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Abstract 8 

 9 
ActiGraph is a commonly used, research-grade accelerometer brand, but there is little 10 

information regarding inter-monitor comparability of newer models. Additionally, whilst 11 
sampling rate has been shown to influence accelerometer metrics, its influence on measures of 12 
free-living physical activity has not been directly studied. Purpose: To examine differences in 13 
physical activity metrics due to inter-monitor variability and chosen sampling rate. Methods: 14 
Adults (n=20) wore two hip-worn ActiGraph wGT3X-BT monitors for one week, with one 15 

accelerometer sampling at 30 Hz and the other at 100 Hz, which was downsampled to 30 Hz. 16 
Activity intensity was classified using vector magnitude (VM), Euclidean Norm Minus One 17 
(ENMO), and Mean Amplitude Deviation (MAD) cut-points. Equivalence testing compared 18 
outcomes. Results: There was a lack of inter-monitor equivalence for ENMO, time in 19 
sedentary/light- or moderate-intensity activity according to ENMO cut-points, and time in 20 

moderate-intensity activity according to MAD cut-points. Between sampling rates, differences 21 
existed for time in moderate-intensity activity according to VM, ENMO and MAD cut-points, 22 

and time in sedentary/light-intensity activity according to ENMO cut-points. While mean 23 
differences were small (0.1-1.7 percentage points), this would equate to differences in moderate-24 

to-vigorous-intensity activity over a 10-h wear-day of 3.6 (MAD) to 10.8 (ENMO) min·day-1 for 25 
inter-monitor comparisons or 3.6 (VM) to 5.4 (ENMO) min·day-1 for sampling rate. 26 

Conclusions: Epoch-level inter-monitor differences were larger than differences due to sampling 27 
rate, but both may impact outcomes such as time spent in each activity intensity. ENMO was the 28 
least comparable metric between monitors or sampling rates. 29 
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Introduction 53 

 Since the 1980s, accelerometers have been used to estimate free-living energy 54 

expenditure and physical activity levels (Wong et al., 1981). ActiGraph accelerometers are the 55 

most widely-used brand of research-grade monitors (Migueles et al., 2017; Montoye et al., 2016) 56 

and have been used in large-scale interventions (Stevens et al., 2005), national surveillance 57 

efforts, such as the National Health and Nutrition Examination Study (NHANES) (Troiano et al., 58 

2008), and in clinical trials (US National Library of Medicine, 2021). ActiGraph monitors have 59 

historically measured, filtered, and rectified acceleration (in g’s) to generate ‘activity counts’ that 60 

are intended to be a measure of physical activity intensity (Chen & Bassett, 2005; John & 61 

Freedson, 2012). In recent models, including the GT3X, GT3X+, wGT3X-BT, and GT9X (Link) 62 

monitors, both ‘raw’ acceleration and activity count data are stored, and the user is able to select 63 

the sampling rate, in 10 Hz increments, from 30 to 100 Hz (John & Freedson, 2012). Since these 64 

functionalities were introduced, several researchers have focused on the development of 65 

acceleration-based metrics, and they have used a variety of sampling rates (de Almeida Mendes 66 

et al., 2018; Migueles et al., 2017).  67 

 Recent research has suggested that ActiGraph sampling rate impacts the conversion of 68 

acceleration into activity counts (Brønd & Arvidsson, 2015; Clevenger et al., 2019). Specifically, 69 

a study in adults showed that an ActiGraph monitor using a sampling rate of 40 or 100 Hz 70 

resulted in the generation of additional activity counts compared to a second monitor collecting 71 

at 30 Hz during a semi-structured walking and running protocol (Brønd & Arvidsson, 2015). 72 

While Brønd et al. (2015) reported sampling rate was not an issue when using a multiple of 30 73 

Hz, a recent review indicates that besides 30 Hz, users most often select a 100 Hz sampling rate 74 

(the maximum available for ActiGraph; Migueles et al., 2017). A limitation of prior research is 75 
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that results could be, at least in part, attributable to inter-monitor variability introduced by the 76 

use of multiple monitors worn side-by-side. While there is evidence for inter-monitor 77 

comparability of older generations of ActiGraph devices (Aadland & Ylvisåker, 2015; Esliger & 78 

Tremblay, 2006; Jarrett et al., 2015; Ozemek et al., 2014; Santos-Lozano et al., 2013; Silva et al., 79 

2010), there remain small differences in both acceleration (Montoye et al., 2018) and activity 80 

counts (Loprinzi & Smith, 2017; Ozemek et al., 2014) even in newer model monitors, potentially 81 

due to slight differences in monitor orientation or placement.  82 

To account for the potential influence of using two monitors to examine the impact of 83 

sampling rate, a study in children utilized only one ActiGraph monitor that collected data at 100 84 

Hz, which was later downsampled to 30 Hz (Clevenger et al., 2019). This study demonstrated 85 

that collected data, particularly activity counts, were still affected by sampling rate, even after 86 

eliminating inter-monitor differences (Clevenger et al., 2019). Specifically, it was estimated that 87 

approximately 15 minutes over the course of a 10-h wear-day could be classified as a different 88 

activity intensity when using a 100 Hz sampling rate compared to 30 Hz. While this difference 89 

would have a clear impact on the estimation of habitual physical activity, it is pertinent to note 90 

that this was an extrapolation based on a laboratory-based protocol involving a high level of 91 

moderate- or vigorous-intensity physical activity and a low level of sedentary time or light-92 

intensity activity. Therefore, the actual impact of sampling rate on measures of habitual physical 93 

activity remains to be elucidated, particularly in adults. Understanding the effect of sampling rate 94 

on habitual physical activity measurement is important given that this information informs 95 

methodological decisions, comparability between studies using different sampling rates, and 96 

understanding of existing data, including national level physical activity data (Troiano et al., 97 

2014).  98 
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While inter-monitor differences are generally considered an acceptable source of error, 99 

the free-living comparability of the ActiGraph wGT3X-BT in adults has not been established.  100 

Perhaps more importantly, the free-living comparability of the ActiGraph in general has not been 101 

well researched for measuring acceleration-based metrics, like Euclidean Norm Minus One 102 

(ENMO) (Bakrania et al., 2016; van Hees et al., 2014; van Hees et al., 2013) or Mean Amplitude 103 

Deviation (MAD) (Aittasalo et al., 2015; Bakrania et al., 2016; Vähä-Ypyä et al., 2015). In 104 

children and adults, the acceleration-based metric ENMO has demonstrated poorer reliability 105 

than MAD, vector magnitude (VM) counts, or VM acceleration (Clevenger et al., 2020a, 2020b). 106 

Therefore, more research is needed on inter-monitor comparability of recent ActiGraph models 107 

overall and particularly for acceleration-based metrics, as this may also impact measures of 108 

habitual physical activity, further compounding differences due to data collection decisions. The 109 

purpose of the present study was to partition the differences in habitual physical activity as 110 

measured by two monitors into differences attributable to inter-monitor variability vs. those 111 

resulting from the chosen sampling rate.  112 

 113 

Methods 114 

 A convenience sample of college students was recruited for participation in this study by 115 

word of mouth and email after the University’s Institutional Review Board approved this 116 

protocol. Following provision of written informed consent, an elastic belt was fitted around each 117 

participant’s waist, with two ActiGraph wGT3X-BT accelerometers positioned over the right 118 

hip. To limit inter-monitor differences, only two pairs of accelerometers were used in this study 119 

(i.e., four monitors in total). The monitor pair assigned to the participant and the placement order 120 

(which monitor was medial or lateral) were randomized, and both monitors were worn for all 121 
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waking hours for seven days except while sleeping, swimming, showering, or participating in 122 

other water-based activities.  123 

 Accelerometers (firmware 1.9.2) were initialized to collect acceleration data (in g’s), with 124 

one monitor randomly selected to sample at 30 Hz and the other at 100 Hz. Following data 125 

collection, data were downloaded as .gt3x files using ActiLife (version 6.13.3, ActiGraph, 126 

Pensacola, FL). The 100 Hz data were resampled to 30 Hz by converting the original .gt3x files 127 

to .wav files using Java software (Oracle Corp., Redwood Shores, CA) and then using the 128 

resample function available in MATLAB (MathWorks Inc., Natwick, MA). Once resampled, the 129 

30 Hz files were converted back to .gt3x files using the Java program (Clevenger et al., 2019). 130 

Thus, there were three data files per participant: i) collected 30 Hz data; ii) collected 100 Hz 131 

data; and iii) downsampled 100 to 30 Hz data. This enabled the partitioning of differences 132 

between monitors collecting at 100 and 30 Hz in to inter-monitor differences (30 vs. 30 Hz data 133 

from the two monitors) and intra-monitor differences (100 vs. 30 Hz data from the monitor 134 

originally collecting 100 Hz data). All subsequent processing steps were conducted for all three 135 

of these ‘.gt3x’ files. 136 

Data were loaded into R (version 1.1.463; Vienna, Austria) as .csv files using the AGread 137 

package (version 0.2.0) (Hibbing, 2018). Acceleration data were auto-calibrated (van Hees et al., 138 

2019; van Hees et al., 2014) and calibration information can be found in Supplementary Table 1. 139 

ENMO was calculated over 5-s epochs, in line with previous research (Migueles et al., 2019). 140 

ENMO was calculated as the square root of the sum of the squared values of the auto-calibrated 141 

acceleration signals in each axis, minus 1, with negative values rounded up to zero (van Hees et 142 

al., 2013). Activity intensity of each epoch was classified using Hildebrand et al. (2014) ENMO 143 

cut-points as sedentary/light, moderate, or vigorous. The acc package (version 1.3.3) was used to 144 
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calculate MAD in 5-s epochs; MAD measures the typical distance between the square root of the 145 

sum of the squared values of the raw acceleration (not auto-calibrated) signals from each axis 146 

and the mean value for a given time period (Aittasalo et al., 2015; Bakrania et al., 2016; Vähä-147 

Ypyä et al., 2015; Vähä‐Ypyä et al., 2015). MAD values were classified as sedentary/light, 148 

moderate, or vigorous using the Vähä-Ypyä et al. (2015) cut-points. For activity count data, VM 149 

was calculated over a 60-s epoch as the square root of the sum of the squares of activity counts 150 

from each axis, and activity intensity was classified as sedentary/light, moderate, or vigorous, 151 

using cut-points developed by Sasaki et al. (2011). A 60-s epoch was used for VM as this is the 152 

most commonly used epoch for this metric (Migueles et al., 2017) and because a 60-s epoch was 153 

used for cut-point development (Sasaki et al., 2011). However, data were also analyzed using a 154 

5-s epoch to be consistent with the epoch used for ENMO and MAD as exploratory analysis 155 

(data not shown). Only triaxial metrics were included in the present analysis to account for small 156 

potential differences in orientation between monitors that would impact single-axis metrics. 157 

Count and acceleration data from the same monitor were aligned based on timestamp, 158 

and non-wear-time was classified as continuous strings of 20 minutes of zero counts in the 159 

vertical axis using the accelerometry package (version 3.1.2) (Van Domelen & Pittard, 2014). 160 

Peeters et al. (2013) reported this non-wear classification resulted in the lowest amount of 161 

misclassification compared to self-report log books in adults. The three files per participant were 162 

then aligned based on timestamp, and only times classified as wear-time from all three files 163 

included. As the goal was not to produce estimates of habitual physical activity levels, no 164 

minimum wear-time per day was required, but participants were required to have at least 10 165 

hours of wear data over the seven-day wear-period to be included in the subsequent analysis. 166 

This duration is in line with previous monitor comparison studies (Lee et al., 2013; Ried-Larsen 167 
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et al., 2012; Vanhelst et al., 2012) and is longer than the protocols used in currently available 168 

studies regarding the impact of sampling rate (Brønd & Arvidsson, 2015; Clevenger et al., 2019). 169 

At the epoch-level, Pearson’s r correlation coefficients and mean absolute difference and 170 

percent difference were calculated between 100 Hz and downsampled 30 Hz data (intra-monitor) 171 

and between downsampled and collected 30 Hz data (inter-monitor). Correlation coefficients 172 

were classified as no (r<0.20), low (r=0.20-0.39), moderate (r=0.40-0.59), moderately high 173 

(r=0.60-0.79), or high (r≥0.80) relationship (Safrit & Wood, 1995). Bland Altman plots (1986) 174 

and bias were generated using the blandr package (version 0.5.1). Using the irr package (version 175 

0.84.1) (Gamer et al., 2012), epoch-level agreement between activity intensities as classified 176 

using ENMO, MAD, and VM cut-points was assessed using weighted Kappa, which accounts for 177 

activity intensities being ordered, and percent agreement. Kappa coefficients were interpreted as 178 

no (κ≤0.20), minimal (κ=0.21-0.39), weak (κ=0.40-0.59), moderate (κ=0.60-0.79), strong 179 

(κ=0.80-0.90), or almost perfect (κ>0.90) agreement (McHugh, 2012). Confusion matrices were 180 

also used to compare activity intensity classification between datasets.  181 

Mean ENMO, MAD, VM, and percent of wear-time spent in each physical activity 182 

intensity according to the ENMO, MAD, and VM metrics were calculated for each participant. 183 

Pearson’s r correlation coefficient, mean absolute difference and percent difference were 184 

calculated for these collapsed data. Using the R package TOSTER (version 0.3.4) (Lakens, 2017), 185 

two, one-sided tests of equivalence (TOST) were used to compare mean VM, ENMO, MAD, and 186 

percent of wear-time spent in each activity intensity per participant across the three data files. In 187 

this method, 90% confidence intervals around the mean difference for each variable are 188 

constructed and if the confidence interval does not overlap or exceed the equivalence bounds, 189 

then the monitors are considered equivalent (p<0.05). Similar to prior research (Clevenger et al., 190 
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2020a, 2020b), equivalence bounds were initially set as 5% of the mean value for each variable. 191 

However, for percent of wear-time spent in moderate and vigorous activity, the equivalence 192 

bounds were modified to 0.5 percentage points, since using the 5% of the mean criterion resulted 193 

in extremely narrow bounds that have little practical meaning. Finally, mean absolute differences 194 

in percent time spent in each activity intensity were used to estimate inter- and intra-monitor 195 

differences in min·day-1 in each intensity based on a 10-h wear-day. 196 

 197 

Results 198 

 Twenty adults (18-30 y of age) completed this study, with an average of 73.3 ± 23.2 199 

hours of wear-time. Although not required, all participants had four or more wear days. Epoch 200 

level comparisons are shown in Table 1 (inter-monitor) and Table 2 (intra-monitor), while data 201 

collapsed to mean value per participant and percent time spent in each activity intensity are 202 

reported in Table 3 (inter-monitor) and Table 4 (intra-monitor). There were no notable 203 

differences in the results using VM at a 60-s or 5-s epoch, so only results using a 60-s epoch are 204 

reported (to align with prior research and the method in which the cut-points were developed). 205 

At the epoch level, mean absolute percent differences ranged from 61.4% (VM) to 92.8% 206 

(ENMO) for inter-monitor differences and 38.3% (MAD) to 42.2% (ENMO) for intra-monitor 207 

differences. Correlations at the epoch level were classified as moderate-to-high for MAD (0.721-208 

0.744) and ENMO (0.708-0.765), and high for VM (0.808-0.813) for both inter- and intra-209 

monitor differences. Bland Altman plots are shown in Figure 1. Bias (lower, upper limits of 210 

agreement) for VM was 15.9 (-1709.3, 1741.1) counts·min-1 for the inter-monitor comparison 211 

and 46.6 (-1751.3, 1844.5) counts·min-1 for the intra-monitor comparison. Bias for ENMO was 212 

2.8 (-86.5, 92.2) mg for the inter-monitor comparison and 0.3 (-81.0, 81.5) mg for the intra-213 
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monitor comparison. Bias for MAD was 2.0 (-137.7, 141.8) mg for the inter-monitor comparison 214 

and 2.3 (-133.0, 137.6) mg for the intra-monitor comparison. 215 

The Kappa coefficient was classified as moderate for all metrics and comparisons 216 

(≥0.626). Confusion matrices for inter- and intra-monitor comparisons are shown in Tables 5 and 217 

6, respectively. For both inter- and intra-monitor comparisons, the greatest agreement was for 218 

sedentary/light behavior, in which 95.9-98.3% of epochs were classified as sedentary/light by 219 

both datasets. For moderate- and vigorous-intensities, between 60.9-76.0% of epochs were 220 

classified identically between datasets. 221 

 When collapsed to mean values per participant, mean absolute percent differences ranged 222 

from 3.2% (VM) to 25.9% (ENMO) for inter-monitor differences (Table 3) and 5.8% (MAD) to 223 

6.0% (VM) for intra-monitor differences (Table 4). Inter-monitor mean absolute percent 224 

differences in percent time spent in various activity intensities ranged from 0.6% (sedentary/light 225 

behavior according to VM and MAD cut-points) to 32.4% (vigorous activity according to 226 

ENMO cut-points; Table 4). Intra-monitor differences in percent time spent in various activity 227 

intensities ranged from 0.6% (sedentary/light behavior according to VM cut-points) to 30.9% 228 

(vigorous activity according to VM cut-points; Table 4). Correlation coefficients for the 229 

collapsed data were all classified as high (≥0.940; Tables 3 and 4), except inter-monitor 230 

comparisons for ENMO (r=0.468) and percent time spent in sedentary/light- (r=0.614) and 231 

moderate-intensity activity (r=0.605) according to ENMO cut-points, which were classified as 232 

moderate or moderate-to-high. 233 

 Results of the equivalence tests are shown in Tables 3 and 4. For inter-monitor 234 

comparisons, monitors were equivalent for all outcomes except ENMO, percent time spent in 235 

sedentary/light- or moderate-intensity activity according to ENMO cut-points, and percent time 236 
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spent in moderate-intensity activity according to MAD cut-points. For intra-monitor 237 

comparisons, monitors were equivalent for all outcomes except percent time spent in moderate-238 

intensity activity according to VM, ENMO, and MAD cut-points and percent time spent in 239 

sedentary/light-intensity activity according to ENMO cut-points.  240 

When presented as min·day-1 (Tables 3 and 4), inter-monitor differences equated to 6.6 241 

(MAD) to 30.0 (ENMO) min·day-1 across intensities. For moderate- to vigorous-intensity 242 

physical activity, specifically, differences would be 10.8 min·day-1 as classified by ENMO cut-243 

points, compared to 3.6-4.8 min·day-1 for MAD or VM. Intra-monitor differences across all 244 

intensities were 7.2 (VM) to 10.8 (ENMO) min·day-1 or 3.6-5.4 min·day-1 of moderate- to 245 

vigorous-intensity physical activity when extrapolated to a 10-h wear-day. 246 

 247 

 248 

  249 
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Table 1. Mean absolute differences (± SD) and correlations between data types for epoch-level vector magnitude (VM), Euclidean 250 
Norm Minus One (ENMO), and Mean Amplitude Deviation (MAD) for the comparison between the collected 30 Hz data and the 251 

downsampled 30 Hz data (i.e., inter-monitor comparison) 252 
 253 

 Mean Absolute 

Difference 

Mean Absolute 

Percent Difference 

Pearson’s r Kappa Percent 

agreement 

VM (counts·min-1) 315.1 ± 822.0 61.4 ± 76.4 0.813 0.768 95.7 

ENMO (mg) 21.2 ± 40.5 92.8 ± 73.3 0.708 0.626 92.8 

MAD (mg) 22.9 ± 67.6 68.0 ± 74.2 0.721 0.650 92.1 

 254 
Table 2. Mean absolute differences (± SD) and correlations between data types for epoch-level vector magnitude (VM), Euclidean 255 

Norm Minus One (ENMO), and Mean Amplitude Deviation (MAD) for the comparison between the collected 100 Hz data and the 256 
downsampled 30 Hz data (i.e., intra-monitor sampling rate comparison) 257 
 258 

 259 
 Mean Absolute 

Difference 

Mean Absolute 

Percent Difference 

Pearson’s r Kappa Percent 

agreement 

VM (counts·min-1) 274.3 ± 876.5 40.6 ± 71.9 0.808 0.788 96.2 

ENMO (mg) 10.6 ± 40.1 42.2 ± 65.1 0.765 0.744 95.3 

MAD (mg) 16.0 ± 67.2 38.3 ± 66.7 0.744 0.741 94.6 

 260 

 261 
 262 

  263 
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Table 3. Mean absolute differences and correlations between data types for individual-level vector magnitude (VM), Euclidean Norm 264 
Minus One (ENMO), and Mean Amplitude Deviation (MAD) for the comparison between the collected 30 Hz data and the 265 

downsampled 30 Hz data (i.e., inter-monitor comparison) 266 
 Mean ± SD Mean 

Absolute 

Difference 

Mean 

Absolute 

Difference 

in 

min·day-1 

Mean 

Absolute 

Percent 

Difference 

Pearson

’s r 

Equivalence 

Bounds 

Equivalence 

   

30 Hz  Downsampled 

VM 

(counts·min-1) 

761.7 ± 211.2 746.6 ± 220.2 22.6 ± 22.1 - 3.2 ± 3.5 0.992 -26.26, 3.99 Yes 

Sedentary/

Light 

91.3 ± 3.3 91.4 ± 3.4 0.6 ± 0.5 3.6 ± 3.0 0.6 ± 0.5 0.976 -0.41, 0.18 Yes 

Moderate 7.1 ± 2.3 7.0 ± 2.3 0.6 ± 0.5 3.6 ± 3.0 8.7 ± 7.3 0.946 -0.21, 0.39 Yes 

Vigorous 1.6 ± 1.6 1.5 ± 1.7 0.2 ± 0.2 1.2 ± 1.2 20.8 ± 40.0 0.985 -0.09, 0.15 Yes 

ENMO (mg) 35.0 ± 9.8 33.0 ± 12.0 8.7 ± 7.4 - 25.9 ± 20.1 0.468 -6.51, 2.55 No 

Sedentary/

Light 

89.8 ± 3.3 89.9 ± 3.9 1.7 ± 2.7 10.2 ± 16.2 2.0 ± 3.1 0.614 -1.44, 1.11 No 

Moderate 9.4 ± 3.0 9.2 ± 3.9 1.7 ± 2.7 10.2 ± 16.2 17.0 ± 22.7 0.605 -1.14, 1.38 No 

Vigorous 0.9 ± 0.7 0.8 ± 0.7 0.1 ± 0.1 0.6 ± 0.6 32.4 ± 37.9 0.966 -0.03, 0.12 Yes 

MAD (mg) 41.4 ± 10.5 39.5 ± 11.0 2.3 ± 3.6 - 5.8 ± 8.4 0.965 -3.07, -0.77 Yes 

Sedentary/

Light 

87.8 ± 3.6 88.2 ± 3.6 0.5 ± 0.6 3.0 ± 3.6 

 

0.6 ± 2.7 0.984 -0.67, -0.15 Yes 

Moderate 11.0 ± 3.3 10.7 ± 3.3 0.5 ± 0.5 3.0 ± 3.0 4.5 ± 6.1 0.984 0.11, 0.58 No 

Vigorous 1.1 ± 0.9 1.1 ± 0.9 0.1 ± 0.1 0.6 ± 0.6 23.0 ± 30.5 0.986 -1.62, 0.12 Yes 

VM classified using Sasaki et al. (2011) cut-points; ENMO classified using Hildebrand et al. (2014) cut-points; MAD classified using 267 

Vähä-Ypyä et al. (2015) cut-points; min·day-1 estimate based on 10-h wear-day 268 

  269 
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Table 4. Mean absolute differences (SD) and correlations between data types for individual-level vector magnitude (VM), Euclidean 270 
Norm Minus One (ENMO), and Mean Amplitude Deviation (MAD) for the comparison between the collected 100 Hz data and the 271 

downsampled 30 Hz data (i.e., intra-monitor comparison) 272 
 Mean (SD) Mean 

Absolute 

Difference 

Mean 

Absolute 

Difference 

in 

min·day-1 

Mean 

Absolute 

Percent 

Difference 

Pearson

’s r 

Equivalence 

Bounds 

Equivalence 

 

100 Hz  Downsampled 

VM 

(counts·min-1) 

790.8 ± 218.7 746.6 ± 220.2 44.2 ± 60.3 - 6.0 ± 7.9 0.962 -68.22, 20.25 Yes 

Sedentary/

Light 

90.9 ± 3.3 91.4 ± 3.4 0.6 ± 0.7 3.6 ± 4.2 0.6 ± 0.7 0.979 -0.84, -0.29 Yes 

Moderate 7.4 ± 2.2 7.0 ± 2.3 0.4 ± 0.5 2.4 ± 3.0 5.9 ± 8.2 0.976 0.17, 0.57 No 

Vigorous 1.7 ± 1.7 1.5 ± 1.7 0.2 ± 0.3 1.2 ± 1.8 30.9 ± 58.9 0.989 0.09, 0.29 Yes 

ENMO (mg) 33.3 ± 12.0 33.0 ± 12.0 1.9 ± 2.7 - 5.9 ± 7.5 0.961 -1.66, 1.02 Yes 

Sedentary/

Light 

89.1 ± 5.0 89.9 ± 3.9 0.9 ± 1.9 5.4 ± 11.4 1.0 ± 2.4 0.943 -1.59, -0.11 No 

Moderate 10.0 ± 5.1 9.2 ± 3.9 0.8 ± 1.9 4.8 ± 11.4 6.5 ± 10.4 0.948 0.02, 1.51 No 

Vigorous 0.9 ± 0.7 0.8 ± 0.7 0.1 ± 0.1 0.6 ± 0.6 16.1 ± 34.3 0.983 0.03, 0.13 Yes 

MAD (mg) 41.8 ± 11.2 39.5 ± 11.0 2.2 ± 2.6 - 5.8 ± 6.5 0.949 -3.74, -0.90 Yes 

Sedentary/

Light 

87.5 ± 3.9 88.2 ± 3.6 0.7 ± 1.3 4.2 ± 7.8 0.8 ± 1.5 0.940 -1.23, -0.19 Yes 

Moderate 11.3 ± 3.5 10.7 ± 3.3 0.6 ± 1.1 3.6 ± 6.6 5.4 ± 9.5 0.944 0.13, 1.04 No 

Vigorous 1.2 ± 1.0 1.1 ± 0.9 0.1 ± 0.2 0.6 ± 1.2 17.4 ± 32.8 0.982 0.05, 0.20 Yes 

VM classified using Sasaki et al. (2011) cut-points; ENMO classified using Hildebrand et al. (2014) cut-points; MAD classified using 273 

Vähä-Ypyä et al. (2015) cut-points; min·day-1 estimate based on 10-h wear-day 274 
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Table 5. Confusion matrix showing agreement in activity intensity classifications between 275 

collected 30 Hz and downsampled 30 Hz data (inter-monitor comparison) based on Sasaki et al. 276 
(2011) vector magnitude cut-points in counts·min-1, Hildebrand et al. (2014) Euclidean Norm 277 

Minus One (ENMO; mg) cut-points, and Vähä-Ypyä et al. (2015) mean amplitude deviation 278 
(MAD; mg) cut-points. The collected 30 Hz data served as the referent group and numbers 279 
represent percent of epochs within each activity intensity classified as that intensity according to 280 
the downsampled 30 Hz data. 281 
 282 

 Downsampled Sasaki Classification 

30 Hz Sasaki Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 97.9 1.9 0.2 

Moderate 26.5 71.7 1.8 

Vigorous 15.1 8.9 76.0 

 Downsampled Hildebrand Classification 

30 Hz Hildebrand Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 96.3 3.5 0.2 

Moderate 37.3 61.6 1.1 

Vigorous 26.6 12.5 60.9 

 Downsampled Vähä-Ypyä Classification 

30 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 95.9 3.8 0.2 

Moderate 33.9 64.9 1.3 

Vigorous 25.9 12.1 60.9 

 283 
 284 

 285 
 286 
  287 
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Table 6. Confusion matrix showing agreement in activity intensity classifications between 288 

collected 100 Hz and downsampled 30 Hz data (intra-monitor sampling rate comparison) based 289 
on Sasaki et al. (2011) vector magnitude cut-points in counts·min-1, Hildebrand et al. (2014)  290 

Euclidean Norm Minus One (ENMO; mg) cut-points, and Vähä-Ypyä et al. (2015) mean 291 
amplitude deviation (MAD; mg) cut-points. The collected 100 Hz data served as the referent 292 
group and numbers represent percent of epochs within each activity intensity classified as that 293 
intensity according to the downsampled 30 Hz data. 294 

 295 

 Downsampled Sasaki Classification 

100 Hz Sasaki Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 98.3 1.5 0.2 

Moderate 24.8 75.0 0.3 

Vigorous 18.6 5.4 76.0 

 Downsampled Hildebrand Classification 

100 Hz Hildebrand Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 97.9 1.9 0.2 

Moderate 26.0 73.8 0.2 

Vigorous 26.5 3.8 69.7 

 Downsampled Vähä-Ypyä Classification 

100 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 97.4 2.4 0.2 

Moderate 24.2 75.4 0.5 

Vigorous 28.1 4.4 67.5 

 296 

 297 
 298 
  299 

Discussion  300 

The present study explored the impact of inter-monitor variability and intra-monitor 301 

differences due to chosen sampling rate of the ActiGraph wGT3X-BT on the estimation of free-302 

living physical activity in adults. While we provide information on differences in epoch-level 303 

and mean VM, ENMO, and MAD, it is of particular interest to understand the impact on 304 

outcome measures like time spent being physically active. Inter- or intra-monitor variability 305 

resulted in differences in moderate-to-vigorous-intensity physical activity of less than 5 min·day-306 

1 for VM and MAD, but 5.4-10.8 min·day-1 for ENMO, with the largest impact from inter-307 
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monitor variability. Whether this magnitude of difference is acceptable will likely depend on the 308 

study design and research questions, and potentially the population of interest. Previous activity-309 

promoting interventions in healthy and older adults have demonstrated improvements of 310 

approximately 5-10 min·day-1 (Barone Gibbs et al., 2017; Napolitano et al., 2010). In clinical 311 

populations, a difference of this magnitude has been associated with changes in physical 312 

functioning and pain in those with or at risk of knee osteoarthritis (Dunlop et al., 2017; Liu et al., 313 

2016) or lung function and quality of life for patients with interstitial lung disease (Hur et al., 314 

2019). Whilst the present study only included healthy adults, there is no reason to expect that the 315 

intra- and inter-monitor differences would vary according to the population on which they are 316 

determined. Therefore, the current findings are likely to be applicable across the health spectrum. 317 

For sedentary behavior, inter- and intra-monitor variability resulted in differences of less 318 

than 5 min·day-1 for VM and MAD, but 5.4-10.2 min·day-1 for ENMO. While we were not able 319 

to separate sedentary behavior from light-intensity physical activity due to the cut-points used in 320 

the present study, prior intervention differences in sedentary behavior of adults were, on average, 321 

22 min·day-1 according to a recent review (Martin et al., 2015), while another study reported a 322 

minimally important difference of over 100 min·day-1 for improvements in physical functioning 323 

(Gaskin et al., 2016). Thus, inter- and intra-monitor differences are relatively small for VM and 324 

MAD metrics, particularly for measuring sedentary behavior, but more research is needed on 325 

using ENMO cut-points for assessing moderate-to-vigorous-intensity physical activity. The 326 

magnitude of inter- and intra-monitor differences over longer wear periods may also be of 327 

interest due to growing interest in collecting 24-h wear data. While the present study did not 328 

include 24-h movement data, extrapolating our results suggests differences of 7.2-25.9 min·day-1 329 

across intensities. 330 
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Whilst prior research has reported on inter-monitor comparability, it has largely focused 331 

on count-based metrics, whereas our study investigates the comparability of count- and 332 

acceleration-based activity metrics from the ActiGraph wGT3X-BT monitor, which has not 333 

previously been reported. In line with our findings, previous studies of adults in free-living 334 

settings wearing two GT3X+ or GT9X monitors at the right hip have reported strong intraclass 335 

correlation coefficients (0.97-0.99) for mean VM and time spent in various activity intensities 336 

based on the Sasaki et al. (2011) cut-points (Jarrett et al., 2015), and strong Pearson’s r 337 

correlation coefficients (0.92-0.99) for mean VM (Aadland & Ylvisåker, 2015; Loprinzi & 338 

Smith, 2017). Similarly, in laboratory-based protocols, correlations for counts between monitors 339 

have been reported to range from 0.82 to 0.99, depending on the activity type (Ozemek et al., 340 

2014). The magnitude of the differences between mean group-level VM in the present study 341 

(15.1 counts·min-1) was also similar to, or smaller than, previous research (e.g., 13.7 counts·min-342 

1 (Jarrett et al., 2015) and 31.0 counts·min-1 (Loprinzi & Smith, 2017)). Thus, the inter-monitor 343 

comparability of the wGT3X-BT appears similar to that of other ActiGraph models. 344 

There is less research on the comparability of ActiGraph devices for acceleration-based 345 

metrics, marking another important contribution of the present analysis. Initial research by 346 

Montoye et al. (2018) reported that, in contrast to strong correlations for VM counts, there were 347 

weaker correlations for mean acceleration between two ActiGraph models (GT9X and GT3X+) 348 

during a semi-structured, laboratory-based protocol in adults. However, the present study 349 

suggests that comparability is only an issue for ENMO, not MAD. This is supported by free-350 

living research in children that indicated strong correlations between waist-worn wGT3X-BT 351 

and GT9X monitors for mean VM counts and MAD (r=0.996 for both), but a lower (albeit still 352 

classified as moderately high) correlation for mean ENMO (r=0.618) and lack of equivalence for 353 
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mean ENMO between monitors (Clevenger et al., 2020b). The equivalence of the acceleration-354 

based metric MAD in the present study is supported by prior research in free-living adults 355 

wearing a wGT3X-BT and GT9X at the hip (Clevenger et al., 2020a). While interest in 356 

acceleration-based metrics from ActiGraph monitors is growing, comparability of specific 357 

metrics should be considered before widespread implementation as current evidence supports 358 

inter-monitor comparability of only the MAD metric. 359 

As may be expected, the largest differences between monitors or sampling rates was at 360 

the epoch-level. For example, inter-monitor mean absolute differences at the epoch-level (e.g., 361 

315.1 counts·min-1) were larger than differences between means (e.g., 22.6 counts·min-1), 362 

indicating that greater caution should be taken when comparing estimates at epoch-level 363 

resolution. This difference was largest for the acceleration-based metric ENMO (92.8%) which is 364 

in line with prior research comparing two models of ActiGraph devices worn side-by-side in 365 

children (mean absolute percent difference in ENMO of 110.9%) (Clevenger et al., 2020b) and 366 

adults (80.9%) (Clevenger et al., 2020a). Conversely, the MAD metric had a lower percent 367 

difference (68.0%); it may be less impacted by epoch-level fluctuations because it is an 368 

indication of variability, not necessarily magnitude, of acceleration over the 5-s epoch. It has also 369 

been postulated that epoch-level inter-monitor differences may be due in part to misalignments 370 

in timing between devices. An example of the alignment of a sub-sample of one participant’s 371 

data is found in Supplementary Figure 1. Although all monitors were started using the same 372 

computer, Steel et al. (2019) indicated there was time drift for ActiGraph monitors of 373 

approximately 5-s over a seven-day period. As VM is analyzed over a 60-s epoch, it may be less 374 

impacted by small misalignments in timing between monitors compared to ENMO, which uses a 375 

5-s epoch. However, analysis of VM at a 5-s epoch resulted in minimal changes in outcomes 376 



20 

(data not shown) and differences in ENMO were still larger than for VM or MAD. Thus, while 377 

future studies may account for time drift between monitors, the worse comparability of ENMO is 378 

likely not just due to time drift. 379 

While differences due to sampling rate were also larger at the epoch level than when data 380 

were collapsed to mean per participant, differences were smaller than those due to inter-monitor 381 

comparability. No prior research has examined the impact of sampling rate on MAD or ENMO, 382 

but mean absolute percent difference for VM in the present study (6.0%) was identical to that 383 

found in children (Clevenger et al., 2019). Specifically, Clevenger et al. (2019) indicated that 384 

sampling rate had a greater impact on counts than acceleration. This is in line with the present 385 

study in which mean MAD was equally impacted by monitor comparability and sampling rate, 386 

mean ENMO was impacted by monitor comparability to a greater extent than sampling rate, and 387 

mean VM was impacted by sampling rate more so than inter-monitor comparability. This finding 388 

is due to the greater bias for intra-monitor differences in VM compared to inter-monitor 389 

differences (Figure 1). Thus, as in prior research, use of a 100 Hz sampling rate results in the 390 

recording of additional counts which leads to bias and impacts mean VM and, to a lesser extent, 391 

acceleration-based metrics. 392 

Bias in the present study (15.9 VM counts·min-1) was smaller than a previous study of 393 

adults during increasing speeds of locomotion, in which bias between monitors using a 100 Hz 394 

and 30 Hz sampling rate ranged from 47 to 1,238 vertical axis counts·min-1 (Brønd & Arvidsson, 395 

2015). As the impact of sampling rate has been shown to increase with increasing intensity 396 

(Brønd & Arvidsson, 2015; Clevenger et al., 2019) and participants in the present study spent the 397 

majority of their time in sedentary and/or light intensity behaviors (>90% of time), it is not 398 

surprising that differences due to sampling rate were low compared to prior semi-structured 399 
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protocols. In line with the idea that sampling rate differences are larger at higher intensities, we 400 

found that more active participants had greater differences due to sampling rate. While we did 401 

not formally test these differences due to the small sample size, some preliminary examples are 402 

provided in the supplementary material. For example, scatter plots between 100 Hz and 403 

downsampled data were less linear (Supplementary Figure 2) and confusion matrices included 404 

more mismatches (Supplementary Table 2) in participants who were generally more active. 405 

However, inter-monitor differences seemed consistent among participants, irrespective of 406 

activity levels (Supplementary Figure 3 and Supplementary Table 3). Future research may aim to 407 

consider the differential influence of sampling rate on the measurement of free-living physical 408 

activity of more active individuals. 409 

 These findings should be replicated, as this study is not without limitations, primarily the 410 

small sample size. However, a key strength of the present study was the use of two monitors, 411 

which allowed for the simultaneous evaluation of inter-monitor differences and the impact of 412 

sampling rate on accelerometer metrics. Moreover, matching wear-time between data files also 413 

enhances the quality of the present study. Previous studies in which participants wore two waist-414 

worn monitors during free-living have reported small, unaccounted for, differences in wear-time 415 

(0.8-5.5 min·day-1), which could confound results if not addressed (Aadland & Ylvisåker, 2015; 416 

Jarrett et al., 2015). Finally, only two pairs of monitors were used in the present study, which 417 

may artificially limit inter-monitor differences, warranting further research on inter-monitor 418 

comparability of the ActiGraph wGT3X-BT. 419 

Conclusions 420 

When designing future physical activity studies, researchers have many decisions to 421 

make, including selecting a monitor, the sampling rate, and the metric used to classify time spent 422 
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being physically active. We demonstrate that inter-monitor comparability had a larger impact on 423 

epoch-level metrics than sampling rate, but that sampling rate had a larger impact on collapsed 424 

data depending on the physical activity intensity performed, especially count data due to 425 

consistent bias of higher counts being recorded by the 100 Hz versus the 30 Hz monitor. While 426 

we support the comparability of the wGT3X-BT monitor for VM and MAD metrics and related 427 

outcomes, more research is needed on the comparability of ENMO during free-living as variation 428 

in ENMO due to sampling rate or inter-monitor comparability resulted in mean absolute 429 

differences in moderate-to-vigorous-intensity physical activity of 5.4-10.8 min·day-1.  430 

Practical Implications 431 

 ActiGraph wGT3X-BT accelerometers demonstrate high comparability for VM counts 432 

and MAD, but only moderate comparability for ENMO 433 

 Sampling rate had a smaller impact than inter-monitor comparability on epoch-level 434 

monitor output, but counts were impacted to the greatest extent 435 
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Supplementary Table 1. Accelerometer calibration values for the four monitors used in the 605 

present study. Values were extracted using the ‘g.calibrate’ function in the GGIR package. 606 
 607 

 Monitor A  Monitor B  Monitor C Monitor D 

Prior calibration error 0.019 ± 0.008 0.013 ± 0.008 0.017 ± 0.005 0.017 ± 0.005 

Post calibration error 0.004 ± 0.002 0.004 ± 0.002 0.004 ± 0.002 0.004 ± 0.002 

Offset x-axis -0.002 ± 0.007 0.002 ± 0.002 0.002 ± 0.007 0.003 ± 0.002 

Offset y-axis -0.003 ± 0.005 0.003 ± 0.009 -0.005 ± 0.008 0.004 ± 0.007 

Offset z-axis 0.002 ± 0.020 0.007 ± 0.011 0.006 ± 0.016 0.012 ± 0.014 

Scale x-axis 0.999 ± 0.016 1.003 ± 0.016 0.985 ± 0.012 0.975 ± 0.016 

Scale y-axis 0.993 ± 0.014 1.006 ± 0.016 0.993 ± 0.011 0.993 ± 0.022 

Scale z-axis 0.994 ± 0.013 0.997 ± 0.011 0.997 ± 0.019 1.004 ± 0.020 

 608 

 609 
  610 
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Supplementary Figure 1. Example of Mean Amplitude Deviation in 5-s epochs for (a) a sub-611 

sample of 100 Hz, (b) downsampled 30 Hz, and (c) collected 30 Hz data from one participant 612 

(a) 613 

 614 
(b) 615 

 616 
 617 

(c) 618 
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 620 
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  622 



35 

Supplementary Figure 2. Scatter plot between downsampled and 100 Hz data for two 623 

participants (panels a and b, participant A and B, respectively). Average Mean Amplitude 624 
Deviation (MAD) was ~27-28 mg for participant A and ~36-38 mg for participant B.  625 

(a) 626 

 627 
(b) 628 

 629 
Supplementary Table 2. Confusion matrices showing agreement in activity intensity 630 
classifications using Vähä-Ypyä et al. (2015) mean amplitude deviation (MAD; mg) cut-points 631 
between collected 100 Hz and downsampled 30 Hz data (intra-monitor comparison) for the same 632 



36 

two participants (panels a and b, participant A and B, respectively) shown in Supplementary 633 

Figure 3. The collected 100 Hz data served as the referent group and numbers represent percent 634 
of epochs within each activity intensity classified as that intensity according to the downsampled 635 

30 Hz data. Average MAD was ~27-28 mg for participant A and ~36-38 mg for participant B. 636 

(a) 637 
 Downsampled Vähä-Ypyä Classification 

100 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 100.0 0.0 0.0 

Moderate 0.9 99.1 0.0 

Vigorous 0.0 11.1 88.9 

 638 

(b) 639 
 Downsampled Vähä-Ypyä Classification 

100 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 96.2 3.8 0.0 

Moderate 28.6 70.8 0.6 

Vigorous 0.0 29.0 71.0 

 640 
 641 

 642 
  643 
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Supplementary Figure 3. Scatter plot between downsampled and 30 Hz data for two 644 

participants (a and b). Average Mean Amplitude Deviation (MAD) was ~27-28 mg for 645 
participant A and ~36-38 mg for participant B. 646 

(a) 647 

 648 
(b) 649 

 650 
Supplementary Table 3. Confusion matrices showing agreement in activity intensity 651 
classifications using Vähä-Ypyä et al. (2015) mean amplitude deviation (MAD; mg) cut-points 652 
between collected 30 Hz and downsampled 30 Hz data (inter-monitor comparison) for the same 653 



38 

two participants (a and b) shown in Supplementary Figure 3. The collected 30 Hz data served as 654 

the referent group and numbers represent percent of epochs within each activity intensity 655 
classified as that intensity according to the downsampled 30 Hz data. Average MAD was ~27-28 656 

mg for participant A and ~36-38 mg for participant B. 657 

(a) 658 

 Downsampled Vähä-Ypyä Classification 

30 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 98.6 1.4 0.0 

Moderate 18.2 81.6 0.2 

Vigorous 0.0 59.0 41.0 

 659 

(b) 660 

 Downsampled Vähä-Ypyä Classification 

30 Hz Vähä-Ypyä Classification Sedentary/Light Moderate Vigorous 

Sedentary/Light 95.8 4.2 0.0 

Moderate 33.8 65.7 0.5 

Vigorous 3.6 18.2 78.2 

 661 

 662 


