
 

  
Abstract—Accurate recognition of non-driving activity 

(NDA) is important for the design of intelligent Human 
Machine Interface to achieve a smooth and safe control 
transition in the conditionally automated driving vehicle. 
However, some characteristics of such activities like 
limited-extent movement and similar background pose a 
challenge to the existing 3D convolutional neural network 
(CNN) based action recognition methods. In this paper, we 
propose a dual-stream 3D residual network, named DS3D 
ResNet, to enhance the learning of spatio-temporal 
representation and improve the activity recognition 
performance. Specifically, a parallel 2-stream structure is 
introduced to focus on the learning of short-time spatial 
representation and small-region temporal representation. A 
2-feed driver behaviour monitoring framework is further 
build to classify 4 types of NDAs and 2 types of driving 
behaviour based on the driver’s head and hand movement. 
A novel NDA dataset has been constructed for the 
evaluation, where the proposed DS3D ResNet achieves 
83.35% average accuracy, at least 5% above three selected 
state-of-the-art methods. Furthermore, this study 
investigates the spatio-temporal features learned in the 
hidden layer through the saliency map, which explains the 
superiority of the proposed model on the selected NDAs.  

 
Index Terms—action recognition, non-driving related 

task, automated driving 

I. INTRODUCTION 

ORE and more level 3 automated driving vehicles will be 

on road in the coming years [1], and such vehicles allow 

drivers to take their hands and eyes off the road. 

However, according to SAE (J3016) Automation Levels, in 

level 3, drivers are still expected to take control of the vehicle 

if there is a request to intervene [2]. The driver’s situation 
awareness in terms of driving environment and vehicle 

condition is reduced since they do not need to pay full attention 

to road and dashboard, which could bring a risk when the driver 

takes over the vehicle control without a right process in place. 

Therefore, it is of great importance to monitor the driver’s 
behaviour during the level 3 automated driving and design the 
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specific takeover request modality or Human Machine Interface 

(HMI) for different states to ensure a smooth and safe control 

transition [3].  

There are two kinds of activities that the driver could engage 

inside the vehicle cabin, which are driving activities (DAs) and 

non-driving activities (NDAs). Similar to distraction and 

fatigue, the engagement of NDAs could reduce the driver’s 
situation awareness. Normally, the methods of detecting NDAs 

engagement is based on the driver’s attention [4]. Since the 

drivers always check the road or surrounding environment 

when they are conducting DAs, while during NDAs 

engagement, they pay more attention to the object they are 

engaging with. Moreover, different NDAs could lead to 

different impacts on the driver’s take-over performance [5]–[7]. 

A refined classification of NDAs could help to design an 

intelligent take-over process to improve driving safety. During 

NDAs engagement, the driver’s hand movement contains 
information about the interaction between the driver and the 

object, which can be used for further classification. Therefore, 

both visual attention and behaviour are necessary for the 

recognition of the driver’s activity in the vehicle.  
The recognition of the driver’s NDAs has been widely 

researched in the last few years. With the rapid development of 

deep learning in activity recognition based on videos, computer 

vision-based methods become the focus for NDAs recognition 

[3], [8], [9]. The methods for action recognition using videos 

can be roughly divided into two categories: spatio-temporal 

attention mechanisms and 3D convolutional neural network 

(CNN). Both methods employ the CNN for spatial feature 

extraction due to its great learning capability in the spatial 

domain. The spatio-temporal attention mechanisms learn the 

temporal features by employing the sequence-based signal 

processing methods like Recurrent Neural Network, Long 

Short-Term Memory and transformer [10], [11]. 3D CNN 

extends the 2D spatial features into 3D features by adding a 

convolutional kernel in the temporal domain [12]–[15]. For the 

NDAs recognition, unlike the traditional activities in the action 

recognition dataset [16], [17], such as Tai Chi, Basketball, 

Diving, etc., which contains diverse spatial information in the 

background and large-scale body movement, NDAs are 

X. Shan is with Institute of Geology and Geophysics, Chinese 
Academy of Sciences, Beijing, China.  

C. Lv is with School of Electrical and Electronic Engineering, 
Nanyang Technological University, Singapore. 

*the corresponding author: Y. Zhao (yifan.zhao@cranfield.ac.uk) 

Learning spatio-temporal representations 
with a dual-stream 3D residual network for 

non-driving activity recognition 

Lichao Yang, Xiaocai Shan, James Brighton, Chen Lv, Senior Member, IEEE and Yifan 
Zhao*, Senior Member, IEEE 

M 

li2106
Text Box
IEEE Transactions on Industrial Electronics, Available online 28 July 2021DOI:10.1109/TIE.2021.3099254

li2106
Text Box
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works



 

constrained in the vehicle cabin. Normally, the movement that 

matters is the driver’s hand. The hand movement is more 
complex in the temporal domain and the background is similar 

in the spatial domain, which poses a challenge to the existing 

3D CNN models [12], [18] for activity recognition. Considering 

that, a proper design of the 3D CNN model could enhance the 

spatio-temporal representations of the activity with less 3D 

convolutional computation to achieve good recognition 

performance. Furthermore, the driver’s head movement is also 
needed to be evaluated, since the driver visual attention is also 

a key factor to determine the NDAs engagement. In this paper, 

we propose a 2-feed 3D CNN based driver behaviour 

recognition system. This system focuses on both driver’s head 
and hand movement to recognise whether the driver is engaging 

with an NDA or not, and further determine the type of NDA or 

DA. We design a dual-stream 3D residual network, named 

DS3D ResNet, to enhance the short-time spatial representation 

and small-region temporal representation learned on separate 

streams. A novel NDA dataset has been produced to evaluate 

the proposed model and other state-of-the-art models. This 

study also visualises the hidden layers of the proposed model to 

further verify and explain the semantic features that the model 

learned 

II. RELATED WORK 

NDAs recognition: The methods of activity recognition can 

be roughly divided into 2 categories from the perspective of 

feature extraction, which are hand-crafted features based 

methods and deep learning based methods. The first kind of 

method classifies the activities based on some hand-crafted 

features like driver’s gaze direction, hand movement and body 
pose. Martin et al. [19] extracted features of the driver’s upper 
body pose and proposed a 3-stream recurrent neural network 

(RNN) system. This system evaluates the spatial relationship of 

body joints, the temporal skeleton movement and the context of 

the driver’s surrounding to recognise the selected NDAs, 
including drinking, phone texting, calling, reading and eating. 

Furthermore, Xing et al. [20] combined the depth information 

inside the vehicle cabin with the features mentioned above and 

established a feedforward neural network (FFNN) to identify 

the activities. Yang et al. [4] proposed a dual-camera gaze 

estimation system and addressed the NDA recognition problem 

from the perspective of the driver’s eye. With the development 
of CNN in the field of activity recognition [12], [13], [21]–[23], 

the deep learning-based methods have attracted increasing 

attentions in NDA recognition in recent years. Xing et al. [8] 

removed the image background and used the drivers’ body as 
the input of the CNN model to recognise their behaviours. Yang 

et al. [3] employed a 2-stream CNN model to extract the spatial 

features from the original image and the driver’s hand 
movement features from the corresponding optical flow 

images. Moreover, Eraqi et al. [24] trained different CNNs on 

multiple inputs including raw images, skin-segmented images, 

face images, hands images, and “face+hands” images. The final 
prediction is obtained by using a genetic algorithm based on the 

outputs of all the CNN models. 

3D CNN: CNN has been widely researched in recent years 

and made great achievement on the spatial representation, 

particularly in the scope of computer vision. CNN has been 

mainly applied to 2D images that lack the temporal 

representation, which is especially crucial for the application of 

video classification. To address this challenge, 3D CNN was 

employed to learn the spatio-temporal representations and 

extract the motion information hidden in the video frames [12], 

[25]. The residual structure [26] was implemented to tackle the 

training difficulty in the deeper 3D CNN model [18]. Since the 

computation cost of the deep 3D CNN is expensive and the 

model size is relatively large, Qiu et al. [27] proposed a Pseudo-

3D network to factorise 3D convolutions into spatial 

convolutions and temporal convolutions to reduce the 

computational complexity. They compacted the model with 3 

different forms of the spatio-temporal residual blocks. 

Similarly, Tran et al. [28] used only a spatial convolution 

followed by a temporal convolution residual block in the 

proposed R(2+1)D network and achieved better action 

recognition performance.  

Unlike other deep learning-based methods for the NDA 

recognition, which mainly focus on the 2D image domain, our 

work attempt to extract the spatio-temporal features from the 

driver behaviour in the video domain. Considering the 

characterisation of NDAs, the capability of 3D CNN has not 

been fully exploited with the existing architecture mentioned 

above. In this work, we improve the spatial-temporal 

representation of residual blocks in the network with a designed 

dual-stream structure by enhancing the small-region temporal 

representation and the short-time spatial representation in 

different scales. The idea of this work is not only to revise the 

network structure but also to develop a framework to recognise 

and classify the type of NDA engagement during level 3 

automated driving. The proposed framework is given in details 

in the next section. 

III. METHODOLOGY 

The proposed 2-feed dual-stream 3D residual network-based 

driver activity recognition framework is illustrated in Fig. 1. 

There are 2 feeds in this framework, which are the frames from 

the front camera and the rear camera. The front camera captures 

the driver’s head movement and estimates the visual attention, 
which is used to recognise whether the driver is engaging with 

NDAs or not. The input of the 3D CNN model for this feed a 

stack of frames, which are cropped based on the location of the 

detected face from raw frames. The rear camera focuses on the 

driver’s behaviour in the cabin mainly the hand movement,  
Fig. 1. Driver activity recognition framework. 



 

which aims to further classify the specific NDAs or DAs. The 

final activity classification is obtained by combining these two 

results. 

A. 3D Residual Block 

3D convolution is the most natural method to extract the 

spatio-temporal features from videos [12], [27]. It has the 

capability to model the temporal connection among the spatial 

information encoded frames. For the 3D convolution, the filter 

is denoted as 𝑑 × 𝑘 × 𝑘, where 𝑑 and 𝑘 are the temporal depth 

and the spatial size of the filter respectively. 

 Following the success of the Residual Networks (ResNets) 

in encoding the spatio-temporal information for action 

recognition task [18], [26]. We propose 2 different residual 

blocks to enhance the short-time spatial representation and the 

small-region temporal representation of the model, as 

illustrated in Fig. 2(b) and 2(c), based on the basic residual 

block in Fig. 2(a). There are 2 convolutional layers in a basic 

residual block. Each layer is followed by batch normalization 

[29]. The filter size of each convolutional layer is 3 × 3 × 3.  

The output of the 𝑙-th residual block can be expressed as: 𝑥𝑙+1 =  𝐹(𝑥𝑙 , {𝑊𝑖}) + 𝑥𝑙 .                         (1) 

where 𝑥𝑙+1 and 𝑥𝑙  are the output and input of the block. The 

function 𝐹(𝑥𝑙 , {𝑊𝑖})  is the learned residual mapping of the 

block and weight {𝑊𝑖} is for multiple convolutional layers. 

The short-time spatial block (see Fig. 2(b)) aims to encode 

the change of the spatial information in a short time. Unlike the 

basic residual block, the size of the filter 𝑆 used in the first 

convolutional layer of the proposed block is 1 × 3 × 3. This 

filter compresses the temporal dimension, which is equivalent 

to the 2D convolutional filter on the spatial domain. The filter 𝑅 of the second convolutional layer is still a 3 × 3 × 3 filter to 

expand the receptive field in both temporal and spatial domains. 

The block can be expressed as: 𝑥𝑙+1 = 𝑅(𝑆(𝑥𝑙 , 𝑊𝑠), 𝑊𝑟) + 𝑥𝑙 .                   (2) 

The small-region temporal block, shown in Fig. 2(c), 

concentrates on a small area and captures its change in a long 

period. The size of the first convolutional filter (𝑇 ) is 5 × 1 × 1, which can be considered as a 1D convolutional filter 

on the temporal domain. It is followed by a 3 × 3 × 3 filter (𝑅). 

The output of this block can be expressed as: 𝑥𝑙+1 = 𝑅(𝑇(𝑥𝑙 , 𝑊𝑡), 𝑊𝑟) + 𝑥𝑙.                   (3) 

The ReLU activation function is employed after the first 

convolutional layer and the output of all these blocks. 

B. Architecture of the 3D CNN Model 

The architecture of the network is illustrated in Fig. 3. For 

simplicity, the size of the given video clip is denoted as 𝑐 × 𝑙 × ℎ × 𝑤 , where 𝑐  is the number of channels, 𝑙  is the 

number of frames in the clip, ℎ and 𝑤 are the height and width 

of images, respectively. The input of the network is a 3 × 16 × 112 × 112 tensor. The parallel structure is employed 

after the first convolution block. The upper spatial stream uses 

a sequence of 4 spatial blocks to emphasise the short-time 

spatial information in different scales. The bottom temporal 

stream has 4 temporal blocks connected in series, which focus 

on the change in the small-region temporal domain. After 

pooling, the size of the feature map for each stream is 256 × 1 × 1 × 1. The final 512-dimensional vector is obtained 

by concatenating the feature maps produced in both 2 streams 

and fed into a fully connected layer, which outputs the final 

prediction probabilities through the softmax function. 

C. Prediction Process for the Framework 

As illustrated in Fig. 1, the prediction of the driver activity 

recognition framework combines the outputs from 3 separate 

models. The prediction probability of NDA engagement 

recognition based on the driver’s head movement is denoted as 𝑃𝑒 , which has two states: DA engagement and NDA 

engagement, denoted as 𝑐𝐷 and 𝑐𝑁, respectively. The prediction 

probability for these two classes is represented by 𝑃𝑒[𝑐𝐷] and 𝑃𝑒[𝑐𝑁] . Two different 3D CNN models have been trained 

separately for NDA and NDA classification based on hand 

movement. The prediction probability for these 2 models are 

denoted as 𝑃𝐷𝑐  and 𝑃𝑁𝑐 . The final scores of the DA 

classification and NDA classification are denoted as 𝑌d and 𝑌N. 

The score of a single DA can be expressed as:  

 
Fig.2. The basic residual block and the proposed blocks 

Fig. 3. The proposed network architecture. The layer name is the bolded word at the bottom. The output size of each layer is on the top right of the 
layer name. The details of the each used blocks is introduced in Fig. 2. Downsampling is employed on conv3_1, conv4_1, conv5_1 with a stride of 
2. 



 

𝑌𝐷(𝑖𝑛𝑁) = 𝑃𝐷𝑐(𝑖𝐷)𝑃𝑒[𝑐𝐷],               (4) 

where 𝑖𝐷 is the index of the DAs. The score of a single NDA 

can be expressed as: 𝑌𝑁(𝑖𝑁) = 𝑃𝑁𝑐(𝑖𝑁)𝑃𝑒[𝑐𝑁],                    (5) 

where 𝑖𝑁 is the index of the NDAs. The final prediction scores 

for all NDA and DA classes, denoted by 𝑌, can be expressed as:  𝑌 = 𝑌D ∪ 𝑌N.                                 (6) 

D. Visual Explanations of CNN Model Predictions 

With the effort of visual explanation for CNN [30]–[32], we 

can explain the prediction of the instance made by the evaluated 

3D CNN models, which allows a better understanding of the 

features learned. In this study, Grad-CAM++ [31] was 

employed for visualisation. This method provides the visual 

explanation of the model based on the pixel-wise weighting of 

the gradients of the convolution feature map. It measures the 

importance of each pixel in the convolutional feature map 

towards the final prediction of the model.  

The classification score 𝑌𝑐 for class 𝑐 can be expressed as: 𝑌𝑐 = ∑ 𝑤𝑘𝑐 ∑ ∑ ∑ 𝐴𝑖𝑗ℎ𝑘ℎ𝑗𝑖𝑘  ,                (7) 

where 𝐴𝑖𝑗ℎ𝑘  is the feature map of a particular spatial location (𝑖, 𝑗, ℎ), 𝑤𝑘𝑐 is the weight for the feature map 𝐴𝑘 and class 𝑐. 

The class-based saliency map 𝑀𝑐  used for the final visual 

explanation can be expressed as: 𝑀𝑖𝑗ℎ𝑐 = 𝑟𝑒𝑙𝑢(∑ 𝑤𝑘𝑐𝐴𝑖𝑗ℎ𝑘 )𝑘 .                 (8) 

In the Grad-CAM++ [31], the weights 𝑤𝑘𝑐 is calculated by a 

weighted average of the pixel-wise gradients, which can be 

written as: 𝑤𝑘𝑐 = ∑ ∑ ∑ 𝛼𝑖𝑗ℎ𝑘𝑐ℎ 𝑟𝑒𝑙𝑢( 𝜕𝑌𝑐𝜕𝐴𝑖𝑗ℎ𝑘 )𝑗𝑖  ,                (9) 

where 𝛼𝑖𝑗ℎ𝑘𝑐  is the weighting co-efficient and the 
𝜕𝑌𝑐𝜕𝐴𝑖𝑗ℎ𝑘  is the 

pixel-wise gradient for feature map 𝐴𝑘 and class 𝑐.  

Considering Eq. (9), Eq. (7) can be rewritten as: 𝑌𝑐 = ∑ [∑ ∑ ∑ 𝛼𝑎𝑏𝑑𝑘𝑐𝑑 𝑟𝑒𝑙𝑢 ( 𝜕𝑌𝑐𝜕𝐴𝑎𝑏𝑑𝑘 )𝑏𝑎 ] ∑ ∑ ∑ 𝐴𝑖𝑗ℎ𝑘ℎ𝑗𝑖𝑘  , (10) 

where (𝑎, 𝑏, 𝑑) and (𝑖, 𝑗, ℎ) are iterators for the same activation 

map 𝐴𝑘 for avoiding confusion. 𝑟𝑒𝑙𝑢 has been dropped in the 

derivation since the function of which is as a threshold for 

allowing the gradients to flow back. Taking partial derivative 𝐴𝑖𝑗ℎ𝑘  twice on both sides: 𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )2 = 2𝛼𝑖𝑗ℎ𝑘𝑐 𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )2 + ∑ ∑ ∑ 𝐴𝑎𝑏𝑑𝑘 (𝛼𝑖𝑗ℎ𝑘𝑐𝑑 𝜕3𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )3).𝑏𝑎  (10) 

Based on Eq. (10), 𝛼𝑖𝑗ℎ𝑘𝑐  can be calculated as: 

𝛼𝑖𝑗ℎ𝑘𝑐 =  𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )22 𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )2+∑ ∑ ∑ (𝐴𝑎𝑏𝑑𝑘𝑑 𝜕3𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )3)𝑏𝑎 .             (11) 

Considering Eq. (11), Eq. (9) can then be rewritten as:  𝑤𝑘𝑐 = ∑ ∑ ∑ 𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )22 𝜕2𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )2+∑ ∑ ∑ (𝐴𝑎𝑏𝑑𝑘𝑑 𝜕3𝑌𝑐(𝜕𝐴𝑖𝑗ℎ𝑘 )3)𝑏𝑎ℎ 𝑟𝑒𝑙𝑢( 𝜕𝑌𝑐𝜕𝐴𝑖𝑗ℎ𝑘 )𝑗𝑖 . 

(12) 

IV. DATASET 

To evaluate the proposed method, this study produced a new 

dataset, which contains the driver’s head and hand movement 
footages captured by 2 cameras during the experiment. There 

are 6 classes in this dataset, including 4 types of NDAs and 2 

types of DAs. 14 participants (12 male and 2 female) were 

recruited for this experiment who are from 8 different counties. 

The participants’ age is in the range from 23 to 35. They were 
required to hold a valid UK driving license. The videos were 

recorded in different weather and lighting conditions including 

sunny, cloudy, rainy and snowy.  

A. Experiment Design 

The vehicle used in the experiment was an instrumented 

Land Rover Discovery 5. The car was modified to 

accommodate both automated driving and human driving. 

During the experiment, the vehicle is in automated driving 

mode and following a designed route in the enclosed roads. To 

ensure safety, a steering wheel and a set of pedals were added 

in the back seat of the vehicle, which allows the safety driver to 

intervene and override the autonomous system. The participants 

were required to engage in some activities while the vehicle is 

under the automated driving mode. After a period of time, the 

driver was asked to take over the vehicle and drive for 2 

minutes. Four types of NDA investigated in this study are 

reading news, watching videos, playing games and answering 

questionnaires using a tablet. These activities were selected by 

considering the outcomes from surveys [33], [34]. The DAs 

considered in this study are road checking and driving. For each 

participant, the engagement of each activity (4 types of NDA 

and road checking) lasted 5 to 9 minutes followed by a 2 

minutes driving process, which considered as one single trial. 

There are 5 trials per participant. The data of 4 NDA classes 

were extracted from the corresponding trials. The data for the 

road checking class contains the data extracted from the road 

checking trial and the data of the road checking behaviour 

during the NDA engagement trials. The data for driving was 

obtained by extracting the data where the participant was 

driving the vehicle after the take-over.  

B. Camera Setup  

The employed 2 cameras for monitoring the driver’s 
behaviour in the experiment were Garmin Virb Action Camera, 

which provides the videos with 1920 × 1440 pixels spatial 

resolution and frames were sampled at 30 frames per second 

(fps). The front camera, facing the driver’s face, is used to 
extract the driver’s head movement and recognise whether the 

Fig. 4. Location of the mounted cameras. 

Rear 

camera 

Front 

camera 



 

driver is engaging with NDAs or DAs. The rear camera was 

mounted on the roof of the vehicle between two front seats to 

record the driver’s hand movement. The location of the cameras 
is shown in Fig. 4. A flashing red LED light was employed for 

synchronisation, which can be seen in the view of both cameras. 

C. Data Pre-processing 

 In the dataset for the driver activity recognition framework, 

a single instance, denoted by 𝐼, contains a pair of synchronised 

frame stacks (𝐼𝑓 , 𝐼𝑟 ) from the front camera and rear camera, 

respectively. The recorded video from each camera was split 

into several clips. We removed some bad clips which contains 

the participant’s behaviour during the activity transition. The 
activity is difficult to be determined in such clips, such as the 

mixture of road-checking playing games, etc. As shown in Fig. 

5, there are 48 frames in each clip, which were cropped with a 600 × 600 region of interest and further resized into 128 ×128. The dimension of the frames for each clip is 3 × 48 ×128 × 128 . Then the 16 adjacent frames were randomly 

sampled and used as an input instance of 𝐼𝑓 or 𝐼𝑟 . The size of an 

input instance is 3 × 16 × 112 × 112. There are 7960 pairs of 

instances for 6 classes in total. The distribution of all these 

classes is answering questionnaires (1336), road checking 

(1320), driving (1268), playing games (1356), reading (1422) 

and watching videos (1258). The data were randomly split into 

5 different segments for cross-validation based on participants. 

For each split, the data of 11 participants were used for training 

and the data of 3 participants were used for testing. The data 

distribution for 5 splits is split 1 (6158 for training and 1802 for 

testing), split 2 (6332 for training and 1628 for testing), split 3 

(6176 for training and 1784 for testing), split 4 (6222 for 

training and 1738 for testing) and split 5 (6186 for training and 

1774 for testing). 

V. TRAIN AND RESULTS 

A. Training 

The proposed method is compared with 3 state-of-the-art 

methods, including  

(1) 3D ResNets (R3D) [18] that mainly utilises the basic 3 × 3 × 3 residual block in the whole network to model the 

spatial-temporal information. Frequent usage of 3D 

convolution causes a higher computational cost. 

(2) (2+1)D ResNets (R(2+1)D) [28] that factorises the 3D 

convolution of the residual block in R3D into two separate 

operations, which are a 2D spatial convolution and a 1D 

temporal convolution. Although such a structure doubles the 

number of nonlinearities to improve the model’s capability of 

representing complex functions, the number of parameters and 

the computational cost is not decreased in comparison to the 3D 

CNN. 

 (3) Pseudo-3D ResNets (P3D) [27] that has the same method 

of factorisation with R(2+1D) but develops 3 blocks with 

different types of connection. It also adapts the bottleneck block 

in the network. However, the performance is not significantly 

improved than the simple and homogenous R(2+1D) network.  

(4) The proposed DS3D ResNet.  

For a fair comparison, all networks adapt 18 layers except 

P3D. Considering the specific design of the P3D architecture, 

the input size is 3 × 16 × 160 × 160. We also keep the same 

crop ratio from the raw frames as other models. The evaluated 

P3D model was built based on ResNets-50 architecture. All 

four models were trained from scratch on the same dataset. The 

size and computational complexity for these models are 

provided in Table I, which shows the proposed model has the 

lowest computational cost and smallest model size.  

 In the training process, Adam was used for parameter 

optimisation with the mini-batch size of 32. The initial learning 

rate was set as 0.001, which was divided by 10 after every 10 

epochs. The whole training was completed in 35 epochs. The 

task of NDA engagement recognition adapts all the head 

movement dataset 𝐼𝑓. The tasks of NDA classification and DA 

classification use the corresponding data in the hand movement 

dataset 𝐼𝑟 .  

B. Results 

The comparison results, based on the testing data for each 

spilt, are presented in Table II, which shows the models’ 
accuracy for 3 tasks and the final fusion results. For the task of 

NDA engagement recognition (NDA or DA), the average 

accuracy of R3D for 5 splits is 87.49%. The performance of 

R2+1D and P3D is similar and around 90%. The proposed 

DS3D model achieves 93.74% average accuracy on this task. 

For the task of DAs classification (driving or road checking), 

all 3 state-of-the-art methods achieve similar performance 

while our model has at least 3% improvement than them. For 

the task of NDA classification (reading news, watching videos, 

playing games or answering questionnaires), the average 

accuracy of R3D, R2+1D and P3D models is 82.01%, 84.04% 

and 82.94%, respectively, while the accuracy of our model is 

85.86%. For the final fusion result for the classification of all 6 

activities, it can be observed that the proposed model achieves 

the best performance among the evaluated methods with at least 

5% improvement.  

Fig.5. Data pre-process flowchart. The data format is presented as a
four-dimensional tensor as 𝑐 × 𝑙 × ℎ × 𝑤 , where 𝑐  is the number of
channels, 𝑙 is the number of frames in the clip, ℎ and 𝑤 are the height
and width of images, respectively. 

TABLE I 
COMPARISON OF THE MODEL SIZE AND THE COMPUTATIONAL 

COMPLEXITY. ALL MODELS ARE BASED ON RESNES-18 

ARCHITECTURE. 

Model Parameters (×𝟏𝟎𝟔) FLOPs (×𝟏𝟎𝟗) 

R3D 33.1 83.1 

R2+1D 33.2 85.2 

The proposed 

DS3D 
11.8 72.5 



 

The confusion matrices of the final fusion predictions are 

presented in Fig. 6. Precision and recall are used to evaluate the 

model in this study. Precision is the fraction of correct instances 

among the detected instances, while recall is the fraction of 

correctly detected instances [35]. For the category checking, the 

precisions of the 3 state-of-the-art models are around 

TABLE II 
ACCURACY OF THE EVALUATED MODELS ON THE PRODUCED DATASET. 

Term 
NDAs engagement recognition DAs classification 

R3D R2+1D P3D Our DS3D R3D R2+1D P3D Our DS3D 

Split 1 83.74% 87.79% 88.95% 93.90% 90.67% 93.08% 90.67% 95.71% 

Split 2 87.78% 90.41% 89.07% 94.71% 91.70% 92.38% 92.21% 96.71% 

Split 3 88.96% 90.92% 89.35% 93.57% 87.29% 90.28% 90.65% 90.46% 

Split 4 88.15% 88.90% 92.28% 92.87% 91.36% 92.57% 89.46% 92.57% 

Split 5 88.84% 90.19% 92.27% 93.63% 90.65% 86.06% 87.30% 93.47% 

Average 87.49% 89.64% 90.38% 93.74% 90.33% 90.87% 90.06% 93.78% 

Term 
NDAs classification Fusion result 

R3D R2+1D P3D Our DS3D R3D R2+1D P3D Our DS3D 

Split 1 80.96% 83.81% 81.12% 87.20% 70.31% 74.64% 73.81% 83.46% 

Split 2 84.19% 86.95% 84.95% 89.62% 75.43% 82.74% 77.27% 87.59% 

Split 3 83.58% 84.38% 84.06% 85.10% 76.12% 78.98% 78.59% 82.90% 

Split 4 81.10% 82.48% 82.14% 84.30% 74.51% 77.62% 76.41% 80.32% 

Split 5 80.20% 82.60% 82.43% 83.10% 75.08% 76.16% 76.10% 82.47% 

Average 82.01% 84.04% 82.94% 85.86% 74.29% 78.03% 76.44% 83.35% 

 
Fig. 6. Confusion matrix of the fusion results. The models used are trained on split 1. The precision and recall for each class are presented in the 
bottom and right of the figures, respectively. The classes presented in the figure refer to the activities named: road checking, driving, playing games, 
answering questionnaires, reading news and watching videos, successively.  



 

50%~60%. The main contribution of the false positive 

examples is from NDAs. It means that some NDAs have been 

predicted as DAs by being misclassified as checking, which 

suggests the poor performance of NDA engagement recognition 

for these models based on the participants head movement. For 

both DAs (checking and driving), the proposed DS3D achieves 

the best performance, specifically, 90.2% precision and 90.6% 

recall for driving. For NDA classification, answering 

questionnaires and playing games have a better performance 

than the other two activities for all 4 models. This is because, 

during these activities, it normally involves a high-frequency 

interaction between the participant’s hand and the device. The 
superior performance of our model is benefited from the new 

structure design that enhances the spatial-temporal 

representations. The detailed contribution will be given in the 

next section with the saliency map. The recall of the other 

activities reading and watching videos for R3D, R2+1D, and 

P3D is around 60%~65%. The poor performance of these 

activities is due to similar observation associated with limited 

human-object interaction or hand movement in the temporal 

domain. The frames do not contain sufficient spatial-temporal 

information to make the right prediction for these activities. 

Even though, our model also outperforms the other evaluated 

models. 

VI. VISUALISATION AND DISCUSSION 

This section provides the visualisation results of the class-

based saliency map in the hidden layer of the model trained on 

the dataset containing hand movement to explain the learned 

spatio-temporal feature. The images that contain facial 

information are not presented in this section due to the data 

protection policy. 

In Fig. 7, the class-discriminative regions contributed from 

the hidden layer, Conv3, have been located, where the 16 

frames are subsampled to 8 frames to save space. The regions 

in red correspond to a higher association for the class while the 

regions in blue represent weak relevance. It can be seen that the 

saliency regions have been highlighted on the frames based on 

the importance of the pixels. Specifically, the R3D model could 

learn the participant’s hand movement when there is high-

frequency interaction in the activity (answering questionnaires 

and playing games). For the activity like reading and watching 

movies, the learned features are mainly the edge of the object. 

The features used in the R2+1D model to predict are based on 

the context of the tablet. Both two models contain some noise 

such as steering wheel movement and background change of 

the side window. Comparing with these two models, the 

proposed DS3D model highlights the region of the hand 

movement concentratedly. The spatial stream of the proposed 

model (denoted as Ours_s) focuses on the short-time spatial 

feature learning. The temporal stream of the model (denoted as 

Ours_t) is to learn the small-region temporal feature. It can not 

only learn the short-time spatial feature, which is the high-

frequency hand movement for the activities like answering 

questionnaires and playing games, but also the temporal 

feature, which is low-frequency interaction in the reading. 

Furthermore, it can give the right prediction based on the hand 

pose when there is a limited interaction during watching videos. 

The saliency map results for DA engagement are presented 

in Fig. 8. For checking, the R3D model focuses on the edge of 

the steering wheel and the object. The R2+1 model highlights 

the region of the left hand. The spatial stream of our model 

Fig. 7. Saliency maps of the prediction based on the last convolutional 
layer of Conv3 by using Grad-CAM++[28] for all NDAs. The first row of 
each activity is the raw frames imported into the network. 



 

encodes the information of the hand pose and the door, while 

the temporal stream focuses on the edge of the head and the 

device. It explains the participant’s road-checking behaviour 

during the NDA engagement where the participant headed up 

while holding the device on hands. In the driving category, the 

participant quickly steered the steering wheel with the right 

hand. The R3D model highlights the arm movement with its 

edge. The R2+1D model also learns the feature of the arm 

movement but with lots of noise. For the proposed model, the 

spatial stream captures the fast right-hand movement since it 

enhances the extraction of the short-time spatial change while 

the temporal stream mainly focuses on the participant’s slight 
arm movement. From the perspective of model, the R3D model 

learns the semantically relevant features of the high-frequency 

interaction activity. But for the activities like reading, watching 

movies or road checking, the semanteme of feature is not clear. 

The R2+1D shows a better classification performance than 

R3D, however, the explainability of the learned feature is 

relatively weak. Collectively, it can be observed that, for all 

types of activity, the highlighted features learned by our model 

are more semantically relevant comparing with other models. 

VII. CONCLUSION 

In this paper, we propose a 2-feed 3D CNN based driver 

behaviour recognition system for the conditionally automated 

driving vehicle. Demonstrated by the testing results on the 

collected data, the introduced novel dual-stream 3D residual 

network (DS3D ResNet) presents a strong capability of 

encoding the spatial-temporal information for driver’s 
behaviour. Specifically, the spatial stream extracts the short-

time spatial features while the temporal stream focuses on 

learning the small-region temporal representation. This 

hypothesis has been successfully tested by visualising the 

saliency maps. Quantitative results demonstrate the superior 

performance of the proposed DS3D model against three state-

of-the-art methods. From the perspective of NDA recognition, 

the activities with more human-object interaction can be 

classified more accurately due to the contained abundant 

spatial-temporal features. It should be noted that the evaluation 

was conducted on a novel driver activity dataset. Based on the 

visualisation results, we believe that the capability of the 

proposed DS3D model has not been fully explored using the 

current NDA dataset. The recognition of other NDAs with 

interaction in a higher frequency, for instance, phone typing, 

could benefit from this model. The application of the proposed 

method on a complehensive list of NDAs requires further study. 

REFERENCES 

[1] C. Lv, X. Hu, A. Sangiovanni-Vincentelli, Y. Li, C. M. Martinez, and 

D. Cao, “Driving-Style-Based Codesign Optimization of an 

Automated Electric Vehicle: A Cyber-Physical System Approach,” 
IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2965–2975, Apr. 2019. 

[2] Taxonomy and Definitions for Terms Related to Driving Automation 

Systems for On-Road Motor Vehicles, SAE International Standard 

J3016_201806, 2018. 

[3] L. Yang et al., “A refined non-driving activity classification using a 

two-stream convolutional neural network,” IEEE Sens. J., early 
access, Jun. 2020. doi: 10.1109/JSEN.2020.3005810. 

[4] L. Yang, K. Dong, A. J. Dmitruk, J. Brighton, and Y. Zhao, “A Dual-
Cameras-Based Driver Gaze Mapping System With an Application 

on Non-Driving Activities Monitoring,” IEEE Trans. Intell. Transp. 

Syst., vol. 21, no. 10, pp. 4318–4327, Oct. 2020. 

[5] J. Kim, H. S. Kim, W. Kim, and D. Yoon, “Take-over performance 

analysis depending on the drivers’ non-driving secondary tasks in 

automated vehicles,” 9th Int. Conf. Inf. Commun. Technol. Converg. 

ICT Converg. Powered by Smart Intell. ICTC 2018, pp. 1364–1366, 

2018. 

[6] S. H. Yoon, Y. W. Kim, and Y. G. Ji, “The effects of takeover request 
modalities on highly automated car control transitions,” Accid. Anal. 

Prev., vol. 123, no. September 2017, pp. 150–158, 2019. 

[7] K. Zeeb, A. Buchner, and M. Schrauf, “Is take-over time all that 

matters? the impact of visual-cognitive load on driver take-over 

quality after conditionally automated driving,” Accid. Anal. Prev., 

vol. 92, pp. 230–239, 2016. 

[8] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F.-Y. Wang, 

“Driver Activity Recognition for Intelligent Vehicles: A Deep 
Learning Approach,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 

5379–5390, Jun. 2019. 

[9] L. Yang, K. Dong, Y. Ding, J. Brighton, Z. Zhan, and Y. Zhao, 

“Recognition of visual-related non-driving activities using a dual-

camera monitoring system,” Pattern Recognit., vol. 116, p. 107955, 

Aug. 2021. 

[10] L. Meng et al., “Interpretable Spatio-Temporal Attention for Video 

Action Recognition,” in 2019 IEEE/CVF International Conference 

on Computer Vision Workshop (ICCVW), 2019, pp. 1513–1522. 

[11] H. Chen and Z. Shi, “A Spatial-Temporal Attention-Based Method 

and a New Dataset for Remote Sensing Image Change Detection,” 
Remote Sens., vol. 12, no. 10, p. 1662, May 2020. 

[12] S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural 
Networks for Human Action Recognition,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 35, no. 1, pp. 221–231, Jan. 2013. 

[13] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition? A 
New Model and the Kinetics Dataset,” in 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2017, vol. 2017-

Janua, pp. 4724–4733. 

[14] A. Ullah, K. Muhammad, J. Del Ser, S. W. Baik, and V. H. C. de 

Albuquerque, “Activity Recognition Using Temporal Optical Flow 
Convolutional Features and Multilayer LSTM,” IEEE Trans. Ind. 

Electron., vol. 66, no. 12, pp. 9692–9702, Dec. 2019. 

[15] T. Huynh-The, C.-H. Hua, and D.-S. Kim, “Encoding Pose Features 

to Images With Data Augmentation for 3-D Action Recognition,” 

Fig. 8. Saliency maps of the prediction based on the last convolutional 
layer of Conv3 for all the DAs. 



 

IEEE Trans. Ind. Informatics, vol. 16, no. 5, pp. 3100–3111, May 

2020. 

[16] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: 
A large video database for human motion recognition,” in 2011 

International Conference on Computer Vision, 2011, pp. 2556–2563. 

[17] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101 
Human Actions Classes From Videos in The Wild,” no. November, 
Dec. 2012. 

[18] K. Hara, H. Kataoka, and Y. Satoh, “Learning Spatio-Temporal 

Features with 3D Residual Networks for Action Recognition,” in 
2017 IEEE International Conference on Computer Vision Workshops 

(ICCVW), 2017, vol. 2018-Janua, pp. 3154–3160. 

[19] M. Martin, J. Popp, M. Anneken, M. Voit, and R. Stiefelhagen, 

“Body Pose and Context Information for Driver Secondary Task 
Detection,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, 

vol. 2018-June, no. Iv, pp. 2015–2021. 

[20] Y. Xing et al., “Identification and Analysis of Driver Postures for In-

Vehicle Driving Activities and Secondary Tasks Recognition,” IEEE 

Trans. Comput. Soc. Syst., vol. 5, no. 1, pp. 95–108, Mar. 2018. 

[21] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. 

Fei-Fei, “Large-Scale Video Classification with Convolutional 

Neural Networks,” in 2014 IEEE Conference on Computer Vision 

and Pattern Recognition, 2014, pp. 1725–1732. 

[22] K. Simonyan and A. Zisserman, “Two-Stream Convolutional 

Networks for Action Recognition in Videos,” Biochem. Pharmacol., 

vol. 32, no. 5, pp. 849–855, Jun. 2014. 

[23] H. Xu, A. Das, and K. Saenko, “R-C3D: Region Convolutional 3D 

Network for Temporal Activity Detection,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 41, no. 10, pp. 2319–2332, Mar. 2017. 

[24] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N. Moustafa, 

“Driver Distraction Identification with an Ensemble of Convolutional 
Neural Networks,” J. Adv. Transp., vol. 2019, Jan. 2019. 

[25] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, 

“Learning Spatiotemporal Features with 3D Convolutional 
Networks,” in 2015 IEEE International Conference on Computer 

Vision (ICCV), 2015, vol. 2015 Inter, pp. 4489–4497. 

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for 
Image Recognition,” in 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 2016, vol. 2016-Decem, pp. 770–
778. 

[27] Z. Qiu, T. Yao, and T. Mei, “Learning Spatio-Temporal 

Representation with Pseudo-3D Residual Networks,” in 2017 IEEE 

International Conference on Computer Vision (ICCV), 2017, vol. 

2017-Octob, pp. 5534–5542. 

[28] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A 
Closer Look at Spatiotemporal Convolutions for Action 

Recognition,” in 2018 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 6450–6459. 

[29] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift,” 32nd Int. 

Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, Feb. 2015. 

[30] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, 

“Striving for Simplicity: The All Convolutional Net,” 3rd Int. Conf. 

Learn. Represent. ICLR 2015 - Work. Track Proc., pp. 1–14, Dec. 

2014. 

[31] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. 

Balasubramanian, “Grad-CAM++: Generalized Gradient-Based 

Visual Explanations for Deep Convolutional Networks,” in 2018 

IEEE Winter Conference on Applications of Computer Vision 

(WACV), 2018, vol. 2018-Janua, pp. 839–847. 

[32] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and 

D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-Based Localization,” Int. J. Comput. Vis., vol. 128, no. 2, 

pp. 336–359, Feb. 2020. 

[33] M. Sivak, B. Schoettle, “Motion Sickness in Self-Driving Vehicles,” 
Transportation Res. Inst., Ann Arbor, Univ. Michigan, Ann Arbor, 

MI, USA, Tech. Rep. UMTRI-2015-12, Apr. 2015. 

[34] F. Naujoks, D. Befelein, K. Wiedemann, and A. Neukum, “A Review 
of Non-driving-related Tasks Used in Studies on Automated 

Driving,” in Advances in Intelligent Systems and Computing, vol. 

597, 2018, pp. 525–537. 

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT 

Press, 2016. 

Lichao Yang was born in Shanxi, China. He 
received the M.Sc. degree in automotive 
mechatronics from Cranfield University, 
Cranfield, U.K., in 2018. He is currently working 
toward the Ph.D. degree in driver non-driving 
activities analysis at Through-Life Engineering 
Services Centre, Cranfield University, Cranfield, 
U.K. 
 
 
Xiaocai Shan has been working toward a Ph.D. 
degree in the Institute of Geology and 
Geophysics, Chinese Academy of Sciences, 
Beijing, China. She is currently a visiting Ph.D. 
student at Through-Life Engineering Services 
Centre, Cranfield University, Cranfield, U.K. Her 
research interests are seismic signal processing 
and brain connectivity analysis of EEG data. 
 
 
Chen Lv is currently an Assistant Professor at 
School of Mechanical and Aerospace 
Engineering, and the Cluster Director in Future 
Mobility Solutions at ERI@N, Nanyang 
Technology University, Singapore. He received 
the Ph.D. degree at the Department of 
Automotive Engineering, Tsinghua University, 
China in 2016. He was a joint PhD researcher at 
EECS Dept., University of California, Berkeley, 
USA during 2014-2015, and worked as a 

Research Fellow at Advanced Vehicle Engineering Center, Cranfield 
University, UK during 2016-2018.  

 

James Brighton has over 22 years' experience 
relating to off road vehicle dynamics, terra-
mechanics, tyre and track system modelling, 
advanced vehicle instrumentation and 
lightweight material structures and his current 
clients span the globe. His team is able to offer a 
wide range of vehicle related technical solutions 
from fundamental research through product 
design and prototype vehicle sub-system 
manufacture, supply, evaluation and testing 

across a wide range of industry sectors.  
 

Yifan Zhao was born in Zhejiang, China. He 
received the PhD degree in Automatic Control 
and System Engineering from the University of 
Sheffield, UK in 2007. 
He currently is a Senior Lecturer in Data Science 
at Cranfield University. His research interests 
are computer vision for automated vehicles, 
human behaviour analysis, super resolution, 
active thermography and nonlinear system 
identification. 


