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Martin Nöllenburg∗

TU Wien
Jaakko Peltonen§

Tampere University

(a) Straight Line Drawing (b) Force-Directed

(c) CUBu (d) Winding Roads

(e) Edge-Path Bundling (f) Edge-Path Bundling Directed

Fig. 1. Edge bundling of the Migrations dataset. (a) Straight line drawing. (b) Force-Directed edge bundling aggregates edges well, but
overaggregates at the centre of the drawing making it difficult to see patterns in the east-west flow (red bundle). (c) CUBu has a similar
drawback at the centre of the map to a lesser degree. (d) Winding Roads divides this structure into several smaller flows, but they may
not be necessarily related to graph structure. (e) Edge-Path bundling is able to distinguish between several flows that reflect paths in
the underlying graph. (f) When edge direction is considered, the algorithm is able to further subdivide these flows based on direction.

Abstract—Edge bundling techniques cluster edges with similar attributes (i.e. similarity in direction and proximity) together to reduce
the visual clutter. All edge bundling techniques to date implicitly or explicitly cluster groups of individual edges, or parts of them,
together based on these attributes. These clusters can result in ambiguous connections that do not exist in the data. Confluent
drawings of networks do not have these ambiguities, but require the layout to be computed as part of the bundling process. We devise
a new bundling method, Edge-Path bundling, to simplify edge clutter while greatly reducing ambiguities compared to previous bundling
techniques. Edge-Path bundling takes a layout as input and clusters each edge along a weighted, shortest path to limit its deviation
from a straight line. Edge-Path bundling does not incur independent edge ambiguities typically seen in all edge bundling methods, and
the level of bundling can be tuned through shortest path distances, Euclidean distances, and combinations of the two. Also, directed
edge bundling naturally emerges from the model. Through metric evaluations, we demonstrate the advantages of Edge-Path bundling
over other techniques.
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1 INTRODUCTION

Since its introduction [24], edge bundling approaches cluster groups
of individual edges together based on similar properties. The original
paper required a hierarchy imposed on top of the network, but quickly
techniques were developed to bundle edges with shared attributes [36]
(e.g. proximity and movement in the same direction [15,25,31,46]) (see
Fig. 1). However, all these approaches implicitly or explicitly cluster
individual edges, or parts of them (such as their pixels), independent
of graph structure. This causes a type of ambiguity shown in Fig. 2(a)
called the independent edge ambiguity: two independent edges can be
clustered together leading to the perception of false adjacencies that do
not exist in the underlying graph.

Confluent drawings [16] considered a very similar problem, and clus-
ter edges based on their participation in bicliques. Therefore, confluent
drawings do not suffer from independent edge ambiguities. However,
confluent drawings bundle graphs significantly less, leaving much edge
clutter on-screen. Also, these approaches compute both the layout
of the network and the bundling simultaneously. There have been a
number of attempts to relax the strict constraints of confluent drawings
to move towards unambiguous bundling [10, 57], but all approaches
still require the layout to be computed alongside the bundling.

In all such approaches, groups of edges with similar attributes (typi-
cally, edge slope and proximity) or parts of them (i.e. their pixels) are
bundled together if they are aligned well. However, when clustering
these edges, the underlying graph structure is not fully considered. In
Fig. 1, a straight line drawing and three popular bundling approaches
are shown. Force-Directed edge bundling [25] and CUBu [50] greatly
simplify the edge clutter clearly revealing the direction of flows. This
is particularly visible in the east-west flows of the network (the red
edges) at the centre of the drawing. However, unrelated edges can be
pulled together into a bundle causing ambiguity in the patterns of con-
nections. Grid-based techniques, such as Winding Roads [31], divide
the edges into much smaller bundles, but these bundles can contain
unrelated edges. The approach presented in this paper, Edge-Path
bundling, bundles edges with shortest paths between their endpoints.
Therefore, unrelated edges will not be bundled and all bundles reflect
an underlying path in the graph. In the undirected version, it is now
clear that the central flow divides into two: one that heads towards the
great lakes region and another towards Texas. Further detail is also
visible on the east coast and the great lakes region not visible in the
other diagrams. Directed Edge-Path bundling reveals that these bundles
actually consist of three main streams indicated in red. In the straight
line drawing, these flows are somewhat visible, but the pattern is not
revealed by any other technique except directed Edge-Path bundling; in
particular, the flow from California to Texas divides into three.

This paper introduces a new approach to edge bundling that does
not consider groups of individual edges, their pixels, or bicliques as
the primitive for bundling. Instead, given an input layout (i.e. trail-
sets [36]), it considers clustering edges with a weighted path as the
primitive for bundling. Each long edge in the graph is bundled to a
shortest path that exists between the endpoints of the edge (Fig. 2(b)
and 2(c)). By definition, Edge-Path bundling does not suffer from
independent edge ambiguities as a path must exist in the graph for the
edge to be bundled, but it is far less restrictive than the rules imposed
by confluent drawings. Also, the approach naturally expresses both
undirected and directed edge bundling without modification to the
algorithm. We demonstrate that the approach has more significant
bundling when compared to confluent drawings while simultaneously
eliminating independent edge ambiguities.

2 RELATED WORK

Since the introduction of edge bundling by Holten [24] and confluent
drawing by Dickerson et al. [16] for reducing edge clutter in graph
drawings, the research area has been very active and many approaches
have been devised by clustering edges, or their pixels, with similar
properties together. The current state-of-the-art in edge bundling can
incur independent edge ambiguities (Fig. 2(a)) when aggregating edges
into clusters. Confluent drawings restrict the bundling to perfect bi-
cliques to avoid this case, but often the imposed constraints are too
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Fig. 2. Independent edge ambiguity and Edge-Path bundling. (a) Two dis-
connected edges can be bundled together in edge bundling approaches
resulting in false connections between (u,x) and (v,w). (b) Edge-Path
bundling avoids this issue by bundling long edges with weighted shortest
paths. (c) For directed graphs, directed paths are used.

strict for significant bundling to occur.
Edge-Path bundling devises a necessary rule to have efficient

bundling while completely eliminating independent edge ambiguities.
Intuitively, when a pair of disconnected edges (u,v) and (w,x) are
bundled, a path can appear to exist between (u,x) and (v,w) where a
connection does not exist at all. Also, Edge-Path bundling can avoid
bundling patterns where there are none. In Fig. 3, independent edges
are placed randomly in the cube and all bundling techniques find a pat-
tern in this graph whereas Edge-Path bundling and confluent drawings
do not. Edge-Path bundling does not have this issue as it only bundles
edges with weighted paths in a particular layout. Although related to
edge bundling, it is a fundamentally different approach that does not
neatly fit into any of these categories.

Edge Bundling. Since the first techniques were described, many
bundling techniques have been explored [36] often inspired by the work
on flow maps [42]. A number of techniques have been proposed, but
all techniques have one common primitive: clustering groups of edges
together that share similar attributes.

Edge bundling was introduced to the visualisation community by
Holten [24]. In his seminal work, a hierarchy was superimposed on top
of the network, usually via a treemap variant [13, 30], and the centroids
of the cluster hierarchy are used as control points to cluster edges
into merging and splitting streams. Soon after, the requirement for a
hierarchy was eliminated and replaced by a desired property whereby
nearby edges headed in a similar direction with similar length are
bundled together. A number of approaches were created with this idea
including using a triangular mesh [15], grids and quad-trees [31, 37],
force-directed algorithms [25, 40], force-directed algorithms with edge
direction encoded in the force system with compatibility measures
(such as connection distance) [45], sparse visibility spanners [43], and
multilevel clustering [21]. Domain-specific clusters and layouts have
been used to help with the bundling process [32, 44] as well as more
general clusters [47]. Image-based [19, 29, 35, 46, 50, 54] techniques
operate on the pixels of individual edges. These approaches create
a density or similarity map computed at pixel level by summing up
the contributions of all edges, after which all edges are independently
advected upstream along gradients of the map. Bundling has also been
used to simplify clusters in parallel coordinate plots [41].

Edge bundling techniques greatly reduce edge clutter by implicitly or
explicitly clustering groups of edges or parts of them (i.e. their pixels)
and allow visualisation of higher-level flow patterns in the network that
otherwise would not be visible. However, all these approaches will suf-
fer from the independent edge ambiguities to a degree. Also, as stated
in the survey [36], random patterns can be created in data where there
are no patterns. In this paper, we seek a compromise: efficient bundling
that greatly simplifies the network while completely eliminating in-
dependent edge ambiguities. We accomplish this by bundling long
edges with a weighted shortest path between their endpoints instead of
clustering groups of edges together.

Confluent Drawings. Confluent drawings are visually similar to
edge bundling but, by design, they do not suffer from independent edge
ambiguities. The key idea of a confluent bundle is that only bicliques
can be bundled, i.e., Kn,m subgraphs. This guarantees that all connec-
tions implied by a bundle are actually present in the graph. In their orig-



(a) Edge-Path, Confluent (b) Force-directed (c) Winding Roads (d) CUBu

Fig. 3. Bundling of a noise graph. Randomly placed vertices (|V |= 1000) are connected by a perfect matching, resulting in |E|= |V |/2 disconnected
edges. No structure is present in this graph and there should be no bundles (See [36] Figure 19). Force-directed, Winding Roads and CUBu give the
impression of structure in the underlying data when there is none. Edge-Path bundling and confluent drawings do not find bundles.

inal and theoretically motivated definition, confluent drawings do not
permit any edge crossings [16, 28] and as a consequence some graphs
do not have a confluent drawing at all. Variations of confluent drawings,
such as ∆-confluent [17] and strict confluent drawings [18, 20], have
been studied from a theoretical point of view, showing mathematical
characterizations and the NP-completeness of recognizing graphs that
admit certain types of confluent drawings. While most results on conflu-
ent drawings do not provide algorithms or implementations, Dickerson
et al. [16] and Hirsch et al. [23] present and implement some heuristics
based on detecting cliques and bicliques in order to introduce conflu-
ent bundles. Confluent drawings are based on an abstract graph input
and typically solve both the graph layout and the edge bundling in a
combined way. Therefore, existing confluent drawing techniques do
not readily apply to edge bundling of pre-embedded networks. In this
paper, we devise a compromise that is not as strict as confluent layout,
but more effectively bundles the network so that higher-level features
become visible while reducing topological ambiguities.

Hybrid Approaches. A number of papers have used confluent
drawing approaches as a basis and have relaxed some of the more
restrictive constraints of the approach to achieve greater simplification.
Bach et al. [10] explore ways to produce less ambiguous bundling by
relaxing the strict planarity constraint of confluent drawings. Their
approach computes a power graph decomposition and uses the resulting
hierarchy to both draw and bundle the network. Zheng et al. [57] extend
Bach et al. [10] to create strict, power-confluent drawings, based on
additional constraints that further reduce crossings and ambiguities.

The two approaches described above were the first attempts to relax
some of the constraints of confluent drawings to produce less am-
biguous edge bundlings. In this paper, we introduce a new approach
with a different primitive, but that finds a similar compromise: greater
bundling while completely avoiding independent edge ambiguities.

Visualisations and Measures of Bundling Quality. Alongside
bundling algorithms, significant work has been undertaken to devise
metrics to evaluate how well bundling algorithms perform with respect
to each other and in general. Metrics have been devised to measure
faithfulness [38, 39], entropy [55], geodesic path tendency or distor-
tion from the straight line distance [26], and data-ink ratio to quantify
simplification [48]. We use and adapt these metrics in our evaluation.

Wang et al. [52] give methods to visualise ambiguities in graph
layouts, including bundling. In this approach, alignment in edge di-
rection and proximity, a classic definition for bundling suitability, are
used to highlight ambiguities in the graph. Nguyen et al. define the
notion of faithfulness in graph visualisation: “the underlying network
data and the visual representation are logically consistent” [38]. Edge
bundling ambiguities is used to illustrate faithfulness or lack of it in a
representation. Our work, by definition, increases the faithfulness of
bundling representation by avoiding certain types of ambiguity.

Summary. Edge bundling techniques improve graph readability, but
suffer from independent edge ambiguities and can introduce patterns
where none exist in the underlying data. Confluent drawings and hybrid
approaches do not suffer from independent edge ambiguities, but have

a lower degree of bundling and compute the drawing of the network as
part of the bundling process. Thus, this paper introduces a new bundling
primitive (edge to path) and a new bundling algorithm based on this
primitive, that produces a more faithful bundling [38] of a layout.

3 EDGE-PATH BUNDLING ALGORITHM

Algorithm 1 presents the pseudocode for our approach. The method
is surprisingly simple and requires only four parameters: the network
G = (V,E), a drawing DG of G, a maximum distortion threshold k,
and an edge weight factor d. The algorithm creates a local hashset,
lock, that indicates when edges will be excluded from bundling by the
algorithm. It also uses a second hashset skip which includes edges that
will be skipped from shortest path calculations. Initially, all edges in
both hashsets are false. The algorithm takes into account the length
of an edge in DG to determine its suitability for inclusion in a shortest
path: shortest paths that result in shorter detours in Euclidean space
are preferred. Therefore, a third hashset stores the weight of each edge
which is the Euclidean edge length raised to a power d. The exponent
d can be used to tune exclusion of short edges from the bundling.

As a first step, the edges are sorted in decreasing weight order and
then processed in that order. Thus, our algorithm prefers to bundle long
edges over short ones. If an edge is locked, the algorithm does not
process it. Otherwise, it is excluded from shortest path computations
and processed. The first stage of bundling is determining the shortest,
weighted path between the endpoints of the edge, excluding the edge
itself and previously bundled edges from this calculation. In order to
compute this path, we use Dijkstra’s algorithm to compute the shortest
path that takes the minimum detour from straight line distance. If
such a path does not exist or the detour is greater than a distortion
threshold of k times the straight line distance, the edge is not bundled
and it is reintroduced into shortest path calculations. Otherwise, the
edge is bundled and the algorithm uses the vertices along the path
in the drawing as control points for the edge. The bundled edge is
excluded from all future shortest path calculations as it will be rendered
using a curve. As all the edges along the path are now included in an
Edge-Path bundle, these edges are locked. Edges along the path should
not be bundled as they serve as the control points for one or more
bundled edges in the graph, but they still can participate in shortest path
calculations to bundle other edges. The final drawing of the network
uses these control points to render each edge using a smooth Bézier
curve. A smoothing parameter allows the algorithm to control the
bundling strength in the final drawing by inserting additional control
points along the path. A factor of one places control points on the
vertices. Increasing this factor to two places additional control points
on the centre of the straight line between two consecutive control points.
Higher factors apply this rule recursively.

Overall, Edge-Path bundling has a worst case time complexity of
O(|E|2 log |V |) as the Dijkstra algorithm (priority queue heap imple-
mentation) runs O(|E|) times. However, the distortion threshold k can
be used to stop Dijkstra’s algorithm once this threshold is exceeded,
reducing the chance that this worst case complexity is observed.



Algorithm 1: Edge-Path Bundling Algorithm
Input :Graph G = (V,E), input drawing DG, maximum

distortion k, edge weight factor d.
Output :Control points for an Edge-Path bundled drawing Γ.
for e ∈ E do

lock(e)← False
skip(e)← False
weight(e)← (DG.edgeLength(e))d

sortedEdges← sortDescending (E, weight)
for e ∈ sortedEdges do

if lock(e) then
continue

skip(e)← True
s← source(e)
t ← target(e)
//Dijkstra excluding edges in skip from G
p← dijkstraAlgorithm (G, s, t, weight, skip)
if p == null then

skip(e)← False
continue

if p.length() > k ∗DG.edgeLength(e) then
skip(e)← False
continue

for m ∈ p do
lock(m)← True

controlPoints(e)← p.getVertexCoords()
return controlPoints
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Fig. 4. Path endpoint ambiguity. A connection exists between (u,w) and
(v,x) and there is a path between u and x. When edges are bundled
along paths, the viewer could perceive a direct edge between (u,x) if the
bundling is strong.

3.1 The Lesser Ambiguities of Edge-Path Bundling

Although our approach is free of independent edge ambiguities by
definition, it is not completely free of ambiguities. We now describe the
ambiguities incurred by Edge-Path bundling. It is important to note that
the two ambiguities we define here can occur in all other edge bundling
methods, but have not been concretely defined previously.

Path Endpoint Ambiguity. Edge-Path bundling does not create
connections between vertices that do not exist in the underlying graph.
However, it can produce ambiguities in edge endpoints along a path.
Fig. 4 shows this ambiguity. A path exists, by definition between u and
x, but it can be difficult to tell if there is a direct connection between u
and x in the Edge-Path bundle, depending on bundling strength.

Edge Crossing Ambiguity. When two edges or bundles cross, there
could be an ambiguity if the crossing angle is shallow [27]. This is a
fundamental ambiguity of graph drawing in general, which also affects
the unbundled straight-line input drawing DG.

4 QUALITY METRICS

In order to evaluate the edge bundling created by different bundling
algorithms, we make use of three quantitative metrics. They measure
the amount of clutter reduction using the ink reduction, the distortion
of edge lengths in the graph, and the amount of adjacency ambiguity
in the bundled layout. This section defines these quality metrics. We
remark that no single quality metric can fully judge a bundled layout,
but we think that a good bundled layout, which reduces visual clutter
but at the same time aims to be faithful to distances and graph topology,
will do fairly well on all three metrics.

s tu

v w x

Fig. 5. Consider an edge e with endpoints (s, t). The bundling implies
NΓ(s,e) = {t,w,x} and NΓ(t,e) = {s,u,v}. Additionally, there exists an
edge with endpoints (u, t) and therefore we would consider u a true
neighbour of t resulting in N f

Γ
(s,e) = {w,x} and N f

Γ
(t,e) = {v}

4.1 Ink Reduction
Let I be the grayscale bitmap image I ∈ {0, . . . ,255}m×n of a bundled
graph layout Γ and let IB ∈ {0,1}m×n be the binarization of I such that

IB(i, j) =

{
1 I(i, j)≥ δ

0 I(i, j)< δ
, (1)

where 0≤ δ ≤ 255 is a global gray value threshold to consider a pixel
occupied. Similarly we define J as the unbundled input grayscale image.
The ink-reduction of I with respect to J is defined as:

inkJ(I) =
∑

m
i=1 ∑

n
j=1 IB(i, j)

∑
m
i=1 ∑

n
j=1 JB(i, j)

. (2)

Under the assumption that the bundling reduces the number of pixels
occupied by ink, the ink reduction takes a value between 0 and 1 and
measures the factor by which the number of pixels occupied in the
graph layout is reduced. An ink reduction close to 1 indicates a low
degree of bundling, whereas smaller values indicate a higher degree of
bundling. It is possible to obtain values larger than 1 if the bundling
increases the number of pixels occupied.

4.2 Distortion
Let e = (u,v) ∈ E be an edge in G with Euclidean length of ||u− v||
and let dΓ(u,v) be the length of the curve connecting u and v in the
bundled layout Γ. We define the distortion of layout Γ as the average
distortion of its edges:

dist(Γ) =
1
|E| ∑

(u,v)∈E

dΓ(u,v)
||u− v||

(3)

The distortion measures the factor by which length of an edge in-
creases in the bundled layout on average. Distortion values near 1 mean
that lengths of bundled edges remain close to the Euclidean distance of
their endpoints; larger values mean edge bundles have longer detours
from straight line distance, making adjacencies harder to read [26].

4.3 Ambiguity
We define an ambiguity metric, inspired by faithfulness [38], to measure
the number and severity of perceivable false connections in a bundled
layout (Fig. 5). Let e = (s, t) ∈ E in a bundled layout Γ. We define the
set of reachable neighbors of the endpoint s along e as NΓ(s,e) = {v ∈
V | ∃ ambiguous connection from s to v in Γ}; analogously we define
NΓ(t,e) for the endpoint t. An ambiguous connection occurs if another
edge e′ = (u,v) intersects or is closer than a distance threshold ε at a
point p on e in Γ and the angle at p between e and e′ is smaller than
a threshold θ . Intuitively, edges e and e′, locally in p, are difficult to
distinguish and thus the endpoint of e′, say v, forming the small angle
with t is a reachable neighbor in NΓ(s,e), whereas the other endpoint u
belongs to NΓ(t,e), independently of (s,v) or (u, t) ∈ E or not.

The reachable neighbor sets contain some true and false neighbors
and we may take this classification based on a graph distance threshold
δ ≥ 1: the set of true neighbors is defined as Nt

Γ
(s,e) = {v ∈ NΓ(s,e) |

dG(s,v) ≤ δ} and the set of false neighbors as N f
Γ
(s,e) = NΓ(s,e) \

Nt
Γ
(s,e). Here let dG(s,v) denote the hop distance between s and v in

G, i.e., the length of the shortest unweighted path between s and v in G.
We can now define the ambiguity of Γ:

amb(Γ) =
∑v∈V ∑e=(v,w)∈E |N

f
Γ
(v,e)|

∑v∈V ∑e=(v,w)∈E |NΓ(v,e)|
. (4)



This value measures the proportion of false neighbors to all neighbors
implied by Γ, with low values corresponding to less ambigous draw-
ings. For δ = 1 the set Nt

Γ
contains only the actual neighbors in edge

set E, while δ → ∞ counts all reachable vertices as true neighbors;
the remaining false neighbors correspond to vertex pairs in different
connected components (i.e. the most ambiguous). Hence for connected
graphs, there is some value δ0 ∈ N for which amb(Γ) drops to zero
for all δ ≥ δ0. Values for δ > 1 correspond to tolerating ambiguous
connections if the endpoints are connected by paths of at most δ edges.
We use ambδ (Γ) to denote the ambiguity for a particular value δ .

This ambiguity measure will count all ambiguities due to shallow
edge crossings, independent edge ambiguities (Fig. 2(a)), and path
endpoint ambiguities (Fig. 4). Thus, Edge-Path bundling will have
a non-zero value for this measure. However, in all of the Edge-Path
bundling drawings, by definition, there are no independent edge ambi-
guities.

4.4 Detecting Edge Ambiguity in a Drawing
The approach chosen to detect edge ambiguity is based on the premise
that nearby edges with a similar direction may mistakenly have their
endpoints interchanged, especially edges that are parallel or cross with
a small angle. We thus check if edges are spatially close and if the cross-
ing angle is below the threshold θ = 7.5◦, a crossing angle for which
empirical evidence [27] shows a strong negative effect on readability.

First, the drawing area is divided into a small, square grid. Two
edges are considered ambiguous if an ambiguity is detected in at least
one cell. Each grid cell is assigned the intersecting edge segments
it contains as well as their respective angle. Internally, curved edges
are approximated using polylines, leading to two cases. In the first
case, a segment ends in or intersects a grid cell and the angle of the
segment is assigned. In the second case, where multiple segments of
the polyline intersect the grid cell, the mean of the angles is assigned,
under the assumption that the grid cell is small enough such that there
is no drastic change of direction.

After this initial assignment, a sliding window processes the cells of
the grid. The angles of the assigned segments of an edge are aggregated
over all cells in the window which gives us an angle for each edge
intersecting the window. Edges are processed in a pairwise manner.
Given that two edges intersect the window, the edges must be spatially
close. Therefore, the smaller of the two crossing angles is compared to
a threshold θ to determine if it is an ambiguity.

Additionally, we need the set of neighbours for the endpoints of
an edge e = (s, t) in the sets NΓ(s,e) and NΓ(t,e). When assigning
segments to grid cells we iterate over the segments of an edge from
source to target and assign an angle in the range [0,2π]. This gives
enough information to determine the relative position of ambiguous
edge segments by comparing their induced angles and deciding if the
source vertex of one edge is ambiguous with the source or target vertex
of another edge. This is analogously defined for the target vertex.

5 DATA

We computed bundled layouts of real and synthetic datasets. The
synthetic datasets highlight properties of bundling behaviour. The real
world datasets are common in the literature and used for comparison.

Cubes 1R-4R. We created several synthetic datasets that should cap-
ture connections between disconnected components, a common feature
in real-world datasets. Vertices (|V |= 100) are evenly distributed into
four components which are subsequently randomly embedded inside
axis-parallel cubes with fixed side length s. The cubes are positioned
top left, top right, bottom left and bottom right with fixed space of 2s
between the right edges of the left cubes and the left edges of the right
cubes, see Fig. 6. We introduce a distance ∆ between the bottom edge
of the top cubes and the top edge of the bottom cubes. In Cubes 1R and
4R ∆ = s/10, which creates space between the cube pairings. In Cubes
2R ∆ = 0 and for Cubes 3R ∆ = −s/5 which results in overlapping
top and bottom cubes. A random spanning tree is used to connect
vertices inside their cube component and additional edges are randomly
added. In Cubes 1R-3R the left cubes are connected with their right
counterpart and in Cubes 4R the components are connected diagonally.

For connecting the components we added |V |/2 edges randomly. In the
directed variation we additionally specify half of the edges going from
left to right and the other half from right to left.

Cubes 1R Cubes 2R Cubes 3R Cubes 4R

Fig. 6. Illustration of the Cubes 1R–4R datasets.

Noise. This dataset is based on the observation by Lhuillier et.
al [36] that bundling approaches do bundle without support in the
underlying data. For the Noise dataset, we embedded |V | = 1000
vertices randomly in a square and connected vertices to form a perfect
matching, resulting in |E|= |V |/2 edges and connected components.

US Airlines. The US Airlines dataset has been introduced by [25]
and is commonly used in bundling publications. The dataset depicts
flight paths from source to target airports in the US and has |V |= 235
vertices and |E|= 2101 edges. It has one connected component.

Migrations. This dataset [15] shows migration in the US [49] and
consists of a set of trails which we converted into a graph. The directed
graph has |V |= 1702 vertices and |E|= 9726 edges. The number of
vertices is slightly lower compared to earlier literature (1712) when we
converted the trail sets. The undirected graph has |E|= 6487 edges. It
has 28 connected components.

Air Traffic. This dataset consists of global flights and has |V | =
1533 vertices and |E|= 14825 edges. It has one connected component.

Amazon Subset. This dataset consists of products with edges in-
dicating that they are commonly co-purchased. We randomly filtered
edges from the original graph [33, 34]. It has |V |= 192k vertices and
|E|= 269k edges.

6 EXPERIMENT RENDERING AND BUNDLING ALGORITHMS

To guarantee a fair comparison between the different systems, we ren-
dered all images of the different bundling results in the same way. First,
we computed a bundling with the systems’ respective implementation.
Then, we extracted the bundled edges as polyline approximations of the
curves and used this as input for our own rendering. As some systems
required a different scaling of the input layout, we proceeded to scale
all bundlings to a fixed width of 1600px while keeping the original
aspect ratio. In the standard bundling plot, we used a linewidth of 1px
to draw the edges and a diameter of 4px for disks representing vertices.
We used this plot to calculate the ink reduction of a bundling approach.

To give a better impression of the direction of edges in a bundle, we
created a second plot where we applied a perceptually uniform colour
map [14] to assign a color to each edge depending on its angle in the
straight line drawing. Furthermore, we created plots of the distortion,
where we first computed the minimum and maximum distortion over
all results of a dataset and applied a sequential colormap [14] to show
an overview of where edges are distorted in a bundling. Finally, as we
calculate the ambiguity of edges on a per cell basis, we can convert this
to an image. We assign each cell the number of intersecting ambiguous
edge-pairs and normalize by the maximum over all results of a dataset
to achieve a greyscale image that encodes areas of high ambiguity as
white spots. These images can be found in the supplementary material.

6.1 Bundling Algorithms in the Experiment

For our experiment, we selected algorithms with available implementa-
tions as representatives from major categories of bundling approaches:
force-directed bundling, confluent drawings with fixed vertex positions,
grid-based approaches, and image-based approaches.

Force-directed Bundling. We used an implementation in D3.js [2]
and set the parameters as specified in [25] (spring constant K = 0.1,
force iterations I = 60, subdivision operation C = 6, initial subdivision
points P = 1, increase ratio 2). As the bundling depends on the scale of
the input graph, we did not rescale the input layout before bundling.



For Confluent Drawings. we used an available implementation [5]
based on the results of [10, 57], which we modified to handle graphs
with an embedding. This was realized by removing the layout step of
the implementation and replacing it with the following. First, we fixed
all vertices of the input layout and embedded the routing vertices in
the barycenter of neighbouring input vertices. Afterwards, we itera-
tively moved the routing vertices towards the the barycenter of their
neighbours until the layout converged. Generally, confluent bundling
algorithms draw and bundle the graph simultaneously, but our approach
requires a drawing as input. This means that these approaches are
hampered as they cannot modify the layout.

Winding Roads. We used the implementation [31] in Tulip [9].
KDEEB. We adapted an available implementation [4] of

KDEEB [29]. A comparison with FFTEB [35] would be preferable,
but we were not able to run the implementation. Furthermore, given
the computational effort required for our larger experiments we used
the GPU implementation which had its parameters fixed by the authors.
The layout of the input graph was scaled to the range [0,1].

CUBu We used the available implementation [1] of CUBu [50]. A
medium sized kernel was used while most default settings where kept.
We increased relaxation to get smoother lines.

Divided Edge Bundling. We used an implementation in Matlab [3]
of Selassie et al. [45] for directed edge bundling using default parame-
ters.

6.2 Parameter Specification
As discussed in Sec. 3, we can specify several parameters when comput-
ing a bundling. We tested different settings and evaluated the resulting
ink reduction, distortion, and ambiguity.

We found that a maximum distortion factor k ∈ [1.5,3.0] works well
for most of the experiments. A distortion factor of less than 1.5 resulted
in very little edge bundling. For the Cubes datasets, a distortion factor
above 3.0 resulted in overaggregation with ink reduction > 1. In the
US Airlines dataset, when increasing the distortion factor more edges
were bundled, but increasing above a factor of 3.0 did not produce
more bundling, which can be explained by the fact that most shortest
paths are below the distortion threshold already. Images of the effect of
this parameter on Airlines are contained in the supplementary material.
Ultimately, we used k = 2.0 for all experiments.

Experiments on the edge weight factor d showed that values of
d ∈ {1,2,3} work well. Higher values of d penalise long edges from
being included in shortest paths used for bundling. A value of d = 2
was chosen for our experiments.

As our algorithm computes a list of control points for each edge,
we can use an integer smoothing parameter to pull the rendered curve
towards its control points. A smoothing parameter of 1 would use
the original list of control points to calculate the curve. A smoothing
parameter of 2 would add an additional control point in the middle of
the line between every consecutive pair of control points. Increasing
the smoothing factor above 2 results in recursively adding more control
points thus creating a tighter bundling. In our experiments, we set the
smoothing parameter to 2.

7 EXPERIMENTS

We next discuss our experimental results. KDEEB and CUBu are
image-based techniques. As it was easier to adjust the kernel size
of CUBu, its result images are shown. High resolution images of all
algorithms, including KDEEB, are in the supplementary material.

7.1 Runtimes
We used all the cited implementations specified above. As these imple-
mentations are written in a variety of languages with some designed
to run on the GPU and others the CPU, direct comparison of runtimes
is less informative. However, it was important to note that the image-
based techniques, KDEEB and CUBu, have by far the best performance
in terms of runtime, processing large graphs in less than a second.

We report the average runtimes of ten executions for Edge-Path
bundling. We implemented our bundling algorithm in C++ and ran it on
a machine with Ubuntu 20.04 operating system, AMD Ryzen 5 5600x

CPU and NVidia RTX 3070: Cubes (1-4)R [128ms], Noise [401ms],
Airlines [920ms], Migrations [undirected: 10.6s, directed: 15.3s], Air
Traffic [49.6s], and Amazon Subset [7.5 hours].

Furthermore, we also report runtimes for bundling the Air Traffic
dataset, the largest dataset presented in an image, with CUBu [5ms incl.
rendering], KDEEB [45ms], Force-directed [32.5s], Force-directed
(divided) [3.2hrs], Winding Roads [7.6s], and Confluent [157s].

7.2 Synthetic Data
We first discuss the quantitative results on our synthetic data, Cubes as
well as the Noise data. By design of the Cubes datasets, there are two
disjoint edge sets from left to right, which can potentially be grouped
into distinct bundles, but edges from disconnected components should
ideally not be mixed. In the Noise data, consisting of disconnected
edges, there is nothing to be bundled, topologically speaking. Refer to
Table 1 for the scores of the quality metrics and Fig. 7 for the result
images. The results for Cubes 1R and 2R were similar to 3R and 4R.
Full metric results available in the supplementary material.

Ink Reduction. Naturally, the ink reduction for Straight Line is 1.
KDEEB and CUBu consistently and as expected reduce ink the most
on all four Cubes instances. Winding Roads is third and then Force-
Directed. The stronger ink reduction of the other approaches comes at
the cost of overbundling some edges and creating ambiguities. Con-
fluent and Edge-Path have a relatively low reduction; this is expected
as the more graph topology-aware bundling algorithms do not create
independent edge ambiguities. Results on Noise are similar (see also
Fig. 3), where KDEEB and CUBu, Winding Roads, and then Force-
Directed reduce ink the most. Confluent and Edge-Path do not change
the input layout at all, as they never bundle independent edges.

Distortion. Straight Line, by definition, has a distortion of 1. We
report mean and median distortion values. While the mean distortion
is generally least for Force-Directed bundling with just a few percent,
the median distortion is consistently smallest for Edge-Path, meaning
that the majority of edges are unbundled and thus undistorted. Winding
Roads is the next best, with CUBu, and KDEEB. Although Confluent
has a high mean distortion, its median is 1 indicating it distorts a
few edges within the components drastically as the layout cannot be
adjusted. The observed distortions in the Noise data is non-existent
for Confluent and Edge-Path as there is no bundling. Force-Directed,
producing only few and thin bundles, has generally low distortion,
followed by Winding Roads, CUBu, and KDEEB.

Ambiguity The ambiguity scores are lowest for Straight Line as
it has no bundling with values of 0.47–0.56 caused by shallow-angle
edge crossings only. All bundling algorithms increase the ambiguity
with KDEEB, CUBu, and Force-Directed having the largest ambiguity
scores followed by Winding Roads and Edge-Path. Confluent has the
lowest ambiguity score. Algorithms that produce stronger bundling
with more ink reduction often produce more independent edge ambi-
guities. With increasing δ , Edge-Path becomes the best performing
algorithm in terms of ambiguity. As expected, on the Noise data, Con-
fluent and Edge-Path again obtain the same initial ambiguity as Straight
Line. Force-Directed has the next lowest ambiguity score followed by
Winding Roads and KDEEB.

Qualitative. Fig. 7 shows our results. On the Cubes datasets, Force-
Directed, KDEEB, CUBu and Winding Roads can mix the two indepen-
dent streams of edges. Confluent does not mix these streams by design,
but has a low degree of bundling. Edge-Path bundling bundles within
each stream but does not connect the two disconnected streams. This
demonstrates that it is able to avoid grouping unrelated edges together.

7.3 Real Data
Tables 2 and 3 show the quality metrics for the real world data and
Fig. 8 through Fig. 11 show the bundled layouts for this data.

7.3.1 Airlines
Ink Reduction. On the (undirected) Airlines dataset, KDEEB achieves
the largest ink reduction followed by Winding Roads, CUBu, and Edge-
Path. Force-Directed and Confluent achieve the least ink reduction.
These scores also match the visual impression of Fig. 8. The ink



(a) Straight Line (b) CUBu (c) Winding Roads (d) Confluent (e) Force-Directed (f) Edge-Path

Fig. 7. The Cubes 2R dataset shows the bundling of two connected components. KDEEB, Winding Roads and Force-Directed bundle edges
regardless if edges are connected in the data. Confluent drawings and Edge-Path only bundle edges in their respective components.

Table 1. Scores of the quality metrics for the undirected synthetic datasets and all bundling algorithms. Column distΓ gives mean and median.
Columns ambδ are only shown for 1≤ δ ≤ 5 if there are non-zero entries. For Noise, all ambδ are equal as the graph consists of independent edges.

Cubes 3R Cubes 4R Noise
inkJ dist amb1 amb2 amb3 amb4 inkJ dist amb1 amb2 amb3 amb4 amb5 inkJ dist ambδ

Straight-Line 1.00 1.00 1.00 0.50 0.32 0.08 0.01 1.00 1.00 1.00 0.56 0.37 0.12 0.02 0.00 1.00 1.00 1.00 0.50
Force 0.79 1.04 1.02 0.87 0.61 0.19 0.01 0.70 1.01 1.00 0.88 0.65 0.30 0.12 0.10 0.98 1.00 1.00 0.67

Confluent 0.93 1.23 1.00 0.73 0.42 0.13 0.01 0.93 1.20 1.00 0.79 0.54 0.28 0.16 0.14 1.00 1.00 1.00 0.50
WindingR 0.50 1.04 1.03 0.81 0.55 0.19 0.01 0.51 1.04 1.02 0.81 0.57 0.25 0.09 0.05 0.64 1.06 1.05 0.96

KDEEB 0.22 1.11 1.07 0.90 0.64 0.22 0.01 0.26 1.13 1.09 0.94 0.81 0.60 0.48 0.46 0.43 1.19 1.18 0.99
CUBu 0.28 1.08 1.07 0.90 0.63 0.20 0.01 0.32 1.10 1.09 0.95 0.81 0.60 0.49 0.47 0.54 1.16 1.15 0.99

Edge-Path 0.84 1.05 1.00 0.80 0.49 0.13 0.01 0.91 1.04 1.00 0.79 0.50 0.16 0.02 0.00 1.00 1.00 1.00 0.50

reduction result would be expected as Edge-Path bundling provides a
good compromise between ambiguity and visual simplification.

Distortion. Force-Directed performs best with Winding Roads and
Edge-Path follow in second. For KDEEB, CUBu, and Confluent we
observe higher distortions, which is expected due to the strong ink
reduction; for Confluent, as stated before, the bundle routing had not
been originally designed for pre-embedded graphs.

Ambiguity. The straight-line layout has an ambiguity score of 0.59
due to shallow edge crossings. Force-Directed achieves the least addi-
tional ambiguity, followed by Winding Roads and Edge-Path. KDEEB
and CUBu are slightly more ambiguous and the poor edge routing in
Confluent lets it score highest on ambiguity. This indicates that Conflu-
ent, although having good theoretical ambiguity properties, is not well
suited if the vertex positions cannot be adjusted. As δ is increased, all
approaches perform similarly and go to zero when δ = 3.

Winding Roads and Edge-Path provide similar scores and minimise
overaggregation. Winding Roads produces smaller bundles, prone to
fewer shallow crossings, but these bundles are not necessarily backed
by structural paths. Edge-Path bundling produces fewer larger bundles,
all of which are backed by graph structure.

Qualitative. Fig. 8 shows the results for undirected bundling. Im-
ages for directed bundling are available in the supplementary material.
The undirected drawings of Force-Directed, CUBu and KDEEB can
clarify coarse structure in the drawing. In particular, there is a large
bundle headed east-west and some of the structure in the densely popu-
lated east coast. Winding Roads is able to divide the large bundles into
smaller ones but these do not necessarily correspond to graph structure.
Edge-Path bundling clarifies the two distinct streams on the west coast
follow different paths in the network eastward with Denver seeming
to act as a control point. Also, the bundles on the east coast are four
distinct path bundles. These path bundles loosely correspond to four
airport hubs: Atlanta, Minneapolis, Detroit, and Dallas.

7.3.2 Migrations
Ink Reduction. For the Migrations dataset (Fig. 1), KDEEB achieves
the best ink reduction, closely followed by Edge-Path and then Winding
Roads. CUBu and then Force-Directed are next and finally Confluent.
These results match the visual impression of the bundled layouts and
are also reflected in the directed Migrations data.

Distortion. CUBu, Winding Roads, and Edge-Path have the lowest
mean distortion scores but very similar medians. Force-Directed and
KDEEB follow next. Confluent, as before, scores worst in the distor-
tion metric, which we again attribute to its need to compute a layout
simultaneously. These results match our expectations and are similarly
observed in the directed Migrations data.

Ambiguity. The Migrations Straight-Line layout has a high baseline
ambiguity of 0.7. All methods produce similar ambiguity scores for

δ = 1. Thus, at this value of δ , shallow edge crossings dominate and all
are equally ambiguous. However, as δ grows, shallow edge crossings
matter less in the measure and bundling disconnected edges increase in
importance. We show δ = 1 . . .5 and almost immediately, Edge-Path
bundling outperforms all approaches. It is competitive with Straight-
Line as it is able to pull edges connected at small distances away from
edges that are not necessarily connected at small values of δ .

On the Migrations dataset Edge-Path bundling is a clear winner with
high ink reduction, low distortion, and low ambiguity competitive with
straight line drawings.

Qualitative. Fig. 1 shows the undirected bundling approaches on
Migrations. Force-Directed and CUBu can present the main east-west
direction of flow and the graph structure on the east coast to some
degree, but aggregate to a very high degree and can include unrelated
edges. Winding Roads further subdivides these bundles, but again some
of the structure can be obfuscated by clustering unrelated edges together.
Edge-Path only shows flows that are in the underlying graph which are
not seen in the other drawings. The east-west flows actually correspond
to two distinct paths: one heading northward and one heading towards
Texas. On the east coast, the flows are further divided into a smaller
number of compact streams that reflect paths in the data.

Table 3 shows the metrics for directed Migrations with similar results.
Fig. 9 compares directed edge bundling using a force-Directed approach
to our own. The force directed approach is able to divide out streams
heading in different directions as can be seen in the east-west parallel
flows across the country and the north-south flows on the east and west
coast. However, these patterns contain a number of unrelated edges. In
Edge-Path bundling, the east-west flow divides into three parts around
Texas with the thickest bundle heading towards the great lakes region.
On the east coast, more detail is revealed in the north-south direction.
All of this detail depends on the structure of the underlying graph as
unrelated edges are not bundled.

7.3.3 Air Traffic
Ink Reduction. KDEEB performs the best with Winding Roads and
Edge-Path in second. There is a large gap between the other approaches
and these three algorithms. On the directed datasets, Edge-Path and
CUBu outperform force-Directed. Edge-Path bundling aims at bundling
well while reducing the amount of ambiguity in the network and there-
fore it is competitive with top bundling approaches.

Distortion. Edge-Path bundling ranks fourth only outperforming
confluent, but when looking at the median distortion it performs the
same as all other approaches. Confluent does not perform well on
distortion as it is forced to retain the input layout meaning that bicliques
could be separated by large distances. Therefore, on distortion, Edge-
Path performs similarly to all approaches. For directed datasets, Edge-
Path and CUBu outperform Divided.



(a) Straight Line (b) Force-Directed (c) CUBu

(d) Confluent (e) Winding Roads (f) Edge-Path

Fig. 8. Airlines (undirected). (a) Input drawing. (b) Force-Directed bundling is able to cluster edges into the major flows, but some overaggregation
prevents details from being visualised. (c) CUBu provides a good bundling, but also has overaggregation. (c) Confluent drawings can be imposed on
the layout, but as the approach cannot layout the graph bicliques can be distantly located, resulting in suboptimal performance. (e) Winding Roads
divides the flows into many streams, but these streams can be unfaithful to graph structure. (f) Edge-Path bundling aggregates edges using weighted
paths. The four prominent bundle intersections on the east coast correspond to major airports: Atlanta, Detroit, Minneapolis, and Dallas.

(a) Edge-Path (b) Force-Directed (Divided) (c) CUBu

Fig. 9. Migrations (directed). (a) Directed Edge-Path bundling. (b) Divided edge-bundling which uses a forced-based approach. (c) CUBu. Directed
Edge-Path bundling does not bundle unrelated edges together and can reveal more detail on the east coast and in the east-west flow.

(a) Force-Directed (b) CUBu

(c) Winding Roads (d) Edge-Path

Fig. 10. Results of four algorithms on the Air Traffic network. (a) Force-Directed bundling is able to recover the major trajectories but does not strongly
bundle the network. (b) CUBu strongly bundles the main flows of airtraffic, but can suffer from overaggregation. (̧c) Winding Roads divides the traffic
into many smaller bundles, but this may not be reflective of underlying graph structure. (d) With Edge-Path bundling, each bundle necessarily reflects
a path in the network. There are separate flows across the Atlantic and Asia that correspond to paths through the network.



Table 2. Scores of the quality metrics for the undirected real-world datasets and all bundling algorithms. Column dist gives mean and median.
Columns ambδ are only shown for 1≤ δ ≤ 5 if there are non-zero entries. Bold values highlight the best score in each column.

US Airlines Migrations Air Traffic
inkJ dist amb1 amb2 inkJ dist amb1 amb2 amb3 amb4 amb5 inkJ dist amb1 amb2 amb3

Straight-Line 1.00 1.00 1.00 0.66 0.02 1.00 1.00 1.00 0.71 0.25 0.06 0.02 0.01 1.00 1.00 1.00 0.74 0.06 0.00
Force 0.76 1.03 1.01 0.85 0.03 0.77 1.10 1.06 0.88 0.34 0.10 0.04 0.02 0.79 1.05 1.02 0.78 0.08 0.00

Confluent 0.81 1.29 1.12 0.88 0.02 0.89 1.40 1.14 0.90 0.31 0.07 0.03 0.02 0.85 1.47 1.28 0.90 0.09 0.00
WindingR 0.46 1.06 1.04 0.87 0.03 0.58 1.06 1.04 0.87 0.34 0.10 0.04 0.03 0.57 1.05 1.04 0.81 0.12 0.01

KDEEB 0.30 1.21 1.15 0.90 0.09 0.52 1.14 1.07 0.92 0.46 0.16 0.07 0.05 0.39 1.05 1.02 0.91 0.23 0.02
CUBu 0.61 1.10 1.10 0.89 0.04 0.68 1.05 1.02 0.90 0.32 0.08 0.03 0.01 0.70 1.00 1.00 0.81 0.13 0.01

Edge-Path 0.56 1.08 1.05 0.87 0.04 0.54 1.07 1.03 0.89 0.24 0.03 0.01 0.01 0.58 1.11 1.08 0.89 0.15 0.01

Table 3. Scores of the quality metrics for the directed real-world datasets and the directed bundling algorithms. Column dist gives mean and median.
Columns ambδ are only shown for 1≤ δ ≤ 5 if there are non-zero entries. Bold values highlight the best score in each column.

US Airlines Migrations Air Traffic
inkJ dist amb1 amb2 inkJ dist amb1 amb2 amb3 amb4 amb5 inkJ dist amb1 amb2

Straight-Line 1.00 1.00 1.00 0.71 0.02 1.00 1.00 1.00 0.71 0.25 0.06 0.02 0.01 1.00 1.00 1.00 0.74 0.06
Divided 0.75 1.08 1.04 0.87 0.03 0.79 1.11 1.06 0.89 0.34 0.10 0.03 0.02 0.84 1.41 1.39 0.86 0.11

CUBu 0.58 1.06 1.04 0.88 0.03 0.62 1.06 1.02 0.91 0.33 0.08 0.03 0.02 0.75 1.00 1.00 0.79 0.09
Edge-Path 0.81 1.07 1.02 0.83 0.01 0.58 1.08 1.04 0.90 0.25 0.03 0.01 0.01 0.76 1.09 1.05 0.86 0.12

(a) Edge-Path (b) CUBu

Fig. 11. Edge-Path bundling and CUBu on Amazon Subset. CUBu
rendering style is used on both drawings.

Ambiguity. For δ = 1, Force-Directed has the lowest ambiguity
with Winding Roads and CUBu in second, followed by Edge-Path.
There is less bundling in the force-Directed approach, meaning that
it has lower ambiguities. The bundles in Winding Roads are smaller,
giving it an advantage in terms of this metric. KDEEB and confluent
are not too far away but slightly more ambiguous. With increasing δ ,
the approaches become comparable rapidly. In the directed case, CUBu
and Edge-Path perform similarly with similar findings.

Qualitative. Fig. 10 shows the results of Force-Directed, CUBu,
Winding Roads, and Edge-Path bundling on this global airline dataset.
Force-Directed is able to simplify the east-west flows across the At-
lantic and Pacific, but only at a high level with many of the edges
remaining unaggregated. CUBu is able to simplify these flows, but
suffers from some overaggregation. Winding Roads divides these flows
into several smaller streams, but these streams may not be reflective of
graph structure. Edge-Path bundling provides a compromise between
level of bundling and ambiguity. In this image, flows from Europe to
South America are a separate yellow bundle, indicating few indepen-
dent paths. Flights directly across the Atlantic are divided into separate
bundles that represent paths in the graph as well as detail in the United
States being revealed. Flights in Asia split into a triangle of streams
towards Australia with north-south flights being in dependant from
flights on the continent. Edge-Path bundling is able to reveal structure
in this network that is more faithful to the graph structure.

7.3.4 Amazon Subset
Fig. 11 shows the Amazon Subset using the CUBu rendering style.
Images of other algorithms that were able to bundle the graph are in the
supplementary material. The dataset was too large for our ambiguity
metric, so metric values are not reported. CUBu bundling renders
a tree-like pattern whereas Edge-Path does not. Edge-Path bundling

takes into account the graph structure (faithfulness [39]). CUBu has
no such guarantee, because it does not take this structure into account.
However, the tree-like structure emerges from bundling edges with
similar attributes together such as proximity and direction.

8 DISCUSSION, LIMITATIONS, AND CONCLUSION

Edge-Path bundling is not without its ambiguities even though it com-
pletely eliminates independent edge ambiguities. As shown in Fig. 4,
direct connections between vertices can be ambiguous, but paths be-
tween all vertices in the cluster will exist by definition. This edge
aggregation is similar to node aggregation strategies [6–8,12,22,51]. In
visualisations produced by node aggregation strategies, it is impossible
to understand how the vertices within the aggregated node connect, only
that they are connected; in Edge-Path bundling, we know the bundle is
connected and paths exist between all vertices, but specific connections
are difficult to read. Interactive techniques, similar to Edgelens [53],
could be explored to disambiguate this ambiguity. Edge-Path bundles
can be more convoluted as they must follow shortest paths in a graph.
Detection of these loops would solve this issue but remains future work.

When bundling directed graphs, Edge-Path bundling can give poor
results, since a directed graph may have many forward and backward
edges between vertex pairs. This can lead to edges being bundled along
the same path in opposite directions. When combined with overplotting,
this may result in indistinguishable bundles. Future work could focus
on a better routing approach for bundles or avoiding to use the same
path in both directions or using a parallel bundling style [50]. Edge-Path
bundling takes a graph and a layout as input to compute the bundled
drawing. Interesting future work would be to design layout algorithms
that maximise the Edge-Path bundling as part of the layout process.

Our implementation of Edge-Path bundling has a worst-case com-
plexity of O(|E|2 log |V |), but still works well on graphs of up to ten
thousand edges. For dense networks where |E| approaches |V |2, the
performance deteriorates. From a theoretical standpoint, finding ap-
proximations or algorithms that are faster are of interest. Multilevel
bundling [21], faster shortest path implementations [11] or paralleli-
sation [56] could be applied to improve the practical performance.
Similarly, the scalability of the ambiguity metric is an open problem.

We presented a method for bundling graphs by considering Edge-
Path pairs. The resulting drawings do not incur independent edge
ambiguities and are more resilient to creating signal through bundling
when there is none. Our resulting bundles provide a new compromise
between degree of bundling and faithfulness to the graph structure.
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