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Abstract: Spatial discretization of the stochastic semi-linear subdiffusion equations driven by
fractionally integrated multiplicative space-time white noise is considered. The nonlinear terms f
and σ satisfy the global Lipschitz conditions and the linear growth conditions. The space derivative
and the fractionally integrated multiplicative space-time white noise are discretized by using the
finite difference methods. Based on the approximations of the Green functions expressed by the
Mittag–Leffler functions, the optimal spatial convergence rates of the proposed numerical method
are proved uniformly in space under some suitable smoothness assumptions of the initial value.

Keywords: semi-linear; space-time white noise; Caputo fractional derivative; fractionally integrated
additive noise; error estimates

1. Introduction

In this paper, we will consider the spatial discretization of the following stochastic
semi-linear subdiffusion equations driven by fractionally integrated multiplicative space-
time white noise, with 0 < α ≤ 1, 0 ≤ γ ≤ 1 [1,2],

C
0 Dα

t u(t, x)− ∂2u(t,x)
∂x2 = f (u(t, x)) + 0D−γ

t σ(u(t, x)) ∂2W(t,x)
∂t∂x , 0 < x < 1, t > 0,

u(t, 0) = u(t, 1) = 0, t ≥ 0,
u(0, x) = u0(x), 0 ≤ x ≤ 1,

(1)

where C
0 Dα

t v and 0D−γ
t v denote the Caputo fractional derivative and the Riemann–Liouville

fractional integral of v, respectively [3,4]. Here, u0 is the initial value which satisfies
u0 ∈ C([0, 1]) and u0(0) = u0(1) = 0, where C([0, 1]) denotes the continuous func-
tion space.

The main aim of this paper is to extend the spatial discretization schemes discussed in
Gyöngy [1] and Anton et al. [5] for the stochastic quasi-linear parabolic partial differential
equations driven by multiplicative space-time white noise to the stochastic subdiffusion
equations driven by integrated multiplicative space-time white noise. We obtain the
error estimates uniformly in space for the proposed finite difference method. The error
estimates are based on the bounds of the Green functions and its discrete analogue of (1)
as well as the errors between them under some suitable norms. Such Green functions are
expressed in terms of the Mittag–Leffler functions involving the parameters 0 < α ≤ 1
and 0 ≤ γ ≤ 1. It is well known that the Mittag–Leffler function Eα,β(z), 0 < α ≤ 1, β ∈ R
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satisfies the following asymptotic properties: Theorem 1.6 in [4], Equation (1.8.28) in [3],
with πα

2 < µ < min(π, απ),∣∣Eα,β(z)
∣∣ ≤ C(1 + |z|)−1, µ ≤ | arg(z)| ≤ π, (2)

and
|Eα,α(z)| ≤ C(1 + |z|)−2, µ ≤ | arg(z)| ≤ π, (3)

which make the numerical analysis of the stochastic subdiffusion Equation (1) much more
challenging than the stochastic parabolic equation discussed in [1,5]. To the best of our
knowledge, there are no error estimates uniformly in space for the stochastic subdiffusion
equations driven by space-time white noise in literature. In this paper, we aim at filling
this gap by providing the detailed error estimates based on the error bounds developed in
this paper for the Green functions of (1).

Let (Ω,F , (F )t≥0, P) be a stochastic basis carrying an Ft-adapted Brownian sheet
W = {W(t, x) : t ≥ 0, x ∈ [0, 1]}. We recall that W is a zero-mean Gaussian random field
with covariance [1], p. 3 and [2],

E(W(t, x)W(s, y)) = (t ∧ s)(x ∧ y),

where E denotes the expectation and t ∧ s := min(s, t) and x ∧ y := min(x, y) for s, t ≥ 0
and x, y ∈ [0, 1].

We assume that the nonlinear terms f and σ satisfy the following globally Lipschitz
and the linear growth conditions [1], p. 6 and [5], that is, with some positive constant
C > 0,

(L) | f (r)− f (v)|+ |σ(r)− σ(v)| ≤ C|r− v|, for all r, v ∈ R,

(LG) | f (r)|+ |σ(r)| ≤ C(1 + |r|), for r ∈ R.

Further, we assume that α and γ satisfy the following condition [6], pp. 1473–1474,
(1.2) in [7].

Assumption 1.

0 < α ≤ 1, 0 ≤ γ ≤ 1, α + γ >
1
2

.

Under (L), (LG), and the Assumption 1, one may show that the model (1) has a unique
solution [2,6] in some suitable spaces.

The model (1) is used to describe the random effects on transport of particles in
medium with memory or particles subject to sticking and trapping [6]. The fractional
integrated noise reflects the fact that the internal energy depends also on the past ran-
dom effects. In recent years, the model (1) has been very actively researched [6,8–11].
Chen et al. [6] studied the L2 theory of (1) in both divergence and non-divergence forms.
Anh et al. [8] discussed sufficient conditions for a Gaussian solution (in the mean-square
sense) and derived temporal, spatial, and spatial-temporal Hölder continuity of the solu-
tion. Chen [9] analyzed moments, Hölder continuity and intermittency of the solution for
the nonlinear stochastic subdiffusion in one-dimensional case. Liu et al. [11] analyzed the
existence and uniqueness of the solution of the model (1) with fairly general quasi-linear
elliptic operators.

Let us review some numerical methods for solving (1). Jin et al. [7] considered a
fully discrete scheme for approximating (1) with f = 0 and σ(u) = 1 and the space-time
noise is the Hilbert space-valued Wiener process with covariance operator Q and the error
estimates in the Lp, p > 1 norm in space is obtained. Wu et al. [12] introduced the L1
scheme to approximate (1) with f = 0 and σ(u) = 1 and the space-time noise is defined
as in Jin et al. [7]. Gunzburger et al. [13] considered the finite element approximation
of stochastic partial-differential equations driven by white noise. Li et al. [14] studied
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the finite element method for stochastic space-time fractional wave equations. Li and
Yang [15] considered the finite element method for solving stochastic time fractional partial
differential equations. Zou [16] investigated the finite element method for solving stochastic
time fractional heat equation.

To the best of our knowledge, we did not find any numerical analysis for solving (1)
in the multiplicative (i.e., σ(u) 6= 1) space-time white noise case in literature. In this paper,

we will approximate the derivative ∂2u(t,x)
∂x2 and the space-time white noise ∂2W(t,x)

∂t∂x with
the finite difference methods as in Gyöngy [1] and Anton et al. [5] and obtain a spatial
discretization scheme for approximating (1). The convergence rate in the mean-square
sense is obtained, uniformly for x ∈ [0, 1].

There are many works for the numerical methods for solving the stochastic parabolic
equations driven by additive or multiplicative noises, i.e., the case with α = 1, γ = 0 in (1),
see, e.g., in [17–31] and the references therein. Most of these references are concerned with
an interpretation of stochastic partial differential equations in Hilbert spaces and thus error
estimates are provided in the L2((0, 1)) norm (or similar norms).

Let 0 = x0 < x1 < · · · < xM−1 < xM = 1 be the partition of [0, 1] and ∆x = 1/M
the space step size. At x = xk, k = 1, 2, . . . , M− 1, we approximate the spatial derivative
∂2u(t,x)

∂x2 and the space-time white noise ∂2W(t,x)
∂t∂x by

∂2u(t, x)
∂x2

∣∣∣
x=xk

≈ u(t, xk+1)− 2u(t, xk) + u(t, xk−1)

∆x2 ,

and

∂2W(t, x)
∂t∂x

∣∣∣
x=xk

≈ d
dt

W(t, xk+1)−W(t, xk)

∆x
.

Denote uM(t, xk) ≈ u(t, xk), k = 0, 1, 2, . . . , M the approximate solution of u(t, xk).
We define the following finite difference method for solving (1).

C
0 Dα

t uM(t, xk)−
uM(t,xk+1)−2uM(t,xk)+uM(t,xk−1)

∆x2

= f (uM(t, xk)) + 0D−γ
t

[
σ(uM(t, xk))

d
dt

(
W(t,xk+1)−W(t,xk)

∆x

)]
, k = 1, 2, . . . , M− 1, t > 0,

uM(t, 0) = uM(t, 1) = 0, t ≥ 0,
uM(0, xk) = u0(xk), k = 0, 1, 2, . . . , M.

(4)

When α = 1, γ = 0, i.e., the stochastic parabolic equation case, Gyöngy Theorem 3.1
in [1] proved the following spatial convergence rates:

(Gi). If u0 ∈ C([0, 1]), u0(0) = u0(1) = 0, then there exists a constant C = C(t), t > 0
such that

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤ C(t)∆x
1
2−ε, t > 0, ε > 0. (5)

(Gii). If u0 is sufficiently smooth, e.g., u0 ∈ C3([0, 1]), u0(0) = u0(1) = 0, then, for any
fixed T > 0, there exists a constant C which is independent of t > 0 and the space step size
∆x, such that for all t ∈ [0, T] and all M ≥ 1,

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤ C∆x. (6)

Remark 1. The smoothness assumption for the initial value u0 in (Gi), i.e., u0 ∈ C([0, 1]),
u0(0) = u0(1) = 0 is not sufficient to get the error bound C(t)∆x

1
2−ε in (Gi) (see the proof

of Gyöngy Proposition 3.8 in [1]). One may need stronger smoothness assumption of u0, e.g.,
u0 ∈ Cβ([0, 1]), β ∈ (0, 1

2 ), u0(0) = u0(1) = 0 to get the error bound C(t)∆x
1
2−ε in (Gi). See

Remark 9 for the further explanations why stronger smoothness assumption of u0 is needed to obtain
the bounds in (Gi).
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In this paper, we extend the error estimates in (Gi) and (Gii) for the stochastic parabolic
equation to the error estimates for the stochastic subdiffusion Equation (1). We obtained
the following results.

Theorem 1. Assume (L), (LG) and Assumption 1 hold. Let u(t, x) and uM(t, xk), k = 0, 1, 2, . . . ,
M be the solutions of (1) and (4), respectively. Further assume that u0 ∈ C1([0, 1]), u0(0) =
u0(1) = 0. Let ε > 0 be any small number.

(i) If f = 0, then there exists a constant C which is independent of t > 0 and the space step size
∆x, such that, with t > 0,

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤Ct−1+ε∆xr1 + C∆xr3

+

C∆xr1 , if 2(α + γ− 1)− α
2 + ε ≥ 0,

C∆x2(α+γ−1)− α
2 +min{1,r1+ε}, if 2(α + γ− 1)− α

2 + ε < 0.
(7)

(ii) If f 6= 0, then there exists a constant C which is independent of t > 0 and the space step size
∆x, such that, with t > 0,

sup
x∈[0,1]

E|uM(t, x)− u(t, x)|2 ≤Ct−1+ε∆xr1 + C(∆xr2 + ∆xr3 )

+

C∆xr1 , if 2(α + γ− 1)− α
2 + ε ≥ 0,

C∆x2(α+γ−1)− α
2 +min{1,r1+ε}, if 2(α + γ− 1)− α

2 + ε < 0.
(8)

where

r1 =

{
2, if 0 ≤ α ≤ 2(1−ε)

3 ,

4
( 1−ε

2α

)
− 1, if 2(1−ε)

3 ≤ α ≤ 1,
(9)

and
r2 = 3− 2

α
, if 3− 2/α > 0, (10)

and

r3 =


2, if 2γ− 1 ≥ 0,

2, if 2γ− 1 < 0, 0 ≤ 2(1−2γ)
α ≤ 1,

3− 2(1−2γ)
α , if 2γ− 1 < 0, 1 ≤ 2(1−2γ)

α ≤ 3.

(11)

Remark 2. When α = 1, γ = 0, i.e., the stochastic parabolic equation case, we obtain that,
from (8)–(11) in Theorem 1, for the initial data u0 ∈ C1([0, 1]), u0(0) = u0(1) = 0, with t > 0,

sup
k

E|uM(t, xk)− u(t, xk)|2 ≤ Ct−1+ε∆x1−2ε + C∆x + C∆x−
1
2+(1−2ε+ε)

= Ct−1+ε∆x1−2ε + C∆x
1
2−ε,

which is consistent with the spatial convergence rate obtained in Theorem 3.1 in [1]. Actually the
smoothness assumption of u0 in this case can be weakened to u0 ∈ Cβ([0, 1]) with β ∈ (0, 1

2 ) and
u0(0) = u0(1) = 0, see Remarks 1 and 9.

Remark 3. We may consider the error estimates with respect to the norm supk E|uM(t, xk)−
u(t, xk)|2p for any p ≥ 1 as in Theorem 3.1 in [1]. For simplicity of the notations, we only consider
the case with p = 1 in Theorem 1.

When the initial value u0 is sufficiently smooth, that is, u0 ∈ C3([0, 1]), u0(0) =
u0(1) = 0, we may get higher convergence rates for some 2/3 < α ≤ 1, uniformly for
t ∈ [0, T] with any fixed T > 0. More precisely, we have the following theorem.
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Theorem 2. Assume (L), (LG) and Assumption 1 hold. Let u(t, x) and uM(t, xk), k = 0, 1, 2, . . . ,
M be the solutions of (1) and (4), respectively. Further, assume that u0 ∈ C3([0, 1]), u0(0) =
u0(1) = 0. Let T > 0 be any fixed number.

(i) If f = 0, then there exists a constant C which is independent of t and the space step size ∆x,

such that, for 2(1−2γ)
α < 3, for all t ∈ [0, T] and M ≥ 1,

sup
k

E|uM(t, xk)− u(t, xk)|2 ≤ C∆xmin(r2,r3,2),

where r2 and r3 are defined by (10) and (11), respectively.
(ii) If f 6= 0, then there exists a constant C which is independent of t and the space step size ∆x,

such that, for 2
α < 3, that is, 2/3 < α ≤ 1, for all t ∈ [0, T] and M ≥ 1,

sup
k

E|uM(t, xk)− u(t, xk)|2 ≤ C∆xmin(r2,r3,2),

where r3 is defined by (11).

Remark 4. Note that, by (10), r2 = 3 − 2/α; therefore, the condition 2/3 < α ≤ 1 is also
necessary in case (i) in Theorem 2. In other words, we may only get the higher convergence
rates for 2/3 < α ≤ 1 when the initial value is sufficiently smooth, e.g., u0 ∈ C3([0, 1]),
u0(0) = u0(1) = 0.

Remark 5. When α = 1, γ = 0, i.e., the stochastic parabolic equation case, we obtain, from
Theorem 2, for the sufficiently smooth initial data u0, e.g., u0 ∈ C3([0, 1]), u0(0) = u0(1) = 0,

sup
k

E|uM(t, xk)− u(t, xk)|2 ≤ C∆x,

which is consistent with the spatial convergence rate obtained in Theorem 3.1 in [1] for the stochastic
parabolic equation driven by space-time white noise.

Remark 6. We may consider the error estimates with respect to the norm supk E|uM(t, xk)−
u(t, xk)|2p for any p ≥ 1 as in Theorem 3.1 in [1]. For simplicity of the notations of the proof, we
only consider the case with p = 1 in Theorem 2.

Remark 7. We may also consider the case where the nonlinear terms f and g are not Lipschitz
continuous as in Gyöngy Section 4 in [1] under the following assumptions:

(E). There is a solution uM of (4) for every M ≥ 1.
(PU). The pathwise uniqueness holds for (1): whenever u and v are random fields carried by

some filtered probability space (Ω̃, F̃ , F̃t, P̃) equipped with a Brownian sheet W̃ such that u, v are
solutions of (1), with W̃ in place of W, on a stochastic interval [0, τ), then u(t, ·) = v(t, ·) almost
surely for all t ∈ [0, τ(ω)).

As we are mainly interested in the error estimates of the stochastic subdiffusion problem (1),
for the sake of paper length, we only consider the cases where the nonlinear terms f , σ satisfy the
globally Lipschitz conditions and linear growth conditions in this paper.

The paper is organized as follows. In Section 2, we consider the continuous problem (1).
We obtain the mild solution of the problem and the spatial regularity of the mild solution.
Section 3 is devoted to the spatial discretization of the problem (1). The regularity of the
solution of the spatial discretization problem is obtained. In Section 4, we consider the error
estimates under the different assumptions for the smoothness of the initial value. Finally,
in Appendix A, we consider the bounds and the error estimates of the approximations of
the Green functions of (1).

Throughout this paper, we denote by C a generic constant depending on u, u0, T, α, γ,
but independent of t > 0 and the space step size ∆x, which could be different at different
occurrences. Further, ε > 0 is always a small positive number.
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2. Continuous Problem

In this section, we shall consider the mild solution of (1) and study its spatial regularity.
Let {λj, ϕj}∞

j=1 be the eigenpairs of the Laplacian operator A = − d2

dx2 with D(A) =

H1
0(0, 1) ∩ H2(0, 1), that is,

λj = j2π2, ϕj(x) =
√

2 sin jπx, j = 1, 2, . . . . (12)

It is well known that {ϕj(x)}∞
j=1 forms an orthonormal basis in H = L2(0, 1).

Let Eα,β(z), 0 < α ≤ 1, β ∈ R denote the Mittag–Leffler function defined by [4]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, 0 < α ≤ 1, β ∈ R. (13)

We have the following differentiation formulas of Mittag–Leffler functions which we
shall use frequently in the error estimates of the Green functions in the Appendix A.

Lemma 1. (1.83) in [4] Let 0 < α ≤ 1, 0 ≤ γ ≤ 1. We have

d
dt

Eα,1(−tαλ) = λtα−1Eα,α(−tαλ), λ > 0, (14)

d
dt

[
tα+γ−1Eα,α+γ(−tαλ)

]
= tα+γ−2Eα,α+γ−1(−tαλ), λ > 0, α + γ 6= 1. (15)

2.1. The Mild Solution of (1)

In this subsection, we shall give the mild solution of (1).

Lemma 2. Assume (L), (LG) and Assumption 1 hold. Let u(t, x) be the solution of (1). Further,
assume that u0 ∈ C([0, 1]). Then, (1) has the following unique mild solution, with t > 0,

u(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0
G2(t− s, x, y) f (u(s, y))dyds

+
∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))dW(s, y), (16)

where

G1(t, x, y) :=
∞

∑
j=1

Eα,1(−tαλj)ϕj(x)ϕj(y), (17)

G2(t, x, y) :=
∞

∑
j=1

tα−1Eα,α(−tαλj)ϕj(x)ϕj(y), (18)

G3(t, x, y) :=
∞

∑
j=1

tα+γ−1Eα,α+γ(−tαλj)ϕj(x)ϕj(y). (19)

Here, Eα,β(z) denotes the Mittag–Leffler function defined in (13) and {λj, ϕj}∞
j=1 are eigen-

pairs defined in (12). The integral

∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))dW(s, y) =

∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))

∂2W(s, y)
∂s∂y

dyds

is understood in Itô’s sense [1], p. 3.

Proof. One may prove this lemma by the method of separation of variables. Assume that
the solution u(t, x) has the form
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u(t, x) =
∞

∑
k=1

uk(t)ϕk(x),

substituting this form into (1), one may easily obtain the mild solution (16). We omit the
details here.

2.2. The Spatial Regularity of the Mild Solution of (1)

In this subsection, we shall consider the spatial regularity of the mild solution of (1).
To do this, we write the mild solution of (1) into

u(t, x) = v(t, x) + w(t, x),

where v(t, x) satisfies the following homogeneous problem with nonzero initial value u0,
C
0 Dα

t v(t, x)− ∂2v(t,x)
∂x2 = 0, 0 < x < 1, t > 0,

v(t, 0) = v(t, 1) = 0, t ≥ 0,
v(0, x) = u0(x), 0 ≤ x ≤ 1,

(20)

which has the solution

v(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy, (21)

and w(t, x) satisfies the following inhomogeneous problem with zero initial value,
C
0 Dα

t w(t, x)− ∂2w(t,x)
∂x2 = f (u(t, x)) + 0D−γ

t σ(u(t, x)) ∂2W(t,x)
∂t∂x , 0 < x < 1, t > 0,

w(t, 0) = w(t, 1) = 0, t ≥ 0,
w(0, x) = 0, 0 ≤ x ≤ 1,

(22)

which has the solution

w(t, x) =
∫ t

0

∫ 1

0
G2(t− s, x, y) f (u(s, y))dyds

+
∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))

∂2W(s, y)
∂s∂y

dyds. (23)

Here, G1, G2, G3 are defined by (17), (18), (19), respectively.
Let 0 = y0 < y1 < · · · < yM−1 < yM = 1 be a partition of [0, 1] and ∆x = 1/M be the

space step size. We define the piecewise constant function kM(y), 0 ≤ y ≤ 1 by

kM(y) =

{
yj, yj ≤ y < yj+1, j = 0, 1, . . . , M− 1,
yM, y = yM.

(24)

2.2.1. The Spatial Regularity of the Homogeneous Problem (20) with the Initial Data
u0 ∈ C([0, 1]), u0(0) = u0(1) = 0

In this subsection, we shall consider the spatial regularity of the homogeneous problem
(20) with u0 ∈ C([0, 1]), u0(0) = u0(1) = 0. We have the following lemma.

Lemma 3. Let v(t, x) be the solution of the homogeneous problem (20). Let u0 ∈ C([0, 1]), u0(0) =
u0(1) = 0. Then, there exists a constant C which is independent of t and the space step size ∆x,
such that

E|v(t, y)− v(t, KM(y))|2 ≤ Ct−1+ε∆xr1 ,

where r1 is denoted by (9).
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Proof. Note that, by Cauchy–Schwarz inequality,

|v(t, y)− v(t, kM(y)|2 =
∣∣∣ ∫ 1

0

[
G1(t, y, z)− G1(t, kM(y), z)

]
u0(z) dz

∣∣∣2
≤
[ ∫ 1

0
|G1(t, y, z)− G(t, kM(y), z)|2 dz

][ ∫ 1

0
|u0(z)|2 dz

]
. (25)

By Lemma A1, we get

|v(t, y)− v(t, kM(y))|2 ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9), which completes the proof of Lemma 3.

2.2.2. The Spatial Regularity of the Homogeneous Problem (20) with the Initial Data
u0 ∈ C2([0, 1]), u0(0) = u0(1) = 0

In this subsection, we shall consider the spatial regularity of the homogeneous problem
(20) with u0 ∈ C2([0, 1]), u0(0) = u0(1) = 0. We have the following lemma.

Lemma 4. Let v(t, x) be the solution of the homogeneous problem (20). Let u0 ∈ C2([0, 1]), u0(0)
= u0(1) = 0. Then, there exists a constant C which is independent of t and the space step size ∆x,
such that

E|v(t, y)− v(t, KM(y))|2 ≤ C∆xr2 ,

where r2 is defined by (10).

Proof. We have

v(t, y) =
∫ 1

0
G1(t, y, z)u0(z)dz =

∫ 1

0

∞

∑
j=1

Eα,1(−tαλj)ϕj(y)ϕj(z)u0(z)dz.

By Lemma 1, we have

v(t, y) =
∫ 1

0

∞

∑
j=1

[ ∫ t

0
sα−1λjEα,α(−sαλj)ds + 1

]
ϕj(y)ϕj(z)u0(z)dz

=
∞

∑
j=1

∫ 1

0
ϕj(y)ϕj(z)u0(z)dz +

∫ t

0

∫ 1

0

∞

∑
j=1

sα−1Eα,α(−sαλj)ϕj(y)
(
λj ϕj(z)

)
u0(z)ds.

Note that∫ 1

0
λj ϕj(z)u0(z)dz = −

∫ 1

0
ϕ′′j (z)u0(z)dz = −

∫ 1

0
ϕj(z)u′′0 (z)dz.

We get

v(t, y) = u0(y)−
∫ t

0

∫ 1

0
G2(s, y, z)u′′0 (z)dzds. (26)

where G2 is defined by (18).
Thus, by using Cauchy–Schwarz inequality, with yk ≤ y ≤ yk+1, k = 0, 1, . . . , M− 1,

|v(t, y)− v(t, kM(y)|2 ≤ C|u0(y)− u0(kM(y))|2

+ C
∣∣∣ ∫ t

0

∫ 1

0

[
G2(s, y, z)− G2(s, kM(y), z)

]
u′′0 (z)dzds

∣∣∣2
≤ C|u0(y)− u0(kM(y))|2

+ C
[ ∫ t

0

∫ 1

0

(
G2(s, y, z)− G2(s, kM(y), z)

)2
dzds

][ ∫ t

0

∫ 1

0
|u′′0 (z)|2 dzds

]
.
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By Lemma A4 and using the error estimates of the liner interpolation function, we obtain

|v(t, y)− v(t, kM(y))|2 ≤ C∆x2‖u0‖2
C1([0,1]) + C∆xr2‖u0‖C2([0,1]),

which completes the proof of Lemma 4.

2.2.3. The Spatial Regularity of the Inhomogeneous Problem (22)

In this subsection, we shall consider the spatial regularity of the inhomogeneous
problem (22). We have the following lemma.

Lemma 5. Assume (L), (LG) and Assumption 1 hold. Let w(t, x) be the solution of the inhomo-
geneous problem (22). Then there exists a constant C which is independent of t and the space step
size ∆x, such that

E|w(t, y)− w(t, KM(y))|2 ≤ C
(
∆xr2 + ∆xr3

)
,

where r2 and r3 are defined by (10), (11), respectively.

Proof. Denote h(s, z) = f (u(s, z)) or σ(u(s, z)). One may easily prove (we omit the proof
here due to the length of the paper) that, under the assumptions (L) and (LG), h(t, x), t ≥ 0,
0 ≤ x ≤ 1 satisfy

sup
t,x

E|h(t, x)|2 ≤ C. (27)

Denote

F(t, x) =
∫ t

0

∫ 1

0
G2(t− s, x, z)h(s, z)dzds,

H(t, x) =
∫ t

0

∫ 1

0
G3(t− s, x, z)h(s, z)dW(s, z),

where G2 and G3 are defined by (18) and (19), respectively.
We will show that

E|F(t, y)− F(t, kM(y))|2 ≤ C∆xr2 , (28)

E|H(t, y)− H(t, kM(y))|2 ≤ C∆xr3 , (29)

where r2 and r3 are defined by (10) and (11), respectively.
We only prove (29) here since the proof of (28) is similar. By Burkholder’s inequality [1],

p. 9 and the boundedness of h in (27), we have

E|H(t, y)− H(t, kM(y))|2 = E
∣∣∣ ∫ t

0

∫ 1

0

[
G3(t− s, y, z)h(s, z)− G3(t− s, kM(y), z)

]
h(s, z)dW(s, z)

∣∣∣2
≤ CE

∫ t

0

∫ 1

0
|G3(t− s, y, z)− G3(t− s, kM(y), z)|2|h(s, z)|2 dzds

≤ C
∫ t

0

∫ 1

0
|G3(t− s, y, z)− G3(t− s, kM(y), z)|2 dzds,

which implies, by Lemma A4,

E|H(t, y)− H(t, kM(y))|2 ≤ C∆xr3 ,

where r3 is defined by (11).
The proof of Lemma 5 is complete.

3. Spatial Discretization

In this section, we shall consider the spatial discretization of (1).
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3.1. The Mild Solution of the Spatial Discretization Problem (4)

Let {λM
j , ~ϕM

j }
M−1
j=1 be the eigenpairs of the following discrete Laplacian matrix ~A

defined by

~A =


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2


(M−1)×(M−1)

. (30)

It is well known that (2.4) in page 4 in [1]

λM
j =

sin2 ( jπ
2M
)( 1

2M
)2 , ~ϕM

j =
√

∆x


ϕj(x1)
ϕj(x2)

...
ϕj(xM−1)

, j = 1, 2, . . . , M− 1, (31)

and ~ϕM
j , j = 1, 2, . . . , M− 1 forms an orthonormal basis in RM−1.

Lemma 6. Assume (L), (LG) and Assumption 1 hold. Let uM(t, xk), k = 0, 1, 2, . . . , M be the
solution of spatial discretization problem (4). Further, assume that u0 ∈ C([0, 1]). Then, (4) has
the following unique mild solution

uM(t, x) =
∫ 1

0
GM

1 (t, x, y)u0(kM(y))dy +
∫ t

0

∫ 1

0
GM

2 (t− s, x, y) f (uM(s, kM(y)))dyds

+
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2WM(s, y)

∂s∂y
dyds, (32)

where uM(t, x) is the piecewise linear interpolation function of uM(t, xk), k = 0, 1, 2, . . . , M and

GM
1 (t, x, y) :=

M−1

∑
j=1

Eα,1(−tαλM
j )ϕM

j (x)ϕj(kM(y)), (33)

GM
2 (t, x, y) :=

M−1

∑
j=1

tα−1Eα,α(−tαλM
j )ϕM

j (x)ϕj(kM(y)), (34)

GM
3 (t, x, y) :=

M−1

∑
j=1

tα+γ−1Eα,α+γ(−tαλM
j )ϕM

j (x)ϕj(kM(y)), (35)

and
∂2WM(t, y)

∂t∂y
:=

d
dt

(W(t, kM(y) + 1
M )−W(t, kM(y))
∆x

)
, 0 ≤ y ≤ 1. (36)

Here, Eα,β(z) denotes the Mittag–Leffler functions defined by (13) and {λM
j , ~ϕM

j }
M−1
j=1 are

the eigenpairs of the discrete Laplacian ~A defined in (31). Here, kM(y), 0 ≤ y ≤ 1 is defined by
(24) and ϕM

j (x) are the piecewise linear interpolation functions of ϕj(x) j = 1, 2, . . . , M− 1 with
respect to the grids xl , l = 0, 1, . . . , M.
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Proof. We write (4) into the following matrix form:

C
0 Dα

t ~u
M(t) + ~A~uM(t) = ~FM

1 (t) + 0D−γ
t

~FM
2 (t), t > 0,

~uM(0) =


u0(x1)

u0(x2)
...

u0(xM−1)

,
(37)

where

~uM(t) =


uM(t, x1)
uM(t, x2)

...
uM(t, xM−1)

, ~FM
1 (t) =


f (uM(t, x1))
f (uM(t, x2))

...
f (uM(t, xM−1))

,

and

~FM
2 (t) =


σ(uM(t, x1))

d
dt

(
W(t,x2)−W(t,x1)

∆x

)
σ(uM(t, x2))

d
dt

(
W(t,x3)−W(t,x2)

∆x

)
...

σ(uM(t, xM−1))
d
dt

(
W(t,xM)−W(t,xM−1)

∆x

)

.

The solution of (37) can then be written into the following integration form:

~uM(t) = Eα,1(−tα ~A)~uM(0) +
∫ t

0
(t− s)α−1Eα,α(−(t− s)α ~A)~FM

1 (s)ds

+
∫ t

0
(t− s)α+γ−1Eα,α+γ(−(t− s)α ~A)~FM

2 (s)ds.

Thus, we have, noting that {λM
j , ~ϕM

j }
M−1
j=1 is an orthonormal basis in RM−1,

~uM(t) =
M−1

∑
j=1

(~uM(0), ~ϕM
j )Eα,1(−λM

j tα)~ϕM
j

+
M−1

∑
j=1

∫ t

0
(t− s)α−1Eα,α(−λM

j (t− s)α)
(
~FM

1 (s), ~ϕM
j
)
~ϕM

j ds

+
M−1

∑
j=1

∫ t

0
(t− s)α+γ−1Eα,α+γ(−λM

j (t− s)α)
(
~FM

2 (s), ~ϕM
j
)
~ϕM

j ds,

which implies that, with k = 1, 2, . . . , M− 1,

uM(t, xk) =
M−1

∑
j=1

[
∆x

M−1

∑
l=1

u0(xl)ϕj(xl)
]

Eα,1(−λM
j tα)ϕj(xk)

+
M−1

∑
j=1

∫ t

0
(t− s)α−1Eα,α(−λM

j (t− s)α)
[
∆x

M−1

∑
l=1

f (uM(s, xl))ϕj(xl)
]

ϕj(xk)ds

+
M−1

∑
j=1

∫ t

0
(t− s)α+γ−1Eα,α+γ(−λM

j (t− s)α)·

·
[
∆x

M−1

∑
l=1

σ(uM(s, xl))
d
ds

(W(s, xl+1)−W(s, xl)

∆x

)
ϕj(xl)

]
ϕj(xk)ds. (38)
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Let ϕM
j (x) be the piecewise linear interpolation function of ϕj(xk), k = 0, 1, . . . , M

defined by

ϕM
j (x) = ϕj(xk) +

ϕj(xk+1)− ϕj(xk)

∆x
(x− xk), xk ≤ x ≤ xk+1, k = 0, 1, 2, . . . , M− 1.

Replacing ϕj(xk) by the piecewise linear interpolation function ϕM
j (x) and writing

the summation terms ∑M
l=1 into the integral forms in (38), we then obtain the following

piecewise linear interpolation function of uM(t, xk), k = 0, 1, 2, . . . , M,

uM(t, x) =
∫ 1

0

M−1

∑
j=1

Eα,1(−λM
j tα)ϕM

j (x)ϕj(kM(y))u0(kM(y))dy

+
∫ t

0

∫ 1

0

M−1

∑
j=1

(t− s)α−1Eα,α(−λM
j (t− s)α)ϕM

j (x)ϕj(kM(y)) f (uM(s, kM(y))dyds

+
∫ t

0

∫ 1

0

M−1

∑
j=1

(t− s)α+γ−1Eα,α+γ(−λM
j (t− s)α)ϕM

j (x)ϕj(kM(y))σ(uM(s, kM(y))
∂2WM(s, y)

∂s∂y
dyds,

which shows (32), where kM(y) and ∂2WM(s,y)
∂s∂y are defined by (24) and (36), respectively.

The proof of Lemma 6 is now complete.

3.2. Spatial Regularity of the Spatial Discretization Problem

In this subsection, we shall consider the regularity of the mild solution (32) of the
spatial discretization problem. To do this, we write the solution uM(t, x) in (32) into

uM(t, x) = vM(t, x) + wM(t, x),

where vM(t, x) is the solution of the corresponding homogeneous problem defined by

vM(t, x) :=
∫ 1

0
GM

1 (t, x, y)u0(kM(y))dy, (39)

and wM(t, x) is the solution of the corresponding inhomogeneous problem defined by

wM(t, x) =
∫ t

0

∫ 1

0
GM

2 (t− s, x, y) f (uM(s, kM(y))dyds

+
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y))
∂2WM(s, y)

∂s∂y
dyds. (40)

3.2.1. Spatial Regularity of the Homogeneous Spatial Discretization Problem with the
Initial Data u0 ∈ C([0, 1]), u0(0) = u0(1) = 0

In this subsection, we shall consider the spatial regularity of the homogeneous spatial
discretization problem with the initial data u0 ∈ C([0, 1]), u0(0) = u0(1) = 0. We have the
following lemma.

Lemma 7. Let vM(t, x) be the solution in (39). Let u0 ∈ C([0, 1]), u0(0) = u0(1) = 0. Then
there exists a constant C which is independent of t and the space step size ∆x, such that

E|vM(t, y)− vM(t, KM(y))|2 ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9).
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Proof. Note that, by Cauchy–Schwarz inequality,

|vM(t, y)− vM(t, kM(y)|2 =
∣∣∣ ∫ 1

0

[
GM

1 (t, y, z)− GM
1 (t, kM(y), z)

]
u0(kM(z))dz

∣∣∣2
≤
[ ∫ 1

0
|GM

1 (t, y, z)− GM
1 (t, kM(y), z)|2 dz

][ ∫ 1

0
|u0(kM(z))|2 dz

]
. (41)

By Lemma A2, we get

|vM(t, y)− vM(t, kM(y))|2 ≤ Ct−1+ε∆xr1 ,

which completes the proof of Lemma 7.

3.2.2. Spatial Regularity of the Homogeneous Spatial Discretization Problem with the
Initial Data u0 ∈ C2([0, 1]), u0(0) = u0(1) = 0

In this subsection, we shall consider the spatial regularity of the homogeneous spatial
discretization problem with the initial data u0 ∈ C2([0, 1]), u0(0) = u0(1) = 0. We have the
following lemma.

Lemma 8. Let vM(t, x) be the solution in (39). Let u0 ∈ C2([0, 1]), u0(0) = u0(1) = 0. Then,
there exists a constant C which is independent of t and the space step size ∆x, such that

E|vM(t, y)− vM(t, KM(y))|2 ≤ C∆xr2 ,

where r2 is defined by (10).

Proof. We have

vM(t, y) =
∫ 1

0
GM

1 (t, y, z)u0(kM(z))dz =
∫ 1

0

M−1

∑
j=1

Eα,1(−tαλM
j )ϕM

j (y)ϕj(kM(z))u0(kM(z))dz.

By Lemma 1, we have

vM(t, y) =
∫ 1

0

M−1

∑
j=1

[ ∫ t

0
sα−1λM

j Eα,α(−sαλM
j )ds + 1

]
ϕM

j (y)ϕj(kM(z))u0(kM(z))dz

=
M−1

∑
j=1

∫ 1

0
ϕM

j (y)ϕj(kM(z))u0(kM(z))dz

+
∫ t

0

∫ 1

0

M−1

∑
j=1

sα−1Eα,α(−sαλM
j )ϕM

j (y)
(
λM

j ϕj(kM(z))
)
u0(kM(z))dzds. (42)

For the first term of the last equality in (42), we have, with k = 0, 1, 2, . . . , M, and not-
ing that ϕM

j (y) is the piecewise linear interpolation function of ϕj(y) on yj, j = 0, 1, . . . , M,

M−1

∑
j=1

∫ 1

0
ϕM

j (yk)ϕj(kM(z))u0(kM(z))dz =
M−1

∑
j=1

ϕj(yk)
[ ∫ 1

0
ϕj(kM(z))u0(kM(z))dz

]
=

M−1

∑
j=1

(√
∆xϕj(yk)

) M−1

∑
l=0

(√
∆xϕj(zl)

)
u0(zl)

=
M−1

∑
j=1

[(
~uM

0 (0), ~ϕM
j
)
~ϕM

j

]
(k) =

[
~uM

0 (0)
]
(k) = u0(yk).

Therefore, ∑M−1
j=1

∫ 1
0 ϕM

j (y)ϕj(kM(z))u0(kM(z))dz is the piecewise linear interpolation
function of u0(yk), k = 0, 1, 2, . . . , M and we denote
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Ihu0(y) :=
M−1

∑
j=1

∫ 1

0
ϕM

j (y)ϕj(kM(z))u0(kM(z))dz.

Further, we assume that the following equality holds at the moment:

∫ 1

0
λM

j ϕj(kM(z))u0(kM(z))dz = −
∫ 1

0
ϕj(kM(z))

u0(kM(z) + 1
M )− 2u0(kM(z)) + u0(kM(z)− 1

M )

∆x2 dz, (43)

which we shall prove later. We then get

vM(t, y) = Ihu0(y)−
∫ t

0

∫ 1

0
GM

2 (s, y, z)
u0(kM(z) + 1

M )− 2u0(kM(z)) + u0(kM(z)− 1
M )

∆x2 dzds, (44)

where GM
2 is defined by (34).

By using the Cauchy–Schwarz inequality, we have

|vM(t, y)− vM(t, kM(y)|2 ≤ C|Ihu0(y)− Ihu0(kM(y))|2

+ C
∣∣∣ ∫ t

0

∫ 1

0

[
GM

2 (s, y, z)− GM
2 (s, kM(y), z)

]u0(kM(z) + 1
M )− 2u0(kM(z)) + u0(kM(z)− 1

M )

∆x2 dzds
∣∣∣2

≤ C|Ihu0(y)− u0(y)|2 + C|u0(y)− Ihu0(kM(y))|2

+ C
[ ∫ t

0

∫ 1

0

[
GM

2 (s, y, z)− GM
2 (s, kM(y), z)

]2
dzds

]
·
[ ∫ t

0

∫ 1

0

∣∣∣u0(kM(z) + 1
M )− 2u0(kM(z)) + u0(kM(z)− 1

M )

∆x2

∣∣∣2 dzds
]
.

By Lemma A4, and using the error estimates of the liner interpolation function and
mean-value theorem, we obtain

|vM(t, y)− vM(t, kM(y))|2 ≤ C∆x2‖u0‖2
C1([0,1]) + C∆xr2‖u0‖C2([0,1]).

It remains to prove (43). In fact, we have, noting that ϕj(y0) = 0,

−
∫ 1

0
λM

j ϕj(kM(y))u0(kM(y))dy =
[ ∫ y2

y1

+ · · ·+
∫ yM

yM−1

]
(−λM

j )ϕj(kM(y))u0(kM(y))dy

=
√

∆x
(
(−λM

j )~ϕM
j ,~uM

0
)
RM−1 =

√
∆x
(
~ϕM

j , ~A~uM
0
)
RM−1

=
∫ 1

0
ϕj(kM(y))

u0(kM(z) + 1
M )− 2u0(kM(z)) + u0(kM(z)− 1

M )

∆x2 dy, (45)

where we use the fact u0(y0) = u0(yM) = 0 in the last equality in (45). Hence (43) holds.
The proof of Lemma 8 is now complete.

3.2.3. Spatial Regularity of the Inhomogeneous Spatial Discretization Problem

In this subsection, we shall consider the spatial regularity of the inhomogeneous
spatial discretization problem. Following the same lines of the proof of Lemma 5, we may
prove the following.

Lemma 9. Assume (L), (LG) and Assumption 1 hold. Let wM(t, x) be the solution in (40). Then,
there exists a constant C which is independent of t and the space step size ∆x, such that

E|wM(t, y)− wM(t, KM(y))|2 ≤ C
(
∆xr2 + ∆xr3

)
,

where r2 and r3 are defined by (10) and (11), respectively.
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4. Error Estimates

In this section, we will consider the error estimates of uM(t, x) for approximating
u(t, x) under the suitable smoothness assumptions of the initial value u0. We need the
following Grönwall Lemma Lemma 3.4 in [1].

Lemma 10. Let z : R+ → R+ be a Borel function satisfying for all t ∈ [0, T] the inequality

0 ≤ z(t) ≤ a + K
∫ t

0
(t− s)σz(s)ds,

with some constants a ≥ 0, K > 0 and σ > −1. Then, there exists a constant C = C(σ, K, T) such
that z(t) ≤ aC for all t ∈ [0, T].

4.1. Proof of Theorem 2

In this subsection, we shall prove Theorem 2 where the initial data u0 ∈ C3([0, 1]), u0(0)
= u0(1) = 0.

We first consider the case (i), that is, f = 0. We divide the proof into two steps.
Step 1. We consider the approximation of the homogeneous problem of (1). Recall

that the solution of the homogeneous problem of (1) has the form, by (21),

v(t, x) =
∫ 1

0
G1(t, x, y)u0(y)dy.

The approximate solution of the homogeneous problem of (1) has the form, by (39),

vM(t, x) =
∫ 1

0
GM

1 (t, x, y)u0(kM(y))dy.

By (26), we have

v(t, x) = u0(x) +
∫ t

0

∫ 1

0
G2(s, x, y)u′′0 (y)dyds.

By (44), we obtain

vM(t, x) = Ihu0(x) +
∫ t

0

∫ 1

0
GM

2 (s, x, y)
u0(kM(y) + 1

M )− 2u0(kM(y)) + u0(kM(y)− 1
M )

∆x2 dyds,

where Ihu0(x) is the piecewise linear interpolation function of u0(xk), k = 0, 1, 2, . . . , M.
Therefore, one gets

|v(t, x)− vM(t, x)|2 ≤ C|Ihu0(x)− u0(x)|2 + C
∣∣∣ ∫ t

0

∫ 1

0

[
GM

2 (s, x, y)− G2(s, x, y)
]
u′′0 (y)dyds

∣∣∣2
+ C

∣∣∣ ∫ t

0

∫ 1

0
GM

2 (s, x, y)
[
u′′0 (y)−

u0(kM(y) + 1
M )− 2u0(kM(y)) + u0(kM(y)− 1

M )

∆x2

]
dyds

∣∣∣2
= I1 + I2 + I3.

For I1, using the error estimates of the linear interpolation function, one gets

I1 = C|Ihu0(x)− u0(x)|2 ≤ C‖u0‖2
C1([0,1])∆x2.

For I2, we obtain, by Cauchy–Schwartz inequality,

I2 = C
∣∣∣ ∫ t

0

∫ 1

0

(
GM

2 (s, x, y)− G2(s, x, y)
)
u′′0 (y)dyds

∣∣∣2
≤ C

[ ∫ t

0

∫ 1

0

∣∣∣GM
2 (s, x, y)− G2(s, x, y)

∣∣∣2 dyds
][ ∫ t

0

∫ 1

0
|u′′0 (y)|2 dyds

]
≤ C

[ ∫ t

0

∫ 1

0

∣∣∣GM
2 (s, x, y)− G2(s, x, y)

∣∣∣2 dyds
]
‖u0‖2

C2([0,1]).
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Thus, by Lemma A9,

I2 ≤ C∆xr2‖u0‖2
C2([0,1]),

where r2 is defined by (10).
For I3, we have

I3 = C
∣∣∣ ∫ t

0

∫ 1

0
GM

2 (s, x, y)
[
u′′0 (y)−

u0(kM(y) + 1
M )− 2u0(kM(y)) + u0(kM(y)− 1

M )

∆x2

]
dyds

∣∣∣2
≤ C

[ ∫ t

0

∫ 1

0
|GM

2 (s, x, y)|2 dyds
]
·

·
[ ∫ t

0

∫ 1

0

∣∣∣u′′0 (y)− u0(kM(y) + 1
M )− 2u0(kM(y)) + u0(kM(y)− 1

M )

∆x2

∣∣∣2 dyds.

Note that, with yl ≤ y < yl+1, l = 0, 1, 2, . . . , M− 1,∣∣∣u′′0 (y)− u0(yl+1)− 2u0(yl) + u0(yl+1)

∆x2

∣∣∣
≤ |u′′0 (y)− u′′0 (yl)|+

∣∣∣u′′0 (yl)−
u0(yl+1)− 2u0(yl) + u0(yl+1)

∆x2

∣∣∣
≤ C|u′′′0 (c)∆x| ≤ C∆x‖u0‖C3([0,1]).

Therefore, we get, by Lemma A8,

I3 ≤ C∆x2‖u0‖2
C3([0,1]). (46)

Together with these estimates, we obtain

E|v(t, x)− vM(t, x)|2 ≤ C∆x2‖u0‖2
C2([0,1]) + C∆xr2‖u0‖2

C2([0,1]) + C∆x2‖u0‖2
C3([0,1])

≤ C(∆x2 + ∆xr2 ), (47)

where r2 is defined by (10).
Step 2. We now consider the approximation of the inhomogeneous problem of (1).

Recall that, by (23), the solution of the inhomogeneous problem of (1) has the form, as
f = 0,

w(t, x) =
∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))

∂2W(s, y)
∂s∂y

dyds, (48)

and, by (40), the approximate solution of the inhomogeneous problem of (1) has the form

wM(t, x) =
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2WM(s, y)

∂s∂y
dyds. (49)

Thus, we have

E|wM(t, x)− w(t, x)|2

= E
∣∣∣ ∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2WM(s, y)

∂s∂y
dyds

−
∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))

∂2W(s, y)
∂s∂y

dyds
∣∣∣2

≤ CE
∣∣∣ ∫ t

0

∫ 1

0

[
GM

3 (t− s, x, y)σ(uM(s, kM(y)))− G3(t− s, x, y)σ(u(s, y))
]∂2W(s, y)

∂s∂y
dyds

∣∣∣2
+ CE

∣∣∣ ∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
[∂2W(s, y)

∂s∂y
− ∂2WM(s, y)

∂s∂y

]
dyds

∣∣∣2
= I1 + I2.
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For I1, we have

I1 = CE
∣∣∣ ∫ t

0

∫ 1

0

[
GM

3 (t− s, x, y)σ(uM(s, kM(y)))− G3(t− s, x, y)σ(u(s, y))
]
dW(s, y)

∣∣∣2
≤ CE

∣∣∣ ∫ t

0

∫ 1

0

[
GM

3 (t− s, x, y)− G3(t− s, x, y)
]
σ(uM(s, kM(y)))dW(s, y)

∣∣∣2
+ CE

∣∣∣ ∫ t

0

∫ 1

0
G3(t− s, x, y)

[
σ(uM(s, kM(y)))− σ(u(s, y))

]
dW(s, y)

∣∣∣2.

By Burkholder inequality [1], p. 9, Proof of Proposition 3.5, one gets

I1 ≤ C
∫ t

0

∫ 1

0

[
GM

3 (t− s, x, y)− G3(t− s, x, y)
]2

sup
s,y

E‖σ(uM(s, kM(y)))‖2 dyds

+ C
∫ t

0

∫ 1

0
[G3(t− s, x, y]2 sup

y
E‖σ(uM(s, kM(y)))− σ(u(s, y))‖2 dyds.

By the Assumptions (L) and (LG), we have, using the boundedness of the solution uM,

I1 ≤ C
∫ t

0

∫ 1

0

[
GM

3 (t− s, x, y)− G3(t− s, x, y)
]2

dyds

+ C
∫ t

0

∫ 1

0
[G3(t− s, x, y]2 sup

y
E‖uM(s, kM(y))− u(s, y)‖2 dyds.

Therefore, by Lemmas A4 and A6,

I1 ≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y

E|uM(s, kM(y))− u(s, y)|2 ds,

where r3 is defined by (11).
For I2, we have

I2 = E
∣∣∣ ∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2W(s, y)

∂s∂y
dyds

−
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2WM(s, y)

∂s∂y
dyds

∣∣∣2
= E

∣∣∣ M−1

∑
k=0

∫ t

0

∫ yk+1

yk

GM
3 (t− s, x, y)σ(uM(s, kM(y)))

∂2W(s, y)
∂s∂y

dyds

−
M−1

∑
k=0

∫ t

0

∫ yk+1

yk

GM
3 (t− s, x, ȳ)σ(uM(s, kM(ȳ)))

∂2WM(s, ȳ)
∂s∂ȳ

dȳds
∣∣∣2.

By (36), we have, for yk ≤ ȳ ≤ yk+1, k = 0, 1, 2, . . . , M− 1,

∂2WM(s, ȳ)
∂s∂ȳ

=
d
ds

[W(s, yk+1)−W(s, yk)

∆x

]
=

1
∆x

∫ yk+1

yk

∂2W(s, y)
∂s∂y

dy.
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Thus, we get

I2 = E
∣∣∣ M−1

∑
k=0

∫ t

0

∫ yk+1

yk

GM
3 (t− s, x, y)σ(uM(s, kM(y)))

∂2W(s, y)
∂s∂y

dyds

−
M−1

∑
k=0

∫ t

0

∫ yk+1

yk

GM
3 (t− s, x, ȳ)σ(uM(s, kM(ȳ)))

[ 1
∆x

∫ yk+1

yk

∂2W(s, y)
∂s∂y

dy
]

dȳds
∣∣∣2

= E
∣∣∣ M−1

∑
k=0

∫ t

0

∫ yk+1

yk

[ 1
∆x

∫ yk+1

yk

GM
3 (t− s, x, y)σ(uM(s, kM(y)))dȳ

− 1
∆x

∫ yk+1

yk

GM
3 (t− s, x, ȳ)σ(uM(s, kM(ȳ)))dȳ

]
dW(s, y)

∣∣∣2.

Note that, for yk ≤ y, ȳ ≤ yk+1, k = 0, 1, 2, . . . , M− 1,

GM
3 (t− s, x, y) =

M−1

∑
j=1

(t− s)α+γ−1Eα,α+γ(−λM
j (t− s)α)ϕM

j (x)ϕj(kM(y))

=
M−1

∑
j=1

(t− s)α+γ−1Eα,α+γ(−λM
j (t− s)α)ϕM

j (x)ϕj(kM(ȳ))

= GM
3 (t− s, x, ȳ),

which implies that

I2 = E
∣∣∣ M−1

∑
k=0

∫ t

0

∫ yk+1

yk

0 dW(s, y)
∣∣∣2 = 0.

Thus, we get

E|wM(t, x)− w(t, x)|2 ≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y

E|uM(s, kM(y))− u(s, y)|2 ds. (50)

By the spatial regularity Lemmas 8 and 9 and the error estimate (47) for E|vM(s, y)−
v(s, y)|2, we obtain

E|uM(s, kM(y))− u(s, y)|2

≤ E|wM(s, kM(y))− wM(s, y)|2 +E|wM(s, y)− w(s, y)|2

+E|vM(s, kM(y))− vM(s, y)|2 +E|vM(s, y)− v(s, y)|2

≤ C(∆x2 + ∆xr2 + ∆xr3) + CE|wM(s, y)− w(s, y)|2.

Therefore, we get, if 2(α + γ− 1)− α
2 > −1, i.e., 2(1−2γ)

α < 3,

E|wM(t, x)− w(t, x)|2

≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
(∆x2 + ∆xr2 + ∆xr3) + sup

y
E|wM(s, y)− w(s, y)|2

]
ds

≤ C(∆x2 + ∆xr2 + ∆xr3) + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds,

which implies that

sup
x∈[0,1]

E|wM(t, x)− w(t, x)|2 ≤C(∆x2 + ∆xr2 + ∆xr3)

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds.
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By using Grönwall Lemma 10, we get, if 2(α + γ− 1)− α
2 > −1, i.e., 2(1−2γ)

α < 3,

sup
x∈[0,1]

E|wM(t, x)− w(t, x)|2 ≤ C(∆x2 + ∆xr2 + ∆xr3).

We now consider the case (ii), that is, f 6= 0. In this case, the approximation to the solu-
tion of the homogeneous problem of (1) is the same as the case (i). For the inhomogeneous
problem of (1), the solution has the form

w(t, x) =
∫ t

0

∫ 1

0
G2(t− s, x, y) f (u(s, y))dyds

+
∫ t

0

∫ 1

0
G3(t− s, x, y)σ(u(s, y))

∂2W(s, y)
∂s∂y

dyds. (51)

The approximate solution of the inhomogeneous problem of (1) has the form

wM(t, x) =
∫ t

0

∫ 1

0
GM

2 (t− s, x, y) f (uM(s, kM(y)))dyds

+
∫ t

0

∫ 1

0
GM

3 (t− s, x, y)σ(uM(s, kM(y)))
∂2WM(s, y)

∂s∂y
dyds. (52)

Following the same arguments as in Step 2 above, we may get, if 2(α− 1)− α
2 > −1,

i.e., 2
α < 3,

E|wM(t, x)− w(t, x)|2

≤ C(∆xr2 + ∆xr3)

+ C
∫ t

0
(t− s)2(α−1)− α

2

[
(∆x2 + ∆xr2 + ∆xr3) + sup

y
E|wM(s, y)− w(s, y)|2

]
ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
(∆x2 + ∆xr2 + ∆xr3) + sup

y
E|wM(s, y)− w(s, y)|2

]
ds

≤ C(∆xr3 + ∆xr2 + ∆x2)

+ C
∫ t

0
(t− s)2(α−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds,

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds,

which implies that

sup
x∈[0,1]

E|wM(t, x)− w(t, x)|2 ≤C(∆xr2 + ∆xr3 + ∆x2)

+ C
∫ t

0
(t− s)2(α−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
ds.

By using Grönwall Lemma 10, we get, if 2(α− 1)− α
2 > −1, i.e., 2

α < 3,

sup
x∈[0,1]

E|wM(t, x)− w(t, x)|2 ≤ C(∆xr2 + ∆xr3 + ∆x2).

Together this with (47) shows (ii).
The proof of Theorem 2 is now complete.
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Remark 8. The smoothness assumption for u0, that is, u0 ∈ C3([0, 1]), u(0) = u(1) = 0, is
needed for estimating the term I3 in (46). Such assumption has been used in Gyöngy Theorem 3.1
in [1].

4.2. Proof of Theorem 1

In this subsection, we shall prove Theorem 1 where the initial data u0 ∈ C1([0, 1]), u0(0)
= u0(1) = 0. The proof is similar as the proof of Theorem 2.

We first consider the case (i), that is, f = 0. We divide the proof into two steps.
Step 1. We consider the approximation of the homogeneous problem of (1). By Cauchy–

Schwarz inequality, we have

|v(t, x)− vM(t, x)|2 ≤ C
∣∣∣ ∫ 1

0

(
GM

1 (t, x, y)− G1(t, x, y)
)
u0(kM(y))dy

∣∣∣2
+ C

∣∣∣ ∫ 1

0
G1(t, x, y)

(
u0(kM(y))− u0(y)

)
dy
∣∣∣2

≤ C
[ ∫ 1

0
|GM

1 (t, x, y)− G1(t, x, y)|2 dy
][ ∫ 1

0
|u0(kM(y))|2 dy

]
+ C

[ ∫ 1

0
|G1(t, x, y)|2 dy

][ ∫ 1

0
|u0(kM(y))− u0(y)|2 dy

]
. (53)

Therefore, by mean-value theorem,

|v(t, x)− vM(t, x)|2 ≤ C
[ ∫ 1

0
|GM

1 (t, x, y)− G1(t, x, y)|2 dy
]
‖u0‖2

C([0,1])

+ C
[ ∫ 1

0
|G1(t, x, y)|2 dy

]
∆x2‖u0‖2

C1([0,1]).

Further, applying Lemmas A1 and A3, one obtains

|v(t, x)− vM(t, x)|2 ≤ Ct−1+ε∆xr1‖u0‖2
C([0,1]) + Ct−

α
2 ∆x2‖u0‖2

C1([0,1]) ≤ Ct−1+ε∆xr1‖u0‖2
C1([0,1]), (54)

where r1 is defined by (9).

Remark 9. The smoothness assumption of the initial value u0 ∈ C1([0, 1]) here is only required
for estimating the term

∫ 1
0 |u0(kM(y))− u0(y)|2 dy in (53). Such assumption can be weakened in

some cases. For example, in the stochastic parabolic equation case, i.e., α = 1, γ = 0, it is sufficient
to assume that u0 ∈ Cβ([0, 1]), 0 < β < 1

2 , u(0) = u(1) = 0 which implies that

∫ 1

0
|u0(kM(y))− u0(y)|2 dy ≤ C∆x1−ε‖u0‖2

C1/2−ε([0,1]), ε > 0,

and therefore, with r1 defined by (9),

|v(t, x)− vM(t, x)|2 ≤ Ct−1+ε∆xr1‖u0‖2
C1/2−ε([0,1]) ≤ Ct−1+ε∆x

1
2−ε‖u0‖2

C1/2−ε([0,1]).

This is consistent with the error estimate obtained in Gyöngy Theorem 3.1 in [1] with u0 ∈
Cβ([0, 1]), 0 < β < 1

2 , u(0) = u(1) = 0. See also Remark 1 for the discussion of the smoothness
assumption of the initial value u0 in Gyöngy Theorem 3.1 in [1].

Step 2. We now consider the approximation of the inhomogeneous problem of (1).
Following the proof of (50), we get

E|wM(t, x)−w(t, x)|2 ≤ C∆xr3 +C
∫ t

0
(t− s)2(α+γ−1)− α

2 sup
y

E|uM(s, kM(y))− u(s, y)|2 ds,

where r3 is defined by (11).
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Noting that

E|uM(s, kM(y))− u(s, y)|2 ≤ E|wM(s, kM(y))− wM(s, y)|2 +E|wM(s, y)− w(s, y)|2

+E|vM(s, kM(y))− vM(s, y)|2 +E|vM(s, y)− v(s, y)|2,

we therefore obtain

E|wM(t, x)− w(t, x)|2

≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣wM(s, kM(y))− wM(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣wM(s, kM(y))− w(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, kM(y))− vM(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, y)− v(s, y)

∣∣2]ds

= C∆xr3 + J1(t) + J2(t) + J3(t) + J4(t). (55)

For J1(t), if 2(α + γ− 1)− α
2 > −1, we then have, applying Lemma 9 for the case

f = 0,

J1(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2 ∆xr3 ds ≤ C∆xr3 ,

where r3 is defined by (11).
For J3(t), we consider the following two cases.
Case 1. If 2(α + γ− 1)− α

2 + ε ≥ 0, then we have, by Lemma 3,

J3(t) ≤ E
∫ t

0
(t− s)2(α+γ)−1− α

2 ∆r1 s−1+ε ds ≤ C∆xr1 t2(α+γ−1)− α
2 +ε ≤ C∆xr1 ,

where r1 is defined by (9).
Case 2. If 2(α + γ− 1)− α

2 + ε < 0, then we have, for t > ∆x (the case t < ∆x is easy
to estimate and we omit the detail here),

J3(t) =
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, kM(y))− vM(s, y)

∣∣2]ds

≤ C
∫ ∆x

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, kM(y))− vM(s, y)

∣∣2]ds

+ C
∫ t

∆x
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, kM(y))− vM(s, y)

∣∣2]ds

= J31(t) + J32(t).

For J31(t), if 2(α + γ − 1) − α
2 > −1, then we have, by using the boundedness of

vM(s, y),

J31(t) ≤ C
∫ ∆x

0
(t− s)2(α+γ−1)− α

2 ds = ∆x2(α+γ−1)− α
2 +1.

For J32(t), we have, by Lemma 3,

J32(t) ≤ C
∫ t

∆x
(t− s)2(α+γ−1)− α

2 ∆xr1 s−1+ε ds ≤ C∆xr1 t2(α+γ−1)− α
2 +ε ≤ C∆xr1+2(α+γ−1)− α

2 +ε,
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where r1 is defined in (9).
Thus, we get

J3(t) ≤
{

C∆xr1 , if 2(α + γ− 1)− α
2 + ε ≥ 0,

C∆x2(α+γ−1)− α
2 +min{1,r1+ε}, if 2(α + γ− 1)− α

2 + ε < 0.

Following the same arguments as the estimate of J3(t), we may obtain

J4(t) ≤
{

C∆xr1 , if 2(α + γ− 1)− α
2 + ε ≥ 0,

C∆x2(α+γ−1)− α
2 +min{1,r1+ε}, if 2(α + γ− 1)− α

2 + ε < 0.

Thus, we have the following two cases.
Case 1. If 2(α + γ− 1)− α

2 + ε ≥ 0, then

E|wM(t, x)− w(t, x)|2 ≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2 + ∆xr1 .

By Grönwall Lemma 10, we get

E|wM(t, x)− w(t, x)|2 ≤ C(∆xr1 + ∆xr3),

where r1 and r3 are defined by (9) and (11), respectively.
Case 2. If 2(α + γ− 1)− α

2 + ε < 0, then

E|wM(t, x)− w(t, x)|2

≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
+ ∆x2(α+γ−1)− α

2 +min{1,r1+ε}.

By Grönwall Lemma 10, we get

E|wM(t, x)− w(t, x)|2 ≤ C(∆x2(α+γ−1)− α
2 +min{1,r1+ε} + ∆xr3).

Together with these estimates, we obtain

E|uM(t, x)− u(t, x)|2 ≤Ct−1+ε∆xr1 + C∆xr3

+

{
C∆xr1 , if 2(α + γ− 1)− α

2 + ε ≥ 0,
C∆x2(α+γ−1)− α

2 +min{1,r1+ε}, if 2(α + γ− 1)− α
2 + ε < 0,

(56)

where r1 and r3 are defined by (9) and (11), respectively.
We now consider the case (ii), that is, f 6= 0. In this case, the approximation of

the solution for the homogeneous problem of (1) is the same as in the case (i). For the
inhomogeneous problem of (1), we have, following the same arguments as in Step 2,
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E|wM(t, x)− w(t, x)|2

≤ C∆xr3 + C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣wM(s, kM(y))− wM(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣wM(s, kM(y))− w(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, kM(y))− vM(s, y)

∣∣2]ds

+ C
∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E
∣∣vM(s, y)− v(s, y)

∣∣2]ds

= C∆xr3 + J′1(t) + J′2(t) + J3(t) + J4(t),

where J3(t) and J4(t) are defined as in (55) as v(s, y) and vM(s, y) are the same as in the
case (i).

For J′1(t), if 2(α + γ− 1)− α
2 > −1, then, by Lemma 9,

J′1(t) ≤ C
∫ t

0
(t− s)2(α+γ−1)− α

2
(
∆xr2 + ∆xr3

)
ds ≤ C

(
∆xr2 + ∆xr3

)
.

Thus, we have the following two cases.
Case 1. If 2(α + γ− 1)− α

2 + ε ≥ 0, then

E|wM(t, x)− w(t, x)|2

≤ C
(
∆xr2 + ∆xr3

)
+ C

∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2 + ∆xr1 .

By Grönwall Lemma 10, we get

E|wM(t, x)− w(t, x)|2 ≤ C(∆xr1 + ∆xr2 + ∆xr3),

where r1, r2 and r3 are defined by (9), (10), and (11), respectively.
Case 2. If 2(α + γ− 1)− α

2 + ε < 0, then

E|wM(t, x)− w(t, x)|2

≤ C
(
∆xr2 + ∆xr3

)
+ C

∫ t

0
(t− s)2(α+γ−1)− α

2

[
sup

y
E|wM(s, y)− w(s, y)|2

]
+ ∆x2(α+γ−1)− α

2 +min{1,r1+ε}.

By Grönwall Lemma 10, we have

E|wM(t, x)− w(t, x)|2 ≤ C(∆x2(α+γ−1)− α
2 +min{1,r1+ε} + ∆xr2 + ∆xr3).

Thus, we obtain

E|uM(t, x)− u(t, x)|2 ≤Ct−1+ε∆xr1 + C(∆xr2 + ∆xr3)

+ C

{
C∆xr1 , if 2(α + γ− 1)− α

2 + ε ≥ 0,
C∆x2(α+γ−1)− α

2 +min{1,r1+ε}, if 2(α + γ− 1)− α
2 + ε < 0,

(57)

where r1, r2 and r3 are defined by (9), (10) and (11), respectively.
The proof of Theorem 2 is now complete.
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Appendix A

In this Appendix A, we shall consider the approximations of the Green functions
Gi(t, x, y) by GM

i (t, x, y), i = 1, 2, 3, where Gi(t, x, y) and GM
i (t, x, y), i = 1, 2, 3 are defined by

G1(t, x, y) =
∞

∑
j=1

Eα,1(−tαλj)ϕj(x)ϕj(y),

G2(t, x, y) =
∞

∑
j=1

tα−1Eα,α(−tαλj)ϕj(x)ϕj(y),

G3(t, x, y) =
∞

∑
j=1

tα+γ−1Eα,α+γ(−tαλj)ϕj(x)ϕj(y),

and

GM
1 (t, x, y) =

M−1

∑
j=1

Eα,1(−tαλM
j )ϕM

j (x)ϕj(kM(y)),

GM
2 (t, x, y) =

M−1

∑
j=1

tα−1Eα,α(−tαλM
j )ϕM

j (x)ϕj(kM(y)),

GM
3 (t, x, y) =

M−1

∑
j=1

tα+γ−1Eα,α+γ(−tαλM
j )ϕM

j (x)ϕj(kM(y)),

where Eα,β(z), α > 0, β ∈ R denote the Mittag–Leffler functions defined in (13) and
where {λj, ϕj}∞

j=1 and {λM
j }

M−1
j=1 are defined by (12) and (31), respectively. Here, ϕM

j (x),
j = 1, 2, . . . , denote the piecewise linear interpolation functions of ϕj(x) on the grids
0 = x0 < x1 < · · · < xM = 1 and the piecewise constant function kM(y), 0 ≤ y ≤ 1 is
defined by (24).

Appendix A.1. Green Function G1(t, x, y) and Its Approximation GM
1 (t, x, y)

In this subsection, we will consider the bounds of G1(t, x, y), GM
1 (t, x, y), as well as

the error bounds of G1(t, x, y)− GM
1 (t, x, y) in some suitable norms.

Lemma A1. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,∫ 1

0
|G1(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1, (A1)∫ t

0

∫ 1

0
|G1(s, x, y)|2 dyds ≤ Ctδ, 0 ≤ x ≤ 1, (A2)∫ 1

0
|G1(t, y, z)− G1(t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr1 , 0 ≤ y ≤ 1, (A3)∫ t

0

∫ 1

0
|G1(s, y, z)− G1(s, kM(y), z)|2 dzds ≤ Ctδ∆xr1 , 0 ≤ y ≤ 1, (A4)

where r1 is defined by (9).

Proof. For (A1), we have
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∫ 1

0
|G1(t, x, y)|2 dy =

∫ [ ∞

∑
j=1

Eα,1(−tαλj)ϕj(x)ϕj(y)
]2

dy.

As {ϕj(y)}∞
j=1 is an orthonormal basis in H = L2(0, 1) and ϕj(x), j = 1, 2, . . . are

bounded, we get ∫ 1

0
|G1(t, x, y)|2 dy ≤ C

∞

∑
j=1

E2
α,1(−tαλj). (A5)

By boundedness of the Mittag–Leffler function (2), we obtain, with 0 ≤ γ1 ≤ 1,

∫ 1

0
|G1(t, x, y)|2 dy ≤ C

∞

∑
j=1

( 1
1 + tαλj

)2γ1
≤ C

∞

∑
j=1

( 1
1 + tα j2

)2γ1

≤ C
∫ ∞

0

( 1
1 + tαx2

)2γ1
dx ≤ Ct−

α
2

∫ ∞

0

( 1
1 + y2

)2γ1
dy. (A6)

Then (A1) follows by choosing some γ1 ∈ (1/4, 1] in (A6).
For (A2), we have, by (A1),∫ t

0

∫ 1

0
|G1(s, x, y)|2 dyds ≤ C

∫ t

0
s−

α
2 ds ≤ C.

For (A3), one gets

∫ 1

0
|G1(t, y, z)− G1(t, kM(y), z)|2 dz =

∫ 1

0

∣∣∣ ∞

∑
j=1

Eα,1(−tαλj)
[

ϕj(y)− ϕj(kM(y))
]

ϕj(z)
∣∣∣2 dz.

As {ϕj(z)}∞
j=1 is an orthonormal basis in H = L2(0, 1), we obtain

∫ 1

0
|G1(t, y, z)− G1(t, kM(y), z)|2 dz =

∞

∑
j=M

E2
α,1

[
ϕj(y)− ϕj(kM(y))

]2
+

M−1

∑
j=1

E2
α,1

[
ϕj(y)− ϕj(kM(y))

]2

= I1 + I2.

For I1, we have, using the boundedness of ϕj(y) and (2), with 0 ≤ γ1 ≤ 1,

I1 ≤ C
∞

∑
j=M

E2
α,1(−tαλj) ≤ C

∞

∑
j=M

( 1
1 + tα j2

)2γ1
≤ Ct−2αγ1

∞

∑
j=M

1
j4γ1

. (A7)

Case 1. If 1/2 ≤ α ≤ 1, then, with −2αγ1 = −1 + ε, ε > 0, i.e., γ1 = 1−ε
2α ,

I1 ≤ Ct−1+ε
∞

∑
j=M

1

j4
(

1−ε
2α

) ≤ Ct−1+ε∆x4
(

1−ε
2α

)
−1.

Case 2. If 0 ≤ α < 1/2, then, with γ1 = 1,

I1 ≤ Ct−2α
∞

∑
j=M

1
j4
≤ Ct−2α∆x3.

Thus, we get

I1 ≤
{

Ct−1+ε∆x4
(

1−ε
2α

)
−1, 1/2 ≤ α ≤ 1,

Ct−2α∆x3, 0 ≤ α < 1/2.

For I2, we have
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I2 =
M−1

∑
j=1

E2
α,1(−tαλi)

[
ϕj(y)− ϕj(kM(y))

]2
.

Note that

|ϕj(y)− ϕj(kM(y))| = |ϕ′j(c)(y− kM(y))| ≤ C(jπ)
1
M
≤ C

j
M

,

which implies that

I2 ≤
M−1

∑
j=1

E2
α,1(−tαλj)

( j
M
)2. (A8)

By (2), we get, with 0 ≤ γ1 ≤ 1,

I2 ≤ C
M−1

∑
j=1

( 1
1 + tαλj

)2γ1 j2

M2 ≤ Ct−2αγ1
1

M2

M−1

∑
j=1

1
j4γ1−2 .

Case 1. If 0 ≤ α ≤ 2(1−ε)
3 , then

I2 ≤ Ct−1+ε 1
M2

M−1

∑
j=1

1

j4
(

1−ε
2α

)
−2
≤ Ct−1+ε 1

M2

∫ M

1
x−4
(

1−ε
2α

)
+2 dx ≤ Ct−1+ε∆x2.

Case 2. If 2(1−ε)
3 ≤ α ≤ 1, then

I2 ≤ Ct−1+ε 1
M2

∫ M

1
x−4
(

1−ε
2α

)
+2 dx ≤ Ct−1+ε∆x4

(
1−ε
2α

)
−1.

Therefore,

I2 ≤

Ct−1+ε∆x2, 0 ≤ α ≤ 2(1−ε)
3 ,

Ct−1+ε∆x4
(

1−ε
2α

)
−1, 2(1−ε)

3 ≤ α ≤ 1.

Note that the convergence order in I2 is higher than the convergence order in I1, we
therefore obtain ∫ 1

0
|G1(t, y, z)− G1(t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9), which shows (A3).
For (A4), we get, by (A3),

∫ t

0

∫ 1

0
|G1(s, y, z)− G1(s, kM(y), z)|2 dzds ≤ C

∫ t

0
s−1+ε∆xr1 ds ≤ Ctδ∆xr1 .

Together these estimates complete the proof of Lemma A1.

Lemma A2. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,
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∫ 1

0
|GM

1 (t, x, y)|2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1, (A9)∫ t

0

∫ 1

0
|GM

1 (s, x, y)|2 dyds ≤ Ctδ, , 0 ≤ x ≤ 1, (A10)∫ 1

0
|GM

1 (t, y, z)− GM
1 (t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr1 , 0 ≤ y ≤ 1, (A11)∫ t

0

∫ 1

0
|GM

1 (s, y, z)− GM
1 (s, kM(y), z)|2 dzds ≤ Ctδ∆xr1 , 0 ≤ y ≤ 1, (A12)

where r1 is defined by (9).

Proof. For (A9), we have

∫ 1

0
|GM

1 (t, x, y)|2 dy =
∫ [ M−1

∑
j=1

Eα,1(−tαλM
j )ϕj(x)ϕj(kM(y))

]2
dy.

Note that

∫ 1

0
ϕj(kM(y))ϕl(kM(y))dy = ∆x

M−1

∑
k=1

ϕj(yk)ϕl(yk) =

{
1, j = l,
0, j 6= l,

(A13)

and ϕj(x), j = 1, 2, . . . are bounded, one gets

∫ 1

0
|GM

1 (t, x, y)|2 dy =
M−1

∑
j=1

E2
α,1(−tαλM

j ), (A14)

which implies that, as λM
j ≈ λj, j = 1, 2, . . . , M− 1,

∫ 1

0
|GM

1 (t, x, y)|2 dy ≤ C
M−1

∑
j=1

E2
α,1(−tαλj) ≤ C

∞

∑
j=1

E2
α,1(−tαλj) ≤ Ct−

α
2 .

Therefore, we show (A9).
For (A10), we obtain, by (A9),∫ t

0

∫ 1

0
|GM

1 (s, x, y)|2 dyds ≤ C
∫ t

0
s−

α
2 ds ≤ C.

For (A11), one gets, by (A13),

∫ 1

0
|GM

1 (t, y, z)− GM
1 (t, kM(y), z)|2 dz =

∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−tαλM
j )
[

ϕM
j (y)− ϕM

j (kM(y))
]

ϕj(kM(z))
∣∣∣2 dz

=
M−1

∑
j=1

E2
α,1(−tαλM

j )
[

ϕM
j (y)− ϕM

j (kM(y))
]2

.

Note that, for y ∈ [yk, yk+1], k = 0, 1, 2, . . . , M,

|ϕM
j (y)− ϕM

j (kM(y))| =
∣∣∣ ϕM

j (yk+1)− ϕM
j (yk)

yk+1 − yk
(y− yk)

∣∣∣
=
∣∣∣ ϕj(yk+1)− ϕj(yk)

yk+1 − yk
(y− yk)

∣∣∣ = |ϕ′j(c)(y− yk)| ≤ C
j

M
,
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which implies, following the estimates of (A8),

∫ 1

0
|GM

1 (t, y, z)− GM
1 (t, kM(y), z)|2 dz ≤ C

M−1

∑
j=1

E2
α,1(−tαλj)

( j
M
)2 ≤ Ct−1+ε∆xr1 , (A15)

where r1 is defined by (9).
For (A12), we get, by (A11),∫ t

0

∫ 1

0
|GM

1 (s, y, z)− GM
1 (s, kM(y), z)|2 dzds ≤ C

∫ t

0
s−1+ε∆xr1 ds ≤ Ctδ∆xr1 .

Together these estimates complete the proof of Lemma A2.

Lemma A3. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,∫ 1

0
|G1(t, x, y)− GM

1 (t, x, y)|2 dy ≤ Ct−1+ε∆xr1 , 0 ≤ x ≤ 1, (A16)∫ t

0

∫ 1

0
|G1(s, x, y)− GM

1 (s, x, y)|2 dyds ≤ Ctδ∆xr1 , 0 ≤ x ≤ 1, (A17)

where r1 is defined by (9).

Proof. For (A16), we have∫ 1

0
|G1(t, x, y)− GM

1 (t, x, y)|2 dy

=
∫ 1

0

∣∣∣ ∞

∑
j=1

Eα,1(−λjtα)ϕj(x)ϕj(y)−
M−1

∑
j=1

Eα,1(−λM
j tα)ϕM

j (x)ϕj(kM(y))
∣∣∣2 dy

≤ C
∫ 1

0

∣∣∣ ∞

∑
j=M

Eα,1(−λjtα)ϕj(x)ϕj(y)
∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)
[

ϕj(y)− ϕj(kM(y))
]∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)
[

ϕj(x)− ϕM
j (x)

]
ϕj(kM(y))

∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

[
Eα,1(−λjtα)− Eα,1(−λM

j tα)
]

ϕM
j (x)ϕj(kM(y))

∣∣∣2 dy

= I1(t) + I2(t) + I3(t) + I4(t).

For I1(t), one gets, by (A7),

I1(t) =
∫ 1

0

∣∣∣ ∞

∑
j=M

Eα,1(−λjtα)ϕj(x)ϕj(y)
∣∣∣2 dy =

∞

∑
j=M

E2
α,1(−λjtα) ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9).
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For I2(t), we obtain

I2(t) =
∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)
[

ϕj(y)− ϕj(kM(y))
]∣∣∣2 dy

=
M−1

∑
k=0

∫ yk+1

yk

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)
∫ y

yk

ϕ′j(z)dz
∣∣∣2 dy

=
M−1

∑
k=0

∫ yk+1

yk

∣∣∣ ∫ y

yk

M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)ϕ′j(z)dz
∣∣∣2 dy

≤
M−1

∑
k=0

∫ yk+1

yk

1
M

∫ yk+1

yk

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)ϕ′j(z)
∣∣∣2 dzdy

=
1

M2

∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)ϕj(x)ϕ′j(z)
∣∣∣2 dz.

Note that

∫ 1

0
ϕ′j(z)ϕ′l(z)dz =

{
j2π2, j = l,
0, j 6= l,

and ϕj(x), j = 1, 2, . . . are bounded, we get

I2(t) ≤
( 1

M
)2

M−1

∑
j=1

E2
α,1(−λjtα)j2 =

M−1

∑
j=1

E2
α,1(−λjtα)

( j
M
)2.

By (A8), one has

I2(t) ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9).
For I3(t), we have

I3(t) =
∫ 1

0

∣∣∣ M−1

∑
j=1

Eα,1(−λjtα)
[

ϕj(x)− ϕM
j (x)

]
ϕj(kM(y))

∣∣∣2dy

=
M−1

∑
j=1

E2
α,1(−λjtα)

[
ϕj(x)− ϕM

j (x)
]2

.

Note that, for yk ≤ y ≤ yk+1, k = 0, 1, 2, . . . , M− 1,

|ϕj(y)− ϕM
j (y)| = |ϕ′′j (c)(y− yk)(y− yk+1)| ≤ C(j2π2)

( 1
M
)2 ≤ C

( j
M
)2.

Therefore, we get, by (A8),

I3(t) ≤ C
M−1

∑
j=1

E2
α,1(−λjtα)

( j
M
)4 ≤ C

M−1

∑
j=1

E2
α,1(−λjtα)

( j
M
)2 ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9).
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Finally, we consider I4(t). We have

I4(t) =
∫ t

0

∣∣∣ M−1

∑
j=1

[
Eα,1(−tαλj)− Eα,1(−tαλM

j )
]

ϕM
j (x)ϕj(kM(y))

∣∣∣2 dy

≤ C
M−1

∑
j=1

∣∣∣Eα,1(−tαλj)− Eα,1(−tαλM
j )
∣∣∣2.

Note that

d
dt

Eα,1(−tαλj) = E′α,1(−tαλj)
d
dt
(−tαλj),

we have, by Lemma 1,

E′α,1(−tαλj) =
d
dt Eα,1(−tαλj)

d
dt (−tαλj)

=
tα−1λjEα,α(−tαλj)

−αtα−1λj
= − 1

α
Eα,α(−tαλj).

Thus, by using the mean-value theorem

I4(t) ≤
M−1

∑
j=1
|Eα,1(−tαλj)− Eα,1(−tαλM

j )|2 =
M−1

∑
j=1

∣∣∣E′α,1(c)
(
tα(λj − λM

j )
)∣∣∣2

≤ C
M−1

∑
j=1

∣∣∣E′α,1(−tαλj)
(
tα(λj − λM

j )
)∣∣∣2 ≤ C

M−1

∑
j=1

E2
α,α(−tαλj)|tα(λj − λM

j )|2.

By (3), we get, with 0 ≤ γ1 ≤ 2,

I4(t) ≤ C
M−1

∑
j=1

1
(tαλj)2γ1

|tα(λj − λM
j )|2.

Note that [1], line-4, p. 7

|λj − λM
j | ≤ C

j4

M2 , (A18)

we have

I4(t) ≤ C
M−1

∑
j=1

1
(tαλj)2γ1

t2α · j8

M4 ≤ Ct2α−2αγ1
M−1

∑
j=1

j8−4γ1

M4 .

Case 1. For 0 < α < 1/2, one gets, with γ1 = 2,

I4(t) ≤ Ct2α−4α
M−1

∑
j=1

1
j8
· j8

M4 ≤ Ct−2α
M−1

∑
j=1

1
M4 ≤ Ct−2α∆x3.

Case 2. For 1/2 ≤ α ≤ 1, one has, with 2α− 2αγ1 = −1 + ε, ε > 0,

I4(t) ≤ Ct−1+ε 1
M4

M−1

∑
j=1

1

j4
2α+1−ε

2α −8
≤ Ct−1+ε 1

M4

∫ M

1
x−4 2α+1−ε

2α +8 dx

≤ Ct−1+ε 1
M4 M9−4 2α+1−ε

2α ≤ Ct−1+ε∆x4
(

1−ε
2α

)
−1.

Note that the convergence order of I4(t) is higher than the order ∆xr1 , we there-
fore have

I4(t) ≤ Ct−1+ε∆xr1 ,

where r1 is defined by (9). Therefore, we complete the proof of (A16).
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For (A17), we have, using (A16)∫ t

0

∫ 1

0
|G1(s, x, y)− GM

1 (s, x, y)|2 dyds ≤ Ctδ∆xr1 .

Together these estimates complete the proof of Lemma A3.

Appendix A.2. Green Function G3(t, x, y) and Its Approximation GM
3 (t, x, y)

In this subsection, we will consider the bounds of G3(t, x, y) and its approximation
GM

3 (t, x, y) and the error bounds of G3(t, x, y)− GM
3 (t, x, y) in some suitable norms.

Lemma A4. Assume that the Assumption 1 holds. There exist some positive constant δ > 0 and
sufficiently small ε > 0 such that, with t > 0,∫ 1

0
|G3(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1, (A19)∫ t

0

∫ 1

0
|G3(s, x, y)|2 dyds ≤ Ctδ, 0 ≤ x ≤ 1, if

2(1− 2γ)

α
< 3, (A20)∫ 1

0
|G3(t, y, z)− G3(t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr3 , 0 ≤ y ≤ 1, (A21)∫ t

0

∫ 1

0
|G3(s, y, z)− G1(s, kM(y), z)|2 dzds ≤ Ctδ∆xr3 , 0 ≤ y ≤ 1, (A22)

where r3 is defined by (11).

Proof. For (A19), we have∫ 1

0
|G3(t, x, y)|2 dy =

∫ [ ∞

∑
j=1

tα+γ−1Eα,α+γ(−tαλj)ϕj(x)ϕj(y)
]2

dy.

As {ϕj(y)}∞
j=1 is an orthonormal basis in H = L2(0, 1) and ϕj(x), j = 1, 2, . . . are

bounded, we get

∫ 1

0
|G3(t, x, y)|2 dy =

∞

∑
j=1

t2(α+γ−1)E2
α,α+γ(−tαλj). (A23)

By boundedness of the Mittag–Leffler function (2), we have, with 0 ≤ γ1 ≤ 1,

∫ 1

0
|G3(t, x, y)|2 dy ≤ Ct2(α+γ−1)

∞

∑
j=1

( 1
1 + tαλj

)2γ1
≤ Ct2(α+γ−1)− α

2

∫ ∞

0

( 1
1 + y2

)2γ1
dy. (A24)

Then, (A19) follows by choosing some γ1 ∈ (1/4, 1] in (A24).
For (A20), we have, by (A19),∫ t

0

∫ 1

0
|G3(s, x, y)|2 dyds ≤ C

∫ t

0
s2(α+γ−1)− α

2 ds ≤ C,

if 2(α + γ− 1)− α
2 > −1, i.e., 2(1−2γ)

α < 3.
For (A21), we have
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∫ 1

0
|G3(t, y, z)− G3(t, kM(y), z)|2 dz

=
∞

∑
j=M

t2(α+γ−1)E2
α,α+γ(−tαλj)

[
ϕj(y)− ϕj(kM(y))

]2

+
M−1

∑
j=1

t2(α+γ−1)E2
α,α+γ(−tαλj)

[
ϕj(y)− ϕj(kM(y))

]2

= I1 + I2.

For I1, we obtain, using the boundedness of ϕj(y) and (2), with 0 ≤ γ1 ≤ 1,

I1 ≤ C
∞

∑
j=M

t2(α+γ−1)
( 1

1 + tα j2
)2γ1

≤ Ct2(α+γ−1)−2αγ1
∞

∑
j=M

1
j4γ1

. (A25)

Case 1. If 2γ− 1 < 0, then, noting that, by Assumption 1, γ + α > 1/2 and choosing
γ1 = 1 + 2γ−1

2α −
ε

2α ,

I1 ≤ Ct−1+ε
∞

∑
j=M

1

j4
(

1+ 2γ−1
2α −

ε
2α

) ≤ Ct−1+ε
∫ ∞

M

1

x4
(

1+ 2γ−1
2α −

ε
2α

) dx

≤ Ct−1+ε∆x3− 2(1−2γ)
α − 2ε

α , if 0 <
2(1− 2γ)

α
< 3− 2ε

α
.

Case 2. If 2γ− 1 ≥ 0, then, choosing γ1 = 1− ε
2α ,

I1 ≤ Ct2(α+γ−1)−2αγ1
∞

∑
j=M

1
j4γ1

= Ct2(α+γ−1)−2α
(

1− ε
2α

) ∞

∑
j=M

1

j4
(

1− ε
2α

)
≤ Ct(2γ−1)−1+ε

∫ ∞

M

1

x4
(

1− ε
2α

) dx ≤ Ct(2γ−1)−1+ε∆x3− 2ε
α .

Thus, we get

I1 ≤
{

Ct−1+ε∆x3− 2(1−2γ)
α − 2ε

α , 0 < 2(1−2γ)
α < 3− 2ε

α , 2γ− 1 < 0,

Ct(2γ−1)−1+ε∆x3− 2ε
α , 2γ− 1 ≥ 0.

For I2, we have

I2 =
M−1

∑
j=1

t2(α+γ−1)E2
α,α+γ(−tαλj)

[
ϕj(y)− ϕj(kM(y))

]2
≤ C

M−1

∑
j=1

t2(α+γ−1)E2
α,α+γ(−tαλj)

( j
M
)2. (A26)

By (2), we get, with 0 ≤ γ1 ≤ 1,

I2 ≤ Ct2(α+γ−1)−2αγ1
1

M2

M−1

∑
j=1

1
j4γ1−2 .

Case 1. If 2γ− 1 < 0, then, noting that, by Assumption 1, α + γ > 1/2 and choosing
2(α + γ− 1)− 2αγ1 = −1 + ε, that is, γ1 = 1 + 2γ−1

2α −
ε

2α ,

I2 ≤ Ct−1+ε 1
M2

M−1

∑
j=1

1

j4
(

1+ 2γ−1
2α −

ε
2α

)
−2
≤ Ct−1+ε 1

M2

∫ M

1
x−4
(

1+ 2γ−1
2α −

ε
2α

)
+2 dx,

which implies that

I2 =

{
Ct−1+ε∆x2, 2(1−2γ)

α ≤ 1− 2ε
α ,

Ct−1+ε∆x3− 2(1−2γ)
α − 2ε

α , 1− 2ε
α ≤

2(1−2γ)
α < 3− 2ε

α .
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Case 2. If 2γ− 1 ≥ 0, then, choosing γ1 = 1− ε
2α ,

I2 ≤ Ct2(α+γ−1)−2αγ1
M−1

∑
j=1

1
j4γ1

j2

M2 ≤ Ct2(α+γ−1)−2α
(

1− ε
2α

)
1

M2

M−1

∑
j=1

1

j4
(

1− ε
2α

)
−2

≤ Ct(2γ−1)−1+ε 1
M2

∫ M

1
x−4
(

1− ε
2α

)
+2 dx ≤ Ct(2γ−1)−1+ε∆x2.

Thus, we get

I2 ≤


Ct−1+ε∆x2, 2(1−2γ)

α ≤ 1− 2ε
α , 2γ− 1 < 0,

Ct−1+ε∆x3− 2(1−2γ)
α − 2ε

α , 1− 2ε
α ≤

2(1−2γ)
α < 3− 2ε

α , 2γ− 1 < 0,
Ct(2γ−1)−1+ε∆x2, 2γ− 1 ≥ 0.

Note that the convergence order in I2 is higher than the convergence order in I1, we
therefore obtain ∫ 1

0
|G3(t, y, z)− G3(t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr3 ,

where

r3 =


2, 2(1−2γ)

α ≤ 1− 2ε
α , 2γ− 1 < 0,

3− 2(1−2γ)
α − 2ε

α , 1− 2ε
α ≤

2(1−2γ)
α < 3− 2ε

α , 2γ− 1 < 0,
2, 2γ− 1 ≥ 0.

(A27)

For (A22), we get, using (A21),

∫ t

0

∫ 1

0
|G3(s, y, z)− G3(s, kM(y), z)|2 dzds ≤ C

∫ t

0
s−1+ε∆xr3 ds ≤ Ctδ∆xr3 .

Together these estimates complete the proof of Lemma A4.

Lemma A5. Assume that the Assumption 1 holds. There exist some positive constant δ > 0 and
sufficiently small ε > 0 such that, with t > 0,∫ 1

0
|GM

3 (t, x, y)|2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1, (A28)∫ t

0

∫ 1

0
|GM

3 (s, x, y)|2 dyds ≤ Ctδ, 0 ≤ x ≤ 1, if
2(1− 2γ)

α
< 3, (A29)∫ 1

0
|GM

3 (t, y, z)− GM
3 (t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr3 , 0 ≤ y ≤ 1, (A30)∫ t

0

∫ 1

0
|GM

3 (s, y, z)− GM
1 (s, kM(y), z)|2 dzds ≤ Ctδ∆xr3 , 0 ≤ y ≤ 1, (A31)

where r3 is defined by (11).

Proof. The proof of Lemma A5 is similar to the proof of Lemma A2. We omit the proof
here.

Lemma A6. Assume that the Assumption 1 holds. There exist some positive constant δ > 0 and
sufficiently small ε > 0 such that, with t > 0,
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∫ 1

0
|G3(t, x, y)− GM

3 (t, x, y)|2 dy ≤ Ct−1+ε∆xr3 , 0 ≤ x ≤ 1, (A32)∫ t

0

∫ 1

0
|G3(s, x, y)− GM

3 (s, x, y)|2 dyds ≤ Ctδ∆xr3 , 0 ≤ x ≤ 1, (A33)

where r3 is defined by (11).

Proof. For (A32), we have∫ 1

0
|G3(t, x, y)− GM

3 (t, x, y)|2 dy

≤ C
∫ 1

0

∣∣∣ ∞

∑
j=M

tα+γ−1Eα,α+γ(−λjtα)ϕj(x)ϕj(y)
∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

tα+γ−1Eα,α+γ(−λjtα)ϕj(x)
[

ϕj(y)− ϕj(kM(y))
]∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

tα+γ−1Eα,α+γ(−λjtα)
[

ϕj(x)− ϕM
j (x)

]
ϕj(kM(y))

∣∣∣2 dy

+ C
∫ 1

0

∣∣∣ M−1

∑
j=1

[
tα+γ−1Eα,α+γ(−λjtα)− tα+γ−1Eα,α+γ(−λM

j tα)
]

ϕM
j (x)ϕj(kM(y))

∣∣∣2 dy

= I1(t) + I2(t) + I3(t) + I4(t).

For I1(t), we have, by (A25),

I1(t) =
∫ 1

0

∣∣∣ ∞

∑
j=M

tα+γ−1Eα,α+γ(−λjtα)ϕj(x)ϕj(y)
∣∣∣2 dy =

∞

∑
j=M

t2(α+γ−1)E2
α,α+γ(−λjtα) ≤ Ct−1+ε∆xr3 ,

where r3 is defined by (11).
For I2(t), we have

I2(t) ≤ C
M−1

∑
j=1

t2(α+γ−1)E2
α,α+γ(−λjtα)

( j
M
)2.

By (A26), we get

I2(t) ≤ Ct−1+ε∆xr3 ,

where r3 is defined by (11).
For I3(t), we have, by (A26),

I3(t) ≤ C
M−1

∑
j=1

t2(α+γ−1)E2
α,α+γ(−λjtα)

( j
M
)2 ≤ Ct−1+ε∆xr3 ,

where r3 is defined by (11).
Finally, we consider I4(t). We have

I4(t) =
∫ t

0

∣∣∣ M−1

∑
j=1

tα+γ−1
[

Eα,α+γ(−tαλj)− Eα,α+γ(−tαλM
j )
]

ϕM
j (x)ϕj(kM(y))

∣∣∣2 dy

≤ C
M−1

∑
j=1

t2(α+γ−1)
∣∣∣Eα,1(−tαλj)− Eα,1(−tαλM

j )
∣∣∣2.

Note that
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d
dt

Eα,α+γ(−tαλj) = E′α,α+γ(−tαλj)
d
dt
(−tαλj),

we have, by Lemma 1,

E′α,α+γ(−tαλj) =
d
dt Eα,α+γ(−tαλj)

d
dt (−tαλj)

=
t−1Eα,α+γ−1(−tαλj)− (α + γ− 1)t−1Eα,α+γ(−tαλj)

−αtα−1λj

=
t−αEα,α+γ−1(−tαλj)− (α + γ− 1)t−αEα,α+γ(−tαλj)

−αλj
.

Therefore, by using the mean-value theorem

I4(t) ≤
M−1

∑
j=1

t2(α+γ−1)|Eα,α+γ(−tαλj)− Eα,α+γ(−tαλM
j )|2

=
M−1

∑
j=1

∣∣∣tα+γ−1E′α,α+γ(c)
(
tα(λj − λM

j )
)∣∣∣2

≤ C
M−1

∑
j=1

∣∣∣tα+γ−1E′α,α+γ(−tαλj)
(
tα(λj − λM

j )
)∣∣∣2

≤ C
M−1

∑
j=1

t2(α+γ−1) t−2α

λ2
j

[
Eα,α+γ−1(−tαλj)− (α + γ− 1)Eα,α+γ(−tαλj)

]2
|tα(λj − λM

j )|2

= C
M−1

∑
j=1

t2(α+γ−1)

λ2
j

[∣∣∣Eα,α+γ−1(−tαλj)
∣∣∣2 + ∣∣∣Eα,α+γ(−tαλj)

∣∣∣2](λj − λM
j )2.

Further, we have, by (3), with 0 ≤ γ1 ≤ 1,

I4(t) ≤ C
M−1

∑
j=1

t2(α+γ−1)

λ2
j

∣∣∣ 1
tαλj

∣∣∣2γ1
(λj − λM

j )2 ≤ C
M−1

∑
j=1

t2(α+γ−1)−2αγ1
1

j4+4γ1

j8

M4

= Ct2(α+γ−1)−2αγ1
M−1

∑
j=1

1
j4γ1

j4

M4 .

Case 1. If 2γ− 1 < 0, then, choosing 2(α+γ− 1) = −1+ ε, that is, γ1 = 1 + 2γ−1
2α −

ε
2α ,

I4(t) ≤ Ct2(α+γ−1)−2αγ1
M−1

∑
j=1

1
j4γ1

j4

M4 = Ct−1+ε
M−1

∑
j=1

1

j4
(

1+ 2γ−1
2α −

ε
2α

) j4

M4

≤ Ct−1+ε 1
M4

∫ M

1
x−4
(

1+ 2γ−1
2α −

ε
2α

)
+4 dx ≤ Ct−1+ε∆x3− 2(1−2γ)

α − 2ε
α .

Case 2. If 2γ− 1 ≥ 0, then, choosing γ1 = 1− ε
2α ,

I4(t) = Ct2(α+γ−1)−2αγ1
M−1

∑
j=1

1
j4γ1

j4

M4 = Ct2(α+γ−1)−2α
(

1− ε
2α

) M−1

∑
j=1

1

j4
(

1− ε
2α

) j4

M4

= Ct(2γ−1)−1+ε 1
M4

M−1

∑
j=1

1

j−
2ε
α

≤ Ct(2γ−1)−1+ε 1
M4

∫ M

1
x

2ε
α dx ≤ Ct(2γ−1)−1+ε∆x3− 2ε

α .

Thus, we get
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I4(t) ≤
{

Ct−1+ε∆x3− 2(1−2γ)
α − 2ε

α , 2γ− 1 < 0,

Ct(2γ−1)−1+ε∆x3− 2ε
α , 2γ− 1 ≥ 0.

Note that the convergence order of I4(t) is higher than the order ∆xr3 , we there-
fore have

I4(t) ≤ Ct−1+ε∆xr3 ,

where r3 is defined by (11). Hence (A32) follows.
For (A33), we have, by (A32),∫ t

0

∫ 1

0
|G3(s, x, y)− GM

3 (s, x, y)|2 dyds ≤ Ctδ∆xr3 .

Together these estimates complete the proof of Lemma A6.

Appendix A.3. Green Function G2(t, x, y) and Its Approximation GM
2 (t, x, y)

In this subsection, we will consider the bounds of G2(t, x, y) and its approximation
GM

2 (t, x, y) and the error bounds of G2(t, x, y)− GM
2 (t, x, y) in some suitable norms. We

obtain the following Lemmas A7–A9 by choosing γ = 0 in Lemmas A4–A6, respectively.

Lemma A7. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,∫ 1

0
|G2(t, x, y)|2 dy ≤ Ct−

α
2 , 0 ≤ x ≤ 1, (A34)∫ t

0

∫ 1

0
|G2(s, x, y)|2 dyds ≤ Ctδ, 0 ≤ x ≤ 1, if

2
α
< 3, (A35)∫ 1

0
|G2(t, y, z)− G2(t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr2 , 0 ≤ y ≤ 1, (A36)∫ t

0

∫ 1

0
|G2(s, y, z)− G2(s, kM(y), z)|2 dzds ≤ Ctδ∆xr2 , 0 ≤ y ≤ 1. (A37)

Lemma A8. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,∫ 1

0
|GM

2 (t, x, y)|2 dy ≤ Ct−
α
2 , 0 ≤ x ≤ 1, (A38)∫ t

0

∫ 1

0
|GM

2 (s, x, y)|2 dyds ≤ Ctδ, 0 ≤ x ≤ 1, if
2
α
< 3, (A39)∫ 1

0
|GM

2 (t, y, z)− GM
2 (t, kM(y), z)|2 dz ≤ Ct−1+ε∆xr2 , 0 ≤ y ≤ 1, (A40)∫ t

0

∫ 1

0
|GM

2 (s, y, z)− GM
2 (s, kM(y), z)|2 dzds ≤ Ctδ∆xr2 , 0 ≤ y ≤ 1. (A41)

Lemma A9. Let 0 < α ≤ 1. There exist some positive constant δ > 0 and sufficiently small ε > 0
such that, with t > 0,∫ 1

0
|G2(t, x, y)− GM

2 (t, x, y)|2 dy ≤ Ct−1+ε∆xr2 , 0 ≤ x ≤ 1, (A42)∫ t

0

∫ 1

0
|G2(s, x, y)− GM

2 (s, x, y)|2 dyds ≤ Ctδ∆xr3 , 0 ≤ x ≤ 1. (A43)
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