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Abstract
Magnetohydrodynamic (MHD) instabilities allow energy to be released from stressed mag-
netic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more
recently, also in curved arcades containing flux tubes with both footpoints in the same pho-
tospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have
been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread
can destabilise many. We examine the properties of multi-threaded coronal loops, wherein
each thread is created by photospheric driving in a realistic, curved coronal arcade struc-
ture (with both footpoints of each thread in the same plane). We use three-dimensional
MHD simulations to study the evolution of single- and multi-threaded coronal loops, which
become unstable and reconnect, while varying the driving velocity of individual threads.
Experiments containing a single thread destabilise in a manner indicative of an ideal MHD
instability and consistent with previous examples in the literature. The introduction of addi-
tional threads modifies this picture, with aspects of the model geometry and relative driving
speeds of individual threads affecting the ability of any thread to destabilise others. In both
single- and multi-threaded cases, continuous driving of the remnants of disrupted threads
produces secondary, aperiodic bursts of energetic release.

Keywords Magnetic fields, corona · Magnetohydrodynamics · Magnetic flux tubes ·
Magnetohydrodynamic avalanche · Magnetic reconnection, theory

1. Introduction

Despite incredible advances, in both observations and modelling, our understanding of the
exact means through which magnetic energy is released in the solar corona remains limited.
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Solutions to the coronal heating problem likely rely upon a combination of processes (Par-
nell and De Moortel, 2012). One of the strongest candidates for dissipating magnetic energy
in the solar corona is reconnection (Priest and Forbes, 2000), which releases energy stored
in coronal magnetic structures. This idea lies at the heart of the “nanoflare” scenario (Parker,
1988), in which the corona is heated by many small, yet frequent, impulsive releases of mag-
netic energy in localised reconnection events. Such nanoflares are extremely challenging to
probe, or, indeed, even to observe on such small scales, leaving the community reliant on
models underpinned by limited observational evidence.

Magnetic fields that permeate the active solar corona often emerge as, or subsequently
form, distinct, cylindrical magnetic structures: flux tubes. Twisted flux tubes are commonly
associated with bursts of energy released during flares, which attest to their destabilisation
and to energy transfer to local heating, waves, and particle acceleration. Such effects produce
distinct, observable signatures across the electromagnetic spectrum.

Insight into aspects of the behaviour of flux tubes has been gained through a medley
of observational evidence, analytical deduction, and numerical modelling. A common ap-
proach in modelling flux tubes is to construct straight magnetic cylinders linking two paral-
lel photospheric planes (representing the solar surface, following Parker, 1972). Ideal MHD
kink-mode instabilities, which presuppose a large degree of twist, result in a “kinking” of
the axis and destabilisation. Advances in understanding coronal heating using this hypoth-
esis include those of Browning and Van der Linden (2003), Browning et al. (2008), Hood,
Browning, and van der Linden (2009), Bareford, Browning, and van der Linden (2010),
Bareford, Hood, and Browning (2013). Such models have enabled forward modelling and
comparison with observation (Haynes and Arber, 2007; Botha, Arber, and Srivastava, 2012;
Pinto, Vilmer, and Brun, 2015; Snow et al., 2017), as well as assessing the role played by
certain physical effects, or combinations thereof, known to be present in the solar corona
(such as by Botha, Arber, and Hood, 2011; Reale et al., 2016). Straight cylindrical models
neglect curvature of flux tubes, which must arc between two photospheric footpoints and
whose cross-sectional area may expand from footpoint to apex. Whether, how, and when
instabilities may occur can vary: straight cylinders and the semi-tori representing curved
coronal loops are merely topologically, and not geometrically, equivalent.

Of particular interest here is the work of Bareford et al. (2016) examining the influence
of geometry upon certain properties of a single, highly twisted flux tube. Comparisons of
straight cylindrical flux tubes and curved models suggest that curvature tends to reduce the
twist necessary for a kink instability, causing current density to concentrate near the apex
(in contrast with a more uniform distribution in straight cylindrical tubes).

While models of single flux tubes have continued to evolve, so too have observational
techniques. One recent focus has been to probe the substructure within the tubular architec-
ture readily apparent in the active corona. Torsional flows along remarkably twisted atmo-
spheric formations have been reported (Cirtain et al., 2013; De Pontieu et al., 2014). In turn,
this has affected modelling, with a recent focus upon loops containing multiple, interacting
threads. Such models have, to date, treated flux tubes between two separate, parallel planes
(per Parker, 1972). Examples include threads initialised close to a stability threshold and ca-
pable of destabilising other threads (Tam et al., 2015; Hussain, Browning, and Hood, 2017),
which can thereafter release a great deal of energy through the acceleration of particles (as
demonstrated by Threlfall, Hood, and Browning, 2018), and which, more importantly, can
trigger a runaway “avalanche” process of successive destabilizations in, and the associated
releases of energy from, many threads (Hood et al., 2016). On the other hand, photospheric
driving, in addition to causing existing flux tubes to interact and reconnect by relative foot-
point motion (O’Hara and De Moortel, 2016), can also create threads that subsequently
interact and mutually destabilise (Reid et al., 2018, 2020).
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The present work aims to explore how curvature affects the process and properties of
energetic release, caused by driven photospheric motions in a multi-threaded model, and,
in particular, whether (and, if so, how) an MHD avalanche process can take place in such
a three-dimensional (3D) MHD model of an arcade, wherein all the threads start and end
in the same plane. Similarly, how far the results of previous models of MHD instabilities
and avalanche processes (with straight cylindrical flux tubes) hold for this toroidal geometry
remains to be evaluated. Key to the avalanche process is that the magnetic field is able to
store excess energy and then quickly release it once a threshold is reached. The rapid release
of magnetic energy occurs when an ideal MHD instability is triggered, and the subsequent
restructuring of the field creates more current sheets and an avalanche of releases of energy.

Issues to be addressed include how the field itself can affect the onset, evolution, and
energetic output of instabilities among many threads. In order to address these and other
questions, Section 2 describes our model, Section 3 reports the instability of a single thread
in a magnetic arcade, and Section 4 and Section 5 extend the model, displaying results from
the simulation of seven threads subject to different initial driving profiles. Section 6 presents
an analysis of these results, before Section 7 outlines our conclusions.

2. Model

The MHD equations are solved in a Lagrangian remap scheme, described by Arber et al.
(2001). In non-dimensionalised form, Lare3d solves:

∂ρ

∂t
+ ∇ · (ρ v) = 0 (1a)

ρ
∂v

∂t
+ ρv · ∇v = −∇p + j × B + F visc. (1b)

∂B

∂t
= ∇ × (v × B) + η∇2B (1c)

∂P

∂t
+ v · ∇P = −γP ∇ · v + ηj 2 + qvisc. (1d)

for plasma density ρ, velocity v, thermal pressure P , magnetic field B , and associated cur-
rent density j = ∇ × B . (Vacuum permeability is μ0 = 4π × 10−7 H m−1, which, in di-
mensionless terms, becomes unity, and σ is the usual electrical conductivity.) Here, the ratio
of specific-heat capacities is γ = 5

3 , and the code ensures divergence-free solutions for the
magnetic field [∇ · B = 0].

The dimensionless variables, as evolved in time in Lare3d, are calculated assuming a
magnetic field strength B0, length L0, and mass density ρ0. Normalising quantities are here
chosen as B0 = 10−3 T = 10 G, L0 = 107 m = 10 Mm, and ρ0 = 1.67 × 10−12 kg m−3,
leading to the typical and normalising values in Table 1. Henceforth, lengths are quoted
normalised with reference to L0, and times with reference to Alfvén times: τA.

Our computational domain is x ∈ [−xmax., xmax.] , y ∈ [−ymax., ymax.] , z ∈ [0, zmax.].
Boundary conditions prescribed in x are periodic (representing neighbouring arcades, which
are common in active regions). Those in y and z are static, perfectly conducting, and with
zero normal derivatives. Identical conditions exist on the lower z-boundary (our photo-
sphere) for all variables except velocity, in which the driver is imposed according to Sec-
tion 2.3. Our results and conclusions do not depend on the actual choice of boundary condi-
tions (other than the form of the driver).
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Table 1 Normalising quantities.
A specific physical quantity listed
in the first column is denoted by
the symbol shown in the second
and normalised with reference to
the value in the third column.

Quantity Symbol Normalising value

magnetic field strength B0 1 × 10−3 T

mass density ρ0 1.67 × 10−12 kg m−3

length scale L0 10 × 106 m

energy density W0 = B2
0

μ0
7.96 × 10−1 J m−3

Alfvén speed vA =
√

B2
0

μ0ρ0
6.90 × 105 m s−1

Alfvén travel time τA = L0
vA

14.5 s

current density j0 = B0
μ0L0

7.96 × 10−5 A

magnetic diffusivity η0 = L2
0

τA
6.90 × 1012 m2 s−1

2.1. Dissipation

Shock viscosities are used to capture discontinuities and other steep gradients, which other-
wise would not be resolved on the numerical grid. Such viscosities contribute to the viscous
dissipation in the system; further details have been given by Reid (2020). Viscosity enters
as a force term [F visc.] in Equation 1b and a heating term [qvisc.] in Equation 1d.

We apply an anomalous magnetic diffusivity [ηa]; this is active where some measure
of current exceeds a critical threshold. Such an approach reflects the enhanced resistivity
(above classical values) believed to occur in extreme conditions in the corona, such as in
very strong current layers.

Slow photospheric motions create each thread. Over time, these motions also generate
internal currents within each thread. Accordingly, the magnetic energy of the loop system
will increase above the initial potential value, and it is this “free” energy that can be tapped
when an instability is eventually triggered. (Theoretically, all energy above that in the poten-
tial field is available to be dissipated, but only the energy above that in the linear, force-free,
constant-α field of equal helicity is readily accessible.) At the onset of instability, a thin,
laminar current sheet rapidly forms along part of the thread; such current is generally faster
growing, and ultimately far stronger, than the internal current of the thread. Typically, in
previous investigations (as in that of Tam et al., 2015), a threshold is chosen based upon
the magnitude of the current [|j |]. This threshold would activate anomalous resistivity, hav-
ing been breached by the current sheet of the instability, but not by internal currents. Two
aspects of the present model warrant a different approach.

Firstly, the curved initial magnetic field, outlined in Section 2.2, whose strength dimin-
ishes with height, naturally gives rise to significant currents near the footpoints of any thread.
Twisting creates a toroidal current; in this geometry that component is predominantly jz near
the boundaries. Secondly, an additional problem for cases with more than one thread is vari-
ation of field strength with height, causing threads closer to the lower boundary to exhibit
stronger magnetic field. Such threads possess, in general, stronger internal currents, com-
pared with outer (higher) threads. Therefore, the criterion for enhanced resistivity must be
triggered by specific current sheets and account for both internal thread currents and varia-
tion of |B| with height in the model. To address these issues, we define a variable

ζ =
√

j 2
x + j 2

y

|B| (2)



MHD Avalanches in Multi-threaded, Toroidal Flux Tubes Page 5 of 20   120 

and a threshold ζcrit.. In this way, magnetic diffusivity η is ηa = 10−4 where ζ ≥ ζcrit., oth-
erwise η = 0. This allows strong current sheets related to an instability to be targeted with
anomalous resistivity (while ignoring strong currents associated with twisting in low-lying
regions of greater field strength). Although resistivity depends upon ζ (rather than the more
usual |j |), the effects of resistivity upon the evolution of the magnetic field, in Equation 1c,
and in the energy equation, Equation 1d, remain unchanged. Ohmic heating, in particular,
remains the familiar ηj 2 term in the energy equation.

2.2. Background Magnetic Field

An arcade-like background magnetic field could be constructed in several ways. In the light
of our intention to drive the field at the base, two features in particular are desirable: firstly,
a vertical photospheric field that reverses sign at the centre of the domain and, secondly, suf-
ficiently large regions of (near-)uniform field strength on either side of a polarity inversion
line (PIL). To that end, we modify a hyperbolic trigonometric field structure (as used by
Howson, De Moortel, and Fyfe, 2020), adding further Fourier modes to create wide regions
of near-uniform photospheric Bz at the edges of the arcade, while smoothly reversing sign
at the domain centre. The general form of the field is:

By (y, z) =
N∑

j=1

aj

cosh (jk (z − zmax.))

sinh (−jkzmax.)
cos (jky) (3a)

Bz (y, z) =
N∑

j=1

aj

sinh (jk (z − zmax.))

sinh (−jkzmax.)
sin (jky) (3b)

in which k = π
2ymax.

. Coefficients aj are constructed for the several Fourier modes as:

aj =

⎧⎪⎪⎨
⎪⎪⎩

3π+8
18π

j = 3
1

9π
j = 6

18

(
64c6+32c5−96c4−40c3+36c2−2

)(
j2−9

)
+9c

(
j2−6

)
jπ

(
j2−36

)(
j2−9

) j �= 3,6

with c = cos
(

jπ

6

)
. Preliminary tests suggested that fixing N = 20 yields a sufficiently

wide region of approximately uniform magnetic field strength, which could contain several
threads. Figure 1 illustrates the magnetic field profile seen in Equations 3a – 3b, comparing
cases where N = 1 and N = 20. The size of the regions of near-uniform magnetic field
strength also increases with the number of Fourier modes.

In tests, simulations with N = 1 resulted in excessively strong currents at the footpoints
of each thread in the domain, which grew rapidly over time in response to an imposed rota-
tion. Variation of magnetic field strength over the radius was responsible; these difficulties
are avoided if N ≥ 20.

2.3. Photospheric Driver

Within the magnetic arcade, a vortical driving motion is applied at the footpoints of the
thread(s) to be created, twisting the magnetic field. In order to aid comparison with previous
cases of photospherically driven flux tubes, the form of the driver matches that imposed by
Reid et al. (2018):

vφ (r, t) = v0f (r)D (t) (4a)
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Figure 1 Components of the
modelled magnetic field. Vertical
(Bz , seen in blue) and horizontal
(By , in red) field components, at
z = 0, t = 0, for a model
incorporating one Fourier mode
or twenty modes in
Equations 3a – 3b (shown with
dashed or solid lines,
respectively); x is the invariant
direction in the model.

f (r) =
{

r
a

(
1 − r2

a2

)3
r ≤ a

0 r > a
(4b)

D (t) =

⎧⎪⎨
⎪⎩

0 t ≤ ts
1
2

(
1 − cos

(
(π(t−ts)

te−ts

))
ts < t < te

1 t ≥ te

(4c)

Driving is imposed over a radius a, the minor toroidal radius of the flux tube. Velocity, with
amplitude governed by v0, is gradually introduced through a function D (t). In the straight
cylindrical case, the spatial form of the driver produced zero net axial current. However, the
fact that the axial field here is not completely uniform at the photospheric boundary means
that the net current is small but non-zero. While Reid et al. (2018) use a driver beginning
at t = 0, we postpone the start of rotation in order that the magnetic arcade relaxes towards
potential. The ramp-up phase begins at time ts and ends at te, after which vφ (r, t) remains
constant. Initial tests have determined that a delay of 50 τA allows the model to reach suf-
ficiently close to minimal energy (hence ts = 50 τA), and that a duration extent of 10 τA is
sufficient to avoid unnecessary shocks (and hence te = 60 τA).

In Section 2.2, we noted that our model aimed to fit many threads in the near-uniform
field region; the size of this region places constraints on the radius a. The radius must be
large enough to resolve the formation of associated current sheets, while being small enough
to fit many threads in the near-uniform field region. Similarly, our choice of velocity ampli-
tude v0 is also constrained by the need to be faster than slow numerical diffusion at the base,
yet slower than the coronal Alfvén speed. This issue of timescale separation is addressed by
Bowness, Hood, and Parnell (2013).

Previous investigations have shown that the relative amplitude of the photospheric driver
in different threads plays a key role in determining the sequence in which straight cylindrical
multi-threaded flux tubes destabilise (Reid et al., 2018). We aim to extend this to consider a
set of a toroidal loops, and to study the impact of threads of different length, curvature, and
driving speed.

2.4. Instability

The onset of an MHD avalanche, in a flux tube containing many threads, requires a trigger.
An exponential rise in the kinetic energy accompanies the first disruption (seen later in, for
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example, Figure 3). This rise is due to an ideal MHD instability, which begins the avalanche
process. It is possible that the ideal kink instability, widely used in straight cylindrical cases
(e.g. Tam et al., 2015; Hussain, Browning, and Hood, 2017), is responsible. A sufficiently
twisted thread will “kink” (i.e. displace radially outward), with this mode characterised by
the rapid development of a helical current sheet surrounding the unstable thread. The twist
[�] along field lines necessary for this instability is a critical parameter. However, criti-
cal thresholds (and, indeed, how one quantifies twist, discussed, for example, by Threlfall,
Hood, and Priest, 2018; Threlfall, Wright, and Hood, 2020) are subject to considerable un-
certainty, and may deviate significantly from theoretical values, which are usually specific
to particular field configurations; for example, � � 3.3π for uniformly twisted tubes (Hood
and Priest, 1979). For a loop with radially varying speed, Gerrard, Hood, and Brown (2004)
determine an average twist after a given time [t ]. When applied to our driving velocity, the
same approach gives the average twist at time t here:

〈�〉 = v0

2a

[
t − 1

2
(ts + te)

]
(5)

(for t > te; for our profile, twist peaks on the axis at four times this value).
Our introduction of toroidal geometry into our multi-threaded arcade makes the torus in-

stability (Bateman, 1978) a plausible trigger mechanism for the avalanche, although our flux
tubes do not establish significant non-zero net current in each thread. The torus instability
is analogous to the kink instability, but it occurs in a different set of conditions, including a
large and negative rate of change of magnetic field along the major toroidal axis [R]. Such a
rate of change is commonly quantified by the decay index n = −d log |Bex.|/d logR, where
Bex. denotes the external magnetic field. A field is unstable to the torus instability where
n > ncrit.. The critical threshold ncrit. varies depending on the configuration. For a purely
poloidal external field, Bateman (1978) derives ncrit. = 1.5, but several effects, such as ex-
pansion, can lower such values, or raise them as high as ncrit. = 2 (Titov and Démoulin, 1999;
Kliem and Török, 2006; Aulanier et al., 2010; Zuccarello, Aulanier, and Gilchrist, 2015).
However, the original derivation of the torus instability featured a non-zero net toroidal
current, surrounded by a purely poloidal magnetic field. This is not the case here and the
condition for instability will be modified. Thus, the value and importance of n is subject to
considerable uncertainty, and so we consider a plausible range of critical n (after Syntelis,
Archontis, and Tsinganos, 2017, who also consider a flux tube with zero total axial current
in the initial state).

We will provide diagnostic information (i.e. the twist and decay index at each thread
destabilisation) for additional context. While it is interesting to determine if the critical
conditions at the onset of the ideal MHD instability correspond to either a kink or torus
mode, the important point, for the avalanche, is that there is an ideal MHD instability. This
instability must grow on an Alfvén timescale.

3. Single-Threaded Case

Before considering the behaviour of a loop containing many threads in the arcade field, de-
scribed in Section 2.2, we put this in context by first considering the behaviour of a single,
continuously driven thread. Within a domain with xmax. = ymax. = 1.0, zmax. = 2.0, the pre-
scribed form of velocity, Equations 4a – 4c, is implemented on both sides of the PIL (found
at y = 0). The velocity profile is centred on (x, y) = (0,±0.65), with a radius a = 0.2 and
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Figure 2 Single thread: field and driver. (a) Field structure at t = 0, showing field lines traced throughout the
domain (red) and specifically chosen field lines traced from the driven region (blue), above a magnetogram
showing vertical field strength at the base (Bz (z = 0)). (b) Contours of the local vertical field strength at the
base of the simulation, with planar velocity vectors (vx , vy ) overlaid, illustrating photospheric driving at the
base at full speed (t = te).

Figure 3 Single-threaded case,
energies: Magnetic (solid, black),
internal (dash–dotted, green), and
kinetic (dotted, blue) energy
components with their initial
values subtracted, shown together
with Ohmic (thick, red) and
viscous (dashed, red)
instantaneous heating in the
system. The two dashed, vertical
lines indicate times at which
strong current sheets form,
illustrated in contours of current
in Figure 5, and hence there are
large releases of energy.

with v0 = 0.008. The general 3D structure of the system can be seen in Figure 2. Blue
field lines in Figure 2a highlight the part of the domain that will be continuously driven,
subject to the driving profile seen in Figure 2b. The driven magnetic field region becomes
increasingly twisted as time progresses, until such time as an ideal instability forms a cur-
rent sheet in the flux tube. The volume-integrated magnetic, kinetic, and internal energies
and the instantaneous components of heating are seen in Figure 3. As the bottom boundary
is constantly driven, Poynting flux is continuously being injected into the system. After the
avalanche process has started, the accumulated heating (consisting of Ohmic and viscous
heating) eventually settles down to around 35% of the time-integrated injected Poynting
flux.
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Figure 4 Single-threaded case, 3D configuration: (a) illustrates the 3D configuration of the magnetic field
during the initial energy release event (at t = 330 τA), while (b) illustrates a secondary (less energetic) erup-
tion (t = 430 τA). Ambient field is shown in red, while field lines traced from the photospheric driving region
at the base are shown in blue, with green isosurfaces of current where ζ ≥ 0.75 ζcrit. (lowered below ζcrit. for
illustrative purposes).

Figure 5 Contours of toroidal current [jy ] above the polarity inversion line [y = 0], in a single-threaded
loop.

Components of energy and heating neatly describe distinct phases of system behaviour.
Prior to photospheric driving (at t = 50 τA), there is a slight decrease in magnetic energy and
a sharper reduction in kinetic energy as the system relaxes towards minimum energy. At the
onset of driving, all energies increase sharply; while kinetic energy appears to reach a quasi-
steady state faster, magnetic and internal energies continue to increase still further, and then
gradually begin levelling off. Viscous heating also follows the start of driving, but it remains
very small. The magnetic field is gradually twisted, while internal currents associated with
the thread form (as seen in Figure 5a).

The second phase of the experiment begins when a current sheet forms along the twisted
thread at approximately t = 330 τA. Current in the sheet eventually satisfies the condition
ζ > ζcrit., triggering anomalous resistive effects. An example of the 3D structure of such a
current sheet can be seen in Figure 4a; locations which satisfy ζ > ζcrit. are difficult to see in
contour images (Figure 5). Resistivity, where activated, causes Ohmic heating.
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Following this event, the final phase of behaviour begins, as the tube remnants undergo
restructuring and gradual expansion, while the magnetic field continues to be driven at the
base. This phase is characterised by additional, aperiodic formation of small, secondary
current sheets, scattered throughout the tube remnants. Fast Fourier Transforms (FFT) of the
energy and heating components (not shown) detect no distinct frequency or period, hence
our description of the formation of these current sheets as “aperiodic”. Examples of such
current sheets are present at t = 430 τA, and are visible in Figure 4b as thin 3D isosurfaces,
or as highly concentrated regions of current in Figure 5c throughout the loop. The heating
from such current sheets is weaker than, but comparable to, that from the first. We end the
numerical experiment at t = 500 τA, however, there is nothing to suggest that this final phase
(of aperiodic formation and dissipation of current sheets) would not continue indefinitely.

Regarding the onset of the initial instability, the thread has an average twist of 1.75π

(and maximum 7π ) at t = 330 τA. Similarly, we recover a decay index n ≈ 1.57 on the axis
at the apex; some variation occurs with radius, but n is around, or just below, 1.5 across
most of the cross-section.

During the first major instability, the flux tube is more twisted than in later disruptions
(Figure 4b). Much of the initial twist dissipates in the first reconnection event: the field is
more relaxed, and heating arises from the continual conversion of injected magnetic energy
to thermal/internal energy. The Poynting flux injected through the driven boundary dissi-
pates at a largely constant rate. No steady state in energy is achieved: energy releases are
aperiodic and vary in size and location within the loop remnants. Later energy releases are
far smaller than, but similar to, the first. These aspects are readily apparent in the energies
displayed in Figure 3.

4. Seven Threads: Identical Drivers

Our investigation of a single thread puts into context the behaviour observed when additional
threads are included in our arcade model. We now consider seven threads, all created by
photospheric driving as before. The footpoints are hexagonally packed, with a row of three
threads between two rows of two threads; the general arrangement can be seen accompany-
ing our later discussion (in Figure 11a). The central thread is centred on (x, y) = (0,±1.3).
To accommodate these additional threads, the length of the simulation domain is doubled in
y (i.e. ymax. = 2, y ∈ [−2,2]). All thread footpoints are rotated with v0 = 0.02 over a radius
a = 0.1 (i.e. half that used in the single-threaded case).

The 3D magnetic configuration and its evolution are illustrated in Figure 6; all seven
threads are initially untwisted (Figure 6a), but they also travel higher into the domain than
in the single-threaded case. All threads are twisted at the same rate, but a large reconnection
event (at the time shown in Figure 6b) causes the lowest row of threads to destabilise. The
times of disruption of each thread, and values of twist and decay index at those times, are
recorded in Table 2, for comparison with later experiments. The destabilisation and frag-
mentation of the bottom row are followed very soon afterwards by the same in the middle
row, with a short pause before the uppermost row of threads is disrupted (Figure 6c). An-
other window on the evolution is provided by the energy and heating components of the
system shown in Figure 7, coupled with contours of the current structures present at the
apex of each of the threads (Figure 8).

As with the single-threaded case described in Section 3, the system initially tends towards
a potential state before the rotation commences. All three components of energy rapidly
increase following the onset of the driver, quickly forming seven threads. The twist in field
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Figure 6 Seven threads, identical drivers: 3D magnetic configuration at different times during the experiment,
where specific field lines have been coloured corresponding to their initial position in one of seven regions of
photospheric driving, and green isosurfaces (if present) identify regions where ζ > 0.75 ζcrit. (lowered from
ζcrit. for illustrative purposes). For key to colours and destabilisation times, see Table 2.

lines reaches the apex of the arcade before t = 140 τA: seven distinct current structures are
visible in Figure 8a. The lower pair of threads become destabilised at/before t = 150 τA

(seen in Figure 8b); this destabilisation occurs much earlier than in the single-threaded case.
Very shortly after this, threads in the middle row are all disrupted together (Figure 8c),
followed a short time later by the uppermost row of threads (t = 167.5 τA; Figure 8d). The
time taken for all three rows of threads to destabilise is less than 20 τA (compared with the
complete experiment duration of 500 τA). This concentrated and related series of disruptions
is responsible for the largest bursts of Ohmic heating seen in Figure 7 at t = 150 – 170 τA.
However, these initial bursts significantly raise the internal energy of the system, to the
extent that the change in internal energy becomes much larger than the change in magnetic
energy. One should note, however, that these trends are found upon subtracting the initial
energy values; the plasma-β is not materially affected. This contrasts with Section 3, where
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Figure 7 Energies of seven
threads, with identical driving
speeds: Magnetic (solid, black),
internal (dash–dotted, green), and
kinetic (dotted, blue) energy
components with their initial
values subtracted, shown together
with Ohmic (thick, red) and
viscous (dashed, red)
instantaneous heating of the
system. The six dashed, vertical
lines indicate times associated
with mergers of threads,
illustrated as contours of current
in Figure 8.

Figure 8 Seven threads, identical drivers: Contours of toroidal current [jy ] above the polarity inversion line
[y = 0], at various times throughout the simulation (the key to contour levels is seen in colour bar).

changes in magnetic and internal energy remained closely matched, but with a slightly larger
change in the magnetic component throughout the single-threaded case.

Remnants of all seven threads now sporadically create thin current sheets, scattered
throughout the volume and prone to reconnect; in particular, many of these later current
sheets are associated with the lower and middle rows of threads. At much later times (such
as t = 380 τA in Figure 8f), the residue of current from all threads has expanded signif-
icantly, but is still pervaded by small current sheets, which occasionally, and irregularly,
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Figure 9 Energies of seven
threads, with faster central
thread: Single-threaded case,
energies: Magnetic (solid, black),
internal (dash–dotted, green), and
kinetic (dotted, blue) energy
components with their initial
values subtracted, shown together
with Ohmic (thick, red) and
viscous (dashed, red)
instantaneous heating of the
system. The six dashed, vertical
lines indicate times of interest
examined using contours of
current in Figure 10.

trigger anomalous resistivity. Notably, the ongoing motions cause some threads apparently
(and partially) to reform, as can be seen towards the bottom left of Figure 8f.

Regarding the identification of a specific instability responsible for each disruption, Fig-
ure 8 appears to suggest thread mergers (and not specific instabilities in individual threads)
are responsible for many of the larger reconnection events and associated energy releases in
this model. We will further analyse the times, twist, and decay indices recorded in Table 2
in Section 6, following a second experiment.

As in the single-threaded case, photospheric driving introduces a continuous Poynting
flux from below and, in this case, marginally more of the injected energy (≈ 58%) is ulti-
mately converted to heat. Differences in number of threads, driving speeds, and footpoint
areas between the cases further complicate a comparison of Poynting-flux conversion be-
tween these cases.

5. Seven Threads: Faster Central Thread

Our final investigation considers the effect of driving speed in individual threads; by enhanc-
ing the driving speed of the central thread, we focus on the role (if any) of variations in speed
in the cascade process. In the same configuration as in Section 4, we repeat the simulation
with the central thread twisted three times faster (v0 = 0.03) than the others (v0 = 0.01).
Other parameters, including the relative positions of threads and resistivity conditions, re-
main unchanged. The 3D evolution of the system is similar to that seen in Section 4; we
will describe the evolution of this experiment using energetics and heating (in Figure 9) and
through contours of current through the apex of the multi-threaded loop (in Figure 10).

The early evolution of the system, before t ≈ 100 τA, largely matches that described
in Section 4 for threads driven at the same speed; a sufficiently potential state is realised
before photospheric drivers create each thread. Differences between multi-threaded exper-
iments emerge soon after; current associated with the central thread builds up much faster
than in surrounding threads (as shown, e.g., in Figure 10a). The central thread is the first to
destabilise (Figure 10b). This destabilisation is accompanied by a burst of Ohmic heating,
enhanced internal energy, and decreased magnetic energy (t ≈ 130 τA, Figure 9). Two more
energy releases soon follow, as the remaining two threads in the middle row merge with
the remnants of the central thread (Figure 10c). Once the middle row is entirely disrupted,



  120 Page 14 of 20 J. Threlfall et al.

Figure 10 Seven threads, central thread fastest: Contours of toroidal current [jy ,] above the polarity inversion
line [y = 0] at various times throughout the simulation (the key to contour levels is seen in colour bar).

there is a short pause (≈ 20 τA) in which little energy is dissipated or heating is seen. At
t ≈ 160 τA, the remnants of the central row of threads begin to disrupt the lower row (Fig-
ure 10d). Two corresponding bursts of Ohmic heating are seen in Figure 9 at approximately
t = 165 τA and 175 τA, respectively. The two uppermost threads remain largely unaffected
until ≈ 220 τA, when they also begin to merge with the central row of threads (Figure 10e),
leading to yet another burst of Ohmic heating. Between the disruption of this final pair of
threads and the end of the simulation, further sporadic bursts of Ohmic heating continue
to occur. As before, these are driven by the continual photospheric driving, forming thin,
fragmented current sheets throughout the expanding remnants of the threads. Unlike in Sec-
tion 4, these bursts appear more concentrated in time, with long intervals between larger
bursts of Ohmic heating. Although often insufficiently large (and hence unable to trigger
anomalous resistive effects), several strong, thin, fragmented current sheets are clearly visi-
ble in the final state of the experiment, seen in Figure 10f.

Compared with the previous multi-threaded case (Section 4), the variation in driving
speeds generates significant differences in the magnitude of Poynting flux injected. Despite
further differences in the avalanche process, a very similar overall proportion (≈ 54%) of
Poynting flux is ultimately converted into heat. Once more, we record the approximate times
of disruption of each thread, the associated mean twist, and the relevant values of the decay
index, in Table 2.

6. Analysis

Photospheric boundary motions, acting upon a curved magnetic arcade, have been shown
to be capable of creating and supporting both single- and multi-threaded flux tubes. The
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Table 2 Seven threads: times of disruption, average twist 〈�〉, and decay index n for each thread in two
experiments: one with all threads driven at same rate (Section 4) and one where the central thread is driven
three times faster than surrounding threads (Section 5). Each thread is identified by a number and the as-
signed colour in 3D images (Figure 6) or field-line end-point locations (Figure 11). Times of disruption are
discerned by eye from the contours of current in the x–z-plane at y = 0. (As a consequence of the limited
output cadence of simulation data, times of disruption are limited to specific discrete values. Other diag-
nostic information (for example the current in Figures 8 and 10) is only available at this lower cadence.
Disruption times could alternatively be identified using (higher cadence) energy data, shown in Figures 7
and 9, distinguished by an exponential rise in the kinetic energy, associated with each instability. However,
such rises are difficult to identify for subsequent disruptions in the overall energies of the system.) Twist is
determined from field lines twisting helically around the axis of each thread, at the times of disruption. De-
cay indices quoted are evaluated at the intersection of the axis of each thread with the plane y = 0 (following
the practice of Zuccarello, Aulanier, and Gilchrist, 2015).

results of Sections 4 and 5 clearly illustrate that disruption in one thread may trigger an
avalanche-like process, wherein all the threads in a multi-threaded tube are destabilised.
Our discussion will focus on a comparison of our multi-threaded cases and the nature of the
initial instability.

One issue that warrants clarification is the relative timing of instability. In the single-
threaded experiment, the initial instability occurs much later (t = 330 τA) than in either
multi-threaded case (t = 150 τA in Section 4, t = 127.5 τA in Section 5). This is the result of
different driving speeds: v0 is much smaller in the single-threaded case (v0 = 0.008) than in
the multi-threaded cases (in Section 4, v0 = 0.02; in Section 5, the central thread has v0 =
0.03, the outer threads v0 = 0.01). As mentioned in the introduction, and by Bowness, Hood,
and Parnell (2013), successful MHD simulations require compressed timescales; while the
slower speed here suffices for the first case, greater driving speeds were necessary to model
the more complex, multi-threaded behaviour. Faster speeds relative to the single-threaded
case, by factors of 2.5 and 3.75, respectively, bring forward the time of the initial instability
proportionately. Hence, it occurs approximately three or four times sooner (after the start
of driving) in each multi-threaded case than in the single-threaded case (respectively, after
100 τA or 75 τA, compared with 280 τA).

Comparing multi-threaded cases, both configurations ultimately undergo a very similar
process and achieve end states that contain common traits. One visual representation of
this is the distribution of end positions of field lines starting within specific threads seen
in Figure 11. The field lines associated with each thread become mixed with those from
neighbouring threads by the end of the experiment in Figure 11. The specific pattern in each
experiment differs; this is to be expected when the threads destabilise and interact in a dif-
ferent order. However, the remnants of all threads have expanded significantly, coalesced in
the lanes created between photospheric driving regions, and ultimately fill much more of
the volume of the simulation than when the driver was initiated. Similar mixing is observed
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Figure 11 End-points of specific field lines within seven-threaded loop experiments. Field lines are traced
from footpoints at positive polarity to those at negative, coloured according to their initial position in a specific
driving region or thread number (described in Table 2) and overlaid onto the vortical driving profile at the
base of the domain at the (a) beginning and (b) end of the uniform driven amplitude experiment, with (c)
showing the final state of the faster central thread experiment.

in straight cylindrical cases (e.g. Figure 7 of Reid et al., 2018); with the arcade geome-
try, there is comparable, but perhaps slightly less widespread, entangling of flux. However,
seven threads in three rows may be insufficient to draw out any such influence: experiments
containing more threads, or more rows of threads, may bring more evidence of geometrical
effects.

Our experiments recover a tendency of entire rows of threads (at the same height) to
destabilise simultaneously. Furthermore, the expansion of the field above the PIL also causes
a significant gap between the uppermost and middle rows. Separation attenuates the upward
spread of instability and destabilisation. The arcade geometry of our model and variations in
field strength with height lead to a preferential upward expansion near the apex of the loop.
These are clear effects imparted on the system evolution by our arcade geometry.

The preferential destabilisation of specific rows (with height above the PIL) may be in-
fluenced by other factors. Varying driving speed allows for more direct comparisons with
previous multi-threaded models (e.g. Hood et al., 2016), wherein a single thread typically
triggers further disruptions. For a central thread driven three times faster than surround-
ing threads, the resulting avalanche proceeds differently from the case where all threads
are driven at the same rate. In Section 5, we recover a very similar picture to other multi-
threaded models (e.g. those of Reid et al., 2020), reporting that individual threads destabilise
their neighbours in turn. Despite some interaction between the middle and top rows, the top
row destabilises largely as in the previous case. The driving speed of threads on the top row
is half that seen in Section 4, consistent with the merger of the top row occurring twice as
long after the twisting starts. Thus, it is possible to obtain at least a partial cascade of thread
eruptions, but the avalanche process can be attenuated (or, indeed, suppressed entirely) by
the field geometry.

The evidence for the nature of the initial instability (found in Table 2) is mixed. In the
single-threaded case, the average twist is 〈�〉 = 1.68π when the thread destabilises. This
value is lower than in comparable investigations; our value is smaller than in the equivalent
straight cylindrical case (Reid et al., 2018), and is nearly half as small as threshold values
in models containing curvature and expansion (� ≈ 3.26π in Gerrard, Hood, and Brown,
2004) or line-tied loops (� ≈ 3.3π , determined by Hood and Priest, 1979). Small values of
twist at instability are less common, but not unheard of (e.g. Rappazzo et al., 2019, find-
ing a mean twist ≈ π

2 ). Bareford et al. (2016) assert that expansion and curvature of flux
tubes significantly accelerate the onset of instability. Our model contains more curvature
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and expansion than previous models, in order that thread footpoints are anchored in near-
vertical field regions of the photosphere. We also note that average twist is an ensemble
measure. Considering the peak twist, some field lines have twist around 7π at the onset
of instability: this value far exceeds equivalent threshold values in the literature. Turning
to our multi-threaded configurations, in Section 4 the lowest row of threads destabilise at
〈�〉 = 2.67 – 2.74π , while the central thread in Section 5 achieves 〈�〉 = 4.12π at the point
of instability. These values are comparable with threshold values of Hood and Priest (1979)
and Gerrard, Hood, and Brown (2004), but more than more than a factor of two smaller
than those of Reid et al. (2018). The twist of subsequent threads at destabilisation depends
on the experiment. If all threads are driven at the same speed, threads that become unstable
later are twisted more than the first. If the central thread is driven faster, it becomes unsta-
ble first and then affects others; hence subsequent thread disruptions exhibit less twist. The
recorded values of twist imply that the kink instability is unlikely to be responsible for any
later disruptions.

Turning to the torus instability, the value of n at the apex in the single-threaded case
(n = 1.572) and the range over the cross-section are consistent with values commonly asso-
ciated with the torus instability. In the multi-threaded cases, values of n are generally lower:
the bottom-most threads in Section 4 show values n = 1.04 – 1.06, lower than such typical
values. The faster central thread in Section 5 achieves n = 1.272 at disruption, again less
indicative of instability. Values of n increase with height, making the uppermost threads
more likely than the lower to be susceptible to the torus instability. As a consequence of the
superposition of Fourier modes in order to achieve near-vertical field at the footpoints, the
loop here has a flatter, off-circular shape, evident in the red field lines of Figure 2a. This is
less favourable to such an instability, and the rise of the threads before instability is neither
far nor sustained. As such, and given the small net current, it is unlikely that the instability
here is a conventional torus instability (Démoulin and Aulanier, 2010; Rees-Crockford et al.,
2020).

Here, as elsewhere, it is seen that separating conjectured instabilities can be challenging.
For the spread of the avalanche, the most important facet is how an ideal instability in a
single thread triggers the destabilisation of additional, stable threads.

One final issue with models of curved flux tubes relies upon our chosen velocity scales.
In Section 3, our model assumes mean velocities ≈ 8.12×10−4 vA. Given our normalisation
(Table 1), this corresponds physically to 561 m s−1. Typical velocity scales in simulations
of photospheric velocity patterns often approach several tens or hundreds of metres per
second (Gizon and Birch, 2005; Rieutord and Rincon, 2010). We approach realistic driving
timescales in this model, in addition to our realistic magnetic structure. Our MHD approach
affords some flexibility in normalisation, allowing us to consider speeds even closer to those
observed.

7. Conclusions and Future Work

Our investigation means that we are now able to answer the question posed in the title of this
work: multi-threaded curved flux tubes are indeed capable of supporting a magnetohydro-
dynamic avalanche. Our magnetic-arcade field has been shown to be capable of supporting
flux tubes, formed through rotational photospheric driving. As with straight cylindrical ex-
amples (e.g. Reid et al., 2018), continuous driving of individual threads leads to instability
and the destabilisation of other stable threads, whereupon anomalous resistive effects release
and redistribute the field lines of the entire tube. The initial instabilities show characteristics
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common to both kink and torus instabilities. Continual driving of (post-disruption) flux tube
remnants leads to the formation of secondary current sheets, which cause aperiodic bursts
of Ohmic heating, releasing more energy from the field. Thus an arcade field may continue
to yield bursty reconnection events when continuously driven from below.

Our findings diverge from similar models based on straight cylindrical geometry; our
cases containing more than one thread demonstrate that the geometry of the magnetic field
itself (here, a curved arcade structure) and the imposed driving speed of individual threads
both play a significant role in the formation and evolution of an MHD avalanche. In the case
where the speed is the same across all footpoints, threads preferentially destabilise through
mergers with other threads of the same height and field strength, separate from the others;
twisting all threads at the same rate in a single flux tube leads to a gradual destabilisation
of threads, from strong to weak field strength. However, driving a single thread unstable
more quickly in a region of strong magnetic field can lead to a cascade of destabilisation
of other threads, which more closely resembles previous examples between parallel planes;
individual threads can destabilise neighbours, regardless of field strength. The geometric
configuration (and resulting variation in field strength) may also attenuate the cascade in
some parts of the loop.

Several opportunities for further investigation readily present themselves. Our curved
model geometry provides an important first step towards a more realistic model of a mag-
netic arcade, and yet relies on a finite number of Fourier modes. Each additional mode
affects curvature and will hence potentially affect the mode of instability recovered: this
merits further consideration. Similarly, our geometry requires a novel critical parameter [ζ ]
in order to trigger anomalous resistive effects upon specific current sheets: would the use of
such a critical threshold alter/affect the findings seen in straight cylindrical cases (e.g. Reid
et al., 2020)?

Looking ahead still further, this model still omits several relevant (yet potentially com-
plex) physical factors that warrant consideration: these include the effect of gravity; a strat-
ified atmosphere (in particular, stratifying density and temperature); and thermodynamic
effects, such as thermal conduction and radiation. Our model has generated many com-
plex, highly time-dependent current sheets, distributed throughout the volume of the flux
tube; further analysis of the distribution, lifetimes, and strengths of currents is warranted,
together with examination of the impact of model parameters (including field strength and
resistivity). From these current sheets, heating is continuously being produced, the magni-
tude, composition, and distribution of which will be discussed in greater detail. How do the
electric fields associated with these current sheets compare with those observed or inferred
solar observations, and might these electric fields be capable of accelerating particles? Fi-
nally, our initial photospheric driving pattern is relatively simplistic: could a more complex
photospheric driver create and/or drive flux tubes in this model?
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