover time series in models for rarer species. 
Our approach is also adaptable to use with time series of remote-
sensed vegetation indices, available globally, rather than classified 
land cover.

Our results indicate a complex, changing distributional pattern 
of the Hyacinth Macaw in response to changing land cover over its 
range, with marked differences across the three biomes it inhabits. 
While the extent of its range remained relatively stable between 
1995 and 2019 in the Cerrado and Pantanal biomes, it increased in 
the Amazon, possibly due to an opening up of the habitat, especially 
along rivers. However, as borne out by the negative response curves 
for pasture and agriculture, this benefit would eventually be lost 
when these land cover classes go beyond a tipping point with regard 
to the proportion of natural habitat. A recent gain in range may rep-
resent a future debt in population loss if large-scale conversion of 
natural habitats to monocultural farming in the Cerrado and Amazon 
continues (Lahsen et al., 2016; Lovejoy & Nobre, 2019). It is plausi-
ble to assume that ongoing agricultural expansion (Figure 5c), espe-
cially in the “MAPITOBA” region (the broad area where the states of 
Maranhão, Piauí, Tocantins and Bahia meet; Rodriguez et al., 2018), 
has also changed habitat structural properties of importance to the 
macaw (Espírito-Santo et al., 2016), such as presence of palm stands 
and gallery forests within savannas. Small-scale subsistence agricul-
tural regimes may be less damaging in this respect. Nevertheless, 
a confounding factor in the macaw´s relationship with agriculture 
is its possible reliance on megafauna-adapted seeds, and the role 
played by modern cattle in facilitating this relationship through 
seed-regurgitation (Tella et  al.,  2020; Yamashita,  1997). Certainly, 
the known importance of palm stands to the species should not be 
underestimated (Yamashita & Valle,  1993). The macaw's relation-
ship with palm distribution is clear from our results, and although 
each biome hosts several species of palm utilized by the species 
(Guedes, 2004; Yamashita, 1997), the highest values of habitat suit-
ability in the Pantanal interestingly coincide with the highest rich-
ness of the modelled palm species.

A lack of occurrence records and suitable habitat implies the spe-
cies is now regionally extinct in north-east Brazil in the “Belem Area 
of Endemism” (Lees et al., 2012; Sclater & Salvin, 1867), south-east 
Amapá, and southern Maranhão/northern Piauí, with the nearest 
populations up to 500 km away. These areas have a longer history 
of human occupation, which presumably would have facilitated the 
exploitation of these populations for the international wildlife trade. 
Such pressure appears to have abated in this century but never-
theless persists, involving at least the Pantanal and Cerrado popu-
lations (Presti et al., 2015), while little appears to be known about 
the continuing use of macaw feathers by indigenous communities in 
these regions. Further, there is evidence of the species’ range-wide 
scarcity, possibly linked to these local extinctions, from the lack of 
records at well-visited birdwatching sites <100 km from places with 
positive sightings (Lees et al., 2013; Whittaker, 2009). This may also 
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F I G U R E  5   (a) Protected areas overlapping with the Hyacinth Macaw's predicted current range (for 2019). Protected areas are shown by 
IUCN categories; most of those in the category “Other” are indigenous reserves; (b) enacted and proposed degazettement events within 
protected areas, 1971 to 2014. (c) Expansion of agricultural fronts within the range between 1985 and 2019; (d) key areas for searches 
(numbered boxes) and local extinctions. Search areas: 1—central Pará north of the Transamazonica Highway; 2—the Iriri-Xingu interfluvial 
region in Pará; 3—southern Maranhão; 4—the extreme north of Mato Grosso; 5—the Araguaia region of southern Tocantins and north Goiás; 
6—northern Minas Gerais/south-western Bahia; 7—the eastern Pantanal in Mato Grosso/Mato Grosso do Sul, 8—south-east Goiás
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be indicative of its wide-ranging habits in seeking food resources 
over large areas. Our model results also indicate the importance of 
wider-scale landscape predictors, likely to be in accordance with 
daily or seasonal population movements (Scherer-Neto et al., 2019). 
In fact, seasonal movements may be behind some occurrence points 
apparently outside areas of suitable habitat (e.g. in southern Pará), 
with migratory movements in the species long since hinted at (Collar 
et al., 1992) and recent genetic links found between distant popula-
tions (Faria et al., 2008). More research on distribution is required 
in these areas. However, notwithstanding its scarcity, given the ex-
tent of current occurrence records and the modelled extent of suit-
able habitat, the global population estimate of 6,500 (de Almeida 
et al., 2019; Tella et al., 2020), with 5,000 in the Pantanal, 1,000 in 
the Cerrado and 500 in the Amazon (Faria et al., 2008), is clearly in 
need of upward revision, again, requiring field surveys.

There is little congruence between protected area coverage and 
the range of the Hyacinth Macaw, with most conservation areas 
situated at its range margins. The benefits of protected areas will 
be further reduced if proposed degazettement of parks overlapping 
its range are implemented (Mascia et  al.,  2014; Pack et  al.,  2016). 
Degazettement is especially worrying given that most has involved 
stricter conservation areas (IUCN categories I‒IV), where deforesta-
tion rates have been significantly less than in sustainable-use areas 
(Françoso et al., 2015). Such changes are also detrimental to large, 
globally threatened mammals, such as giant anteater Myrmecophaga 
tridactyla and lowland tapir Tapirus terrestris, recently shown to 
benefit from stricter levels of protection (Ferreira et  al.,  2020). 
Nevertheless, given the vast range of the macaw, strategies beyond 
protected areas are also vitally important, such as allowing vege-
tation regrowth after land abandonment and low-impact cattle-
ranching (Espírito-Santo et  al.,  2016). To implement a range-wide 
conservation strategy, gaps in our knowledge of its distribution 
still need to be filled. We identify eight general areas throughout 
its range which our model predicts as potentially harbouring unde-
tected populations. Searches within and beyond these areas will not, 
however, be straightforward, given the size and remoteness of the 
landscapes to be covered. A clear potential role therefore exists for 
citizen science, especially involving indigenous groups and protected 
area staff (Danielsen et al., 2000). Filling gaps in field data from such 
surveys, combined with ever-increasing information on changing 
land cover to evaluate range occupancy and habitat relationships, 

will help develop robust strategies for the long-term management of 
the Hyacinth Macaw.

Although our approach offers a clear advantage in that fewer 
records per year are needed, and is therefore particularly suited for 
poorly known species, it comes with a caveat in that multi-temporal 
models assume that a species’ response to habitat and habitat change 
is consistent across years. This may not necessarily be the case if 
there is an overriding landscape context to a species’ habitat associ-
ations (very large-ranged or nomadic species; Andrew & Fox, 2020); 
where exploitation or disease influence changes over time (Faurby & 
Araújo, 2018); or when demographic changes or biotic interactions 
are not accounted for (Zurell,  2017). However, for elusive, poorly 
studied or conservation-dependent species, typically lacking data, 
our method may have wide applicability to track changes in area of 
occupancy or extent of occurrence across years, in support of ex-
tinction risk assessments and global biodiversity targets (Brooks 
et al., 2015). Further, in setting conservation priorities, tracking such 
changes over time may be useful in selecting areas with longer histo-
ries of species persistence (Vellend & Kharouba, 2013) or translating 
trends in habitat suitability to changes in population size or abun-
dance (Devenish, 2017; Weber et al., 2017). In terms of assessing ex-
tinction risk for the macaw, although we have no data on population 
size or trends, our results suggest a significant potential increase in 
the area of occupancy of the species. Whether this correlates with 
an increase in population is not known but it seems likely that land 
use change, especially in the Amazon, perhaps coupled with the ben-
eficial effects of cessation of widespread trapping in the last 2‒3 
decades (ICMBio, 2018), may have allowed populations to increase 
as well as expand. In conclusion, these models may be useful in a 
range of situations and while they can still be improved by obtaining 
new data on threatened and poorly known species—enabling sepa-
rate models for each period and allowing the response of the species 
to vary accordingly (Zuckerberg et al., 2016)—with limited data from 
the past, they represent an informative method to evaluate historic 
trajectories of range change.
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V‒VI 2 4,977 2007‒2013

All categories 6 10,452 2006‒2014

TA B L E  1   Area lost or under active 
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Hyacinth Macaw's current range
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