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Abstract. We consider the system of N two-level atoms, of which N0 atoms are
unexcited and N1 are excited. This system of N two-level atoms, which forms a linear
quantum amplifier, interacts with a single-mode electromagnetic field. The problem of
amplification of the L-photon states using such an amplifier is studied. The evolution
of the electromagnetic field density matrix is described by the master equation for the
field under amplification. The dynamics of this process is such that it can be described
as the transformation of the scale of the phase space. The exact solution of the master
equation is expressed using the transformed Husimi function of the L-quantum state
of the harmonic oscillator. The properties of this function are studied and using it the
average photon number and its fluctuations in the amplified state are found.

Key words: linear quantum amplifier, Husimi function, phase space, scale trans-
formation, stretched states, density matrix, number operator, mean
value.

1. INTRODUCTION

Real quantum systems are not isolated. When we consider a certain quan-
tum system, it inevitably interacts with its environment. Systems that interact with
their environment are called open quantum systems. In the last years great interest
arose about the dynamics of open quantum systems. If we want to operate within the
framework of quantum mechanics, we must describe the state not only of our system,
but also of its entire environment. The whole large association of the environment
and our system must be described together. In other words, we need to take into
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account the impact of everything on our system. But in reality it is impossible to do
this, because the environment has an infinite number of degrees of freedom. There
are general theoretical results on how to describe the dynamics of open quantum sys-
tems [1] - [9]. They are described using the density operator. The density operator
can be considered as some matrix, satisfying some dynamic equation. This equation
is obtained by reduction, that is, by throwing out the degrees of freedom of the envi-
ronment from the entire large combination of the system and the environment. In this
paper, we consider the case when the environment affects the system, but the system
itself does not affect the environment. The quantum description of amplification, ab-
sorption and dissipation is important in many different areas of physics. In quantum
optics such problems exist in the quantum theory of lasers and photon detection. We
will study the interaction of an electromagnetic field with a linear quantum amplifier.
For this purpose, we apply an original method based on the use of Q-functions of
Husimi-Kano, which was developed in the papers [10] - [13].

Several formulations of quantum mechanics, that are equivalent to each other,
exist. In the standard formulation the quantum state is represented by a vector in
Hilbert space and the physical observables by operators acting in this space.

In the phase space formulation of quantum mechanics the quantum state is
represented by the corresponding quasi-probability distribution D(q,p) which com-
pletely describes the state.

While quantum observable is described by operator Â in standard formulation,
in the phase space formulation it is described by the function AD(q,p), defined on
the whole phase space so that the average value hÂi of the operator Â in standard
formulation, in phase space formulation is represented by the integral

hÂi=
Z

AD(q,p)D⇢(q,p)dqdp. (1)

The function D(q,p) is called a quasi-probability distribution, which corresponds to
this quantum state, and the function AD(q,p) is called the symbol of the operator Â,
corresponding to the quasi-probability distribution D(q,p).

In phase space formulation of quantum mechanics, a number of quasi-proba-
bility distributions are used. The most common of them are the Wigner W (q,p)-
function [14], Glauber-Sudarshan P (q,p)-function [15, 16] and Husimi-Kano Q(q,p)-
function [17, 18]. In this way, each Â operator has several symbols depending on
the quasi-probability used. The phase space formulation is mainly used in quantum
optics. The applications of quasi-probability distributions are presented in books
[19]-[21].

Apart from the mentioned quasi-probability distributions the proper density
probability distribution, called the symplectic tomogram of the quantum state [22] is
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also used. The properties of tomograms are discussed in the review [23].
In this paper, we will work with the Husimi-Kano functions Q(q,p), which for

brevity we will call simply Husimi functions.
In [10, 11] we studied the relation of the Husimi function to the Wigner and

Glauber-Sudarshan functions, as well as to symplectic tomograms.
The main idea of our approach is the following. There are a number of quantum

states for which the exact analytical form of their Husimi functions is known. We
can consider some transformation of the phase space (q,p), and the corresponding
transformation of the Husimi functions. This leads to new functions that depend on
transformation parameters. One can choose the transformation of phase space so that
these new functions are also Husimi functions of some quantum state.

In some cases transformation of a phase space can be related to a specific physi-
cal process. In such a case, the transformed Husimi function corresponds to quantum
state that arises as a result of this physical process. The density matrix of this new
state can be reconstructed from the corresponding Husimi function.

In our papers [10, 11] we considered the transformation of the scale of the
phase space

(q,p)! (�q,�p); |�|2  1, (2)

and the corresponding transformation of the functions defined on this phase space

Q(q,p)! Q̃(q,p) = �
2
Q(�q,�p). (3)

We have shown that if Q(q,p) is a Husimi function of a quantum state, then
�
2
Q(�q,�p) is also a Husimi function of some quantum state, provided that |�|2  1.

The phase space scale transformation can be related to the dynamics of the
linear quantum amplifier [19, 21]. This amplifier is a system of N two-level atoms,
of which N0 of atoms are in the ground state, and N1 of atoms are in the excited
state, N0 < N1, N0+N1 = N . This system of atoms interacts with a single-mode
quantum field. The state of the field is described using the corresponding Husimi
function. The states of the field that occur after the passage through the quantum
amplifier, we call amplified or stretched states.

In [10, 11] we considered the case of a fully inverted environment, which cor-
responds to N0 = 0. In this case, the interaction of electromagnetic field with en-
vironment can be described using a scale transformation (2) of the phase space and
corresponding Husimi functions transformation (3). For the stretched L-photon state
of electromagnetic field, an explicit form of the density matrix was found. In [12, 13],
we considered a more general situation, namely, when a state, which enters the am-
plifier, is an arbitrary superposition of number states. For this state the density matrix
of the state at the output of the amplifier was found. The average number of photons,
its fluctuation, and the form of Heisenberg and Robertson-Schroedinger uncertainty
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relations were found. Recall that there it was assumed that N0 = 0.
In this paper we consider the case where the population of the lower level is

N0 > 0, provided that the relation N0 < N1 is satisfied. An explicit form of the
state density matrix that occurs after the L-photon state has passed through such an
amplifier is found and studied. The derivations and results will be presented in detail
in the following sections.

2. AMPLIFICATION OF THE L-PHOTON STATES IN A QUANTUM AMPLIFIER

We use a linear quantum amplifier model, which is described in the mono-
graph [19]. We consider a system of N two-level atoms, N1 of which are in the
excited and N0 in the ground state, with N0 <N1. These atoms are interacting with
a single-mode quantum field. We consider an eigenmode of a free field with fre-
quency resonant with the atomic frequency. We suppose also that the populations N1

and N0 are kept constant in time by some pump and loss mechanism.
Let ⇢̂ be a density operator of the electromagnetic field. The master equation

for ⇢̂ is [19, 24]
@⇢̂

@t
=��N1(ââ

†
⇢̂�2â†⇢̂â+ ⇢̂ââ

†)��N0(â
†
â⇢̂�2â⇢̂â†+ ⇢̂â

†
â). (4)

Here, â† and â are the creation and annihilation operators of the electromagnetic
field, N1 and N0 are the populations of the upper and lower levels of a two-level
atoms, and � is the amplification coefficient.

Using relation between the density matrix and the Husimi function, one can
pass from operator equation (4) to the corresponding ordinary differential equation
for the Husimi function. Using this equation, the expression for the Husimi function
for the amplified state was obtained in [24]:

Q(↵, t) =

Z
d
2
�Q(�)

1

⇡m
exp


� |↵��G|2

m

�
. (5)

Here

G(t) = exp[2(N1�N0)�t], m=
N0

N1�N0
(G2�1). (6)

In [10, 11] we considered the case where all atoms are in excited state and the pop-
ulation of the lower level is zero, N0 = 0 . In this case the parameter m is equal
to zero, m = 0, and the expression for the Husimi function of the amplified state is
simpler and takes the form (3)

Qout(↵, t) =
1

G2
Qin(↵/G) =

D
↵

G
|⇢̂in|

↵

G

E
. (7)
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We identify L-photon state of the electromagnetic field with the number state
|Li of the harmonic oscillator.

The Husimi function of the number state |Li is

QL(�) = h�|LihL|�i= e
�|�|2 |�|

2L

L!
. (8)

In [10, 11] we considered the situation when a pure L-photon state enters the
amplifier and found the explicit form of the density matrix of the state at the output
of the amplifier. This density matrix is

⇢̂
�
L =

1X

j=0

�
2L+2 (1��

2)j(L+ j)!

j!L!
|L+ jihL+ j|. (9)

Here �=G
�1.

The density matrix (9) is diagonal. Its first L diagonal elements with labels
0,1, . . . ,L�1 are equal to zero, and then on its main diagonal are the values

F
L
L+j =

(1��
2)j(L+ j)!

j!L!
�
2L+2; j = 0,1, . . . . (10)

The values (10) form a negative binomial distribution. The elements of this distribu-
tion are given by [25]

f(k,r,p) =

✓
r+k�1

k

◆
p
r
q
k =

(r+k�1)!

(r�1)!(k)!
p
r(1�p)k; (11)

p+ q = 1; k = 0,1,2, . . .

These elements are defined by two parameters r and p, and the value k is the element
label in the distribution. In our case r = L+1, k = j, p= �

2. So we have

F
L
L+j = f(j,L+1,�2). (12)

The density matrix (9) of the amplified L-photon state was found in our papers
[10, 11]. Now we consider the case where the populations of levels N1,N0; N1 >N0

can take arbitrary values. In this case the evolution of Husimi function is defined by
the equation (5). Here we again consider the situation when a pure L-photon state
|Li is entering the amplifier. The Husimi function of this state has the form (8). We
substitute this Husimi function in the integral (5), so that the Husimi function of the
state at the output of the amplifier becomes

Q̃
�
L(↵) =

1

⇡mL!

Z
d
2
� e

�|�|2 |�|2L exp


� |↵��G|2

m

�
. (13)

Calculating this integral, we obtain

Q̃
�
L(↵) =

1

L![m+G2]

m
L

[m+G2]N
LL

✓
� |↵|2G2

m(m+G2)

◆
exp

✓
� |↵|2

m+G2

◆
. (14)
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Here LL(x) is the Laguerre polynomial.

LL(x) = L!
LX

k=0

(�1)k
✓
L

k

◆
x
k

k!
. (15)

In [10, 11] we developed a method that allows one to reconstruct the density matrix
from the Husimi function of the form similar to that in (14). Applying this method,
we obtain that the density matrix ˜̂⇢

�
L of the amplified L-photon state reads

˜̂⇢
�
L =

m
L

(m+G2)L+1

1X

k=0

LX

l=0

✓
L

L� l

◆✓
k+L� l

L� l

◆
· (16)

·
⇣

G
2

m(m+G2)

⌘L�l⇣
1� 1

m+G2

⌘k
|k+L� lihk+L� l|;

�
�2 =m+G

2
.

When m = 0 all the terms in the sum vanish except the term for l = 0, so that the
density matrix reduces to

˜̂⇢
�
L(m! 0) =

1

G2(L+1)

1X

k=0

✓
k+L

L

◆⇣
1� 1

G2

⌘k
|k+Lihk+L|. (17)

The density matrix (16) can be presented in the form

˜̂⇢
�
L = m

L
LX

l=0

✓
L

l

◆
�
2L+2

✓
G

2
�
2

m

◆L�l

⇥

1X

k=0

(1��
2)k
✓
L� l+k

k

◆
|L� l+kihL� l+k|=

= m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

⇢̂
�
L�l. (18)

We see that the density matrix (18) of the state, which is obtained from the
L-photon state, after it passes through the amplifier with arbitrary values of the oc-
cupation numbers N1 and N0, has the form of the sum of the density matrices ⇢̂�L�l
of (L� l)-photon states passed through the amplifier, whose occupation number of
the ground level is N0 = 0, i.e. the medium is completely inverted. We studied the
properties of such states in [13]. In the present paper they are given by (9). These
density matrices are diagonal, with either zeros or values from the negative binomial
distribution on the main diagonal. So, in the density matrix ⇢̂

�
L�l the first (L� l�1)

numbers on the diagonal are zeros, followed by values (10) FL
L+j j = 0,1, . . .. The

density matrix (18) is the sum of such matrices with coefficients that are elements of
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Fig. 1 – Families of curves representing diagonal elements of the density matrix of the amplified state
for three different values of number of photons entering the amplifier L=0,1,5.

the binomial distribution
⇣
1+ G2

m

⌘L
. Thus, the elements of the density matrix (18)

have the form of sums of the products of the elements of the binomial distribution on
the elements of the negative binomial distribution. Note one important fact. In the
case of the completely inverted medium, when the population N0 = 0, the L-photon
amplified state contains only states with indexes greater than L: |L+1i, |L+2i, . . ..
But if N0 > 0, then at the output of the amplifier there are all k-photon states, starting
with vacuum state (k=0). This also can be seen from Figs.1 and 2.

Let us find the form of diagonal elements of the matrix (18). To do this let us
present the expression (18) as

˜̂⇢
�
L =

LX

p=0

S
L
p ⇢̂

�
p . (19)

The coefficients SL
p read

S
L
p =m

L
�
2L

✓
G

2

m

◆p
L!

p!(L�p)!
=m

(L�p)
�
2L
G

2p

✓
L

p

◆
. (20)

The density operator ⇢̂�p has the form

⇢̂
�
p =

1X

j=0

F
p
p+j |p+ jihp+ j|, (21)

where F
p
p+j are elements of the negative binomial distribution (10).
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Now we can write the density operator (18) as

˜̂⇢�L =
1X

k=0

H
L
k |kihk|, (22)

here the coefficients HL
k have the form

H
L
k =

kX

j=0

S
L
j F

j
k , k = 0,1, . . . ,L; (23)

H
L
k =

NX

j=0

S
L
j F

j
k , k = L+1,L+2, . . .1.

Taking in mind (10) and (20) HL
k , after some simple algebraic transformation, may

be written in the form

H
L
k = (m�

2)L�2(1��
2)k

min(L,k)X

j=0

✓
�
2
G

2

m(1��2)

◆j✓
L

j

◆✓
k

j

◆
. (24)

Using the following identity [26]
min(L,j)X

k=0

✓
L

k

◆✓
j

k

◆⇣
x�1

2

⌘k
= Pmin(L,j)(x), (25)

where Pmin(L,j)(x) are Legendre polynomials, after some straightforward transfor-
mation we obtain

H
L
k = (m�

2)L�2(1��
2)kPmin(L,k)

⇣
1+

2�2
G

2

m(1��2)

⌘
. (26)

Let us evaluate the trace of the density operator (18).

Tr(ˆ̃⇢�L) = Tr

 
m

L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

⇢
�
L�l

!

= m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

Tr

0

@
1X

j=0

F
p
p+j |p+ jihp+ j|

1

A

= m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l 1X

j=0

F
p
p+j

=

✓
m

m+G2

◆L LX

l=0

✓
L

l

◆✓
G

2

m

◆L�l

= 1. (27)
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(a) (b)

(c) (d)

Fig. 2 – Diagonal elements of the density matrix of the amplified state for various values of parameter
m= 0,3,10,30 in the case that number of photons entering the amplifier (a) L= 0 (b) L= 3

(c)L= 20 (d) L= 50.

By direct calculation we proved that the trace of the operator (18) is equal
to 1. The operator (18) is diagonal operator and the sum of its diagonal elements
P1

k=0H
L
k = 1. The trace of the operator (˜̂⇢

�
L)

2

Tr((˜̂⇢
�
L)

2) =
1X

k=0

(HL
k )

2  1. (28)

Therefore the operator (18) is indeed the density operator of a quantum state.
In the next section we will analyze some properties of the stretched states,

starting from the state (9).

3. THE AVERAGE PHOTON NUMBER AND ITS FLUCTUATIONS FOR STRETCHED
STATES

The average photon number for the state, given by the density matrix ⇢̂, is
calculated as

hn̂i= Tr(n̂⇢̂). (29)

Here n̂= â
†
â - is the number operator.

For the state (9) the average photon number is

hn̂Li� =
1X

j=0

�
2(1��

2)j

j!

✓
(L+ j)!

L!
�
2L(L+ j)

◆
, (30)
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with labels L and � indicating the state for which the average photon number is
calculated. In order to calculate this sum, we will use the following auxiliary sums

S
0
L(x) =

1X

j=0

(L+ j)!

j!
x
j =

L!

(1�x)L+1
, |x|< 1, (31)

by substituting x= 1��
2 , we get

1X

j=0

�
2L+2 (L+ j)!

L!j!
(1��

2)j = 1. (32)

Further we have

S
1
L(x) =

1X

j=0

j
(L+ j)!

j!
x
j = x

d

dx
S
0
L(x) =

x(L+1)!

(1�x)L+2
. (33)

Using the relations (32), (33), we obtain the expression for the average number of
photons in the stretched state (9)

hn̂Li� = L+(S0
L)

�1
S
1
L = L+

(L+1)(1��
2)

�2
=

L+1

�2
�1. (34)

Let us now find the expression for the fluctuation of the average photon number
in the state (9). This quantity is defined as

�n = hn̂2i� (hn̂i)2. (35)

To calculate its value it is necessary to know the quantity hn̂2
Li. Let us find its

value.

hn̂2
Li� =

1X

j=0

�
2L+2 (1��

2)j

j!

(L+ j)!

L!
(L+ j)2

= L
2+2Lhn̂Li�+

1X

j=0

�
2L+2 (1��

2)j

j!

(L+ j)!

L!
j
2
. (36)

Using the auxiliary sum

S
2
L(x) =

1X

i=0

i
2 (L+ i)!

i!
x
i = x

d

dx
S1 =

✓
x
d

dx

◆2

S0

=
x(L+1)

1�x
+

x
2(L+1)(L+2)

(1�x)2
, (37)
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we obtain

hn̂2
Li� = L

2+
1��

2

�2
(L+1)(2L+1)+

(1��
2)2

�4
(L+1)(L+2)

=
(1��

2)(2��
2)

�4
+3

1��
2

�4
L+

1

�4
L
2
. (38)

Finally, using the relations (34) and (38), we obtain the expression for the fluc-
tuation of the number of photons in the state (9)

�
�
n = hn̂2

Li�� (hn̂Li�)2 =
x(L+1)

(1�x)2
=

(L+1)(1��
2)

�4
. (39)

Consider now the amplified L-photon state (18) obtained using a quantum am-
plifier with m 6= 0. We must calculate the average number of particles in the state
(18). To do this, we use, as before (9). The expression for the density matrix now
looks like (18). Substituting it into (29), we obtain

h˜̂nLi� = Tr(n̂ ˜̂⇢
�
L) =m

L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

hn̂L�li�. (40)

The value hn̂L�li� we have already calculated. Substituting the expression (34)
into (40), we obtain

h˜̂nLi� = m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l✓
L� l+1

�2
�1

◆

= m
L
�
2L�2

✓
1+

G
2

m

◆L�1✓
1+

G
2

m
+L

G
2

m

◆
��

2L(m+G
2)L

= (m+G
2+LG

2)�1. (41)

Here we have taken into account that ��2 =m+G
2.

When m= 0 the expression (41) reduces to the formula (34). Let us find now
the expression for the fluctuation of the average photon number in the state (18). In
order to do this, one must find the value of

h˜̂n2
Li� =m

L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

hn̂2
L�li�. (42)

We have calculated hn̂2
Li� in (38), using it one obtains

h˜̂n2
Li� =m

L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l ⇣
(L� l)2

+
1��

2

�2
(L� l+1)(2L�2l+1)+

(1��
2)2

�4
(L� l+1)(L� l+2)

⌘
. (43)
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First we calculate separately three sums P0,P1,P2.

P0 = m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l✓
1��

2

�2
+2

(1��
2)2

�4

◆

=
(1��

2)(2��
2)

�4
. (44)

P1 = m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

(L� l)3

✓
1��

2

�2
+

(1��
2)2

�4

◆

= 3LG2 1��
2

�2
. (45)

P2 = m
L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

(L� l)2
✓
1+2

1��
2

�2
+

(1��
2)2

�4

◆

= m
L
�
2L�4

 
L(L�1)

✓
G

2

m

◆2✓
1+

G
2

m

◆L�2

+L

✓
G

2

m

◆✓
1+

G
2

m

◆L�1
!

= LG
2(LG2+m). (46)

Finaly we obtain

h˜̂n2
Li� = P0+P1+P2 =

(1��
2)(2��

2)

�4
+3LG2 1��

2

�2
+LG

2(LG2+m). (47)

When m= 0 the expression (47) reduces to (38).
Now, using the relations (41) and (47), we obtain the expression for the disper-

sion of the number of photons in the state (18)

�
�
n = h˜̂n2

Li�� (h˜̂nLi�)2

=
(1��

2)(2��
2)

�4
+3LG2 1��

2

�2

+ LG
2(LG2+m)� (m+G

2+LG
2�1)2. (48)

When m= 0 the expression (48) reduces to (39).

4. AVERAGES OF THE PHOTON NUMBER OPERATOR POWERS

We have found the quantities h˜̂nLi� and h˜̂n2
Li�. Now we want to derive expres-

sion for the h˜̂nl
Li� in the state (18). To do this, first calculate the average value hn̂l

Li�
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in the state (9). In this case we have

hn̂l
Li� =

1X

j=0

�
2L+2 (1��

2)j

j!

(L+ j)!

L!
(L+ j)l

=
1X

j=0

F
L
L+j

lX

k=0

✓
l

k

◆
j
k
L
l�k

=
lX

k=0

G
k
L(�)

✓
l

k

◆
L
l�k

. (49)

Here
� l
k

�
= l!

(l�k)!k! - are the binomial coefficients, and the quantities Gk
L(�) read

G
k
L(�) =

1X

j=0

�
2L+2 (1��

2)j

j!

(L+ j)!

L!
j
k
. (50)

Let us calculate these sums. As we have shown, there exist equalities

S
0
L(x) =

1X

i=0

(L+ i)!

i!
x
i =

L!

(1�x)L+1
, (51)

S
1
L(x) =

1X

i=0

i
(L+ i)!

i!
x
i = x

d

dx
S0,

S
2
L(x) =

1X

i=0

i
2 (L+ i)!

i!
x
i = x

d

dx
S1 =

✓
x
d

dx

◆2

S0,

...

S
k
L(x) =

1X

i=0

i
k (L+ i)!

i!
x
i =

✓
x
d

dx

◆k

S0,

...

Using these relations and the definition (50), we obtain expressions for the quantities
G

k
L(�)

G
k
L(�) = (S0

L(1��
2))�1

S
k
L(1��

2). (52)

Thus, for hn̂l
Li� we obtain the following expression

hn̂l
li� =

lX

k=0

(S0
L(1��

2))�1
S
k
L(1��

2)

✓
l

k

◆
L
l�k

. (53)
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Note the fact that when constructing the value hn̂l
Li� both binomial and nega-

tive binomial coefficients are used.
Now one can get the expression for h˜̂nl

Li� in the state (18)

h˜̂nl
Li� =m

L
�
2L

LX

l=0

L!

l!(L� l)!

✓
G

2

m

◆L�l

hn̂li. (54)

For l = 1 formula (54) gives the expression (41), and for l = 2 formula (54)
gives the expression (47).

5. CONCLUSION

In this work we investigated the relationship between the dynamics of physical
processes and the transformations of the phase space and the functions defined on
it. As an example we considered a linear quantum amplifier. For this system it is
possible to describe all these relations explicitly. It is found that depending on the
quantum amplifier condition, the transformation of the phase have fundamentally
different form.

If all atoms of the quantum amplifier are excited, i.e., N0 = 0, the transfor-
mations of the phase space and Husimi functions are defined by the formulas (2),
(3). But if both levels of the quantum amplifier, ground and excited, have non-zero
population, then transformation of Husimi functions has a more complex form. It is
determined by the formula (7). In our particular case this transform takes the form
(18). There is the fundamental difference between transformations (13) and (7). The
transformation (7) is local, and (13) is a non-local transformation. This difference of
transformations generates a difference in the structure of the amplified states.

This approach can also be used to study dissipative systems [27]-[30]. In the
monograph [21], an expression for the Q-function of a damped harmonic oscillator
is given, which has the form similar to the formula (5).
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