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Abstract—The self-construal is one of the most significant 

cultural markers in humans. Accordingly, mapping the 

relationship between brain activity and self-construal contributes 

to understanding the nature of such psychological traits. Existing 

studies have mainly focused on static functional brain activities in 

specific brain regions. However, evidence has suggested that the 

functional connectivity of the brain network is dynamic over time 

and the high-level psychological processes might require 

collaboration among multiple regions. In the present study, we 

explored the dynamic connection patterns of the two most 

representative types of self-construal traits, namely independence 

and interdependence, using machine learning-based models. We 

performed resting-state functional MRI (rs-fMRI) on a sample of 

young adults (n=359) who completed Singelis’ Self-Construal 

Scale, and constructed the efficiency-based dynamic functional 

connectivity (FC) networks. XGBoost Regression was 

subsequently applied to learn the relationship between the 

dynamic FC and the two self-construals without any priori bias or 

hypothesis. The performance of the regression model was 

validated by the nested 10-fold cross-validation. The results 

showed that the efficiency-based dynamic FC could identify the 

orientations of independence and interdependence. The 

comparison analyses revealed that prediction accuracy using this 

dynamic FC method was significantly improved compared to the 

conventional static FC method. By exploring key connectivities 

selected by the regression model, we observed that the 

independence orientation was mainly characterized by the right-

hemisphere FC, while the interdependence orientation by the left-

hemisphere FC. The results suggest that the self-construals are 

associated with distributed neural networks the entire brain. 

These findings provide the pivotal ingredients toward the 

biological essence of culturally related variables in the brain by 

taking advances in cultural psychology, neuroscience, together 

with machine-learning analytic technologies. 

 
Index Terms—self-construal, resting state functional 

connectivity (rsFC), nodal efficiency, dynamic functional 

connectivity 
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I. INTRODUCTION 

HE concept of self-construal establishes a system to 

provide perception, comprehension and interpretation on 

individuals and their relation to others in a social enviornment 

[1-4]. Markus et al. [1] firstly proposed to categorize people 

into independent self-construal (IndSC) and interdependent 

self-construal (InterSC) by examining whether they construe 

themselves as individuals and separate from others, or they are 

defined by relationships with others [5]. Generally, IndSC is 

associated with an emphasis on personal agency and uniqueness 

from others. In contrast, InterSC is associated with an emphasis 

on the relations to other people and with the maintenance of 

collective values, and pursuing social harmony. Although 

Markus et al. noted that these are only two of many possible 

self-construals, the term self-construal has become virtually 

synonymous with independence and interdependence [4]. 

Therefore, the identification of IndSC and InterSC becomes a 

typical cultural marker in humans. For decades, the concept of 

self-construal has attracted considerable attention in 

psychology and sociology [6-10].  

Recent research in social neuroscience has verified that self-

related processing is associated with brain activities located in 

multiple regions [11, 12]. For example, researchers showed that 

self-construals are associated with multiple cognitive/affective 

neural processes, such as moderating associations between trait 

creativity and social brain network, affecting the functional 

organization of the human brain and behavior under different 

cultural backgrounds [3, 13, 14]. Other researchers also 

reported the brain modulation mechanisms for the orientations 

of independence and interdependence in other cognitive 

activities such as choice justification [15], reward [16], pain 

perception [17]. Specifically, from the perspective of fMRI, 

existing studies reported correlations between self-construals 

and task-based brain activities [18-21]. Although stimuli of 

these studies prompted the process of self-construal, different 
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protocols made the observed results not the same as each other. 

Besides, the task-driven approach also brings obstacles to the 

collection of large amounts of image data. On the other hand, 

existing resting state fMRI-based studies that investigate neural 

characteristics of self-construal are mainly based on specific 

regions of interest (ROI), while there is still little whole brain-

based research [22]. To summarize, there is little work that 

explores the neural basis of the self-construal using resting-state 

whole-brain hodological (neural pathways) approach combined 

with topology (brain regions), although this approach is crucial 

for understanding the nature of social concepts [23-25]. In other 

words, the relationship between self-construals and whole-

brain functional connectivity (FC) remains unclear.   

Exploring FC has significantly contributed to our 

understanding of the brain's functional network architectures in 

health and disease [26]. Evidence shows that FC, associated 

with ongoing rhythmic activity, is dynamic instead of 

remaining stationary over time. In the recent fMRI studies, 

researchers found that many clinical symptoms and cognitive 

traits were encoded more evidently in dynamic functional 

connectome than conventional static counterpart [27-30]. 

Additionally, powered by emerging methods and models for 

spatial dynamic properties [31, 32], topological properties [29, 

33], machine learning methods in neuroscience [34, 35] and 

validation scheme [36], whole-brain dynamics of connectivity 

or networks could be further investigated to establish stable 

generalized biomarkers (i.e. a traceable substance to examine 

self-construal measured by instruments) for a better 

understanding of the trait of self-construal. When brain regions 

located in different parts of the brain exhibit similar topological 

characteristics in the time dimension, this collaboration (or 

correlation) has potential implications for understanding these 

disorders and traits [37]. 

Building on these previous studies and advances, in the 

presented study, we applied machine learning-based regression 

models to investigate the self-construals (i.e. IndSC and 

InterSC) based on dynamic connectome-based brain networks 

of rs-fMRI data. According to the previous studies, the self-

construal may be associated with a large scale of functional 

integrity of distributed networks and involve the mutual 

synchronization of multiple brain regions [13, 18-20, 38]. Thus, 

we assumed that the self-construals are encoded more explicitly 

in the dynamic FC than the static one, and utilized the efficiency 

attribute of the brain network to depict dynamic 

synchronization of different brain regions. To validate this 

hypothesis, we exploited XGBoost, a machine learning-based 

regression model without prior bias, to find the relationship 

between the efficiency-based dynamic FC and self-construals. 

Following the nested 10-fold cross-validation on the regression 

model, we compared the performance of using efficiency-based 

dynamic FC with other conventional approach to validate our 

hypothesis. By using this approach without prior bias, we 

further investigated significant dynamic functional connectivity 

weighted by the XGBoost model, thereby analyzing the 

 
1 https://github.com/zhuyf8899/Neural-Substrates-of-Self-construal-with-

Dynamic-Functional-Connectivity 

connectome pattern for identifying independence and 

interdependence self-construals. Unbiased machine learning 

methods provide a propitious window to understanding social 

functions of the human brain that was previously under-

investigated. The present study therefore examined 

contributions of the proposed dynamic functional connectivity 

to self-construal, a social culture dimension of the self-concept, 

using machine learning approaches. Specifically, (1) 

Contrasting to the conventional static FC, we innovatively 

propose a sliding window-based dynamic correlation of nodal 

efficiency, namely efficiency-based dynamic FC, on whole 

brain resting-state functional connectivity (rsFC), to mine 

higher-order social information that can hardly be extracted 

from static rsFC; (2) We utilize the XGBoost regression model 

to learn the relationship between scores of individuals’ IndSC 

as well as InterSC and the efficiency-based dynamic FC, then 

validate the performance of the model with nested 10-fold 

cross-validation, thereby demonstrating the benefit of using the 

proposed whole-brain dynamic rsFC without pre-defined bias; 

(3) We interpreted the patterns (regions and connections) 

weighted by the XGBoost model for identifying IndSC and 

InterSC, thereby further investigating the characteristic of 

hemisphere dominance for self-construal. 

II. MATERIALS AND METHODS  

A. Participants 

359 undergraduate or graduate students (159 males; age: 18–

30, average: 22.74) were recruited. Written informed consents 

were obtained from all participants. The research protocol was 

approved by the Ethics Committee of School of Medicine in 

Tsinghua University. According to self-reported records, these 

participants had no life-time psychiatric disorder, no history of 

neurological disorders, and no gross abnormalities as confirmed 

using MRI. Participants were excluded if they had: (i) a history 

of substance, drug or alcohol dependence; (ii) observable brain 

abnormalities using MRI; (iii) metal devices such as electronic 

implants; (iv) the mean framewise displacement value 

exceeding 0.5 mm, or the maximum displacement caused by 

head motion larger than 1 mm. Eventually, by excluding 36 

participants due to the head motion, a dataset including 323 

participants (displacement: mean = 0.21±0.12mm) was derived 

for the following investigation. The code utilized in the 

following experiments is available at GitHub 1.  

B. Assessment of IndSC and InterSC 

The degree of individual self-construal was evaluated using 

the Singelis’ Self-Construal Scale (SCS) [39] with Chinese 

translation. The Singelis’ Self-Construal Scale has 30 items, 

half of which measure IndSC (e.g. “I do my own thing, 

regardless of what others think.”) while the other half measure 

InterSC (e.g. “I will sacrifice my self-interest for the benefit of 

the group I am in.”). Participants are required to rate the extent 

to which they agreed with. Each item uses a 7-option Likert-

like scale from 1 (strongly disagree) to 7 (strongly agree). In 
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this study, the alpha coefficient for the IndSC and InterSC 

subscales were set to 0.75 according to our previous research 

[40, 41]. IndSC and InterSC scores of all participants cover a 

relatively complete and continuous range (Table 1). 

C. Image Data Acquisition 

Functional images were collected on a 3T Philips Achieva 

MRI scanner (Philips Healthcare, Best, The Netherlands) with 

a 32-channel head coil. Head motion was controlled by the tight 

but comfortable foam padding. 

Resting-state blood-oxygenation-level Dependent (BOLD) 

signals were collected using a gradient-echo-planar imaging 

sequence with the following parameters: 37 axial slices; 

repetition time (TR) = 2300 ms; echo time (TE) = 35 ms; flip 

angle (FA) = 90°; slice thickness = 2.5 mm; gap = 1.0 mm; 

matrix = 96 × 96; field of view = 240 × 240 mm2. During the 

scan, the participants were guided to lie inactive and motionless 

in the scanner, with eyes closed but staying awake, keeping 

relaxed without thinking specific things in deliberate. The 

whole scan lasted for 508.3 seconds. 

The high-resolution T1-weighted SPGR structural images in 

coronal view were acquired with the slice thickness of 1 mm 

without gap. Other sequence parameters were: TR/TE = 8.1/3.7 

ms, FOV = 240 × 240 mm2, matrix = 240 × 240 × 160. 

D. Data Preprocessing 

Functional images were preprocessed using the GRETNA 

[42] and SPM12 toolkits (www.fil.ion.ucl.ac.uk/spm). The 

preprocessing of rs-fMRI data included discarding the first 10 

volumes to ensure magnetization equilibrium, slice timing 

correction with the first slice, and head-motion correction. The 

0.01-0.10Hz frequency band-pass were used. The nuisance 

signal regression (24-parameter head motion profiles, global 

signal, CSF signal, and WM signal) was performed. In order to 

do the group analysis, the first volume of the fMRI time series 

that were not discarded was coregistered to the same 

 
Fig. 1.  A schematic illustration of the proposed analysis approach. (A) The preprocessed resting-state BOLD fMRI time series are firstly extracted and parceled 
with Brainnetome Atlas. Dynamic functional connectivity is then constructed using the sliding window method, with the window length of 22 TRs (50.6 s), and 

the sliding step size of 1 TR (2.3 s). The Nodal efficiency of each node is calculated for every window. For each participant, the correlation coefficient between 

each pair of nodal efficiency time series is calculated, which forms a 246×246 correlation matrix, termed as efficiency-based dynamic FC in this study. (B) 
Utilizing efficiency-based dynamic FC obtained from (A), regression models are used to assess the relationship between dynamic brain networks and the 

assessment of self-construal (i.e. independent self-construal and interdependent self-construal). (C) After using nested 10-fold-cross-validation to demonstrate the 

validity of the regression model, we make the model output the weights of each connection and then normalize these weights, thereby performing analysis and 
mapping the relationship between brain dynamic activity and the score of self-construal. 

TABLE I 

PARTICIPANT DEMOGRAPHIC AND CLINICAL INFORMATION (N=323) 

Item Description 
Correlation with 

the IndSC 

Correlation with 

the InterSC 

Age 22.75±2.97 (SD) -0.02 (p=0.71) 0.03 (p =0.60) 

Gender 159 (M):164 (F) -0.08 (p =0.15) -0.01 (p =0.80) 

Hand use 315 (R):8 (L) 0.03 (p =0.61) -0.01 (p =0.79) 

IndSC 72.54±9.75 (SD) 1.00 (p =0.0) 0.25 (p =5.77E-6) 

InterSC 76.39±9.32 (SD) 0.25 (p =5.77e-6) 1.00 (p =0.0) 
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participant’s T1-weighted images, and then normalized to the 

Montreal Neurological Institute (MNI) template space. 

E. Construction of Dynamic Networks 

1) Node Definition 

The parcellation of brain is defined by a connectional 

architecture brain atlas named Brainnetome Atlas [43] with 246 

nodes. This method takes the advantage of considering 

functionally important connectivity information on both 

anatomical and functional connections via spectral clustering 

that based on the similarity among connectivities. 

2) Static functional connectivity 

GRETNA software was used to construct the whole-brain 

networks. As a comparison with our proposed method, the static 

functional connectivity analysis is carried out by the following 

process: the mean signal of each region of interest (ROI) was 

obtained by averaging the BOLD time series over all voxels 

within that region. The edges of the static functional brain 

networks were computed by Pearson correlation coefficient (r). 

Eventually, a 246 × 246 matrix was derived for each participant, 

and further network analysis was conducted on the basis of such 

matrix. 

3) Dynamic functional connectivity 

The dynamic functional connectivity was calculated by using 

a sliding window approach. The sliding-window approach was 

used to explore the time-varying changes of functional 

connectivity within the 246 nodes during functional MRI scans. 

The resting state time series data were segmented into a 22-TR 

window with the size of 50.6 s (2.3s per TR). The window was 

slided step-wise by 1 TR along the 221-TR length scan (i.e. 

508.3 s), resulting in 200 consecutive windows across the entire 

scan. The reason of choosing 22 TRs as the segmented window 

length is that it has been reported to provide a good trade-off 

between the ability to resolve dynamics of functional 

connectivity and the quality of the correlation matrix estimation 

[28, 29].  

F. Calculating Efficiency-Based Dynamic FC 

As a topological property in network analysis, network 

efficiency is considered to measure the global efficiency of the 

parallel information transfer in the network. The global network 

efficiency describes the whole-brain network [44-46].Similarly, 

to determine the nodal (regional) characteristics of the networks, 

we computed the nodal efficiency, 𝐸𝑛𝑜𝑑𝑎𝑙(𝑖) [47]: 

𝐸𝑛𝑜𝑑𝑎𝑙(𝑖) =
1

𝑁−1
∑

1

𝐿𝑖𝑗
𝑖≠𝑗∈𝐺                           (1) 

where 𝐿𝑖𝑗  is the shortest path length between nodes 𝑖 and 𝑗 in 

the entire brain network 𝐺 . 𝐸𝑛𝑜𝑑𝑎𝑙(𝑖)  measures the average 

shortest path length between a given node 𝑖 and all of the other 

nodes in the network. Note that the length was defined 

according to the distance between two coordinates of nodes 

from Brainnetome Atlas.  

In this study, for each sliding window of a participant, the 

efficiency of each brain region is computed. It results in a 246

×1 nodal efficiency vector. By joining nodal efficiency vectors 

from 200 windows, a matrix with a shape of 246×200 is then 

formed. In other words, an array of 200 numbers was formed 

by its variation in the sliding windows for each node. By 

calculating the Pearson’s correlation coefficient r between each 

pair of the array, the efficiency-based functional correlation 

matrix, termed efficiency-based dynamic FC, is obtained for 

one participant (Fig 1A), and the final dimension of efficiency-

based dynamic FC is 246 × 246. With this approach, the 

efficiency-based functional correlation matrix describes the 

correlation of dynamic changes in nodal efficiency between two 

nodes. 

G. Mapping the Relationship between Efficiency-Based 

Dynamic FC with Self-construals by Using Regression Model 

To further investigate the effectiveness of efficiency-based 

dynamic FC in recognizing self-construals (Fig 1B), we 

performed regression model analysis to learn the relationship 

between the dynamic FC matrix and scores of IndSC/InterSC. 

Due to the large dimension of the efficiency-based dynamic FC 

matrix, we established a feature selection criterion. That is, we 

only kept the dimensions whose p-value of correlation with the 

SCS scores were less than 0.05 in the matrix (Fig 2A) for further 

analysis. It should be noted that the feature selection is only 

applied on the training set for each training iteration to avoid 

potential overfitting problem. 

Thus, we utilized XGBoost as the regression model in the 

following experiment. To examine whether efficiency-based 

dynamic FC can be used to correctly extract meaningful 

connections for identifying individuals’ IndSC/InterSC, we 

utilized nested 10-fold cross-validation to evaluate the 

performance of the regression model, thereby avoiding 

potential overfitting and deriving the optimal parameters [48]. 

For each time, one in ten individuals’ IndSC/InterSC as well as 

their efficiency-based dynamic FC data were kept as validation 

data, while the rest were used as training data of the regression 

model. The regression model needs to learn the relationship 

between the efficiency-based dynamic FC and the 

corresponding self-construals in the training set and make a 

prediction on the efficiency-based dynamic FC matrix in the 

test set. The difference between the actual score of self-

construal and the prediction was recorded as regressing error.  

To measure the performance of the regression model, we 

used mean absolute error (MAE) and mean square error (MSE) 

to calculate the quantitative error between the predicted and the 

real IndSC/InterSC scores. In addition, the Spearman 

correlation coefficient was used to measure the correlation 

between the predicted and the actual scores. In addition, a 

permutation test was also applied to investigate whether the 

obtained metrics were significantly better than expected by 

chance. In the experiment, we permuted IndSC/InterSC scores 

across all participants with 1,000 times under same 

hyperparameters condition, and each time re-applied the above 

nested cross-validation procedure. This resulted in a 

distribution of correlation (r) and MSE values reflecting the null 

hypothesis that the model did not exceed chance. The number 

of times that when the permuted value was greater than (or with 

respect to MAE and MSE values, less than) the true value was 

then divided by 1,000 to provide an estimated p-value for the 

correlation coefficient, observed MSE and MAE [49]. 
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We also compared the predicting performance across the 

proposed efficiency based dynamic FC, static FC and nodal 

efficiency. Specifically, the static FC refers to the standard 

static functional connectome based on Pearson correlation 

between time courses of each brain region, and it is a 246×246 

dimensional matrix for each participant. The nodal efficiency is 

calculated on the entire time course of each brain region. 

H. Regression model weighted connection analysis 

After selecting the parameters with the best performance, we 

further examined the important connection by referring the 

importance it contributed to the regression model. Specifically, 

we presented the important brain nodes and connections (i.e. 

nodes and edges in the efficiency-based dynamic FC) selected 

by the XGBoost model with the best regression performance 

(i.e. smallest MAE/MSE and largest r). In particular, the 

importance of each connection is selected according to the 

model alongside with nested 10-fold cross-validation, then each 

importance is normalized and averaged as final connection 

coefficient. 

Furthermore, based on the differences in left and right brain 

functions of self-construction reported in previous research [4, 

20], we have calculated number and proportion of the two nodes 

connected by one connection which are completely located in 

the left hemisphere, right hemispheres and connections across 

the both hemisphere in the top N important connections selected 

by the regression model. In particular, BrainNet Viewer [50] 

was used to map nodes and connections to exhibit model 

selected significant connections and coefficients based brain 

maps. 

III. RESULTS 

A. Demographic Characteristics 

As described in the previous section, the SCS scores of all 

participants were consistently and evenly distributed (Fig 2C) 

with respect to the degree of independent/interdependent 

orientations. In addition, the scores of independence and 

interdependence were not significantly correlated with 

participants’ age, gender, or hand use (Table 1). 

B. Validating the Performance of Regression Models Using 

Nested Cross-Validation 

In the 10-fold cross-validation, the MAE, MSE and 

correlation coefficient between the predicted and the true SCS 

scores were obtained to evaluate the performance. Shown in 

Table 2, the XGBoost regression model reached a comparative 

 
Fig. 2.  Feature selection scheme and the scores of independent/interdependent self-construal. (A) Pearson correlations between nodal efficiency of each pair of 
brain nodes for each participant are first calculated to construct individual efficiency-based dynamic FC. Pearson’s coefficient (r) between each dimension of 

efficiency-based dynamic FC of all participants are then computed and their correlation scores with statistical significance (p-value<0.05) are kept as features for 

the regression model. (B) Distribution of Pearson coefficient values for connection in our proposed dynamic functional connectivity and 
independent/interdependent self-construals. (C) Distribution of independent/interdependent self-construal scores across participants. 
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quantitative error (MAE and MSE) for predicting both IndSC 

(MAE=7.83, MSE=96.05, p-value of permutation test <0.001) 

and InterSC scores (MAE=7.75, MSE=93.43, p-value of 

permutation test <0.001). The Spearman correlation coefficient 

between the predicted and the actual values are 0.17 and 0.19, 

respectively (Fig 3). All results passed Bonferroni corrections 

for the multiple comparisons. This indicate that the dynamic 

correlation between the node efficiency we extracted can 

effectively help to estimate self-construals.  

Furthermore, to demonstrate the superiority of efficiency-

based dynamic FC in the presented method over static FC as 

well as nodal efficiency itself, we performed an experiment by 

using static rsFC or nodal efficiency on time course to predict 

individual self-construals under same experiment protocol. 

Steiger test is performed to compare the significance of 

dependent correlation coefficients [51, 52]. As a result, the z-

scores of Steiger test between the proposed FC and static FC 

are 1.036 for IndSC and 2.240 for InterSC. The z-scores of 

Steiger test between the proposed FC and nodal efficiency are 

1.380 for IndSC and 3.987 for InterSC, respectively. This result 

showed that the proposed InterSC identification has a 

statistically significant improvement compared with other 

existing features. The comparison also showed that the 

proposed method reduced the MAE result by 1.4 in IndSC 

regression and 0.4 in InterSC regression, respectively (Table 2). 

Depending on the model’s interpretability [53], we use the 

model outputted importance for subsequent analysis.  

C. Localization of Model Selected Connections and Regions 

An exploratory correlation analysis was conducted across all 

participants to examine the relevance of efficiency-based 

functional correlation matrix to IndSC and InterSC. To be 

specific, we used the XGBoost model which had the optimal 

performance to output the importance of each connection. We 

selected the top N (N=10, 20, 30, and 40) connections according 

to the largest N average normalized coefficients of the XGBoost 

model, and then categorized these connections into three types, 

i.e., left-hemisphere, right-hemisphere and cross-hemisphere 

connections, according to whether two nodes of a certain 

connection are both located in the left/right hemisphere or they 

are located in two different hemispheres. The difference in 

hemispherical polarities of the connections in IndSC and 

InterSC regression models are confirmed by chi-square test. As 

a result, IndSC exhibits an obvious right-brain dominance, 

while InterSC, on the contrary, exhibits an obvious left-

hemisphere dominance. For instance, in the 20 most important 

connections, more than a half (12, 60%) left or right-

hemisphere connections was observed for IndSC. Whereas for 

InterSC, left-hemisphere connections played a more significant 

role (12, 60%) (Fig 4A).  

We also investigated the important regions that effects the 

regression of the two self-construals. Selected by the 

coefficients of regions outputted by the regression model, the 

top 10 important connections are listed in Table 3. For each 

connection, the weighted coefficient is assigned equally to the 

node it linked to. Then by overlaying all connections’ 

coefficients, the coefficients map is obtained, as presented in 

Fig 5. Observed important regions, including Temporal Lobe 

(PhGL66, ITGR71, ITGL77, STGL64, STGR62), Frontal Lobe 

(PrGR61, MFGR76, OrGR63), Occipital Lobe (LOcCR41, LOcCL21, 

MVOcCR55, LOcCL41, LOcCR43), Parietal Lobe (PoGR41, 

PoGR43), Insular Lobe (INSR64), and part of Limbic Lobe 

(CGR75), made the major contribution to identify the IndSC. On 

the other hand, the regions from Frontal Lobe (OrGL62, MFGL77, 

MFGL71, OrGL64), Temporal Lobe (PhGL63, ITGL75, MTGL43, 

PhGL65), Subcortical Nuclei (ThaL83, AmygR21, ThaL87, BGR65, 

ThaR84), and Limbic Lobe (CGL73, CGL75) have made the major 

contribution to the process of identifying InterSC (further 

anatomical and modified Cyto-architectonic descriptions can be 

accessed at http://atlas.brainnetome.org). From these results, 

we observed that Occipital Lobe, Parahippocampal Gyrus, 

Middle Frontal Gyrus, Orbital Gyrus in the Frontal Lobe, 

Middle Temporal Gyrus, Inferior Temporal Gyrus in the 

Temporal Lobe, Subcortical Nuclei, and part of the limbic 

system are involved in the processing of both IndSC and 

InterSC. Although there are many similarities in the lobe level, 

the regions and sub-regions that influence the independent and 

interdependent self still have large differences (Table 3, Fig 4B). 

While in the IndSC and InterSC regression models, there are no 

concurrent connections among the top 40 important 

connections with the largest coefficients. 

Although these important areas are located in different lobes, 

Frontal Lobe and Temporal Lobe still make a major 

contribution to identifying the self-construals. In the IndSC 

regression analysis, the number of connections in which 

Temporal Lobe is involved achieves 6, and the number of 

connections in which Frontal Lobe is involved achieves 3 in the 

top 10 connections. Similar proportions can also be observed as 

the value of top N is continuously expanded. In the analysis of 

identifying InterSC, there are 4 connections in which Temporal 

Lobe is involved and 5 connections in which Frontal Lobe is 

involved, in the top 10 connections. In addition, the connections 

between Temporal Lobe and Frontal Lobe also showed their 

importance to affecting the regression. There are 6 connections 

connecting Temporal Lobe in the task of identifying IndSC and 

4 connection located in Frontal Lobe. The above results also 

reflect that both self-construals are similar many cognitive traits 

that majorly processed in Frontal and Temporal lobe, InterSC 

processing relies more on the collaborative processing of 

multiple brain lobes, while IndSC relies more on the connection 

 
Fig. 3. Correlations between actual and predicted scores of independent and 

interdependent self-construals with XGBoost regression. 
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between frontal and temporal related regions 

IV. DISCUSSION 

Self-construal is one of the complex cultural-related concepts 

that have drawn considerable attention from psychologists and 

neuroscientists in the past two decades [54, 55]. Using machine 

learning approaches, we incorporated nodal efficiency based 

dynamic correlations into rs-fMRI data to capture higher-order 

cognitive attributes in the whole-brain functional connectivity. 

We then derived the connectome patterns associated with the 

orientations of independence and interdependence through the 

efficiency-based dynamic FC. 

Specifically, we obtained the time-varying behavior of each 

nodal efficiency. It should be noted that efficiency is a graphic 

 
Fig. 4.  Model outputted important nodes and correlations of nodal efficiency (features) between nodes. (A) Top N (N=10, 20, 30, 40) correlations of nodal 
efficiency which were selected by the coefficient of the regression model.  (B) From specific brain node scaling to more macroscopic networks, correlations of 

nodal efficiency represent a broader range of cross-network attributes in both the orientation of independence and interdependence (N=20). 

TABLE II 
ERRORS AND CORRELATIONS BASED ON THE XGBOOST REGRESSION MODEL FOR IDENTIFYING INDEPENDENT SELF-CONSTRUAL (INDSC) AND INTERDEPENDENT 

SELF-CONSTRUALS (INTERSC) WITH DIFFERENT FC BY USING NESTED 10-FOLD-CROSS-VALIDATION 

Self-construals Feature Spearman’s r MAE MSE 
p-value of 

Spearman’s Correlation 

p-value of 

permutation test 

IndSC 

Efficiency-based dynamic FC 0.17 7.83 96.05 0.0016 <0.001 

Static FC 0.09 9.23 140.24 0.0995 0.032 

Nodal efficiency 0.07 7.98 104.23 0.1801 0.070 

InterSC 

Efficiency-based dynamic FC 0.19 7.75 93.43 0.0005 <0.001 

Static FC 0.01 8.15 106.43 0.8221 0.246 

Nodal efficiency -0.12 8.59 110.80 0.1293 0.639 
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property that quantifies the degree of easiness of information 

exchange over the graph. This measurement provides 

information on the communication efficiency of a graph as a 

whole, with higher values indicating more efficient information 

transferring through the whole brain. A variety of graphic 

properties located in dynamic FC has yielded novel insights into 

brain function and dysfunction [37]. Thus, the functional 

synergy of brain regions in the rs-fMRI could be extracted using 

our proposed approach. The experimental results suggested that 

the brain is organized in a highly efficient small-world topology, 

combining a high level of segregation (local or nodal efficiency) 

with a high level of global integration (global efficiency) [47]. 

In other words, the reason for using nodal efficiency is that it 

represents a graphic property that quantifies the degree of ease 

of information exchange over a graph. This measurement 

provides information on the communication efficiency of the 

graph as a whole, with higher values indicating more efficient 

information transfer through the whole brain. The relationship 

between the psychological traits and combination of different 

graph properties and their format of different graph properties 

(such as causality, correlation, mean value, and method) 

remains unclear, which invites future investigations. 

Going beyond previous studies that investigated the 

relationship between brain localization and the process of the 

self-construal, we demonstrated that the brain connectivity 

across different regions and lobes contributed to individual 

variations in trait IndSC and InterSC. Previous research 

reported that activity in the frontal cortex, including the medial 

prefrontal cortex (mPFC), was enhanced during general trait 

and contextual trait judgments. These regions are thought to 

associate with self-knowledge and self-construals [15, 19, 56-

59]. Our results showed that functional connectivity across the 

mPFC, the parahippocampal gyrus, cingulate gyrus, insular 

gyrus, and the middle frontal gyrus linked to independence and 

interdependence, consistent with the previous studies [10, 60, 

61]. We did not observe the connectivity through the precuneus 

and the inferior frontal gyrus reported by Li et al [22]. This 

discrepancy may be due to the fact that the present study used 

the dynamic correlation between the efficiency of different 

nodes, rather than the voxel-based brain activities used in the 

previous study. As suggested by electroencephalography (EEG) 

studies, it is sensible to use dynamic approaches to test complex 

psychological processes and concepts (e.g., self-construal), 

since they are associated with multiple brain regions and lobes, 

such as the frontal lobe, temporal lobe, and limbic systems  [17, 

62-66]. 

Mapping the process mechanism of social or psychological 

property in the human brain is a long-term research focus. Our 

results suggest that dynamic functional connectomes are 

 
Fig. 5. Coefficient map of independent self-construal and interdependent self-

construal regressors. Coefficients are determined by the regression model and 
normalized.  

TABLE III 
THE TOP 10 IMPORTANT CONNECTIONS CONTRIBUTED TO IDENTIFYING THE INDEPENDENT SELF-CONSTRUAL (INDSC) AND INTERDEPENDENT SELF-CONSTRUAL 

(INTERSC), WHICH WAS SELECTED BY WEIGHTED IMPORTANCE OF THE REGRESSION MODEL. 

Self- 

construals 
No Region (Lobe) Region (Lobe) 

Weighted 

Coefficient 

IndSC 

1 LOcCR41 (Occipital Lobe) PhGL66 (Temporal Lobe) 0.37 

2 PoGR41 (Parietal Lobe) PrGR61 (Frontal Lobe) 0.34 

3 ThaR84 (Subcortical Nuclei) MFGR76 (Frontal Lobe) 0.34 

4 LOcCL21 (Occipital Lobe) MVOcCR55 (Occipital Lobe) 0.32 

5 PoGR43 (Parietal Lobe) ITGR71 (Temporal Lobe) 0.29 

6 LOcCL41 (Occipital Lobe) PhGL66 (Temporal Lobe) 0.26 

7 ITGL77 (Temporal Lobe) MTGR41 (Temporal Lobe) 0.26 

8 LOcCR43 (Occipital Lobe) STGL64 (Temporal Lobe) 0.24 

9 INSR64 (Insular Lobe) OrGR63 (Frontal Lobe) 0.24 

10 CGR75 (Limbic Lobe) STGR62 (Temporal Lobe) 0.23 

InterSC 

1 LOcCL41 (Occipital Lobe) PhGL63 (Temporal Lobe) 0.60 

2 ThaL83 (Subcortical Nuclei) ITGL75 (Temporal Lobe) 0.52 

3 AmygR21 (Subcortical Nuclei) MTGL43 (Temporal Lobe) 0.45 

4 PhGL65 (Temporal Lobe) OrGL62 (Frontal Lobe) 0.42 

5 PhGL65 (Temporal Lobe) PhGL63 (Temporal Lobe) 0.40 

6 ThaL87 (Subcortical Nuclei) CGL73 (Limbic Lobe) 0.39 

7 BGR65 (Subcortical Nuclei) MFGL77 (Frontal Lobe) 0.37 

8 ThaR84 (Subcortical Nuclei) MTGL43 (Temporal Lobe) 0.36 

9 CGL75 (Limbic Lobe) MFGL71 (Frontal Lobe) 0.35 

10 MVOcCL53 (Occipital Lobe) OrGL64 (Frontal Lobe) 0.34 

Note. The full name and anatomical description of each region can be found at http://atlas.brainnetome.org/. 
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sensitive to characterize trait independence and trait 

interdependence, and that neurobiological-based dynamic 

fMRI data and machine learning frameworks provide pivotal 

ingredients toward cultural neuroscience. To some extent, this 

connection based approach performs similarly to the recently 

focused significance of white matter in social and psychological 

behavior analysis, especially in social cognition [24]. Currently, 

the barrage of advances reveals that neurobiological-based 

brain dynamic activity has enormous potential to act as steady 

and efficient biomarkers in a number of neurological and 

neuropsychiatric disorders [67].  

A limitation to the current study is that the whole-brain rs-

fMRI was used to mine the relationship between brain 

functional connectivity and self-construals through efficiency-

based dynamic FC. Although this method effectively alleviates 

the traditional problems that there are few conspicuous features 

for identifying self-construals with static functional 

connectivity, the physiological and cognitive basis of the 

changes in the nodal efficiency of each two nodes is not clear. 

Another limitation is that current feature selection is based on 

statistical significance between connection features and 

psychological scores. Future studies may utilize graph 

clustering approaches to select representative clusters, thereby 

avoiding redundant features added to the regression model.  

Furthermore, the generalizability of the current results may be 

limited by the sample. Our results also require external 

validation to validate the degree and scale of the generalization 

of the proposed method [68]. Previous research has shown the 

asymmetry of independence and independence scores; hence, 

we took them as two independent scores in the present study. 

However, it is worth noting that there is an existing argument - 

is self-construal unidimensional or multi-dimensionality self-

construal [12, 40]. These questions invite future investigations. 

V. CONCLUSION 

In this paper, we proposed a machine learning-based analysis 

framework for self-construals by using whole-brain efficiency-

based dynamic FC. We demonstrated the feasibility of the 

regression models which identify individual variations in self-

construals via their brain dynamic connectivity. We showed the 

commonality and distinctions of the dynamic functional 

connectivity that trait independence and trait interdependence. 

These findings provide the pivotal ingredients to the biological 

essence of culturally related variables in the brain.  
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