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Abstract

Background: Predicting hospital length of stay (LoS) for patients with COVID-19 infection is essential to ensure that
adequate bed capacity can be provided without unnecessarily restricting care for patients with other conditions. Here,
we demonstrate the utility of three complementary methods for predicting LoS using UK national- and hospital-level
data.

Method: On a national scale, relevant patients were identified from the COVID-19 Hospitalisation in England
Surveillance System (CHESS) reports. An Accelerated Failure Time (AFT) survival model and a truncation corrected
method (TC), both with underlying Weibull distributions, were fitted to the data to estimate LoS from hospital
admission date to an outcome (death or discharge) and from hospital admission date to Intensive Care Unit (ICU)
admission date. In a second approach we fit a multi-state (MS) survival model to data directly from the Manchester
University NHS Foundation Trust (MFT). We develop a planning tool that uses LoS estimates from these models to
predict bed occupancy.

Results: All methods produced similar overall estimates of LoS for overall hospital stay, given a patient is not
admitted to ICU (8.4, 9.1 and 8.0 days for AFT, TC and MS, respectively). Estimates differ more significantly between the
local and national level when considering ICU. National estimates for ICU LoS from AFT and TC were 12.4 and 13.4
days, whereas in local data the MS method produced estimates of 18.9 days.

Conclusions: Given the complexity and partiality of different data sources and the rapidly evolving nature of the
COVID-19 pandemic, it is most appropriate to use multiple analysis methods on multiple datasets. The AFT method
(Continued on next page)
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accounts for censored cases, but does not allow for simultaneous consideration of different outcomes. The TC
method does not include censored cases, instead correcting for truncation in the data, but does consider these
different outcomes. The MS method can model complex pathways to different outcomes whilst accounting for
censoring, but cannot handle non-random case missingness. Overall, we conclude that data-driven modelling
approaches of LoS using these methods is useful in epidemic planning and management, and should be considered
for widespread adoption throughout healthcare systems internationally where similar data resources exist.

Keywords: COVID-19, Length of stay, Survival Analysis, England

Background
Since its emergence in December 2019 and classifica-
tion in January 2020, SARS-CoV-2, the coronavirus that
causes COVID-19, has spread rapidly, with 270 thou-
sand confirmed infections in the UK by the end of May
2020 [1]. The exponential growth in the early days of
each nation’s outbreak has led to a doubling time of
around three days [2]. Coupled with potentially high
estimates of R0 (the average number of new infections
generated by an infected individual, in the absence of con-
trol measures and population acquired immunity) [3–5],
this has continued to have substantial impacts on health-
care systems across the world. Large growth rates and
a delay between new infections and their detection can
lead to unexpected surges in bed demand. In order to
restrict the spread of the pathogen, many countries have
implemented mass quarantine (also known as lockdown)
strategies, including England where the mass quaran-
tine began on 23 March 2020 [6]. However, the effects
of such interventions are not seen for at least a week
[7], emphasising the need for careful, evidence-based,
planning; particularly as the easing of mass quarantine
measures is considered. In this context, the use of clin-
ical care data to predict the demand for hospital and
Intensive Care Unit (ICU) beds by patients presenting
with COVID-19 is invaluable in optimising the effec-
tiveness of planning by hospitals and, therefore, patient
outcomes.
Understanding the impact of COVID-19 on hospital

capacity breaks down into two core measurement tasks:
first, to predict incidence (and thereby hospital admis-
sions rates); and second, to estimate total length of stay
(LoS) accurately allowing for variation in severity of dis-
ease and healthcare needs. The combination of these two
measures can then be used to predict bed demand. This
challenging task requires a careful modelling approach,
particularly when high-quality data is limited within often
fragmented healthcare systems. National datasets are cru-
cial in understanding demand in hospitals across the
country, but are flawed by amounts of record-level (or
whole case) missingness that can bias the estimates. Rou-
tinely collected data generated by individual hospitals
are, by definition, smaller and non-general but tend to

be less prone to missingness and these can complement
national data by providing insights for planning on a
local level.
Estimating LoS has not been the primary focus of pre-

vious modelling; and studies that calculate LoS tend to
use ad-hoc approaches [8]. There is currently a lack of
statistically principled modelling that accounts for both
delays in patient outcomes and complex hospitalisation
pathways. This problem is particularly important during
the COVID-19 pandemic, since some groups of patients
spend extended periods in hospital, and, for the most
severe cases, in critical care. Furthermore, estimates of
LoS that use deterministic models or observations drawn
directly from data fail to takemissingness into account [9–
11]. Accurately calculating LoS therefore requires mathe-
matical and statistical techniques that specifically address
these issues.
In this paper, we present three methods for estimating

LoS for patients with COVID-19 infection using both a
nationally collected dataset and local data from a large
inner city hospital Trust in the UK. The truncation cor-
rected (TC) method corrects for the fact that observations
are truncated at the day of reporting; accelerated fail-
ure time models (AFT) explicitly account for all observed
LoS including those censored by not having seen the out-
come; and the multi-state (MS) approach analyses LoS
and takes into account dependence between outcomes
such as discharge or death. Finally, we include measures of
uncertainty in each of our model results, which should be
incorporated into hospital planning strategies. With this
principled approach, past data can be appropriately used
to better prepare for the next phase of the COVID-19
pandemic.
The results presented in this article use data that were

available as of 26 May 2020. At this stage of the pan-
demic, many patients were still in hospitals, leading to
right-censoring in their lengths of stay. To evaluate the
performance of the methods at correcting for this right-
censoring, we compare the estimated distribution to the
full LoS distributions, using data available as of 21 January
2021. We do not re-analyse the LoS for the second and
third waves, since this manuscript focuses on comparing
methods for estimating LoS whilst correcting for right-
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censoring. However, the methods are readily applicable to
these more recent data.

Methods
Data
Outcome variables
We define two outcome events: death or discharge. All
patients admitted to hospital will eventually experience
one of these two outcomes. Then, wemodel LoS fromhos-
pital admission to either death or discharge. For the anal-
ysis shown in the “Results” section, we focus on LoS until
any outcome, to facilitate comparison of the three meth-
ods. We account for whether the patient was in ICU or
not and also estimate the LoS from hospital admission to
ICU and LoS on ICU. In Appendix F, we further examine
different outcomes using the TC and MS methods.

CHESS
The COVID-19 Hospitalisation in England Surveillance
System (CHESS)1 collects reports from all NHS acute care
hospital trusts to provide daily patient-level and aggregate
data on COVID-19 hospitalisations. In the patient-level
data, patients are followed through their hospitalisation
pathway; the dates of various events are recorded, such as
date of admission to hospital, date of admission to ICU
and final outcome date.

CHESS predictors
We used four variables as predictors. First, sex, for which
we removed patients with unknown values. Second, age,
which we grouped into four categories (< 50, 50−64, 65−
74, 75+), and removed negative values and patients with
a recorded age equal to zero (which did not seem gen-
uine, based on the number of such cases and other factors
such as comorbidities). Third, week of admission to hospi-
tal, which, in the TCmodel, we categorised in two groups:
weeks 12 to 14 (i.e. from 16 March to 5 April 2020), and
weeks 15 to 20 (from 6 April to 17 May 2020). In the
AFT model, we used single week as a fixed effect predic-
tor but present results for the two groups of admissions.
Fourth, we used a binary indicator on whether a patient
was admitted to ICU or not, and omitted the patients for
whom this information was unknown. The resulting ana-
lytical sample is n = 6208. Details of the data processing
procedure, and inclusion/exclusion criteria, are presented
in Appendix C.
Whilst we can identify predictors such as sex, age, and

week-of-admission from these data, we cannot identify
other potential predictors such as which variant con-
tributed to the infection or treatment strategies. This
would be of interest with the emergence of new variants
of concern. Instead, the effect of new variants has to be

1Since October 2020 this has been replaced with the Severe Acute Respiratory
Infection (SARI) data.

approximated using week-of-admission, but this may be
confounded with other factors, such as treatment changes
and hospital burden.

Routinely collected hospital data (MFT)
Routine data on the hospitalisation of patients were pro-
vided by Manchester University NHS Foundation Trust
(MFT). MFT is the largest NHS Trust in England, com-
prising nine hospitals and accounting for approximately
2.5% of the National Health Service. For COVID-19
admission, there were three geographically distinct acute
hospitals across South and Central Manchester: Manch-
ester Royal Infirmary; Wythenshawe Hospital; and Traf-
ford General Hospital. MFT serves the population of
Greater Manchester, a large, ethnically diverse conurba-
tion of approximately 2.8 million people. The data follow
all patients through their clinical pathway for the duration
of a single hospitalisation, and provide timings and lengths
of stay in all critical care episodes. Patient data are com-
plete unless patients are still in hospital, in which case they
are censored.

MFT data preparation
Data were drawn from the Patient Administration Sys-
tem (PAS) and WardWatcher to join information on
a patient’s hospitalisation pathway and critical care
episodes. Patients were selected from the MFT database
if a swab was taken either on the day of their hospital-
isation, or within two days of their hospital admission,
and tested positive for COVID-19. This was to discount
any hospital-acquired cases since COVID-19 positive
cases who required hospitalisation due to non-COVID
related health conditions may bias LoS estimates. We also
excluded patients admitted for elective procedures requir-
ing treatment for chronic illnesses such as dialysis. As a
result of having multiple admissions close together, it was
difficult to determine whether these cases were hospital-
acquired or genuine COVID-19 admissions. The resulting
sample included n = 786 patients. The models based on
the MFT data did not use information on predictors due
to the smaller sample size, although from a methodologi-
cal point of view these could be easily added to themodels.
Details of the data generating process are presented in
Appendix A.

Data quality issues in length of stay data
There are several types of data quality issues that tend
to be present in length of stay data and all are present
in one or both of the two datasets. Some of these are a
consequence of the reporting and data collection meth-
ods. Others are inherent to the nature of outbreaks, and
will be present regardless of the data collection. Here, we
present some key issues that need to be adjusted for, and
discuss the implications of ignoring them. Accounting for
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these biases for COVID-19 can enable robust estimates
that provide timely insight for policy and planning.

Missing cases
One issue with the CHESS dataset is missing cases. For
example, the number of deaths recorded in CHESS is con-
siderably less than the official figures. These also suffer
from reporting lag issues but some indication about the
level of missingness in CHESS can be obtained by compar-
ing to the COVID-19 patient notification system (CPNS),
which records all deaths attributed to COVID-19 in Eng-
land. On 26 May, there were 23504 deaths in hospital as
attributable to COVID-19 in the CPNS data. This com-
pares to an equivalent figure of 4071 in the raw CHESS
data for the same day. This is indicative of case level miss-
ingness within CHESS of over 80%. We discuss this issue
in more detail in “Discussion” section.

Missing values on important variables
Many rows in the data are incomplete. This is particu-
larly problematic for data pertaining to outcome events:
for example in some cases it is unclear whether a patient
has not been discharged yet, or whether they have but
the data have not been recorded. The amount of, and pat-
terns of, missing patient information in the CHESS data
is associated with the trust that reports the cases, with
varying levels of missingness across different trusts (see
Appendix B).

Censoring
In time-to-event studies, we observe a collection of indi-
viduals who are infected or have been exposed to infec-
tiousmaterial. If these individuals could be followed indef-
initely, the outcomes of all individuals would be observed.
Therefore, these data can be used to determine the length
of stay in the various compartments (states) of the dis-
ease progression pathway, as well as the probabilities of
transitions into other states. However, during an out-
break we only observe individuals up until the most recent
reporting date. This leads to right-censoring (e.g. [12]),
when we only know the lower bound of duration until the
next event in the pathway, and cannot accurately deter-
mine the length of time until their next transition nor to
which state this will be. Thus, censoring may lead to the
underestimation of the LoS.

Truncation bias
To remove the uncertainty around censored cases, we can
instead condition our sample to only look at cases for
whom the outcome has been observed. However, such a
sample includes only cases with outcomes that occurred
before the most recent reporting date, causing the sam-
ple to be truncated by the reporting date. This truncation
leads to an over-expression of short LoS, since the recently
infected individuals are only included if their LoS is short.

Failing to account for this bias will underestimate the LoS
of interest2.
Truncation is exacerbated by exponential growth in the

early stages of an outbreak, since a higher proportion of
cases will have been infected recently. By the final phase
of an outbreak, truncation has a smaller effect since the
majority of cases occurred sufficiently long ago to be unaf-
fected by the truncation date. However, it will always be
present as long as the epidemic is ongoing. Even in these
late stages, whilst it may have a negligible impact across
the whole outbreak, its effect might be of concern in cer-
tain scenarios, such as when using time as a predictor
variable. In such a case, for events early in the epidemic,
truncation will have very little effect, but for more recent
events many cases may still be truncated. Such biases are
often considered in the HIV literature [13, 14], due to
the long infectious periods involved, but are often ignored
for acute outbreaks. As alluded to in [15], this is poten-
tially due to high quality data being available only after
an explosive outbreak has finished, by which point these
biases have little or no effect. However, when attempting
to control ongoing epidemics, we require estimates of LoS
distributions that are robust in the face of censoring and
truncation.

Survival analysis
Survival analysis describes a collection of statistical pro-
cedures for which the outcome of interest is time until an
event, often as a function of predictor variables [16–18].
A central assumption of most survival analytic methods is
that the time to event will have been censored for some
observations, as discussed in “Data quality issues in length
of stay data” section.
Survival analysis may assume an underlying distribution

for LoS in each state. Generally, LoS are observed to be
right-skewed, so a distribution with this property should
be used. In this paper, LoS is assumed to follow a Weibull
distribution, which is a popular choice in survival analy-
sis as it is robust in terms of violation of its assumptions.
Therefore, the choice allows us to focus on the compari-
son between the different methods rather than the issues
of model fit.
Figure 1 outlines the model used to represent the hos-

pital pathways we consider in our analysis. Allowed tran-
sitions are indicated by directed arrows between any two
states. Below, we outline the survival methods we selected
for our analyses. Code for all methods is available at
https://github.com/thomasallanhouse/covid19-los.

Accelerated failure time (AFT) model
In the AFTmodel, rather than considering all of the hospi-
talisation pathways shown in Fig. 1, we focus on predicting

2This can be seen in Fig. 2 by comparing the TC results to the LoS observed in
the data.

https://github.com/thomasallanhouse/covid19-los
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Fig. 1 A schematic representation of the possible hospital pathways considered by our methods; at any given time, patients are considered to be in
one of the five following states: Acute Ward, Critical Care, Stepdown Ward, Discharge or Mortality

LoS in a given state, until another pre-specified event
occurs. That is, we are interested in estimating the time
between subsequent events in the pathway, such as from
hospital admission to being admitted to ICU. We aggre-
gate the final outcomes of death and discharge into a single
outcome. This is necessary since it is not clear what the
outcome will be for the censored cases in the CHESS data.
The response variable is the natural logarithm of the

LoS, denoted by ln(t), which is explained by a vector
of predictors x, with associated parameter vector β , and
error term ξ :

ln(t) = x · β + ξ . (1)

The assumed probability distribution of ξ defines the
hazard function, i.e. the probability that a case will expe-
rience an event at time t, given that they have not
already experienced it until time t [19, 20]. For ξ we
assumed a Weibull distribution, giving the hazard func-
tion h(t) = pλtp−1, where λ = exp(−px · β) and p
is the shape parameter defining the Weibull distribution.
If p > 1 the hazard is increasing over time, if p <

1 the hazard is decreasing over time, and for p = 1
the hazard is constant over time (which is equivalent
to an exponential error term distribution). The predic-
tors x therefore increase or decrease the hazard and so
accelerate (shorten) or decelerate (lengthen) the time to
event, t.
The AFT model explicitly takes into account cases with

right-censoring [20]. Thus, the model corrects for the
potential underestimation of the LoS when only a portion
of patients in the sample have observed the event.

A limitation of this simple model is when there is more
than one potential event of interest [18]. In this study
there were two events of interest: death and discharge.
These are ‘competing hazards’, i.e. if a patient experienced
one they were censored for experiencing the other. We
could have run the model twice, once for each event, and
treated patients who experienced the other event as being
censored. This would have given unbiased results if the
competing hazards were independent, but, for a given
patient, as the hazard of death increases, it decreases for
discharge, and vice versa. For this reason we considered a
model of the joint event: death or discharge3.
We fitted separate models for patients who never

entered ICU versus patients who did enter ICU at some
point, as these groups were expected to have different
baseline hazard functions. In all models, the predictors in
x were sex, age group and week of hospital admission (see
“CHESS predictors” section).
All models were estimated using JAGS software imple-

mented in the rjagsR package [21]. For the shape param-
eter, we used a uniform prior, p ∼ U(0, 10), which rep-
resents our lack of information on this parameter. There
is not a conjugate prior simultaneously for both the shape
and scale parameters in the Weibull distribution [22]. An
alternative specification for this prior is a Gamma distri-
bution [23]. However, in our tests the results were virtually
the same with both priors for p. The scale parameter λ

is specified via a prior for the predictors’ coefficients β ,

3This is not as counter-intuitive as it might sound since, although death is
certainly not an equivalent outcome for the patient, our primary concern here
is in length of stay regardless of outcome.



Vekaria et al. BMC Infectious Diseases          (2021) 21:700 Page 6 of 15

which is multivariate normal with mean zero and vari-
ance equal to 10, i.e. each element of β is distributed as
N (0, 10)4.

Truncation corrected method
In this method, we again focus on estimating the single
LoS in a given state. We assume that LoS is given by a ran-
dom variable X, drawn from a distribution with density
function fθ (·), parameterised by a set of parameters θ . In
this analysis, we assume that X is drawn from a Weibull
distribution.We aim to determine the underlying parame-
ters for this distribution by fitting the observed data using
maximum likelihood estimation.
To use maximum likelihood estimation, we need to con-

struct a likelihood function for the observed data. For
each data point, the LoS is not directly observed. Instead,
the arrival and departure dates and/or times that bracket
the period of stay are observed. These correspond to two
random variables, E1 and E2, linked by the LoS random
variable, i.e. E2 = E1 + X. Instead of treating incom-
plete entries as censored, here we condition the data
on observing both events. For example, if interested in
the time from hospital admission to ICU admission, we
condition on cases that have been admitted to hospi-
tal and to ICU. This introduces a truncation bias (See
“Truncation bias” section), which needs to be corrected
in the likelihood function. This approach does not take
into account competing hazards, since we condition the
data on observing the outcome of interest. However, this
method enables LoS for different patient outcomes to be
estimated, since censored cases are not included.
Our likelihood function is defined as the probability that

the second event occurs on the observed date, given the
time of the first event and that the second event must have
occurred before the truncation date [14]. This removes
censored observations since we condition on observing
the second event. Therefore, we need to find

f (E2 = e2 | {E1 = e1}∩{E2 ≤ T}) = gE1,E2(e1, e2)
∫ T
e1 gE1,E2(e1, x)dx

,

(2)

where gE1,E2 is the joint distribution of E1 and E2. The
time of the second event is the time of the first event plus
the delay, E2 = E1 + X. Therefore gE1,E2 = gE2|E1(e2 |
e1)gE1(e1) = fθ (e2 − e1)gE1(e1), which gives

f (E2 = e2 | {E1 = e1} ∩ {E2 ≤ T}) = fθ (e2 − e1)gE1 (e1)
∫ T−e1
0 fθ (x)gE1 (e1)dx

= fθ (e2 − e1)
∫ T−e1
0 fθ (x)dx

.
(3)

4The model can also be estimated using maximum likelihood implemented in
Stata 14 using the command streg (https://www.stata.com/manuals/ststreg.
pdf)

This can be maximised across all data points to find the
maximum likelihood estimator for θ5.
This method can be used to examine LoS to individual

outcomes by specifying the events, e.g. specifying that the
second event is a death. Additionally, the effect of predic-
tor variables can be analysed by sub-setting the data and
then modelling the LoS of each subset.

Multi-state model
Multi-state survival analysis extends the above two meth-
ods by permitting us to model the time to multiple out-
come events in the presence of competing hazards [24,
25]. Thus, we can model complex patient pathways upon
admission to hospital.
Each permitted transition in Fig. 1 is a survival model,

where the instantaneous rate of transition from one state,
r, to another state, s, otherwise known as the transition
intensity, can be modelled similarly to hazard functions.
For all transitions, we assume a Weibull AFT model, but
this method can easily accommodate the use of any para-
metric or flexible parametric models used in standard
survival analysis [19].When there are nr competing events
for state r, a patient entering state r at time tj has their
next event at tj+1, which is given by the minimum of the
survival times for the competing events, s1, . . . , snr .
The data are formatted in such a way that we have a

series of event times and LoS, each corresponding to a
change in state. The last of these may be observed so that
the patient has entered an absorbing state, i.e. they are dis-
charged or dead, or right-censored if the patient is still in
the hospital. Therefore, the data to inform the nr mod-
els consist of an indicator corresponding to whether or
not the transition is observed or censored at tj+1. In this
format, we can separate the data by transition and fit a
transition-specific Weibull model to each subset6.
We calculate time to each transition, and the confidence

and prediction intervals for these, using forward simula-
tion together with bootstrapping [26]. Individual survival
times are simulated for patients using estimates from each
fitted Weibull model, and iterating through all possible
transitions until all patients have reached an absorbing
state or are censored at a specified maximum follow-up
time. More detail on the method, including equations, is
provided in Appendix D.

Results
Overall LoS
Table 1 and Fig. 2 show the overall estimated LoS for all
three methods. Here, we present results for LoS aggre-
gated across the outcomes of death and discharge, since

5We maximise this using command fminsearch in MATLAB, but it is
relatively simple to implement in any language. We provide both MATLAB
and Python code in the Github repository.
6We estimate the parameter values by using maximum likelihood estimation
in Python.

https://www.stata.com/manuals/ststreg.pdf
https://www.stata.com/manuals/ststreg.pdf
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Table 1 Overall length of stay estimates for England using the
AFT and TC method, and for Manchester trusts using the MS
method

Method Hospital trajectory Mean SD N

TC Hospital admission to outcome
(no ICU)

9.1 9.5 2794

TC Hospital admission to outcome
(via ICU)

17.3 13.1 2517

TC ICU entry to ICU exit 13.4 13.8 1809

TC Hospital admission to ICU entry 2.0 2.7 2983

AFT Hospital admission to outcome
(no ICU)

8.4 8.9 2805

AFT Hospital admission to outcome
(via ICU)

16.2 12.0 2555

AFT ICU entry to ICU exit 12.4 12.8 1809

AFT Hospital admission to ICU entry 2.0 2.7 2983

Multistate Hospital admission to outcome
(no ICU)

8.0 8.4 620 (786)

Multistate Hospital admission to outcome
(via ICU)

29.7 22.9 73 (101)

Multistate ICU entry to ICU exit 18.9 18.0 92 (101)

Multistate Hospital admission to ICU entry 2.3 4.5 101 (786)

Source: own elaboration using CHESS and MFT data. For the multi-state model, the
sample size in brackets indicates the observed and censored data (including
competing risks), with the first number indicating observed transitions. For TC, for
sample size indicates the number of observed transitions, and for AFT the sample
size is the number of observed and censored transitions

this can be estimated by all three methods. In Appendix F,
we consider the lengths of stay to specific outcomes. The
AFT and TC estimates were all based on models adjusted
for the week of admission, sex, and age group. The effect
of sex was found to be small and non-significant in all of
the models7, thus, we do not present breakdowns by it.
Overall, the explanatory power of the predictor variables
was only modest. They accounted for a maximum of 10
per cent of the variance in observed LoS in any of the AFT
models. MS models were run without adjusting for any
predictors.
The lack of power in the predictor variables reflects the

high individual-level stochasticity of LoS. Trying to pre-
dict LoS at an individual level for COVID-19 has been
shown to be inaccurate [29]. The highly stochastic dynam-
ics of infectious diseases within host, from magnitude of
the initial dose to where the pathogen colonises within
host, could drive differences in LoS. Therefore, the major-
ity of variance in observed LoS are driven by the under-
lying stochastic process rather than explanatory variables.
Although the predictors may not explain a large portion of
the variance in LoS, they do have a substantial influence

7This is an interesting finding; although the severity of COVID is associated
with the sex of the patient [27], the length of stay conditioning on severity is
not. This has also been found with the CHESS data when controlling for other
predictors, see, e.g., [28].

on the LoS distributions, with age in particular having a
large influence on the expected distribution.

CHESS data for England
For the ICU patients (Hospital to Outcome via ICU), the
shape parameters in AFT and TC methods were larger
than one, implying the baseline hazard increased over
time. For the non-ICU patients and LoS within the ICU,
the baseline hazard remains constant in the AFT model
and is slowly decreasing in TC, whereas for the Hospital
to ICU admission it is decreasing in both models.
Overall, for hospital admission to final outcome, the

mean LoS for patients not admitted to ICU was shorter,
with an AFTmean of 8.4 (TCmean: 9.1) days, than that of
patients who were admitted to ICU at some point, with an
AFT mean of 16.2 (TC mean: 17.3) days. ICU admission
was estimated to take 2.0 (2.0) days from hospital admis-
sion, and ICU patients were estimated to spend an average
of 12.4 (13.4) days in ICU.
Standard Deviations (SD) of the estimated LoS are pre-

sented in Table 1 whereas Predictive Intervals (PIs) for the
LoS in AFT and TC methods are shown in Fig. 2. The
standard deviations (SD) for both the AFT and TC mod-
els are remarkably similar in depicting the large variability
in the observed LoS. With the exception of the LoS from
the hospital admission to outcome via ICU, all SD sug-
gest that the waiting times till outcome are approximately
exponentially distributed.

MFT data
Similarly to AFT and TC methods, in the MS approach,
we used a Weibull distribution for each of the transition
times between states in Fig. 1. Then, using fitted param-
eters, we used 1000 bootstraps and 103 forward simula-
tions in order to obtain estimates of the mean lengths of
stay in each state, given each transition. The MFT data-
based results (comparable with trajectories obtained using
CHESS dataset with AFT and TC models) are presented
in Fig. 2 and Table 1, along the summaries of the data.
As with the AFT and TC methods, LoS for patients

admitted to ICU is longer, with a mean of 29.7 days, than
that of patients not admitted to ICU, with a mean of
8.0 days. ICU admission was estimated to take 2.3 days
from hospital admission and ICU patients were estimated
to spend an average of 18.9 days in critical care. Taking
into consideration competing hazards between stepdown
and death, our mean LoS estimate for a patient in ICU
is between 15.8 and 20.1 days (Table A1 in Appendix F),
though in the data we observe people that have much
longer critical care periods (20% of patients have over 40
days in an ICU).

Planning with LoS
Figure 3 predicts bed occupancy in acute ward and ICU
after running our simulator with the parameter estimates



Vekaria et al. BMC Infectious Diseases          (2021) 21:700 Page 8 of 15

Fig. 2 Overall Length of Stay mean estimates with 50% and 95% Predictive Intervals (PI). For CHESS and SARI data, the intervals are based on
empirical percentiles. Notes: CHESS denotes data used for predictions as of 26 May 2020; SARI are the data after all patients have had seen their
outcomes and missing cases have been added; MFT C denotes data with censoring; MFT UC - without censoring (after all patients have seen the
outcome). Source: own elaboration using CHESS and MFT data

of all three methods. The red and blue lines represent
the implementation of, and relaxation of mass quaran-
tine (or “lockdown”), respectively. These are considered to
change the shape of the admissions trajectory to reflect
that observed. We simulate hospital admissions from 23
February, first assuming exponential growth with a dou-
bling time of 3 days, followed by exponential decay shortly
after the implementation of mass quarantine. Following
the blue line, we plan for a reasonable worst case scenario,
and so assume a slower growth in cases with a doubling
time of 15 days. Changing the assumptions used to gener-
ate hospital admissions allows us to predict and plan for
any scenario of interest.
In the MS model, the hazard functions account for

the competing risks of different pathways and outcomes.
Therefore, hospital occupancy can be obtained by sim-
ulating the hazard functions and following the short-
est transitions. In the TC and AFT models, the hazard
functions are conditional on pathways and outcomes.
Therefore, to simulate hospital occupancy these hazard
functions need to be coupled with probabilities of each
pathway.With the aggregated outcomes considered in this
article, the only competing risk is whether a patient goes

to ICU or not. From the MS model, the ICU admission
probability is approximately 13%, so we assume the tran-
sition probability of 13% for going from the acute ward to
ICU. Hospital occupancy can be then obtained by simu-
lating the ICU probability combined with the conditional
hazard functions. See Appendix E for more details.
The estimates from the AFT and TC methods yield

similar predictions of bed occupancy and total observed
outcomes. The MS model also gives similar predictions
for acute ward and outcome but differs for ICU. The peak
in bed occupancy in ICU in the MS output occurs roughly
two weeks later than in the AFT and TC model outputs,
and there is a slower decline after the peak. This is caused
by the larger LoS estimates for the MS models as seen in
Table 1 and Fig. 2.

The effect of predictors – England
In Fig. 4 and Table 2, we present the estimates of LoS bro-
ken down by two main predictors: age and week of admis-
sion. The mean waiting time from hospital admission to
ICU entry (first column of Fig. 4) is around two days
irrespective of age. For hospital admission to outcome
without ICU stay (second column of Fig. 4), increasing age
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Fig. 3 Output of our simulation for transition parameters estimated using each of our three methods, starting from 23 February, which we take to
be the start of the outbreak in the UK. Source: own elaboration using CHESS and MFT data

raises the length of stay, with length of stay around five
days for the youngest age group and twelve days for the
oldest, irrespective of the AFT or TC model. For individ-
uals who go via ICU (third column of Fig. 4), the pattern
with age is less clear8. For the first three age groups, the
length of stay is roughly similar (especially AFT model),
with a slight decrease in the oldest age group with respect
to the first two. The 75+ age group, however, has a much
shorter length of stay. A similar pattern is observed for
mean LoS from ICU admission to ICU exit (fourth column
of Fig. 4).
Considering the week of admission as a predictor vari-

able, there is less variability in LoS than in LoS disaggre-
gated by age. For a great majority of hospital trajectories,
the mean LoS seems to have decreased by, on average,
16 per cent, depending on the age group and the method
used. This could be explained by potential behavioural
changes in the later admission weeks. Firstly, after mass
quarantine progressed individuals may have waited longer

8This is likely to be caused by the LoS to death (via ICU) following the
opposite pattern to the LoS to discharge (via ICU). Younger age groups appear
to have a longer duration until death on ICU and a shorter duration before
discharge. These patterns seemingly cancel out when looking at the LoS until
any outcome. This analysis is not shown here since we are focusing on length
of stay in hospital rather than different outcomes.

before presenting at hospital. Secondly, treatment policy
has changed over the course of the outbreak, with the
criteria for discharge being relaxed to ensure hospitals
had capacity. Nonetheless, we also note large variability in
predicted LoS both in earlier and later weeks under study.

Model validation
Analysis of the Cox-Snell and deviance residuals for indi-
vidual patients for the AFT models, in which these are
well-defined [30], showed good model fit and little evi-
dence of bias for three of the models (although there was
less precision for the right-hand tails of the LoS distribu-
tions, where the effective sample size was smaller because
of earlier deaths, discharges, and censoring). The excep-
tion was the model from hospital admission to ICU entry.
This observed distribution was very skewed (median LoS
was 0.7 days, with 20 percent over 3 days). The choice of
Weibull error distribution did not represent this well, and
the model showed bias in predicted LoS.
To evaluate how well the models compensated for cen-

soring we compared the model estimated mean LoS with
the data that were available during the original data col-
lection window (i.e. including censored cases) and also
the fully observed, uncensored data, which was eventually
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Fig. 4Mean Length of Stay by age and week of admission with 50% and 95% Predictive Intervals (PI). Source: own elaboration using CHESS data for
England

available in 2021 when all patients had left hospital. The
LoS summaries based on fully observed data are presented
in Fig. 2 and denoted as ‘Data SARI’ (the updated CHESS
dataset), and ‘MFT UC’ (the uncensored MFT dataset).
These data correct on the data used in the original analy-
sis in three ways. Firstly, the right-censored data available
at the time have been uncensored (except for a negligible
proportion of patients, whowe remove from the final sam-
ple). Secondly, data have been retrospectively corrected.
In the original analysis, we removed the last week of data
to reduce the effect of data corrections, but there could
still be potential revisions. Thirdly, new patients have been
added to the CHESS/SARI data. In this comparison, we
only used patients admitted before 17 May 2020, to be
consistent with the original data. However, in the origi-
nal CHESS data, after processing this left 6208 patients,
whereas in the uncensored SARI data we have 13800
patients admitted before this date. Therefore, in this val-
idation, we investigated how the models simultaneously
deal with the right-censoring, errors in the data, and case
missingness of patient records.
Table A2 (see Appendix G) shows that the mean LoS

from hospital admission to final outcome for patients who

went into ICU at some point was on average underesti-
mated by over five days in the original data compared to
the fully observed data, and mean LoS in ICU was under-
estimated by over 2 days. The TC model was able to com-
pensate for about a quarter of the underestimate in LoS
for the former, and over 70 percent of the underestimate
for the latter. The AFT model made smaller adjustments
to the observed LoS and so captured less of the underes-
timate. In the original CHESS data set, we had data from
16 March 2020 to 17 May 2020, so the maximum LoS
included could be 62 days. In the uncensored data, the
maximum observed LoS was 245. Therefore, although the
models attempted to adjust for the truncated/censored tail
observations, there was insufficient data on the true extent
of the tail to make the full adjustment. This illustrates how
challenging it can be to estimate LoS during an emerging
epidemic, even with large volumes of data.
Both TC and AFTmodels performed poorly for the LoS

from hospital admission to ICU entry, underestimating
LoS even more than the original, censored data. This is
perhaps due to the Weibull distribution being inappro-
priate for this length of stay, and therefore struggling to
capture the long tail.
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Table 2 Length of stay estimates with predictor variables for AFT and TC methods. Sample sizes differ due to the inclusion of censored
observations in the AFT method

AFTmodel TC model

Trajectory Age Weeks Mean SD N Mean SD N

Hospital admission to outcome (no ICU) 1 to 49 12 to 14 4.9 4.8 146 5.1 6.5 146

15 to 20 3.7 3.6 210 3.6 4.1 210

50 to 64 12 to 14 7.3 7.2 223 7.0 7.4 223

15 to 20 5.6 5.4 304 5.9 5.9 304

65 to 74 12 to 14 10.6 10.4 204 11.0 10.5 204

15 to 20 8.1 7.9 270 8.3 7.7 266

75 + 12 to 14 11.7 11.4 609 11.7 10.9 607

15 to 20 8.8 8.6 839 10.0 9.4 834

Hospital admission to outcome (via ICU) 1 to 49 12 to 14 17.5 12.5 312 17.5 11.8 312

15 to 20 14.3 10.5 267 17.8 14.0 262

50 to 64 12 to 14 18.8 13.4 641 19.5 14.3 626

15 to 20 15.7 11.5 467 17.0 12.1 455

65 to 74 12 to 14 16.8 12.0 391 17.1 13.5 388

15 to 20 13.9 10.2 225 14.9 10.2 223

75 + 12 to 14 13.3 9.5 161 12.6 10.8 161

15 to 20 10.2 7.6 91 11.3 8.9 90

ICU entry to ICU exit 1 to 49 12 to 14 13.0 12.8 239 13.2 14.0 239

15 to 20 10.0 10.0 210 12.7 14.5 210

50 to 64 12 to 14 15.4 15.2 468 15.4 14.2 468

15 to 20 12.0 12.0 337 13.6 13.8 337

65 to 74 12 to 14 13.6 13.4 237 13.6 12.5 237

15 to 20 10.4 10.4 152 11.4 11.4 152

75 + 12 to 14 7.6 7.5 109 8.1 8.9 109

15 to 20 5.5 5.6 57 5.0 5.9 57

Hospital admission to ICU entry 1 to 49 12 to 14 2.0 2.6 340 1.9 2.5 340

15 to 20 1.7 2.3 336 1.8 2.4 336

50 to 64 12 to 14 2.2 2.9 732 2.4 3.3 732

15 to 20 2.0 2.7 610 1.8 2.2 610

65 to 74 12 to 14 2.2 2.9 421 2.1 2.9 421

15 to 20 1.9 2.6 276 1.9 2.4 276

75 + 12 to 14 2.4 3.1 168 1.9 2.4 168

15 to 20 2.1 2.8 100 2.6 3.2 100

Source: own elaboration using CHESS data for England

The Multi-state model, on the other hand, performed
well at estimating LoS for each transition (Table A2).
This is in part due to local data from MFT exhibiting
fewer biases than the national CHESS data so that a
trust-specific LoS can be estimated with greater accu-
racy. The performance of the MS model can also perhaps
be explained by the fact that it fully takes into account
the competing risks at each transition. Of all of the LoS
considered in Table 1, the maximum absolute difference
between the final LoS observed in the uncensored MFT
data and our estimate from the MS model is 0.98 days

(from hospital admission to ICU entry), so that all of
our estimates are within 1 day of the true, observed val-
ues. Again, this transition is potentially not well-captured
using a Weibull hazard function.

Discussion
Analysis of results
Comparison of the three differentmodels
In this study, we have presented three methods for esti-
mating the LoS of patients with COVID-19 infection.
Overall, the AFT and TC methods produced similar esti-
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mates for LoS for all four hospital trajectories. This is
reassuring and forms an effective cross-validation of both
methods and results.
The estimated mean LoS from the AFT model are

shorter by around one day than the TC means, except for
the Hospital-ICU entry. This might be due to the exclu-
sion of potentially censored cases in the AFT method9,
since it was not clear these were genuinely censored or
incomplete data entries. Both methods also yielded sim-
ilar predictive uncertainty about the LoS, with TC pro-
ducing slightly wider predictive intervals than the AFT
method. This might be explained by the explicit inclusion
of the predictors in the AFTmodel with a joint assessment
of their effect on the LoS. The TC method assumes inde-
pendence between predictors and is applied to the subsets
of CHESS data disaggregated by the predictor categories.
There were large differences in predicted ICU LoS

between the two CHESS based methods and the MS
method. The mean estimates derived using AFT and TC
methods (12-13 days) were 5-6 days less than those from
the MS method. The predictive intervals overlap suggest-
ing the variability in LoS is large. However, given the
focus of the paper is on comparison, and bearing in mind
the MFT data is an effective census of the MFT patients
and therefore that estimates are reliable in terms of the
mapping of the data to the population, it is valuable to
consider possible explanations for the differences in the
point estimates.
These differences may reflect several substantive fac-

tors. First, MFT is one of five adult centres in the UK to
have an extracorporeal membrane oxygenation (ECMO)
unit. Combined with expertise in specialist respiratory
care, MFT takes referrals for severe COVID-19 cases
requiring ECMO treatment from other hospital trusts in
the UK’s North West and Midlands regions. This higher
proportion of severe cases could contribute to the longer,
on average, lengths of stay observed at MFT. Unfortu-
nately, referrals and ECMO cases cannot be separated
from the MFT data, so we were unable to account for this
in our analysis.
Second, the underlying data were different: the AFT and

TC models used the country-wide but very incomplete
CHESS data, whereas the multi-state model was based on
data from just one NHS trust, but largely free of missing
data. There is potentially large heterogeneity between LoS
at different trusts, so data at a single trust may not reflect
the national data.
Third, differences in excess bed demand from trust to

trust potentially further explain discrepancies in our esti-
mates. For trusts experiencing significant increases in

9For the ICU entry to ICU exit trajectory there were n = 108 censored cases
included in the model. For the trajectory from hospital admission to outcome
via ICU: n = 43, and without ICU: n = 14. There were no censored cases in
hospital admission to ICU entry.

demand, it is possible that they do not have the ability
or resources to accurately generate daily CHESS reports
which are collected in addition to routinely collected
data (see Appendix A). This partially explains the case-
missingness in the CHESS data.
In order to check sensitivity of the findings for the dif-

ferences in the data, we evaluated the AFT model and
TC method using CHESS data for Manchester Univer-
sity NHS Foundation Trust only. MFT contributed 53
cases with recorded LoS in ICU to CHESS. Running the
AFT model on these cases gave a predicted ICU LoS
of 16.5 days (SD=17.3). For the TC method, the pre-
dicted mean was 16.1 (SD= 16.7).The estimated LoS were
longer than the full-sample CHESS estimates but still
shorter than the predicted LoS from the MS models (18.9
days). In the MFT data, 83 cases are included. This dis-
crepancy between the data sets could be contributing to
the difference between the MS model and the AFT and
TC models. Additionally, when evaluating model perfor-
mance, the MS model appears to better account for the
right-censoring, which could be further contributing to
this discrepancy.
All methods captured the variability in the data and

reflected it in the predictive distributions. This uncer-
tainty should be taken into account when planning for the
number of beds during the pandemic. For example, upper
bounds of the predictive intervals can be used to construct
extreme-case scenarios for the beds occupancy. These can
be fed into the multi-state model to predict the number
of patients in hospital at various stages of the pandemic
(Fig. 3).
In the main LoS analysis above, we did not distinguish

between different outcomes, such as death or discharge.
Particularly in ICU, the baseline hazards for these com-
peting hazards may be strongly diverging over time. In
Appendix F, we analyse the length of stay for given out-
comes using the TC and MS methods, finding that in
general the length of stay to discharge is longer than to
death.

Evaluation ofmodel performance
When evaluating the performance of the three methods
at accounting for the right-censoring, we observe differ-
ent levels of performance across the methods. Using the
CHESS data, the AFT model struggles to appropriately
adjust for the right-censoring, resulting in an underes-
timate of the true distribution. The TC model does a
better job at accounting for this, but still slightly under-
estimates the LoS. The TC model struggles to capture
the true LoS because this method requires sufficient tail
observations in order to adjust for the truncation bias.
However, in the uncensored data there are some tail obser-
vations over twice the length of the maximum possible
LoS included in the original analysis data. Therefore, the
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TC method does not have sufficient information to con-
struct the true tail of the LoS distributions. The AFT
model is also affected by this issue. A further complica-
tion with the AFT model is the challenge with censoring
in the CHESS data. With high levels of data missingness
and incompleteness at the time of the analysis, it was
unclear whether cases were genuinely censored or had
failed to be updated. This resulted in many censored cases
being omitted from the analysis data set, leading to fur-
ther underestimation of the LoS. Using the MFT data, the
MS model captures the true LoS much more accurately.
This model uses higher quality data, so can appropriately
adjust for the censoring and the competing risks of dif-
ferent hospital pathways. Therefore, provided sufficiently
high quality data are available, the MS approach is supe-
rior for estimating LoS during an epidemic. However, such
high quality data may not be available early in a pandemic,
particularly in smaller trusts. The CHESS data are not well
suited for such analysis, due to the unclear case inclusion
biases. This may affect the proportion of cases entering
each pathway, which can interfere with the competing
risks aspect of the MS model.

Limitations of research
The CHESS dataset suffers from large amounts of case-
missingness, which may lead to bias in the estimates.
There appear to be three types of this. Update delay
where a record has not been updated (with a transition)
which may lead to incorrect censoring. This leads to the
patient being removed from the data for some of the mod-
els. Reporting delay where a patient does not appear in
the data at all until sometime after their admission. Non-
reporting where no report is ever made on a patient. All
three of these may cause bias in the models if they are cor-
related with either LoS or with extraneous variables (that
are not controlled for within a given model). Another lim-
itation of both datasets was that only cases of COVID-19
infection that led to hospital admission were included in
the data. During March 2020, the hospitalised patients in
England were considered to reflect the underlying popu-
lation of patients with severe COVID-19 infection, but by
14 April, care-home deaths reported on death certificates
caused a revision of views [31]. Those severe cases not
attending hospital and COVID-19-related deaths outside
of hospital may have different properties from hospi-
talised patients and deaths. So care should be taken in
extrapolating the findings to general statements about dis-
ease progression outside of the hospital setting. Given that
the goal here was to model length of stay in hospital this is
less of a concern. However, change in hospitalisation prac-
tice could lead to changes in the estimates that the models
produce.
Our models were also limited by the missing values in

the CHESS data. A notable limitation was that around half

of the cases did not have their final outcome or current
status recorded. We did not know if this implied that the
patient was still in hospital or whether it was an omission
or whether this was a result of update delay. In either case,
we had no reliable way to estimate the last time point at
which the patient was observed to be in hospital, and thus
these patients could not contribute to the LoS estimates.
The fact that the CHESS-based LoS estimated by using
the AFT models were not adjusted sufficiently to capture
this suggests that many such patients were indeed still in
hospital.
Compared with the AFT model, the TC method should,

in theory, be less sensitive to this issue since it ignores
censored cases. However, this method relies on sufficient
tail observations being recorded. With the long duration
of this study (over 60 days), one might expect sufficient
tail observations to be included. However, with the very
long lengths of stay observed in the uncensored SARI
data (over 200 days), it is apparent that the original cen-
sored sample did not contain enough information on
the tail of the distributions. Further complications are
caused by non-random case missingness. For example,
omitted cases might correspond disproportionately to tail
observations, which would cause the truncation corrected
method to underestimate LoS.
The strength of bias due to the truncation and censor-

ing varies depending on the phase of the epidemic, with
it having a large impact during exponential growth and
lessening impact during the decay phase. The data used
in this analysis is from the decay phase, so the trunca-
tion bias does not have a huge impact, and ignoring this
bias would underestimate LoS by up to two days (using
TC method). However, for a sample earlier in the out-
break, this underestimation may be amplified, as well as
the difference in model performance. This is also true for
censoring biases, since early in the outbreak the majority
of cases will have censored outcomes. A large number of
right-censored cases would lead to relatively large values
of LoSwhen using the AFTmodel. For the purposes of this
paper, we have opted not to investigate the performance
of each model at different sampling dates. This is to focus
on the presentation of the different methods using a sin-
gle illustrative example to improve clarity. Future research
could extend this in several ways, including running iter-
atively through the data available on different dates, mod-
elling the impact of truncation, censoring, reporting and
updating lags as the epidemic progresses.
Another issue is that clustering of patients within the

NHS trusts, which were at different stages of the epi-
demic at different times leading to variations in pressure
on capacity, could mean that there are spatial-temporal
interactions in the processes driving LoS which are not
captured in themodels. Further, thesemay in turn interact
with the data generating processes for CHESS with more
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non-reporting and reporting delays likely during high
demand times. These issues could have unpredictable
effects on the estimates of LoS.
With respect to the MFT data, most limitations arise

due to the small absolute sample size. The multi-state
method requires seeing an adequate number of patients
for each state transition before any reliable modelling can
take place. Indeed, although it is clinically known that
stepdown to mortality is a valid transition, after apply-
ing our exclusion criteria, there were no observations
of this transition occurring for patients with COVID-19
infection within this Manchester Trust. The analysis con-
ducted in this paper therefore excluded this transition,
and it is not possible to see how this influences overall
hospital LoS of those patients who have an ICU episode
during their hospitalisation. Together with uncommonly
long ICU periods, the relative delay in theManchester epi-
demic compared to other parts of the country means that
MFT patients with long critical care spells are either still
in ICU or only just starting to move onto stepdown. Given
more weeks of data, we might be able to include stepdown
to mortality in our model.
The above suggests differences between the estimates of

LoS for the two datasets may therefore be due more to dif-
ferences in the available data than differences in the statis-
tical methods per se. It is important to acknowledge these
uncertainties in the data when interpreting length of stay
estimates. We further note that not only would we obtain
more power in predictions through a larger amount of
complete data, but also a better understanding of how the
complex interactions between the virus and background
risk factors affect disease severity. Additionally, inclusion
criteria are slightly different between the CHESS/SARI
and MFT data sets. In the CHESS/SARI data set, there is
a column which indicates whether the admission was due
to COVID-19. However, there is no clear definition for
this, so individual hospital trusts could use different cut-
off criteria, such as positive on admission or showing clear
signs of COVID-19 pneumonitus. For the MFT data, we
defined our own inclusion criteria, including all patients
with a positive test 2 days either side of admission. At the
time of the analysis (March 2020 to May 2020), there was
some admissions screening at MFT, but not as widespread
as the current (April 2021) requirements. Therefore, the
majority of patients captured through this definition are
likely to be symptomatic COVID-19 patients requiring
acute care for COVID-19, rather than general admissions
who return a positive swab. In both data sets we do not
consider nosocomial COVID-19 cases.

Conclusions
In this paper and its supporting materials, we provide a
freely accessible set of models and tools to estimate LoS
with an application to patients with COVID-19 infection.

Together with a prediction of hospital admissions, which
depends on the severity of outbreaks in the local area, LoS
predictions can be implemented to provide organisational
support within hospitals to ensure the demand for hospi-
tal and, in particular, ventilated ICU beds does not exceed
availability. The models use routinely collected hospital
data which are available within many national healthcare
systems. Thus we anticipate our approaches will have util-
ity across diverse healthcare systems in many different
countries.
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Murphy J, Olsen W, Ruiz DAP, Wiśniowski A. Length of stay in icu of
covid-19 patients in england, march-may 2020. Int J Popul Data Sci.
2020;5(4):. https://doi.org/10.23889/ijpds.v5i4.1411.

29. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E,
Bonten MM, Dahly DL, Damen JA, Debray TP, et al. Prediction models for
diagnosis and prognosis of covid-19: systematic review and critical
appraisal. BMJ. 2020;369:. https://doi.org/10.1136/bmj.m1328.

30. Collett D. Modelling Survival Data in Medical Research. Boca Raton:
Springer; 1994, pp. 53–106.

31. Office for National Statistics. Deaths Registered Weekly in England and
Wales, Provisional: Week Ending 3 April 2020, Release Date 14 April 2020.
2020. https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/deaths/bulletins/
deathsregisteredweeklyinenglandandwalesprovisional/
weekending3april2020. Accessed 01 June 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.gov.uk/government/publications/slides-and-datasets-to-accompany-coronavirus-press-conference-29-may-2020
https://www.gov.uk/government/publications/slides-and-datasets-to-accompany-coronavirus-press-conference-29-may-2020
https://www.gov.uk/government/publications/slides-and-datasets-to-accompany-coronavirus-press-conference-29-may-2020
https://doi.org/10.1098/rstb.2020.0264
https://doi.org/10.1093/jtm/taaa021
https://doi.org/10.1136/bmj.m308
https://doi.org/10.1136/bmj.m1567
https://www.health.org.uk/news-and-comment/charts-and-infographics/covid-19-policy-tracker
https://www.health.org.uk/news-and-comment/charts-and-infographics/covid-19-policy-tracker
https://www.health.org.uk/news-and-comment/charts-and-infographics/covid-19-policy-tracker
https://doi.org/10.1101/2020.04.12.20059972
https://doi.org/10.1101/2020.03.26.20044842
https://doi.org/10.7326/m20-1260
https://doi.org/10.7326/m20-1260
https://doi.org/10.1101/2020.03.16.20036939
https://doi.org/10.1101/2020.03.16.20036939
https://doi.org/10.1038/s41586-020-2521-4
https://doi.org/10.23889/ijpds.v5i4.1411
https://doi.org/10.1136/bmj.m1328
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending3april2020
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending3april2020
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending3april2020
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending3april2020

	Abstract
	Background
	Method
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data
	Outcome variables
	CHESS
	CHESS predictors
	Routinely collected hospital data (MFT)
	MFT data preparation

	Data quality issues in length of stay data
	Missing cases
	Missing values on important variables
	Censoring
	Truncation bias

	Survival analysis
	Accelerated failure time (AFT) model
	Truncation corrected method
	Multi-state model

	Results
	Overall LoS
	CHESS data for England
	MFT data

	Planning with LoS
	The effect of predictors – England
	Model validation

	Discussion
	Analysis of results
	Comparison of the three different models
	Evaluation of model performance

	Limitations of research

	Conclusions
	Abbreviations
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12879-021-06371-6.
	Additional file 1

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

