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Die boxes, workstations, graph theory and die charts 
 

 Numismatic handbooks often explain die studies with an image similar to that in 

Figure 1.1 The neat die chart, with no crossing lines, is explained by the fact that dies were 

used to exhaustion and then replaced, in one single sequence. Anyone with a little experience 

of die studies, however, knows that die charts very rarely occur in this form. It is far more 

common that they involve crossed lines, which are normally explained either by the operation 

of multiple workstations in parallel, or the existence of a die box, by which multiple dies 

were made available for use at any one time. Which of these explanations is accepted has 

potentially important ramifications for our understanding of the coinage in question, 

particularly regarding the intensity of production. Multiple workstations allow for the 

production of the same volume of coinage in a shorter time period, a benefit that does not 

accrue from the use of a die box. 

 It would therefore be of interest if we were able to draw conclusions about minting 

process from more complex die charts. Unfortunately this is not very easy to do, as stated by 

Warren Esty in his conclusions to the seminal article on the topic:2 

 
 
1 E.g., R.-Alföldi 1978, p. 47; Crawford 1983, p. 209. 
2 Esty 1990, p. 221. 

Figure 1: Hypothetical die chart 
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Chronological inferences from linkage alone require strong and often unverifiable hypotheses about mint 

operation. Additional information from sequence marks and observations of the die-states is important. 

In the absence of such information, the links themselves can provide only limited information about the 

mint operation. 

The additional information from which Esty suggests one could draw chronological 

inferences is often hard to come by, particularly in large die studies, where the number of 

comparisons is enormous and indications of die wear hard to come by.3 For this reason, 

interpretation of die studies has tended to focus far more on the number of dies used and what 

this can tell us about the volume of production, rather than on the pattern of linkage.4  

Nevertheless, a number of scholars have more recently attempted to use die charts to 

draw conclusions about processes within the mint and about the intensity of production.5 This 

author believes that these attempts are misguided and wishes to re-state Esty’s position: it is 

not possible to differentiate between the use of a die box and the operation of multiple 

workstations on the basis of the pattern of linkage alone. Moreover, I wish to highlight that 

Esty’s mathematical approach to die charts remains the only possible means of interpreting 

them correctly. Die charts, as a category, are what mathematicians call graphs, and there is a 

whole body of literature on graph theory, with which numismatists have almost completely 

failed to engage. The only way that numismatists will be able to understand what deductions 

can and can’t be drawn from the pattern of linkage in a die chart is to understand more of the 

mathematical theory behind the properties of graphs. To that end, I make use here of a simple 

computer program that simulates possible minting scenarios and outputs die charts; by 

analysing the properties of those charts, it will become clear which correlate to particular 

minting practices and which do not. 

It will be useful at this point to introduce some basic terms in graph theory that may 

be unfamiliar to numismatists.6 More specialist terms will be introduced at various points 

later in the paper. I have attempted, here and throughout the paper, to relate the mathematical 

terms to their equivalents in terms of real-world die studies. A graph is a representation of a 

set of points and the connections between them (for our purposes, a die chart); a node is a 

 
 
3 It has been noted, for example, that Roman gold coins very rarely show any indications of die wear, see e.g. 

Beckmann 2014, p. 7. 
4 For an overview, see Callataÿ 2011. 
5 E.g., Carroccio 2011; Bracey 2012; Bracey 2017; Nurpetlian 2018. 
6 An accessible introduction to graph theory and its terminology is provided by Wilson 1996. 



 
 

3 

point within the graph (i.e. an obverse or reverse die); vertex is a synonym for node; an edge 

is a connection between two nodes (i.e. a die link). 

Before coming to the computer simulation and the attendant mathematical analysis, 

however, we must clarify our numismatic terms of reference, and I therefore begin with a 

discussion of the terms “die box” and “workstation”. Real world examples in the discussion 

that follows tend to be drawn from the ancient world, since that is my own area of expertise, 

but the theoretical elements of the discussion are relevant to any coin series for which a die 

study may be carried out. 

Die boxes and workstations 

 By “workstation” I mean a single unit of coin production, where one obverse and one 

reverse were utilised in tandem; in some literature this is referred to as an anvil.7 At the mint 

of Rome, each workstation seems to have been manned by three operators: one to place the 

flan between the dies (the suppostor), one to hold the reverse die in place (the signator), and 

one to execute the hammer strike (the malleator).8 Whether this was also the case at other 

mints in the Roman empire, or at other times and places, is unknown. I do not propose to 

equate workstation with officina, a term that appears in the Latin and seems to denote a 

subdivision of the mint; recent investigation has shown that precise definition of the term 

officina is not possible on the current state of the evidence, but that the equation officina = 

anvil is almost certainly wrong.9 

 Multiple workstations within the same mint are only relevant to the interpretation of 

die charts when they share reverse dies; if this is not the case, the die study will result in a 

series of disconnected die charts that each resemble the simple sequences represented by 

Figure 1.10 This sharing could be either regular or exceptional. It is possible that even in 

mints where each workstation was intended to have its own supply of dies, sharing still 

 
 
7 Nurpetlian 2018 has suggested that some coin series may have been struck from two obverses set in the same 

anvil, but I am unconvinced that this was a frequent occurrence, and in any case it would make no difference to 

the die charts analysed here. 
8 Woytek 2013, pp. 255–66. 
9 Woytek 2012, p. 115. 
10 It may still be possible to identify separate workstations when there are no die links between them (see e.g., 

Beckmann 2011, p. 177), but this precedes from a priori knowledge of the context of production, rather than 

from an interpretation of the die chart itself. 
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occurs because of some emergency, or an accident in the logistics of the mint. Such instances 

are likely to have been rare, and I therefore term them exceptional. But sharing of reverse 

dies between workstations could also have been part of the modus operandi of the mint, 

resulting in far more frequent sharing. Both regular and exceptional sharing of dies between 

multiple workstations would result in die charts that cannot be drawn as a simple sequence 

like Figure 1, but must involve crossed lines. 

 The common pool of reverse dies just described in my explanation of regular sharing 

can be designated a “die box”. This is the set of available dies, from which one must be 

chosen for each workstation at the commencement of striking. Die boxes are not, however, 

limited to use in conjunction with multiple workstations. A mint with one workstation could 

easily have multiple dies available, from which just one was selected at the start of work, and 

replaced at the end. It is this replacement that is key, since it allows couplings out of 

sequence and thus creates die charts that do not resemble Figure 1. One little discussed factor 

is how often this replacement took place. Did mint workers take a mid-morning break and 

replace their dies at this point? Or were dies only replaced at the end of the day? Or the end 

of the week or some longer period? We simply have no information by which to determine 

this, but clearly the more frequently dies were returned to the die box, the more opportunity 

there would be for their being used out of sequence. 

 As with the case of multiple workstations, it is important to distinguish between the 

regular and exceptional use of dies out of sequence. The former might properly be called a 

die box, as just described. The latter may have occurred when, for example, on nearing the 

end of production, the mint finds that it has broken its final reverse die before producing the 

required amount of coin; it therefore re-employs an old reverse that had been removed from 

use because it had become worn, though was not completely exhausted. Such occurrences I 

do not deem to be instances of a die box, but would nonetheless produce die charts with 

unavoidably crossed lines.11 

 Previous discussion of die boxes has tended to focus on their use for reverse dies. It is 

often assumed that obverse dies were fixed in an anvil, meaning that they could not be 

 
 
11 Note that the description of a die box by Esty 1990, pp. 207–10, as well as the die charts with which he 

illustrates it, are better explained by my exceptional circumstances, rather than a true die box. This distinction 

does not, however, impact upon his theoretical discussion. 
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removed and returned to an obverse die box.12 Yet we have plentiful evidence that obverse 

dies could be—and were—removed from the anvil in antiquity, thus making obverse die 

boxes a possibility. Since obverse die boxes are so often dismissed out of hand, it is worth 

rehearsing that evidence here. A small number of Roman republican and imperial coins 

appear to have been struck by two obverse dies, and it has plausibly been suggested that some 

of these might have resulted from the re-deployment of an obverse die in the position of a 

reverse, whether as an emergency measure or otherwise.13 This would necessarily imply that 

obverse dies could be removed from the anvil. In the Roman provincial coinage of the second 

and third centuries AD, the same obverse die is sometimes to be found utilised for the 

coinage of two or more cities; although the precise explanation for this is disputed, most 

scholars reject the idea of a centralised mint and hypothesise that the obverse die—

presumably not still fixed in the anvil—was transferred between cities.14 Finally, the late 

Roman coinage furnishes a number of examples of the same obverse die being used with 

reverses displaying different officina marks.15 Since workstations can only belong to one 

officina, the use of an obverse die in multiple officinae would necessarily involve the transfer 

of that obverse from one anvil to another. 

 It must be granted that plausible explanations can be offered of all of these 

occurrences that do not involve the removal of obverse dies from the anvil: the deliberate 

engraving of an obverse design onto a reverse die in the first case, a centralised mint in the 

second, and the accidental use of a reverse die in the wrong officina for the third; these are 

not, however, the explanations currently favoured by the majority of scholarship. Indeed, we 

require only one of these instances actually to have involved the removal of obverse dies 

from the anvil for this to be admitted as a possibility in antiquity. Once we allow that obverse 

dies were not fixed in the anvil, an obverse die box becomes a possibility that we must 

entertain. 

 
 
12 The possibility of an obverse die box is rejected out of hand by e.g. Esty 1990, pp. 207–08; Carter and Nord 

1992, p. 149; Kraay 1956, p. 12 
13 Stannard 1987 for the republican coins, with a brief look at later coins. For an alternative explanation of 

Hadrianic double-headed coins, see Abdy 2015. 
14 Kraft 1972; Johnston 1982; Spoerri Butcher 2006; Watson 2019, pp. 111–26 For a dissenting viewpoint that 

favours a centralised mint, see Kellner 1973, p. 30. 
15 Some of these were the subject of a discussion by Bastien 1960; Grierson 1961; Sutherland 1962. 
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 All of the minting scenarios discussed above, viz. multiple workstations with dies 

shared either regularly or exceptionally, the exceptional re-use of dies out of sequence, and 

die boxes for both obverse and reverse dies, would result in die charts that cannot be drawn 

without crossed lines. To answer the question of whether there are any other properties of 

these die charts that allow us to distinguish between these different scenarios, I turn now a 

computer simulation of an ancient mint that generates die charts and analyses their properties. 

The simulation 

 The computer program to simulate different minting scenarios was written in Python 

programming language, and outputs results to a spreadsheet for easy analysis. Before the 

program can be run, the following parameters must be set: 

 
dmax The total number of obverses to be generated. This is simply a means of 

setting a limit to program’s operation. For all of the simulations in this paper, 

dmax = 20. 

Tr The average lifetime, in minutes, of reverse dies. Carter and Nord estimated an 

average die lifetime of between 5 and 10 hours for Crepusius denarii.16 For all 

simulations in this paper, Tr = 450 (= 7.5 hours). 

a A scale factor for how much longer obverses should last than reverses. This 

can be estimated by looking at ratios of reverses to obverses (r/o) in completed 

die studies, and de Callataÿ has shown that the figure is heavily dependent 

upon the size of coin being struck.17 His survey of Hellenistic coinages 

suggests that the r/o ratio is generally around or a little over 1 for small and 

light pieces, between 1 and 3 for coins of medium weight, and can stretch up 

to 5 or 6 for the largest coins. A survey of Roman die studies suggests that the 

same holds true there: r/o for Roman precious metal coinages is generally in 

the range 1–1.5, while bronze coins, including Roman provincial coins, which 

were in general larger, have r/o ratios nearer 3 or 4.18 

 
 
16 Carter and Nord 1992, pp. 154–9. 
17 Callataÿ 1999. 
18 Data from Roman precious metal die studies is helpfully summarised by Bland 2013, pp. 279–80. Figures for 

bronze are from my own brief survey of the following publications: Kraay 1956; Woodward 1957; Kaenel 1986; 

Klose 1987; Delrieux 2008; Dalaison, Remy and Amandry 2009; Watson 2019. 
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t The length, in minutes, of a working period, after which dies are returned to 

the die box.19 

W The number of workstations. 

odb The number of dies in the obverse die box. It is necessarily true that odb ≥ W, 

so that all workstations can operate simultaneously; if odb = W, it can be 

presumed that the obverse die box does not exist, as each obverse is fixed to a 

particular workstation. 

rdb The number of dies in the reverse die box. As with obverse dies, it is 

necessary that rdb ≥ W, to allow all workstations to operate simultaneously.20 

i The number of iterations to be completed, or in other words, the number of die 

charts to be produced with the inputted parameters. For all simulations in this 

paper, i = 10,000. 

 

 At the start of the simulation, the obverse and reverse die boxes are populated with 

dies. Each is assigned a lifetime, in minutes, according to the geometric model proposed by 

Esty.21 A die pair is chosen for each workstation at random, and a time step, equivalent to one 

minute, advances until the length of the working period (t) has been reached. If, in this 

period, any of the dies exceed their assigned lifetime, a new die is selected from the die box 

and employed at that workstation. When there are no available dies in the die box—either 

because they are in use at other workstations or because the box is empty—the die box is 

repopulated with new dies.22 This process is repeated until dmax is reached. The properties of 

the resultant die chart, which need never actually be drawn, are recorded in the spreadsheet 

and the process is repeated for the number of iterations specified by i. 

 The program as described above produces die charts that directly reflect activity in the 

mint, but this is not the case for die charts that arise from actual die studies. In the latter case, 

the vagaries of archaeological survival mean that the charts only reflect a sample of the 

 
 
19 Carter and Nord 1992 assume that reverse dies were returned to the die box at the end of a 12-hour working 

day. 
20 The same restriction is envisaged by Bracey 2017, p. 84. 
21 Esty 2011. The program can also assign die lifetimes according to a gamma distribution, as proposed by 

Carter 1983, but this does not significantly affect the results presented here. 
22 The moment at which the die box might have been replenished has not been much considered but has a 

significant impact upon the resultant die charts; for the impact of continuously keeping the die boxes at 

maximum capacity, see below note 33. 
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original material. Although this paper only deals with die charts that reflect the complete 

output of the mint, the simulation can also be made to produce die charts that reflect what 

numismatists actually deal with, that is to say, using evidence that is disrupted by chance 

survival. Three further parameters are required: 

 
o_loss The percentage of obverse dies to be deleted. This can be thought of as the 

inverse of the obverse coverage of a die study, as defined by Esty;23 for 

example, to simulate a die study with obverse coverage of 95%, o_loss = 5.  

r_loss The percentage of reverse dies to be deleted. Existing die studies indicate that 

reverse coverage is normally slightly worse than obverse coverage, and r_loss 

should therefore be slightly higher than o_loss. 

e_loss The percentage of links to be deleted. This simulates the fact that links can be 

unattested in a die study even when all of the relevant dies are attested. It is 

impossible to calculate how many such links are missing from die studies, but 

a rough estimates can be made based on die studies that have been revisited 

after an interval of time. The relevant figure is the number of new die 

combinations in the revised study that involve dies already attested in the 

original dataset. While this does not, of course, reflect the number of original 

links that were unattested, it our best means of estimating how many links 

might be missing, even when the dies are known. A survey of three such 

revisited die studies suggests that a figure for e_loss of between 5 and 10% is 

reasonable.24 

 

 The program deletes both dies and links in inverse probability to their length of use. 

Dies with short lifetimes will have produced fewer coins, and are therefore less likely to 

appear in a modern sample; the chance of these dies being deleted in the simulation is 

therefore higher. The opposite is true of dies with long lifetimes, and the same principles 

apply to links or die combinations. 

 
 
23 Esty 2006. 
24 Beckmann 2007 (revisiting Beckmann 2000) shows 17 new links between dies that were already known, out 

of a total of 179 die combinations in the final publication. Bland forthcoming (revisiting Bland 1991) shows 33 

new die combinations out of 853. A 2021 revision of the die study in Bland 1993 showed 4 new die 

combinations out of 33. I am grateful to Roger Bland for sharing his data from these latter two studies with me. 
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The Python code for the mint simulation is available at: 

https://github.com/gcw30/mint-simulation. Since the simulation is based on pseudo-random 

numbers, it is possible for any reader to run the code and obtain exactly the same results as 

those presented in this paper. Readers are, of course, also encouraged to experiment with the 

code and to run their own simulations.  

Planarity 

 Planarity is a property of graphs that has received increasing attention in recent 

numismatic literature.25 A planar graph is defined as one “that can be drawn in the plane 

without crossings – that is, so that no two edges intersect geometrically, except at a [node] to 

which both are incident.”26 All graphs, including die charts, can, of course, be drawn in an 

infinite number of ways, but for some graphs all of these possible drawings necessarily 

involve crossed lines; these graphs are described as non-planar. Graphs that have even just 

one possible drawing without crossed lines are planar. Note that the concept of “crossed 

lines” differs here from that used above. Above, we were concerned only with die charts in 

which obverses and reverses were arranged separately on two parallel lines; in testing for 

planarity there can be no restriction on the placement of nodes in the graph.27 

 Planarity is interesting in the context of die charts, since it has been claimed that non-

planar die charts are indicative of a particular minting process, specifically that “if a chart is 

non-planar … the original mint must have employed at least three workstations.”28 Bracey 

has gone further and suggested a semi-formal method for identifying the number of 

workstations that lay behind a non-planar chart.29 In both instances, the analysis proceeds 

entirely from the pattern of linkage in the die chart, without any external information 

regarding e.g. die wear. 

 The central premise of this strand of scholarship, that non-planar die charts 

necessarily reflect a minting scenario in which at least three workstations were employed, can 

 
 
25 E.g. Bracey 2012; Bracey 2017; Nurpetlian 2018. 
26 Wilson 1996, p. 60. 
27 These two concepts are confused by Ramskold 2016, pp. 177–8 The die chart he discusses cannot be drawn 

without crossed lines when obverses and reverses are arranged separately on parallel lines, but it is not planar, as 

Ramskold claims. 
28 Bracey 2012, p. 74. 
29 Bracey 2017. 

https://github.com/gcw30/mint-simulation
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be tested experimentally using the mint simulation described above. For the sake of 

simplicity, obverse die boxes have been discounted at first (i.e. odb = W), and the program 

was run for different values of W and rdb; other variables remained constant throughout the 

different runs.30 Table 1 presents the number of non-planar die charts that were generated by 

each run of the program for different values of W and rdb; the total number of die charts 

generated in each run of the program was 10,000.31 

 

 rdb 

W  
 

1 2 3 4 

1 0 0 1 6 

2 – 0 25 104 

3 – – 2072 2444 

4 – – – 4393 
Table 1: Number of non-planar graphs (out of 10,000) for different values of rdb and W (odb=W, t = 600, a=1.5) 

 It is clear from Table 1 that it is quite possible for a non-planar die chart to result from 

the operation of just one workstation with three or more dies in the reverse die box. The same 

is true of an obverse die box: non-planar die charts can result from one workstation and an 

obverse die box containing three or more dies.32 It is true that non-planar die charts occur 

much more frequently when there are three or more workstations, but there are a number of 

other factors that impact upon the likelihood of a non-planar die chart arising: increasing dmax 

and decreasing a or t would all result in more non-planar charts, whatever the values of W 

and rdb.33 It is therefore not even possible to determine which minting scenario is more likely 

 
 
30 The value of a = 1.5 reflects a plausible value for Roman precious metal coinage; t = 600 simulates dies being 

returned to the die box at the end of a ten hour working day: both seem reasonable assumptions. 
31 There are numerous approaches to testing for planarity. The simulation uses the NetworkX Python package 

(https://networkx.org), which implements the so-called Left-Right algorithm described by De Fraysseix, De 

Mendez and Rosenstiehl 2006. 
32 A simulation with the same parameters as in Table 1, but W = 1, odb = 3 and rdb = 1 resulted in three non-

planar die charts out of 10,000. 
33 Modifying the program so that the die boxes are continuously kept at maximum capacity, rather than only 

being replenished when empty, also results in many more non-planar die charts. While the latter seems a more 

probable manner of operation, the former is possible, particularly in large mints that retained the services of 

their own engravers. 
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to have produced a non-planar die chart, let alone to definitively link such a chart to one and 

only one minting scenario.  

The only condition upon the appearance of non-planar die charts is that one of W, odb 

or rdb must be greater than or equal to three; if all are less than three, non-planar die charts 

will not occur.34 In other words, a non-planar die chart demonstrates that there were either at 

least three dies in the reverse die box, at least three dies in the obverse die box, or at least 

three workstations; it does not, however, allow us to determine which of these actually 

reflects the original production process. As a corollary we should also note that the reverse is 

not true: a planar die chart does not preclude the operation of multiple workstations and/or 

die boxes.  

Bipartite crossing number 

 Although planarity has received a good deal of attention in recent numismatic 

scholarship, it is a rather unintuitive property for which to analyse a die chart. Tests for 

planarity assume that, in drawing the graph, nodes can be placed anywhere on the plane, but 

we rarely want to employ this freedom in drawing die charts. The drawing of die charts is 

intended to aid our understanding of a die study, and drawings that place no restrictions on 

the placement of nodes are unlikely to do this. As an example, Figure 2 shows a section of a 

die chart generated by the simulation described above, drawn in such a way as to demonstrate 

its planarity. No numismatist is likely to be able to draw any useful conclusions from it. To 

make it useful we must, at the very least, group together obverses and reverses; doing so 

would necessarily lead to crossed lines. I therefore turn to a property of die charts not 

 
 
34 For the maths of why this must be true, see Wilson 1996, pp. 62–3; for a more numismatically focussed 

explanation, see Bracey 2012, pp. 72–4. 
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previously discussed in the numismatic literature that explicitly relies on grouping obverses 

and reverses together. 

 Die charts are all examples of a particular category of graphs known as bipartite 

graphs. These are defined as graphs containing two distinct sets of nodes, where each node is 

connected only to nodes of the other set and not to nodes of its own set.35 Since in a die chart 

obverses cannot, in normal circumstances, be connected to other obverses, and reverses 

cannot be connected to other reverses, die charts are necessarily bipartite. One interesting 

property of bipartite graphs is the bipartite crossing number (bcr), which can be defined as 

the smallest number of crossings in a drawing of the graph such that the two sets of nodes lie 

on parallel lines.36 In other words, for a die chart, we would place all obverses on one line 

and all reverses on a separate parallel line and then reposition the dies to minimize the 

number of crossings. The number of crossings in this optimal arrangement is the bcr. 

 Knowing the bcr of a die chart allows us to select an optimal drawing thereof. For 

example, when bcr = 1, it would be foolish to publish a die chart with five crossings, unless 

 
 
35 Wilson 1996, p. 18 defines a bipartite graph thus: “If a vertex set of a graph G can be split into two disjoint 

sets A and B so that each edge of G joins a vertex of A and a vertex of B, then G is a bipartite graph. 

Alternatively, a bipartite graph is one whose vertices can be coloured black and white in such a way that each 

edge joins a black vertex (in A) with a white vertex (in B).” 
36 This property is discussed under different names and notations in the mathematical literature. I follow the 

naming, definition and symbology of Schaefer 2020, p. 32. 

Figure 2: Non-sensical drawing of a hypothetical die chart, arranged to illustrate planarity 
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there was a great deal of external evidence to suggest this was the correct interpretation. But 

beyond selecting an optimal drawing, knowledge of the bcr could also be an aid in 

interpreting the die charts. Die charts for which bcr = 0 will allow for drawing as in Figure 1, 

and must result from one workstation and no die boxes. Low values of bcr are likely to 

reflect the kind of exceptional patterns of die use discussed above, whereas regular sharing of 

dies between multiple workstations or true die boxes are likely to result in higher values of 

bcr.37 This is not a hard and fast rule—the simulation confirms that the use of die boxes can 

result in low values of bcr—but it does offer a rough guide.38 

 The problem arises in calculating bcr. There are currently no known algorithms to 

calculate bcr for any bipartite graph and moreover, the problem is classified as NP-complete, 

a class of problems that have been extensively studied by mathematicians and for which it is 

questionable whether an efficient algorithm can ever be found.39 Some values of bcr may be 

calculated by brute force. Die charts for which bcr ≠ 0 are easy to detect manually; all that is 

required is for any two obverses to be connected, either directly or indirectly, to the same two 

reverses. When this feature is not present, bcr = 0. Similarly, experience suggests that when 

bcr = 1, it is easy enough to determine this visually by manipulating the die chart drawing. 

More complex die charts would require an algorithmic calculation, which, as stated, is not 

currently possible. NP-complete problems are generally approached via heuristics and 

approximations, and while various approximations of bcr exist for particular types of graph, 

none are applicable to die charts. Given that this remains an active field of mathematical 

research, it may be that an appropriate approximation is discovered, and numismatists would 

do well to be alert to such a discovery. 

Other properties 

 Scholars have suggested that a number of other properties of die charts might be 

related to the original conditions of production. I analyse each of these in turn here and show 

 
 
37 The dividing line between a low value and a high value must of course be left to the judgement of the 

individual researcher. 
38 A key factor is the length of the die chain: low values of bcr are only likely to be produced by multiple 

workstations and/or die boxes if there are few dies in the chain; low values in long chains are almost certainly 

the result of exceptional die use. 
39 Schaefer 2020, pp. 32–3. 
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that, while there is some correlation in some instances, it is not possible to tie any particular 

property to a particular production scenario. 

 Carter and Nord invented a parameter that they dubbed the die combination ratio, 

which they defined as:40 

 
Ddc ÷ (Do + Dr), where Ddc is the original number of die combinations, Do is the original number of 

obverse dies, and Dr is the original number of reverse dies. When dies are kept at a given anvil until they 

fail, it is reasonable that for each die failure there is a new die combination, and hence Do + Dr should 

equal Ddc. The die combination ratio should actually be slightly less than one because occasionally both 

dies may have been replaced simultaneously. When dies are returned to the die boxes (or die box, if only 

the reverse dies are returned) at night, then the number of die combinations should be greater than Do + 

Dr. The die combination ratio is greater than one since new die combinations can be achieved without the 

failure of a die. 

 

The simulation reveals that the die combination ratio is indeed always less than 1 when 

minting occurs at one workstation without the use of die boxes. The inverse, however, does 

not hold true: die combination ratios of less than one can also occur when the minting 

scenario includes multiple workstations and/or die boxes. A die combination ratio of less than 

1 is not therefore diagnostic of any particular minting scenario, and a die combination ratio of 

more than one simply indicates a more complex minting arrangement, without determining 

which one. Indeed, the die combination ratio is more strongly correlated with the length of 

the working period (shorter working periods result in higher ratios), than with the presence or 

absence of multiple workstations and/or die boxes. 

Bracey has suggested that numismatists may be interested in what he terms the “largest 

reverse cluster”, defined as “the largest number of obverses occurring in combination with a 

single reverse”; this is suggested to be indicative of the maximum number of workstations 

from which a die chain might have been produced.41 This metric is more properly termed the 

maximum reverse degree: in graph theory the degree of a node is the number of edges 

connected to it, and the maximum degree of a graph is therefore the maximum number of 

edges connected to any one node.42 Maximum reverse degree is, however, a meaningless 

metric with regard to die charts. The simulation reveals that, under reasonable assumptions 

 
 
40 Carter and Nord 1992, p. 155. 
41 Bracey 2017, pp. 86–7. 
42 Wilson 1996, p. 12. 
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for other parameters, one workstation and no die boxes can produce die charts with a 

maximum reverse degree of higher than 10. This would occur when a particularly long-lived 

reverse die happened to be coupled with a number of short-lived obverse dies; the relevant 

factor is therefore the relative lifetimes of obverse and reverse dies (i.e. the value of a in the 

simulation), with longer lasting reverses (i.e. lower values of a) more likely to record larger 

maximum reverse degrees. 

 Bracey has also introduced a metric that he termed “length”, defined as “the minimum 

number of die combinations necessary to connect any two dies in the chart”.43 Graph theory 

labels this measure the diameter of a graph, and defines it as “the largest geodesic between 

any pair of nodes”, where a geodesic is defined as the shortest path between two nodes.44 

Bracey gives no indication as to what he believes this metric is supposed to indicate about die 

charts, but diameter is generally used as a measure of how far apart the farthest two nodes in 

a graph are, which can be interesting when the graph represents, for example, a 

communications network. There doesn’t seem to be an obvious real-world interpretation of 

diameter in the context of die charts, but there is nevertheless some form of correlation 

between the diameter of the die chart and the original minting scenario. Complex minting 

scenarios (i.e. higher values of W and/or odb and rdb) result in lower diameters. This 

relationship cannot, however, be modelled mathematically, meaning that it is impossible to 

work backwards from a given die chart to the original values of W, odb and rdb on the basis 

of the chart’s diameter.45 Another measure of graph distance, the average shortest path 

length,46 shows a similar correlation (higher values of W, odb and rdb result in lower average 

shortest path lengths) but this cannot be used as diagnostic of the original minting scenario.  

 
 
43 Bracey 2017, p. 87. 
44 Iacobucci 1994, pp. 110–12 A useful explanation of this concept in an archaeological context is given in the 

glossary provided by Collar et al. 2015, pp. 17–25. 
45 For simulations where W, odb and rdb were varied between 1 and 4 and other variables kept constant (a = 1.5, 

t = 600), an Ordinary Least Squares regression analysis gives an r2 value of 0.51, meaning that W, odb and rdb 

account for 51% of the variation in the diameter of die charts produced by the simulation; the other 49% will be 

accounted for by other input variables (e.g., Tr, a, t) that are not necessarily measurable in real world examples. 

Even this value is likely to be optimistic, however, since the analysis doesn’t account for the collinearity of W, 

odb and rdb, and assumes that their relationship with the diameter of a die chart is linear, which is not 

necessarily true. 
46 Calculated by evaluating the shortest path between every pair of nodes (geodesics) and then taking the mean. 

See the glossary in Collar et al. 2015, s.v. “geodesic”. 
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 Graph theory also provides a number of metrics for measuring how closely connected 

a graph is. The simulation calculates two of these, namely density and clustering, for all die 

charts it generates. Density is defined as the number of links present as a fraction of the total 

possible links; clustering measures to what extent nodes that share a common neighbour are 

likely to have other neighbours in common.47 Neither metric has any correlation with the 

number of workstations or the presence or absence of die boxes. 

Conclusion 

 The preceding discussion has made it clear that there are currently no mathematical 

properties of dies charts that are indicative of the use of multiple workstations as opposed to 

die boxes, or vice versa. If a die chart cannot be drawn so that no lines cross when obverses 

and reverse are arranged separately on parallel lines—or, to use the language introduced in 

this paper, for die charts where bcr ≠ 0—there is no means of determining on the basis of the 

pattern of linkage alone whether the chart resulted from the use of multiple workstations or of 

die boxes, let alone how many workstations or how many dies in the die box. Recent interest 

in the concept of planarity should be abandoned, as this reveals nothing about the original 

minting scenario; it would be more fruitful to replace this with the concept of the bipartite 

crossing number, although a full implementation of this will need to await the derivation of a 

suitable approximation. 

 As stated in the introduction, knowing whether a coin series was produced at multiple 

workstations, and if so, at how many, could be useful in determining the intensity of 

production. If two series use roughly the same number of dies (and can therefore be 

presumed to have produced roughly the same number of coins), but one was minted using 

one workstation and the other three, the latter series is likely to have been produced in a 

much shorter time period. This could be interesting in relation to the purpose of the coinage, 

or the historical context in which it was produced. However, in the absence of a mathematical 

means of determining the original minting scenario, we must rely instead on our contextual 

 
 
47 Both are defined in the glossary of Collar et al. 2015, but must be adapted for bipartite networks, see Latapy, 

Magnien and Vecchio 2008. 
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knowledge to determine whether the complexity of a die chart arose from multiple 

workstations or the use of die boxes.48  

The kind of contextual knowledge that might facilitate this kind of judgement 

includes considerations such as the size of the mint and its usual operation. For example, if 

the complex die chart arises for only a short period of the mint’s operation, when its normal 

processes seem to have been much simpler, the multiple workstation explanation seems 

implausible; it seems more likely that the mint would have temporarily employed a die box 

than that it would have invested in the extra equipment and facilities needed for extra 

workstations for only a short period of operation. We might also consider the supply of dies. 

In the Roman provincial coinage, for example, it is generally accepted that many cities 

received their dies from travelling workshops of engravers. It seems very plausible that a city 

would purchase a large bunch of dies at one time, not knowing when the workshop would 

next be available. A die box, where those dies—purchased en masse—were not necessarily 

used in sequence, would therefore seem the most logical explanation in this scenario. 

 If our assessment of the original minting arrangements is to be based on such 

qualitative judgements rather than on a mathematical calculation arising from the die chart, it 

is crucial that we are clear about the terminology that we use. As discussed above, the term 

“die box” should only be used for the systematic use of dies in no particular order; die boxes 

could operate for reverse dies, for obverse dies, or for both in tandem. The one-off or 

exceptional use of a die out of sequence should not be considered a die box. The difference 

between these two scenarios could indicate very different operating principles at the mint. 

Similarly, if multiple workstations are thought to have been in use, we must consider whether 

the sharing of dies between them was standard procedure or the result of exceptional usage; 

these two different scenarios would suggest very different conclusions about the organisation, 

operation and goals of the mint. 

While the conclusions given here advocate a more subjective approach to determining 

the original process employed in the mint, this is not to say that the mathematical approach 

should be abandoned. Indeed, this paper has attempted to show that it is crucial that die charts 

be considered as mathematical graphs in order that their properties be fully understood. Only 

by engaging properly with graph theory will numismatists be able to understand what can and 

 
 
48 Note the danger of circularity here: if we use contextual knowledge to determine the minting scenario, we 

shouldn’t then use our conclusions about the minting process to shed light on the historical context. 
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can’t be concluded from the structure of a die chart. Mathematics is not a static discipline, 

and as advances are made in understanding the properties of bipartite graphs, it may be that 

there are new insights that can bring about a better understanding of die charts. It is crucial 

therefore that numismatists continue to engage with the mathematics of graph theory and to 

think critically about how it can be applied to the field of die studies. 

Bibliography 

Abdy, R., 2015. “Capita aut capita? The double heads (and double tails) coins of Hadrian,” in 
Bland, R. and D. Calomino (eds.), Studies in ancient coinage in honour of Andrew Burnett 
(London) 143–60. 

Bastien, P., 1960. “Folles de l’atelier de Lyon frappés avec le même coin d’effigie,” SM 10, 
75–77. 

Beckmann, M., 2000. “The early gold coinage of Trajan’s sixth consulship,” AJN 12, 119–
56. 

Beckmann, M., 2007. “Trajan’s gold coinage, AD 112–117,” AJN 19, 77–129. 

Beckmann, M., 2011. “Trajan’s gold coinage dated COS V, AD 103–111,” AJN 23, 169–88. 

Beckmann, M. 2014. Diva Faustina. Coinage and Cult in Rome and the Provinces 
(Numismatic Studies 26). 

Bland, R., 1991. The coinage of Gordian III from Antioch and Caesarea (PhD thesis, 
University College London). 

Bland, R., 1993. “The coinage of Jotapian,” in Price, M., A. Burnett and R. Bland (edd.), 
Essays in honour of Robert Carson and Kenneth Jenkins (London) 191–206. 

Bland, R., 2013. “What happened to gold coinage in the 3rd century AD?,” JRA 26, 263–80. 

Bland, R., forthcoming. The Coinage of Gordian III from the mints of Antioch and Caesarea 
(Royal Numismatic Society Special Publications). 

Bracey, R., 2012. “On the graphical interpretation of Herod’s Year 3 coins,” in Jacobson, 
D.M. and N. Kokkinos (eds.), Judaea and Rome in Coins 65 BCE–135 CE (London) 65–84. 

Bracey, R., 2017. “Contributions of die studies to the study of the intensity of ancient coin 
production: The work-station problem,” in Caccamo Caltabiano, M. (ed.), Proceedings of XV 
International Numismatic Congress: Taormina 2015 (Rome) 83–87. 

Callataÿ, F. de, 1999. “Étude de technique monétaire: le rapport «nombre de coins de revers / 
nombre de coins de droit» à l’époque hellénistique,” Revue des Archéologues et Historiens 
d’Art de Louvain 32, 91–102. 



 
 

19 

Callataÿ, F. de, 2011. “Quantifying monetary production in Greco-Roman times: a general 
frame,” in Callataÿ, F. de (ed.), Quantifying Monetary Supplies in Greco-Roman Times 
(Pragmateiai 19) 7–29. 

Carroccio, B., 2011. “Parallel striking reconstruction and chronological numismatic 
interpretation,” in Callataÿ, F. de (ed.), Quantifying Monetary Supplies in Greco-Roman 
Times (Pragmateiai 19) 81–103. 

Carter, G.F., 1983. “A simplified method for calculating the original number of dies from die 
link statistics,” ANSMN 28, 195–206. 

Carter, G.F. and R.S. Nord, 1992. “Calculation of the average die lifetimes and the number of 
anvils for coinage in antiquity,” AJN 3/4, 147–64. 

Collar, A., F. Coward, T. Brughmans and B.J. Mills, 2015. “Networks in Archaeology: 
Phenomena, Abstraction, Representation,” Journal of Archaeological Method and Theory 22, 
1–32. 

Crawford, M.H. 1983. “Numismatics,” in Crawford, M.H. (ed.), Sources for Ancient History 
(Cambridge) 185–233. 

Dalaison, J., B. Remy and M. Amandry, 2009. Zéla sous l’Empire Romain. Études 
historiques et corpus monétaire (Numismatica Anatolica 4). 

De Fraysseix, H., P.O. De Mendez and P. Rosenstiehl, 2006. “Trémaux Trees and Planarity,” 
Int. J. Found. Comput. Sci. 17, 1017–29. 

Delrieux, F., 2008. Les monnaies des cités grecques de la basse vallée de l’Harpasos en 
Carie (IIe siècle a.C. - IIIe siècle p.C.) (Numismatica Anatolica 3). 

Esty, W.W., 1990. “The theory of linkage,” NC 150, 205–21. 

Esty, W.W., 2006. “How to estimate the original number of dies and the coverage of a 
sample,” NC 166, 359–64. 

Esty, W.W., 2011. “The geometric model for estimating the number of dies,” in Callataÿ, F. 
(ed.), Quantifying Monetary Supplies in Greco-Roman Times (Pragmateiai 19) 43–58. 

Grierson, P., 1961. “Coins monétaires et officines à l’époque du bas-empire,” SM 11, 1–7. 

Iacobucci, D., 1994. “Graphs and Matrices,” in Wasserman, S. and K. Faust (eds.), Social 
Network Analysis: Methods and Applications (Cambridge) 92–166. 

Johnston, A., 1982. “Die sharing in Asia Minor: the view from Sardis,” INJ 6–7, 59–78. 

Kaenel, H.-M. von, 1986. Münzprägung und Münzbildnis des Claudius (Antike Münzen und 
geschnittene Steine 9). 

Kellner, W., 1973. “Konrad Kraft. Das System der kaiserzeitlichen Münzprägung in 
Kleinasien. Review,” SM 23, 29–31. 



 
 

20 

Klose, D.A.O., 1987. Die Münzprägung von Smyrna in der römischen Kaiserzeit (Antike 
Münzen und geschnittene Steine 10). 

Kraay, C.M., 1956. The Aes coinage of Galba (Numismatic Notes and Monographs). 

Kraft, K., 1972. Das System der kaiserzeitlichen Münzprägung in Kleinasien. Materialien 
und Entwürfe (Berlin). 

Latapy, M., C. Magnien and N.D. Vecchio, 2008. “Basic notions for the analysis of large 
two-mode networks,” Social Networks 30, 31–48. 

Nurpetlian, J., 2018. “Brockage coins,” NC 178, 225–45. 

R.-Alföldi, M., 1978. Antike Numismatik. Teil I. Theorie und Praxis (Kulturgeschichte der 
antiken Welt 2). 

Ramskold, L., 2016. “A die link study of Constantine’s pagan Festival of Isis tokens and 
affiliated coin-like ‘fractions’: chronology and relation to major imperial events,” JNG 66, 
57–239. 

Schaefer, M. 2020., “The Graph Crossing Number and its Variants: A Survey,” The 
Electronic Journal of Combinatorics DS21, 1–117. 

Spoerri Butcher, M., 2006. “L’organisation de la production monétaire au sein de la province 
d’Asie à l’époque de Gordien III (238–244),” SNR 85, 97–132. 

Stannard, C. 1987., “Two-headed and two-tailed denarii in the Roman Republic,” NC 147, 
160–63. 

Sutherland, C.H.V., 1962. “Coins monétaires et officines à l’époque du bas-empire: note 
supleméntaire,” SM 11, 73–75. 

Watson, G.C., 2019. Connections, Communities and Coinage. The system of coin production 
in southern Asia Minor, AD 218–276 (Numismatic Studies 39). 

Wilson, R.J., 1996. Introduction to Graph Theory (4th edition, Harlow). 

Woodward, A.M., 1957. “The Coinage of Pertinax,” NC 17, 84–96. 

Woytek, B., 2012. “System and product in Roman mints from the Late Republic to the High 
Principate: some current problems,” RBN 158, 85–122. 

Woytek, B., 2013. “Signatores in der römischen Münzstätte: CIL VI 44 und die 
numismatische Evidenz,” Chiron 43, 243–84. 

 


