
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards compliance checking in reified I/O logic via SHACL
Livio Robaldo

livio.robaldo@swansea.ac.uk
Legal Innovation Lab Wales - Swansea University

Swansea, Wales, UK

ABSTRACT
Reified Input/Output logic [29] has been recently proposed to han-
dle natural language meaning in Input/Output logic [17]. So far,
the research in reified I/O logic has focused only on KR issues,
specifically on how to use the formalism for representing contex-
tual meaning of norms (see [28]). This paper is the first attempt to
investigate reasoning in reified I/O logic, specifically compliance
checking. This paper investigates how to model reified I/O logic for-
mulae in Shapes Constraint Language (SHACL) [2], a recent W3C
recommendation for validating and reasoning with RDFs/OWL.

KEYWORDS
reified I/O logic, SHACL, RDFs/OWL

1 INTRODUCTION
Reified Input/Output logic [29] is Input/Output logic [17] enriched
with reification. The introduction of reification in I/O logic enhances
the expressivity of the I/O logic formulae without substantially
affecting the I/O logic constructs that implement deontic reasoning.

Reification is a formal mechanism that associates instantiations
of high-order predicates and operators with FOL terms [13], [27],
[26]. The latter can be then directly inserted as arguments of other
FOL predicates, which may be in turn reified again into new FOL
terms. In other words, reified I/O logic associates norms with ex-
plicit terms, e.g., constants or variables, and not only with truth-
conditional symbols such as predicates or (second-order) deontic
operators. These terms can be then inserted as parameter of sepa-
rated meta-properties.

Reified I/O logic is grounded on a specific reification-based ap-
proach for Natural Language Semantics: the framework in [12].
The main insight of [12] is to massively use reification in order to
transform every second-order operator, including boolean connec-
tives, into a FOL predicate applied to FOL terms. The final resulting
formulae are then flat conjunctions of atomic FOL predicates.

As shown in [28], the formal simplicity and themodular structure
of reified I/O logic facilitate the implementation of user-friendly
interfaces to encode large knowledge bases of norms in reasonable
time. [28] presents the DAPRECO knowledge base (D-KB), a repos-
itory of 966 formulae in reified I/O formulae that translates norms
from the GDPR. The D-KB was built in four months via a special
JavaScript editor implemented to this purpose.

While past research in reified I/O logic has focused on how
building formulae associated with norms in natural language, this
paper represents the first attempt to investigate how these formulae
can be implemented and used for compliance checking, i.e., to infer
which obligations have been violated in a given state of affairs and
with respect to a given set of norms.

Compliance checking has never been really studied in I/O logic.
Most past literature in I/O logic has focused on deontic reasoning,
and, recently, normative reasoning [15].

Deontic reasoning is to reason about what is obligatory and
permitted, while dealing with contrary-to-duty reasoning, deontic
paradoxes, ethical/moral conflicts, etc. Reasoning about obligations
and permissions is of course orthogonal to what agents really do,
i.e., whether they did or did not violate their obligations or whether
they did or did not perform what they were permitted to do.

Compliance checking does not involve deontic reasoning. Still,
compliance checking could not be so simple to handle, e.g., because
norms might include exceptions that lead to defeasible reasoning.

This paper proposes a formalization of non-deontic inferences
in reified I/O logic via SHACL [2]. While recent literature offered
solutions for compliance checking implemented in RDFs/OWL, e.g.,
[6], only preliminary works use SHACL to this end, e.g., [21].

2 BACKGROUND - REIFIED I/O LOGIC
2.1 Input/Output logic
I/O logic was originally introduced in [17]. I/O logic is a family of
logics, just like modal logic is a family of systems K, S4, S5, etc.

However, while modal logic uses possible world semantics, I/O
logic uses norm-based semantics, in the sense of [11]: I/O systems
are families of if-then rules (𝑎, 𝑏), such that when 𝑎 is given in input,
𝑏 is returned in output. 𝑎 and 𝑏 are formulae in another logic, called
“the object logic”. It has been argued that norm-based reasoning
features some advantages over reasoning based on possible world
semantics, first of all a lower computational complexity [30].

I/O logic neatly decouples deontic and non-deontic inferences.
I/O logic is indeed a meta-logic wrapped around another logic (e.g.,
[12], in case of reified I/O logic) called “the object logic”. The meta-
logic implements deontic inferences while the object logic imple-
ments the non-deontic ones. In I/O systems for legal reasoning,
rules (𝑎, 𝑏) can be obligations, permissions, and constitutive rules.
These are clustered within three distinct sets 𝑂 , 𝑃 , and 𝐶 such that
∀(𝑎, 𝑏)∈𝑂 reads as “given 𝑎, 𝑏 is obligatory”, ∀(𝑎, 𝑏)∈𝑃 reads as “given
𝑎, 𝑏 is permitted”, and ∀(𝑎, 𝑏)∈𝐶 reads as “given 𝑎, 𝑏 holds”.

Most past research on I/O logic has focused on theoretical inves-
tigations in the meta-logic, for modeling deontic reasoning. Since
the focus was on studying the meta-logic, the object logic was al-
ways kept as simple as possible, i.e., it was always propositional
logic. Reified I/O logic is perhaps the most relevant proposal so far
in the I/O logic literature that employs an alternative (first-order)
object logic: the logical framework in [12].

In I/O logic, inferences in the meta-logic are achieved by impos-
ing axioms and constraints on the sets of if-then rules. Different
combinations of axioms and constraints trigger different inferences.

2021-04-23 08:42. Page 1 of 1–5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/475645965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICAIL 2021, June 2021, São Paulo, Brazil Robaldo et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

For instance, [17] defines the basic axioms in (1), where the
symbol ‘⊢’ is the entailment relation of the object logic. Variants of
these axioms have been further investigated in [23] and [22].

(1) • SI: from (𝑎, 𝑥) to (𝑏, 𝑥) whenever 𝑏 ⊢ 𝑎.
• OR: from (𝑎, 𝑥) and (𝑏, 𝑥) to (𝑎 ∨ 𝑏, 𝑥).
• WO: from (𝑎, 𝑥) to (𝑎,𝑦) whenever 𝑥 ⊢ 𝑦.
• AND: from (𝑎, 𝑥) and (𝑎,𝑦) to (𝑎, 𝑥 ∧ 𝑦).
• CT: from (𝑎, 𝑥) and (𝑎 ∧ 𝑥,𝑦) to (𝑎,𝑦).

By imposing axioms SI, WO, and AND, we obtain a specific derivation
system called deriv1. Adding OR to deriv1 gives deriv2. Adding
CT to deriv1 gives deriv3. The five axioms together give deriv4.
Each derivation system is sound and complete with respect to a
different (norm-based) semantics and can therefore trigger different
inferences (see [17] for further discussion and details).

Given a derivation system, we may further constrain its sets of
if-then rules, by considering only subsets that do not yield outputs
conflicting with given inputs. This is needed to handle contrary-to-
duty reasoning, i.e., to determine which obligations are detached
in a situation that already violates some among them [16].

This paper is not concerned with the meta-level of I/O logic.
Rather, it will focus on the object logic and non-deontic inferences,
including defeasible ones to handle exceptions in legal reasoning.

2.2 Adding reification to I/O logic
Reification is a well-known technique used in linguistics and com-
puter science for representing abstract concepts. These are associ-
ated with explicit objects, e.g., FOL terms (see below in this section)
or RDF resources (see §3 below), on which we can assert properties.
These assertions can be recursively reified again into new terms.

Both [12] and RDFs/OWL recursively reify assertions until the
knowledge is represented in terms of a flat list of atomic predi-
cates applied to terms. In RDFs/OWL, these flat lists are made of
triples “(subject, predicate, object)”, while [12] also allows
predicates with higher arity; however, any n-ary predicate can be
transformed into an equivalent conjunction of RDF triples.

In [12] and in reified I/O logic, both the antecedent and the con-
sequent of the if-then rule are conjunctions of predicates. Universal
and existential quantifiers are added to bound the free variables
occurring in the formulae. Universals that outscope the whole if-
then rules are used to “carry” individuals from the antecedent to
the consequent. Formal details and definitions are available in [29].

A simple example from the D-KB [28] is shown in (2). (2) encodes
in reified I/O logic part of Art.5(1)(a) of the GDPR. The if-then rule
belongs to the set𝑂 (note “∈ 𝑂” in (2)): it is an obligation requiring
each personal data processing to be lawful.

(2) ∀𝑒𝑝 (∃𝑡1,𝑧,𝑤,𝑦,𝑥 [(𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 𝑒𝑝 𝑡1) ∧
(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎 𝑧 𝑤) ∧ (𝐷𝑎𝑡𝑎𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑤) ∧
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑦 𝑧) ∧ (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑥) ∧ (𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑥) ∧
(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ 𝑒𝑝 𝑥 𝑧)],

(𝑖𝑠𝐿𝑎𝑤 𝑓 𝑢𝑙 𝑒𝑝)) ∈ 𝑂

Formulae in reified I/O logic employ two kind of predicates: primed
predicates such as 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ and non-primed pred-
icates such as 𝐷𝑎𝑡𝑎𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 . The former are obtained by reifying
the latter; the first argument of primed predicates is the reification
of the non-primed counterpart, i.e., a FOL term.

We should not reify all predicates, but only those we need. For
instance, we do need to reify (𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑥 𝑧) into
(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ 𝑒𝑝 𝑥 𝑧), where 𝑒𝑝 explicitly refers to the
action of processing, because we need to assert a property on this ac-
tion: in the consequent of the obligation, we require it to be lawful,
i.e., to satisfy the 𝑖𝑠𝐿𝑎𝑤 𝑓 𝑢𝑙 predicate. Note that in (2), in order to
“carry” the variable 𝑒𝑝 from the antecedent to the consequent, a uni-
versal quantifier outscoping the if-then rule has been inserted. All
other variables are existentially quantified within the antecedent.

The other predicate that 𝑒𝑝 is required to satisfy is 𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 .
This is a special predicates used to assert which reifications “really
exist” at a certain time. 𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 parallels the well-known
predicate 𝐻𝑜𝑙𝑑𝑠𝐴𝑡 used in Event Calculus [14].

Thus, formula (2) reads: “for every personal data processing 𝑒𝑝
of some personal data 𝑧, owned by a data subject𝑤 , controlled by
a controller 𝑦, and processed by a processor 𝑥 (nominated by 𝑦), it
is obligatory for 𝑒𝑝 to be lawful.

2.3 Adding defeasibility to reified I/O logic
It is common in legislation that some rules override others in re-
stricted contexts. These more specific rules are seen as exceptions
of the general rules, as penguins may be seen as exceptions of birds
with respect to the ability of flying.

In line with the literature, e.g., [10], reified I/O logic models
exceptions via special predicates “Ex” that are false by default. This
is achieved via negation-as-failure (naf). “naf(Ex)” is true if either
“Ex” is false or it is unknown. On the other hand, when “Ex” holds,
“naf(Ex)” is false, and the general rule is blocked. An example, taken
from [28], is given by the following rules:

(a) If the data subject has given consent to processing, then the
processing is lawful.

(b) If the age of the data subject is lower than the minimal age for
consent of his member state, (a) is not valid.

(c) In case of (b), if the holder of parental responsibility has given
consent to processing, then the processing is lawful.

(a)-(c) are formalized as the following constitutive rules:
(3) ∀𝑒𝑝 (∃𝑡,𝑧,𝑤,𝑦,𝑥 [(𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 𝑒𝑝 𝑡) ∧ (𝐷𝑎𝑡𝑎𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑤) ∧

(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ 𝑒𝑝 𝑥 𝑧) ∧ (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑦 𝑧) ∧
(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑥) ∧ (𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑥) ∧ (𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎 𝑧 𝑤) ∧
(𝐺𝑖𝑣𝑒𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑇𝑜 𝑤 𝑒𝑝) ∧ 𝑛𝑎𝑓 ((𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝐷𝑆 𝑒𝑝))],

(𝑖𝑠𝐿𝑎𝑤 𝑓 𝑢𝑙 𝑒𝑝)) ∈ 𝐶

(4) ∀𝑒𝑝 (∃𝑡,𝑧,𝑤,𝑦,𝑥,𝑠 [(𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 𝑒𝑝 𝑡) ∧ (𝐷𝑎𝑡𝑎𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑤) ∧
(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ 𝑒𝑝 𝑥 𝑧) ∧ (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑦 𝑧) ∧
(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑥) ∧ (𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑥) ∧ (𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎 𝑧 𝑤) ∧
(𝑆𝑡𝑎𝑡𝑒𝑂 𝑓 𝑠 𝑤) ∧ (< 𝑎𝑔𝑒𝑂𝑓 (𝑤) 𝑚𝑖𝑛𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝐴𝑔𝑒𝑂𝑓 (𝑠))],

(𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐴𝑔𝑒𝐷𝑆 𝑒𝑝)) ∈ 𝐶

(5) ∀𝑒𝑝 (∃𝑡,𝑧,𝑤,𝑦,𝑥,𝑠,ℎ[(𝑅𝑒𝑥𝑖𝑠𝑡𝐴𝑡𝑇𝑖𝑚𝑒 𝑒𝑝 𝑡) ∧ (𝐷𝑎𝑡𝑎𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑤) ∧
(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔’ 𝑒𝑝 𝑥 𝑧) ∧ (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑦 𝑧) ∧
(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑥) ∧ (𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑥) ∧ (𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐷𝑎𝑡𝑎 𝑧 𝑤) ∧
(𝑆𝑡𝑎𝑡𝑒𝑂 𝑓 𝑠 𝑤) ∧ (< 𝑎𝑔𝑒𝑂𝑓 (𝑤) 𝑚𝑖𝑛𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝐴𝑔𝑒𝑂𝑓 (𝑠)) ∧
(ℎ𝑎𝑠𝐻𝑜𝑙𝑑𝑒𝑟𝑂 𝑓 𝑃𝑟 ℎ 𝑤) ∧ (𝐺𝑖𝑣𝑒𝐶𝑜𝑛𝑠𝑒𝑛𝑡𝑇𝑜 ℎ 𝑒𝑝)],

(𝑖𝑠𝐿𝑎𝑤 𝑓 𝑢𝑙 𝑒𝑝)) ∈ 𝐶

2021-04-23 08:42. Page 2 of 1–5.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards compliance checking in reified I/O logic via SHACL ICAIL 2021, June 2021, São Paulo, Brazil

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 COMPLIANCE CHECKING IN RDFS/OWL
RDFs/OWL is nowadays theW3C standard language for the Seman-
tic Web [1]. RDFs/OWL represents knowledge via flat sets of triples
“(subject, predicate, object)”, in which the predicate is
an rdf:Property while the subject and the object can be any
rdfs:Resource, including other rdf:Property(s). In other words,
RDFs/OWL allows to treat rdf:Property(s) as first-order terms on
which separately asserting other (meta-)properties.

It is then evident that reification is, in essence, the very same
mechanism used to represent knowledge in RDFs/OWL, thus the
idea of implementing reified I/O logic in the W3C standard.

Some proposals have been done to implement compliance check-
ing in RDFs/OWL, e.g., [9] and [6]. In these approaches compliance
checking is achieved by enriching the ontology with classes re-
ferring to sets of individuals compliant with the norms and by
enforcing “is-a” inferences on these classes.

For instance, the OWL ontology used in [9] includes a class
Supplier including individuals that supply consumers with some
goods. Since suppliers are obliged to communicate their contractual
conditions to their consumers (rule R1), the corresponding class in-
cludes a boolean datatype property hasCommunicatedConditions
which is true for those suppliers that has complied with their obli-
gation and false otherwise. The ontology includes then a class
SupplierR1compliant defined as to include only individuals in
Supplier for which hasCommunicatedConditions is true. Com-
pliance checking is enforced by applying simple “is-a” inferences.

In the same spirit, [6] encodes in a fragment of OWL2 selected
norms from Artt. 6, 7, 15, 23, and 30 of the GDPR, which concern
data usage policies. Compliance on these policies is again imple-
mented via “is-a” inferences.

While [9] and [6] are of course important contributions towards
the same direction of research advocated here, it is not clear how to
model exceptions in those frameworks. Furthermore, adding explicit
classes specifically devoted to “collect” the individuals compliant
with the norms, as well as introducing new ones to properly handle
exceptions, does not appear to be an easy and intuitive solution.

The rest of the paper proposes to use SHACL as an alternative
of the accounts in [9] and [6].

4 COMPLIANCE CHECKING IN SHACL
This paper proposes and makes initial investigations to encode
legal rules in a formal language different from RDFs/OWL. This
formal language is SHACL [2], proposed by W3C precisely for
validation and inferences on RDFs/OWL graphs. The use of SHACL
is currently a matter of ongoing research in the Semantic Web
community (see [7], [24], among others).

SHACL appears to be the right formal language for modelling
compliance checking, although so far it has been scarcely investi-
gated to this end, preliminary works being [20], [21], and [8].

SHACL was originally proposed to define special conditions on
RDFs/OWL graphs, called “SHACL shapes”, more expressive than
standard OWL cardinality and quantifier restrictions. RDFs/OWL
graphs can be then validated against a set of such SHACL shapes.

However, SHACL “may be used for a variety of purposes beside
validation, including user interface building, code generation and data
integration” (cit. [2]). This paper adds a new use cases for SHACL

in that it proposes to use it for serializing reified I/O logic formulae
fit to check compliance.

In order to enhance the expressivity and the flexibility of the
standard, a current W3C Working Group Note proposes to enrich
SHACL shapes with advanced features1 such as “SHACL rules” to
derive inferred triples from asserted ones, prior to validation.

As explained in [25], SHACL rules can trigger ontological or
non-ontological inferences. Ontological inferences derive facts that
can be added to the model. On the other hand, non-ontological
inferences have the sole purpose of aggregating data, without nec-
essarily asserting them in the model, in order to facilitate validation.

5 SERIALIZING REIFIED I/O LOGIC IN SHACL
This paper represents the first attempt to investigate how to serialize
reified I/O formula modeling obligations as SHACL shapes and
reified I/O formula modeling constitutive rules as SHACL rules.

(6) shows the SHACL shape that serializes (2) above. Both require
every personal data processing to be lawful.

(6) CheckLawfulness
rdf:type sh:NodeShape;
sh:targetClass PersonalDataProcessing;
sh:property [sh:path is-lawful;

sh:hasValue "true"ˆˆxsd:boolean;];

In (6), “sh:” is SHACL namespace prefix. (6) is a sh:NodeShape
requiring each individual of the sh:targetClass to satisfy the
sh:property. The latter constrains the individuals reached from
the sh:targetClass through the sh:path to satisfy sh:hasValue.

On the other hand, PersonalDataProcessing, is-lawful, and
all other RDFs/OWL resources used in this paper are associated
1:1 with the predicates used in the reified I/O logic formulae such
as (2), in the same way as the predicates occurring in the D-KB
[28] are associated with RDFs/OWL resources from the PrOnto
ontology [19], an OWL ontology proposed to conceptualize the
data protection domain. Space constraints avoid to provide further
details about the 1:1 mapping between reified I/O logic predicates
and RDFs/OWL resources.

SHACL shapes refer to constraints, a solution that appears to be
more intuitive and economical than overpopulating the ontology
with extra classes as suggested in [9] and [6].

The validation facts, as well as new individuals, derived through
SHACL are not mandatorily inserted in the ontology. The SHACL
rules to model the reified I/O logic formulae in (3), (4), and (5)
represent non-ontological inferences, in the sense explained in [25]:
these rules are only functional to infer the truth value of is-lawful
before the SHACL shape in (6) is validated.

(3), (4), and (5) are serialized in the SHACL rules in (7), (8), (9),
and, below, (10).

(7) sh:rule [rdf:type sh:TripleRule; sh:order 0;
sh:subject sh:this;
sh:predicate has-min-consent-age;
sh:object [sh:path
(has-theme has-personal-data
is-personal-data-of has-member-state
has-min-consent-age);];];

1See https://www.w3.org/TR/shacl-af

2021-04-23 08:42. Page 3 of 1–5.

https://www.w3.org/TR/shacl-af

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICAIL 2021, June 2021, São Paulo, Brazil Robaldo et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(8) sh:rule [rdf:type sh:TripleRule; sh:order 1;
sh:condition [

sh:property [sh:path has-min-consent-age;
sh:minCount 1;];

sh:property [
sh:path (has-agent has-age);
sh:lessThan has-min-consent-age;];];

sh:subject [sh:path has-theme;];
sh:predicate rdf:type;
sh:object exceptionAgeDS;];

(9) sh:rule [rdf:type sh:TripleRule; sh:order 2;
sh:condition [

sh:not [sh:property [sh:path has-theme;
sh:class exceptionAgeDS;];];];

sh:subject [sh:path has-theme;];
sh:predicate is-lawful;
sh:object "true"ˆˆxsd:boolean;];

The sh:targetClass of all these SHACL rules is GiveConsent.
Rules are executed according to the sh:order, from the lowest to
the highest value. Each rule in (7)-(9) makes a new assertion: the
rdf:Property specified in the sh:predicate of the rule is asserted
between the two RDFs/OWL resources in the sh:subject and
the sh:object. The sh:subject and the sh:object may be the
sh:targetClass itself (keyword “sh:this”), a resource reachable
from the sh:targetClass through a path specified in sh:path,
any other resource in the ontology, or a literal.

(7) is executed as first because its sh:order is “0”. This rule sets
the value of the property has-min-consent-age for each individ-
ual in the class GiveConsent. This values is set to the integer value
reachable from the sh:path defined on sh:object in (7)). Specifi-
cally, this is the minimal consent age (has-min-consent-age) of
the Member State (has-member-state) of the data subject owning
the personal data (has-personal-data is-personal-data-of) in-
volved in the personal data processing occurring as the theme of
the GiveConsent instances (has-theme).

It is important to understand that has-min-consent-age will
not be asserted on the individuals of GiveConsent also in the ref-
erence ontology, but only in the derived one. In other words, (7) is
a non-ontological inference rule that collects/aggregates this value
in GiveConsent for validation purposes only. After the validation,
these values will be discharged.

Rule (8) compares theminimal consent age of the agents’Member
State, just asserted by (7) on GiveConsent’s instances, with the
agents’ age. The two rules are then executed in a pipeline, thanks to
SHACL command sh:order. Mirroring these inferences in native
RDFs/OWL seems to be more difficult in that the formalism does
not allow to specify a priority between the inference rules.

When the agents’ age has been specified (sh:minCount 1) and it
is lower than (sh:lessThan) the minimal consent age of the Mem-
ber State previously asserted by (7), rule (8) asserts the individual
of PersonalDataProcessing in the has-theme property of the in-
dividual of GiveConsent as member of the class exceptionAgeDS
(see rdf:type in sh:predicate).

Finally, (9) sets as true the property is-lawful of the instances
of PersonalDataProcessing that do not (sh:not) belong to class
exceptionAgeDS. (9) implements the reified I/O logic formula shown
above in (3) and the SHACL operator sh:not the negation-as-failure

(predicate 𝑛𝑎𝑓) occurring therein. sh:not is in fact true when the
ontology does not include any specific assertion of the personal
data processing as member of the class exceptionAgeDS. In other
words, since the close world assumption hold for both RDFs/OWL
and SHACL, sh:not is true when it is either false or unknown
whether the personal data processing belongs to this class.

Finally, (10) implements the reified I/O logic formula (5) above:

(10) sh:rule [rdf:type sh:TripleRule; sh:order 2;
sh:condition [

sh:property [sh:path
(has-theme; has-personal-data

is-personal-data-of has-age);
sh:lessThan has-min-consent-age;];

sh:property [sh:path (has-theme
has-personal-data
is-personal-data-of
has-holder-of-pr);

sh:equals has-agent;];];
sh:subject [sh:path has-theme;];
sh:predicate is-lawful;
sh:object "true"ˆˆxsd:boolean;];

If the age of the data subject (has-age) who owns the personal
data of the processing (has-personal-data is-personal-data)
that is the theme of a GiveConsent individual (has-theme) is lower
than (sh:lessThan) the minimal consent age of his/her Member
State and the agent of this GiveConsent individual is the holder
of the data subject’s parental responsibility (has-holder-of-pr),
then the boolean is-lawful is again set to true.

6 CONCLUSIONS
Reified I/O logic is a recent deontic logical framework explicitly
designed to handle natural language semantics, i.e., to represent
norms occurring in existing legislation such as the GDPR.

So far, the research in reified I/O logic has focused only on knowl-
edge representation issues, specifically on how to use the formalism
for representing contextual meaning of norms [3].

On the other hand, this paper is the first attempt to investi-
gate computational issues in reified I/O logic, specifically how to
represent the reified I/O logic if-then rules in a computable machine-
readable format fit to enforce compliance checking.

This paper proposed to model regulative rules as SHACL shapes
and constitutive rules as SHACL rules. SHACL shapes and rules are
applied to RDFs/OWL models that describe states of affairs.

The solution proposed here is alternative to some recent ap-
proaches that model compliance checking on RDFs/OWL ontolo-
gies, e.g., [9] and [6].

On the other hand, the present work only represents the first step
of a research endevour aiming at developing a full inference engine
for reified I/O logic that implements and integrates all components
involved in normative reasoning. Much further work needs to be
done in order to obtain a formally well-defined framework, tested
on existing industrial use cases.

Further directions of research include the automatic or semi-
automatic generation of RDFs/OWL or SHACL assertions from
legal texts, possibly via NLP (cf. [4], [5], [18]).

2021-04-23 08:42. Page 4 of 1–5.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards compliance checking in reified I/O logic via SHACL ICAIL 2021, June 2021, São Paulo, Brazil

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

ACKNOWLEDGMENTS
This research has been supported by the Legal Innovation LabWales
operation within Swansea University’s Hillary Rodham Clinton
School of Law. The operation has been part-funded by the European
Regional Development Fund through the Welsh Government.

REFERENCES
[1] 2012. Web Ontology Language (OWL). Technical Report. W3C. https://www.w3.

org/OWL
[2] 2017. Shapes constraint language (SHACL). Technical Report. W3C. https:

//www.w3.org/TR/shacl
[3] Cesare Bartolini, Andra Giurgiu, Gabriele Lenzini, and Livio Robaldo. 2016.

Towards Legal Compliance by Correlating Standards and Laws with a Semi-
automated Methodology. In BNCAI (Communications in Computer and Informa-
tion Science, Vol. 765). Springer, 47–62.

[4] G. Boella, L. di Caro, L. Humphreys, L. Robaldo, and L. van der Torre. 2012. NLP
Challenges for Eunomos, a Tool to Build and Manage Legal Knowledge. Proceed-
ings of the International Conference on Language Resources and Evaluation.

[5] Guido Boella, Luigi Di Caro, Daniele Rispoli, and Livio Robaldo. 2013. A System
for Classifying Multi-label Text into EuroVoc. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Law (Rome, Italy) (ICAIL
’13). ACM, New York, NY, USA, 239–240.

[6] Piero A. Bonatti, Luca Ioffredo, Iliana M. Petrova, Luigi Sauro, and Ida Sri Rejeki
Siahaan. 2020. Real-time reasoning in OWL2 for GDPR compliance. Artificial
Intelligence 289 (2020).

[7] Julien Corman, Juan L. Reutter, and Ognjen Savkovic. 2018. Semantics and Vali-
dation of Recursive SHACL. In The Semantic Web - ISWC 2018 - 17th International
Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 11136), Denny Vrandecic, Kalina
Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta
Sabou, Lucie-Aimée Kaffee, and Elena Simperl (Eds.). Springer, 318–336.

[8] Christophe Debruyne, Harshvardhan J. Pandit, Dave Lewis, and Declan
O’Sullivan. 2019. Towards Generating Policy-Compliant Datasets. In 13th IEEE
International Conference on Semantic Computing, ICSC 2019, Newport Beach, CA,
USA, January 30 - February 1, 2019. IEEE, 199–203.

[9] Enrico Francesconi and Guido Governatori. 2019. Legal Compliance in a Linked
Open Data Framework. In Legal Knowledge and Information Systems - JURIX
2019: The Thirty-second Annual Conference, Madrid, Spain, December 11-13, 2019
(Frontiers in Artificial Intelligence and Applications, Vol. 322), Michal Araszkiewicz
and Víctor Rodríguez-Doncel (Eds.). IOS Press, 175–180.

[10] G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco. 2013. Computing
Strong and Weak Permissions in Defeasible Logic. Journal of Philosophical Logic
6, 42 (2013), 799–829.

[11] JörgHansen. 2014. Reasoning about permission and obligation. InDavidMakinson
on Classical Methods for Non-Classical Problems, S. O. Hansson (Ed.). Outstanding
Contributions to Logic Volume 3, Springer, 287–333.

[12] J.R. Hobbs and A.S. Gordon. 2017. A formal theory of commonsense psychology,
how people think people think. Cambridge University Press.

[13] J. R. Hobbs. 2008. Deep Lexical Semantics. In Proc. of the 9th International
Conference on Intelligent Text Processing and Computational Linguistics (CICLing-
2008). Haifa, Israel.

[14] R Kowalski andM Sergot. 1986. A Logic-based Calculus of Events. NewGeneration
Computing 4, 1 (1986), 67–95.

[15] Tomer Libal and Alexander Steen. 2020. Towards an Executable Methodology for
the Formalization of Legal Texts. In Logic and Argumentation - Third International
Conference, CLAR 2020, Hangzhou, China, April 6-9, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12061), Mehdi Dastani, Huimin Dong, and Leon
van der Torre (Eds.). Springer, 151–165.

[16] David Makinson and Leendert van der Torre. 2001. Constraints for input/output
logics. Journal of Philosophical Logic 30, 2 (2001), 155–185.

[17] David Makinson and Leendert W. N. van der Torre. 2000. Input/Output Logics.
Journal of Philosophical Logic 29, 4 (2000), 383–408.

[18] Rohan Nanda, Luigi Di Caro, Guido Boella, Hristo Konstantinov, Tenyo Tyankov,
Daniel Traykov, Hristo Hristov, Francesco Costamagna, Llio Humphreys, Livio
Robaldo, and Michele Romano. 2017. A Unifying Similarity Measure for Auto-
mated Identification of National Implementations of European Union Directives.
In Proceedings of the 16th Edition of the International Conference on Articial Intelli-
gence and Law (ICAIL 2017). Association for Computing Machinery.

[19] Monica Palmirani, Michele Martoni, Arianna Rossi, Cesare Bartolini, and Livio
Robaldo. 2018. PrOnto: Privacy Ontology for Legal Compliance. In Proceedings
of the 18𝑡ℎ European Conference on Digital Government (ECEG).

[20] Harshvardhan Jitendra Pandit, Declan O’Sullivan, and Dave Lewis. 2018. Explor-
ing GDPR Compliance Over Provenance Graphs Using SHACL. In Proc. of the
Posters and Demos Track of the 14th International Conference on Semantic Systems

co-located with the 14th International Conference on Semantic Systems (SEMAN-
TiCS 2018), Vienna, Austria, September 10-13, 2018 (CEUR Workshop Proceedings,
Vol. 2198), Ali Khalili and Maria Koutraki (Eds.).

[21] Harshvardhan J. Pandit, Declan O’Sullivan, and Dave Lewis. 2019. Test-Driven
Approach Towards GDPR Compliance. In Semantic Systems. The Power of AI and
Knowledge Graphs, Maribel Acosta, Philippe Cudré-Mauroux, Maria Maleshkova,
Tassilo Pellegrini, Harald Sack, and York Sure-Vetter (Eds.). Springer International
Publishing, 19–33.

[22] Xavier Parent and Leon van der Torre. 2014. Aggregative Deontic Detachment for
Normative Reasoning. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014.

[23] Xavier Parent and Leendert van der Torre. 2014. “Sing and Dance!”. In Deontic
Logic and Normative Systems, Fabrizio Cariani, Davide Grossi, Joke Meheus, and
Xavier Parent (Eds.). Springer International Publishing, 149–165.

[24] Paolo Pareti, George Konstantinidis, Fabio Mogavero, and Timothy J. Norman.
2020. SHACL Satisfiability and Containment. In The Semantic Web - ISWC 2020 -
19th International Semantic Web Conference, Athens, Greece, November 2-6, 2020,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12506), Jeff Z. Pan,
Valentina A. M. Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel
Polleres, Oshani Seneviratne, and Lalana Kagal (Eds.). Springer, 474–493.

[25] Paolo Pareti, George Konstantinidis, Timothy J. Norman, and Murat Sensoy. 2019.
SHACL Constraints with Inference Rules. In The Semantic Web - ISWC 2019 -
18th International Semantic Web Conference, Auckland, New Zealand, October
26-30, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11778),
Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz,
Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer,
539–557.

[26] L. Robaldo. 2010. Independent Set readings and Generalized Quantifiers. The
Journal of Philosophical Logic 39(1) (2010), 23–58.

[27] L. Robaldo. 2011. Distributivity, Collectivity, and Cumulativity in terms of
(In)dependence and Maximality. The Journal of Logic, Language, and Information
20(2) (2011), 233–271.

[28] L. Robaldo, C. Bartolini, M. Palmirani, A. Rossi, M. Martoni, and G. Lenzini. 2020.
Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base.
The Journal of Logic, Language, and Information 29 (2020). Issue 4.

[29] L. Robaldo and X. Sun. 2017. Reified Input/Output logic: Combining Input/Output
logic and Reification to represent norms coming from existing legislation. The
Journal of Logic and Computation 7 (2017). Issue 8.

[30] X. Sun and L. Robaldo. 2017. On the complexity of Input/Output logic. The
Journal of Applied Logic 25 (2017), 69–88.

2021-04-23 08:42. Page 5 of 1–5.

https://www.w3.org/OWL
https://www.w3.org/OWL
https://www.w3.org/TR/shacl
https://www.w3.org/TR/shacl

	Abstract
	1 Introduction
	2 Background - reified I/O logic
	2.1 Input/Output logic
	2.2 Adding reification to I/O logic
	2.3 Adding defeasibility to reified I/O logic

	3 Compliance checking in RDFs/OWL
	4 Compliance checking in SHACL
	5 Serializing reified I/O logic in SHACL
	6 Conclusions
	Acknowledgments
	References

