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Abstract: Streaming potential is a promising method for a variety of hydrogeophysical applications, 

including the characterisation of the critical zone, contaminant transport or saline intrusion. A sim-

ple bundle of capillary tubes model that accounts for realistic pore and pore throat size distribution 

of porous rocks is presented in this paper to simulate the electrokinetic coupling coefficient and 

compared with previously published models. In contrast to previous studies, the non-monotonic 

pore size distribution function used in our model relies on experimental data for Berea sandstone 

samples. In our approach, we combined this explicit capillary size distribution with the alternating 

radius of each capillary tube to mimic pores and pore throats of real rocks. The simulation results 

obtained with our model predicts water saturation dependence of the relative electrokinetic cou-

pling coefficient more accurately compared with previous studies. Compared with previous stud-

ies, our simulation results demonstrate that the relative coupling coefficient remains stable at higher 

water saturations but vanishes to zero more rapidly as water saturation approaches the irreducible 

value. This prediction is consistent with the published experimental data. Moreover, our model was 

more accurate compared with previously published studies in computing the true irreducible water 

saturation relative to the value reported in an experimental study on a Berea sandstone sample 

saturated with tap water and liquid CO2. Further modifications, including explicit modelling of the 

capillary trapping of the non-wetting phase, are required to improve the accuracy of the model. 

Keywords: electrokinetic coupling coefficient; zeta potential; sandstones; partial water saturation; 

CO2 geo-sequestration; bundle of capillary tubes model; realistic capillary size distribution 

 

1. Introduction 

Groundwater provides the main source of water for human consumption world-

wide, and it is also critically important for agriculture [1]. Excessive abstraction of potable 

water from aquifers may cause exhaustion of the resource, especially during periods of 

reduced recharge. Moreover, poorly managed pumping schedules could potentially lead 

to contamination of boreholes, and in coastal aquifers, to the intrusion of saltwater [2]. To 

improve aquifer management requires accurate characterisation and modelling of sub-

surface water flow using available methods. Recently, geophysical methods have been 

gaining a place of choice in the hydrogeologist toolbox, yielding the emergence of hydro-

geophysics [3]. Indeed, geophysical methods are non-intrusive and can be used for mon-

itoring. However, such methods are not yet routinely deployed, and their implementa-

tion, as well as interpretation of measured signals, still require improvements. Thus, there 

is a real need for a robust hydrogeophysical tool to monitor water flow in hydrosystems. 

One of the main challenges is to characterise the effects of partial water saturation in the 

upper part of the critical zone, i.e., the vadose zone: the near-surface compartment where 

water and gas (normally air) are present. 
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The self-potential method (SPM) is a passive geophysical method that consists of 

measuring the naturally occurring electrical field (e.g., [4,5]). Among other applications, 

it has been shown to be a promising hydrogeophysical method to predict saltwater intru-

sion in coastal aquifers [6], to monitor rain or saline tracer infiltration in soils [7], to sense 

the root-water uptake linked to tree transpiration [8] or to characterise water flow through 

fractured systems [9]. SPM is a non-intrusive, cheap and logistically simple method that 

can be used for long-term monitoring (e.g., [10]). It does not require large areas to lay out 

surface electrode arrays, as it can be deployed in boreholes. Moreover, the method is use-

ful in relating the measured self-potential (SP) signal to aquifer heterogeneities, and the 

SP response also correlates with water saturation (Sw). 

SP arises in subsurface settings saturated with water in response to pressure, concen-

tration and temperature gradients, all of which may occur naturally in freshwater aquifers 

(e.g., [11]). Depending on the type of the thermodynamic driving force, SP can be catego-

rised as electrokinetic or streaming (EK), electrochemical (EC) or thermoelectric (TE) po-

tential if they are caused by pressure, concentration or temperature gradients, respectively 

(e.g., [4,12,13]). EK acts to maintain electroneutrality when an excess electrical charge at 

the rock–water interface is dragged by the flow. The excess charge that develops at the 

rock–water interface originates from the establishment of the electrical double layer (EDL) 

in response to the mineral surface charge that attracts ions of opposite polarity (counter-

ions) from the bulk water (e.g., [14]). These counter-ions populate the diffuse part of EDL 

and are mobilised by the flow beyond the so-called slip plane, thus giving rise to EK po-

tential (e.g., [15]). The electric potential at the slip plane is termed zeta potential, and it is 

a key petrophysical property that characterises rock–water interactions. The zeta potential 

can be estimated from the so-called EK coupling coefficient (CEK), which is defined as a 

ratio of voltage to the pressure difference, and it can be routinely measured in the subsur-

face and laboratory (e.g., [16,17]). 

Vinogradov and Jackson [18] experimentally demonstrated that CEK depends on Sw. 

To demonstrate the correlation, Vinogradov and Jackson [18] used the relative coupling 

coefficient (Cr) that relates CEK at partial saturation to that at Sw = 1. Previous empirical, 

analytical and numerical studies have tried to relate Cr(Sw) to various aquifer and fluid 

properties (e.g., [15,19–22]). However, there is still no consensus in the literature, thus 

suggesting that although Cr(Sw) is a crucial parameter for flow characterisation, it is still 

poorly understood. Moreover, it appears that Cr(Sw) strongly depends on the porous me-

dium considered in the study [22]. 

Measuring Cr(Sw) is a challenging task, which cannot be carried out for all possible 

permutations of minerals and fluids. Moreover, the behaviour of Cr with water saturation 

is not always predictable or easy to interpret from experimental observations. Therefore, 

it is essential to develop a model that explains the expected Cr(Sw) and, more importantly, 

is capable of predicting the correlation between Cr and Sw. The current modelling tech-

niques of Cr consider four main approaches: (1) the pore-network modelling (e.g., [23,24]), 

which represents the pore space topology as an ensemble of larger voids (pores) connected 

by narrower channels (pore throats); (2) direct pore-scale modelling in which the govern-

ing equations are solved for a precisely reconstructed pore-geometry (e.g., [25]); (3) the 

Representative Elementary Volume modelling that represents a porous medium as a 

number of blocks (elements) so that the fluid properties are assigned to each block, and 

the governing equations are solved using finite difference (volume) or finite elements ap-

proach (e.g., [22]); (4) the Bundle Of Capillary Tubes (BOCT) modelling that uses a bundle 

of parallel tortuous capillaries as a representation of the pore space (e.g., [26,27]). 

All the above approaches have certain advantages and drawbacks. The pore-network 

and direct pore-scale models require precise reconstruction of the pore space from SEM 

and/or micro-CT images, both of which are technologically challenging and time-consum-

ing. Moreover, the produced images by SEM and micro-CT are of nm- to μm-scale and 

therefore, the image-based models are of the same scale, which in most cases cannot be 

representative of a larger scale experimental condition, and the models need to be up-
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scaled, thus losing their precision. Despite the fact that these models are efficient in solv-

ing the governing equations, image processing is computationally expensive and time-

consuming. Moreover, unlike the direct pore-scale model, the pore-network models rep-

resent the pore space by spherical voids and circular (triangular, rectangular, etc.) ducts 

(e.g., [23]); hence, these models do not capture true pore space topology. Even though 

Jougnot et al. [24] showed that this true pore geometry is not necessarily needed to predict 

electrokinetic couplings in saturated conditions in the absence of surface electrical con-

ductivity, the pore space topology plays a major role when considering the partially satu-

rated conditions. 

On the other hand, the REV approach can be applied for modelling flows on a much 

larger scale (up to kms), and its computational efficiency depends on the number of grid-

blocks used to model aquifers, so that more accurate representation of subsurface setting 

would require millions of grid-blocks and the simulation would become extremely time-

consuming. Moreover, such REV models take average fluid and aquifer properties across 

the size of a grid block, thus disregarding accurate physics of multi-phase flows. Simu-

lated multi-phase flow using REV approach also relies on inaccurate, often empirically 

assumed, relative permeability and capillary pressure data (e.g., [22]). 

The BOCT approach in modelling multi-phase flow in porous media is simple and 

captures and explicitly describes most of the petrophysical properties, such as water con-

tent (e.g., [28]), porosity and permeability (e.g., [29,30]), electrical conductivity (e.g., 

[31,32]) and thermal conductivity (e.g., [33]). However, the representation of the pore 

space is quite poor since pores are represented by capillary tubes that do not intersect and 

fluids flow in one direction. Such an approach is, of course, useful in modelling real mm- 

to cm-scale coreflooding experiments, in which flows are 1-D in nature. Thus, the BOCT 

model is capable of providing useful insights into single- and multi-phase flows in porous 

media on a larger scale than pore-network or direct pore-scale models while still accu-

rately capturing basic petrophysical properties from the fundamental hydrodynamic 

principles. There are, however, some limitations of the BOCT approach that include un-

realistic capillary (pore) size distribution and constant capillary radius even for 1-D sim-

ulations, and which need to be addressed and improved. 

One can utilise the approach of Jougnot et al. [27] to determine the EK coupling co-

efficient based on inferred capillary size distribution. In this study, the authors use two 

hydrodynamic functions (the so-called water retention and relative permeability function) 

to infer the size distribution of equivalent straight capillaries. In their study, the EK cou-

pling coefficients predicted from their model are highly soil- or rock-specific. 

Therefore, the aim of this study is to improve on published BOCT models by intro-

ducing a more realistic non-monotonic capillary size distribution obtained from direct 

pore size distribution measurements and alternating capillary radii. We report the effect 

of the new capillary size distribution on simulated petrophysical properties in comparison 

with previously published studies. Moreover, we report a case study and analysis of the 

application of the novel BOCT model to experimental data on partially saturated porous 

media reported in the case study. 

2. Methodology 

2.1. Basic Definitions and Capillary Size Distribution 

The classical BOCT model considers N capillaries, with each capillary permitted to 

have a different radius rc. The capillaries are confined within a model of length L and area 

A, as displayed in Figure 1. Each capillary within the model is defined by a length Lc, 

tortuosity �� = ��/� and a cross-sectional area to flow �� = ���  [26,34]. 
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Figure 1. The bundle of capillary tubes (bold curves) model. The inset to the right shows the two representations of mod-

elled capillaries having the (i) constant (left) and (ii) alternating (right) radius. In the alternating capillary radius model, 

the pore throat is modelled by a reduced radius ���, while the pore throat length is defined by ��, where � is the pattern 

length, which is described in more detail below [35]. 

The bundle of capillary tubes model deviates from the true pore structure of porous 

geologic media, as it is formulated on the assumption that there are no points of intersec-

tion between capillaries and that all capillaries run parallel with the same orientation [26]. 

It is widely acknowledged that the pore structure of geologic media is extremely complex, 

resulting in the effective porosity and absolute permeability of the media being highly 

dependent on the ratio of interconnected pore space [36]. However, for the simplicity of 

modelling, the assumption of zero intersections ensures that the transport of mass and 

electrical charge through the model takes place in only one direction [26]. Furthermore, in 

order to define an average tortuosity t for the model, it is assumed that the capillary radius 

rc and length Lc are independent of each other. 

The previously published works of Jackson [21,26] and Soldi et al. [37] define the 

distribution of capillary radii throughout the model differently. Jackson [21, 26] states the 

number of capillaries with radius between ��  and �� + ���  as �(��)��� such that the total 

number of capillary tubes is 

� = ∫ �(��
����

����
)���, (1)

where N is the total number of capillaries, and ����  and ���� denote the minimum and 

maximum capillary radius within the model, respectively. The distribution of capillaries 

throughout the model is associated with the capillary radius by a function of the form [25]. 

�(��)d�� = �� �
�������

���������
�

�

, (2)

where DJ is the normalization factor (constant, unitless) and 0 < m < ∞ (constant, unitless). 

The distribution function monotonically decreases at all values of m with the exception of 

m = 0, where the function produces a uniform distribution of capillary radii between ���� 

and ����  (Figure 3 in [26]). As the value of m increases, the frequency distribution is 

skewed more towards smaller radii values, similar to the skewed pore size distributions 

exhibited in many geologic porous media [26,38,39]. 

The frequency distribution of capillary radii presented by Soldi et al. [37] is some-

what different to that of Jackson [21,26]. Soldi et al. [37] assume that the number of pores 

with radii greater than or equal to a specific capillary radius R follows a fractal law such 

that [28,29,35,40]: 
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�(��) = �
����

��
�

��

 (3)

where 0 < ���� ≤ �� ≤ ���� < ���� , DS represents the dimensionless pore fractal dimen-

sion (1 < �� < 2) and RREV is the radius of a cylindrical representative elementary vol-

ume (e.g., a cylindrical sample of porous geologic media) [37]. If ���� = ����, then � =

 1 and the cylindrical REV is entirely occupied by a single pore [35]. Conversely, if ���� =

0, there are an infinite number of pores within the REV [35]. The cumulative pore size 

distribution (Equation (3)) is then differentiated with respect to �� to obtain an equivalent 

expression to Equation (2). The distribution of capillaries throughout the model is defined 

in terms of ��(��), which represents the number of capillaries whose radii fall within the 

small range �� to �� + ���  [37]: 

��(��) = ������
� ��

��������  (4)

A significant difference between the distributions produced from Equations (2) and 

(4) stems from a criterion of the model proposed by Soldi et al. [37] that the largest capil-

lary must always exist. Unlike the frequency distribution of Jackson [21,26] (Equation (2)), 

that of Soldi et al. [37] (Equation (4)), cannot be skewed and so the accuracy of choice for 

rmax greatly influences how representative the BOCT model is of the modelled porous ge-

ologic media. 

Nonetheless, by the implementation of capillary tubes with varying radii, the work 

of Soldi et al. [35,37] enhanced the BOCT model. The addition of pore throats within the 

model, rather than the constant radius approach adopted by Jackson [21,26], provides a 

more realistic representation of the pore structure in geologic media, thus enabling explicit 

modelling of residual phase saturation and impact of wettability alteration. The inset of 

Figure 1 displays the pore geometry of a single capillary tube proposed by Soldi et al. [35]. 

The radius at a particular point x along the length of a capillary is expressed as [35]: 

��(�) = �
���   if   � ∈  [0 + ��,   �� + ��]

  ��    if   � ∈  [�� + ��,   � + ��]
 (5)

where a denotes the ratio in which the capillary radius is reduced, known as the radial 

factor (0 ≤ � ≤  1, dimensionless), hence ���  represents the radius of the periodically dis-

tributed pore throats along the length of each capillary. It is assumed that each pore and 

its adjacent pore throat have a wavelength, or pattern length, �, with the length of each 

capillary containing an integer number of wavelengths, �. Subsequently, the length of a 

pore throat is expressed as ��, where � represents the segment of � which contains a 

pore throat, also known as the length factor ( 0 ≤ � ≤  1 , dimensionless), and � =

 0, 1, …  � –  1 [35]. 

Although the bundle of capillary tubes model is not the most accurate representation 

of the pore space in geologic media, the published works of Jackson [21,26] and Soldi et 

al. [37] individually provide good insight into the applications and advantages of model-

ling porous media as a bundle of tortuous capillary tubes. However, neither Jackson 

[21,26] nor Soldi et al. [37] considered non-monotonic capillary size distribution. On the 

other hand, Jougnot et al. [27] considered non-monotonic capillary size distribution but 

used the constant capillary radius approach, and their capillary size distribution was in-

directly inferred from other modelled properties rather than from actually measured one. 

Moreover, many published studies investigated such non-monotonic pore size distribu-

tion and its effects on capillary pressure [41], relative permeability [42] or hydraulic con-

ductivity [43]. However, to the best of the authors’ knowledge, such capillary distribution 

functions have never been used in modelling coupled electro-hydrodynamic problems. In 

this study, we present a new BOCT model that considers a non-monotonic pore size dis-

tribution based on experimentally measured pore size distribution and alternating capil-

lary radius. Moreover, our new model is constructed to match the reported porosity and 

permeability values of a real sandstone sample and cross-compare the modelled hydro- 
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and electrodynamic properties between the three types of capillary size distribution 

(termed Jackson, Soldi, New) and both constant and alternating capillary radius ap-

proaches. It should be noted that although our BOCT model was developed using availa-

ble information on pore size distribution for a given rock sample, unlike in pore-network 

or direct pore-scale models, such information is not essential for BOCT models as capillary 

(pore) size distribution can be obtained from matching sample’s porosity and permeabil-

ity. 

2.2. Minimum and Maximum Capillary Radius 

The Berea sandstone core sample, as discussed in Moore et al. [44], was modelled as 

a bundle of tortuous capillary tubes, assuming the system was water wet. Prior to imple-

menting any capillary size distribution (CSD) function, a review of relevant literature sur-

rounding Berea sandstone pore size distribution was conducted in order to determine the 

most appropriate minimum and maximum capillary radius to be used in the model. Table 

1 summarises the six key research papers consulted during the decision-making process, 

and Figure 2a,b present the pore size distributions from Shi et al. [39] and Li and Horne 

[38], respectively. The values of pore radius and throat radius given in Table 1 are either 

explicitly stated within the respective research paper as a single value or have been taken 

as the peak value from a pore size distribution curve. 

  
(a) (b) 

Figure 2. Pore size distribution of Berea sandstone reported in terms of (a) pore radius, extracted from Shi et al. [39], and 

(b) pore throat radius, extracted from Li and Horne [38]. 

Table 1. Pore and throat radii of Berea sandstone samples with respective porosity and absolute 

permeability. NMR is the Nuclear Magnetic Resonance. 

Literature Reference Method 
Porosity 

(%) 

Permeability 

(mD) 

Pore 

Radius 

(μm) 

Throat 

Radius 

(μm) 

Hu et al. [45] Micro-CT 10–25 500–5000 15 - 

Li and Horne [38] Mercury injection 23 804 10 - 

Minagawa et al[46] NMR - - 14 14 

Ott et al. [47]  Mercury injection 22 500 - 20 

Thomson et al. [48] Simulation (dry) 19.9 132–167 2.72 1.29 

Thomson et al. [48] Simulation (saturated) 15.8 61.5–115 2.72 1.32 

Shi et al. [39] Mercury injection 18.7 330 10 - 
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The findings in the paper of Li and Horne [38] are presented in terms of pore throat 

diameter. Therefore, a rough assumption was made that the pore throat diameter was 

approximately equal to the pore radius, assuming a radial factor (ratio between throat and 

capillary radius) of 0.5, and so the pore radius has been reported as 5 μm in Table 1. Fur-

thermore, Minagawa et al. [46] present a pore and throat size distribution as one figure, 

the peak of which sits at approximately 14 μm. Therefore, it has been assumed that this 

figure represents the average of all pore and throat radii, and so 14 μm has been presented 

in Table 1 as both the pore radius and the throat radius. The radius values from Ott et al. 

[47] and Thomson et al. [48] were determined to be outliers as they were, respectively, 

significantly larger and smaller than other values from the literature. 

Initial values of rmin and rmax were considered by consulting the pore radius and throat 

data presented in Table 1 and Figure 2 and chosen to be 5 and 60 μm, respectively. The 

minimum value of 5 μm was selected due to the negligible pore volume of capillaries 

below this value, as depicted in Figure 2a, which will subsequently only be occupied by 

the wetting phase at the irreducible water saturation and will not contribute to flow within 

the core sample—therefore, having no impact on the permeability of the model. The min-

imum rmax value considered was 60 μm, again selected based on the maximum radius pre-

sented in Figure 2a. However, the simulation procedure was conducted using rmax of both 

60 μm and 100 μm to investigate the influence of rmax on the distribution functions. 

2.3. Matching Porosity and Permeability to Berea Sandstone 

The porosity and permeability of the BOCT model were calculated using Jackson 

(2010) (Equations (4) and (5), respectively). Three CSD functions were then investigated, 

with their constants and exponents adjusted accordingly, in order to match the porosity 

of the model to the porosity of the Berea sandstone sample reported as 18.75% in Moore 

et al. [44]. Since no permeability was provided by Moore et al. [44], the permeability of the 

Berea core sample, and therefore BOCT model, was estimated from the literature data 

obtained from experimental procedures (Table 1). This resulted in a permeability range of 

10s to low 100s mD being considered acceptable for a sample with 18.75% porosity. 

Accurately predicting the tortuosity of the Berea sample was key in matching all 

three CSD functions, as tortuosity is required to calculate both porosity and absolute per-

meability using both Jackson and New approaches (note the porosity and permeability cal-

culation using New CSD relies on Jackson [21] Equations (4) and (5)). To compute the sam-

ple porosity using the Soldi CSD also requires tortuosity (Equation (5) in [37]). The tortu-

osity of the model was calculated using studies of Civan (2007, Equation (3)–(14)) and 

Jougnot et al. ([15], Equation 4.29), in which F represents the formation factor of the Berea 

sandstone, which was explicitly stated as 24 in Moore et al. [44]. The Civan [49] and 

Jougnot et al. [15] approaches yielded tortuosity of 4.33 and 2.12, respectively. An addi-

tional calculation method outlined by Tiab and Donaldson [50] returned a tortuosity of 

10.77, whilst Zecca et al. [51] recorded tortuosities of 4.3 and 4.5 for Berea sandstone using 

water and methane at 3 MPa, respectively. Attia et al. [52] measured tortuosities in the 

range of 3.78–4.71 for Berea sandstone, with an average value of 4.16. Therefore, range of 

values was investigated to determine the most realistic tortuosity and value of 4.5 was 

selected for a sample with porosity of 18.75%. In this study, we assumed the tortuosity to 

be independent of phase saturation, consistent with published studies [53,54]. 

2.4. Constant Capillary Radius 

The first CSD examined was that proposed by Jackson [26] using Equation (2) and 

constant capillary radius. When manipulating the m and DJ parameters of the Jackson CSD, 

it was imperative to decide on whether the total number of capillaries was kept constant 

or the total volume of capillaries was constant. As ����  and ���� were predetermined 

based on literature values, in order to accurately replicate the sample examined by Moore 

et al. [44] for which the absolute permeability was not reported, the values of m and DJ 

were optimised until the porosity of the BOCT model matched that of the Berea core 
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sample (18.5%), therefore ensuring the total volume of capillaries remained constant. Fur-

thermore, it was crucial to ensure that the CSD resembled the pore size distributions de-

picted in Figure 2a (the right-hand side at pore radii greater than 6 μm) whilst still ensur-

ing a realistic permeability for the model consistent with literature values (Table 1). It was, 

therefore, important to first choose the exponent m that gave the general shape of the dis-

tribution required and then to adjust DJ to achieve a porosity of 18.75%. 

The second capillary size distribution examined was Soldi CSD using Equation (4). 

As all values of ��  had already been incrementally distributed between ����  and ���� 

and RREV was a fixed value of 12,500 μm taken from Moore et al. [44], the only parameter 

which could be adjusted to match the desired porosity was the fractal dimension, DS. 

Therefore, the fractal dimension was manipulated until the porosity of the BOCT model 

matched that of the Berea sandstone sample. 

Following the review of the literature surrounding Berea pore size distribution, the 

findings of Shi et al. [39] were determined to be the most similar to the core plug examined 

by Moore et al. [44]. This conclusion was drawn as the porosity reported in both papers 

was the same, and the permeability reported by Shi et al. [39] fell nicely within the range 

of permeability expected of Berea sandstone. Furthermore, Shi et al. [39] presented a de-

tailed pore size distribution as displayed in Figure 2a, and for these reasons, the New CSD 

for the BOCT model was predominantly based on these findings. 

The desired shape of the New CSD was replicated by modifying Jackson [26] distri-

bution (Equation (2)) and invoking three intervals such that to capture the peak pore ra-

dius observed in the literature: 

(��)d�� =

⎩
⎪
⎨

⎪
⎧�� �

�� − ����

���� − ����
�

��

��� ���� ≤  ��  ≤ 10 µm

�������� ��� 10 µm <  ��  < 12 µm

�� �
�� − ����

���� − ����
�

��

��� 12 µm ≤  ��  ≤  ����

 (6)

The limits of each interval were determined by calculating the average pore size from 

the data in Table 1, which resulted in an average peak pore radius of 11 μm, thus inform-

ing on the location and the width of the peak. As before, �� and �� represent the nor-

malisation factors of the first and third interval, respectively, with m1 and m2 being the 

respective skewing constants. 

Table 2 displays the final values required for the parameters of all three distribution 

functions for the BOCT model with constant capillary radius, each resulting in a porosity 

of 18.75%. Bearing in mind the typically expected permeability of Berea sandstone from 

literature (Table 1), it was concluded that the values in Table 2 resulted in the most accu-

rate and realistic pore size distributions and permeabilities for the model with 18.75% po-

rosity, with Table 3 providing the resulting permeability and total number of capillaries 

within the model. 

Table 2. Values required for each parameter of Soldi, Jackson and New CSD functions to obtain po-

rosity of 18.75% for constant radius BOCT model when ��� = 0.1 μ�. Number of significant figures 

varies due to the requirement to match porosity exactly. 

Distribution Parameter rmax = 60 μm rmax = 100 μm 

Soldi DS 1.31875 1.2565 

Jackson 
DJ 1185.32 342.74 

m 10 10 

New 

D1 39,850 119,990 

m1 2 2 

D2 978.4 1131 

m2 8 16 
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It is clear that the permeability obtained with Soldi CSD using Equation (4) is outside 

the expected range of the literature. This is caused by the inability to skew the Soldi CSD 

function towards smaller capillaries due to the criterion of the model that the largest ca-

pillary must always exist. 

Table 3. Permeability and number of capillaries within the model for Soldi, Jackson and New CSD 

functions with constant capillary radius and a model porosity of 18.75% when ��� = 0.1 μm. 

Distribution 
rmax = 60 μm rmax = 100 μm 

Permeability (mD) No. Capillaries Permeability (mD) No. Capillaries 

Soldi 1313 29,532 3562 18,404 

Jackson 263 59,861 686 29,772 

New 409 29,638 434 29,393 

Figure 3 presents a comparison of each distribution function using Equations (2), (4) 

and (6) with a maximum capillary radius of 60 μm (Figure 3a) and 100 μm (Figure 3b). It 

can be seen from Figure 3 and Table 3 that the New CSD provides a more realistic size 

distribution as it is non-monotonic, as expected from real rocks, and it results in signifi-

cantly fewer capillaries with radius less than 10 μm compared with Soldi and Jackson CSD. 

Both the Soldi and Jackson CSD require a large number of small capillaries to accommodate 

for the porosity of 18.75%, while these capillaries do not contribute significantly to flow 

and hence the permeability. Moreover, increasing rmax to 100 μm results in nearly 3-fold 

increase in the model permeability using the Soldi and Jackson CSD functions, while the 

permeability obtained with the New distribution remains fairly constant, which is con-

sistent with real rock permeability behaviour if very few larger pores are added to (found 

in) the sample. 

  
(a) (b) 

Figure 3. Frequency distribution comparison of Soldi, Jackson and New CSD functions using straight capillaries with tortu-

osity of 4.5, ��� = 0.1 μm, ����  =  5 μm and (a) ����  =  60 μm and (b) ����  =  100 μm. 

2.5. Alternating Capillary Radius 

To model the CSD with alternating capillary radius requires determination of the 

radial (a) and length (c) factors in Equation (5). Examining micro-CT images and pore net-

work modelling, such as the work of Sharqaway [55], allowed average a and c values to 

be estimated. Furthermore, the published work of Shehata et al. [56] determined the pore 

throat radius of Berea to be in the range of 2.5–25 μm, therefore permitting minimum and 

maximum radial factors of approximately 0.5 and 0.85, respectively. Upon sensitivity 

analysis of the a and c (not presented here) and consultation of Sharqaway [55] and 

Shehata et al. [56], a radial factor � = 0.7 and length factor � = 0.2 were decided to be 

the most representative of Berea sandstone whilst returning desired permeability values. 
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Equations for porosity and permeability of the model were altered to account for the 

implementation of pore throats. The porosity of the model was calculated using an altered 

form of Equation (4) from Jackson [21] such that: 

� =
��

�
� ��(�, �) ��

� �(��)���

����

����

 (7)

where t is the previously defined tortuosity of the model, A is the cross-sectional area of 

the Berea sandstone sample and �� (�, �) is a dimensionless volume factor (same as Equa-

tion (6) in Soldi et al., [37]): 

��(�, �) = �(�� − 1) + 1 (8)

Similarly, the permeability of the model was calculated using an altered form of 

Equation (5) from Jackson [21] such that: 

� =
�

8��

∫ ��(�, �) ��
� �(��)��� 

����

����

∫ ��(�, �) ��
� �(��)���

����

����

 (9)

where ��(�, �) is a permeability factor that quantifies the reduction in volumetric flow 

rate due to the pore throats (same as Equation (18) in [37]): 

��(�, �) =
��

� + ��(1 − �)
 (10)

Implementing the radial and length factors into Equations (8) and (10) resulted in 

volume and permeability factors, fv and fk, of 0.898 and 0.612, respectively. 

Table 4 displays the final values required for the parameters of all three distribution 

functions—Equations (2), (4) and (6)—for BOCT model with alternating capillary radius, 

each resulting in a porosity of 18.75%, with capillary radii distributed in increments (���) 

of 0.1. 

Table 4. Values required for each parameter of Soldi, Jackson and New distribution functions to ob-

tain porosity of 18.75% with alternating radius water wet bundle of capillary tubes model with ra-

dial and length factors of 0.7 and 0.2, respectively, when ��� = 0.1 μm. Number of significant figures 

varies due to the requirement to match porosity exactly. 

Distribution Parameter rmax = 60 μm rmax = 100 μm 

Soldi DS 1.3341 1.27275 

Jackson 
DJ 1319.82 381.57 

m 10 10 

New 

D1 44,350 133,650 

m1 2 2 

D2 1089.2 1259.3 

m2 8 16 

The permeability and total number of capillaries within the bundle of capillary tubes 

model using each of the distribution functions is detailed in Table 5. The addition of pore 

throats resulted in a permeability reduction of approximately 83% with all distribution 

functions. Since the porosity of the model was reduced by the volume factor, the number 

of capillaries within each model also increased to achieve the desired porosity of 18.75% 

by 11.3% for both the Jackson and New distribution functions, and 12.9% and 13.7% for the 

Soldi distribution model with rmax of 60 μm and 100 μm, respectively. 
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Table 5. Permeability and number of capillaries within the model for Soldi, Jackson and New distri-

bution functions with alternating capillary radius and model porosity of 18.75% with radial and 

length factors of 0.7 and 0.2, respectively, when ��� = 0.1 μm. 

Distribution 
rmax = 60 μm rmax = 100 μm 

Permeability (mD) No. Capillaries Permeability (mD) No. Capillaries 

Soldi 227 33,355 615 20,926 

Jackson 46 66,653 120 33,145 

New 71 32,991 76 32,733 

The shape of the capillary size distribution curves remained the same as before with 

the constant capillary radius model for all three distribution functions, i.e., the m, m1 and 

m2 exponents required for the Jackson and New distribution functions were untouched. The 

only aspect of the CSD that changed was the number of capillaries of each size (y-axis 

magnitude), as apparent in Figure 4. The change is due to the reduced volume of each 

capillary and thus the need for a greater number of capillaries within the model to achieve 

a porosity of 18.75%. 

  
(a) (b) 

Figure 4. Comparison of Soldi, Jackson and New distribution functions using alternating capillaries with tortuosity of 4.5, 

��� = 0.1 μm, ����  =  5 μm and (a) ����  =  60 μm and (b) ����  =  100 μm with radial and length factors of 0.7 and 0.2, 

respectively. 

2.6. Multi-Phase Flow Simulation 

The model was then extended to multi-phase flow by considering a wetting phase w 

(water) and an immiscible non-wetting phase nw (CO2 as in [44]). Based on experimental 

data [57], Berea sandstones exhibit strongly water-wet behaviour when saturated with 

liquid CO2 and high salinity brine. In the experiments conducted by Moore et al. [44] Berea 

sample was also saturated with liquid CO2, but tap water was used. Considering the ther-

modynamics of wettability [58], it is expected that water wetness should increase with 

decreasing salinity. Therefore, we assumed that our BOCT model is strongly water-wet, 

and we only consider this case. Moreover, an assumption was made that capillaries occu-

pied by the non-wetting CO2 contain a thin immobile layer of water [21]. This volumetri-

cally insignificant layer of water was included in the model as it contributes to the surface 

electrical conductivity ��� and regulates the development of an electrical double layer in 

the wetting phase (e.g., [59]). It was also assumed that the non-wetting CO2 is non-con-

ductive, and therefore there is no electrical double layer in the non-wetting phase and 

associated with its surface electrical conductivity. 

To determine water saturation, Sw, and the relative permeability to wetting phase, krw, 

of the model with constant capillary radius, we used the approach described by Jackson 

([21]; Equations (6) and (7), respectively). 

F
re

q
u

e
n

cy

F
re

q
u

e
n

c
y

(a) (b) 



Water 2021, 13, 2316 12 of 21 
 

 

The relative streaming potential coupling coefficient Cr was calculated as a function 

of water saturation using both Equations (31) and (33) from Jackson [21], assuming a thin 

and thick electrical double layer, respectively. In order to adopt the thick double-layer 

assumption for the model, the surface conductivity must dominate—i.e., the two electrical 

double layers at opposite sides of the capillary must overlap, resulting in bulk conductiv-

ity of the wetting water, ��, being negligible compared with ���. A criterion was there-

fore implemented to ensure that the correct Cr assumption was used within the model, 

such that if ��� is less than 10% of ��, then the thin double-layer assumption was used; 

otherwise, the thick double-layer assumption was used. 

Equations for water saturation, relative streaming potential coupling coefficient and 

relative electrical conductivity of the model were altered to account for the implementa-

tion of pore throats using the approach outlined by Soldi et al. [37]. Note that Rembert et 

al. [32] proposed a similar approach (pore and throats) using a different pattern and a 

fractal capillary size distribution to describe the electrical conductivity in saturated con-

ditions. We introduced two new factors to quantify the reduction in capillary radius due 

to the presence of pore throats (0 ≤ ��(�, �) ≤ 1), and the reduction in ��
� (0 ≤ ���(�, �) ≤

1): 

 ��(�, �) = � �(�) ��
�

�

= �� (��) ��
��

�

+ �  � ��
�

��

� = �(� − 1) + 1 (11)

 ���(�, �) = � ��(�) ��
�

�

= �� (��)� ��
��

�

+ �  �� ��
�

��

� = �(�� − 1) + 1 (12)

For the alternating capillary radius model, the corresponding equations for the rela-

tive electrical conductivity and the relative streaming potential coupling coefficient invok-

ing the thin and thick double-layer assumptions become: 

��(��) =
�� ∫ ��(�, �) ��

� �(��)���
�� ���

����
 +  2��� ∫  ��(�, �) �� �(��)���

����

����

�� ∫ ��(�, �) ��
� �(��)��� 

����

����
+  2��� ∫  ��(�, �) �� �(��)���

����

����

 (13)

��(��) =

�
∫  ��(�, �) ��

� �(��)���
�� ���

��� ���

∫  ��(�, �) ��
� �(��)���

����

��� ���

�

��(��)
 

(14)

��(��) =

�
∫  ���(�, �) ��

� �(��)���
�� ���

��� ���

∫  ���(�, �) ��
� �(��)���

����

��� ���

�

��(��)
 

(15)

In Equations (13)–(15) �� ��� refers to the radius of the largest capillary occupied by 

the wetting water, and a minimum radius of capillaries that could be occupied by the 

nonwetting CO2 is referred to as ��� ��� . To investigate an impact on hydroelectrody-

namic properties, multiple values of the irreducible water saturation, Swirr, were used, 

ranging from 0 to 0.5 using different values of ��� ���. 

3. Results and Discussion 

3.1. Relative Permeability to Water 

The relative permeability to water at Swirr between 0 and 0.4 for all three distribution 

functions investigated are displayed in Figure 5a–c for the models of alternating radius 

capillaries, when ����  =  100 μm. Implementing the code for capillaries of varying aper-

ture into the bundle of capillary tubes model had a negligible effect on the relative perme-

ability results compared with the constant radius results when plotted as a function of 

water saturation (e.g., [37]), and therefore the latter are not presented. We explain this 

observation by the fashion in which the pore throats are modelled using the radial and 

length factors, which results in a reduction of the average capillary radii while not 
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explicitly capturing the residual trapping of the non-wetting CO2, hence allowing the en-

tire capillary to be occupied by either wetting or non-wetting phase. In reality, in some 

capillary tubes, depending on the capillary entry pressure, only pores (and usually not 

pore throats) should be occupied by the non-wetting phase via the so-called snap-off 

mechanism, which would have an impact on the relative permeability. 

However, it is clear from Figure 5 that the distribution of capillary radii throughout 

the model has a significant impact on the gradient of the krw curve at low irreducible water 

saturations, with each distribution producing notably different values of krw in the domain 

��� ≤ 0.8 when ����� = 0. The model constructed using the New distribution function has 

larger relative permeabilities at lower water saturation, whilst the relative permeability of 

the Soldi model increases notably slower. As Swirr increases towards 0.4, the krw curves of 

each of the three distribution functions gradually move closer together and begin to over-

lap. These results suggest that the distribution of capillary radii throughout the BOCT 

model becomes less significant to the relative permeability of the model as the irreducible 

water saturation increases. 
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Figure 5. Relative permeability (a–c) and relative streaming potential coupling coefficient (d–f) of the BOCT model con-

structed using the Soldi (a,d), Jackson (b,e) and New (c,f) distribution functions with capillaries of alternating radius assum-

ing a thick electrical double layer and significant surface conductivity with maximum capillary radius of 100 μm. 
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3.2. Relative Streaming Potential Coupling Coefficient 

The relative streaming potential coupling coefficient Cr was investigated for all three 

distribution functions invoking both the thin and thick double-layer assumptions. It was 

found that alternating capillary radius did not have any noticeable effect on Cr for either 

CSD or whether the thin or thick double-layer assumption was invoked. This is explained 

by the inability of the current model to capture realistic residual trapping of the non-wet-

ting phase, thus assuming that any capillary tube in its entirety is occupied either by water 

or by CO2 regardless of whether the corresponding capillary has a constant or alternating 

radius. Moreover, varying the capillary size distribution function had no noticeable effect 

on Cr when employing the limit of a thin double layer. This conclusion was drawn when 

considering both zero and non-zero (��� is less than 10% of ��) surface conductivities. 

Moore et al. [44] used tap water of 125 Ω ∙ m electrical resistivity in their streaming 

potential measurements. Another experimental study on multi-phase streaming potential 

measurements [18] reported values of Cr as a function of Sw using liquid non-polar un-

decane and 0.01 mol/L NaCl solution of approximately 10 Ω ∙ m resistivity. Consistent 

with previously reported results [60], surface conductivity becomes dominant when the 

bulk resistivity exceeds 10 Ω ∙ m. Therefore, we apply the thick double-layer assumption 

to describe the water saturation dependence of Cr and compare the modelling results to 

the published experimental data. Figure 5d–f displays the relative coupling coefficient re-

sults for all three capillary size distribution functions investigated, assuming a thick elec-

trical double layer, with model ����  =  100 μm and capillaries of alternating radius at 

various Swirr values from 0 to 0.5. We do not present results obtained with constant capil-

lary radii as they are essentially identical to those with alternating radii. The difference 

between the three capillary size distribution functions became apparent when analysing 

the Cr results considering a thick electrical double layer—particularly at small values of 

Swirr (between 0 and 0.2). The New distribution function presents the sharpest decrease in 

Cr as Swirr approaches 0 in comparison with other CSD functions, which mimics the results 

reported by Vinogradov and Jackson ([18]; Figure 3a,c) and simulated by Zhang et al. 

([22]; Figure 13a,c). The results presented in Figure 5 demonstrate that more accurate mod-

elling of the capillary size distribution is capable of capturing the experimentally observed 

behaviour of the Cr(Sw). However, the Cr behaviour with Sw obtained using the Jackson CSD 

closely resembles the results of the New CSD. On the other hand, the Soldi CSD does not 

provide as steep of decrease in Cr at proximity to 0 of Sw, thus suggesting this approach is 

least suitable for simulating the electrokinetic properties of the type of rocks studied here 

due to the very large number of small capillaries in the fractal distribution. 

3.3. Bundle of Capillary Tubes vs. Experimental Results of Moore et al. (2004) 

In order to simulate Cr of the Berea sandstone sample, the surface conductivity ��� 

was determined to match the reported water electrical conductivity and that of the fully 

water-saturated rock sample of 3.03 × 10−3 S/m [44]. 

To determine the surface conductivity ��� of the Berea sample, MATLAB (Math-

Works, Natick, MA, USA) scripts were written to calculate the effective conductivity and 

conductance of a single capillary, the total conductance of all capillaries within the model 

constructed using each of the three distribution functions, and finally, the conductivity of 

the water-saturated sample: 

��� = �� ��� +
2���

�� ��(�, �)
�

���
���(�, �)

��

����

����

� �
�

�
� (16)

where L and A are the length and area of the Berea sandstone sample, respectively. The 

results for each distribution function and rmax values are displayed in Table 6. As the sur-

face conductivity is multiplied by the number of capillaries with a radius between ��  and 

�� + ��� , the distribution of capillary radii throughout the model is therefore a limiting 

factor of the surface conductivity and, as such, each distribution at each value of rmax 
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resulted in different surface conductivities. Comparing the results of Table 6 with those of 

Table 5, it is suggested that the surface conductivity correlates with the permeability of 

the model in some way, as the surface conductivity increases with increased permeability. 

This makes sense as the decrease of permeability is due to an increasing number of small 

capillaries, hence an increase of specific surface area and therefore more surface with an 

electrical double layer generating this surface conductivity. Due to the formulation of the 

New distribution function and subsequent similarity in model permeability independent 

of the rmax value selected, the New distribution was the only distribution that resulted in 

similar surface conductivities for rmax of 60 μm and 100 μm. As the bulk conductivity of 

tap water within the pore space of the Berea sample was measured to be 8 × 10−3 S/m (8 × 

10−9 S/μm) by Moore et al. [44], the bundle of capillary tubes model is dominated by the 

surface conductivity since it is three orders of magnitude larger than the bulk conductivity 

in capillaries of an order of 1 μm and one order of magnitude larger than the bulk con-

ductivity in the largest tested capillary tubes of 100 μm (note that the bulk conductivity is 

multiplied by the ��
� term and the surface conductivity is multiplied by the ��  term in 

Equation (16)). The high surface conductivities presented in Table 6 are indeed expected 

as the bulk electrolyte (tap water) salinity is at least 1 order of magnitude lower than the 

threshold salinity at which the surface conductivity becomes dominant in sandstones [60] 

and comparable to the corresponding value for sand packs [61]. 

Table 6. Surface conductivity of the model for Soldi, Jackson and New distribution functions with 

capillaries of alternating radius and model porosity of 18.75% required to match the conductivity of 

the water-saturated rock measured by Moore et al. [43]. Number of significant figures varies due to 

the requirement to match conductivity exactly. 

Distribution 
Surface Conductivity, ��� (S) 

rmax = 60 μm rmax = 100 μm 

Soldi 2.8305 × 10−6 3.9592 × 10−6 

Jackson 1.7221 × 10−6 2.5662 × 10−6 

New 2.3668 × 10−6 2.38515 × 10−6 

The streaming potential coupling coefficient of the fully water-saturated rock sample 

was calculated with respect to the zeta potential using: 

�(�� = 1) =

�� ��

��
 ∫  ��(�, �) ��

� �(��)���
����

����

��  ∫  ��(�, �) ��
� �(��)���

����

����
+  2��� ∫  ��(�, �) �� �(��)���

����

����

 (17)

Invoking thin double layer and assuming the electric permittivity and viscosity of 

water to be 7.1 × 10���F/m and 8.9 × 10��Pa ∙ s, respectively, with the aim of achieving 

the coupling coefficient of −300 mV/MPa as reported by Moore et al. [44]. Although Jack-

son [21] and Linde [62] derived expressions to compute �(�� = 1) in the limit of a thick 

double layer, the proposed equations use the surface charge density, which is neither re-

ported nor can be interpreted from Moore et al. [44], and for that reason, we used Equation 

(17). The bulk conductivity of the model was set to the measured value of the core sample 

(8 × 10−3 S/m), and the zeta potential ζ was assumed to be −28 mV as calculated by Moore 

et al. [44]. The coupling coefficient at �� = 1 was calculated for each distribution function 

with rmax values of 60 μm and 100 μm using the respective surface conductivities ��� de-

termined previously. 

Unsurprisingly, the simulated coupling coefficient for the fully water-saturated rock 

sample under each of the distribution functions does not match the coupling coefficient 

of −300 mV/MPa reported by Moore et al. [44]—the simulated coupling coefficient is −62 

mV/MPa, which is approximately five times smaller. However, in order to simulate liquid 

CO2 flooding of a tap-water-saturated sample and to match the relative coupling 
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coefficient of the model to that of Moore et al. [44], it is not necessary to match �(�� = 1) 

of the model to that of Moore et al. [44]. 

The relative streaming potential coupling coefficient of the BOCT model was simu-

lated under the thick double-layer assumption using Equation (15), with the aim of repli-

cating the relative coupling coefficient of 0.1 reported by Moore et al. [44]. The simulated 

relative coupling coefficient results are presented in Table 7 for models with ����  =

 100 μm, and which summarises the actual Swirr of the Berea sample for a range of possible 

values which could be reported by Moore et al. [44]. Based on the Swirr values reported in 

the literature for Berea sandstone, Cr was initially simulated for Swirr in the range 0.2–0.5. 

Since according to our model, a non-zero coupling can only occur when water is flowing 

within the Berea sample, acknowledging that if water is still flowing, then the irreducible 

water saturation has not yet been reached. This is consistent with the conclusions drawn 

by Vinogradov and Jackson [18] and Zhang et al. [22]. On the other hand, an experimental 

study published by Allègre et al. [63] reported a non-zero streaming potential coupling 

coefficient at irreducible water saturation and presented an empirical model to explain 

this behaviour. However, the model heavily relied on an abnormal relative streaming po-

tential coupling coefficient of an order of 30 at partial water saturation. To the best of our 

knowledge, such large values of Cr have not been reported by any other research group, 

hence the empirical parameter introduced by Allègre et al. [63] that allowed Cr at partial 

saturation to be 200 greater than the corresponding value at Sw = 1 was considered to be 

irrelevant for our model describing experimental conditions when ��(�����) ≪ 1. 

Table 7. Actual irreducible water saturation of the Berea sample for various reported irreducible 

water saturations when ��(�����) = 0.1, assuming the presence of a thick electrical double layer. 

Actual irreducible water saturations determined for Soldi, Jackson and New distribution functions 

with capillaries of alternating radius and model porosity of 18.75%, when ����  =  100 μm. 

Reported Swirr 
Actual Irreducible Water Saturation When ��(�����) = �. � 

Soldi CSD  Jackson CSD  New CSD  

0.2 0.15 0.17 0.18 

0.3 0.25 0.26 0.27 

0.4 0.35 0.35 0.36 

0.5 0.46 0.46 0.46 

The results in Table 7 are designed to be analysed such that if Moore et al. [44] report 

�� (�����  =  0.32)  =  0.1, the true Swirr should be 0.21, 0.22 and 0.22 for the Soldi, Jackson 

and New CSD functions, respectively. Therefore, Table 7 effectively demonstrates the 

magnitude of the error within Swirr of Moore et al. [44], with the largest and the smallest 

discrepancies between the reported and actual Swirr being established with the Soldi and 

New distribution functions, respectively. However, at the reported Swirr of 0.3 and above, 

the actual Swirr of all distributions is approximately the same.  

Following the comparison of the BOCT model results and experimental results of 

Moore et al. [44], this work confirms that the Moore et al. [44] paper must be corrected for 

the actual Swirr, since it is not possible to achieve a non-zero coupling coefficient at the 

irreducible water saturation due to the lack of a flowing electrolyte. Our model also sug-

gests that a more accurate New CSD function should be used in BOCT models to capture 

the behaviour of Cr with water saturation. Moreover, it is suggested to explicitly imple-

ment the residual trapping of a non-wetting phase in the BOCT model with alternating 

capillary radius. 

4. Conclusions 

The bundle of capillary tubes model developed in this study to simulate the stream-

ing potential coupling coefficient in partially saturated porous media is based on a realis-

tic pore and pore throat size distribution of real rock samples. Compared with previously 
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published studies, our model produces results that are more consistent with existing ex-

perimental data. 

 Unlike the previous bundle of parallel capillaries models, our approach to defining 

the pore and pore throat radii distribution is based on direct measurements, thus 

providing a more realistic description of porous rocks, in which pore and pore throat 

size distribution is non-monotonic; 

 Our model was tested using constant and alternating capillary radii, with the latter 

being invoked in order to distinguish between pores and pore throats. Despite the 

alternating capillary radii model’s capability, we did not attempt to explicitly model 

residual trapping of the non-wetting phase in this work. Hence, we found no notice-

able difference in the relative permeability and the relative streaming potential cou-

pling coefficient modelled using either straight or variable radii capillary tubes; 

 Our model produces considerably different relative permeability curves with small 

irreducible water saturation (<0.2) in comparison with previously published studies 

of Jackson [21] and Soldi et al. [37]. However, there is no noticeable difference be-

tween modelled curves using either of the approaches if irreducible water saturation 

is larger than 0.2; 

 Compared with the results published by Jackson [21] and Soldi et al. [37], the relative 

streaming potential coupling coefficient simulated with our model appears to be 

more stable at high water saturation and to decrease more rapidly to zero as water 

saturation approaches the irreducible value. This behaviour is consistent with pub-

lished experimental results, thus suggesting that the non-monotonic capillary size 

distribution should be used for more accurate characterisation of multi-phase flow in 

porous media; 

 Our model was used to simulate measurements of the streaming potential coupling 

coefficient in sandstone samples saturated with aqueous solution and liquid CO2 [44]. 

The model assumed a thick double layer approach for computing the coupling coef-

ficient, consistent with the use of tap water in the experiments. The modelling results 

suggest that true irreducible water saturation was not reached in the experiments 

reported by Moore et al. [44]. This conclusion is consistent with the hypothesis that 

explained a non-zero coupling coefficient in the experiments of Vinogradov and Jack-

son [18]. Moreover, since our model produces qualitatively more accurate behaviour 

of the coupling coefficient with decreasing water saturation, the discrepancy between 

the reported by Moore et al. [44] irreducible water saturation and the modelled true 

value was the smallest with our approach relative to that of Jackson [21] or Soldi et 

al. [37]; 

 To improve the quality of the here-developed bundle of capillary tubes model re-

quires explicit representation of the residual (capillary) trapping of the non-wetting 

phase. This modification will be developed in a future study using the alternating 

capillary radii and will potentially allow a more accurate depiction of hysteretic be-

haviour of the streaming potential coupling coefficient during saturation and desat-

uration of the modelled rock with the non-wetting phase; 

 Due to its simplicity, the here-reported and to-be-improved bundle of capillary tubes 

model can be used to accurately simulate the evolution of the streaming potential 

coupling coefficient during multi-phase flow in porous media, thus providing an ef-

ficient means for a variety of geophysical applications. 
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