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Abstract

Hybrid energy storage systems (HESS) involves the integration of multiple energy storage

technologies with different complementary characteristics which are significantly advanta-

geous compared to a single energy storage system, and can greatly improve the reliability of

intermittent renewable energy sources (RES). Aside from the advantages HESS offer, the

control and coordination of the multiple energy storages and the vital elements of the system

via an optimised energy management strategy (EMS) involves increased computational time.

Nevertheless, a systems-level graphical EMS based on Power Pinch Analysis (PoPA) which

is a low burden computational tool was recently proposed for HESS. In this respect, the

EMS which effectively resolved deficit and excess energy objectives was effected via the

graphical PoPA tool, the power grand composite curve (PGCC). PGCC is basically a plot

of integrated energy demands and sources in the system as a function of time. Although of

proven success, accounting for uncertainty with PoPA is a cogent research question due to

the assumption of an ideal day ahead (DA) generation and load profiles forecast. Therefore,

the proposition of several graphical and reinforcement learning based ‘adaptive’ PoPA EMSs

in order to address the issue of uncertainty with PoPA, has been the major contribution of

this thesis. Firstly, to counteract the combined effect of uncertainty with PoPA, an Adaptive

PoPA EMS for a standalone HESS has been proposed. In the Adaptive PoPA, the PGCC was

implemented within a receding horizon model predictive framework with the current output

state of the energy storage (in this case the battery) used as control feedback to derive an

updated sequence of EMS, inferred via PGCC shaping. Additionally, during the control and
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operation of the HESS, re-computation of the PGCC only occurs if a forecast uncertainty

occurs such that the error between the real and estimated battery’s state of charge becomes

greater than an arbitrarily chosen threshold value of 5%. Secondly a Kalman filter for the

optimal estimation of uncertainty distributed as a normal Gaussian is integrated into the

Adaptive PoPA in order to recursively predict the State of Charge of the battery based on

the likelihood of uncertainty. Thus, the Kalman filter Adaptive PoPA by anticipating the

effect of uncertainty offers an improved approach to the Adaptive PoPA particularly when

the uncertainty is of a Gaussian distribution. The algorithm is therefore more sophisticated

than the Adaptive PoPA but nevertheless computationally efficient and offers a preventive

measure as an improvement. Furthermore, Tabular Dyna Q-learning algorithm, a subset of

reinforcement learning which employs a learning agent to solve a discrete Markov Decision

Process by maximising an expected reward in accordance with the Bellman optimality, is

integrated within the Power Pinch Analysis. Thereafter, a deep neural network is used to

approximate the Q-Learning Table. These aforementioned methods which have been high-

lighted in order of computational time can be deployed with only a minimal level of historical

data requirements such as the average load profile or base load data and solar irradiance

forecast to produce a deterministic solution. Nevertheless, this thesis proposed a probabilistic

adaptive PoPA strategy based on a (recursive least square) Monte Carlo simulation chance

constrained framework, in the event where there is sufficient amount of historical data such

as the probability distribution of the uncertain model parameters. The probabilistic approach

is no doubt more computationally intensive than the deterministic methods presented though

it proffers a much more realistic solution to the problem of uncertainty. In order to enhance

the probabilistic adaptive PoPA, an actor-critic deep neural network reinforcement learning

agent is incorporated. The six methods are evaluated against the DA PoPA on an actual

isolated HESS microgrid built in Greece with respect to the violation of the energy storage

operating constraints and plummeting carbon emission footprint.
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Chapter 1

Introduction

1.1 Background of the Study

In rural villages, remote communities, and particularly developing countries, electrification

via a traditional grid distribution network can either be non-existent (as in the case of

a conventional standalone microgrid) or too expensive to connect, erratic and unreliable

[1–3]. Therefore, the reliance on non-renewable fossil fuel-based technologies such as

diesel generators (DSLs) as primary energy generation source for microgrid has not only

been extensive but also an age-old traditional solution [4]. Besides, these fossil fuel based

technologies such as the DSLs, retain certain unique features such as reliability, power density,

ease of usage, and portability which has continued to encourage widespread patronage [5].

Nevertheless, high operational and maintenance cost, noise pollution, fossil fuel depletion

and the ensuing detrimental impacts of greenhouse gases (GHGs) (Such as CO2) pollutants

released into the environment, are some genuine concerns inhibiting the continued usage

of DSLs as a primary energy source. [2, 5]. Alternatively, energy generation via renewable

energy systems (RESs) such as Photovoltaic (PV) and Wind turbine systems (WTS), which

derive energy from replenish-able naturally occurring processes (e.g. solar, wind respectively;

geothermal, wave and biomass energy etc.) has become increasingly attractive and an
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effective solution in recent times for curbing the unfavourable ecological impact of fossil

fuel-based energy generation [6]. More so, with the integration of RES which is a source

of clean energy, any existing fossil-based solution such as DSL which has a high carbon

emission footprint, can be consigned to operate mainly as backup supply [7, 8].

In addition, global trends to decarbonise, decentralise and democratise the world’s energy

supply since 2005, have led to the creation of energy policies which in turn have significantly

stimulated the penetration and cost reduction of RES assets [9, 10]. In the year 2017, the

installed global capacity of PV and WTS were 401 GW and 539 GW respectively [11, 12]

as shown in 1.1. Despite this trend, in developing and under-developing countries, about

Fig. 1.1 Installed capacity of PV and WTS Worldwide from 1996 - 2017 [11]

1 billion people, still lack access to stable and reliable electricity or none at all, however,

microgrid (MG) concept has been envisaged to address this problem [10].

The MG as an assemblage of interconnected loads and distributed energy resources

(DERs) (such as fuel cells, Solar PV and Batteries (BAT), proposes maximum RES penetra-

tion, and has emerged as a flexible design particularly enabled to operate in grid-connected

and islanded modes [11, 13]
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The MG is fit for purpose and can be scaled to match the needs of different communities,

from developed metropolitan cities to underdeveloped or remote settlements. MG perhaps

seems to be the most suitable strategy in delivering electricity, which is an essential resource

for satisfying human needs and stimulating development. More so, MG is taking advantage

and deployment of cutting edge state of the art expansions in areas such as power electronics,

information and communication technologies and DER are transforming the conventional

grid in industrialised nations, while potentially advancing developing countries into the realm

of smart MG [10].

1.2 Hybrid Energy Storage Systems Uncertainty

Although, RES integration is suitable for islanded MG applications mainly due to their low

carbon emission impact, the energy produced by RES is intermittent. Therefore, neither

photo-voltaic (PV) systems alone which relies on intermittent solar irradiation nor the WTS

which produces usable energy only when cut-in wind speed is in the range of 2.5 to 4.5m/s,

can sufficiently satisfy a 24h load demand requirement[2, 14, 15].

Alternatively, RES MG are often integrated with energy storage (ES) or accumulators in

order to mitigate and flatten energy fluctuations or uncertainties, improve power quality and

achieve energy practicability, especially in islanded MG [11].

Therefore, multiple ES technologies (e.g. battery (BAT) and hydrogen (H2)) with

complementary properties (such as life cycle, seasonality, power and energy density etc.)

are often combined to realize the concept of the hybrid energy storage systems (HESS), in

order to enhance reliability and mitigate RES uncertainty [16, 17]. Several configurations

of HESS architectures exist, however, some common implementations RES off grid MG

applications are super-capacitor (SC)/BAT [18, 19], fuel cell (FC)/BAT [20, 21], FC/SC

[22] and BAT/FC/SC [23, 24] HESS. Other HESS combinations, are compressed air energy

storage (CAES)/SC [25] and superconducting magnetic energy storage (SMES)/BAT [26].
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Nevertheless, a HESS shown in Figure 1.2 which was designed and built-in Xanthi, Greece

with mathematical model of the assets previously validated in [17, 27] has specifically been

considered as a case study in this thesis due to the regenerative use of H2 and availability of

extensive. However, the dynamics of the converters, the efficiency of some of the devices

and degradation are not included as a high-level systems theory approach is adopted.

In principle, the operation of this HESS [17] is such that during the period when supply

from the PV exceeds demand and the battery is fully charged, the excess energy from the

PV is converted to H2 by the electrolyser (EL) for long term storage (as opposed to the

BAT which is a short-term storage). Thereafter, the H2 via a FC is used to satisfy energy

demand which exceeds supply thus, this makes the HESS attractive and quite interesting to

understudy due to the regenerative use of H2 energy carrier. [17, 28]. Therefore, in times of

excess supply the HESS can reduce the dumped load, and as well reduce the necessity of a

backup DSL in times of excess demand [29].

Though, electricity generated from most HESS, come at a higher price per KWh in

contrast with the national grid tariff. Nevertheless, HESS are still regarded as a more

economically cost-effective electrification solution for MG in remote and isolated areas

without access to an electrical grid [30]. This is primarily due to the technical encumbrance

in deploying high voltage transmission lines (including the resulting power losses) and other

necessary infrastructures associated with the extension of the national grid [4, 6, 31–33].

1.3 Energy management Strategies for Hybrid Microgrid

In contrast to grid-connected MG which is much simpler and flexible to manage since

additional power can easily be sourced from the grid whenever it is needed, islanded MG

requires local control and energy management of the MG assets [34].

Furthermore, HESS, which involves the mixing of heterogeneous components/devices,

consequently introduces systems complexity [35–37]. Hence, state of the art energy manage-
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Fig. 1.2 Schematics of the Islanded HESS [17] used as a case study

ment strategies (EMSs) are often employed in order to coordinate the different forms/characteristics

of energy/material (e.g. power and H2) flows between the multiple assets. Nevertheless,

HESS are not easily controlled by optimised energy management strategies (EMS’s) which

are essential for the optimal use of the assets, consistent energy supply and energy sav-

ings. In order to address such complexity, several studies have considered a varied range of

EMS’s for HESS which are based on artificial intelligence (AI) (e.g. fuzzy logic controllers,

machine learning; neural network, and genetic algorithm), if-then-if-else rules, linear and

dynamic programming and advanced control techniques [38–40]. On the one hand, AI or

mathematical programming methods are able to investigate a vast number of decisions and

solutions which are optimal. However, due to combinatorial complexity or non-linear models,

these methods are known to suffer from increased computational time, which can result
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in unsuitability for on-line decision-making [40, 41]. Furthermore, these methods provide

only on one final solution, which hinders the opportunity to obtain insights, exploit and

analyse intermediate solutions for the HESS operation. On the other hand, Power Pinch

Analysis (PoPA) a process integration technique [42, 43] which considers the aforementioned

inadequacies has often been used for MG sizing and design but was only recently used,

as an EM tool, as first reported in [8]. Specifically, in [44], the power grand composite, a

graphical-based PoPA tool which is simply the integrated energy supply and demand in the

HESS, was realised within a model predictive control (MPC) framework using a day ahead

DA forecast strategy. Thereafter, a series of optimal control decisions for the activation and

duration of the standalone HESS operation are inferred by shaping the PGCC. Therefore, the

EMS was contingent on the identification of the energy recovery targets within the prediction

horizon. Nevertheless, the assumption of a perfect DA weather and load forecast limits the

effectiveness and success of PoPA approach in a realistic scenario with uncertain parameters.

However, the pinch analysis despite being a well-known process integration recovery

and conservation technique for assets such as waste management, water, heat, and carbon

emission, requires adequate consideration and expansion for power systems application

[42]. Also, most literature on PoPA have not addressed the issues of uncertainty, as these

studies have mostly relied on the assumption of a perfect (or ideal) weather forecast and load

profile with the exception of [45] where uncertainty was considered in sizing a MG asset.

Consequently, the significant impact of uncertainty in a realistic scenario imposes the need

to integrate PoPA tools with a complementary technique, particularly when consistency is

so desired. Therefore accounting for uncertainty in HESS with EMS derived from PoPA

strategies has been the main focus of this thesis.
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1.4 Contributions-Novelty

PoPA has hardly addressed the problem of uncertainty in HESS, even so, as highlighted,

only a few publications have considered uncertainty in the design and sizing of HESS.

Nevertheless, despite the advantages of the DA-PoPA for HESS EM, counteracting the

effects of forecast error deters PGCC due to uncertainty in RES/Load demand, which has

never been considered. Therefore, the focus of this thesis has been to address the problem of

RES/load forecast error, which is bound to occur in a realistic scenario, in the context of the

PoPA. Therefore, the main contributions of the thesis are the proposal of six new adaptive

PoPA EMS algorithms which are presented in order of increasing computational burden for

an islanded HESS aimed at negating the effects of forecast error while shaping the PGCC as

follows:

1. The DA PoPA in [44] for EM of HESS was adapted to realise an ‘Adaptive PoPA’ [46],

by shaping the PGCC in a multi-step, look ahead, receding horizon MPC framework

as shown in 1.3. This method, which is the most computationally efficient amongst

others proposed here, offers a simple closed-loop feedback. Thus, the scheme which

employs an error correction mechanism to limit the effects of forecast error due to

uncertainty did not consider projected uncertainty.

2. A Kalman filter has been used in conjunction with the aforementioned Adaptive PoPA

[65] (KL+Adaptive), to predict the state of charge of the battery based on the likelihood

estimation of uncertainty. This algorithm though more sophisticated but with increased

computational time than the Adaptive PoPA offers a more preventive measure as an

improvement. Furthermore, unlike case (1), the corrective action which may improve

the algorithmic performance seeks to minimise the effects of projected uncertainty

and re-occurrence of the forecast error. However, the performance of a Kalman filter
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Fig. 1.3 Schematics of the Adaptive Power Pinch Analysis EMS for HESS [46]

is optimal only when uncertainty is normally distributed; hence, it can be limiting in

practice.

3. A reinforcement learning-based adaptive PoPA (RL+Adaptive) method has been pro-

posed, in the context of the Dyna Q-learning algorithm. The Dyna Q-learning algorithm

entails direct learning and indirect learning a policy via experience replay, by means of

rewarding an agent based on the next state of the system after inferring a control action

given the current state of the system. Therefore, the agent learns an EMS by solving

for the optimal action policy. Additionally, with the action policy, the agent decides the

de/activation of the dispatchable units in accordance with a corrected PGCC shaped

with the Adaptive PoPA. This approach does not assume that the underlying uncertainty

is normally distributed in the procedure that minimises the mean squared error in the
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estimated state-of-charge, as in case (2). The algorithm has further been modified to

incorporate online learning regardless of the status of the energy carriers.

4. Deep RL based Adaptive PoPA (DQN+Adaptive) approach has proposed fully con-

nected deep neural networks trained by an L2 regularised minimum squared error loss

functions to extend the generalisation capabilities of approximate information learned

by the intelligent computer agent in case (3).

5. A Probabilistic adaptive PoPA (P+Adaptive) method [47] realised by a recast of

the deterministic model, case (1) in a probabilistic framework has been proposed.

The probabilistic approach employs a Monte Carlo simulation in order to investigate

n-stochastic scenarios in a predictive receding horizon. Thereafter, a robust EMS

which satisfies a chance constraint probability factor corresponding to the operating

constraints of the HESS is derived from a ‘bounded’ probabilistic PGCC and inferred

in the control horizon.

6. Similarly, the probabilistic Adaptive PoPA (P+Adaptive) has been integrated into an

actor-critic (A2C) reinforcement learning algorithm framework. So far, the aforemen-

tioned RL methods are with regards to discrete state and action space; nevertheless

the actor-critic which naturally enabled a continuous action and state-space without

the need for handcrafted discretisation has been implemented. The actor-critic neural

network which combines a policy and a value-based RL approach is realised using

a recurrent neural network and trained using an L2 regularised cross-entropy and

minimum squared error loss functions respectively.

These six methods have been analysed in the thesis. Table 1.1 briefly summarises the

computational intensity of the proposed PoPA methods. Furthermore, a sensitivity analysis

with hydrogen availability is used to evaluate the proposed methods against the DA PoPA

under both Gaussian and non-Gaussian uncertainty.
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Table 1.1 Representation of the proposed PoPA techniques with computational intensity

EMS PoPA Algorithms
Simulation time

for 72h
Computational

intensity
Complexity

Big O

Deterministic
EMS

Adaptive
PoPA 0.67s Very low Log(N.L)

Kalman+
Adaptive 1.33s Low Log(N.L)

RL +
Adaptive 1.35s Moderate Log(N.L)

DRL +
Adaptive 7.70s High Log(N.L)

Probabilistic
EMS

P -
Adaptive 137.44s Very high Log(N.L.n)

A2C +
P-Adaptive

631.55s Extremely high Log(N.L.n)

1.5 Scope and limitations of the thesis

A high-level systems theory modelling approach [17, 27] which considers only the steady-

state response at an hourly interval and neglects transient characteristics response of the

sub-components of the HESS, has sufficiently been used throughout the research study.

Hence, the thesis did not strictly consider modelling most of the devices to include a micro

time-scale resolution (such FC or EL star-time transient responses) as well as multi-objective

economic cost factors. Although, not a trivial undertaking, the highlighted aspects can

be included in the proposed adaptive PoPA framework in future work by improving the

modelled devices and optimising constraints within the minimum and maximum energy

recovery targets. The thesis has only considered the EM of the energy storages with respect

to hierarchy with the BAT’s state of charge being the most important parameter since in

a standalone system especially in the case study, the most important objective is energy

reliability with a minimum usage of the hydrogen carrier resources. In the event, the BAT

is fully charged, and the HT is filled up, the PV is consequently turned off for the next

simulation interval. Therefore, considering the above case inclusive of the WTS, where the
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WTS is empty, the Electrolyser device will cease to operate as it requires electrolysis of water

for its operational function. Throughout the thesis, it is assumed that the PEM FC and EL

operate solely on an independent power supply separately from the BAT being considered or

controlled by the EMS. The thesis assumed a case study of DC hybrid energy storage systems

microgrid considering real power only. Therefore, there is no necessity for frequency, phase

and reactive power control and synchronisation of the BAT to a bus network.
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1.7 Thesis Structure

The rest of the thesis is structured as follows: Chapter 2 briefly describes sizing methods,

energy management strategies and HESS asset modelling. In Chapter 3 the background of

the Graph theory HESS modelling and Power Pinch concept for HESS are presented. In

Chapter 4 the formalisation of the receding adaptive MPC-PoPA concept and the Kalman

filter state estimator approach with Adaptive PoPA are both presented. Chapter 5 presents

the probabilistic adaptive PoPA in a receding horizon which was realised using Monte Carlo

simulation with chance constraint and a recursive least square residual error correction. In

Chapter 6, RL (Dyna-QLearning), deep RL (DQN) based Adaptive PoPA algorithms and

Actor-critic RL based probabilistic Adaptive PoPA algorithms are presented. The results and

discussions are presented in Chapter 7, and Chapter 8 provides a conclusion of the study.



Chapter 2

Literature Review

OUTLINE

First, this chapter reviews relevant literature with regards to sizing and design hybrid

energy storage systems which are mainly categorised as intuitive, numerical, artificial

intelligence and hybrid methods. Second, a preliminary investigation utilising three

simple sizing methods [48] via simulation as case study, justified the validity for the

inclusion of active EMS to enhance reliability and limit the use of DSL. Thus, sizing

of HESS assets alone is inadequate to carter for uncertainty and intermittency of

renewable energy sources, an underpinning element in the design of a reliable HESS.

Third, literature review on EMSs, which are very vital are presented in the research

study. These EMSs methods are grouped into categories; forecast/historical, heuristic

logic, ANN-fuzzy logic and reinforcement learning. Fourth, the specific mathematical

models for the HESS assets [17, 27]; such as the BAT, EL and FC are presented.

2.1 Methods for Microgrid Sizing and Design

Several research studies [14, 15] have underscored the importance of hybrid energy systems

in contrast to conventional standalone power systems as they are more cost-effective and
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reliable due to the use of multiple sources of electricity generation. Nevertheless, adequate

sizing of the hybrid energy systems components and devices has often been a challenge

largely due to the influence of capital and operating costs. Therefore, various empirical

models have been proposed in literature which aims at sizing components of the standalone

RES-MG with respect to a minimum cost and environmental impact, full utilisation of the

assets as well as guaranteed reliability. These methods can be classed as intuitive, numerical,

artificial intelligence and hybrid methods [49, 50].

2.1.1 Intuitive Method

In the intuitive processes, the required number of PV panels and energy storage capacity are

determined by simple mathematical calculation. The net energy balance calculation (which

is based on the net summation of the power demand, load demand and power generation)

is used iteratively at every sampling instance over a 24h period. More specifically, the data

profile of the residential annual average power demand, and typical meteorological wind

velocity, and solar insolation to deduce the capacity of the battery storage. Thereafter, the

energy storage capacity in the RE microgrid is based on the load and RE instantaneous

power, which is scaled up by an autonomy factor. In addition, a DSL is used as a redundant

energy source, in the event of an emergency, were the energy generated by the wind/solar is

insufficient as is usually the case in a real life situation. This method was used for sizing a

standalone hybrid with configuration WTS/PV/BAT micro-grid in [7]. In [30], the WTS-DSL

hybrid configurations are sized using a similar approach.

[51] presented a generalized methodology for sizing RE systems. The solar radiation

on the inclined surface of the PV is used to derive the global diffused and direct radiation

indices according to the model presented by Collare-Pereira and Rabl in [52] while the total

irradiance is based on a Hay’s anisotropic model [53]. Thereafter a daily energy balance
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derived from the PV and the daily load demand profile is used to determine the PV array

capacity based on multivariate linear regression via optimization using radiation information.

The mathematical equation for the energy balance of a typical wind/PV battery standalone

topology sampled hourly for a year is given as follows in (2.1):

Net Energy, E(t) =
8760

∑
k=1

((nPV PPV (k)+nWT SPWT S(k))−PL(k))∆K (2.1)

Where,

nPV and nWT S are the numbers of PV panels and wind turbine systems respectively.

∆K and k are the hourly sampling interval and hour in a year, respectively.

PL(k) is the instantaneous load demand.

PPV (k) and PWT S(k)) are the generated instantaneous power for PV and WTS with

respect to available wind and solar insolation at a given time (k).

Positive and negative values of E(k) denote availability and deficiency of energy genera-

tion. The total energy deficiency of the system is thereafter used to determine the size of the

BAT as follows;

CBAT = DE/(DOD∗ηBAT )∗At (2.2)

Where,

DOD is the depth of discharge of Battery (BAT) at 80%

DE is deficit energy (KWh) battery

ηBAT is the efficiency of the battery

At is the autonomy factor of the battery storage asset

CBAT is the required capacity of the battery (KWh)
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NBAT ≥CBAT/EBAT ∗DOD (2.3)

Where,

NBAT is the number of battery units required

EBAT is the rated capacity of each battery

Additionally, in [48] three simple methods for determining the minimum surface area of

a stand-alone photo-voltaic (SAPV) system to cater for the annual consumer load demand

and any associated losses. The mathematical equations for the three methods; A1, A2 and A3

are as follows:

A1 = (
12

∑
1
(Ldm +Lnm/ηb)(ηwηT ηvrηc))(

12

∑
1

Hk,mηiηd)
−1 (2.4)

A2 = ((Ld p +Lnp/ηb)(ηwηT ηvrηc))∗ (1/12
12

∑
1

Hk,mηiηd)
−1 (2.5)

A3 = ((Ldm +Lnm/ηb)(ηwηT ηvrηc))∗ (Hk,mwηiηd)
−1 (2.6)

Where,

Ldm and Lnm are the day and night time monthly average load respectively.

Ld p and Lnp are the day and night time annual peak load respectively.

ηb, ηw,ηT , ηvr and ηc are efficiencies for BAT, PV wiring, maximum powerpoint

tracking, voltage regulator, battery and cabling, respectively.

ηi and ηd are the average hourly PV efficiency and factor of degradation respec-

tively

Hk,m is the monthly average of the daily insolation.
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Hk,mw is the monthly average of the daily insolation pertaining to the worst month.

The PV surface area derived from A1 is as a function of the ratio between Ldm , Lnm and

Hk,m . Furthermore, in A2 the average night and day time monthly average load are replaced

with Ld p and Lnp , thus, A2 results in a smaller area than A1. While, A3 is similar to A2, Hk,m is

replaced with Hk,mw . Thus, it is obvious that using method A2 will result in the PV having a

smaller surface area than A3. However, A3 will have a smaller surface area compared to A1

since A3 makes use of Ld p and Lnp which will be ideally smaller than Ldm and Lnm .

The methods; A1, A2 and A3 are evaluated as a function of the unserved energy and the

loss of load probability (LOLP) expressed mathematically as:

LOLP =
8760

∑
k=1

DE(k)/
8760

∑
k=1

LD(k) (2.7)

Where,

LD(k) is the hourly load demand

This sizing method suffers certain shortcomings peculiar to a deterministic approach,

which does not account for intermittent solar radiation. Therefore, decreased reliability

associated with under sizing or increased operational and maintenance cost as a consequence

of over sizing is bound to occur.

2.1.2 Numerical Method

This method employs the use of linear or quadratic optimisation techniques to minimise an

objective function which may comprise the total annual cost of the system and environmental

impact factor. The most suitable combination of the system components such as how large the

size of the PV/WTS or BAT ES capacity should be determined and solved by an optimisation

algorithm aimed at minimising objective cost function [31, 7]. Typically, the sizing problem
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is with respect to finding the optimum combination with minimum cost which satisfies the

net energy balance constraint is formalised using an optimisation objective function.

The objective cost function is usually composed of the summation of the annualised cost

of owing the PV/WTS/Battery and the balance of system cost as well as the environmental

impact factor.

In [54] hybrid optimisation model for electric renewables (HOMER) was used as a pre-

feasibility study optimisation and sizing tool for HESS assets with hydrogen energy carrier,

for an application in Newfoundland, Canada. The study revealed that the most feasible

hybrid energy systems configuration, which resulted in the least cost at the time was the

WTS-BAT-DSL hybrid systems which comprised a WTS, battery and DSL. Nevertheless,

with future reduction in FC cost, a superior configuration would be the WTS-FC architecture.

In [55] a simple algorithm was developed to size the components of a standalone hybrid

microgrid. The optimal size of the hybrid MG components; number of PV, WTS and BAT

were determined such that the load demand is satisfied with a zero load rejection criterion

while maximising the life cycle cost of the assets. However, the work assumed that the state

of charge of the BAT will periodically remain invariant without due consideration for daily

or seasonal variation, which is far-fetched from reality.

In [3] chance-constrained optimisation probabilistic approach is adopted in contrast to a

deterministic approach to size a PV-DSL hybrid energy systems under resources uncertainty.

And similarly, in [45], the chance constrained approach was realized within the Power Pinch

Analysis (PoPA) framework for sizing the area of a PV, after that validated via a Monte Carlo

simulation.

2.1.3 Artificial intelligence optimisation method

Artificial intelligence optimisation techniques such as an artificial neural network (ANN),

genetic algorithm (GA), particle swarm optimisation (PSO) have been proposed by several
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authors [45, 49, 56, 57] in order to determine the PV asset sizing ratio in a standalone grid.

These methods have the advantage of finding the global optimal value with respect to a

multi-objective cost function while considering the intermittency of the meteorological data.

The PSO is therefore used to minimise cost, Carbon IV Oxide emission, life cycle cost, and

loss of power probability while predicting the size and number of PV, Battery, and Diesel

generator.

In addition, [58] PSO, was compared to the result from HOMER software with respect to

the concurrent sizing of a standalone HESS which included water desalination by reverse

osmosis. The optimisation objective was to minimize a multi-objective function such as the

total net present cost NPC, which comprised the capital, maintenance and replacement cost;

and the overall CO2 emission cost, estimated over a period of 25 years while meeting water

and electrical load demands. The PSO was found to have a lower NPC compared to solution

rendered by HOMER software [59–61]

In [62] AI based on adaptive neural fuzzy inference system (ANFIS) and artificial neural

network (ANN) were compared with respect to the optimal PV system component sizing

and tilt angle prediction of a PV/BAT/DSL hybrid system. The AI sizing approach which

did not require meteorological data and employed different load demands in 34 different

remote locations in India, was validated to have a LOLP less than 0.01. The approach

utilised 80 percent of the entire data set for training, while 20 percent was used for validation.

The prediction performance indices based on mean square error showed that the ANFIS

performed better than the ANN for the standalone grid component sizing.

The significance of BAT capacity with respect to the operational cost of the microgrid is

emphasized in [63]. Thus, the grey wolf optimisation (GWO), is formulated to determine

the BAT size that best minimises the operational cost while satisfying operational constrains

such as power capacity of distributed generators (DGs), power and energy capacity of

BAT, charge/discharge efficiency of BAT, in service reserves and consumer load demand.
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Interestingly, the GWO out performed other popular algorithms such as the GA, PSO, Bat,

Differential Evaluation, Tabu search, teaching-learning based optimisation with regards to

computational efficiency and quality of the solution in the sizing of the MG asset.

2.1.4 Hybrid evolutionary Optimisation techniques

Hybrid configuration of several evolutionary, Swarm Intelligence Teaching Learning based

optimisation methods have also been explored to harness the advantages inherent in these

metaheuristic methods. In [64], six metaheuristic AI algorithms; FireFly, PSO, Teaching

Learning-based Optimization TLBO, the Whale optimisation WO, Differential Evaluation

and GA, are comprehensively reviewed, in a bid to aid engineers and researchers better solve

smart microgrid optimisation problems with respect to the economic cost and operational

constraint. The TLBO was found to have a better performance in comparison to the afore-

mentioned methods. Also, TLBO had a faster convergence with the capability to explore a

much wider search space with the GA and PSO having better performance compared to the

WO and FF.

Nineteen hybrid metaheuristic methods comprising several combination of PSO, modified

PSO, improved PSO, PSO with constriction, inertia weight and repulsion factor, bee swarm

optimization, harmony search, simulated annealing, chaotic search, and Tabu search algorithm

were investigated in [65]. The objective was to minimise the total life cycle cost and a loss of

power supply reliability index with respect to sizing the components of a hybrid renewable

energy system which comprised a WTS-PV-BAT architecture, reverse osmosis desalination

asset. The hybrid configuration of the evolutionary algorithms which yielded the best

and worst performance index were the improved harmony search-based chaotic simulated

annealing and the artificial bee swarm optimisation respectively. The metaheuristic methods

were found to have the advantage of searching for both global and local optima, better

accuracy with a faster convergence rate.
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Furthermore, in [66], hybridization of analytical and numerical method is presented.

The hourly intermittency of the RES and Load profile are studied with respect to loss of

load probability. Afterwards, the life cycle cost of the system is minimized by an adaptive

feedback iterative numerical optimisation in order to obtain the optimally sized components

of the SAPV microgrid. In [67] incorporated the use of mathematical optimisation in parallel

with ANN and thereafter with the GA technique. More specifically, ANN with longitude,

latitude and altitude information was used to predict thirty possible PV sizing values which

are further optimised using the GA technique for faster convergence while minimising the

capital cost of the systems. In [68] the design and sizing of hybrid Power system HPS

is based on a mathematical superstructure model which incorporates chance-constrained

programming which considers uncertainty introduced by intermittent RES and consumer load.

Thus, the optimal generation and storage capacities of the assets are determined such that a

specified level of minimum systems reliability is achieved. Thereafter, fuzzy optimisation is

incorporated to resolve a multi-objective trade-off concerning economic, environmental and

parametric uncertainties in the HPS design. The approach was validated using a Monte Carlo

simulation and is similar to ref. [45].

2.1.5 Power Pinch Analysis Sizing, design and planning methods for

Microgrids

The PoPA is a process integration technique, inspired from the original Pinch Analysis for

heat exchange networks [69] and evolved to sophisticated tools [42] [44] that allow the

analysis of complex energy systems based on the identification of insights pointing toward

promising design and operating decisions [70]. Several researchers have considered PoPA

for electric power systems sizing and design. In [43, 45] the grand composite curve was

realised by integrating the energy demand and supply over time, and then it was used to

size an isolated power generation system optimally. Additionally, in [71] the PoPA was
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utilised as a combination of both the graphical analysis and numerical approach with the

aid of the power cascade analysis and storage cascade table for optimal sizing of the hybrid

power system. The extended Power Pinch analysis (EPoPA) in [72] was proposed as an

enhancement to the PoPA to optimally design renewable energy systems integrated with

battery-hydrogen assets as well as a DSL. The EPoPA was used graphically and algebraically

to determine the required external electricity to be outsourced, the wasted energy which

could not be stored in the BAT, but can perhaps be stored in the form of hydrogen in a normal

operational year. Thereafter, the sizes of the HT and DSL were determined by minimising

the total annualised cost. These studies on PoPA for sizing MG assets with the exclusion of

[45] in which chance-constrained programming was used to achieve technical and economic

feasibility, were realised without recourse to uncertainty.

2.1.6 Simulation Results of PV Sizing Methods for Advanced based

EMS Justification

The simulation results utilising the Net Energy modelling concept for hierarchical energy

management strategy in a renewable MG comprising a PV, BAT, consumer load and a backup

diesel generator are presented in this section. The for all time instances, the BAT is charged

with excess energy in the event the PV power exceeds the load power. In order to avoid

overcharging, the fully charged battery (SOAccBAT >90%) is disconnected from the MG,

while the load is sustained by the energy from the PV. During periods of unavailability of

power from the PV, the load demand is satisfied by discharging the BAT as long as the SOAcc

of the BAT is not less than 30% (i.e. SOAccBAT <30%). The diesel generator is activated if

the SOAccBAT is below 30% and the power from the PV is less than the load (i.e. PPv < PL).

The BATis sized with respect to the average consumer load energy per day, autonomy of 2

days for safety factor as well as the allowable depth of discharge. While the PV surface area

is sized using the three methods presented in [48].
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Fig. 2.1 Typical residential load demand profile

A typical deterministic residential consumer load profile, characterised by dual peaks in

the morning (1.2KW) and evening (1.5KW) is shown in Figure 2.1. Figures 2.2, 2.3 and 2.4

shows the response of the MG with subplots (a) explicitly showing the PV power response,

the battery’s SOAcc and Net Energy for 8760 h, (b) 1st of January, (c) 1st of April, (d) 1st of

July, and (e) 1st of December with respect to PV sizing methods 1,2 and 3.



24 Literature Review

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
hours

0

500

1000

E
ne

gy
 W

h

PV Profile

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
hours

0

50

100

SO
A

cc
B

A
T

(%
) State of Charge for the Battery

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
hours

-5

0

5

E
ne

rg
y 

W
h

#104 Net Energy

(a) 8760 h MG response

0 5 10 15 20 25
hours

0

200

400

E
ne

gy
 W

h

1st JAN. PV Profile

0 5 10 15 20 25
hours

60

80

100

SO
A

cc
B

A
T

(%
)  State of Charge for the Battery

0 5 10 15 20 25
hours

-2

0

2

E
ne

rg
y 

W
h

#104 Net Energy

(b) 1st January

0 5 10 15 20 25
hours

0

200

400

E
ne

gy
 W

h

1st APR. PV Profile

0 5 10 15 20 25
hours

60

80

100

SO
A

cc
B

A
T

(%
)  State of Charge for the Battery

0 5 10 15 20 25
hours

-2

0

2

E
ne

rg
y 

W
h

#104 Net Energy

(c) 1st April

0 5 10 15 20 25
hours

0

500

1000

E
ne

gy
 W

h

1st JUL. PV Profile

0 5 10 15 20 25
hours

80

90

100

SO
A

cc
B

A
T

(%
)  State of Charge for the Battery

0 5 10 15 20 25
hours

-5

0

5

E
ne

rg
y 

W
h

#104 Net Energy

(d) 1st July

0 5 10 15 20 25
hours

0

50

100

E
ne

gy
 W

h 1st DEC. PV Profile

0 5 10 15 20 25
hours

40

60

80

SO
A

cc
B

A
T

(%
)  State of Charge for the Battery

0 5 10 15 20 25
hours

-2000

0

2000

E
ne

rg
y 

W
h Net Energy

(e) 1st December

Fig. 2.2 PV power profile, Battery’s SOAcc response and Net energy with sizing method 1
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Table 2.1 Performance indices for the PV sizing methods.

Reliability Indices Method 1 Method 2 Method 3
Battery Failure with DSL 57 4238 2098
Battery Failure NO DSL 212 8717 5488
Battery Overcharged with DSL 3817 8 471
Battery Overcharged No DSL 3804 8 437
Battery Deactivated 1058 0 1836
LOLP with DSL 0.5006 0.3286 0.4312
LOLP no Diesel 0.5055 0.8305 0.6421
Level of Autonomy with diesel 0.9935 0.5162 0.7904
Level of Autonomy NO diesel 0.9758 0.0049 0.3735

Table 2.1 shows the performance indices of the methods employed when a diesel generator

serving as backup is absent and present. Method 1, is easily seen to be more reliable as it

has a level of autonomy of 0.9758 and 0.9935 and LOLP of 0.5006 and 0.5055 when the

backup generator is absent and present respectively. With the LOLP a 0 means the load

demand will always be satisfied while a one connotes it will never be satisfied. However,

the level of Autonomy increases as it approaches 1. The Diesel generator does not improve

the LOLP significantly of the Microgrid sized by method 1. The battery is also overcharged

despite having the least failure due to lack of advance control incorporated. The second sizing

method has the least level of autonomy as it does not proffer any form of reliability; this

improves drastically with the integration of a diesel generator. The third method has a better

performance than the second method; however, it is not reliable as the diesel generator is

needed to improve it. Also, method 1 has the most excess energy occurrence, which indicates

oversizing, while method 2 has the least excess energy, which also shows under-sizing. This

underscores the problem of correctly sizing the MG assets, as the PV intermittent introduces

offsets in the energy targets. Therefore, active control utilising advanced EMS technique

such as those based on MPC as opposed to a logic-based EMS is indeed justified and required

to absorb excess energy and supply deficit energy in advance adequately.
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Fig. 2.3 PV power profile, Battery’s SOAcc response and Net energy with sizing method 2
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Fig. 2.4 PV power profile, Battery’s SOAcc response and Net energy with sizing method 3
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2.2 Energy Management Strategies for hybrid Microgrid

The most vital decision making required for optimal operation of HESS is the systematic

distribution of energy amongst the heterogeneous energy storages with regards to dis/charging

schedules while serving the load demand [36].

In spite of the benefits, HESS can offer, such as enhanced reliability, if the system’s design

(including inter-dependencies) is not adequately considered an improvement in performance

can not be guaranteed compared to a homogeneous ESs.

In addition, the heterogeneity of the ESs technology, which portends certain benefits

(such as enhanced life cycle and energy efficiency of the assets) when exploited, imposes the

need for a sophisticated EMS at the system level in contrast to a conventional EMS suitable

for a homogeneous ESs [36].

In literature, several EMS for optimal control and decision making have been investigated,

especially to negate the effects of energy resources uncertainty in HESS. These approaches

range from the use of historical data to better improve the forecast of RE energy to dynamic

expert rule-based intervention strategies.

2.2.1 Forecast/Historical based Energy Management Strategies

The work presented in [73] employed game theory for the first time in an adaptive model

predictive framework for demand-side response management in a grid-connected RE network

and shows superiority over the day ahead scheme when forecasting error is significantly large

(>10%). In [74] to achieve accurate DA forecast, learning tools; self-organising map (SOM)

and Learning vector quantisation (LVQ) are combined and used to classify historical PV

power, and weather data patterns for training by Support vector regression (SVR), a Bayesian

machine learning method. During the classification, the historical data is loaded as an input

vector, representing the pattern of the hourly PV power generation. A minimisation of the

Euclidean norm is used to adjust the weight of the selected neuron during the classification
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with a learning rate. The SVR consists of 5 SVR models and 6 sub-models each having 5

inputs and 3 outputs. The input data correspond to weather elements such as precipitation,

temperature and solar irradiance. The SVR machine learning is a technique that is selected

based on its proven forecasting accuracy and learning competency. After that, a fuzzy logic

inference system was utilised as an intermediary switch for mapping any given input to

output via the learned models for forecasting.

In [75], an adaptive model predictive control (MPC) is used to negate the effects caused by

forecast uncertainties for optimal operation in a smart residential microgrid. The Microgrid

comprised both Renewable / non Renewable energy resources such as PV solar panels and

WTS, as well as combined heat and Power (CHP) as well as energy storages such as batteries

and water tanks. A mixed integer programming optimisation technique is used to iteratively

at each sampling time to minimise a cost function, formulated using a day’s short term

forecast of solar radiation wind, load demands, and electricity price. The optimal solution is

derived using feasible power balance constraints on the MG for the thermal, electricity supply

and demand-side energy capacity. The adaptive MPC which combined a receding horizon

and forecast error compensation showed superiority with a lower cost of operation, compared

to the Day-ahead programming technique. This is chiefly due to lack of state feedback and

correction while using the rolling horizon optimisation method. Additionally, the erroneous

forecast is modelled as a deviation from the actual forecast trajectory by summing the actual

forecast and a Gaussian noise distribution for all-time. Furthermore, work done in [76]

concerning sensitivity analysis reinforced the superiority of the recursive MPC over the

Day-ahead strategy implemented in residential MG home energy management system. In

[77] a review work on optimal control techniques, mixed-integer linear programming (MILP)

an optimisation technique which makes use of both binary or integer values, as well as

non-integer values for selected variables, is utilised. A centralised controller integrating

load and generation forecasting via two days ahead neural network is used to proffer online
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trajectory for the systems sub-components, users and water flow while guaranteeing minimal

operating cost and power balance over time [78].

In [79] a nonlinear model predictive control (NMPC) algorithm is used on a standalone

Microgrid for load shedding and optimal control of voltage stability within the acceptable

+/- 5 percent deviation recommended by the ANSI C8.1-1989 standard while balancing

the energy in the Microgrid. The NMPC algorithm performs a binary type continuous

optimisation (mixed-integer nonlinear programming) for optimal decision with respect to

load dispatch based on predicted power imbalance. A typical case study here is the decision to

switch off the load when the power demanded by the load is higher than the power generated.

Two approaches for the system model are exploited within the NMPC; (a) Comprises the use

of Artificial Neural Network (ANN) is used for the load prediction and Newton – Raphson

(NR) algorithm for Power flow. (b) Systems Identification for modelling based on ARX

artificial neural fuzzy inference system (ANFIS) is used. The ANN predictor is trained using

historical load data profile and time interval in hours, t = 1, 2, 3, . . . , N - 1 as input to predict

the subsequent load demand as output. The literature did not include economic consideration

as well as charge and discharge rate of the battery in the cost function as it targeted only load

dispatch. However, the effect of model accuracy on the controller’s performance, the benefit

of this method over the open-loop approach as well as the superiority of the ARX-ANFIS

were noted.

In [80], the thermal overload limits of a transmission line is considered and incorporated

into a linearised AC loss transmission network model for more realistic handling of voltage

magnitude and reactive power in an adaptive MPC framework. The constraints for the

optimisation problem are selectively made minimal to improve the incurred unacceptable

polynomial-time caused by the high dimension of the problem.

In [81] an adaptive intelligence technique (AIT) for EMS a battery (BAT) – ultra-capacitor

(UC) based HESS was proposed in order to maximise self-consumption while minimising



2.2 Energy Management Strategies for hybrid Microgrid 31

the effects of forecast error which consequently impact on the deviation of load shaving

and the corresponding threshold for dispatchable power. The AIT method, after computing

techno-economic feasible fixed power and energy thresholds, incorporates robustness to

forecast error by updating these fixed thresholds at every iteration with information derived

from the previous day’s optimal trend. Thus, AIT which did not require an accurate RES

and Load data was shown to have superior performance over the PSO algorithm. However, a

limitation is that the AIT algorithm depends on the averaging method which requires a fixed

number of samples to determine the energy state of charge in the battery and only the UC

will function as energy storage if this condition is not met. The AIT method guaranteed high

self-consumption and mitigated potential reverse power dynamics amongst RES, load and

ESs assets.

In [82], a ANN architecture is used for prediction and to realise a feed-forward control and

a conventional state of charge energy management strategy which uses feed-forward control

were compared. Furthermore, the authors, through a cost function sensitivity analysis showed

that in HESS, the key contributors to the total asset’s cost are the battery and hydrogen assets.

Also, the fractional cost of combining hydrogen–battery technologies, was 48% percent and

9% percent compared with a hydrogen or battery only system respectively.

In [83], to control the deviation in dc-link voltage arising from the variable load and RES

uncertainty in a grid-connected HESS MG which comprised a BAT and ultra-capacitor, a

dynamic EMS was proposed. In [84] a multivariate quadratic optimisation was formulated

to solve a real-time optimal control energy management operational task relating to a dual-

mode split HEV. An offline approach is used to solve the multivariate quadratic optimisation

problem in order to obtain the control decision, which is thereafter, imposed on the HEV in

real-time as in a traditional MPC fashion. The method which was compared to a traditional

MPC approach achieved 97.46% computational efficiency and 23.3% in fuel savings.
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In HESS the concept of hybridisation is even so very often harnessed especially in

electrical vehicles (EV), where a super-capacitor (SC) with high efficiency and power density

properties is combined with a conventional battery which lacks such properties but has a

relatively lower cost and a high energy density which the SC lacks. Hence, the exploitation

of the SC and Battery in a complementary mode enhances the life cycle of the battery at a

lower design cost. In a HESS was designed based on the analogy of a computer memory

architecture [36].

2.2.2 Heuristic Logic-based method with forecast prediction

An energy management power regulation system was proposed in [5] for a standalone HESS

comprising WTS, PV FC, EL, BAT and Load. The proposed logic-based EMS employed

three stages to guarantee the continuous operation of the HESS. The first stage involved

predicting the wind speed and load demand profile. In the second stage, the predicted

variables and the available energy in the ES are used to estimate and schedule the maximum

load demand, which can be supplied. After that, in the third stage, each subsystem was

coordinated with eight dynamic operation modes generated based on the predicted variables

and parameters associated with the net power flow and the intrinsic limitations of the

subsystem. The allowable range for the SOC of the ES during an emergency and normal

operation was 40% - 95% and 75% - 95% respectively. ESs are generically categorised based

on specific characteristics of interest such as high energy and power density, life cycle ramp

rate. Regrettably, no one ES has all these characteristics of interest. Thus, while ESs are

generally suited for mitigating generation and consumption mismatches in a DC MG, their

practicality and performance, will perhaps largely depends on their characteristics and the

dynamics of the mismatch [85].
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2.2.3 ANN-Fuzzy Optimisation

In [86] an expert energy management system based on artificial neural network was proposed

for grid connected hybrid energy storage systems, specifically integrating WTS, ES and

several DERS. The framework presented consisted of three stages; the first trained an ANN

with historical data to forecast wind speed within a probabilistic error confidence interval in

order to incorporate robustness in the prediction. Hence, negating the difficulty imposed by

wind speed uncertainty in energy scheduling and optimal operation of the assets. Secondly,

a modified bacteria Foraging Optimisation (MBFO) technique was used to minimise cost

and emission objectives. Thirdly, an interactive Fuzzy satisfying approach, was simulated to

resolve the trade-off between the multi-objectives.

In [87], Artificial intelligence AI (ANN and FLC) based energy management techniques

were used to optimise the efficiency and operation of hybrid power systems, HPS. The HPS

consisted of both primary RESs such as PV and WTS, and backup sources such as FC

and Gas micro Turbine. Furthermore, the study underscored the role and importance of

Hydrogen as a long-term ES employed to buffer RESs intermittency. In addition, hydrogen

is considered as a clean renewable energy carrier which may perhaps be transformed into

various forms such as liquid, gaseous or metal hydride for convenient storage or use.

2.2.4 Generic methods for uncertainty

Consequently, the significant impact of uncertainty in a realistic scenario imposes the need

to integrate EM tools with a complementary technique, particularly when consistency is

so desired. Several techniques which account for uncertainty in EM can fundamentally be

classed as either a predictive or reactive approach [43]. These techniques may perhaps be

considered in PoPA application, whereby, the scheduling of dispatchable units are realised

with (predictive) or without (reactive) before consideration of the impact of an impending

uncertainty. The responsive approach uses the latest state feedback for re-computation, upon
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model mismatch due to uncertainty, which may be expensive when seeking an optimum

solution in the event of frequent perturbation. The predictive technique may employ Monte

Carlo simulation (MCS), stochastic programming, fuzzy programming, robust optimisation,

machine learning techniques, in order to infer the optimal control action that negates the

effect of uncertainty [44-46].

Furthermore, the linear Kalman filter (KF), first presented by Kalman in 1960 for solving

the Wiener problem has since been applied extensively in areas of control system, naviga-

tion tracking, for short-term prediction, and for systems state estimation associated with

uncertainty [47]. In [48] the ensemble KF was combined with a multiple regression model

to enhance forecasting accuracy of electricity load. Similarly, in [49] the Kalman filter

was used recursively to estimate short-term hourly load demand forecast parameters based

on the historical load and weather data and the current measurements of the time-varying

parameters.

2.2.5 Reinforcement learning-based Energy Management Strategy

In [88] a work on temporal difference (TD) learning, a model-free reinforcement learning

(RL) algorithm, introduced a prediction method which relies on the experience of successive

predictions to infer the behaviour of an unknown system. This was a paradigm shift to

the conventional approach, which depended only on the difference between the actual and

predicted outcome. Hence, RL is a machine learning technique, suitable for solving a Markov

decision process (MDP) which involves optimal sequential decision making under uncertainty.

Thus, many researchers have sought to deploy several machine learning algorithms in an

MDP.

In [89], machine learning algorithms such as policy iteration and value iteration Dynamic

programming, and RL techniques such as the least-squares policy iteration, Q-Learning, and

SARSA were reviewed for MDPs.
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Specifically of interest, is the Q-learning, a class of model-free RL, a similar algorithm

to Sutton’s (1988) TD learning [90], first introduced by Watkins in 1989, which proffers an

intelligent agent with the learning ability to act optimally in a MDP based on experience

[91].

In Q-learning, an agent seeks to maximise the sum of expected reward by acting optimally

concerning any given circumstance (referred to as a state). Typically, an agent will evaluate

a state, and will then undertake an action either in an exploitative or exploratory manner

thereafter and finally will receive an instant reward, while transitioning to a new state. Q-

learning has tremendous success in robotics, especially in mobile robot navigation and

obstacle avoidance [92, 93].

In [94], the Dyna AI architecture was proposed to integrate both learning and experience,

based on online planning, as well as reactive execution in a stochastic environment.

Furthermore, in [95], a comparative study of MPC and Monte Carlo RL on a nonlinear

deterministic system with known uncertainty dynamics was undertaken.

More recently, [96] harnessed the merits of the MPC and RL control strategies to form

an adaptive controller for a heat pump thermostat. The adaptive controller maximised energy

savings while tracking a varying temperature set-point for thermal comfort.

In [86] a novel Markov decision process algorithm simulated in SIMULINK with a

MATLAB MDP toolbox is presented to solve prioritised dis/charging problem in a HESS

with two energy storages (ESs); a 22Kwh Lead Acid (LA) and 20Kwh Vanadium (VR)

battery system coupled with a PV. The HESS installed in a residential home in Wolfenbüttel,

Germany, serves the electrical load demand of four occupants with one 16KWh fast charging

(Lithium-ion battery) Peugeot electric vehicle. The domestic load demand model for North-

Westt Germany is used in the absence of a test case Load demand profile with the assumption

that the EV’s LI BAT is charged at home and resulting demand aggregated to the annual

load demand. The states of charge of the ESs and net power flow were discretised and
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normalised within a range of 0 - 1 accordingly. Thereafter, combined to form a tuple which

defines the model state space in the MDP for which only one discrete action space (defined

overcharge/discharge or null of the ESs) can be selected at any time interval. Then, a reward

is awarded based on the next transitioned state where-in LA depth of discharge is 50%, and

the VR is maintained between 33% - 74% of the nominal capacity.

In [97], the authors proposed a real-time energy management algorithm to optimise perfor-

mance and energy efficiency with power split control for a hybrid (battery and ultra-capacitor)

tracked vehicle for various road driving conditions. A speedy Q-Learning algorithm is used

to accelerate the convergence of a multiple transition probability matrix, which is also up-

dated whenever the error norm exceeds a set criterion. The proposed method, which was

compared to a stochastic dynamic programming approach and a conventional RL using two

driving cycles, had an improved fuel economy. More recently, in [98], a Dyna-H RL was

proposed for real-time optimisation of fuel consumption in a PHEV. The agent was used

to optimally control four traction configuration modes enabled using two clutch state and

a braking state. Furthermore, energy management methods for hybrid electric vehicles are

largely optimisation based; hence, requiring explicit knowledge of the system.

Furthermore, the authors in [99] proposed a real-time based RL power management

for plug-in hybrid electric vehicle aimed at optimally distributing power between a battery

and an ultra-capacitor. The results validated using different driving conditions and vehicle

parameters showed the RL based approach reduced total energy loss by 16.8% compared to

a rule-based strategy. The authors in [100] proposed for the first time applied reinforcement

learning technique to minimise the fuel consumption of a hybrid electric vehicle. The

formulation required only a partial model of the system without the need for an explicit

model or TPM.
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The application of RL based energy management for HESS has mostly been considered

in literature with respect to hybrid Electric vehicle while only a few have considered hybrid

MG.

In [101] deep RL EMS which uses a convolution neural net to extract relevant time-

series information, from a large continuous non-handcrafted feature space, is proposed to

address stochastic electricity production in residential microgrids. The neural net is validated

periodically during training on historical features of observation to reduce overfitting and

positive bias. The levelized energy cost economic criterion concerning maximising operation

revenue is used to evaluate the performance of the algorithm.

In [102] an EMS based on a cooperative multi-agent strategy, where the different learning

agents ranged from simple to complex learning agents cooperatively monitor and optimally

control the assets (such as RES, ES) pertaining to integrated homes/buildings and MGs. In

[103] the authors propose an EMS which applies a decentralised cooperative multi-agents

enabled Fuzzy Q-learning to a standalone microgrid. The formulation of the continuous

input states entails the use of five membership functions and the action space comprising a

fuzzy set pertaining to each microgrid asset, with two fuzzy sets which in conjunction with a

reward formulation which shapes the agent’s continuous action policy.

In [104], a 2 steps-ahead RL EM strategy was proposed for a grid-connected RES

microgrid with ES and consumer load. The RL utilising a 2 steps-ahead prediction of

available wind power via a MCM, enables the learning agent to optimally utilise the WTS,

independent of the grid to charge ES and on the other hand, maximise the use of the ES the

during peak demands, thus solving a multi-criteria decision process. Therefore, stochastic

scenarios which are learnt are used by an intelligent consumer to facilitate experience-based

optimal control actions.

In [105] multi-agent based RL was applied for optimal control of a micro-grid associated

with randomness while minimising the average electricity cost outsourced from an external
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grid. In [106], a comprehensive review undertaken by the authors, underscores the importance

of RL as a viable solution for many decision and control problems spanning across electric

power systems. Furthermore, control system techniques for power systems application which

are largely developed based on advances in certain fields; applied mathematics, control

theory, telecommunication, computer science and operational research, have continued to

evolve to meet dynamical challenges and requirements especially with the availability of

more powerful computationally efficient resources. Therefore, learning algorithms such

as RL which enables controllers to learn a goal-oriented task should be embedded in the

control architecture to ensure controllers can learn and update their decision making based

on experience[106].

2.2.6 Conclusion

Although, optimally sizing a MG is crucial to reliability, the importance of decision making

with regards to optimal distribution and control of energy and elements of HESS can not

be over emphasised. While there are a lot of studies on sizing of MG, there is equally an

active interest in the area of EM by researchers. Recent studies on EMS have focused mostly

on forecast/ historical and heuristic logic based EMS using A.I and optimisation. These

approaches are not only computationally intensive but also largely heuristic thus they can

limit potential options as well as omit satisfactory yet intermediate solutions which may

improve the HESS performance, as illustrated in [17]. Power Pinch analysis [43, 42] which

can can reduce the computational burden of optimisation strategies has been proposed as a

graphical EM tool and was recently been used for EM of HESS. However, the PoPA was

realised using a DA approach which did not consider the effect of uncertainty. Furthermore,

However, the use of robust optimisation method which considers uncertainty is considered

as a pessimistic approach. Therefore, the consequence of over budgeting resources can result

in wastage and become an issue in real world application [107]. Furthermore, stochastic
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and chance constrained based optimisation which were applied in [38, 39] and [108, 109]

[33e35] respectively for EM of MGs were found to be computationally cumbersome and

also intractable. Hence, an alternative has been the use of approximate solutions which

extensively depend on the accuracy of probabilistic distribution or explicit modelling of the

underlying uncertainty in parameters, can be practically limiting in real-world applications

as the distribution might be unavailable [110, 111].

Interestingly, an intelligent agent based algorithm, RL which has the capability to learn a

MDP has been exploited mostly in literature with respect to hybrid Electric vehicle while

only a few have considered MGs. Nevertheless, the RL has often been used in conjunction

with computationally cumbersome optimisation strategies. Therefore, this thesis proposes a

reinforcement learning based adaptive power pinch analysis energy management strategy in

order to integrate the advantages of the methods while limiting their short comings. The RL

approach in this thesis excludes the use/build-up and as well as update of a markov chain to

model a stochastic transition matrix (TPM) in contrast with [97, 112, 99].

Typically, the application of the RL to optimise fuel consumption in hybrid electric

vehicle (HEV) has been with the use of prior drive sequence and a partial HEV model.

However, this thesis proposes a RL formulation which requires only the (corrected) adaptive

Pinch analysis target, in order to strictly appraise the environment state and scalar reward

which the RL agent should obtain only after an action has been successfully undertaken in a

given state.

Furthermore, step wise non-linear optimisation often used to derive the optimal control

strategy in[97] and a backward-looking optimisation in [100] will be replaced with a heuristic

graphical based adaptive power pinch analysis MPC framework, which will be proposed in

this work. Thus, the computational cost associated ensuring from building a TPM offline

as well as solving a complex non-convex optimisation EMS for HESS (particularly with
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heterogeneous energy and flow mix as in our case, where we have to deal with the intrinsic

interaction of power, hydrogen, and water flow between sub-systems) will be avoided.

Most importantly, the evaluation and formulation of a scalar reward for the performance

of the RL agent in the aforementioned RL papers excluding [99] have been based on a

backward-looking optimisation, which has been implemented subjectively and without

recourse to a systematic approach which determines the ideal optimal action strategy as in

the use of a corrected adaptive PoPA. Hence, these rewards are based on a local maximisation

which increases the operational cost and incurred excess energy losses in contrast with a

global maximum insight which the corrected adaptive PoPA offers

2.3 Modelling of Hybrid Energy Storage Systems as a Graph

The configuration of the hybrid energy storage microgrid (MG) system typically comprises a

BAT as the primary ES, PV, FC, EL, water tank (WT), HT, DSL and LD [8, 17, 44]. The

mathematical modelling of each sub-component is as follows:

2.3.1 PV modelling

In [9] the model of the instantaneous PV output power (PPV ), is expressed mathematically

as a product of the sum of diffused and direct solar radiation incident on the surface area

of PV solar panel (m2)(APV ), packing (Pf ), total solar radiation (IT ) and converter systems

efficiency (ηCV ) and PV efficiency (ηPV ) factor as follows:

PPV (k) = IT ×APV ×Pf ×ηCV ×ηPV (2.8)
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2.3.2 Battery modelling

Currently, BATs such as the lead-acid, Ni-MH, Ni-Cd, and Li-ion [113] are being utilised

in MG. In [114, 115] BAT is modelled using the state of charge concept, which depicts the

remaining capacity or available energy in the battery at any point in time. The state of charge

is expressed mathematically as follows with consideration for both charging and discharging

dynamics;

SOAccBAT (k+1) = SOAccBAT (k)± (IBAT (k)∗∆k ∗ηch)/CBAT ) (2.9)

Where,

ηch is battery’s efficiency (discharging and charging)

IBAT (k) is the battery’s current

SOAccBAT is the battery’s state of charge

According to [114] modelling the SOAcc of a battery is a fundamental issue, as the

SOAcc is used as an essential parameter for both battery life elongation and control in an

optimal EMS framework. Typically in practice, the minimum SOAcc is limited to 30%

for Li-ion battery. Several existing battery models, including the Sheppard, Unnewehr

universal, Nernst, Linear and Resistor-capacitor models were also compared using the 1A

pulse discharge test in order to predict voltage and SOAccBAT . The RC model had the best

prediction error. Also, [116] combined the coulomb counting and unscented Kalman filter

KL techniques, which had prediction error of less than 10% for online SOAccBAT estimation

to serve as input to the battery management system targeting increased battery lifetime. It

is important to note that an accurate battery model is nonexistent due to the difficulty and

complexity in modelling the chemical reaction dynamics of a battery. Hence, in practice, an

inaccurate SOAccBAT estimation still abounds. Commonly used ES technologies are briefly

reviewed in A.
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2.3.3 PEM Electrolyser and Fuel cell modelling

By applying electrical direct current (DC) between the anode and cathode electrodes of a

PEM EL which are separated by an aqueous electrolyte, the splitting water into hydrogen

and oxygen molecules occurs, and consequently hydrogen is produced.

The modelling of the PEM EL such that the H2 production which corresponds to the

transformation of excess energy resulting from a generating source (like a PV) is calculated

based on faraday’s Law in 2.10 as follows [27]:

H2 = ncEL ∗3600∗nF ∗ IEL/(ne∗F) in mols/hr (2.10)

Where, IEL has been derived from experimental data shown in Figure 2.5, which has

been validated in previous study [27]. The experimental data is expressed as a quadratic

polynomial function as shown in equation 2.11, wherein the power (W) equivalent, which is

to be converted to H2 by the EL is the dependent variable.

IEL =−1.4e−06x2 +0.028x+2.5 (2.11)

Similarly, hydrogen consumption is simply determined as a function of the equivalent

power transformed by a FC required to charge the BAT.

IFC = 9e−07x2 +0.033x−0.28 (2.12)

2.4 Diesel Generator for Back-up

To ensure sustained reliability of the PV-Battery Microgrid due to intermittent insolation, a

diesel generator plant usually utilised as a backup power supply to satisfy unmet load demand
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Fig. 2.5 PEM EL and FC response

in the event of failure [3, 7, 117] with a recommended power capacity to sustain the load

demand for at least an hour.





Chapter 3

Background of Study

3.1 Graph based Interconnection of HESS

The interconnection of the components in the HESS is such that the flow of energy is

modelled based on the state of the energy storages employed using the net energy and graph

theory concept [80].

The energy storage elements l and the energy transformation assets which form the

‘nodes’ and are categorised as resources Rs, grouped into a subset of energy storages l ∈

{BAT, WT, HT} and energy transformation assets Etr ∈ {PV, DSL, EL, FC, LD} respectively.

The connection between the two nodes either results in the flow of electrical energy (such

as BAT→ [EL, LD] or BAT← FC, BAT← [PV, DSL]) or material (HT←EL or HT→FC).

Where the arrow pointing towards the right denotes energy transferred from the BAT to the

LD and/or transformed into H2 by an EL. Consequently, an arrow pointing towards the left

likewise indicates energy transferred into the BAT from the PV, FC or DSL.

Furthermore the flow of energy or material Fl↔Etr into and or out of an energy storage or

node, as indicated by the bi-directional arrow↔ termed an ‘edge’, to an adjacent node(s) is

a set of j ∈ {POW,H2,H2O}, where POW is electrical power, hydrogen is H2 and water is

H2O.
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The state of energy or energy carrier SOAccl(k) in a storage unit l of capacity Cl at time

step k, depends concurrently, on both the previous state of the storage unit SOAccl(k−1)

i.e at time step k-1 and the net-flow of energy F
j
l↔Etr

(k). Furthermore, we shall define

two subsets Xl ,Yl of the energy transformation assets Etr with respect to a storage unit l.

Where, Xl comprises nodes requesting or consuming energy from l and Yl consists of nodes

supplying energy or material to l. For instance, if the flow of energy in and out of the Battery

is considered, then the subsets are defined as follows: XBAT {PV , DSL, FC} and YBAT {EL,

LD}.

The state of energy in the energy storage, at any instance in time is a function of the net

energy flow across the energy storage as consequence of the energy producing and consuming

assets and the initial energy state of the storage as follows:

SOAccm,n
l (k) = SOAccl(k−1)+( ∑

Xl∈Etr

F
j
l←Etr

(k)− ∑
Yl∈Etr

F
j
l→Etr

(k))∆k ∗C−1
l (3.1)

∆k = 1 (3.2)

Where,

∆k is the hourly time interval

F
j
l↔i = εi(k)∗δQ

j
i (k), i ∈ {Xl,Yl} (3.3)

Where,

εi(k) is a binary state of the adjacent node is used for varying the magnitude of

energy or material δQ
j
i (k) converted by the ith dispatchable unit. In addition,

the existence of an edge, represented by the binary variable εi(k) i ∈ {0−1} is
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inferred from the state of the storages SOAccl ∈ {0,100%} and subscript l refers

to storage system. And m,n superscripts refer to the actual and estimated value

of the SOAccl .

In [17, 44] the logic state εi of the converter attaining a binary variable [0, 1] depends

simultaneously on a combination of three sub-logic operations; availability of resources by

a node ε
Req
i (k), request or demand for resources by a node εAvl

i (k) and an override logic

εGen
i (k). The HESS propositions are shown in Appendix B and the logic state of the converter

is expressed as follows:

εi(k) = L(εAvl
i (k),εReq

i (k),εGen
i (k)) (3.4)

Where,

L is logic function and the sub-conditional variables for satisfying the conditional

logic state εi(k) of the dispatchable ith unit are expressed mathematically as

follows:

ε
Avl
i (k) = LAvl

l∈Etr
(VSOAccl

i ) (3.5)

ε
Avl
i (k) = L

Req
l∈Etr

(qSOAccl
i ) (3.6)

ε
Avl
i (k) = LGen

l∈Etr
(ρSOAccl

Uc
) (3.7)

Where,

Vi and qi represents energy availability and request respectively determined

based on some operational limits conditioned on the SOAccl . While ρUc denotes
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an override action imposed on equations 3.5 and 3.6 and the subscript Uc ⊆

i∈{FC,EL} denotes the dispatch-able assets used to realize the EMS obtained

from PoPA.

3.2 Power Pinch Analysis Energy Management Strategy

3.2.1 Generic illustration

The fundamentals of the PoPA concept, as applied to the HESS shown in Figure 1.2 for energy

management PoPA via a graphical tool called the ‘Power grand composite curve’ (PGCC)

are illustrated in Figures 3.1, 3.2, 3.3, 3.4 and 3.5 . The PGCC is simply an integration of the

energy demand and supply dynamics pertaining to a particular storage, with respect to time

as shown in Figure 3.1 (black dotted line).

The PoPA, implemented via a graphical tool called the PGCC for energy management

is illustrated for the islanded HESS shown in Figure 1.2 which was presented in Chapter

1. The PGCC as shown in Figure 3.1 (black dotted line), is basically an integration of the

energy generation and uncontrolled energy demands in the system as a function of time The

PGCC is analogous to the grand composite curve (GCC) in heat exchanger networks (HEN)

which is a plot of the integrated heat transferred between hot streams (sources) and cold

streams (demand) as a function of temperature (quality) [43]. In general, the principles of

pinch analysis are known to be well suited for source-sink problems with generalised flow

parameters and quality attributes.

Therefore, in considering the operation of the HESS for a year (8760h), the energy

management strategy realised with the PGCC is derived in prediction horizon using a DA

strategy, after that, it is effected on the HESS in a control horizon.

The predictive and control horizon both consist of hourly intervals with an equal duration

which spans 24h ∈ [k : N]



3.2 Power Pinch Analysis Energy Management Strategy 49

              k-2     k-1     k      k+1     k+2         k+kmin         k+10         k+11      k+kmax         N-1        N        
                                                                           Hour

                                                             
          

SO
A

cc
(%

)

100
SMax
    
SUp

SLo

SMin

 

Present
Past Prediction  Horizon  N

MEES

MOES

AEEND

 Original PGCC (Forecast)

0

 PGCC (Actual)

Fig. 3.1 Original PGCC

Where k is the ith hour in a day and N denotes the end of the day (or 24th h ). The

hourly interval ∆k, is defined as the time difference between two successive periods; ∆k =

[(k+1)− k] where, k and k+1 indicates the present and next time step respectively. The

interval between the present time step k and the terminal horizon N is given as [N− k]/∆k,

hence the full length of horizon would span for 23 intervals, if k is counted from the first

hour, 01:00h and N = (k+23) is the 24:00h of the day.

In the prediction horizon, when the HESS is at a specific instant k, the PGCC is predicted

as presented in Figure 3.1 with the assumption that the controllable assets are deactivated.

Where the PGCC violates operational limit(s), at least a time instance before the instance of

violation, an appropriate controlled asset is be activated in a control horizon of interval 24h

∈ [k : N] in order to supply/consume the required energy/material and consequently prevent

the violation from occurring.
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3.2.2 Case Study

In the HESS [17] shown in Figure 1.2, the stored electrical energy (i.e. state of charge, SOAcc)

is considered as the specific parameter requiring control within predefined operational limits

by the EMS. Therefore, in the prediction horizon using a DA strategy, an EMS is derived and

consequently implemented on the HESS in a control horizon. The SOAcc is plotted (dotted

black line in Figure 3.1) at an hourly time step k for a 24h duration in a prediction horizon,

as defined previously in section 3.2.1.

The PoPA enables the identification of deficit and excess energy targets, which must be

successively met, in order to prevent the SOAcc in the control horizon from falling below

the lower pinch utility (or limit) SLo (say 30%) and/or rising above the upper pinch utility

SU p (say 90%). The PoPA via the PGCC graphical tool, enables the identification of deficit

and excess energy targets which must be sequentially matched in order to avoid the SOAcc

from falling below the lower utility or limit, SLo (30%) and/or rising above the upper utility

or limit SU p (90%).

Firstly, the PoPA EMS identifies the energy deficit target from the minimum SOAcc,

indicated as Smin. In this case study, the energy deficit results from insufficient energy supply

from generation assets like PV. The energy deficit target is, therefore, the exact amount of

energy supply necessary to ensure that SOAcc avoids the violation of the SLo at time k+kmin.

Thus, the PGCC designates the minimum amount of outsourced electricity supply (MOES)

by which to shift the PGCC in order to avoid the use of a non-renewables (such as DSL)

which may perhaps be activated after the SLo has occurred. Hence, a dispatchable asset (such

as FC) indicted by a red arrow pointing upward at time k, shown in Figure 3.2 supplies the

MOES needed to shift the PGCC above SLo.

Secondly, the PoPA EMS identifies the amount of energy denoted as the minimum excess

energy for storage (MEES) that needs to be dumped in order to avoid the violation of the SUP

(90%) limit at the time, k+ kmax is indicated by the PGCC. Thus, the MEES is recovered
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Fig. 3.2 Shaped PGCC with respect to Lower Pinch

for storage at a time step earlier than K +Kmax i.e at time step K +10 when a dispatchable

asset (such as an EL) denoted by the red arrow pointing downwards is activated in order to

perform reshaping of the PGCC, shown in Figure 3.3.

Thirdly, to adequately preserve duty cycle of the energy storage, the available energy

for the next day (AEEND) has to be matched to the SOAcc at start of the shifted PGCC by

activating an EL.

Consequently, by shifting PGCC (black dot-dashed line in Figure 3.4) up or down such

that at the instance where the PGCC touches the SLo or SU p horizontal lines at times, k+kmin

and k+kmax is termed the Pinch point. Therefore, the complete process of shifting or shaping

PGCC as shown in Figure 3.5 resolves to a graphical PoPA EMS which determines the instant

and duration, at which the energy targeting resources are activated/deactivated in the control

horizon [8, 17, 46, 47].
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However, effectively realising the optimal PoPA EMS via Day-ahead operation requires an

accurate load and weather forecast model for an ideal PGCC plot, which is impractical due to

uncertainty. Thus, the consequence of uncertainty, ∆H due to RES variability and electricity

demand stochasticity, caused a mismatch between the actual (red line) and predicted (blue

line) SOAcc as illustrated in Figure 3.6 and consequent violation of both SU p and the duty

cycle constraint. Therefore, the utilisation of a feedback loop is arguably not only crucial

to improve the excess energy recovery and reliability indices but also to plummet fossil

emission footprint.
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Fig. 3.6 The Effects of Uncertainty respectively with the DA-PoPA

3.3 Probabilistic Forecast for Energy Uncertainty

As illustrated in 3.6, the EMS, ensures a balance between energy demand and supply, as

excess supply and undersupply of energy result in wastage and degradation of the storage

assets, respectively. Unfortunately, due to the uncertainty associated with RES and load

demand, which is often probabilistic and may exhibit daily, seasonal, and geographical

variability, forecast error may be introduced. Thus, in reality, satisfying the energy systems

constraints can become challenging to achieve using a deterministic model. Furthermore,

deterministic models are often considered with a set of deterministic input variables and upon

the occurrence of each variation, it becomes imperative to repeat the simulation process in

order to obtain a new solution [118]. Therefore, if adequate historical and statistical evidence

regarding the uncertain parameter is available, it can be leveraged using a probabilistic

approach. The probabilistic techniques have been proposed in several studies for robustness

to uncertainty in power systems. According to [119, 120] the probabilistic methods for

dealing with power flow uncertainty can be classed under the following; Monte Carlo
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simulation, analytical (such as Fourier transform and Cumulant) and approximate (such as

point estimation, first and second-order moments) techniques.

More specifically, the Monte Carlo simulation uses repetitive sampling of random input

parameters to statistically parameterise the uncertainty associated with a dependent variable

via a probability distribution. The Monte Carlo integration is expressed mathematically in

equation 3.8 as follows [121, 122];

I =
∫ b

a
f (x)dx. (3.8)

Where, I is the integral of a function with input random variable x.

Furthermore, a good approximate estimation of I can be obtained such that by repeating

the simulation in consonance with the theory of large numbers, the expectation E{ f (X)} of

the random variable f (x) in equation 3.9 as follows;

E{g(X)}= 1/n
n

∑
j=1

g(x) f (x j) (3.9)

Where X is the value of a stochastic variable drawn from a normal distribution f (x j) such

that X ∈ R are independent and identically uniformly distributed i.i.d and g(x) is a function.

The Monte Carlo simulation (MCS) provided probabilistic insight and was used to negate

uncertainty in RES sizing [45] , energy reserve planning [123] and peak load shaving [124]. It

has also been used for economic risk analysis in power systems in [125]. Furthermore, Monte

Carlo simulation is favourable for low capacity planning in low voltage grid to which the

simultaneity factor often employed in high-medium reserve planning becomes less accurate.

In [126] a stochastic optimisation incorporated the joint chance constraint and Monte Carlo

simulation in order to assess several levels of risk aversion on energy procurement from an

energy market with fluctuating prices at a minimum cost while meeting the energy demand

at a high probability level. In [127], a probabilistic economic dispatch tool in an energy
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management framework was proposed for support sizing, planning, analyses, and dynamic

operation of dispatchable resources. This focused particularly on battery storage, generators

and interlinking Converters in an AC/DC standalone hybrid MG, in order to cope with

fluctuating energy demands at minimum cost. In [128], an NP-hard robust optimisation

was recast as a randomised algorithm for probabilistic energy management strategy of a

commercial electrical vehicle (EV) charging station was proposed. The objective was to

ensure safety and sustainable operation of the power grid by means of combining a real-

time randomised EV occupancy scenarios and an upper bound day–ahead forecast of the

EV’s power consumption profile while assuring the quality of service is within a predefined

probability index.

Furthermore, in [120] a probabilistic power flow model based on an extended point

estimation method with an equivalent performance of a Monte Carlo simulation but with

reduced computational cost was presented The proposed method which considered the

spatial correlation dependencies between consumer load and intermittent energy sources was

validated on the IEEE 24 and 118 bus systems and shown to offer significant improvement

to generic point estimation method. A probabilistic framework based on the two-points

estimation (2-PEM) method was modified to consider [129] uncertain correlated parameters

in hybrid renewable energy systems. The authors’ findings highlighted the importance of

considering the correlation of uncertain input variables in a probabilistic model framework

most notably when such variables are concerted and influence the power flow in the system.

In [130] a probabilistic optimisation problem was presented for home energy management

of a renewable-based residential energy hub. This included; plug-in hybrid electric vehicle,

combined heat and power and a heat storage unit, involving two-point estimation, 2-PEM

method to model the uncertainty of a RES. The 2-PEM was acclaimed to have a favourable

performance which can match the Monte Carlo simulation, yet, without the burden of

computational complexity. In [131], a probabilistic approach to uncertainty using a quantile
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long and short term memory Q-LSTM deep learning neural network (NN) was proposed

for an interval estimation based on short term residential load forecasting. In the forecast

approach, the singular loads were considered as an aggregate rather than separately in order

to avoid the problem of non-stationarity. Furthermore, the method was shown to outperform

the quantile fully connected Q-FCNN and an FCNN trained on an historical-error distribution

in terms of an average quantile performance index.





Chapter 4

Adaptive Power Pinch Analysis

OUTLINE

This chapter is based on published work in ISCAS, IEEE and an unpublished manuscript

currently under review in Energy, Elsevier. A graphical energy management strategy

based on an adaptive shaping of the power grand composite curve (PGCC) is exploited

within a receding horizon model predictive framework, for robustness to forecast uncer-

tainty in islanded HESS. Although, the Adaptive PoPA utilised a close-loop feedback

error mechanism, the effects of impending un-modelled uncertainty are not adequately

considered due to a reactive approach to uncertainty. Therefore, the Kalman filter

which is the optimal estimator for normally distributed uncertainty, has been combined

with the adaptive PoPA in order to incorporate the effect of uncertainty when predicting

the state of charge of the energy storage.

4.1 Adaptive Power Pinch for Energy Management

The effects of uncertainty in renewable energy sources and electricity demand, which conse-

quently introduces forecast error resulting in a sequence of inadequate EMS derived from a

DA-PoPA operation have been highlighted in 3. Therefore, in this Chapter, the DA-PoPA
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is modified to create an Adaptive PoPA which is implemented in a receding horizon MPC

framework. In a prediction horizon which spans 24 h with an hourly interval ∆k beginning

at time step k, as defined in Chapter 2, the dispatchable control variable Uc (k) is derived

contingent on the PoPA targets. Consequently, Uc(k) derived in the prediction horizon is

activated in the control horizon at each time interval k. In addition, the EMS which controls

the SOAcc as a consequence of the minimum energy recovery targeting JPinch, is realised in

accordance with the Adaptive PoPA as follows:

Sl
Lo ≤ SOAccm

l (k)≤ Sl
U p (4.1)

SOAccn
l (k1)∼= SOAccm

l (N) (4.2)

εFC(k)+ εEL(k)≤ 1 (4.3)

where, k1 is the first hour , εGen
i (k) is an overide binary variable of the dispatchable

asset’s state, i ∈ [FC, EL], Uc(k) represents the PoPA EMS control variable and subscript

c ∈ {FC,EL} indicates the dispatchable asset. While, superscripts m,n in SOAccm,n
l refer to

the predicted and real SOAcc respectively and subscript l ∈ {BAT,HT,WT} indicates the

energy storage of note.

The constraints imposed by equation 4.1 ensures the pinch operating limits are not

violated. The duty cycle of the energy storage is preserved by the terminal constraint 4.2

to infer the available energy at the end of the prediction horizon N (AEEND). The binary

variable constraint 4.3 prevents the simultaneous dispatch of assets that concurrently consume

and produce the same energy carrier (e.g. FC and EL).

The following explanation is for one asset, the BAT, but is relevant to all asset types. At

every time step k, the proposed algorithm compares the forecast and real SOAccn
BAT (k) for
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inconsistency or forecast deviation via a state feedback close-loop [46]. As illustrated in

Figure 4.1a, ∆H exceeds ±5% at time k+2. Therefore, state correction is effected at the

next time , k+ kmin, to decrease the forecast deviation between the predicted SOAccm
BAT and

actual SOAccn
BAT . The re-computation of the PGCC (dotted black line in Figure 4.1a) which

follows reveals an anticipated violation of the SUP such that SOAccm
BAT is a maximum at time

k+11, and the AEEND. Thus, the predicted PGCC is re-shaped as shown in Figure 4.1b

(blue line) with the EL dispatched at time k+10 and N−1. The Adaptive PoPA schematics,

pseudo and MATLAB .m codes, are shown in Figure 4.2, Appendix C and Appendix D

respectively. The error e(k) and magnitude of uncertainty ∆H between the forecast and real

state of charge of the Battery are expressed in 4.4 and 4.5 respectively as follows:

e(k) = SOAccn
BAT (k)−SOAccm

BAT (k|k−1) (4.4)

∆H(k) = |e(k)| (4.5)

where, SOAccm
BAT (k|k−1) is the predicted battery state of charge at time k based on a prior

time step k-1 and SOAccn
BAT (k) is the actual battery state of charge at time step k.

Furthermore, if ∆H is greater than the deviation error threshold (ζ ) at any sampling

instance, the PoPA is repeated in the predictive horizon in order to determine the optimal

dispatch and schedule sequence from that instant up until time N. ζ (which may be varied or

decreased for a tighter bound) is set at ±5%, to ensure minimal forecast deviations as well as

to reduce any computational cost. Re-computation of the PGCC uses equations 4.6 and 4.7

as follows:

SOAccm
BAT (k) =

 f (∆H(k)) i f ∆H(k)> ζ

SOAccm
BAT (k|k−1) Otherwise

 ∀k∈[1:N] (4.6)
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Where, the function, f (∆H(k)) corrects SOAccm
BAT (k) as follows:

SOAccm
BAT (k) =

 SOAccm
BAT (k|k−1)+∆H(k) e(k)> 0

SOAccm
BAT (k|k−1)−∆H(k) e(k)< 0

 (4.7)



4.1 Adaptive Power Pinch for Energy Management 63

          k-2       k-1      k        k+1       k+2       k+kmin       k+10      k+11        k+kmax        N-1         N        
                                                                             Hour

                                                             
          

SO
A

cc
 (%

)

100
SMax
SUp

SLo

SMin

 

Present
Past Prediction  Horizon  N

MEES

AEEND

0

  𝚫H>5%

(a) State error correction

              k-2     k-1      k      k+1     k+2         k+kmin          k+10     k+11       k+kmax         N-1         N        
                                                                           Hour

                                                             
          

SO
A

cc
 (%

)

100
SMax
SUp

SLo

SMin

 

Present
Past Prediction  Horizon  N

MEES

 AEEND

0

𝚫H>5%

Activated EL, UEL (k+10|k+kmin)

Activated EL, UEL (N-1|k+kmin)

(b) Re-shaped PGCC with Adaptive PoPA

Fig. 4.1 PGCC shaping with Adaptive PoPA



64 Adaptive Power Pinch Analysis

 

Yes 

No 

No 
Yes 

 Yes 

No 

Yes 

Yes 

No 

No 

No Yes 

Initialise HESS state and parameters 

k<=8760 

L<=24 

Start=K 

Stop=24 

 

Stop – Start==23 

|𝚫𝒆| > 𝟓% 

Calculate PGCC ∈ [𝑲: 𝑺𝒕𝒐𝒑] 

Select converter 𝑼𝒌−𝟏 𝑺𝒐𝑨𝒄𝒄𝒍
𝒎 𝒌))  

L=L+1 
Smin<Lo 

  Start=Stop+1 

  Stop=stop+24 

 

Select converter to match  𝐀𝐄𝐄𝐍𝐃 

Select converter 𝑼𝑲−𝟏 𝑺𝒐𝑨𝒄𝒄𝒍
𝒎 𝑲)  

and Energy  

 

k==Stop 

Recede horizon 

k=k+1 

End 

Yes 

Smax>Up 

SoAcc(N-1)~=SoAcc(k1) 

Update model 

with System 

state for the 

next PGCC 

Computation 

No 

No 

Control MG with 

activated control 

sequence 

Fig. 4.2 Adaptive PoPA Algorithm



4.2 Kalman Filter-Adaptive PoPA 65

4.2 Kalman Filter-Adaptive PoPA

In section 4.1, the adaptive PoPA which serves as a measure to counteract uncertainty only

offers a reactive error correction strategy and does not adequately account for the effect

of un-modelled impending uncertainty. Therefore, as a consequence, the violation of the

operating limits may eventually occur, as shown in 4.1b. Therefore, to address this issue,

a one-step-ahead prediction is achieved using a Kalman filter (KF) estimator. Thus, the

Kalman filter is integrated into the Adaptive PoPA framework (Kalman+Adaptive PoPA) for

robustness. Hence, the ES’s future state SOAccm
l (k+1|k) is predicted while incorporating

the effect of uncertainty at each time interval upon the availability of the most recent state

SOAccn
l (k) measurement of the ES. However, a KF estimator aims to minimise the variance

between the real and the estimated ES’s state of charge at each time instance (k). Nevertheless,

KF is only an optimal estimator, contingent on the condition that the uncertainty is of a

normal Gaussian distribution. Hence, it is included for comparison.

Firstly, in order to integrate the Kalman filter into the Adaptive PoPA framework, the

standalone HESS is defined using a multiple-input-multiple-output discrete time state space

representation as follows;

Z :

 X(k+1) =AX(k)+BU(k) +W

Y(k) = CX(k)
(4.8)

Where,

X: the systems state ∈Rn

A : state transition matrix ∈ RnXn

B: input transition Matrix is based on state activation ∈RnXm

U: Input ∈Rm

C: is the observable matrix∈RpXn

Y: is the output state ∈Rk
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W : is the Gaussian noise ∈Rn

Z : is the HESS model dynamics

Therefore, the expansion of the MIMO HESS state space is as follows:

X(k) =


1 0 0

0 1 0

0 0 1




SOAccn
BAT (k−1)

SOAccn
HT (k−1)

SOAccn
WT (k−1)

+


εPV→BAT εBAT→EL εFC→BAT εBAT→LD εDSL→BAT 0 0

0 0 0 0 0 εBAT→EL 0

0 0 0 0 0 0 εFC→BAT

∗


FPOW
PV→BAT (k)

−FPOW
BAT→EL(k)

FPOW
FC→BAT (k)

−FPOW
BAT→LD(k)

FPOW
DSL→BAT (k)

∑(FH2
EL→HT (k)−FH2

HT→FC(k)) ∗
CBAT
CHT

∑(FH2O
FC→WT (k)−FH2O

WT→EL(k))∗
CBAT
CWT



∗ 100
CBAT

+W (k), : W (k) ∈ N(µ,σ | k) (4.9)

Y(k) =


1 0 0

0 1 0

0 0 1




SOAccn
BAT (k)

SOAccn
HT (k)

SOAccn
WT (k)

 (4.10)

Hence, in order to predict the battery’s state, a priori error covariance Pk−1 matrix with

respect to SOAccl , updates the Kalman gain KG(k) as follows:
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KG(k) = Pk−1I
T [IPk−1I

T +Rk]
−1 (4.11)

The updated Kalman gain is used to update the a priori co-variance matrix:

Pk = Pk−1[I−KG(k)I] (4.12)

Furthermore, the most recent output state measurement SOAccn
l (k) is used to update the

estimated state as follows:

SOAccm
l (k) = SOAccm

l (k|k−1)+KG(k)[SOAccn
l (k)− ISOAccm

l (k|k−1)] (4.13)

Pk+1 =APkA
T +Qk (4.14)

Where, A ∈ l x l is an identity state transition matrix of the energy storages l, I ∈ lxl is

an identity matrix, Qk is the process noise and Rk is the co-variance noise matrix related to

the uncertainty in SOAccm
l .

The formulation presented has been generalised to consider a multi-vector case of uncer-

tainty in the energy storages. Nevertheless, in this thesis, since the SOAcc of the BAT is the

only element significantly affected by uncertainty, any uncertainty in both the SOAcc of HT

and WT can be ignored.

In 4.13, the SOAccm
BAT (k)∈ [SOAccm

l (k)] is determined in order to identify the uncertainty

over successive k- steps ahead until N, by the re-computation of the PGCC. Thereafter, the

PGCC is re-shaped via PoPA minimum energy targeting as before. Thus, a sequence of

dynamic EMSs which satisfies both the PoPA SLO and SUP constraints with uncertainty

projection is realised in the prediction horizon for the optimal dispatch and scheduling of

energy resources (FC and EL) in the control horizon. The concept is illustrated in Figure
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5b, where the cyan plot indicates the PGCC re-shaped via the Kalman+Adaptive PoPA.The

violation of the SUP at time k+11, which occurred with the Adaptive PoPA EMS in Figure

4.1b, is avoided by dispatching the EL for recovery of the correct the MEES earlier than

k+10. Similarly, the procedure is repeated for the AEEND constraint. Figure 4.4 shows the

Kalman+Adaptive PoPA algorithm while the pseudo code is presented in Appendix C.
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Fig. 4.3 PGCC shaped with Kalman+Adaptive PoPA
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4.3 Results and Discussion

The performance of the graphical EMS derived based on the Adaptive, and Kalman-Adaptive

PoPA are evaluated against the DA PoPA with regards the HESS over three days (72h).

The SOAccm
l of storage elements l ∈ {BAT,HT,WT} are initialised to 70%, 80% and 30%

respectively. Prior to the investigation, the uncertainty dynamics in solar irradiance is

modelled such that, a zero-mean µ and standard deviation σ2 Gaussian noise N(0,σ2 = 20)

is added to the solar irradiance available to the HESS model. The solar irradiance which

pertains to a location in Newcastle, United Kingdom with corresponding coordinates 54.9783°

N, 1.6178° W, is obtained from National Renewable Energy Laboratory (NREL), Department

of Energy, United States of America [132]. Also, real load demand profiles for a typical

residential home pertaining to Newcastle, United Kingdom, are sourced from ELEXON

[133]. Furthermore, a stochastic hourly LD is obtained by randomly sampling the quarterly

hourly LD profiles pertaining to a typical residential home in the United Kingdom. In

addition, two sets of LD uncertainty have been considered; a non-Gaussian and Gaussian.

The non-Gaussian and Gaussian uncertainty both have the same first and second-order

moments (µ=0 and σ=280 respectively), but different higher-order moments, skewness and

kurtosis. Furthermore, the average LD, which is an unbiased estimate is used as the forecast

LD parameter in the HESS model. The performance indices in equations 4.15-4.17 used for

evaluating the EMSs, are mainly with respect to the total number of times the SLo(30%) and

SU p(90%) are violated and the DSL activated [44] as follows;

Sum of deficit =
N=8760

∑
k=1

 1 SLo > SOAccn
BAT (k)

0 Otherwise

 (4.15)

Sum of surplus =
N=8760

∑
k=1

 1 Sl
U p < SOAccn

BAT (k)

0 Otherwise

 (4.16)
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Sum of DSL activation =
N=8760

∑
k=1

 1 20% > SOAccn
BAT (k)

0 Otherwise

 (4.17)

4.3.1 DA-PoPA

As illustrated in Figures 4.5, the originally predicted PGCC reveals the SOAccm
BAT would dip

successively below SLO due to impending energy deficit within the first 72 h if electricity

is not outsourced in advance. Thus the PGCC is shaped accordingly by activating the FC

four times, as shown in Figure 4.6. The activation of the FC consequently causes a 0.1%

decrease of H2 in the HT and 0.07% increase of H2O in the WT, as indicated in Figure 4.7.

Nevertheless, the PGCC continuously violates SLo 14 times which consequently led to the

activation of the DSL twice successively due to uncertainty as indicated by the error plot as

shown in Figure 4.5, regardless of hydrogen availability as shown in Figure 4.7.
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Fig. 4.6 Converter Logic for 72h with DA-PoPA
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Fig. 4.7 HT and WT response for 72h with DA-PoPA

4.3.2 Adaptive PoPA

The incurred energy deficit, which was contingent on the forecast error deviation exhibited

by the DA-PoPA, is reduced by the dynamic shaping of the PGCC within a receding control

horizon, as shown in Figure 4.8a. Figure 4.8b illustrates the state error correction at the

inception of the 11:00 h after ∆H became greater than 5% at 10:00 h. However, the SOAccn
BAT

dipped at the 33rd , 34th, 47th, 57th, 58th, 70th, and 71st h, without activating the DSL.

Furthermore, despite the activation of the FC six times, as shown in Figure 4.9 after the

occurrence of the unexpected dip, a further violation of SLo re-occurred. This was because

the MOES delivered by the FC was less than required, due to deficit energy target variability.
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The successive dips underscore the need for a preventive approach since the reactive approach

responds only after a forecast error has occurred.
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Fig. 4.10 HT and WT response for 72h with Adaptive PoPA

4.3.3 Kalman-Adaptive PoPA

The Kalman + Adaptive approach under a non-Gaussian uncertainty case study, resulted in

the PGCC violating SLO 7 times at time 49:00 - 56:00 h and at time 64:00 - 70:00 h, as shown

in Figure 4.11. Consequently, the FC was activated 20 times in response to uncertainty with

the DSL never activated, as shown in Figure 4.12. The Kalman+Adaptive PGCC closely

matched the actual state of the plant as shown in Figure 4.11, with the uncertainty adequately

propagated within the first 72h, hence, the performance was better than using the Adaptive

PoPA alone. However, the uncertainty (previously unknown until now, but expected to

be a normal Gaussian distribution) was essentially non-Gaussian (bimodal). Thus, further
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investigation, as illustrated in Figures 4.14a and 4.14b shows that the Kalman+Adaptive

PoPA performs better as the forecast error is reduced when the uncertainty is normally

distributed. Hence, a more sophisticated approach when the uncertainty is unknown should

suffice. Furthermore, Figure 4.12 shows the converter logic, while Figure 4.13 shows the

corresponding effect on the SOAccHT and SOAccWT as a result of the FC being activated.

At the end of the 72ndh, the SOAccHT decreased by 0.7% with a corresponding increase of

0.25% recorded in the WT.
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Fig. 4.11 PGCC shaping and BAT response for 72h under non-Gaussian uncertainty
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Fig. 4.12 Kalman-Adaptive PoPA Converter Logic for 72h under non-Gaussian uncertainty
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uncertainty



82 Adaptive Power Pinch Analysis

0 10 20 30 40 50 60 70 80
0

50

100

SO
A

cc
B

A
T

 (
%

) Original PGCC
Lower utility
Upper utility

0 10 20 30 40 50 60 70 80
0

50

100

SO
A

cc
B

A
T

 (
%

) Shaped PGCC
Lower utility
Upper utility

0 10 20 30 40 50 60 70 80
20

40

60

80

100

SO
A

cc
B

A
T

 (
%

)

Actual PGCC
Lower utility
Upper utility

0 10 20 30 40 50 60 70 80
Time (Hours)

-20

0

20

E
rr

or

(a) PGCC shaping and BAT response under Gaussian uncertainty

0 10 20 30 40 50 60 70
Time (Hours)

20

30

40

50

60

70

80

90

100

SO
Ac

c BA
T (%

)

Non-Gaussian (Bimodal)
Lower Pinch
Upper Pinch
Gaussian

(b) Comparison of the real SOAcc response under both Gaussian and Non-Gaussian uncertainty

Fig. 4.14 PGCC shaping and BAT response with Kalman Adaptive PoPA under Gaussian
uncertainty



4.3 Results and Discussion 83

0 10 20 30 40 50 60 70 80
Time (Hours)

0

1
L

og
ic

FC

EL

DSL

Fig. 4.15 Kalman-Adaptive PoPA Converter Logic for 72h
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Fig. 4.16 HT and WT response for 72h with Kalman-Adaptive PoPA under non-Gaussian
uncertainty

The DA had a negligible better computational time of 0.59s and 0.58s for both non-

Gaussian and Gaussian uncertainty than the Adaptive which had 0.67s and 0.65s respectively.

The Kalman+Adaptive computational time was the highest with the performance at 0.67s

and 0.65s under non-Gaussian and Gaussian uncertainty as shown in Tables 4.1-4.2. The

computational time for the DA, Adaptive and Kalman+Adaptive PoPA had a negligible

increase under non-Gaussian uncertainty. The violation of SLo as indicated in Table 4.1-4.2

showed Kalman Adaptive PoPA had the most significant improvement from 7 to 0 SLo

violations, though none for the SU p under Gaussian uncertainty and non-Gaussian case
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respectively. The Adaptive PoPA had an improvement when the uncertainty was Gaussian,

with only a negligible change of 1, in the DA-PoPA’s performance.

Table 4.1 Summary of the performance indices of the DA, Adaptive, Kalman+Adaptive PoPA
for 72h under non-Gaussian uncertainty

Performance index
Non-Gaussian uncertainty

DA-PoPA Adaptive
PoPA

Kalman+Adaptive
PoPA

Lower Pinch
violation 14 7 7

Upper Pinch
Violation 0 0 0

DSL Activation 2 0 0
Computation Time (s) 0.59 0.67 1.33

Table 4.2 Summary of the performance indices of the DA, Adaptive, Kalman+Adaptive PoPA
for 72h under Gaussian uncertainty

Performance index
Gaussian uncertainty

DA-PoPA Adaptive
PoPA

Kalman+Adaptive
PoPA

Lower Pinch
violation 13 3 PoPA

Upper Pinch
Violation 0 0 0

DSL Activation 0 0 0
Computation Time (s) 0.58 0.65 1.26

4.4 Summary

The Adaptive PoPA and Kalman-Adaptive PoPA have been in evaluation against the DA-

PoPA, with the violation of the SLo, SU p and DSL activation used as the main performance

indices. In the 72h investigation, the DA-PoPA which utilised a DA forecast without

consideration for uncertainty had the worst overall performance. The investigation entailed

two cases of non-Gaussian (Bi-modal) and Gaussian uncertainty. The DA-PoPA was shown
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to have the highest number of the SLo violations due to reliance on a DA strategy, which lacks

a feedback error mechanism necessary to counteract the impacts of uncertainty. Nevertheless,

the Adaptive PoPA which was proposed showed robustness to uncertainty. However, the

Adaptive PoPA was shown to suffer from the effects of un-anticipated uncertainty, which

led to 7 SLo violations. The Kalman-Adaptive PoPA, which used a Kalman filter to project

the uncertainty, given the likelihood of deviation, enhanced the performance of the Adaptive

PoPA. However, this enhanced performance was only evident under a Gaussian uncertainty

case study.



Chapter 5

Probabilistic Adaptive Power Pinch

Analysis

OUTLINE

This chapter is based on a published work, “Probabilistic adaptive power Pinch Anal-

ysis for energy management” [47] in The Journal of Engineering, IET. The approach

is facilitated by harnessing stochastic information such as the joint probability den-

sity function of the historical consumer load demand profile and renewable sources

variability. In contrast to the previous deterministic approach presented in Chapter 4,

the probabilistic adaptive Power Pinch Analysis is formulated within a least-square

recursive Monte Carlo chance-constraint model predictive framework. However, the

approach necessitates a trade-off between computational complexity and robustness

with regards to leveraging uncertainty information from historical data.

5.1 Introduction

As illustrated in Chapter 4, the EMS based on an Adaptive PoPA identified and matched

energy demand, and excessive energy supply is conservatively based on a deterministic
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model approach. Unfortunately, due to the uncertainty associated with RES and load demand,

which is often probabilistic and may exhibit daily, seasonal, and geographical variability,

forecast error may be introduced. Thus, in reality, satisfying the energy systems constraints

using a deterministic model may not easily be achieved. Furthermore, deterministic models

are often considered with a set of deterministic input variables and upon the occurrence of

each variation, and more often than necessary, it becomes imperative to repeat the simulation

process in order to obtain a new solution or analysis [118]. Therefore, from a practical

perspective, where adequate historical and statistical evidence regarding the uncertain pa-

rameters is available, it can be leveraged using a probabilistic approach. Hence, the adaptive

PoPA [46] presented in Chapter 4, is recast in a probabilistic framework [47] in the present

Chapter. Two PGCC’s which represents a probabilistic chance-constrained bound on the

certainty of the SOAcc are simultaneously obtained from Monte Carlo simulation (MCS)

by analysis of stochastic or random scenarios in order to proffer enhanced robustness to

uncertainty. Furthermore, in order to enhance the EMS, a recursive correction factor which

is determined based on least-squares error approach via the residual error between the actual

and predicted SOAcc is used to update the prediction SOAcc. The chance constraint sizing

approach presented in [45], in order to determine the minimum solar panel array area in the

PoPA framework, primarily targeted reliability of the deterministic load demand being met

as well as the battery being charged. Furthermore, energy management of BAT in the event

that the battery becomes fully charged and the utilisation of the excess energy were not dis-

cussed. Thus, inspired by the of the works of [44, 45] an adaptation is presented by defining

the adaptive energy management algorithm in a recursive least square probabilistic MCS

chance-constrained framework. Furthermore, the excess energy in the system, represented by

overcharging the BAT (SOAccn
BAT >90%) and energy recovered as well as over-discharging

the BAT (SOAccn
BAT <30%) is considered in the chance constraints evaluated with the MCS.

The MCS sampling is performed iteratively in the prediction horizon to determine the chance
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of the PGCC, violating the HESS operational constraints. The pinch set limits, as well as the

AEEND constraints, are expressed probabilistically using the chance constraint. Therefore,

two PGCCs forms an upper and a lower closed bound within which the uncertainty is defined.

Consequently, the EMS which infers the optimal control sequence to keep the system within

the desired operating limits is effected in advance at the beginning of the receding control

horizon, while incorporating robustness to uncertainty [46].

5.2 Probabilistic Adaptive PoPA Formalization

Firstly, the deterministic PGCC computed in the predictive horizon [46] as described in

Chapter 4, is expressed in an adaptive receding horizon model predictive framework, with

state error correction as follows;

SOAccm
l (k) = min

Uc

N

∑
k=1

[
SOAccm

l (k−1)+

(
∑

Xl∈Etr

F
j
l←Xl

(k)− ∑
Yl∈Etr

F
j
l→Yl

(k)

)
∗ ∆k

Cl

]
(5.1)

Let the vector mSOAccm
l contain elements of corresponding time series state of charge of the

storages SOAccm
l (k) as follows:

mSOAccm
l := ⟨SOAccm

l (k),SOAccm
l (k+1),SOAccm

l (k+2) . . .SOAccm
l (N)⟩ (5.2)

Secondly, by decoupling the energy consuming assets Yl ∈ {LD,EL} with emphasis on

l ∈ {BAT} and corresponding energy flow F
j
l→Yl

, the SOAccm
BAT is defined as a function of

the flow of energy from the Battery to an i.i.d random load LDi ∈ (LD1, . . . , LDM).
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SOAccm
l (k) =

M

∑
i=1

N

∑
k=1[

SOAccl(k−1)+

(
∑

Xl∈Etr

F
j
l←Xl

(k)−
[
F

j
l→ELl

(k)+F
j
l→LDl

(k)∗ fX(LDi(k))
])
∗ ∆k

Cl

]
(5.3)

Where, fX
(
LDi) is the probability density of the random variable LD, estimated using a

non-parametric kernel density estimator, KDE [134] in MATLAB and subscript indicates the

ith sample of the random variable drawn from a prior distribution.

Furthermore, a matrix which contains mn-elements of SOAccm
l , is defined as follows:

MSOAccm
l =



SOAcc1,1 SOAcc1,2 · · · SOAcc1,N

SOAcc2,1 SOAcc2,2 · · · SOAcc2,N

...
... . . . ...

SOAccM,1 SOAccM,2 · · · SOAccM,N


= SOAcc(i, j) ∈ RM,N (5.4)

∗Subscript l in SOAccMN has been omitted in equation (5.4) f or conciseness and m,n ̸=M,N.

Therefore, the matrix comprises the posterior distribution of the SOAccl for each consumer

load, sampled randomly from the priori distribution.

Furthermore, the probabilistic PoPA performed with z ∈ [1 : L] iterations until the lower

and upper limits expressed using the chance constraints are matched and do not violate any

of the operating limits as follows:

SOAccm
l (i, j)z =

L

∑
z=1

M

∑
i=1

N−1

∑
k=1[

SOAccl(k−1)+

(
∑

Xl∈Etr

F
j(i)
l←Xl

(k)− ∑
Yl∈Etr

F
j(i)
l→Yl

(k)

)
∗ ∆k

Cl

]
(5.5)
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Thus, analytically by plotting the cumulative density function (CDF) at each time step k,

the probability, Pr of violating the lower limit is constrained by the chance factor α1:

SOAccm
l (i, j)z =

L

∑
z=1

M

∑
i=1

N−1

∑
k=1

Pr

[[
SOAccl(k−1)+

(
∑

Xl∈Etr

F
j(i)
l←Xl

(k)− ∑
Yl∈Etr

F
j(i)
l→Yl

(k)

)
∗ ∆k

Cl

]
≥ Smin

]
≥ α1 (5.6)

Where α1 ∈ [0, 1] is the chance constraint factor as regards the lower pinch limit.

Similarly, the chance of violating the upper pinch limit is expressed as follows:

SOAccm
l (i, j)z =

L

∑
z=1

M

∑
i=1

N−1

∑
k=1

Pr

[[
SOAccl(k−1)+

(
∑

Xl∈Etr

F
j(i)
l←Xl

(k)− ∑
Yl∈Etr

F
j(i)
l→Yl

(k)

)
∗ ∆k

Cl

]
≥ Smax

]
≤ 1−α2 (5.7)

Where α2 ∈ [0, 1] is the chance-constraint factor pertaining to the upper pinch limit.

Thus, the probability density function (PDF) of SOAccm
l can be analytically computed

from the jth column of the matrix, MSOAccm
l and represented as follows;

fX(SOACCm
l ) = [ fX11(SOAccm

l ), fX12(SOAccm
l ) · · · , fX1N (SOAccm

l )] (5.8)

Where, fX denotes the PDF and subscript X indicates the dependent variable SOAccm
l .

Therefore, the desired operating range for SOAccm
l (k) with respect to the chance con-

straint is determined analytically with the CDF as follows:

∫ Smax

Smin

fSOAccm
l
(SOAccm

l )d(SOAccm
l ) = FSOAccm

l
(Smax)−FSOAccm

l
(Smin) (5.9)
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Where, FSOAccm
l

denotes the CDF of SOAccm
l and the right-hand side of equation 5.9 is an

equivalent PDF.

Therefore, the desired operating range for SoAccm
BAT (k) with respect to the chance

constraint can be expressed as follows:

F−1
SOAccm

BAT
(α1)≤ F(SOAccm

BAT )≤ F−1
SOAccm

BAT
(1−α2) (5.10)

Furthermore, in order to evaluate the probability of the SOAccm
l violating the lower limit,

we utilise the inverse CDF as follows:

LSOAccm
l (k) =

N−2

∑
k=1

in f
{

F−1
Xk

(α1)< Smin

}
(5.11)

Where, LSOAccm
l is a vector of n-elements, which represent point estimates of SOAccm

l (k) that

are less than the lower pinch chance constraint factor α1 evaluated using the inverse CDF F−1
X .

In addition, the MOES based on the probabilistic approach is determined as follows:

I f ∃ LSOAccm
l < Smin

FPOW
BAT←FC = (Smin− arg min[LSOAccm

l ])∗Cl (5.12)

Thus, by activating the dispatchable resources (in this case the FC), the energy storage (such

as BAT) is supplied with the MOES with an equivalent magnitude of flow FPOW
BAT←FC as

determined in (5.12) at the present time step k

Similarly, after satisfying the lower pinch constraint, the PGCC is recomputed as in (5.1)

and the violation of the upper pinch limit is determined as follows:

I f ∃ USOAccm
l (.)> Smax
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USOAccm
l (k) =

N−2

∑
k=1

Sup
{

F−1
Xk

(1−α2)> Smax

}
(5.13)

Where, USOAccm
l is a vector of n-point estimates of SOAccm

l (k) which are greater than

the upper pinch chance constraint factor α2 evaluated with the inverse CDF F−1
X .

Consequently, the MEES is estimated from equation (5.14) in order to match any existing

upper pinch violation in 5.13 as follows:

FPOW
BAT→EL = (arg max[ USOAccm

l ]−Smax)∗Cl (5.14)

Thereafter, the available electricity for the next day (AEEND) for life cycle preservation is

determined using the upper bound chance constraint as follows:

Thus,

AEEND : Uc(k) =


FBAT←FC F−1

Xk
(1−α2)< SOAccn

BAT (k1)

FBAT→EL F−1
Xk

(1−α2)< SOAccn
BAT (k1)

0 Otherwise

 ∀k∈[N−1] (5.15)

The PoPA EMS decision making variable Uc(k) with the corresponding magnitude of

energy flow determined in equations 5.12, 5.14 and 5.15 will satisfy both the lower and upper

pinch points and AEEND, with regards to the chance constraint equations which have been

formulated in an adaptive receding horizon model predictive framework. Furthermore, the

EMS sequence obtained with the probabilistic model is, therefore effected in the control

horizon while taking into account the overall risk of violating the utility pinch constraints.

Figure 5.1 graphically summarises the stages in the realisation of the Probabilistic Adaptive

PoPA EMS and Figure 5.2 shows the P+Adaptive PoPA algorithm.
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4. Plot chance constrained PDF-CDF  of the 
Energy Storage (such as BAT) response for 
PGCC Shaping. 

3. Draw N - random 

load samples from 

KDE fitted PDF and 

compute PGCC for 

each Stochastic 

model.

2. Fit PDF using KDE 

1. Initialize System Parameters, 
PV and Load demand Profiles 5. Activate EMS from 

step 4. and repeat if 
the SOAcc forecast 
error is >5% 

Fig. 5.1 Illustration of the Probabilistic+Adaptive PoPA EMS
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Fig. 5.2 Probabilistic+Adaptive PoPA Schematic Flow Chart
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5.3 Recursive Least Square Probabilistic Adaptive PoPA

To improve the estimation of actual SOAccn via the probabilistic PoPA, a simple correction

factor which minimises the residual error loss function between the actual SOAccn and

estimated SOAccm can be incorporated recursively into the process.

Let the equilibrium relationship between the actual SOAccn, the estimated SOAccm and

an unbiased multiplicative correction factor be:

SOAccn(k) = SOAccm(k)∗ x (5.16)

Where,

SOAccm(k) = (LSOAccm(k)+USOAccm(k))/2 (5.17)

Where,

SOAccm is the expectation of the dependent variable SOAccm, and LSOAccm and USOAccm

respectively are the lower and upper bound confidence intervals (of say 98% ) on the expected

value, and x is the multiplicative correction factor.

Thus, by ordinary least square error method [135, 136], the unbiased residual error

correction factor is determined via a mean squared error (MSE) loss function in equations

5.18-5.21 as follows:

MSE =
1

2N

N

∑
k=1

(SOAccn(k)−SOAccm(k)∗ x)2
∆k (5.18)

Taking derivative of MSE Error denoted as E, w.r.t x,:
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dE
dx

=− 1
N

N

∑
k=1

(SOAccn(k)−SOAccm(k)∗ x)SOAccm(k) (5.19)

Decomposing the right hand side of the equation:

1
N

N

∑
k=1

SOAccn(k)∗SOAccm(k)− x
N

N

∑
k=1

SOAccm(k)2 = 0 (5.20)

Therefore, the correction factor x, is expressed:

x =
∑

N
k=1 SOAccn(k)∗SOAccm(k)

∑
N
k=1 SOAccm(k)2

(5.21)

Thus, x is a least-square solution that minimises the residual error function in equation

5.18.

Furthermore, equation 5.21 is decomposed into a recursive formulation to form an online

correction factor with x in equation 5.22-5.26 as follows:

xk =
∑

N
k=1 SOAccn(k)∗SOAccm(k)

∑
N
k=1 SOAccm(k)2

(5.22)

xk−1 =
∑

N−1
k=1 SOAccn(k)∗SOAccm(k)

∑
N−1
k=1 SOAccm(k)2

(5.23)

x =
SOAccn(k)∗SOAccm(k)

SOAccm(k)2 (5.24)

xk =
(N−1)xk−1 + x

N
(5.25)

xk = xk−1 +
x− xk−1

N
(5.26)
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Therefore, for all real values of SOAccn greater than zero, the optimal value of the error

correction term is 1, if the prediction of SOAccm is accurate (error is 0), and less than or

greater than 1, if the error between the actual and predicted SOAcc is positive or negative

respectively. Consequently, x is 1 at initialisation. The MATLAB code for the RLS-P PoPA

(y=Ax) is shown in Appendix F. Furthermore, in the MATLAB environment, the regression

fitting toolbox is used to fit a simple linear model y=Ax+B in the same manner as presented

in this section for the sake of comparison. Thus, the probabilistic adaptive PoPA fitted with

the least-squares are denoted as RLS+P PoPA (y=Ax), and RLS+P PoPA (y=Ax+B), where

B in the later model is the bias and A is the multiplicative factor.

5.4 Results and discussion

5.4.1 Load demand and Photo-voltaic Data

The historical household load demand profile with a peak load of 2.08 KWh and a 10KWh

peak solar irradiance data shown in Figure 5.4 corresponding to 54.9783° N, 1.6178° W, is

obtained from [133] and [132] respectively. The load profile data set consists of the aggre-

gated power demand of uncontrollable appliances at each hourly time interval representing

consumer’s usage pattern. The historical load profile data set, A(i,k) obtained over 365

days, at each hourly time step k, is such that i=1, 2, 3. . . 365 and partitioned into disjointed

groups of A(i,k) = {A1,A2,A3,A4} which forms the LD distribution FX(LDi(k)) [133]. Each

group of load demand data set distinctly corresponds to the consumer’s power usage pattern

concerning the four seasons in a year[123]. Therefore, from the consumer’s historical energy

consumption profile (with average load plotted in red) as shown in Figure 5.3, a probability

distribution FX(LDi(k)) is easily realised.

Similarly, the uncertainty in the solar irradiance can be realised as a Gaussian distribution

N(0,σ = 20) or consequently as any type of distribution within the presented procedure.
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Typically, as shown in Figure 5.3, the historical load profile for Q1, has a dual peak charac-

teristic, which mostly peaks at noonday and during the late evening. Specifically, as shown

in Figure 5.3, the historical load profile for Q1, has a dual peak characteristic, which mostly

peaks at noonday and during the late evening period.
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Fig. 5.3 Load demand profile showing energy consumption pattern variability during Q1.
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Fig. 5.4 PV energy profile for 8760h

The histograms of the quarterly load consumption variability from historical data are

shown in Figures 5.5-5.8 for each hour, k in the four seasons as follows; winter (Q1), summer

(Q2), spring (Q3) and autumn (Q4) respectively. The histograms significantly depicts a

Weibull, bimodal and normally distributed load demand profile. Furthermore, Tables 5.1-5.4

convey the statistical information of the quarterly Load profiles with Q1 exhibiting the most

significant uncertainty in contrast to the other seasons. Specifically, as seen in Table 5.1 during

Q1, the uncertainty peaked at 12 noon with a magnitude of 30.2% and thereafter, at 20:00h

with a magnitude of 27.9%. Similarly, as shown in Table 5.2, the largest uncertainty occurred

at 20:00h, with a magnitude of 28% in Q2. Furthermore, as depicted in Tables 5.3-5.4, the

highest uncertainty was recorded during the periods of 14:00h with 18% and 13:00h with 14%

during Q3 and Q4, respectively. As shown in Tables 5.1-5.4, the load demand uncertainty
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mainly depicts both daily and seasonal variation patterns. The proposed method utilising the

chance-constrained power pinch for energy management is simulated in MATLAB based

on N-samples randomly generated from a uniform distribution A(i,k). In the Monte Carlo

simulation, the resulting load demands sampled randomly from the KDE distribution in each

cluster (for each i at time step k) are assumed to be normally distributed, since the samples

are sufficiently or approximately large (i=1000) enough to support convergence in accordance

with the central limit theorem [124, 137, 138]. The chance constraints factors were both

set to 1% during the simulation. Therefore, the state of charge of the battery has a 98%

probability of operating within the optimal region (30%≤ SOAccn
BAT ≤ 90%) as illustrated

by point 4 in Figure 5.1. The red line is the CDF, and the blue is an equivalent PDF plot,

while the dotted black lines represent quantiles corresponding to the chance constraints.

In order to validate the proposed probabilistic approach, the actual load is randomly

selected with uniform probability from the load demand distribution cluster corresponding to

the time instance (k) and season. Furthermore, the Day-Ahead PoPA and Adaptive strategies

which used the average load for each season as forecast have both been compared against the

proposed probabilistic PoPA methods.
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Table 5.1 Statistical central tendencies in First Quarter (Winter) Load demand profiles

Hour Min Mean Max Std. Dev Uncertainty (%)
1 337.54 506.53 685.89 99.45 20
2 219.05 392.51 582.01 101.90 26
3 182.02 355.55 544.39 101.99 29
4 137.43 323.00 543.02 109.08 34
5 161.62 338.27 546.75 103.84 30
6 388.38 453.44 528.14 38.75 9
7 561.52 633.66 726.40 40.22 6
8 668.35 792.64 940.07 76.56 10
9 517.91 788.05 1068.01 158.81 20

10 637.11 849.31 1083.32 124.98 15
11 456.76 749.44 1129.45 173.06 23
12 334.49 686.32 1148.28 207.92 30
13 436.26 738.48 1143.96 178.95 24
14 470.46 724.31 1056.30 150.62 20
15 304.11 642.92 1047.95 199.80 30
16 395.35 698.36 1076.06 178.93 26
17 809.37 949.34 1168.15 83.75 9
18 825.33 1043.20 1329.60 129.13 12
19 980.98 1147.90 1352.21 98.56 9
20 489.23 932.63 1370.90 260.43 28
21 980.74 1177.57 1403.60 116.79 10
22 878.18 1070.26 1280.90 113.14 11
23 727.39 910.22 1096.18 107.54 12
24 332.51 593.02 873.32 153.22 26
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Fig. 5.5 Histogram plot of the hourly daily load distribution in Q1
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Table 5.2 Statistical central tendencies in Second Quarter (Spring) Load demand profiles

Hour Min Mean Max Std. Dev. Uncertainty(%)
1 510.14 556.25 596.76 18.59 3
2 438.27 467.62 502.22 16.52 3
3 389.54 423.93 443.35 12.44 2
4 380.33 407.36 432.72 12.38 3
5 378.42 406.05 430.42 11.46 2
6 387.67 433.27 453.65 13.80 3
7 435.13 550.96 647.90 57.34 10
8 560.24 718.43 848.45 74.42 10
9 749.35 848.41 926.63 33.98 4

10 776.69 882.41 1037.53 52.99 6
11 745.21 843.51 1027.90 64.87 8
12 724.00 841.08 1043.65 69.79 8
13 745.65 851.30 1074.91 72.62 8
14 716.19 814.69 990.98 61.93 8
15 687.54 794.92 972.88 66.54 8
16 704.96 812.59 992.43 57.27 7
17 751.18 928.16 1117.74 58.89 6
18 960.89 1057.50 1260.05 61.62 6
19 897.11 1115.82 1336.29 84.86 8
20 921.14 1082.27 1377.33 107.21 10
21 916.80 1073.18 1267.34 95.69 9
22 924.98 1041.46 1145.29 54.20 5
23 858.78 914.67 969.19 19.90 2
24 669.39 699.22 752.65 18.53 3
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Fig. 5.6 Histogram plot of the hourly daily load distribution in Q2
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Table 5.3 Statistical central tendencies in Third Quarter (Summer) Load demand profiles

Hour Min Mean Max Std. Dev. Uncertainty(%)
1 529.15 626.54 849.61 61.99 10
2 446.92 537.40 719.74 57.79 11
3 410.59 493.52 680.25 47.61 10
4 396.35 470.89 609.29 43.37 9
5 400.36 469.63 580.05 44.63 10
6 401.45 516.60 601.53 50.70 10
7 475.17 692.40 833.33 94.53 14
8 584.95 942.58 1145.93 137.34 15
9 768.61 1080.10 1324.77 100.23 9

10 881.20 1105.27 1721.76 126.24 11
11 799.63 1065.51 1684.74 162.93 15
12 771.15 1071.81 1830.50 178.84 17
13 802.39 1093.08 2080.63 192.05 17
14 748.07 1057.64 1950.51 189.47 18
15 748.64 1050.68 1859.37 180.39 17
16 805.96 1145.92 1695.94 191.88 17
17 964.02 1396.11 1772.11 239.06 17
18 1124.19 1599.69 1926.59 229.42 14
19 1284.69 1665.88 1875.90 168.05 10
20 1279.21 1551.36 1726.05 114.96 7
21 1198.14 1417.81 1576.08 98.29 7
22 1116.13 1279.11 1428.12 88.27 7
23 919.36 1067.80 1219.20 77.17 7
24 685.44 807.32 1008.23 68.66 9
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Fig. 5.7 Histogram plot of the hourly daily load distribution in Q3
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Table 5.4 Statistical of central tendencies in Fourth Quarter (Autumn) Load demand profiles

Hour Min Mean Max Std. Dev. Uncertainty(%)
1 590.50 667.63 868.28 46.71 7
2 490.68 578.61 733.56 36.00 6
3 467.73 531.37 693.20 33.10 6
4 449.77 508.93 619.65 29.48 6
5 463.54 508.91 569.21 22.15 4
6 486.03 560.76 752.66 32.84 6
7 596.28 749.87 989.58 80.00 11
8 712.81 1002.34 1157.68 116.34 12
9 908.92 1131.98 1223.91 62.60 6

10 933.61 1150.35 1349.69 100.19 9
11 858.53 1116.62 1369.72 138.17 12
12 860.48 1126.17 1467.43 154.29 14
13 692.17 1139.31 1491.61 160.38 14
14 851.28 1107.45 1442.08 150.62 14
15 844.05 1098.29 1427.08 141.98 13
16 914.37 1176.29 1514.24 152.02 13
17 1065.92 1394.59 1753.03 181.45 13
18 1204.22 1653.73 1936.02 185.91 11
19 1322.72 1742.30 1889.59 133.87 8
20 1175.20 1602.12 1703.42 87.39 5
21 1224.47 1467.94 1562.38 61.83 4
22 1079.99 1317.84 1416.04 59.18 4
23 936.24 1097.91 1202.61 52.00 5
24 758.83 841.72 947.73 43.51 5
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Fig. 5.8 Histogram plot for the hourly daily load distribution in Q4



110 Probabilistic Adaptive Power Pinch Analysis

5.4.2 Uncertainty Analysis of the Probabilistic Adaptive Algorithms

The performance of the proposed probabilistic methods; P+Adaptive PoPA, RLS+P PoPA

with/without bias are compared over a period of 72h to the Day-ahead, Adaptive and

Kalman+Adaptive PoPA EMSs presented in Chapter 4. The same properties of the non-

Gaussian and Gaussian uncertainty used in Chapter 4, have also been has been used in this

present Chapter and throughout the thesis for uniformity.

5.4.2.1 Non-Gaussian uncertainty

As shown in Figure 5.9, the actual PGCC is bounded by both the probabilistic lower and

upper PGCC based on a 98% chance of violating the SLo and SU p pinch utility under non-

Gaussian uncertainty. The upper and lower predicted PGCC bounds are shown as the red

and blue plots in Figure 5.9, while, the actual PGCC is indicated by the yellow dashed line.

The operational constraints were never violated by the P+Adaptive PoPA. Nevertheless, as

seen in Figure 5.10, the FC and EL were activated 6 and 3 times, respectively. Similarly,

the RLS+P PoPA with and without the bias also recorded no violations concerning the SLo

and SU p pinch utility as shown in Figures 5.15 and 5.12 respectively. Nevertheless, while

RLS+P PoPA without bias activated the FC 7 times and the EL 3 times as shown in Figure

5.13, with the RLS-P PoPA with the bias, the activation of the FC and EL increased to 8

and 5 times respectively as shown in Figure 5.16. Hence, an increase in operational cost or

resources with probabilistic PoPA approach, particularly with an increase in the complexity

of the residual error regression model is a trade-off for robustness. The HT and WT response

pertaining to the P+Adaptive, the RLS-P without bias and with bias are shown in Figures

5.11, 5.14 and 5.17 respectively.
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Fig. 5.10 P+Adaptive PoPA converter logic over 72h
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Fig. 5.13 RLS-P PoPA (y=Ax) converter logic over 72h
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Fig. 5.16 RLS-P PoPA (y=Ax) converter logic over 72h
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Fig. 5.17 RLS-P PoPA (y=Ax) HT and WT response over 72h

5.4.3 Gaussian

Similarly, under the Gaussian uncertainty case study, the RLS+PoPA with the simple

correction factor (i.e. without the bias), violated the SU p once, while the P+Adaptive,

RLS+Adaptive with bias as shown in Table 5.5. Nevertheless, in contrast to the DA and

Adaptive PoPA which had 13 and 3 violations of the SLo, the P+Adaptive, RLS+PoPA without

bias, Kalman+Adaptive PoPA had none. Apparently, accounting for robustness and accuracy

can result in an increased frequency of FC and EL activation cycles which can incur losses

and further increase the operating cost with the simple least-squares mechanism aimed at

minimising the mean squared error between the actual SOAccn
BAT and estimated SOAccm

BAT
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from the MC process. Nevertheless, further investigation using a long term (8760h) scenario

case study will be presented in Chapter 6.

5.5 Summary

Three Probabilistic+Adaptive PoPA which uses a stochastic process based on Monte Carlo

simulation, enabled by historical data and high computer processing speed have been pro-

posed for energy management of HESS uncertainty. A short term (72h) stochastic analysis

evidently showed the proposed method performed better in clipping the PGCC from violating

the SLo in contrast to the DA, Adaptive and Kalman +Adaptive PoPA methods previously pre-

sented in Chapter 4. The proposed methods were compared to the Day-ahead and Adaptive

PoPA, which utilised the average load.

In contrast to the DA - PoPA which had the most SLo and SU p violations and DSL usage.

The adaptive PoPA had a marginally, better lower pinch violation compared to the proposed

approach.

The three algorithms; P+Adaptive PoPA, RLS+P PoPA with and without bias, have all

shown superior performance with regards avoiding the violation of the SLo and SU p pinch

limits. This superior performance is in contrast to the DA approach, which had the worst

SLo violation and rivals the Kalman+Adaptive, which had the best performance so far in this

thesis. Nevertheless, the RLS+PoPA without bias has shown sensitivity to violating the SLo

constraint. Furthermore, these probabilistic algorithms, adequately considered the effects of

impending uncertainty with the same forecast error correction mechanism in the Adaptive

PoPA, which is absent in the DA PoPA. Moreover, robust planning against uncertainty within

the context of the historical data rather than with the average load demand profile yielded

promising result in terms of better performance. A summary of the performance indices for

the P+Adaptive, RLS+P PoPA with and without bias are shown in Table 5.5.
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Table 5.5 Summary of performance of the P+Adaptive, RLS-P PoPA (y=Ax) and RLS-P
PoPA (y=Ax+B) algorithms over 72h.

Indices
P+Adaptive

PoPA
RLS - P PoPA

(y=Ax)
RLS-P PoPA

(y=Ax+B)

N
on

-G
au

ss
ia

n
U

nc
er

ta
in

ty

Lower Pinch
Violation 0 0 0

Upper Pinch
Violation 0 0 0

DSL
Activation 0 0 0

G
au

ss
ia

n
U

nc
er

ta
in

ty

Lower Pinch
Violation 0 0 0

Upper Pinch
Violation 0 1 0

DSL
Activation 0 0 0





Chapter 6

Reinforcement learning based Adaptive

Power Pinch

OUTLINE

This chapter is based on an unpublished manuscript currently under review in Energy,

Elsevier. This chapter focuses on integrating the adaptive and probabilistic PoPA

developed in Chapters 3 and 4, with a reinforcement learning technique, a type of

machine learning algorithm in order to achieve enhanced performance to uncertainty.

Specifically, the RL used, are variants of the Q-Learning techniques such as Tabular

Dyna Q-Learning and deep Q-learning (DQN) which are modified and exploited in an

Adaptive PoPA context, as well as a deep Actor-critic RL network which is implemented

within the Probabilistic adaptive PoPA framework.

6.1 Introduction

Generally, machine learning refers to the capability of computers to explicitly learn predefined

examples directly or indirectly by interacting and exploiting the real world or environment.

These machine learning algorithms are basically classed into three categories; supervised,
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unsupervised and RL. On the one hand, supervised learning entails the classifying or inferring

regression parameters of an underlining function for structured or well-labelled training

examples or data. On the other hand, unsupervised learning entails drawing inference from

an unlabelled data set. Whereas, RL is basically a software agent tasked with inferring an

action which maximises the cumulative reward [101].

The RL algorithms have evolved dramatically due to recent methodological insights

in deep neural networks (DNN) for function approximation of hyper-dimensional space.

The hybrid combination of the RL algorithm and DNN is generically known as deep RL

(DRL), and has been used in several EM applications as in [139] for complex decisions

making to optimally manage and balance uncertainty in electricity supply and consumption

while purchasing more energy during off-peak periods. The remarkable successes of DRL

are seen in playing Atari game [140], where a deep Q-network (DQN) model for the first

time, successfully learnt control policies directly from high-dimensional sensory via the

perception of features, observed and extracted via a convolutional (deep) neural net and

a variant of Q-learning. In evaluating the proposed deep Q network on seven Atari 2600

games, the learning algorithm had a performance which was indeed comparable to that of a

human expert player. Another tremendous contribution to the field of RL is the successful

integration of deep RL and a Monte Carlo tree search to play AlphaGo, which is regarded

as one with the most challenging classical games for A.I due to its vast dimensional search

space. Monte Carlo simulation is combined with two networks; value and policy, which

are used to determine the board position and perform moves respectively. Specifically, the

approach entailed combining supervised learning and RL from expert games and self-play,

respectively, where the self-played game is generated based on a Monte Carlo simulation

of thousands of random games without any look-ahead search. The algorithm defeated an

18-time world champion Lee Sedol by 5 games to 0 whilst achieving a 99.8% winning rate

in contrast to other Go algorithms [141].
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Furthermore, in [142] AlphaGo zero, which is solely based on deep RL and the game’s

rules without the guidance of a human expert data is proposed to improve on the effectiveness

of the tree search in [141]. During the evaluation, the AlphaGo zero algorithm won 100

games to 0 against a human champion in AlphaGo.

Recent advancements in deep learning, especially Q-network, have attained significant

success and have become an interesting subject of interest in the RL research community

in tasks involving complex decision making with uncertainty. Therefore, this chapter aims

to leverage the advantages of the Tabula Q-Learning and DRL with the Adaptive and

Probabilistic adaptive PoPA frameworks proposed in chapters 3 and 4.

6.2 Q-Learning Adaptive Power Pinch Analysis

The, Q learning algorithm approach in this work involves formulating the problem of the

uncertainty, as a Markov Decision Process (MDP), considered in a discretised time step k.

Thus, a learning agent acts optimally by anticipating the best action given any HESS state as

determined by the adaptive MPC PoPA trajectory from trial and error.

6.2.1 Q-learning State and action formalisation

The approach presented in this work involves formulating the uncertainty problem as a

Markov Decision Process (MDP) considered in the discrete-time step k, where an agent has

to act optimally by inferring an action in each state as determined by the adaptive MPC PoPA

trajectory.

The finite MDP is a tuple(S,A,R,S′, A′) such that;

S: is a set of discrete n-states S = {s1, s2, . . .,sn } and sk denotes the state of the

environment at time step k.
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In this work,

sk := f ⟨SOAccm
BAT (k), SOAccn

BAT (k), e(k)⟩ (6.1)

This is such that the states are finely discretised to form 270 states with the use of ’i f else,

then do’ logic statements. Furthermore, the state space which consists of 270 discretised

states, are classed into three groups each with 90 discrete state space, where each group

pertains to the sign (+,-, or 0) of e(k) and the 90 discrete states are extracted using if-else

statement from the magnitude of error between SOAccm
BAT (k) and SOAccn

BAT (k) normalised

by 100.

A : is a discrete set of n-actions, where only one is available for selection at any given

state by the agent A = {a1 , a2, . . . ,a7 } and ak indicates the action undertaken or selected

by an agent at time k.

Furthermore, the set of dispatchable assets for the PGCC shaping is expressed as follows:

Uc(t)⊆Ak := {a1, δ 1FC,δ2FC,δ3FC,δ4EL, δ5EL, δ6EL }

where,

δx, x = [1,2,3], characterises the proportional percentages {10, 50, 90} and {10, 50,

100} of corresponding energy or material flow such as between the assets such as FC and

BAT; FPow
FC→BAT (k) in order to forestall an impending energy deficit or between the BAT

and EL; FPow
BAT→EL (k) in response to anticipated occurrence of excess energy from RES. a1

denotes null action.

T(s,a,s′): is the probability of transitioning to a next state s′ from state s over a given set

of transitions when an action a is chosen.It is important to note that a transition probability

matrix (TPM) which has been used in [97, 100] is however not mandatory [112] and can be

omitted. The reason behind this is the Q-learning values eventually accumulate a transition

probability mapping, with respect to the actions taken and the state visited. Hence, the agent
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learns the optimal action in a state with each visit, and so the use of a transition probability

matrix is however not required.

S x A→ R : An immediate reward rt is received as a result of the system state transition

T(s,a) to the next state s′ by mapping state and action pair (s, a) due to a decision making

policy π .

Therefore, both the transition and reward probability distributions are implicitly Markov

properties where the future state s′ only depends on the present state s. The current action a

is independent of the past state(s) s− that lead to the present state [143, 144].

T(s′|s−,s,a) = T(s′|s,a) (6.2)

The model of the system which is required for initial training of the agent is simulated

twice for a duration of 8760 h, in order to infer the control action on the actual system

from the Adaptive PoPA. The agent adapts to the real system over time and retrains on

newer samples. The MDP learning agent learns the optimal policy π∗(a|s) from accumulated

experience, which maps an optimal action to a given state. Hence, this maximises the

cumulative reward return, as shown in (6.3).

Vπ = E

[
∞

∑
k=1

γ
k−1rk(s1,a1|π)

]
(6.3)

The Q-function Qπ (s, a) for a given MDP represents the optimal value function Vπ∗.

The agent learns the optimal action to take in the environment through experience by

taking actions in the environment while learning the optimal policy.

The Q-learning agent is updated after taking an action a in a state s, obtaining a reward r

and transitioning to s′ as follows:
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Qk(s, a) =


Qk(s, a)+α[rk + γmax

a′ Qk+1(s′,a′)−Qk(s,a)] ∀ k = [1,2, . . .N−2]

Qk(s, a)+α[rk−Qk(s, a)] ∀ k = N−1

Qk(s, a) ∀ k = N


(6.4)

Where α,γ ∈ [0,< 1] are learning rate and future reward discount factor with the future

discounted reward omitted during the update of the agent at a terminal state at time step N−1.

6.2.2 Planning stage for Q-learning Agent

The MPC-PoPA model is used to bootstrap the Q-learning agent to ensure that the agent

acts considerably optimally concerning tracking the PoPA trajectory computed offline before

online deployment to minimise and avoid exploiting costly mistakes on the real system. The

advantage of the Q-algorithm is that the agent garners experience from the real environment

and retrains offline by replaying the experience after each episode at time N to further

reinforce the learning agent’s Q - value to guaranty optimality. The model-free learning

takes course using the Q-learning algorithm and switches to a Monte Carlo algorithm at

N−1, which denotes the terminal state (horizon) for the agent, as shown in (6.4). Therefore,

the learning involves two steps; direct and indirect learning, from the model and the actual

system (environment) respectively.

6.2.3 Action Selection

The action selection approach in (6.5) – (6.6) which has been modified to include safety

precautions in critical states (near the Pinch limits), is based on the probability (1 - θ ) of

selecting a greedy policy π(s) over a random action with probability of θ [145, 146]. This

approach exploits the best action as indicated by the maximum value function Qπ∗(s,a) for a

given state while performing exploration with the inverse probability (θ ) of acting greedily.
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This strategy strikes a balance between exploration and exploitation while satisfying the

famous Bellman’s principle of optimality [147], minimizing the deviation of the system

controlled by the learning agent from the Adaptive PoPA target, while exploring the state

space. Therefore, if the SOAccn
BAT (k) is less than Lo or greater than Up, the FC and EL are

dispatched by the agent respectively. Furthermore, the AEEND constraint imposed at the

end of the day is achieved by overriding the agent’s action with the Adaptive PoPA’s EMS.

The action policy π(s) is expressed as follows:

π(s)=



ak(s) U < greedy action probability(1−θ)

δ3FC U > greedy action probability(1−θ)∧SOAccn
BAT (k)≤ 30%

δ6EL U > greedy action probability(1−θ)∧SOAccn
BAT (k)≥ 90%

select random action otherwise


(6.5)

Where, U is a randomly generated value between 0 and 1 given each k time step.

ak(s) :=



δ3FC SOAccn
BAT (k)≤ 30%

δ6EL SOAccn
BAT (k)≥ 90%

argmax
ak(s)⊆{a1,δnFC}, n∈[1:3]

Q(sk,ak) SOAccn
BAT (k)≥ 30%∧SOAccn

BAT (k)≤ 40%

argmax
ak(s)⊆{a1,δnEL}, n∈[4:6]

Q(sk,ak) SOAccn
BAT (k)≥ 80%∧SOAccn

BAT (k)≤ 90%

argmax
ak(s)⊆At

otherwise


(6.6)

6.2.4 Reward Function Formalisation

In order to train the Q-learning agent, a suitable reward function is expressed mathematically.

This is such that the agent follows the optimal policy π∗ (s) which minimises the cost function



130 Reinforcement learning based Adaptive Power Pinch

between the agent’s off-policy and the adaptive MPC PoPA trajectory, and expressed as

follows:

Jπ (SOAccn
BAT ) =

lim

N−2→ ∞

E

[
N−2

∑
k=1
|SOAccm

BAT −SOAccn
BAT |2 +

(
γ

kJπ(sk+1)
)]

(6.7)

Thus, it follows that:

min
Uc

Jπ (SOAccn
BAT )≜

lim

k→ ∞

argmax

ak ∈ Ak

E
∞

∑
k=N−2

[(
γ

k−1R(sk+1,ak+1)
)−1

]
(6.8)

The reward function in equations (6.10) comprising a fixed reward G, with penalty factors

W1 and W2, represents a squared error penalty cost function, and constant penalty factor

respectively is aimed at accelerating learning. The magnitude of the W1 penalty factor is such

that it increases proportionally to the absolute squared error deviation from the pinch target at

that instant and the systems state if the agent takes a sub-optimal action as shown in equation

(6.11). Furthermore, the rewarded function in equations (6.12) - (6.14) derived abstractly is

able to update the agent Q(s, a) regardless of if the availability proposition εAvl
i (k) for both

the FC and EL assets are met while exploiting an action which minimises the error.

A typical illustration; if the operating point dictated by adaptive PoPA anticipates future

energy deficit and requests activation of the Fuel cell, while the agent activates the PEM

Electrolyser, a penalty should suffice. The penalty function, therefore, serves as a closed-loop

negative feedback to the agent.

The reward function proposition for S x A : R(S,A) is implemented as follows;
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R(sk,ak) = (6.9)

G
SOAccn

BAT (k+1)≥ SOAccm
BAT (k+1)∧ak ==Ucmin ∧

[SOAccn
BAT (k+1)> Sl

Lo∧SOAccn
BAT (k+1)< (Sl

U p−10%)]

−W1
[SOAccn

BAT (k+1)≤ SOAccm
BAT (k+1)]∧ak¬=Ucmin ∧

[SOAccn
BAT (k+1)> Sl

Lo∧SOAccn
BAT (k+1)< (Sl

U p−10%)]

G−W1
[SOAccn

BAT (k+1)≥ SOAccm
BAT (k+1)]∧ak¬=Ucmin ∧

[SOAccn
BAT (k+1)> Sl

Lo∧SOAccn
BAT (k+1)< (Sl

U p−10%)]

−(W1 +W2)


[SOAccn

BAT (k)≤ SOAccn
BAT (k+1) ∧

[SOAccn
BAT (k)≥ Sl

U p∧SOAccn
BAT (k+1)≥ Sl

U p] ∧

ak¬=Ucmin∨SOAccn
BAT (k+1)≥ Sl

U p∧ak¬=Ucmin

∨
[SOAccn

BAT (k)≤ SOAccn
BAT (k+1)∧

[SOAccn
BAT (k)≥ Sl

U p∧SOAccn
BAT (k+1)≥ Sl

U p]∧

ak¬=Ucmin∨SOAccn
BAT (k+1)≤ Sl

U p∧ak¬=Ucmin




(6.10)

Where, W1 and W2 is a penalty factors.

W1 = [(SOAccn
l (k+1)−SOAccm

BAT (k+1))/SOAccm
BAT (k+1)]2 (6.11)

The action which results in the minimum optimal control action is derived abstractly as

follows:
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Ucmin :=

 D SOAccm
BAT (k+1)> Sl

Lo∧ SOAccm
BAT (k+1)≤ (Sl

U p−10%)

E SOAccm
BAT (k+1)> (Sl

Lo +50%)∧ SOAccm
BAT (k+1)< (Sl

U p)


(6.12)

Where,

D := inf{(SOAccm
BAT (k+1) |

7

∑
i=1

Q(ai,sk+1))≥ SOAccn
BAT (k+1)} (6.13)

E := sup{(SOAccm
BAT (k+1) |

7

∑
i=1

Q(ai,sk+1))≤ SOAccn
BAT (k+1)} (6.14)

During the real-time deployment, the PoPA target is modified respectively with the MOES or

MAE so as to capture the effect of uncertainty after SLo or SU p violation occurs at any instant

as follows;

SOAccm
BAT (k | k) :=

 Sl
U p SOAccn

BAT (k)> Sl
U p

Sl
Lo SOAccn

BAT (k)< Sl
Lo

, ∀t i f ∃ ∆H (k) ̸= 0 (6.15)

The reward function is modified to incorporate the MOES or MEES thus guaranteeing

the model-free agent will act optimally in the event of uncertainty to maximise the expected

reward is as follows:

JPinch (SOAccn
BAT )+ Je (∆H) = minU J

π
(SOAccn

BAT ) (6.16)

Furthermore, by performing the optimal policy π∗ the corresponding cost is as follows:

J∗π (SOAccn
BAT )→ lim

k→∞
E
[
∑ γ ( JPinch (SOAccn

BAT )+ Je (∆H))
]

(6.17)
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Since the cost of the error due to uncertainty tends to zero by following the optimal

policy, J∗π (s) agent incorporates the uncertainty estimation into the PoPA, therefore:

lim
k→∞

J∗π (SOAccn
BAT ) ≤ γJPinch (SOAccn

BAT ) (6.18)

The expected cost following the pinch analysis and uncertainty propagation is less than

following only the PoPA model. Hence, the experience of the agent integrated into the

Adaptive PoPA framework guarantees optimal operation, as long as the conditions of optimal

action selection and learning rate decay are satisfied. Figures 6.1 and 6.2, illustrates the

reinforcement learning adaptive PoPA architecture and algorithm, respectively. Furthermore,

the pseudo and MATLAB .m codes have been presented in Appendix C and Appendix E

respectively.

Fig. 6.1 Reinforcement Learning Adaptive Power Pinch Schematic



134 Reinforcement learning based Adaptive Power Pinch

 

Yes 

No 

No 
Yes 

 Yes 

No 

Yes 

Yes 

No 

No 

No Yes 

Initialise HESS state and parameters 

k<=8760 

L<=24 

Start=K 

Stop=24 

 

Stop – Start==23 

V |𝚫𝒆| > 𝟓% 

Calculate PGCC ∈ [𝑲: 𝑺𝒕𝒐𝒑] 

Select converter 𝑼𝒌−𝟏 𝑺𝒐𝑨𝒄𝒄𝒍
𝒎 𝒌))  

L=L+1 
Smin<Lo 

  Start=Stop+1 

  Stop=stop+24 

 

Select converter to match  𝐀𝐄𝐄𝐍𝐃 

Select converter 𝑼𝑲−𝟏 𝑺𝒐𝑨𝒄𝒄𝒍
𝒎 𝑲)  

and Energy  

 

k==Stop 

Recede horizon 

k=k+1 

End 

Yes 

Smax>Up 

SoAcc(N-1)~=SoAcc(k1) 

Update model 

with System 

state for the 

next PGCC 

Computation 

No 

No 

Select e-greedy action using 

𝜋 𝑠) 
A={𝑎1, 𝑎2…𝑎𝑛} 

  

Obtain system state and 

target 

𝑆 =  {𝑠1, 𝑠2… 𝑠𝑛} 

Control MG system using 

selected action 𝑎𝑛 

Obtain reward 

𝑟𝑡 

Initialise Q learning agent 

𝑒 𝑡)~ = 0 

Obtain modified reward 

𝑟𝑡 capturing uncertainty  

Update Q agent 

Plan on 

uncertainty 

experience  

Update Q agent 

Yes 

No 

Fig. 6.2 RL+Adaptive Power Pinch Algorithm
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6.2.5 Deep Reinforcement Learning Adaptive PoPA

The discretisation of the state and action space in RL introduces the curse of dimensionality

[148]. Hence, in the machine learning community, function approximators such as fuzzy

logic [149], approximate nearest neighbour [150] and deep neural network [151] are often

used. Nevertheless, Fuzzy logic approximation is based on predefined rules, while deep

neural network in order to perform proper and effective generalisation requires a lot of

training and validation from enormous data sets. However, these function approximators do

not guarantee better performance over tabular Q-Learning counterpart, especially concerning

fewer dimensional state and action space.

In this work, for the purpose of investigating the generalisation ability of the deep RL

with the adaptive PoPA, a fully connected deep neural net, comprising one (1) input, fifteen

(15) hidden layers and seven (7) actions, is trained to approximate the 270 x7 dimensional

Q –Table, previously derived in section 6.2.1. The DNN is trained in MATLAB with the

neural net toolbox, using a mean squared error minimisation loss function as in [140, 152]

but with the inclusion of an L2 regularisation [153] to prevent overfitting, since the 270 x7

dimensional Q –Table represents a shallow data set. Hence, the cost function J(w) of the

DNN is expressed as follows;

J(w) = [rk + γ
max
a′ Qk+1(s′,a′,w′)−Qk(s,a,w)]2 +λ

T

∑
i=1

w2
i (6.19)

Where, the reward rk in addition to the discounted next state-action value Qk+1(s′,a′,w′)

obtained from the DNN’s target, while Qk(s,a,w) is the output of the DNN. Also, w is

the weight of the neural network, i is the ith weight, i ∈ [1 : T ] and λ is a weighting factor,

λ ∈ [0 : 1]. Therefore, by taking the derivative of the loss function ∇wJ(w) in equation 6.20

the weights of the deep neural net are updated via back-propagation as follows;

w← w+ψ∇wJ(w) (6.20)
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Where, ψ represents the learning rate.

Fig. 6.3 DRL+Adaptive Power Pinch Algorithm

6.2.6 Actor Critic Reinforcement learning with Probabilistic PoPA

This section combines the concept of the probabilistic adaptive PoPA within an actor-critic

deep reinforcement learning algorithm (A2C+P). The actor-critic network RL algorithm

naturally enables the support for continuous state and action space is realised based on the

deep policy gradient approach [154]. While a value based critic network evaluates the quality

of the policy based actor network’s performance, the resulting TD error is back propagated

to correct the critic as well as combined with the log likelihood [155] or mean squared error

[154] of the action taken to correct the actor network. Furthermore, recent successes with the

actor-critic approach are discussed in [156].

6.2.6.1 Actor-Critic neural net Architecture with P+Adaptive PoPA

The proposed deep RL architecture used with the probabilistic adaptive PoPA, consists of

two neural networks, as shown in Figure 6.4. In this work, the Actor neural network is a

NARX recurrent deep neural network [157, 158] which is suitable for processing time-series

data. Whereas the Critic is a deeply layered fully connected neural net, both neural networks

have ten (10) hidden layers (with sigmoidal activation function).
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Specifically, the continuous input state space fed into the Actor and critic neural networks

consists of six (6) tuples: {USOAccm
l (k),LSOAccm

l (k),SoAcm
BAT (k−1),φS,φH ,a(k−1)}.

Where, USOAccm
l (k) and LSOAccm

l (k) are the upper and lower confidence interval bounds

respectively expressed as point estimates of the predicted SOAcc of BAT. SoAcm
BAT (k−1) is

the predicted SOAcc of BAT at the previous time step k φS: represents seasonal period and

subscript S ∈ [1 : 4] indicates the specific season. φH : represents the hour of the day and

subscript H ∈ [1 : 24], indicates the kth hour. ak−1 :represents the past output information

(action) generated by the Actor critic network.

The continuous action space is such that Uc(k) can operate within the maximum range of

FPOW
BAT→EL and FPOW

FC→BAT as expressed in equation 6.21 as follows:

Uc(k) =


FPOW

BAT←FC i f Uc > 0

FPOW
BAT→EL i f Uc < 0

0 Otherwise

 ∀k∈[1:N] (6.21)

The variance derived from past N-optimal Uc(k) is determined by the probabilistic PoPA

and thus used to enhance exploration.

Typically, at every time step for a given input state derived by extracting feature parame-

ters from the HESS and probabilistic model, the Actor neural network generates an optimal

predictive action ak, based on an action policy πw which results in the de/activation of the EL

or FC or null.

The Critic which is a deep recurrent neural network is pre-trained using an action policy

πθ generated from the Probabilistic adaptive PoPA with a cross-entropy method loss function.

Thus, given the continuous state information, the Critic acts as a feed-forward model, thereby

predicting an action which might either activate the FC or the EL or null.
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Fig. 6.4 Actor-Critic Probabilistic Adaptive PoPA Schematic

6.3 Results and Discussion

6.3.1 RL+Adaptive PoPA

6.3.1.1 Training of the RL Intelligent Agent

In order to deploy the RL agent, the agent has to be trained using the Adaptive PoPA. The

Q table which holds the value function of the state -action pairs and used by the RL agent

is initialized randomly between 0 and 1. Nevertheless, how the Q table is initialized during

the training can affect the total training time. The agent which starts out with the random

value estimate for each state action pair, eventually accumulate the needed experience to
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operate the HESS model during the training session. The 3D surface plot at initialization

is shown in Figure 6.5. The scalar reward which was found to have worked well is 0.01

unit, as larger rewards quickly diverged exponentially. After the initialization the RL agent

is trained using the Adaptive PoPA offline in order to garner some appreciable experience

of the actual HESS. The training was done in 2 epochs, each with a duration of 8760h. In

the first epoch the exploration parameter ep, is set to 0.9 which implies that 90% of the

time the agent will explore random actions while exploiting optimal actions 10% of the

time. Furthermore, since the agent is to leverage from experience the in the 2nd epoch the

exploitation is increased from the initial 0.1 to 0.7. Figures 6.6 and 6.7 show the 1st and

2nd training epochs respectively. The cumulative reward which has an exponential response,

converges in the 1st and 2nd epoch as shown indicated by the red line in Figure 6.7. Ideally,

the RL agent has to be trained infinite number of times on every state-action pair in order to

guarantee convergence. With respect to convergence, rather than over-fit the agent on the

Adaptive PoPA model, a practical approach was employed, hence, saving computational time

to only 2 epochs. Therefore, the training was stopped when the violation SLo and SU p were

both less than 10 violations and the DSL never activated. The 3D surface plot at the end of

the 3rd training epoch is shown in Figure 6.8 and the maximum cumulative reward at the end

of the the training session was 24 units, as shown in Figure 6.8.
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6.3.1.2 RL+Adaptive PoPA Performance

The RL+Adaptive PoPA had only one violation of SLo under the non-Gaussian uncertainty

case study which occurred at the 45th h as shown in Figure 6.9. Also, the DSL was never

activated. However, the FC and EL were activated 28 and 20 times respectively in a bid to

track the Adaptive PoPA’s PGCC as shown in Figure 6.10, and the HT and WT responses are

shown in Figure 6.11. Furthermore, under the Gaussian uncertainty case study, the RL had

an improved performance as no violation occurred as shown in Table 6.1.
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6.3.2 DRL+Adaptive PoPA

6.3.2.1 Training of the DRL Intelligent Agent

The Q-Table with dimension 270 by 7, which was realised at the final training session in

section 6.2.1 was approximated using a DNN with 1 input, 10 hidden sigmoid layers and 7

outputs. Before the training, the data set is randomly divided up into training, testing and

validation samples in proportions of 70%, 15% 15% respectively. The approximation of the

Q-Table is implemented using the Levenberg-Marquard back-propagation training method in

MATLAB with the NN toolbox. The training, validation and testing regression coefficients

of correlation were 0.95, 0.96, and 0.95 respectively with an average of 0.95 as shown in
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Figure 6.12. Therefore the coefficients of correlation show a strong relationship with the

training data set without over-fitting and can be used for generalization. Furthermore, from

Figure 6.13, the mean squared error (MSE) performance validation score which was 4.2,

occurred at the 76th epoch out of 82 epochs used to training the DNN.
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Fig. 6.12 DRL+Adaptive Training Regression Plot
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Fig. 6.13 MSE Performance validation of the DRL+Adaptive

6.3.2.2 DRL+Adaptive PoPA Performance

The DRL had only one violation of the SU p under the non-Gaussian uncertainty case study

at the 37th h as shown in Figure 6.14. The FC and EL were activated 29 and 28 times

respectively in order to counteract the effects of uncertainty as shown in Figure 6.15 with

corresponding HT and WT response shown in Figure 6.16. However, under the Gaussian

uncertainty case study, the SU p violation increased as it was violated twice as shown in Table

6.1.
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Fig. 6.15 Converter Logic with DRL+Adaptive PoPA over 72h
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Fig. 6.16 HT and WT response with DRL+Adaptive PoPA over 72h

6.3.3 A2C+P PoPA

The A2C+P PoPA had only 6 violations concerning the SU p and none with regards to violating

the SLo under the non-Gaussian uncertainty scenario as shown in Figure 6.17. As shown

in Figure 6.18 the FC was activated 30 times while the EL was activated only once at the

40th h. Figure 6.19 depicts the corresponding HT and WT response. Therefore, the A2C+P

PoPA had the least FC and EL activation compared to the DRL+Adaptive and RL+Adaptive

which had significantly more activation cycles. The A2C+P PoPA had 18 violations under

the Gaussian uncertainty case study with respect to the SLo as shown in Table 6.1. However
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the progressive violation of SLo did not activate the DSL, as the SOAccBAT never dipped

below the 20% which is the propositional logic constraint which activates the DSL.
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Fig. 6.18 HT and WT response with A2C+P PoPA over 72h
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Fig. 6.19 HT and WT response with A2C+P PoPA over 72h

6.4 Summary

The RL+Adaptive, DRL+Adaptive and A2C+P PoPA have been presented in this Chapter. As

shown in Table 6.1 the performance of the RL+Adaptive, DRL+Adaptive and A2C+P PoPA

are presented. The RL and DRL adaptive both had only one violation of the SLo and SU p

respectively, whereas the A2C+P had 6 violations of the SU p under non-Gaussian uncertainty.

While the RL+Adaptive PoPA had a better performance when the uncertainty was Gaussian

the DRL+Adaptive PoPA had violated the SU p twice and the A2C+P had 18 violations of the

SLo. Though the overall performance of the RL+Adaptive PoPA and DRL+Adaptive PoPA

did not outshine that of the probabilistic methods presented in Chapter 5, these machine
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learning based PoPA approaches excluding the A2C+P PoPA, have shown significantly better

performance than the Kalman+Adaptive, Adaptive and the DA PoPA presented in Chapter 4.

Nevertheless, further investigation over a period of 8760h will be performed in Chapter 7

with all these proposed methods.

Table 6.1 Summary of performance over 72 h analysis with RL+Adaptive, DRL+Adaptive
and A2C+P PoPA algorithms.

Indices
RL+Adaptive

PoPA
DRL+Adaptive

PoPA
A2C+P
PoPA

N
on

-G
au

ss
ia

n
U

nc
er

ta
in

ty

Lower Pinch
Violation 1 0 0

Upper Pinch
Violation 0 1 6

DSL
Activation 0 0 0

G
au

ss
ia

n
U

nc
er

ta
in

ty

Lower Pinch
Violation 0 0 18

Upper Pinch
Violation 0 2 0

DSL
Activation 0 0 0





Chapter 7

Results and Discussion

The proposed methods are evaluated against the DA-PoPA, which is the most recent state of

the art over 8760 h with the HT sized at 15m3 capacity under non-Gaussian and Gaussian

load uncertainty. The PV uncertainty is of normally distributed throughout the investigation.

The performances of the methods are investigated and analysed on a long term basis over

8760 h. Also, a sensitivity The BAT, HT, and WT are initialised to 80%, 80% and 30%

respectively. Throughout this Chapter, percentage increase or decrease are discussed are

benchmarked against the performance of the DA PoPA. The HESS parameters are shown in

Table 7.1.

Table 7.1 HESS Microgrid Parameters [27]

System Components Specification
Load (peak) 2200 W

PV (66.64 W rated power) 217
DSL 2210 W
BAT 3000 Ah / 12 V
FC 3000 W
EL 4000 W
HT 30 bar, 15 m3

ηCV ,ηPV ,ηFC,ηEL 0.95, 0.10, 0.87, 0.87
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The performance indices utilised in this Chapter to evaluate the energy management

approaches are with respect to violating the Sl
Lo (30%), Sl

U p (90%) Pinch constraints and

DSL activation as defined in Chapter 4, section 4.3.

7.1 Long term (8760h) Operation

7.1.1 Non-Gaussian Uncertainty with HT Capacity of 15m3

The results showing the performances of the deterministic methods; DA, Adaptive and

Kalman+Adaptive PoPA are presented in Table 7.2a. The performances of the probabilistic

methods; P+Adaptive, RLS+P without bias and RLS+P with a biased linear model are

presented in Table 7.2b. While the machine learning-based PoPA methods; RL, DRL and

A2C+P are presented in Table 7.2c.

7.1.1.1 DA PoPA

From Table 7.2a, the SOAccBAT controlled by the DA PoPA violated the SU p(SOAccn
BAT >

90%) and SLo(SOAccn
BAT <30%) pinch limits 756 and 804 times respectively with the EL

activated 265 times. Consequently, as a result of over-discharging the SOAccBAT beyond

20%, the DSL was activated 229 times, and the FC was activated 264 times. The SOAccn
BAT ,

SOAccn
HT responses and corresponding evolution of the probability of SLo and SU p violation

over the 8760 h are shown in Figures 7.1, 7.2 and 7.3. From Figure 7.1, the SOAccn
BAT

controlled by the DA PoPA showed sensitivity to RES intermittency. During the first three

and last month’s where RES is considerably intermittent due to the partial absence of sunshine,

the SOAccn
BAT , frequently dipped below the SLo even so below 20%. Also, during the months

of peak sunshine, the SOAccn
BAT frequently violated the SU p. This was largely due to the

effect of uncertainty, which introduced forecast error making the DA-PoPA energy targeting

inadequate. Nevertheless, the performance of the DA PoPA with regards to violating the
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SLo was only better than the RLS+P (A=Ax+B). Similarly, the DA performed better than

P+Adaptive and A2C+P PoPA concerning SU p violation only.

7.1.1.2 A2C+P PoPA

The A2C+P PoPA method which had the worst SU p violation of 908 times had a very low SLo

violation of 55 times which was only comparable to the performances of the RL +Adaptive

and DRL+Adaptive PoPA which both had 51 and 11 times as shown in Table 7.2c. The

SOAccn
BAT , controlled by the A2C+P PoPA EMS violated the SU p steadily as shown in Figure

7.27 and consequently the probability of SU p violation maintained a steep rise with SLo

constant at zero until 8000h as shown in Figure 7.29. The A2C+P activated the DSL 19

times and the FC 4226 times while the EL was never activated as shown in Table 7.2c. The

corresponding response of the SOAccn
HT is shown in Figure ref A2C6.3, which was 66.3% at

8760 h.

7.1.1.3 RLS+P PoPA (y=Ax+B)

Furthermore, RLS+P (y=Ax+B) which had the worst SLo violation of 1217 times, con-

sequently also activated the DSL 673 times and the FC 2754 times. Thus, benchmarked

against the performance of the DA PoPA utilising the RLS+P (y=Ax+B), led to 51.4% in

SLo violation, 194% and 432% increase in DSL and FC activation as shown in Table 7.2b.

Thus, despite a decently sized HT of 15m3 (initialised with SOAccn
HT at 80%) the SOAccn

HT

violated the 10% constraint limit on the HT; hence, causing the unavailability of the FC in

periods requiring energy supply as shown in Figure 7.17. Nevertheless, the RLS+P (y=Ax+B)

activated the PV 8582 times, which was the record high and also a 7.2% increase compared

to the DA PoPA which activated the PV 8004 times as shown in Table 7.2b. However, Figure

7.18 which shows the progression of the probability of violating the SLo and SU p insightfully

reveals that the bulk of the SLo violation occurred after 5979 h as seen by the immediate steep
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rise in the SLo probability of violation from 4% to 14% due to lack of H2 carrier in the HT.

Therefore, investigating further with HT capacity of 25m3 confirms this assertion as the SLo

violation reduces to 197 times which is a 75.5% decrease as shown in Table 7.2b. Also, the

SU p violation and DSL activation were decreased by 42.2% and 67.7% as well. Typical of a

robust approach; the RLS+P (A=Ax+B) algorithm requires more allocation of H2 resources,

which will consequently increase operational cost in contrast to the rest of the methods.

7.1.1.4 P+Adaptive PoPA

The probabilistic approach P+Adaptive PoPA which violated the SLo and SU p 321 and 828

times, was only better in performance than the A2C+P and RLS+P (y=Ax+B) concerning

the SU p and DA-PoPA concerning the SLo indices. The DSL, FC and EL were activated by

the P+Adaptive PoPA EMS 126, 1935, and 926 times respectively, as shown in Table 7.2b.

Therefore, the consequence of the P+Adaptive PoPA using the FC robustly to maintain the

PGCC bound led to premature exhaustion of the H2 in the HT as the SOAccn
HT dipped below

10% at 7500 h, as seen in Figure 7.11. Consequently, the FC to become unavailable for

dispatch at 7500h. Nevertheless, as shown in Figure 7.10, the P+Adaptive PoPA showed

sensitivity in curtailing the excessive overcharging of the BAT. Furthermore, the probability

of violating the SU p had a steep rise even in the months of poor sunshine and even so steeper

in the periods of peak sunshine, as shown in Figure 7.12. Therefore, an adaptive mechanism

to correct the prior distribution should suffice as this would adjust the prior distribution or

the estimated PGCC bound based on the residual error to match the reality.

7.1.1.5 Adaptive PoPA

The adaptive PoPA violated the SU p 271 times and as well violated the SLo 303 times.

However, the DSL was activated only once in 8760h, as shown in Table 7.2a. Nevertheless

the performance of the Adaptive PoPA with regards to SLo violation was only better than



7.1 Long term (8760h) Operation 161

that of the P+Adaptive and the DA PoPA which translated to a 66% decrease in the violation

against the DA PoPA. Furthermore, a 66% decrease in the violation of the SU p and 6%

increase in PV penetration were achieved with the Adaptive PoPA. However, the FC and

EL were activated 95% and 150% more than that of the DA PoPA due to the closed-loop

feedback mechanism, which aimed at negating the uncertainty. Figures 7.4, 7.5 and 7.6

shows the SOAccBAT , SOAccHT and the probability of violating the pinch limits respectively.

7.1.1.6 RLS+P PoPA (y=Ax)

In Table 7.2b, the RLS+P is shown to have had an enhanced performance compared to the

P+RLS as the SLo which was violated 198 times and SU p 666 times amounted to a 15% and

20% reduction respectively. Consequently, despite a 75% reduction in the SLo violation, the

SU p violation only improved by 12% against the performance of the DA-PoPA. Nevertheless,

the improvement is as a result of the residual error correction factor, which was based on the

simplest linear model y=Ax. Again, with the RLS+P (y=Ax) PoPA, the effect of the robust

bound led to the accelerated exhaustion of the H2 as shown in Figure 7.14 only after which

the violation of the SLo had a steep rise from 2.2% to 7% as shown in 7.15. The response of

the BAT over 8760 h is shown in Figure 7.13.

7.1.1.7 Kalman+Adaptive PoPA

The Kalman+Adaptive PoPA had 64 SLo and 265 SU p violations, which constituted 92% and

65% reduction respectively in comparison to the performance of the DA PoPA. Furthermore,

the DSL was never activated, as shown in Table 7.2a. Although the DRL+Adaptive and

A2C+adaptive PoPA had fewer violations of 11 and 55 times compared to the Kalman

+Adaptive PoPA, only the RL+Adaptive had superior performance concerning both pinch

limits. The activation of the FC, EL and PV were 521%,255% and 6% respectively compared
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to the DA PoPA. Figure 7.7, 7.8 and 7.9, shows the SOAccHT , SOAccHT and the probability

of violating the pinch limits respectively.

7.1.1.8 RL +Adaptive PoPA

The RL+Adaptive had the best performance with regards to clipping the SOAccBAT from

violating the SLo which was a 70% decrease compared to the performance of the DA PoPA.

Consequently, the DSL was never activated; hence, a 100% reduction in fossil fuel emission

was achieved. Also, concerning the SLo violation, the performance of the RL+Adaptive,

which attained a 94% reduction was only second to the 99% reduction achieved by the

DRL+Adaptive PoPA when compared to the DA PoPA. However, the remarkable performance

of the RL+Adaptive PoPA was accompanied by 1184% and 1237% increase in FC and EL

activation frequency in contrast to that of the DA PoPA. Nevertheless, this increased frequency

is justified. Figure 7.19, 7.20 and 7.21, shows the SOAccHT , SOAccHT and the probability of

violating the pinch limits respectively. Furthermore, the cumulative reward plot is shown in

Figure 7.22 and the the red line represents the smoothed average of the cumulative reward.

Also, Figure 7.23 depicts the corresponding 3D surface plot of the Q-Table derived from the

8760 h operation of the HESS with a maximum reward of 25.5 units.

7.1.1.9 DRL+Adaptive PoPA

The DRL +Adaptive PoPA had the best performance concerning the violation of the SLo. The

probability of violating the SU p has an impulse rise from 0 to 0.01 between 300 h to 400 h.

Thereafter, the SLo is maintained at 0.01% until 6000h, and concurrently, probability of the

SU p violation gradually increased and became steeper between 2000h: 6500h, as shown in

Figure 7.26. Nevertheless, in counteracting the effects of uncertainty, the DRL+Adaptive

PoPA activated the FC the most by 5038 times as against 296 and 577 times with DA and

Adaptive PoPA respectively, as shown in Table 7.2c. Similarly, the EL was activated 3503



7.1 Long term (8760h) Operation 163

times, which was only fewer than the RL+Adaptive PoPA’s 3802 times and a 1208% increase

concerning the performance of the DA PoPA. Nevertheless, the DSL was never activated;

hence, a 100% decrease in fossil fuel emission impact. The BAT and HT response are shown

in Figure 7.24 and Figure 7.26, respectively.

7.1.1.10 Summary

The deterministic PoPA methods; Adaptive, Kalman+Adaptive, the probabilistic PoPA meth-

ods; P+Adaptive RLS-P PoPA (y=Ax), RLS-P PoPA (y=Ax+B) and the machine learning-

based PoPA methods; RL+Adaptive, DRL+Adaptive, A2C+P, have all been compared under

non-Gaussian stochastic load and Gaussian stochastic PV scenario. Therefore, benchmarking

these methods against the performance of the DA PoPA, the most performing methods on

all front; Adaptive, Kalman+Adaptive, RL+Adaptive, DRL+Adaptive, RLS-P PoPA (y=Ax)

PoPA led to a reduction in SLo violation by 66%, 92%, 94%, 99% and 75% as well as a

decrease in the upper limit violation by 60%, 65%, 70%, 38% and 12% respectively. The re-

duction in SU p violation by the Adaptive, Kalman+Adaptive, RL+Adaptive, DRL+Adaptive,

RLS-P PoPA (y=Ax) methods led to an increase in PV penetration by 6%,6% and 7%,4%

and 1% respectively, primarily due to the decreased violation of the PV (ON/OFF) pro-

tection constraint. These safety constraints can be found in the APPENDIX. Additionally,

the DSL was activated only once with the Adaptive PoPA and was never activated with

the Kalman, RL+Adaptive and DRL+Adaptive PoPA. Consequently, a reduction in fossil

fuel emission by 99.59%,100% and 100%,66% and 100% was achieved with the Adaptive,

Kalman+Adaptive, RL+Adaptive, DRL+Adaptive, RLS-P PoPA (y=Ax) EMS respectively.

Also, the activation of the FC and EL with the Adaptive PoPA was seen to have increased

by 95% and 150% and similarly for the Kalman +Adaptive PoPA, it was 520% and 255%

respectively, compared to the DA-PoPA.
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The RL+Adaptive which had the highest PV penetration of 7% consequently also had

the highest increase in EL activation, which was 1273%. Similarly, the DRL+Adaptive PoPA

had the highest FC activation frequency which was at 1602% as well as the least SLo violation

of 99% compared to the performance of the DA PoPA as summarised in Figure 7.30.

The A2C+P PoPA which had a decent third-best performance concerning the SLo violation

of 55 times and accompanied by the DSL being activated 19 times, had the worst performance

concerning violating the SU p 908 times which is a 20% increase in contrast to the DA

PoPA. Similarly, the probabilistic method RLS-P PoPA which utilised a simple linear model

(y=Ax+B), had the worst performance concerning the SLo only because of excessive usage

of the H2 carrier which was revealed when the HT was increased from 15m3 to 25m3.

Therefore, increasing the complexity of the simple residual error correction based on the

error correction can introduce over-fitting on past information which may not match the reality

and conversely result in overly tracking of the error due to energy uncertainty. Thus, the

RLS-P PoPA (y=Ax), which used the simplest linear model, had a more decent performance.

Although the probabilistic approach requires accurate information on the distributions of the

uncertainty.Nevertheless, the recursive error correction mechanism, which is based on the

ordinary least squares approach, provides an unbiased estimate on the forecast error caused

by uncertainty.
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Fig. 7.1 8760h BAT response with DA PoPA
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Fig. 7.2 HT and WT response for 8760h with DA PoPA
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Fig. 7.3 Probability of Lo and Up violation in 8760h with DA PoPA
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Fig. 7.4 8760h BAT response with Adaptive PoPA
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Fig. 7.5 HT and WT response for 8760h with Adaptive PoPA
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Fig. 7.6 Probability of Lo and Up violation in 8760h with Adaptive PoPA
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Fig. 7.7 8760h BAT response with Kalman+Adaptive PoPA
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Fig. 7.8 HT and WT response for 8760h with Kalman+Adaptive PoPA
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Fig. 7.9 Probability of Lo and Up violation in 8760h with Kalman+Adaptive PoPA
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Fig. 7.10 8760h BAT response with P-PoPA
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Fig. 7.11 HT and WT response for 8760h with P-PoPA
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Fig. 7.12 Probability of Lo and Up violation in 8760h with P-PoPA
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Fig. 7.13 8760h BAT response with RLS+P PoPA
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Fig. 7.14 HT and WT response for 8760h with RLS+P PoPA
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Fig. 7.15 Probability of Lo and Up violation in 8760h with RLS+P PoPA
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Fig. 7.16 8760h BAT response with RLS+P PoPA with bias
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Fig. 7.17 HT and WT response for 8760h with RLS+P PoPA with bias
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Fig. 7.18 Probability of Lo and Up violation in 8760h with RLS+P PoPA with bias
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Fig. 7.19 8760h BAT response with RL+Adaptive PoPA
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Fig. 7.20 HT and WT response for 8760h with RL+Adaptive PoPA
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Fig. 7.21 Probability of Lo and Up violation in 8760h with RL+Adaptive PoPA
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Fig. 7.22 Cumulative Reward during the operation of the HESS
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Fig. 7.23 3D Surface Plot of the RL Cumulative Reward after 8760 h operation of the HESS
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Fig. 7.24 8760h BAT response with DRL+Adaptive PoPA
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Fig. 7.25 HT and WT response for 8760h with DRL+Adaptive PoPA
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Fig. 7.26 Probability of Lo and Up violation in 8760h with DRL+Adaptive PoPA
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Fig. 7.27 8760h BAT response with A2C+P PoPA
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Fig. 7.28 HT and WT response for 8760h with A2C+P PoPA
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Fig. 7.29 Probability of Lo and Up violation in 8760h with A2C+P PoPA

7.1.2 Gaussian Uncertainty with HT Capacity of 15m3

7.1.2.1 A2C+P PoPA

The A2C+P despite being the most computationally intensive and supposedly the most

robust algorithm which has been proposed, had the worst SLo and DSL performance which

resulted in 2200 SLo violations and the DSL being activated 1073 times as shown in Figure

7.36. The stochastic effect of the uncertainty, continuous hyper-dimensional input state and

continuous action, coupled with a mismatch between the actual probability density of the

uncertainty and the probabilistic model used to train the A2C+P, can result in such suboptimal

performance. Nevertheless, the A2C+P had a better SU p violation performance than the DA

and the P+Adaptive which had the second and worst performance respectively.

7.1.2.2 DA-PoPA

The DA PoPA which had 867 SLo violations, 777 SU p violations and activated the DSL 108

times recorded the worst SLo performance which was only second to the A2C+P PoPA as

shown in Figure 7.36. However, the SU p violation performance was only better than that of
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the P+Adaptive, which was the worst. Nevertheless, the DA-PoPA had the least FC and EL

activation of 264 times and 265 times, respectively, as shown in Figure 7.36.

7.1.2.3 RLS-P PoPA (y=Ax+B)

The RLS-P PoPA with biased had the second worse SLo performance, which was only better

than the A2C+P PoPA, as shown in Figure 7.36. Nonetheless, a further investigation which

was carried out by increasing the HT capacity from 15m3 to 25m3 revealed the main reason

for the suboptimal performance of the RLS-P with a biased linear model was as a result of

limited H2 resources. Therefore, with the HT at 25m3, the RLS-P PoPA with a first-order

residual linear model, had an improved performance as the SLo violation and DSL activation

1023 reduced from1023 to 235 times and from 510 to 86 times respectively. However, the SU p

violation increased from 217 to 448 times. Nevertheless, the RLS-P PoPA with a first-order

linear residual model as with a typical probabilistic approach introduces robustness which

is only achieved at the cost of increased usage of H2 resources, hence, with the approach is

omitted from further investigation.

7.1.2.4 P+Adaptive PoPA

The P+Adaptive PoPA had a better performance index of 202 times concerning the SLo

compared to the DA and adaptive PoPA, which both had 876 and 209 violations. However,

the P+Adaptive had the worst SU p violation of 813 times, which was a 5% increase compared

to the DA PoPA’s performance. Also, the DSL was activated 104 times, which was only

marginally better than the DA PoPA’s performance of 108 times, as shown in Figure 7.36.

7.1.2.5 Adaptive PoPA

Though the Adaptive PoPA had 209 SLo violations, which was a 76% decrease in contrast to

the DA PoPA’s performance, and the DSL was never activated. Furthermore, the Adaptive
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PoPA had a better SLo and SU p violation performance of 209 and 287 times respectively

compared to the DA which had 867 and 777 and the A2C+P PoPA which had 2200 and 746

times respectively as shown in Figure 7.36. Nevertheless, the Adaptive which had a better

SU p violation performance than the DA, also performed better than the RLS-P PoPA with

linear bias model concerning the SU p violation as shown in Figure 7.36.

7.1.2.6 RLS-P PoPA (y=Ax)

The RLS-P PoPA with the simplest residual error linear model (y=Ax), had the second-best

SLo performance of 15 times which was a tremendous improvement to the P+Adaptive

PoPA which had 202 SLo violations as shown in Figure 7.36. Also, comparing the with the

performance of the DA to the RLS-P PoPA (y=Ax), the SLo violation was reduced by 98%,

and the SU p violation was also decreased by 22%. Furthermore, DSL was never activated;

hence, a 100% reduction in fossil fuel emission was achieved with the RLS-PoPA. The FC

and EL which were activated 1480 and 900 times was only utilised more compared to the

DA and Adaptive PoPA EMS as shown in Figure 7.36.

7.1.2.7 Kalman+Adaptive PoPA

The Kalman+Adaptive PoPA violated the SLo 94 times, amounted to 89% decrease in contrast

to the DA PoPA. The SU p and SLo violations of the Kalman+Adaptive PoPA was only better

than the DA, Adaptive, P+Adaptive and A2C+P PoPA. The FC and EL activations were 1607

and 1113 times, respectively, without the DSL being activated, as shown in Figure 7.36. The

increased frequency of FC and EL activation, which were 509% and 320% respectively in

contrast to the DA PoPA’s, is obviously as a result of counteracting the projected uncertainty.
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7.1.2.8 RL+Adaptive PoPA

The RL +Adaptive PoPA despite having the highest PV penetration of 7% increase conse-

quently had the best SU p violation performance, which was a 72% decrease in contrast to the

DA-PoPA. Furthermore, the DSL was never activated, and therefore, fossil fuel usage and

emission were reduced by 100%. However, the enhanced performance comes at a trade-off

with a higher frequency of FC and EL activation, which was only less than the DRL+Adaptive

PoPA.

7.1.2.9 DRL+Adaptive PoPA

The DRL+Adaptive PoPA had the best SLo violation of 12 times, which was a 99% decrease

compared to the DA PoPA’s performance and consequently, the DSL was never activated.

Nevertheless, the DRL had a SU p performance indices, which was only better than the DA,

P+Adaptive and the RLS-P PoPA as shown in Figure 7.36. Furthermore, in counteracting the

effects of uncertainty, the FC and EL had the most activation of 1810% and 1195% increase

shown in Figure 7.30 with the DRL +Adaptive PoPA EMS.

7.1.2.10 Summary

The proposed methods were compared with the HT sized to 15m3 under Gaussian uncer-

tainty. The Adaptive PoPA which utilised closed-loop feedback to counteract the effects

of uncertainty had a better performance than the DA PoPA and the A2C+P PoPA. The

Kalman+Adaptive PoPA had a marginally better performance overall than the Adaptive

PoPA. The A2C+P PoPA algorithm, which is the most computationally intensive and utilises

two DNN (Actor-Critic) within the RL based probabilistic PoPA framework, had the worst

performance overall. The suboptimal performance of the A2C+P PoPA could be many of

several technical reasons which range from the hyper-parameters tuning of the NN, limited

training of the NN with a vast amount of data for proper generalisation and the presence of
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stochasticity in the continuous state input. Since the A2C+P PoPA necessitates a substantial

computational burden, the A2C+P PoPA has been omitted from further investigation. There-

fore, the suboptimal performance of the A2C+P PoPA will be investigated in the future. The

machine learning approaches which utilised the deterministic Adaptive PoPA; RL+Adaptive

and DRL+Adaptive had the best SU p and SLo performances respectively. In conclusion,

the Probabilistic based Adaptive PoPA EMSs; P+Adaptive, RLS-P (y=Ax) particularly the

RLS-P PoPA (y=Ax+B) was shown to have robust performance only if the HT is sized greater

than 25m3 as the probabilistic bounds necessitate a trade-off in resources for robustness to

uncertainty. Nevertheless, the RLS-P PoPA with a biased linear model will be omitted from

further investigation since its performance is impacted the most by the unavailability of H2

carrier.
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Table 7.2 Performance metrics of the PoPA methods for one year (8760 Hrs) under Non-
Gaussian uncertainty with HT capacity of 15m3

(a) Investigation of DA, Adaptive and KL+Adaptive PoPA

Performance Indices Day - Ahead
PoPA

Adaptive
PoPA

Kalman+Adaptive
PoPA

Lower Pinch violation
(SOAccn

BAT < 30%) 804 271 64

Upper Pinch violation
(SOAccn

BAT >90%) 756 303 265

FC start-stop (cycles/year) 296 577 1837
EL start-stop (cycles/year) 262 654 931

DSL start-stop (cycles/year) 229 1 0
PV start-stop (cycles/year) 8004 8457 8495

(b) P+Adaptive PoPA, RLS-P PoPA, RLS-P PoPA with bias

Performance Indices P+Adaptive PoPA RLS-P PoPA
(Y = Ax)

RLS-P PoPA
(Y = Ax+B)

Lower Pinch violation
(SOAccn

BAT < 30%) 321 198 1217

Upper Pinch violation
(SOAccn

BAT >90%) 828 666 178

FC start-stop (cycles/year) 1935 2281 1574
EL start-stop (cycles/year) 926 1253 1356

DSL start-stop (cycles/year) 126 79 673
PV start-stop (cycles/year) 7932 8094 8582

(c) Investigation of RL+Adaptive PoPA, DRL+Adaptive PoPA and A2C+P PoPA

Perfomace Indices RL+Adaptive
PoPA

DRL+Adaptive
PoPA A2C+P PoPA

Lower Pinch violation
(SOAccn

BAT < 30%) 51 11 55

Upper Pinch violation
(SOAccn

BAT >90%) 226 467 908

FC start-stop (cycles/year) 3802 5038 4226
EL start-stop (cycles/year) 3503 3426 0

DSL start-stop (cycles/year) 0 0 19
PV start-stop (cycles/year) 8534 8293 7852
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Table 7.3 Performance metrics of the PoPA methods for one year (8760 Hrs) under Gaussian
uncertainty with HT capacity of 15m3

(a) Investigation of DA, Adaptive and KL+Adaptive PoPA

Perfomace Indices Day - Ahead
PoPA

Adaptive
PoPA

Kalman+Adaptive
PoPA

Lower Pinch violation
(SOAccn

BAT < 30%) 867 209 94

Upper Pinch violation
(SOAccn

BAT >90%) 777 287 229

FC start-stop (cycles/year) 264 550 1607
EL start-stop (cycles/year) 265 264 1113

DSL start-stop (cycles/year) 108 0 0
PV start-stop (cycles/year) 7983 8473 8544

(b) P+Adaptive PoPA, RLS-P PoPA, RLS-P PoPA with bias

Performance Indices P+PoPA RLS-P+PoPA
Y = Ax)

RLS-P+PoPA
Y = Ax+B)

Lower Pinch violation
(SOAccn

BAT < 30%) 202 15 1023

Upper Pinch violation
(SOAccn

BAT >90%) 813 609 217

FC start-stop (cycles/year) 2290 1480 2754
EL start-stop (cycles/year) 1149 900 1411

DSL start-stop (cycles/year) 104 0 510
PV start-stop (cycles/year) 7947 8151 8543

(c) Investigation of RL+Adaptive PoPA, DRL+Adaptive PoPA and A2C+P PoPA

Perfomace Indices RL+Adaptive
PoPA

DRL+Adaptive
PoPA

A2C+P
- PoPA

Lower Pinch violation
(SOAccn

BAT < 30%) 38 12 2200

Upper Pinch violation
(SOAccn

BAT >90%) 216 470 746

FC start-stop (cycles/year) 3087 5043 110
EL start-stop (cycles/year) 3111 3433 916

DSL start-stop (cycles/year) 0 0 1073
PV start-stop (cycles/year) 8490 8290 8014

7.2 Sensitivity Analysis of the PoPA Schemes to HT sizes

7.2.1 Non-Gaussian Case Study

A sensitivity analysis was carried out to investigate the impact of H2 resources availability

with the EMSs under non-Gaussian uncertainty by varying the HT capacity between 15, 10
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and 7.5m3 as shown in Figure 7.31 and between 5, 2.5 and 1m3 as shown in Figure 7.32. The

performances indices concerning SU p, SLo violations and DSL activation of the proposed

EMSs, are benchmarked and reported as percent change (increase or decrease) against the

performance of DA PoPA with HT capacity of 15m3 under non-Gaussian uncertainty, as

shown in Figures 7.33-7.35respectively. A percentage increase is indicated by a positive

magnitude and a percentage decrease has been indicated by a negative magnitude. Neverthe-

less, the A2C+PoPA algorithm, which has the most significant computational complexity

necessitates the need for a state of the art computer processor considerably faster than an

intel i5 and with a RAM greater than 64GB. Therefore, the A2C+P has now been omitted

from further investigation in the sensitivity analysis, as the investigation will be carried out in

future work when the computational assets become available. Also, the RLS-P PoPA which

utilised the linear model (y=Ax+B) has been omitted, mainly due to excessive resources

constraint, which required the HT to be sized more significantly than 25m3 in contrast to the

rest proposed PoPA methods.

The RL+Adaptive PoPA scheme with HT capacity at 10m3, had the fewest SLo and SU p

violations of 68 and 256 times respectively, with the DSL never activated as depicted in

Figure 7.31. Particularly, the RL+Adaptive PoPA which had the most significant reduction in

SLo violation for all sizes, except at 1m3 where the Kalman +Adaptive had a 1% improvement

from the RL+Adaptive’ 77% decrease as shown in Figure 7.33. Though for HT capacity

of 5m3 the RLS+P and RL+Adaptive both had a similar performance of 64% decrease in

SLo violation, at 1m3 the RL+Adaptive, P+Adaptive, RL+Adaptive PoPA all had the same

performance of 77% decrease as shown in Figure 7.34. However, the performance of the

P+Adaptive PoPA, which had 1371 SLo violation and 601 DSL activation was the worse

performing in the 10m3 HT size category. The RLS-P PoPA had the second-worst SLo

violation and DSL activation of 1241 and 601 times, respectively, as shown in Figure 7.31.

Although the P+Adaptive PoPA had the least performing in regards to SU p violation at HT
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sizes 15 and 10m3, the DRL+Adaptive had the least reduction in SU p violation for all sizes

below 10m3 as shown in Figure 7.33. With a reduction in HT capacity from 15 to 10m3,

the P+Adaptive and the RLS+P PoPA significantly had the most DSL activation which was

210% and 193% respectively as shown in Figure 7.35. This underscores the trade-off of the

robustness, which requires more resources compared to the rest of the methods.

The best performing in the 10m3 HT size, were the RL+Adaptive and Adaptive PoPA

which never activated the DSL and was closely followed by the Kalman+Adaptive and

then the DRL +Adaptive which had a 93% and 59% reduction as shown in Figure 7.35.

The DA-PoPA’s violation of the SLo and SLo as well as the activation of the DSL remained

unchanged at 804,756 and 299 times respectively despite the reduction in HT capacity from

15m3 - 5m3 as shown in Figure 7.31-7.35. Nevertheless, except for HT sized at 15m3 where

the P+Adaptive had the worst violation of 828 times, the DA PoPA significantly had the

worst SU p violation of 756 times for the rest of all the HT sizes below 15m3. The Kalman

Adaptive PoPA which had the second-best performance, had SLo and SU p violation of 264

and 87 times, although the DSL was activated 15 times with HT at 10m3 in contrast to it

never being activated with the HT sized at 15m3.

Decreasing the HT capacity from 10 to 7.5m3, the RL+Adaptive PoPA activated the DSL

85 times in contrast to once by the Adaptive PoPA, as shown in Figure 7.31. Nevertheless, for

HT sizes 10 and 7.5m3, the RL+Adaptive had the best performance amounting to 92% and

70% decrease in SLo violation. The RL+Adaptive PoPA also had the best performance which

was only second the DRL+Adaptive when the HT capacity was 15m3. The Adaptive PoPA’s

performance concerning SU p and SLo violation as well as DSL activation, which remained

unchanged with HT capacity varied from 15 to 7.5m3 noted the best fossil fuel impact at

7.5m3, as the DSL was never activated as shown in Figure 7.35.

The performance of the Adaptive PoPA for the SLo violation was the best for HT capacity

of 5m3 and was only second to the performance of the DA PoPA for HT capacity of 2.5m3
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and 1m3 as shown in Figure 7.33. Furthermore, the Adaptive PoPA had the best fossil fuel

reduction in the HT capacity of 7.5m3 as the DSL was activated only once compared with the

RL+Adaptive PoPA which had the best performance concerning the SLo and SU p violation

but activated the DSL 85 times. The least performing remained the P+Adaptive and the

RLS+P PoPA with 276% and 252% increase in the use of fossil fuel resources respectively.

The DA PoPA despite having its most significant change in performance considering

HT capacities of 2.5m3 and 1m3, was, however, had the least the SLo violations of 75% and

153% increase respectively as shown in Figure 7.34. In contrast, the P+Adaptive PoPA had

the worst SLo violation of 297% for HT capacity of 2.5m3 as well as 354% for HT capacity

of 1m3 respectively, as shown in Figure 7.34. The RL+Adaptive and Kalman +Adaptive

PoPA exhibited a significant change in performance when the HT was changed from 7.5

to 5m3. While the DRL+Adaptive PoPA exhibited a significant change when the HT was

changed from 10 to 7.5m3. Similarly, the P+Adaptive which had the least and second

least performance SLo violation at sizes less than 15m3, exhibited a significant change in

performance when the tank size was changed from 15 to 10m3 as shown in Figures 7.31-7.35.

7.2.2 Summary

From the investigation and analysis, as the HT capacity was decreased from 15 to 1m3 in

steps of 2.5m3, the SU p violation indicated a decreasing trend while an increasing trend was

revealed with the SLo violation and the DSL activation. The PoPA methods have all shown

varying degrees of strengths and weakness against the DA-PoPA benchmark over HT sizes

of 15 to 1m3 and should primarily be considered for applications with necessary trade-off

depending on the HT capacity or H2 autonomy, computational complexity and interest in

the specific performance indices. Though, the DA-PoPA’s violation of the SU p remained

considerably unchanged despite the HT size variation. This clearly underscored the weakness

of the DA-PoPA to counteract uncertainty in the event of unanticipated excess or deficit
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energy not considered prior to the daily energy target planning. Nevertheless, with negligible

trade off in DSL performance, the RL+Adaptive PoPA is arguably the optimal PoPA method

when the HT is decently sized in the range of 15m3 to 7.5m3.

In conclusion, the probabilistic methods; P+Adaptive and RLS+P PoPA, which required

a larger amount of H2 resources for a robust preventive strategy on the overall, had an

enhanced performance only when the H2 was adequately available (i.e. HT > 15m3) as

shown in Figures 7.31-7.35. The P+Adaptive and RLS+P PoPA had the most significant

change in performance when the HT capacity was change from 15m3 to 10m3. Similarly,

Kalman+Adaptive, RL+Adaptive and DRL+Adaptive were impacted the most when the HT

capacity was change from 15m3 to 5m3 and the Adaptive PoPA at 2.5m3.

7.2.3 Gaussian Case Study

A sensitivity analysis was performed in order to investigate the behaviour of the proposed

methods with limited availability of H2 resources by varying the HT capacity from 15 to

7.5m3 and from 5 to 1m3 in steps of 2.5m3 as shown in Figures 7.36-7.37 respectively, under

Gaussian uncertainty. The results of the proposed methods are presented as a percentage

change (increase or decrease) benchmarked against the DA-PoPA method, which was sized

with HT capacity of 15m3 under Gaussian uncertainty. A percentage increase is indicated by

a positive magnitude, and a decrease is indicated by a negative magnitude. The performances

for the HT capacity range 15 to 1m3 concerning the SU p and SLo violations are shown in

Figures 7.38 - 7.39 respectively while the DSL activation are shown in Figure 7.35. The A2C

and the RLS+P PoPA with a linear bias model (y=Ax+B) have both been excluded from the

sensitivity analysis for the same reasons which were highlighted in section 7.2.1.

The performance of the DA, Adaptive, Kalman +Adaptive and RL+Adaptive PoPA,

remained unchanged when the HT was decreased from 15m3 to 10m3, and more so, the

performance of the DA-PoPA remained consistent throughout the investigation despite
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dropping the HT capacity from 15 to 1m3. Interestingly, the performance of the DA and

Adaptive PoPA were similar to each other and remained unchanged with the HT sized at

7.5m3 and 5m3.as shown in Figures 7.36-7.40.

Generally, the DA-PoPA significantly had the worst performance concerning the SU p

violation for all HT sizes (10 to 1m3) except for 15m3 HT capacity, where the P+Adaptive

PoPA had the worst performance amounting to a 5% increase. Nevertheless, the RL+Adaptive

which realised a 72% and 96% decrease in SU p and SLo violation respectively, had the best

performance for 10m3 HT size, with Kalman+Adaptive PoPA having the second-best indices

as shown in Figure 7.38-7.39. Furthermore, with the HT capacity at 10m3, the Adaptive,

Kalman+Adaptive and RL+Adaptive never activated the DSL, while the DRL+Adaptive

had a 12% reduction. The P+Adaptive and the RLS-P PoPA had the least and second least

performance which was a 493% and 42% increase in DSL activation respectively with the HT

sized at 10m3 as shown in Figure 7.40. Besides, the P+Adaptive showed the most significant

sensitivity to a reduction in HT capacity, when the HT was re-sized to 10m3.

Decreasing the HT from 10 to 5m3 the performance of the DA remained unchanged.

Similarly, the Kalman +Adaptive PoPA’s performance remained unchanged with 10 to 7.5m3

HT capacity. Furthermore, the performance of the DA and Adaptive PoPA were significantly

the same when the HT capacity was 7.5m3 and 5m3, as shown in Figure 7.36. The DA

PoPA and the Adaptive PoPA had the worst SU p violation at 0%, while the P+Adaptive

which the most DSL activation and consequently the worst violation of the SLo constraint

as shown in Figure 7.38-7.40. The RLS-P PoPA performed better concerning the SLo and

SU p violations when the HT sized was 7.5m3. However, the DRL+Adaptive PoPA had a

better performance than the RLS-P with regards to fewer DSL activation only. Nevertheless,

the RLS-P performed better than the DA, Adaptive, P+Adaptive, and DRL+Adaptive PoPA

concerning the SLo violation with the HT sized to 7.5m3, as shown in Figure 7.36. The

DRL+Adaptive and RLS-P PoPA showed the most significant decline in performance with the
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HT capacity varied from 10 to 7.5m3. The Kalman+Adaptive PoPA was the best performing

concerning the SU p violation with a 71% decrease and DSL never activated with the HT

capacity at 7.5m3. However, the RL+Adaptive which had the next best performance with

regards to DSL activation and SU p violation, had the best performance with the SLo violation

only, as shown in Figure 7.38-7.40.

Furthermore, with the HT size decreased from 7.5 to 5m3, the Kalman+Adaptive PoPA

had the best performance with regards to reducing the SLo and SLo violation by 6% and

71% respectively. However, the DSL was activated 315% more than the DA and Adaptive

PoPA. The DA and Adaptive PoPA had the same performance, which was a 0% change

in the SU p and SLo with the HT sized at 5m3 as shown in Figure 7.37-7.40. At HT sizes

2.5m3 the DA had the best performance in terms of the SLo and DSL activation which were

both 0% nevertheless it had the worst SLo violation with respect to the performance of the

rest proposed methods. The P+Adaptive PoPA had the best performance with respect to

decreasing the violation of the SU p by 75% and 77% when the HT was sized to 2.5m3 and

1m3 respectively. Nevertheless, the P+Adaptive significantly violated SLo the most when HT

size was 2.5m3, with a fossil fuel usage performance which was only better than the RLS-P

and the Kalman+Adaptive PoPA for HT of 1m3.

7.2.4 Summary

The performances of the proposed methods have been investigated under Gaussian uncertainty

with varying HT capacity from 15 to 1m3 in steps of 2.5m3 sizes. The performance of the

DA PoPA remained unchanged over the range of HT capacities, typical of a DA strategy

which does not account for any occurrence of uncertainty in-between the beginning and the

end of the horizon. Nevertheless, despite the DA having a better SLo violation, as well as the

fewest and DSL usage with HT sizes 2.5m3 and 1m3 it can be seen to have the worst SU p

violation. More so, whilst the rest of the proposed methods all exhibit a decreasing trend in
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SU p violation with downsizing HT capacity, the DA PoPA which neglects uncertainty and

consequently, the derivation of dynamic EMS inside a receding horizon does not show this

trend. Therefore, for HT sizes 2.5m3 and 1m3, the Adaptive PoPA which had the next best

performance is arguably the preferred EMS under Gaussian uncertainty for these sizes. For

HT of 5m3, the adaptive PoPA though has a better performance with DSL usage had the

same performance as the DA PoPA, hence the Kalman +Adaptive PoPA though activated the

DSL 315% more arguably had the best performance when considering a trade-off in overall

performance indices. Nevertheless, the Kalman+Adaptive PoPA was the optimal EMS for a

7.5m3 HT size. For HT capacity 15m3 to 10m3 the RL+Adaptive PoPA is arguably the most

optimal EMS, though is closely followed by the DRL+Adaptive and the Kalman +Adaptive

PoPA which can be used with a trade-off in performance needs.

In conclusion, the performance of the DA PoPA correlates with its past performance

under non-Gaussian uncertain, which was presented in Section 7.2.1 in this Chapter. The

investigation revealed the consistent behaviour of the proposed PoPA when HT capacity

is varied from 15m3 to 1m3 under Gaussian and non-Gaussian uncertainty. The Kalman

+Adaptive PoPA showed improvement in performance under the Gaussian uncertainty when

the HT was sized greater then 5m3. The probabilistic methods; P+Adaptive PoPA and RLS-

P+PoPA perform significantly optimally when the HT is sized greater than 15m3. Finally,

Figure 7.41 presents a concise summary of the performance and recommendation of the

proposed algorithms.
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Fig. 7.30 Summary of the percentage change in performance of the Proposed PoPA EMSs
compared to the DA PoPA under the Non-Gaussian and Gaussian with HT capacity of 15m3
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Fig. 7.31 Sensitivity analysis of the PoPA EMS Schemes with 15,10 and 7.5m3 HT capacity
under non-Gaussian uncertainty
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Fig. 7.34 Percentage Change in SLo violation with the proposed PoPA methods from the DA
PoPA benchmark with HT Capacity of 15m3 under non-Gaussian uncertainty
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Fig. 7.35 Percentage Change in DSL activation with the proposed PoPA methods from the
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Fig. 7.36 Sensitivity analysis of the PoPA EMS Schemes with 15,10 and 7.5m3 HT capacity
under Gaussian uncertainty
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Fig. 7.37 Sensitivity analysis of the PoPA Energy Management Schemes with 5,2.5 and 1m3

HT capacity under Gaussian uncertainty
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PoPA benchmark with HT Capacity of 15m3 under Gaussian uncertainty
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Fig. 7.39 Percentage Change in SLo violation with the proposed PoPA methods from the DA
PoPA benchmark with HT Capacity of 15m3 under Gaussian uncertainty
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Fig. 7.41 Summary of the performance and recommendation of the proposed PoPA algorithms



Chapter 8

Conclusion

In this thesis, several graphical insight based EMSs algorithms in a deterministic, probabilistic-

RLS-Monte Carlo-chance constrained and RL Adaptive PoPA frameworks have been devel-

oped, compared and analyzed. The graphical EMSs were proposed in order to optimally

control and coordinate the flow of energy and/or materials between heterogeneous HESS

assets while considering the effects of uncertainty. The highlight of this study is that the

RL+Adaptive and DRL+Adaptive PoPA utilising a machine learning approach had the best

performance with respect to the violation of SLo and SU p respectively when the HT was sized

adequately above 7m3.

The effect of forecast uncertainty especially in off-grid HESS, results in the detrimental

violation of the systems operating constraints, particularly when the EMS is planned using a

DA approach. From a practical perspective the consequence of violating SU p of the BAT due

to inaccurate energy targeting, would perhaps result in excessive overcharging, overheating

and even burning/explosion. Similarly, violating SLo, results in the BAT discharging beyond

the optimal DOD which reduces the CBAT and life cycle as well as increases GHG emission via

the use of a DSL backup supply being is a non-renewable resource. Furthermore, effectively

maintaining the reliability and operating constraints in an off-grid HESS, at minimum
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resources cost are essentially the main objectives of an optimal EMS, and particularly in this

thesis.

Hence, first, a deterministic Adaptive PoPA approach is exploited which is computation-

ally efficient and requires minimum information regarding the parameters of the HESS. The

Adaptive PoPA via a graphical insight based PGCC tool is realised in a receding horizon

model predictive control framework in order to deal with electrical load demand uncertainty

and RES variability which distort the forecast PGCC. The Adaptive PoPA via a simple

state feedback mechanism compares real and forecast SoAccBAT PGCC deviation at every

sampling time interval (k). Hence, where the magnitude of deviation is greater than the 5%

preset threshold value, re-computation of the PGCC is carried out using the latest SOAccBAT .

Nevertheless, this strategy despite having the least computational complexity of O(Log(N.L))

was found to be inadequate in the event of successive recurring uncertainty which increased

the violation of the SLo and SU p operating constraints. A sensitivity analysis showed the

Adaptive PoPA is the significantly the preferred algorithm for use with HT capacity less than

5m3.

The Adaptive Pinch analysis was modified into a probabilistic adaptive Pinch which

incorporated statistical inference to deal with uncertainty caused by the stochastic load

variability by satisfying the certainty constraints. The method was validated using the Monte

Carlo simulation which entailed a uniformly random sampling of the load distribution as the

actual load.

The Kalman+Adaptive PoPA which entails estimating the likelihood of uncertainty

derived from minimising the mean squared error between the actual and predict the State

of charge of the Battery, improved the Adaptive PoPA. However, this strategy was sensitive

to the probability density function of the uncertainty as the performance of the Kalman

+Adaptive PoPA showed a superior improvement with uncertainty drawn out of a Gaussian

PDF compared to a non-Gaussian PDF.
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The PoPA is a conservative approach thus it requires accurate and precise model pa-

rameters and information to guide against erroneous EMS control and decision making in

the HESS. Therefore the probabilistic Adaptive PoPA framework was proposed to proffer

robustness using a chance constrained bounded PGCC.

The probabilistic Adaptive PoPA framework which requires the most computation, due

to the analysis performed by generating n random scenarios via a Monte Carlo simulation

from historical data, has a more superior performance than the deterministic PoPA. The

deterministic algorithms have a computational complexity of O(Log(N.L)), while the Prob-

abilistic PoPA algorithms are O(Log(n.L.N)). Generally, the probabilistic PoPA EMSs in

contrast to the deterministic PoPA algorithms require a much larger budgeting of resources

in order to proffer robustness. Therefore this trade-off between robustness and H2 resources

made the RLS-P PoPA with bias unsuitable for deployment when the HT capacity is less

than 15m3. The RLS-P PoPA which utilised the simplest linear model (y=Ax) improved the

performance of the standard P+Adaptive PoPA algorithm which did not use a residual error

correction mechanism. Nevertheless, the improvement became marginally significant as the

HT capacity decreased beyond 5m3.

Thirdly, reinforcement learning strategies; Tabular dyna-Q learning, deep Q network, and

a deep actor critic network were formulated within the aforementioned deterministic and

probabilistic Adaptive PoPA frameworks. The RL+Adaptive method incorporating a learning

agent was shown to maximise the expected reward by acting optimally if the identified pinch

targets are met. However, RL+Adaptive Pinch which had the best performance SU p violation

when the HT was sized greater then 7m3, showed increased violation of the limits when

the HT was sized less than 7m3. Nevertheless, the RL+Adaptive Pinch has been modified

to incorporate an abstract reward system regardless of hydrogen availability. Hence, the

advantage of the abstract reward formulation is easily seen since despite the reduction in

Hydrogen tank size from 15m3 to 1m3 the agent is capable of learning the optimal policy.
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The DRL+Adaptive which used a deep neural network to generalise the training experience

of the tabular based RL+Adaptive PoPA had the best performance with regards to the SLo

violation. Similarly, like the RL+Adaptive PoPA, the DRL+Adaptive performance declined

with HT capacity decreased beyond 7m3. The A2C+P PoPA which is still in the development

stage, had a decent performance only with the non-Gaussian uncertainty. However, the

A2C+P PoPA which was omitted from the sensitivity analysis due to computational burden

constraint, had the performance which was the worst for the Gaussian uncertainty case

study. The sub-optimal performance requires acute investigation as factors which range from

limited training data set, improper tuning of the networks hyper-parameters can influence the

behaviour of deep neural net.

As it is evident in the sensitivity analysis performed, there is the need to either outsource

or resize the MG to cause excess energy. This also underscores the importance of sizing

the micro grid a priori against uncertainty typically with sizing method A1 or with a MCS

approach so as to cause excess energy for storage. Nevertheless, the techno-economic

consideration of this work has therefore been chiefly related to reliability with respect to the

Lo and excess energy lost in terms of the Up utility violation.

The DA-PoPA despite the HT capacity, maintained the same frequency of upper pinch

violation, due to the lack of a state feedback loop necessary to deal with uncertainty. The

Adaptive PoPA thus utilising the state feedback, corrects for the forecast error which was only

better than the DA-PoPA when the tank was sized decently between 15 to 5 m3. The Kalman

Adaptive pinch utilising an uncertainty estimator as well as the feed-back loop performed

better than the DA and Adaptive PoPA and was only second to the RL+Adaptive PoPA and

DRL+Adaptive schemes. Nevertheless, the RL+Adaptive PoPA provided a more favourable

and practical framework for dealing with uncertainty due to load and weather variability.
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In conclusion, the sensitivity analysis showed the algorithms conform to the ’no free

launch theory’ as no particular algorithm can satisfy all scenarios, rather these proposed

algorithms should be used as fit for purpose.

• Future Work

As shown in the thesis, the approach utilizing reinforcement learning can reliably guaran-

tee optimal operation in an uncertain situation as an agent learns the optimal sequence of

action for every system state. Therefore, future work will integrate demand side response

for load shifting (from peak periods to off peak) into the proposed RL+Adaptive PoPA

framework via a co-operative multi-agent approach in order to effectively achieve much more

systems resource savings.





Appendix A

Energy Storage Technology

A.1 Energy Storages

The use of multiple complementary energy storage types for reliability is the current trend,

and excess energy from the PV-Battery system can be converted and stored for future usage.

The integration of hybrid energy storages enhances efficiency as the frequent utilisation

of dump load for absorbing excess energy will be avoided. According to [29], there are

several factors which must be considered when choosing an Energy storage system ESS for

an application. These include; capital cost, power, and energy rating and density, efficiency,

self-discharge losses, depth of discharge, ramp rate, life cycle. A few popular integrated

energy storages are discussed below.

A.1.1 Pumped Hydro Storage (PHS)

This form of storage is the most widely used technology as it is responsible for over 120GW

of generated electricity worldwide and also represents 99 percent of the total electrical storage

capacity in the world. The principle of operation is that water is pumped from a ground-level

reservoir tank to an overhead tank which represents stored energy in the form of potential
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energy during the off-peak period. This is analogous to the charging of a battery. During the

off-peak period, the stored water at potential is released into hydro turbines, which in turn

drives a generator to produce electrical energy. The PHS is the most mature ES technology

[159], and also it has the most significant energy and power capacity with installed capacities

ranging from 2000 to 3000 MW globally. Nevertheless, PHS is commonly sized within the

range of 1000 MW to 1500 MW [29, 160].

A.1.2 Compressed Air Energy Storage (CAES)

This technology has been in use since the 19th century. It involves the use of a compressor to

compress air during the off-peak period for storage in an underground (rock structures, mines)

or a pipe or vessel above the ground. When energy is required, natural gas is combusted

in the presence of the previously stored up compressed air in a modified gas turbine [29].

Besides PHS, CAES is the only technology which is commercially available technology with

the capability of delivering 100MW from a single unit [159]. Nevertheless, it is essential

to note that only two of such plants exist, one is at Huntorf, Germany, and the other is in

Alabama, USA [29, 161].

A.1.3 Flywheel Energy Storage (FES)

This storage system has been in existence since the 1970s. It consists of a large mass of

steel usually cylindrical in shape, attached by bearings to a mechanical rotor. The rotational

energy in the form of kinetic energy is stored in the steel mass during the charging process

as its speed of about 20000-50000 rpm is maintained. During the discharge process, the

flywheel drives the rotor as a generator to produce electricity [29]
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A.1.4 Batteries

These are electrochemical energy storage devices which convert chemical energy to electrical

energy. Secondary batteries are rechargeable as the internal chemical reaction is reversible,

unlike with the primary batteries. The electrical characteristics of a battery are dependent on

the topology in which the nominal low voltage cells are connected. The topology can either

be in series or parallel or as a combination of both. Some of the most popular batteries in use

for RES are Lead Acid (LA), Lithium-ion (Li-on), Sodium sulphide (NaS), Nickel Cadmium

(NiCd), Nickel Metal Hybrid (NiMH). The NiCd Battery suffers from memory loss effect

and depends on DOD. Hence it is not reliable for long time usage [162, 29]. Though the

Li-on battery is more expensive, it has the longest life span as well as the highest power and

energy density compared to the other battery types.

The flow batteries have recently been built in the Mega Wattage range. In the flow battery,

the electrolyte is stored in an external containment and pumped for the electrochemical

reaction when required. The power and energy ratings are functions of the area of the stacked

cells and amount of electrolyte. Typical varieties are Vanadium Redox Battery (VRB)[163,

164], Polysulphide Bromide (PSB) [165, 166] and Zinc Bromine (ZnBr) [167, 168]. They

possess a very promising potential for applications requiring large scale energy storage

integration.
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HESS Propositional Logic



xcc xxx xxx 

 cc xv 

Connection Symbol Logic proposition for HESS 

𝐵𝐴𝑇 ← 𝑃𝑉 𝜀𝑃𝑉(𝑘) ∩
𝑐

[𝜀𝑃𝑉
𝑐 (𝑘)], ∈ {𝐴𝑣𝑙, 𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝑃𝑉
𝐴𝑣𝑙(𝑘) 1 

 𝜀𝑃𝑉
𝑅𝑒𝑞

(𝑘) 𝓆𝑃𝑉
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 

 𝜀𝑃𝑉
𝐺𝑒𝑛(𝑘) 1 

 𝓆𝑃𝑉
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝑃𝑉(𝑘) 

   

𝐵𝐴𝑇 ← 𝐷𝑆𝐿 𝜀𝐷𝑆𝐿(𝑘) ∩
𝑐

[𝜀𝐷𝑆𝐿
𝑐 (𝑘)], ∈ {𝐴𝑣𝑙, 𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐷𝑆𝐿
𝐴𝑣𝑙 (𝑘) 1 

 𝜀𝐷𝑆𝐿
𝑅𝑒𝑞

(𝑘) 𝓆𝐷𝑆𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 

 𝜀𝐷𝑆𝐿
𝐺𝑒𝑛(𝑘) 1 

 𝓆𝐷𝑆𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝐷𝑆𝐿(𝑘) ∨ 

[
[𝑆𝐿𝑂

𝐵𝐴𝑇←𝐷𝑆𝐿(𝑘) < 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘) < 𝑆𝑈𝑃
𝐵𝐴𝑇←𝐷𝑆𝐿(𝑘)] ∧

[ 𝜀𝐷𝑆𝐿(𝑘 − 1)]                                                      
] 

   

𝐵𝐴𝑇 ← 𝐹𝐶 𝜀𝐹𝐶(𝑘) ∪
𝑐

[𝜀𝐹𝐶
𝑐 (𝑘)] ∧ 𝜀𝐹𝐶

𝐴𝑣𝑙(𝑘),  𝑐 ∈ {𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐹𝐶
𝐴𝑣𝑙(𝑘) ∩

𝑙
[𝒶𝐹𝐶

𝑆𝑂𝐴𝑐𝑐 𝑙(𝑘)], 𝑙 ∈ {𝐻𝑇, 𝑊𝑇} 

 𝜀𝐹𝐶
𝑅𝑒𝑞

(𝑘) 𝓆𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 

 𝜀𝐹𝐶
𝐺𝑒𝑛(𝑘) 𝜌𝐹𝐶

𝑈𝑐   

 𝜌𝐹𝐶
𝑈𝑐  𝑈𝑐

→
(𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘)) 

 𝓆𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝐹𝐶(𝑘) 

 𝒶𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑘) 𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑡) < 𝑆𝑈𝑃

𝑊𝑇←𝐹𝐶(𝑘) 

 𝒶𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑘) 𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑡) > 𝑆𝐿𝑂

𝐹𝐶←𝐻𝑇(𝑘) 

   

𝐵𝐴𝑇 → 𝐸𝐿 𝜀𝐸𝐿(𝑘) ∪
𝑐

[𝜀𝐸𝐿
𝑐 (𝑘)] ∩ 𝜀𝑃𝑉

𝐴𝑣𝑙(𝑘),  𝑐 ∈ {𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐸𝐿
𝐴𝑣𝑙(𝑘) ∩

𝑙
[𝒶𝐸𝐿

𝑆𝑂𝐴𝑐𝑐 𝑙(𝑘)], 𝑙 ∈ {𝐵𝐴𝑇, 𝐻𝑇} 

 𝜀𝐸𝐿
𝑅𝑒𝑞

(𝑘) 𝓆𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(k) 

 𝜀𝐸𝐿
𝐺𝑒𝑛(𝑘) 𝜌𝐸𝐿

𝑈𝑐   

 𝒶𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘) > 𝑆𝐿𝑂

𝐵𝐴𝑇→𝐸𝐿(𝑘) 

 𝒶𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑘) 𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑘) < 𝑆𝑈𝑃

𝐸𝐿→𝐻𝑇(𝑘) 

 𝓆𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(k) 𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑘) > 𝑆𝐿𝑂

𝐸𝐿←𝑊𝑇(𝑘) 

 𝜌𝐸𝐿
𝑈𝑐 𝑈𝑐

→
(𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑘)) 
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Appendix C

Pseudo Codes for Adaptive, Kalman and

RL PoPA



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

X                         XX                                  XXX 

Pseudo Codes for the Proposed Algorithms 

a. Pseudo Code for Adaptive PoPA 

1. Define the entire time span and intervals. 

2. Define the initial systems state and EMS propositions  

3. For all intervals 𝑘  

Perform within the prediction horizon the following procedures: 

4. if  (𝑘 –  𝑁)  = 23 ⋁  ∆𝐻(𝑘) > (𝜉 == 5%) 

4.1.1 Repeat while Loop, L < =24 ∧ (𝑆𝑚𝑎𝑥 > 𝑆𝑈𝑝
𝑙  ∨ 𝑆𝑚𝑖𝑛 < 𝑆𝐿𝑜

𝑙 ) 

4.2 Compute the PGCC with dispatch control sequence 𝑈𝑐 according to equations (1) 

4.3 Determine 𝑆𝑚𝑖𝑛 =   𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) 𝑘∈[𝑘,𝑘+1,…,𝑁]

𝑚𝑖𝑛  and 𝑆𝑚𝑎𝑥 =   𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘)  𝑘∈[𝑘,𝑘+1,…,𝑁]

𝑚𝑎𝑥  

4.3.1 If 𝑆𝑚𝑖𝑛 < 𝑆𝐿𝑜
𝑙  

a. Determine the energy 𝑀𝑂𝐸𝑆 = 𝐿𝑜 − 𝑆𝑚𝑖𝑛 required  to shift the PGCC  

(Such that, 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,1(𝑘1) = (𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,0(𝑘1) + 𝑀𝑂𝐸𝑆) < 𝑆𝑈𝑝
𝑙  )  

b. 𝑈𝑐 = 𝐹𝐶 ∶  𝑈𝑐(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚) = [𝑈𝑘(𝑆𝑘+1), … 𝑈𝑁−1(𝑆𝑇), | 𝑆𝑘+1 ∶ 𝑘∈ [1,2,… ,𝑁] < 𝑆𝑈𝑝

𝑙 ] In a 

memory location, store the control sequence 𝑈𝑐  

c. Activate the selected converter 𝑈𝑐  to inject the energy determined in step 4.2.1(a) at 

𝑘1 then go to step 4.3. 

4.3.2 if  𝑆𝑚𝑎𝑥 > 𝑆𝑈𝑝
𝑙   

a. Determine the amount of energy MEES = 𝑆𝑚𝑎𝑥 − 𝑆𝑈𝑝
𝑙  (Such that, 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,1(𝑘1) =

(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,0(𝑘1) − MEES) > 𝑆𝐿𝑜

𝑙  to shift the PGCC). 

b. Activate the selected converter 𝑈𝑐  , 𝑐 ∈ {EL} to absorb the energy determined in step 

4.2.2(a) at 𝑘1 then go to step 4.3. 

4.4 Determine 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑁) : L ∈ [0: 24] 

4.4.1 if 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑁 − 1) ≅ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,𝐿 (𝑘1) 

a. calculate ∆𝑆 = 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑘1) − 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,𝐿 (𝑁 − 1) (such that 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,1 (𝑁 − 1) 

=𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,0 (𝑁 − 1) ± ∆𝑆 

b. Activate the selected converter 𝑈𝑐  to inject or absorb the energy ± ∆𝑆 determined in 

step 4.3.1(a) at 𝑁 − 1 . 

c. repeat from step 4 until L>24 

5. Activate the determined control sequence in control horizon 𝑈𝑐(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛) : 𝑆𝐿𝑜

𝑙 <

[𝑈𝑘(𝑆𝑘+1), … 𝑈𝑁−1(𝑆𝑁), | 𝑆𝑘+1 ∶ 𝑘∈ [1,2,… ,𝑁] < 𝑆𝑈𝑝
𝑙 ] 

6. Determine state estimation error due to uncertainty: 

∆𝐻(𝑘) = |𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘|𝑘 − 1) − 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘)|  

7. Update the model with the actual system state with (7)  for new PGCC re-computation 

8. Repeat from step 3 until k > 8760 

 

b. Pseudo Code for Kalman+Adaptive PoPA algorithm 

This follows steps 1 – 5 of the Adaptive PoPA algorithm, but with the inclusion of the Kalman filter. 

7. Update the priori covariance estimate 𝒫𝑘 = [ℐ − 𝒦𝒢ℐ] 𝒫𝑘−1  

8. Determine the Kalman gain 𝐾𝐺(𝑘) = 𝒫𝑘  𝐼𝑇 [ℐ 𝒫𝑘  ℐ𝑇 +  ℛ𝑘]−1   

9. Predict the system state with the most recent output measurement from (11): 

 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 (𝑘) = 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚 (𝑘|𝑘 − 1) + 𝒦𝒢(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛 (𝑘) − ℐ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚 (𝑘|𝑘 − 1)) 

10. Estimate the posterior covariance matrix 𝒫𝑘+1 = 𝐴 𝒫𝑘𝐴𝑇 + ℛ𝑘  

11. Repeat from step 3 while 𝑘 ≤  8760 

 

c. Pseudo Code for RL+Adaptive PoPA  

This follows steps 1 – 6 of the first proposal, with the inclusion of the Q-learning state-action pair 𝑄(𝑠, 𝑎). 

5. Observe the systems state, s   

 

218 Pseudo Codes for Adaptive, Kalman and RL PoPA



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXX 

XXXX 

6. For 𝑘~ = 𝑁 

Switch ON/OFF dispatchable energy resources with the action selection policy 𝜋 (𝑠) defined in (17) based 

on the state-action value function 𝑄(𝑠, 𝑎). 

    Else 

Override the action selected from policy 𝜋 (𝑠) with AEEND EMS from Adaptive PoPA 

    End 

7. Observe 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 and determine the reward, 𝑅 according to (21) 

8. Update 𝑄(𝑠, 𝑎) based on equation (16)  

s← 𝑠′ 

9. Randomly draw without replacement n-sample from memory 𝐷 ∈< S, A, R, S’, A’ >  pairs of the most recent 

𝑛-pinch limits violation experience due to uncertainty. 

10. Update 𝑄(𝑠, 𝑎) with the uncertainty experience  

11. Repeat from step 3 until 𝑘 > 8760 
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Appendix D

Adaptive Power Pinch Analysis .m Code



 

I_rad = dlmread('PV_POA.csv');         %Plane of Array for insolation 
I_Rad=I_rad'; 
%I_Rad=[I_Rad(2688:8760),I_Rad(1:2687)]; 

  

  
Ng=0.96; 
Nb=0.72; 
Air_den=1.23    ;                       %Air density 1.23 Kg/m3 
Cp=0.4; 
Area_sw=3.24 ;                          %Wind Turbine Swept Area 
WT_no=3; 
WT_wind = dlmread('WT_Wind.csv');      %Velocity of Wind m/s 
Wind_vel=WT_wind'; 

  

  
LD3=ones(1,8760)*1000;                  % Constant Load for a year 

  
LD3_daily=24*1000;                        %Load per day 

  
P_DSL3_BAT3= 2010; 

  
%Counter=0 ;                            %counts the no.of iteration 

  

  

  
%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% START OF MICROGRID 3 INITIALIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3=1; 
e_PV3_BAT3=0;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0  ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
e_DSL3_BAT3=0; 

  
e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 
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%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
%INITIALIZING AVAILABILITY OVERRIDE  
r_PV3_BAT3=0;           
r_WG2_BAT3=0; 
r_BAT3_EL=0;          
r_WT_EL=0; 
r_EL_FT=0;          
r_FT_FC=0; 
r_FC_WT=0; 
r_FC_BAT3=0; 
r_BAT3_LD3=0; 
r_DSL3_BAT3=0; 

  
%INITIALIZING GENERALITY CONSTRAINT FOR ACTIVATION (OVERRIDE) 

  
g_PV3_BAT3=1;                
g_WG2_BAT3=0; 
g_BAT3_EL=1;              
g_WT_EL=1; 
g_EL_FT=1;               
g_FT_FC=1; 
g_FC_WT=1; 
g_FC_BAT3=1; 
g_BAT3_LD3=1; 
g_DSL3_BAT3=1; 

  

  

  
%  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 
e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 

  
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
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e_FC_WT_A=e_FC_BAT3_A; 
%  

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=80  ;%70                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=90;%80 
 SOC_H2O_WT_A=50;%30 
%  

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF REAL SYSTEM MICROGRID 3 

INITIALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  

  

  
% INITIALIZING BATTERY CAPACITY                                                    

% Battery3 capacity   3KAh*12V = 36KWh 
BAT3_Cap=36000; 

  

  
%INITIALIZING DIESEL GENERATOR3 

  

  
%INITIALIZING FUEL CELL AND ELECTROLYSER DYNAMICS  
polyn_EL=[-0.000001426704372 0.027954416509736 2.502267281445165];  %Transfer 

function for Electrolyser  
polyn_FC=[0.000000895442340 0.033197516886985 -0.278092554468687];  %Transfer 

function for Fuel Cell  

  
nc_EL=15;                           % no. of cells in the electrolyser 
nc_FC=40;                           % no. of cells in the fuel cell 
nF=0.87;                            % Efficiency  
ne=2;                               % no. of electron 
F=96485;                            % Faraday's constant W/mol 
P_BAT3_EL=4000;                          % Power required per time by the 

Electrolyser 
P_FC_BAT3=3000;                          % Max power the Fuel cell can 

deliver 

  
WT_Cap=2.1749e+03*2; 
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FT_Cap=974.3583*2;%2000*10 

  
%INITIALIZE SOCs EL AND FC 
SOC_BAT3=80  ;                                %Tweek #SOC_BAT3 to alter the 

SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=100; 
SOC_H2O_WT=30; 

  
%%%% ELECTROLYSER ACTIVATION %%%%%%% 
EL_SUMMER=zeros(1,8760); 
EL_SUMMER(1:8760)=1; 
%EL_SUMMER(1:2160)=1; 
%EL_SUMMER(6553:8760)=1; 

  
%%%% FUEL CELL ACTIVATION %%%%% 
FC_WINTER=zeros(1,8760); 
FC_WINTER(1:8760)=1;%(100:8000)(2881:5832) 

  
%VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3=zeros(1,8760); 
A_e_PV3_BAT3= zeros(1,8760)      ;         
A_e_WG2_BAT3=zeros(1,8760); 
A_e_BAT3_EL=zeros(1,8760)       ;         
A_e_WT_EL= zeros(1,8760); 
A_e_EL_FT=zeros(1,8760)      ;              
A_e_FT_FC=zeros(1,8760); 
A_e_FC_WT=zeros(1,8760); 
A_e_FC_BAT3=zeros(1,8760); 
A_e_DSL3_BAT3=zeros(1,8760); 
A_F_FC_WT_EL=zeros(1,8760); 
A_F_EL_FT_FC=zeros(1,8760); 

  
% 
% A_r_PV3_BAT3=zeros(1,8760);           
% A_r_WG2_BAT3=zeros(1,8760);  
% A_r_BAT3_EL=zeros(1,8760);           
% A_r_WT_EL=zeros(1,8760);  
% A_r_EL_FT=zeros(1,24);          
% A_r_FT_FC=zeros(1,24);  
% A_r_FC_WT=zeros(1,8760);  
% A_r_FC_BAT3=zeros(1,8760);  
% A_r_BAT3_LD3=zeros(1,8760);  
% A_r_DSL3_BAT3=zeros(1,8760);  

  

  

  
A_g_FC_BAT3=zeros(1,8760);  
A_g_EL_FT1=zeros(1,8760); 
A_g_EL_FT2=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ACTUAL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%INITIALIZATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INITIALIZING ACTIVATION STATES OF THE NODES 
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e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 
e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 

  
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=e_FC_BAT3_A; 

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=80  ;                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=100; 
 SOC_H2O_WT_A=30; 

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
%% 
%% PREDICTION USED TO DETERMINE PGCC 

  
EL_ON1=zeros(24,24); 
EL_ON2=zeros(24,24); 
FC_ON=zeros(24,24); 

  

  
startt=1;  
start=1; 
stop=24; 
Counter=0; 
Counter2=0; 

  

  
k=1; 

  
PINCH_DATA=[]; 
A_SOC_BAT3=zeros(1,240) 
Recall=zeros(1,240) 

  

 
 

 

 

LD3_A=repmat(Actual_load,1,365); 

  
ran_PV=repmat(noise_for_PV,1,365); 
P_BAT3_EL=zeros(1,8760)*P_BAT3_EL; 
P_FC_BAT3=zeros(1,8760)*P_FC_BAT3; 
A_g_EL_FT=zeros(1,8760); 
% P_BAT3_EL(1)=4000; 
% P_FC_BAT3(1)=3000; 

  
A_SOC_ref=zeros(1,8760); 
A_IAE=zeros(1,8760); 
A_FC_ATTEMPT=zeros(1,8760); 
A_EL_ATTEMPT=zeros(1,8760); 
A_Power_FC=zeros(1,8760); 
number_count=0; 
EPL=zeros(1,8760); 
A_t_violation_EL=zeros(1,24); 
Unserved_load=0; 
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Lost_Energy=0; 
Excess_Energy_lost=0; 

  

  
 WT_Cap=2.1749e+03*300;%15; 
 FT_Cap=974.3583*150;%10;%2000*10 
 

 

 

 

LD3=dlmread('LOAD_AVERAGE.csv')*0.5; 
 

 

while k<=8760%71%719%8760 
for k=1:1:8761%72%720%8761% %determines the number of hours to run the Pinch 

analysis 
%for k=start:1:stop 

  
    Counter2=Counter2+1; 

     
     if(stop-start)==23||(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 

(A_SOC_BAT3(k-1)>5+A_SOC_BAT3_A(k-1) || A_SOC_BAT3(k-1)<-5+A_SOC_BAT3_A(k-1)) 

% &&SOC_BAT3>10/100*SOC_BAT3_A %Do recalculation only if the deviation is 

state>10%(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 

  
     P_BAT3_EL(k:end)=0; 
%      P_FC_BAT3(k:end)=0;  
     end  

      
   for l=1:1:24 
       start=k; 
       if k==1 
          stop=24; 
       startt=1; 
       end 
        if k==1625%73%36%20||k==24||40 %48&&l==1%41%24 
       %  pause(2) 
        %display('paused for 0.5 Seconds') 
       end 

   
 if (stop-start)==23||(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 

(A_SOC_BAT3(k-1)>5+A_SOC_BAT3_A(k-1) || A_SOC_BAT3(k-1)<-5+A_SOC_BAT3_A(k-1)) 

% &&SOC_BAT3>10/100*SOC_BAT3_A %Do recalculation only if the deviation is 

state>10%(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 
  %Power_FC=0;  %reset the MOES if the horizon changes 

    
  %P_FC_BAT3=zeros(1,8760); 
 if start>1 
SOC_BAT3=A_SOC_BAT3_A(start-1)  ;                                %Tweek 

#SOC_BAT3 to alter the SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=A_SOC_H2_FT_A(start-1); 
SOC_H2O_WT=A_SOC_H2O_WT_A(start-1); 
% e_BAT3_EL = A_e_BAT3_EL_A(start-1);   
% e_FC_BAT3=  A_e_FC_BAT3_A(start-1); 
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e_BAT3_LD3= A_e_BAT3_LD3_A(start-1)  ; 
e_PV3_BAT3= A_e_PV3_BAT3_A(start-1)  ;             
e_WG2_BAT3=  A_e_WG2_BAT3_A(start-1) ; 

  
e_WT_EL = A_e_WT_EL_A(start-1); 
e_EL_FT = A_e_EL_FT_A(start-1);            
e_FT_FC= A_e_FT_FC_A(start-1); 
e_FC_WT=  A_e_FC_WT_A(start-1); 

  

  
e_DSL3_BAT3= A_e_DSL3_BAT3_A(start-1); 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
%e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
 end 
%%%%%%%%%%%%%%%%%%%%%%% 

  
 if start==1 
SOC_BAT3=80 ; 
SOC_H2O_WT=30; 
SOC_H2_FT=100   ; 
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3=1; 
e_PV3_BAT3=0   ;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0    ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
e_DSL3_BAT3=0; 

  
e_BAT3_EL = e_EL_FT; 

  
% ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
% ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 
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% ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
   end 

  

  

  

     
 for j=k:1:stop %j=start:1:stop 
%    if start==1 %stop-start==23 && 
%        c=-1; 
%    else  
%        c=0; 
%    end 
if k>0 
    if 

k==stop&&l>1&&ceil(Pinch_Data(stop))~=ceil(Pinch_Data(startt))&&(Pinch_Data(s

tartt)>=30&&Pinch_Data(startt)<=90) 
    sss=-1;%0 
else 
    sss=0; 
    end 
end 
%Counter=Counter+1 
%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  

  
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 

  
P_BAT3_LD3=LD3(j); 

  

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no        ;           %Area for 70W solar panel 

  
P_PV3_BAT3=Area_PV3*I_Rad(j)*0.1 ;     % 0.1 is efficiency for 

polycrystalline  

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(j))^3) * Ng * Nb*WT_no ; 

  

  

  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL(j))  ;       % Power flow as a function of 

Power supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3(j))  ;     % Power flow as a function of 

Power supplied to the electroliser 
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%*e_BAT3_EL *e_FC_BAT3* 

  
Fout_FC_WT_H2O= e_FC_WT * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      % 

The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
%A_Fout_FC_WT_H2O(k,j)=Fout_FC_WT_H2O; 

  

  
Fout_EL_FT_H2= e_EL_FT * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  % 

The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
%A_Fout_EL_FT_H2(k,j)=Fout_EL_FT_H2; 

  

  
Fout_FT_FC_H2= e_FT_FC * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 % 

The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
%A_Fout_FT_FC_H2(k,j)=Fout_FT_FC_H2; 

  

  
Fout_WT_H2O= e_WT_EL* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % The 

flow of H2O from the WT to the EL based on what the EL needs. The Flow is -VE 

since it depletes the Water Tank 
%A_Fout_WT_H2O(k,j)=Fout_WT_H2O; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 
R=normrnd(0,2)*10; 

  
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
A_P_PV3_BAT3(j)=P_PV3_BAT3; 
A_P_WG2_BAT3(j)=P_WG2_BAT3; 
P_RES3=(e_PV3_BAT3*P_PV3_BAT3) 

+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BAT3)+(A_g_FC_BAT3(j+sss)*P_FC_B

AT3(j+sss)); 
A_P_RES3(j)=P_RES3; 
P_BAT3= P_RES3-(e_BAT3_LD3*P_BAT3_LD3)-(A_g_EL_FT(j+sss)*P_BAT3_EL(j+sss)); 
if P_BAT3<=0 
   Deficit_P_BAT3=1; 
else 
    Deficit_P_BAT3=0; 
end 
A_Deficit_P_BAT3(j)=Deficit_P_BAT3; 

  

  
if P_BAT3>LD3(j)&&SOC_BAT3>90&&SOC_H2_FT>90 && SOC_H2O_WT>40 
    Surplus_P_BAT3=1; 
else 
    Surplus_P_BAT3=0; 
end 

231



A_Surplus_P_BAT3(j)=Surplus_P_BAT3; 

  

  
A_P_BAT3(j)=(P_BAT3/BAT3_Cap)*100 ; 
SOC_BAT3=SOC_BAT3+(P_BAT3/BAT3_Cap)*100 ; 
if SOC_BAT3<=0; 
    SOC_BAT3=0; 
end     
if SOC_BAT3>=100 
    SOC_BAT3=100; 
end 

  
A_SOC_BAT3(j)=SOC_BAT3; 
if SOC_BAT3<30 
   Deficit_SOC_BAT3=1; 
else 
   Deficit_SOC_BAT3=0; 
end 
 A_Deficit_SOC_BAT3(j)= Deficit_SOC_BAT3; 

  
 if j<=1 
     c=1; 
 else 
     c=0; 
 end    

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT= SOC_H2O_WT +FC_WT_EL; 
if SOC_H2O_WT>=100 
    SOC_H2O_WT=100; 
end     
    if  SOC_H2O_WT<=0 
        SOC_H2O_WT=0; 
    end       
A_SOC_H2O_WT(j)=SOC_H2O_WT; 
A_F_FC_WT_EL(j)=FC_WT_EL; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT=SOC_H2_FT + EL_FT_FC; 
if SOC_H2_FT>=100                           %LIMITS FOR SOC OF WATER TANK AND 

FLOW TANK 
    SOC_H2_FT=100; 
end 
if SOC_H2_FT<=0 
    SOC_H2_FT=0; 
end     
A_SOC_H2_FT(j)=SOC_H2_FT; 
A_F_EL_FT_FC(j)=EL_FT_FC; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 
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if SOC_BAT3<stp_PV3_BAT3 
    q_PV3_BAT3=1; 
else 
    q_PV3_BAT3=0; 
end    
e_req_PV3_BAT3=q_PV3_BAT3  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 

  
a_PV3_BAT3=1; 
e_avail_PV3_BAT3= a_PV3_BAT3 || r_PV3_BAT3; 
e_PV3_BAT3= e_avail_PV3_BAT3 && e_req_PV3_BAT3 && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
str_WG2_BAT3=0   ;                        % start charging battery if SOC max 

is < 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3<stp_WG2_BAT3 
    q_WG2_BAT3=1; 
else 
    q_WG2_BAT3=0; 
end    
e_req_WG2_BAT3=q_WG2_BAT3    ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3=1; 
e_avail_WG2_BAT3 = a_WG2_BAT3 || r_WG2_BAT3; 

  
e_WG2_BAT3 = e_avail_WG2_BAT3 && e_req_WG2_BAT3 && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     
if SOC_BAT3<str_DSL3_BAT3 %|| 

[SOC_BAT3>str_DSL3_BAT3&&SOC_BAT3<stp_DSL3_BAT3] && A_e_DSL3_BAT3(j+c-1)==1 
q_DSL3_BAT3=1; 
else 
q_DSL3_BAT3=0; 
end 
e_req_DSL3_BAT3 =q_DSL3_BAT3; 

  
a_DSL3_BAT3=1       ;                           %Availability logic for 

Diesel generator 

  
e_avail_DSL3_BAT3 = a_DSL3_BAT3 || r_DSL3_BAT3; 

  
e_DSL3_BAT3= e_avail_DSL3_BAT3 && e_req_DSL3_BAT3 && g_DSL3_BAT3; 
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%ACTIVATION FOR FUEL CELL TO BATTERY 
if FC_WINTER(k)==1 
    FC_ON_WINTER=1; 
else 
    FC_ON_WINTER=0; 
end 
str_FC_BAT3=99  ;      %90                 %start and stop min and max 

threshold to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
if FC_ON_WINTER==1 && SOC_BAT3<str_FC_BAT3  %|| SOC_BAT3>str_FC_BAT3 && 

SOC_BAT3<stp_FC_BAT3 && A_e_FC_BAT3(j-1+c)==1       %i==[2881:5832] ensures 

Summer operation only  
    q_FC_BAT3=1 ; 
else 
    q_FC_BAT3=0; 
end 
e_req_FC_BAT3 =   q_FC_BAT3; 

  
  str_FC_WT=90      ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT=90; 

  
if SOC_H2O_WT<str_FC_WT  
  a1_FC_WT=1; 
else 
  a1_FC_WT=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT>str_FT_FC  
  a2_FT_FC=1; 
else 
  a2_FT_FC=0; 
end 

  
e_avail_FC_BAT3= a1_FC_WT && a2_FT_FC ; %|| r_FT_FC; 

     

  
e_FC_BAT3 =  A_g_FC_BAT3(j-1+c); 

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 

  

  
%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
str_EL_FT = 99       ;%90                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY FROM 

ELECTROLYSER 
    q_EL_FT=1; 
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else 
    q_EL_FT=0; 
end 
e_req_EL_FT= q_EL_FT; 

  

  
if EL_SUMMER(k)==1                   %Scan the array if the index is equal to 

1 then logic is true else it is false for zero  
    EL_ON_SUMMER=1; 
    else 
    EL_ON_SUMMER=0; 
end     

  
str_BAT3_EL= 70   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
% if Counter<=1 
%     c=2; 
% else 
%     c=0; 
% end             %This corrects the indexing by assuming the past was zero 
if EL_ON_SUMMER==1 && SOC_BAT3>str_BAT3_EL || SOC_BAT3<str_BAT3_EL && 

SOC_BAT3>stp_BAT3_EL %&& A_e_EL_FT(j+c-1)==1  %i==[2881:5832] ensures Winter 

operation only 
  a1_BAT3_EL = 1; 
else 

  
  a1_BAT3_EL=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT>str_WT_EL  
  a2_EL_FT=1; 
else 
  a2_EL_FT=0; 
end 

  

  
e_avail_EL_FT= a1_BAT3_EL && a2_EL_FT ; %|| r_EL_FT; 
e_EL_FT=(A_g_EL_FT1(j-1+c) || A_g_EL_FT2(j-1+c)); 

  

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 
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%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
A_e_BAT3_LD3(j)=e_BAT3_LD3; 
A_e_PV3_BAT3(j)= e_PV3_BAT3;             
A_e_WG2_BAT3(j)=e_WG2_BAT3; 
A_e_BAT3_EL(j)=e_BAT3_EL ;             
A_e_WT_EL(j)= e_WT_EL ; 
A_e_EL_FT(j)=e_EL_FT  ;            
A_e_FT_FC(j)=e_FT_FC; 
A_e_FC_WT(j)=e_FC_WT; 
A_e_FC_BAT3(j)=e_FC_BAT3; 
A_e_DSL3_BAT3(j)=e_DSL3_BAT3; 

  
%%%%%%%%%%%%%%%%%%%% END OF MG3 LOW LEVEL PMS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Pinch_Data(j)=SOC_BAT3; 
%PINCH_DATA(l,j,k)=SOC_BAT3; 
 if l==1 && startt==k 
 Pinch_Data_Raw_before_shaping(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==2 && startt==k 
 Pinch_Data_Raw_before_shaping2(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==3 && startt==k 
 Pinch_Data_Raw_before_shaping3(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==4 && startt==k 
 Pinch_Data_Raw_before_shaping4(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==5 && startt==k 
 Pinch_Data_Raw_before_shaping5(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==6 && startt==k 
 Pinch_Data_Raw_before_shaping6(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==7 && startt==k 
 Pinch_Data_Raw_before_shaping7(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==8 && startt==k 
 Pinch_Data_Raw_before_shaping8(j)=SOC_BAT3; %first recompution L=1 
 end 
 if l==9 && startt==k 
 Pinch_Data_Raw_before_shaping9(j)=SOC_BAT3; %first recompution L=1 
 end 
  if l==10 && startt==k 
 Pinch_Data_Raw_before_shaping10(j)=SOC_BAT3; %first recompution L=1 
  end 
  if l==11 && startt==k 
 Pinch_Data_Raw_before_shaping11(j)=SOC_BAT3; %first recompution L=1 
  end 
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   if l==24 && startt==k 
 Pinch_Data_Raw_after_shaping(j)=SOC_BAT3 ;%first recomputation when L=24 
   end 
if l==24 
 PINCH_DIAG(k,j)=SOC_BAT3;   % Extract the recomputation from here 
end 
Pinch_shaping(l,j)=SOC_BAT3;% insight  array vector to the iterative shaping 

via PoPA 
Pinch_shaping(l,j)=SOC_BAT3; 
% PINCH_DATAA(Counter2,j)=SOC_BAT3; 
 end 
%run this loop while Smin and Smax violation exist 

  
      Recomp=1; %signal for recomputation 
Recomputation(k)=Recomp; 

   
%PINCH ANALYSIS AND DETERMINATION OF G OVERIDE 

  
%%START PINCH%% 
SOC_BAT3_min=30;          %Minimum and Maximum Pinch Targets 
SOC_BAT3_max=90; 
S_UP=90; 
S_LO=30; 
S_min=min(Pinch_Data(start:stop-1)); 
S_max=max(Pinch_Data(start:stop-1)); 
if S_min<SOC_BAT3_min 
    [~, t_violation]=min(Pinch_Data(start:stop-1)); 
   t_violation=t_violation+start-1;% corrects the index of the minimum 

violation 
   %t_violation= find(Pinch_Data(1:stop)==S_min)     ;           % time of 

violation of the Lower pinch  

  
   E_target =(SOC_BAT3_min - S_min)*(BAT3_Cap/100);%*P_FC_BAT3)); 
   t_duration = ceil(E_target);%/BAT3_Cap;             %Time duration needed 

based on allowable amount of energy from battery per hour 
%    if t_violation-1<start  
%       t_violation=start+1 
%    end 
%   
%   A_g_FC_BAT3(t_violation)= 1; 
%   P_FC_BAT3(t_violation)=E_target;% 

   
%%DAY_AHEAD PoPA CUMMULATIVE ACTION 
  A_g_FC_BAT3(start)=1; 
  %Power_FC=E_target;   
  %Power_FC=Power_FC+E_target;% MOES cummulative from all previous violation 
  %A_Power_FC(startt,l)=Power_FC; 
  P_FC_BAT3(start)=E_target+P_FC_BAT3(start); 
  if (P_FC_BAT3(start)/BAT3_Cap*100)+Pinch_shaping(1,start)>S_UP 
      P_FC_BAT3(start)=P_FC_BAT3(start)-

((Pinch_shaping(1,start)+(P_FC_BAT3(start)*100/BAT3_Cap)-S_UP))*BAT3_Cap/100 

; % limits the FC for MOES to Upper Pinch limit  
  end 
%   if P_FC_BAT3(start)>6000 
%      P_FC_BAT3(start)=6000;% Limits FC power to the maximum capcity 
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%   end 

   
elseif   S_max>SOC_BAT3_max  
    [~, t_violation_EL]=max(Pinch_shaping(1,start:stop-1));% to change from 

day ahead to adaptive use start intead of startt which is the begining of the 

horizon 

     
        %t_violation_EL= max(find(Pinch_Data(1:stop)==S_max))     ;  

         
        %%A_g_EL_FT1(start:stop-1)= Pinch_Data(start:stop-1)>SOC_BAT3_max; 

former 

  
Ex_target=(S_max - SOC_BAT3_max)*(BAT3_Cap/(100));     % former 
% A_g_EL_FT1(t_violation_EL)=1; 
% P_BAT3_EL(t_violation_EL)=abs(Ex_target);% 

  
%%DAY_AHEAD PoPA CUMMULATIVE ACTION 
    t_violation_EL=t_violation_EL+start-1; %start-1 
    Ex_target=(S_max - SOC_BAT3_max)*(BAT3_Cap/(100));% former 
%     Power_EL=Ex_target;   
%     Power_EL=Power_EL+Ex_target;% MAE cummulative from previous violation 
    A_g_EL_FT1(t_violation_EL)=1; 
    P_BAT3_EL(t_violation_EL)=Ex_target+P_BAT3_EL(t_violation_EL); 

     
   if Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)*100<S_LO    % Limits the energy 

extracted by the EL to be less than or equal to the lower Pinch 
     if Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)>0||Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)==0 % if the value is positive 

        
         P_BAT3_EL(t_violation_EL)=((Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))+ (S_LO-(Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))))*BAT3_Cap/100; 

          
        %P_BAT3_EL(t_violation_EL)=((Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))+ (S_LO-(Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))))*BAT3_Cap/100; 

          
     elseif Pinch_Data(t_violation_EL)-(P_BAT3_EL(t_violation_EL)/BAT3_Cap)<0 

% for negative power violation limit of the EL 
          P_BAT3_EL(t_violation_EL)=(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)+(S_LO+(abs(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)))))*BAT3_Cap/100; 
    % Pinch_Data(t_violation_EL)=(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)+(S_LO+(abs(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)))))*BAT3_Cap/100; 

      
     end 
   end     

     

     
%     if P_BAT3_EL(t_violation_EL)>4000 
%        P_BAT3_EL(t_violation_EL)=4000; %Limits EL power to max capacity 
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%     end   

  
else 

  
if 

ceil(Pinch_Data(stop))~=50&&(Pinch_Data(startt)>=30&&Pinch_Data(startt)<=90)%

&&k==0%ceil(Pinch_Data(stop))~=ceil(Pinch_Data(startt))&&(Pinch_Data(startt)>

=30&&Pinch_Data(startt)<=90) 
    EE_target=(Pinch_Data(stop) - 50)*(BAT3_Cap/(100)); 

      
    if EE_target<0 %&& P_FC_BAT3(stop-1)>abs(EE_target) 
           A_g_FC_BAT3(stop-1)=1;  
           A_g_EL_FT2(stop-1)=0; 
           A_g_EL_FT1(stop-1)=0; 
           P_FC_BAT3(stop-1)=abs(EE_target); 
          % P_FC_BAT3(stop-1)=P_FC_BAT3(stop-1)-abs(EE_target);% has to be 

cummulative if not it will mismatch. if needed was 50KW and was match the 

begining and error occurs u want to integrate by supplying what is needed now 

+wat was there before.   
           P_BAT3_EL(stop-1)=0; 
%    
%      if P_FC_BAT3(stop-1)>6000 
%         P_FC_BAT3(stop-1)=6000;% Limits FC power to the maximum capcity 
%      end 

  

       
     else 
        if EE_target>0 && P_FC_BAT3(stop-1)~=0 && P_FC_BAT3(stop-

1)>abs(EE_target) 
          A_g_EL_FT2(stop-1)=0; 
          A_g_FC_BAT3(stop-1)=1;  
          P_BAT3_EL(stop-1)=0;%+P_BAT3_EL(stop-1)% you want to integrate the 

energy with wat was already matched if error occurs 
          P_FC_BAT3(stop-1)=P_FC_BAT3(stop-1)-EE_target;% to reduce the 

Energy previously set you need to remove it from the exixting energy 

            
%           if P_FC_BAT3(stop-1)>6000 
%              P_FC_BAT3(stop-1)=6000;% Limits FC power to the maximum 

capcity 
%           end 

              
        elseif EE_target>0 && P_FC_BAT3(stop-1)~=0 && P_FC_BAT3(stop-

1)<EE_target 
         A_g_EL_FT2(stop-1)=1; 
         A_g_FC_BAT3(stop-1)=0;  
         P_BAT3_EL(stop-1)=EE_target-P_FC_BAT3(stop-1);% 
         P_FC_BAT3(stop-1)=0; 

          
%           if P_BAT3_EL(stop-1)>4000 
%              P_BAT3_EL(stop-1)=4000; Limits % EL power to max capacity 
%           end   

           
        else 
           A_g_EL_FT2(stop-1)=1; 
           A_g_FC_BAT3(stop-1)=0;  
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           P_BAT3_EL(stop-1)=EE_target;%+P_BAT3_EL(stop-1)% you want to 

integrate the energy with wat was already matched if error occurs 
           P_FC_BAT3(stop-1)=0;  

            
%           if P_BAT3_EL(stop-1)>4000 
%              P_BAT3_EL(stop-1)=4000;  % Limits EL power to max capacity 
%           end 

           
        end 
     end    

  
end 
end 

  
% if Pinch_Data(stop-1)~=Pinch_Data(startt) 
%     E_target=  (Pinch_Data(stop-1) - 

Pinch_Data(startt))*(BAT3_Cap/(100*P_FC_BAT3)); 
%      if E_target<0 
%            A_g_FC_BAT3(stop-1)=1;    
%             A_g_EL_FT2(stop-1)=0; 
%      else 
%          E_target>0 
%          A_g_EL_FT2(stop-1)=1; 
%           A_g_FC_BAT3(stop-1)=0;  
%      end    
%  
% end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  END OF PINCH %%%%%%%%%%%%%%%% 

  

  

  
A_g_EL_FT=A_g_EL_FT1; 
A_g_EL_FT=A_g_EL_FT2~=0; 

  
A_g_EL_FT=A_g_EL_FT1+A_g_EL_FT2; 

  

  
 end 
   end 

    

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% E.N.D OF M.P.C 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  

  

  
if k==1%||stop-start==21||stop-start==22 
    e=1; 
else 
    e=0; 
end 

  
if    k==1%  k<8760%     tweek to alter availability 
 e_avail_EL_FT_A=1; 
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e_avail_FC_BAT3_A=1; 
end 

  
EL_max=15000; 
FC_max=15000; 
if A_g_EL_FT(k-1+e)>EL_max  %Constrain the max power of EL 
   A_g_EL_FT(k-1+e)=EL_max; 
end 
if A_g_FC_BAT3(k-1+e)>FC_max 
     A_g_FC_BAT3(k-1+e)=FC_max; 
end 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_EL_FT_A=A_g_EL_FT(k-1+e)*e_avail_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A;                             

%The Logic for SOC to CONVERTER is the same as CONVERTER TO SOC 
e_FC_BAT3_A=e_FT_FC_A; 
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A; 

  

  

  

  

  
%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  

  
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 

  
P_BAT3_LD3_A=LD3_A(k); 
% P_BAT3_LD3_A=random('norm', 1230, 378,1,1); 

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no ;           %Area for 70W solar panel 
 if k>startt+7 && k<stop-8 
     %Random=random('norm', 0, 10,1,1); 
    Random; 
 else 
     Random=0; 
 end 

  
P_PV3_BAT3_A=Area_PV3*0.1 *(I_Rad(k)+ran_PV(k)) ;%+Random);  ;%   % 0.1 is 

efficiency for polycrystalline  
%P_PV3_BAT3=Area_PV3*I_RADOM(k)*0.1 ;  

  
% I_RADOM(k)=I_Rad(k)+Random 
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%  
% REAL(k)=Area_PV3*I_Rad(k)*0.1 
% DIST(k)=Area_PV3*I_RADOM(k)*0.1 
%I_REAL(k)=I_Rad(k) 

  

  

  

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3_A= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(k))^3) * Ng * Nb*WT_no 

; 

  

  

  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL(k-1+e)*A_g_EL_FT(k-1+e)*e_avail_EL_FT_A)  ;       

% Power flow as a function of Power supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3(k-1+e)*A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A);     

% Power flow as a function of Power supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 
e_FC_WT_A=e_FC_BAT3_A; 
Fout_FC_WT_H2O_A= e_FC_WT_A * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      

% The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
A_Fout_FC_WT_H2O_A(k)=Fout_FC_WT_H2O_A; 

  

  
Fout_EL_FT_H2_A= e_EL_FT_A * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  

% The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
A_Fout_EL_FT_H2_A(k)=Fout_EL_FT_H2_A; 

  

  
Fout_FT_FC_H2_A= e_FT_FC_A * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 

% The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
A_Fout_FT_FC_H2_A(k)=Fout_FT_FC_H2_A; 

  

  
Fout_WT_H2O_A= e_WT_EL_A* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % 

The flow of H2O from the WT to the EL based on what the EL needs. The Flow is 

-VE since it depletes the Water Tank 
A_Fout_WT_H2O_A(k)=Fout_WT_H2O_A; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 
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A_FC_ATTEMPT(k)=e_avail_FC_BAT3_A*A_g_FC_BAT3(k-1+e); 
A_EL_ATTEMPT(k)=e_avail_EL_FT_A*A_g_EL_FT(k-1+e); 
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
if stop-start==23 
    c=-1; 
else 
    c=0; 
end 

  
A_P_PV3_BAT3_A(k)=(e_PV3_BAT3_A*P_PV3_BAT3_A); 
A_P_WG2_BAT3_A(k)=P_WG2_BAT3_A; 
A_P_BAT3_AA(k)=SOC_BAT3_A*BAT3_Cap/100; 
A_P_DSL3_A(k)=(e_DSL3_BAT3_A*P_DSL3_BAT3); 
A_P_EL_A(k)=(e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-1+e)); 
A_P_FC_A(k)=(e_avail_FC_BAT3_A*A_g_FC_BAT3(k-1+e)*P_FC_BAT3(k-1+e)); 

  

  
P_RES3_A=(e_PV3_BAT3_A*P_PV3_BAT3_A) 

+(e_WG2_BAT3_A*P_WG2_BAT3_A)+(e_DSL3_BAT3_A*P_DSL3_BAT3)+(e_avail_FC_BAT3_A*A

_g_FC_BAT3(k-1+e)*P_FC_BAT3(k-1+e));%(r_FC_BAT3*P_FC_BAT3);%% 
A_P_RES3_A(k)=P_RES3_A; 
P_BAT3_A= P_RES3_A -

(((e_BAT3_LD3_A*P_BAT3_LD3_A))+(e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-

1+e)));%( r_BAT3_EL*P_BAT3_EL);% 
A_LD3_A(k)=P_BAT3_LD3_A; 
%% 
%LOLP CALCULATION 
ENERGY_in_SYSTEM(k)=(SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A ; 
if ((SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A)<(BAT3_Cap*30/100) 
    DEFICIT=((SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A); 
    LOAD_D=(((e_BAT3_LD3_A*P_BAT3_LD3_A))+(e_avail_EL_FT_A*A_g_EL_FT(k-

1+e)*P_BAT3_EL(k-1+e))); 
    number_count=number_count+1; 
else 
    DEFICIT=0; 
    LOAD_D=0; 
end 
DEFICIT_A(k)=DEFICIT; 
LOAD_D_A(k)=LOAD_D; 

  
if P_BAT3_A<0 &&SOC_BAT3_A<30 
    UnServed_load=(P_BAT3_A)+Unserved_load; 
end 

  
%% 
A_P_BAT3_A(k)=(P_BAT3_A/BAT3_Cap)*100 ; 
SOC_BAT3_A=SOC_BAT3_A +(P_BAT3_A/BAT3_Cap)*100 ; 
if SOC_BAT3_A<=0; 
    SOC_BAT3_A=0; 
end     
if SOC_BAT3_A>=100 
    Excess=SOC_BAT3_A +((P_BAT3_A/BAT3_Cap)*100)-100;%Calculate Excess Energy 

not saved in the battery 
    Excess_Energy_lost=(Excess*BAT3_Cap)/100+Excess_Energy_lost; 
    SOC_BAT3_A=100; 
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end 
A_SOC_BAT3_A(k)=SOC_BAT3_A; 

  
if SOC_BAT3_A<30 
   Deficit_SOC_BAT3_A=1; 
else 
   Deficit_SOC_BAT3_A=0; 
end 
 A_Deficit_SOC_BAT3_A(k)= Deficit_SOC_BAT3_A; 

  

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL_A=100*(Fout_FC_WT_H2O_A - Fout_WT_H2O_A)/WT_Cap; 
SOC_H2O_WT_A= SOC_H2O_WT_A +FC_WT_EL_A; 
if SOC_H2O_WT_A>=100 
    SOC_H2O_WT_A=100; 
end     
    if  SOC_H2O_WT_A<=0 
        SOC_H2O_WT_A=0; 
    end       
A_SOC_H2O_WT_A(k)=SOC_H2O_WT_A; 
A_F_FC_WT_EL_A(k)=FC_WT_EL_A; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC_A=100*(Fout_EL_FT_H2_A - Fout_FT_FC_H2_A)/FT_Cap; 
SOC_H2_FT_A=SOC_H2_FT_A + EL_FT_FC_A; 
if SOC_H2_FT_A>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_A=100; 
end 
if SOC_H2_FT_A<=0 
    SOC_H2_FT_A=0; 
end     
A_SOC_H2_FT_A(k)=SOC_H2_FT_A; 
A_F_EL_FT_FC_A(k)=EL_FT_FC_A; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 

  
if SOC_BAT3_A<stp_PV3_BAT3 
    q_PV3_BAT3_A=1; 
else 
    q_PV3_BAT3_A=0; 
end    
e_req_PV3_BAT3_A=q_PV3_BAT3_A  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 

  
a_PV3_BAT3_A=1; 
e_avail_PV3_BAT3_A= a_PV3_BAT3_A || r_PV3_BAT3_A; 
e_PV3_BAT3_A= e_avail_PV3_BAT3_A && e_req_PV3_BAT3_A && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
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str_WG2_BAT3=0;                        % start charging battery if SOC max is 

< 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3_A<stp_WG2_BAT3 
    q_WG2_BAT3_A=1; 
else 
    q_WG2_BAT3_A=0; 
end    
e_req_WG2_BAT3_A=q_WG2_BAT3_A ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3_A=1; 
e_avail_WG2_BAT3_A = a_WG2_BAT3_A || r_WG2_BAT3_A; 

  
e_WG2_BAT3_A = e_avail_WG2_BAT3_A && e_req_WG2_BAT3_A && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     

  
if SOC_BAT3_A<str_DSL3_BAT3 || 

[SOC_BAT3_A>str_DSL3_BAT3&&SOC_BAT3_A<stp_DSL3_BAT3] && A_e_DSL3_BAT3_A(k+c-

1)==1 
q_DSL3_BAT3_A=1; 
else 
q_DSL3_BAT3_A=0; 
end 
e_req_DSL3_BAT3_A =q_DSL3_BAT3_A; 

  
a_DSL3_BAT3_A=1  ;                           %Availability logic for Diesel 

generator 

  
e_avail_DSL3_BAT3_A = a_DSL3_BAT3_A || r_DSL3_BAT3_A; 

  
e_DSL3_BAT3_A= e_avail_DSL3_BAT3_A && e_req_DSL3_BAT3_A && g_DSL3_BAT3; 

  

  
%ACTIVATION FOR FUEL CELL TO BATTERY 

  
str_FC_BAT3=90;                       %start and stop min and max threshold 

to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
if SOC_BAT3_A<str_FC_BAT3  || SOC_BAT3_A>str_FC_BAT3 && 

SOC_BAT3_A<stp_FC_BAT3 && A_e_FC_BAT3_A(k+c-1)==1       %i==[2881:5832] 

ensures Summer operation only  
    q_FC_BAT3_A=1 ; 
else 
    q_FC_BAT3_A=0; 
end 
e_req_FC_BAT3_A =   q_FC_BAT3_A; 
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  str_FC_WT_A=90 ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT_A=90; 

  
if SOC_H2O_WT_A<str_FC_WT_A  
  a1_FC_WT_A=1; 
else 
  a1_FC_WT_A=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT_A>str_FT_FC  
  a2_FT_FC_A=1; 
else 
  a2_FT_FC_A=0; 
end 

  
e_avail_FC_BAT3_A= a1_FC_WT_A && a2_FT_FC_A;  %|| r_FT_FC; 

     
%e_FC_BAT3 = e_avail_FC_BAT3 && e_req_FC_BAT3 &&A_g_FC_BAT3(k); 
% e_FC_BAT3 = e_avail_FC_BAT3 && (r_FC_BAT3 ||A_g_FC_BAT3(k));% ; 
% e_FC_BAT3 = e_avail_FC_BAT3 &&(r_FC_BAT3  ~); 

  
%e_FC_BAT3_A = e_req_FC_BAT3_A && A_g_FC_BAT3(k) ;  

  

  

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 

  

  
%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
str_EL_FT = 90       ;                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT_A<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY 

FROM ELECTROLYSER 
    q_EL_FT_A=1; 
else 
    q_EL_FT_A=0; 
end 
e_req_EL_FT_A= q_EL_FT_A; 

  

  
str_BAT3_EL= 40   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
if SOC_BAT3_A>str_BAT3_EL || SOC_BAT3_A<str_BAT3_EL && SOC_BAT3_A>stp_BAT3_EL 

&& A_e_EL_FT_A(k+c-1)>=1  %i==[2881:5832] ensures Winter operation only 
  a1_BAT3_EL_A = 1; 
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else 

  
  a1_BAT3_EL_A=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT_A>str_WT_EL  
  a2_EL_FT_A=1; 
else 
  a2_EL_FT_A=0; 
end 

  
e_avail_EL_FT_A = a1_BAT3_EL_A && a2_EL_FT_A ;% || r_EL_FT; 
%e_EL_FT_A = e_req_EL_FT_A && (A_g_EL_FT1(k-1+c)&& A_g_EL_FT2(k-1+c)) ; 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=e_FC_BAT3_A   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
A_e_BAT3_LD3_A(k)=e_BAT3_LD3_A; 
A_e_PV3_BAT3_A(k)= e_PV3_BAT3_A;             
A_e_WG2_BAT3_A(k)=e_WG2_BAT3_A; 
A_e_BAT3_EL_A(k)=e_BAT3_EL_A ;             
A_e_WT_EL_A(k)= e_WT_EL_A ; 
A_e_EL_FT_A(k)=e_EL_FT_A  ;            
A_e_FT_FC_A(k)=e_FT_FC_A; 
A_e_FC_WT_A(k)=e_FC_WT_A; 
%A_e_FC_BAT3_A(k)=e_FC_BAT3_A; 
A_e_DSL3_BAT3_A(k)=e_DSL3_BAT3_A; 
% % %  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FEEDBACK THE STATES OF SOC AND LOGIC 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TO PINCH SECTION 

  
% e_BAT3_LD3=e_BAT3_LD3_A; 
% e_PV3_BAT3= e_PV3_BAT3_A;             
% e_WG2_BAT3=e_WG2_BAT3_A; 
% e_BAT3_EL=e_BAT3_EL_A ;             
% e_WT_EL= e_WT_EL_A; 
% e_EL_FT=e_EL_FT_A;            
% e_FT_FC=e_FT_FC_A; 
% e_FC_WT=e_FC_WT_A; 
% e_FC_BAT3=e_FC_BAT3_A; 
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% e_DSL3_BAT3=e_DSL3_BAT3_A; 
%  
% SOC_H2O_WT=SOC_H2O_WT_A; 
%  
% SOC_H2_FT=SOC_H2_FT_A; 
%  
% SOC_BAT3=SOC_BAT3_A; 

  

  
% %%%%%%%%%%%%%%%%%%%% END OF ACTUAL SYSTEM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%COUNTER INCREMENTAL LOOP%%%%%%%%%% 
  if k==stop 
  startt=stop+1; 
  stop=stop+24; 

   
 end    

     
%  Counter=Counter+1; 
%  if Counter ==25 
%      Counter=1; 
%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ii(k)=k; 

  
sstart(k)=start; 

  

  

  

  

  

  

  
%%%%%%%%%%%%%%%% IAE CALC %%%%%%%%%%%%%% 
SOC_ref=Pinch_Data(k); 
if Pinch_Data(k)<30||SOC_BAT3_A<30 
    SOC_ref=30; 
end 
if Pinch_Data(k)>90||SOC_BAT3_A>90 
    SOC_ref=90; 
end 

  
A_SOC_ref(k)=SOC_ref; 
IAE=abs(SOC_ref-SOC_BAT3_A)/SOC_ref;% change between system and model 
A_IAE(k)=IAE; 

  
if SOC_BAT3_A>90&&e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-1+e)<1 
    EPL(k)=(SOC_BAT3_A-90)*BAT3_Cap/100; 
end 

  
end 
tt=1:k; 
plot(tt,A_SOC_ref(1:k),tt,A_SOC_BAT3_A) % 
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IAE_a=sum(A_IAE)/k 
LOLP=(sum(DEFICIT_A)/sum(LOAD_D_A))/number_count 

  
end 
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Appendix E

Reinforcement Learning Adaptive PoPA

.m Code



rng('default') 

  
% DONT TOUCH YOU NEED TO INCREASE PICH MIN LEVEL AND REDUCE PINCH MAX BY 2% 
% RESPECTIVELY  

  

  

  

  
%Dont Temper with this Version for recalculates when there is error between 

model and system Pinch analysis in the whole Year 
%find(Recall(1,1:k)==1)% finds where adaptive recalculation occurred  
%Adaptive MPC PINCH recalculates every time there is difference between 
%model and Actual system  

  

  
%PREDICTION TOP LEVEL INITIALIZATION FOR PV AND WIND DATA INPUT 
I_rad = dlmread('PV_POA.csv');         %Plane of Array for insolation 
I_Rad=I_rad'; 

  
Ng=0.96; 
Nb=0.72; 
Air_den=1.23    ;                       %Air density 1.23 Kg/m3 
Cp=0.4; 
Area_sw=3.24 ;                          %Wind Turbine Swept Area 
WT_no=3; 
WT_wind = dlmread('WT_Wind.csv');      %Velocity of Wind m/s 
Wind_vel=WT_wind'; 

  

  
LD3=ones(1,8760)*1000;                  % Constant Load for a year 
LD3_daily=24*1000;                        %Load per day 
P_DSL3_BAT3= 2210; 

  
%Counter=0 ;                            %counts the no.of iteration 

  

  

  
%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% START OF MICROGRID 3 INITIALIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3=1; 
e_PV3_BAT3=0;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0  ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
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e_DSL3_BAT3=0; 

  
e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
%INITIALIZING AVAILABILITY OVERRIDE  
r_PV3_BAT3=0;           
r_WG2_BAT3=0; 
r_BAT3_EL=0;          
r_WT_EL=0; 
r_EL_FT=0;          
r_FT_FC=0; 
r_FC_WT=0; 
r_FC_BAT3=0; 
r_BAT3_LD3=0; 
r_DSL3_BAT3=0; 

  
%INITIALIZING GENERALITY CONSTRAINT FOR ACTIVATION (OVERRIDE) 

  
g_PV3_BAT3=1   ;                
g_WG2_BAT3=0; 
g_BAT3_EL=1      ;              
g_WT_EL=1    ; 
g_EL_FT=1      ;               
g_FT_FC=1; 
g_FC_WT=1; 
g_FC_BAT3=1; 
g_BAT3_LD3=1; 
g_DSL3_BAT3=1; 

  

  

  
%  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 
e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 
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e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=e_FC_BAT3_A; 
%  

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=70  ;                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=80; 
 SOC_H2O_WT_A=30; 
%  

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF REAL SYSTEM MICROGRID 3 

INITIALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  

 
% INITIALIZING BATTERY CAPACITY                                                    

% Battery3 capacity   3KAh*12V = 36KWh 
BAT3_Cap=36000; 

  

  
%INITIALIZING DIESEL GENERATOR3 

  

  
%INITIALIZING FUEL CELL AND ELECTROLYSER DYNAMICS  
polyn_EL=[-0.000001426704372 0.027954416509736 2.502267281445165];  %Transfer 

function for Electrolyser  
polyn_FC=[0.000000895442340 0.033197516886985 -0.278092554468687];  %Transfer 

function for Fuel Cell  
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nc_EL=15;                           % no. of cells in the electrolyser 
nc_FC=40;                           % no. of cells in the fuel cell 
nF=0.87;                            % Efficiency  
ne=2;                               % no. of electron 
F=96485;                            % Faraday's constant W/mol 
P_BAT3_EL=4000;                          % Power required per time by the 

Electrolyser 
P_FC_BAT3=3000;                          % Max power the Fuel cell can 

deliver 

  
WT_Cap=2.1749e+03*300; 
FT_Cap=974*300%974.3583*10;% 

  
%INITIALIZE SOCs EL AND FC 
SOC_BAT3=70  ;                                %Tweek #SOC_BAT3 to alter the 

SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=80; 
SOC_H2O_WT=30; 

  
%%%% ELECTROLYSER ACTIVATION %%%%%%% 
EL_SUMMER=zeros(1,8760); 
EL_SUMMER(1:8760)=1; 
%EL_SUMMER(1:2160)=1; 
%EL_SUMMER(6553:8760)=1; 

  
%%%% FUEL CELL ACTIVATION %%%%% 
FC_WINTER=zeros(1,8760); 
FC_WINTER(1:8760)=1;%(100:8000)(2881:5832) 

  
%VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3=zeros(1,8760); 
A_e_PV3_BAT3= zeros(1,8760)      ;         
A_e_WG2_BAT3=zeros(1,8760); 
A_e_BAT3_EL=zeros(1,8760)       ;         
A_e_WT_EL= zeros(1,8760); 
A_e_EL_FT=zeros(1,8760)      ;              
A_e_FT_FC=zeros(1,8760); 
A_e_FC_WT=zeros(1,8760); 
A_e_FC_BAT3=zeros(1,8760); 
A_e_DSL3_BAT3=zeros(1,8760); 
A_F_FC_WT_EL=zeros(1,8760); 
A_F_EL_FT_FC=zeros(1,8760); 

  
% 
% A_r_PV3_BAT3=zeros(1,8760);           
% A_r_WG2_BAT3=zeros(1,8760);  
% A_r_BAT3_EL=zeros(1,8760);           
% A_r_WT_EL=zeros(1,8760);  
% A_r_EL_FT=zeros(1,24);          
% A_r_FT_FC=zeros(1,24);  
% A_r_FC_WT=zeros(1,8760);  
% A_r_FC_BAT3=zeros(1,8760);  
% A_r_BAT3_LD3=zeros(1,8760);  
% A_r_DSL3_BAT3=zeros(1,8760);  
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A_g_FC_BAT3=zeros(1,8760);  
A_g_EL_FT1=zeros(1,8760); 
A_g_EL_FT2=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ACTUAL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%INITIALIZATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 
e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 

  
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=e_FC_BAT3_A; 

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=70  ;                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=80; 
 SOC_H2O_WT_A=30; 

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
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A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
EL_ON1=zeros(24,24); 
EL_ON2=zeros(24,24); 
FC_ON=zeros(24,24); 

  

  
startt=1;  
start=1; 
stop=24; 
Counter=0; 
Counter2=0; 

  

  
k=1; 

  
PINCH_DATA=[]; 
A_SOC_BAT3=zeros(1,240) 
Recall=zeros(1,240) 

  
%%%%%%%%%%%%%%%%%%%%%% Q-Learning INIT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
ACTION=[1 2 3 4 5 6 7]'; 
Q_Table=rand(270,length(ACTION))+1; 

  
ep=0.8  ;  % epsilon   % tweek depending on how true the reward was in real 

time 

  
Alpha=0.9; 
gamma=0.9; 

 

ACTION_1_COUNT=0; 
ACTION_2_COUNT=0; 
ACTION_3_COUNT=0; 
ACTION_4_COUNT=0; 

 

LD3_A=repmat(Actual_load,1,365); 
% LD3=dlmread('LOAD_Max.csv'); 
LD3=dlmread('LOAD_AVERAGE.csv')*0.5; 
LD3_A=dlmread('ACTUAL_LD_S2.csv')*1.5; 
%LD3=ones(1,8760)*1000;  

  
% LD3_A=LD3; 

  
WT_Cap=2.1749e+03*300; 
FT_Cap=974*300;%974.3583*10;% 

  
 while k<=8760%719 
for k=1:1:8760%720 %determines the number of hours to run the Pinch analysis 
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%for k=start:1:stop 

  
    Counter2=Counter2+1; 

    
   for l=1:1:10 
       start=k; 
       if k==1 
           stop=24; 
       startt=1; 
       end 
%         if k==24 
%         pause(1) 
%        end 
%    
 if (stop-start)==23 ||(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 

(A_SOC_BAT3(k-1)>5+A_SOC_BAT3_A(k-1) || A_SOC_BAT3(k-1)<-5+A_SOC_BAT3_A(k-1))  

% &&SOC_BAT3>10/100*SOC_BAT3_A %Do recalculation only if the deviation is 

state>10% 
 if start>1 
SOC_BAT3=A_SOC_BAT3_A(start-1)  ;                                %Tweek 

#SOC_BAT3 to alter the SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=A_SOC_H2_FT_A(start-1); 
SOC_H2O_WT=A_SOC_H2O_WT_A(start-1); 

  
e_BAT3_LD3= A_e_BAT3_LD3_A(start-1)  ; 
e_PV3_BAT3= A_e_PV3_BAT3_A(start-1)  ;             
e_WG2_BAT3=  A_e_WG2_BAT3_A(start-1) ; 
e_BAT3_EL = A_e_BAT3_EL_A(start-1);             
e_WT_EL = A_e_WT_EL_A(start-1); 
e_EL_FT  = A_e_EL_FT_A(start-1);            
e_FT_FC= A_e_FT_FC_A(start-1); 
e_FC_WT=  A_e_FC_WT_A(start-1); 
e_FC_BAT3=  A_e_FC_BAT3_A(start-1); 
e_DSL3_BAT3= A_e_DSL3_BAT3_A(start-1); 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
 end 
%%%%%%%%%%%%%%%%%%%%%%% 

  
 if start==1 
SOC_BAT3=70 ; 
SOC_H2O_WT=30; 
SOC_H2_FT=80   ; 
%INITIALIZING ACTIVATION STATES OF THE NODES 
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e_BAT3_LD3=1; 
e_PV3_BAT3=0   ;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0    ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
e_DSL3_BAT3=0; 

  
e_BAT3_EL = e_EL_FT; 

  
% ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
% ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
% ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
   end 

  

  

  

     
 for j=k:1:stop %j=start:1:stop 

     
%Counter=Counter+1 
%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  

  
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 
P_BAT3_LD3=LD3(j); 

  

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no        ;           %Area for 70W solar panel 

  
P_PV3_BAT3=Area_PV3*I_Rad(j)*0.1 ;     % 0.1 is efficiency for 

polycrystalline  

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(j))^3) * Ng * Nb*WT_no ; 

  

  

259



  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL)  ;       % Power flow as a function of Power 

supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3)    ;     % Power flow as a function of Power 

supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 

  
Fout_FC_WT_H2O= e_FC_WT * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      % 

The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
%A_Fout_FC_WT_H2O(k,j)=Fout_FC_WT_H2O; 

  

  
Fout_EL_FT_H2= e_EL_FT * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  % 

The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
%A_Fout_EL_FT_H2(k,j)=Fout_EL_FT_H2; 

  

  
Fout_FT_FC_H2= e_FT_FC * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 % 

The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
%A_Fout_FT_FC_H2(k,j)=Fout_FT_FC_H2; 

  

  
Fout_WT_H2O= e_WT_EL* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % The 

flow of H2O from the WT to the EL based on what the EL needs. The Flow is -VE 

since it depletes the Water Tank 
%A_Fout_WT_H2O(k,j)=Fout_WT_H2O; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 

  

  
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
A_P_PV3_BAT3(j)=P_PV3_BAT3; 
A_P_WG2_BAT3(j)=P_WG2_BAT3; 
P_RES3=(e_PV3_BAT3*P_PV3_BAT3) 

+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BAT3)+(e_FC_BAT3*P_FC_BAT3); 
A_P_RES3(j)=P_RES3; 
P_BAT3= P_RES3-(e_BAT3_LD3*P_BAT3_LD3)-(e_BAT3_EL*P_BAT3_EL); 
if P_BAT3<=0 
   Deficit_P_BAT3=1; 
else 
    Deficit_P_BAT3=0; 
end 
A_Deficit_P_BAT3(j)=Deficit_P_BAT3; 
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if P_BAT3>LD3(j)&&SOC_BAT3>90&&SOC_H2_FT>90 && SOC_H2O_WT>40 
    Surplus_P_BAT3=1; 
else 
    Surplus_P_BAT3=0; 
end 
A_Surplus_P_BAT3(j)=Surplus_P_BAT3; 

  

  
A_P_BAT3(j)=(P_BAT3/BAT3_Cap)*100 ; 
SOC_BAT3=SOC_BAT3+(P_BAT3/BAT3_Cap)*100 ; 
if SOC_BAT3<=0; 
    SOC_BAT3=0; 
end     
if SOC_BAT3>=100 
    SOC_BAT3=100; 
end 

  
A_SOC_BAT3(j)=SOC_BAT3; 
if SOC_BAT3<30 
   Deficit_SOC_BAT3=1; 
else 
   Deficit_SOC_BAT3=0; 
end 
 A_Deficit_SOC_BAT3(j)= Deficit_SOC_BAT3; 

  
 if j<=1 
     c=1; 
 else 
     c=0; 
 end    

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT= SOC_H2O_WT +FC_WT_EL; 
if SOC_H2O_WT>=100 
    SOC_H2O_WT=100; 
end     
    if  SOC_H2O_WT<=0 
        SOC_H2O_WT=0; 
    end       
A_SOC_H2O_WT(j)=SOC_H2O_WT; 
A_F_FC_WT_EL(j)=FC_WT_EL; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT=SOC_H2_FT + EL_FT_FC; 
if SOC_H2_FT>=100                           %LIMITS FOR SOC OF WATER TANK AND 

FLOW TANK 
    SOC_H2_FT=100; 
end 
if SOC_H2_FT<=0 
    SOC_H2_FT=0; 
end     
A_SOC_H2_FT(j)=SOC_H2_FT; 
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A_F_EL_FT_FC(j)=EL_FT_FC; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 

  
if SOC_BAT3<stp_PV3_BAT3 
    q_PV3_BAT3=1; 
else 
    q_PV3_BAT3=0; 
end    
e_req_PV3_BAT3=q_PV3_BAT3  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 

  
a_PV3_BAT3=1; 
e_avail_PV3_BAT3= a_PV3_BAT3 || r_PV3_BAT3; 
e_PV3_BAT3= e_avail_PV3_BAT3 && e_req_PV3_BAT3 && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
str_WG2_BAT3=0   ;                        % start charging battery if SOC max 

is < 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3<stp_WG2_BAT3 
    q_WG2_BAT3=1; 
else 
    q_WG2_BAT3=0; 
end    
e_req_WG2_BAT3=q_WG2_BAT3    ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3=1; 
e_avail_WG2_BAT3 = a_WG2_BAT3 || r_WG2_BAT3; 

  
e_WG2_BAT3 = e_avail_WG2_BAT3 && e_req_WG2_BAT3 && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     
if SOC_BAT3<str_DSL3_BAT3 || [SOC_BAT3>str_DSL3_BAT3&&SOC_BAT3<stp_DSL3_BAT3] 

%&& A_e_DSL3_BAT3(j+c-1)==1 
q_DSL3_BAT3=1; 
else 
q_DSL3_BAT3=0; 
end 
e_req_DSL3_BAT3 =q_DSL3_BAT3; 

  
a_DSL3_BAT3=1       ;                           %Availability logic for 

Diesel generator 
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e_avail_DSL3_BAT3 = a_DSL3_BAT3 || r_DSL3_BAT3; 

  
e_DSL3_BAT3= e_avail_DSL3_BAT3 && e_req_DSL3_BAT3 && g_DSL3_BAT3; 

  

  
%ACTIVATION FOR FUEL CELL TO BATTERY 
if FC_WINTER(k)==1 
    FC_ON_WINTER=1; 
else 
    FC_ON_WINTER=0; 
end 
str_FC_BAT3=99  ;      %90                 %start and stop min and max 

threshold to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
if FC_ON_WINTER==1 && SOC_BAT3<str_FC_BAT3  || SOC_BAT3>str_FC_BAT3 && 

SOC_BAT3<stp_FC_BAT3 && A_e_FC_BAT3(j-1+c)==1       %i==[2881:5832] ensures 

Summer operation only  
    q_FC_BAT3=1 ; 
else 
    q_FC_BAT3=0; 
end 
e_req_FC_BAT3 =   q_FC_BAT3; 

  
  str_FC_WT=90      ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT=90; 

  
if SOC_H2O_WT<str_FC_WT  
  a1_FC_WT=1; 
else 
  a1_FC_WT=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT>str_FT_FC  
  a2_FT_FC=1; 
else 
  a2_FT_FC=0; 
end 

  
e_avail_FC_BAT3= a1_FC_WT && a2_FT_FC ; %|| r_FT_FC; 

     

  
e_FC_BAT3 = e_req_FC_BAT3 && A_g_FC_BAT3(j+c); 

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 

  

  
%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
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str_EL_FT = 99       ;%90                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY FROM 

ELECTROLYSER 
    q_EL_FT=1; 
else 
    q_EL_FT=0; 
end 
e_req_EL_FT= q_EL_FT; 

  

  
if EL_SUMMER(k)==1                   %Scan the array if the index is equal to 

1 then logic is true else it is false for zero  
    EL_ON_SUMMER=1; 
    else 
    EL_ON_SUMMER=0; 
end     

  
str_BAT3_EL= 70   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
% if Counter<=1 
%     c=2; 
% else 
%     c=0; 
% end             %This corrects the indexing by assuming the past was zero 
if EL_ON_SUMMER==1 && SOC_BAT3>str_BAT3_EL || SOC_BAT3<str_BAT3_EL && 

SOC_BAT3>stp_BAT3_EL && A_e_EL_FT(j+c-1)==1  %i==[2881:5832] ensures Winter 

operation only 
  a1_BAT3_EL = 1; 
else 

  
  a1_BAT3_EL=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT>str_WT_EL  
  a2_EL_FT=1; 
else 
  a2_EL_FT=0; 
end 

  

  
e_avail_EL_FT= a1_BAT3_EL && a2_EL_FT ; %|| r_EL_FT; 
e_EL_FT=e_req_EL_FT&&(A_g_EL_FT1(j+c) || A_g_EL_FT2(j+c)); 

  

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
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e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
A_e_BAT3_LD3(j)=e_BAT3_LD3; 
A_e_PV3_BAT3(j)= e_PV3_BAT3;             
A_e_WG2_BAT3(j)=e_WG2_BAT3; 
A_e_BAT3_EL(j)=e_BAT3_EL ;             
A_e_WT_EL(j)= e_WT_EL ; 
A_e_EL_FT(j)=e_EL_FT  ;            
A_e_FT_FC(j)=e_FT_FC; 
A_e_FC_WT(j)=e_FC_WT; 
A_e_FC_BAT3(j)=e_FC_BAT3; 
A_e_DSL3_BAT3(j)=e_DSL3_BAT3; 

  
%%%%%%%%%%%%%%%%%%%% END OF MG3 LOW LEVEL PMS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Pinch_Data(j)=SOC_BAT3; 
%PINCH_DATA(l,j,k)=SOC_BAT3; 
   if l==10 && startt==k 
 Pinch_Data_Raw(j)=SOC_BAT3; 
end 

  
% PINCH_DATA(k,j)=SOC_BAT3; 
% PINCH_DATAA(Counter2,j)=SOC_BAT3; 
 end 
%run this loop while Smin and Smax violation exist 

  

   
%PINCH ANALYSIS AND DETERMINATION OF G OVERIDE 

  
%%START PINCH%% 
SOC_BAT3_min=31 ;          %Minimum and Maximum Pinch Targets 
SOC_BAT3_max=89; 
S_min=min(Pinch_Data(start:stop)); 

  
if S_min<SOC_BAT3_min 

    
   t_violation= find(Pinch_Data(1:stop)==S_min)     ;           % time of 

violation of the Lower pinch  

  
   E_target = (SOC_BAT3_min - S_min)*(BAT3_Cap/(100*P_FC_BAT3)); 
   t_duration = ceil(E_target)/BAT3_Cap;             %Time duration needed 

based on allowable amount of energy from battery per hour 
   if t_violation-1<1 
      t_violation=2 
   end 
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   A_g_FC_BAT3(t_violation-1)= 1; 

  

    
else 

     
  S_max=max(Pinch_Data(start:stop)); 

     
  A_g_EL_FT1(1,start:stop-2)=  Pinch_Data(start:stop-2)>SOC_BAT3_max; 

   
end 

  
if 

ceil(Pinch_Data(stop))~=50&&(Pinch_Data(startt)>=30&&Pinch_Data(startt)<=90)%

Pinch_Data(stop)~=Pinch_Data(startt)&&Pinch_Data(startt)>=30 
    EE_target=(Pinch_Data(stop) - Pinch_Data(startt))*(BAT3_Cap/(100)); 
     if EE_target<0 
           A_g_FC_BAT3(stop)=1;  
            A_g_EL_FT2(stop)=0; 

         
     else 
         EE_target>0 
         A_g_EL_FT2(stop)=1; 
          A_g_FC_BAT3(stop)=0;  

       
     end    

  
end 

  

  
% if Pinch_Data(stop-1)~=Pinch_Data(startt) 
%     E_target=  (Pinch_Data(stop-1) - 

Pinch_Data(startt))*(BAT3_Cap/(100*P_FC_BAT3)); 
%      if E_target<0 
%            A_g_FC_BAT3(stop-1)=1;    
%             A_g_EL_FT2(stop-1)=0; 
%      else 
%          E_target>0 
%          A_g_EL_FT2(stop-1)=1; 
%           A_g_FC_BAT3(stop-1)=0;  
%      end    
%  
% end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  END OF PINCH %%%%%%%%%%%%%%%% 

  

  

  
A_g_EL_FT=A_g_EL_FT1+A_g_EL_FT2; 
%A_g_EL_FT=A_g_EL_FT2~=0; 

  
      Recal=1; 
Recall(k)=Recal; 
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end 
   end 

    

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% E.N.D OF M.P.C 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q _ LEARNING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%         if k==30 
%         pause(5) 
%     end 

  

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EXPLORE A NEW ACTION %%%%%%%%%%%%%%%%%%% 
%  
% if k<=1        
% SOC_BAT3_A =A_SOC_BAT3(1)  ;    
% e_avail_EL_FT_A= e_EL_FT ; 
% e_avail_FC_BAT3_A=e_FC_BAT3_A;  
% end    
[aa bb]=size(Pinch_Data);%(A_SOC_BAT3); 
Pinch_now=Pinch_Data(k) ; 
if bb>k+1 
Pinch_now=Pinch_Data(k); 
else 
Pinch_now=Pinch_Data(k) ; 
end 

  
State= QQ_State_error_typeX(Pinch_now,SOC_BAT3_A)    ;      % calibrates the 

state of the BAttery's SOC to a range of states 

  
% State 
Prob_sel=sum(rand>cumsum([0 1-ep ep])) ;     %Type of action selector whether 

to read from table (exploit) or try exploration random action 

  
% WHEN THE CONVERGENCE OF TABLE OCCURS UPDATE EPSILON TO 1 
%IF REWARD IS NOT MET OVER 3 TIMES DECREASE EPSILON 

  
% if      
%     Action_sel=1 
% else 
% 
% else 
% if A_g_EL_FT1(k)==1 && A_g_FC_BAT3(k)==0 
%     Action_sel=3 
%  
% end 
% end 
% end 
 if SOC_BAT3_A<40||SOC_BAT3_A>85 
    Prob_sel=2; 

267



  
 end 

  
    if Prob_sel ==1              %random action selected based on epsilon 
    if A_g_FC_BAT3(k-1+c)==0 && A_g_EL_FT1(k-1+c)==0  
      Action_sel=datasample(ACTION(1),1)   ;   
    end 
    if A_g_FC_BAT3(k-1+c)==1 && A_g_EL_FT1(k-1+c)==0  
       Action_sel=datasample(ACTION(4),1)   ;    
    end 
    if A_g_FC_BAT3(k-1+c)==0 && A_g_EL_FT1(k-1+c)==1 
    Action_sel=datasample(ACTION(7),1)   ;  
    end  
     Action_sel=datasample(ACTION(1:7),1) ;  % overide 

      

     
    if SOC_BAT3_A<31 
        Action_sel=datasample(ACTION(4),1)  ; 
    elseif SOC_BAT3_A>31&&SOC_BAT3_A<40 
          Action_sel=datasample(ACTION(1:4),1)  ; 
    end 
    if SOC_BAT3_A>89 
        Action_sel=datasample(ACTION(7),1)  ;  
    end 

    
    else 
    if Prob_sel==2 
    [state1 

,Q_action_max]=max(Q_Table(QQ_State_error_typeX(Pinch_now,SOC_BAT3_A),:)) ;     

%max action from previous learning 
    Action_sel=Q_action_max; 
    end 
    if SOC_BAT3_A>30&&SOC_BAT3_A<40 
     [state1 

,Q_action_max]=max(Q_Table(QQ_State_error_typeX(Pinch_now,SOC_BAT3_A),1:4)) ;     

%max action from previous learning 
   Action_sel=Q_action_max; 
    end 
    if SOC_BAT3_A>70 
        [state1 

,Q_action_max]=max(Q_Table(QQ_State_error_typeX(Pinch_now,SOC_BAT3_A),[1,5:7]

)) ; 
           if Q_action_max==1 
              Action_sel=Q_action_max; 
           elseif    Q_action_max>1 
               Action_sel=Q_action_max+3; %corrects the action index 
           end 
     end 

      

     
     if SOC_BAT3_A<31 
        Action_sel=datasample(ACTION(4),1)  ; 
    end 
     if SOC_BAT3_A>89 
       Action_sel=datasample(ACTION(7),1)  ;  
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     end 
    end 

       
   Action_sell(k)=Action_sel; 
       %% Take action on the logic based on the whatever action has been 

selected 

        
 if  Action_sel==1 
     r_BAT3_EL=0; 
     r_FC_BAT3=0; 
 end 
  if Action_sel==2 
     r_BAT3_EL=0; 
     r_FC_BAT3=0.1; 
  end 
   if Action_sel==3 
     r_BAT3_EL=0; 
     r_FC_BAT3=0.3; 
  end 
   if Action_sel==4 
     r_BAT3_EL=0; 
     r_FC_BAT3=1; 
  end 

   
   if Action_sel==5 
     r_BAT3_EL=0.3; 
     r_FC_BAT3=0; 
   end 

    
   if Action_sel==6 
     r_BAT3_EL=.5; 
     r_FC_BAT3=0; 
   end 

    
   if Action_sel==7 
     r_BAT3_EL=1; 
     r_FC_BAT3=0; 
   end 

    

    

    

    
%    if Action_sel==4 
%      r_BAT3_EL=1; 
%      r_FC_BAT3=1; 
%    end 

  

  
%The Logic of availability to carry out an action is set, No need to learn on 

an action that wasn't carried out 
%e_EL_FT_A=r_BAT3_EL &&e_avail_EL_FT_A    %( e_req_EL_FT_A ||  ); 
% if k<=1 
%    c=1; 
% e_req_EL_FT_A=1 
%  

269



% e_req_FC_BAT3_A=1 
% else 
%    c=0 
% end 

  

  

  

  
%e_EL_FT_A = e_avail_EL_FT_A && e_req_EL_FT_A 

||(e_avail_EL_FT_A&&(A_g_EL_FT1(k-1+c) || A_g_EL_FT2(k-

1+c)));%e_avail_EL_FT_A 
%e_EL_FT_A=e_avail_EL_FT_A&&(A_g_EL_FT1(k-1+c) || A_g_EL_FT2(k-1+c)); 
% e_EL_FT_A=e_avail_EL_FT_A && r_BAT3_EL  
% e_BAT3_EL_A= e_EL_FT_A; 
% A_R_e_BAT3_EL(k)= e_BAT3_EL_A; 

  

  
% e_FC_BAT3_A = e_avail_FC_BAT3_A && r_FC_BAT3 ;  %;%(e_req_FC_BAT3 );  
% %e_FC_BAT3_A = e_req_FC_BAT3_A  && A_g_FC_BAT3(k+c);%e_avail_FC_BAT3_A 
% %e_FC_BAT3_A =(e_avail_FC_BAT3_A && e_req_FC_BAT3_A ) || 

(e_avail_FC_BAT3_A&& A_g_FC_BAT3(k+c)); 
% %e_FC_BAT3_A =(e_avail_FC_BAT3_A&& A_g_FC_BAT3(k+c)) 
%  
% A_R_e_FC_BAT3(k)=e_FC_BAT3_A; 

  
% if e_FC_BAT3_A==1 &&e_BAT3_EL_A==0   %Learning Pinch directly 
%    Action_sel=2 
% end 
% if e_FC_BAT3_A==1 &&e_BAT3_EL_A==0 
%    Action_sel=3 
% end   

  
% if (r_BAT3_EL==1 && e_EL_FT_A~=1)&&( r_FC_BAT3==1 && e_FC_BAT3_A ~=1) % 

This means if Action 4 EL and FC ON was selected it will be changed to Action 

1 
%    Action_sel =1    
% end 
% if(r_BAT3_EL==1 && e_EL_FT_A~=1)&&( r_FC_BAT3==1 && e_FC_BAT3_A ==1) 
%      Action_sel =2  
% end  
% if(r_BAT3_EL==1 && e_EL_FT_A==1)&&( r_FC_BAT3==1 && e_FC_BAT3_A ~=1) 
%     Action_sel =3  
% end 
%  
% if(r_BAT3_EL==1 && e_EL_FT_A==1)&&( r_FC_BAT3==1 && e_FC_BAT3_A ==1) 
%     Action_sel =4  
% end 

  

  

  
% V_L(k)=sum(A_SOC_BAT3_A<30); 
% V_U(k)=sum(A_SOC_BAT3_A>90); 
% if V_L(k) 
% end 
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  Alpha=Alpha_gain/(1+k/2000); 
  A_Alpha(k)=Alpha; 
%  
% if k>50 
%     m=k 
%     if k>1500 
%     m=1500 
%     end 
%  ep=1/(1+500/k); 
% end 

  

  

  

  
%    E_target= (SOC_BAT3 - SOC_BAT3_A)*(BAT3_Cap/(100)) 
%    if E_target < 0 
% %     P_FC_BAT3_A = abs(E_target); 
% %    else  
%     P_FC_BAT3_A = 3000; 
%    end 
%    if E_target>0 
% %     P_BAT3_EL_A= E_target; 
% %    else 
%     P_BAT3_EL_A= 3000; 
%    end 

  

  

  
%State= Q_State_error_typeX(Pinch_Data(k),SOC_BAT3_A)    ;      % calibrates 

the state of the BAttery's SOC to a range of states 

  
State; 

  

  
% if   A_g_FC_BAT3(k)==0 && A_g_EL_FT1(k)==0    
%     Action_sel=1 
% else 
% if A_g_FC_BAT3(k)==1 && A_g_EL_FT1(k)==0  
%   Action_sel=2 
% else 
% if A_g_EL_FT1(k)==1 && A_g_FC_BAT3(k)==0 
%     Action_sel=3 
%  
% end 
% end 
% end 
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%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  
ReplayQ(k,6)=SOC_BAT3_A; 
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 
P_BAT3_LD3_A=LD3(k); 

  

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no ;           %Area for 70W solar panel 
%  if k>startt+7 && k<stop-8 
%      %Random=random('norm', 0, 10,1,1); 
%     Random; 
%  else 
%      Random=0; 
%  end 

  
P_PV3_BAT3_A=Area_PV3*0.1 *I_Rad(k) ;%+Random);  ;%   % 0.1 is efficiency for 

polycrystalline  
%P_PV3_BAT3=Area_PV3*I_RADOM(k)*0.1 ;  

  
% I_RADOM(k)=I_Rad(k)+Random 
%  
% REAL(k)=Area_PV3*I_Rad(k)*0.1 
% DIST(k)=Area_PV3*I_RADOM(k)*0.1 
%I_REAL(k)=I_Rad(k) 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
 e_EL_FT_A=r_BAT3_EL; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=r_FC_BAT3   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=r_FC_BAT3; 

  

  

  

272 Reinforcement Learning Adaptive PoPA .m Code



%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3_A= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(k))^3) * Ng * Nb*WT_no 

; 

  
if  k==1%k<8761 
e_avail_EL_FT_A=1; 
e_avail_FC_BAT3_A=1; 
end 
A_e_avail_EL_FT_A(k)=e_avail_EL_FT_A; 

  
A_e_avail_FC_BAT3_A(k)=e_avail_FC_BAT3_A; 

  

  

  
if r_FC_BAT3>0&&e_avail_FC_BAT3_A==1  
FC=1; 
else 
    FC=0; 
end; 
A_r_FC_BAT3(k)=FC; 
if r_BAT3_EL>0 &&e_avail_EL_FT_A==1 
   EL=1 ; 
else 
   EL=0;  
end 
A_r_BAT3_EL(k)=EL; 

  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL*r_BAT3_EL*e_avail_EL_FT_A)  ;       % Power 

flow as a function of Power supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3*r_FC_BAT3*e_avail_FC_BAT3_A ) ;     % Power 

flow as a function of Power supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 
e_FC_WT_A=r_FC_BAT3; 
Fout_FC_WT_H2O_A= e_FC_WT_A * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      

% The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
A_Fout_FC_WT_H2O_A(k)=Fout_FC_WT_H2O_A; 

  

  
Fout_EL_FT_H2_A= e_EL_FT_A* nF*nc_EL *  3600* I_EL/(ne*F)  ;                  

% The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
A_Fout_EL_FT_H2_A(k)=Fout_EL_FT_H2_A; 

  

  
Fout_FT_FC_H2_A= e_FT_FC_A * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 

% The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
A_Fout_FT_FC_H2_A(k)=Fout_FT_FC_H2_A; 
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Fout_WT_H2O_A= e_WT_EL_A* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % 

The flow of H2O from the WT to the EL based on what the EL needs. The Flow is 

-VE since it depletes the Water Tank 
A_Fout_WT_H2O_A(k)=Fout_WT_H2O_A; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 

  

  
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
if k<=1 
    c=1; 
else 
    c=0; 
end 

  
Lr_FC_BAT3(k)=r_FC_BAT3; 

  
Lr_BAT3_EL(k)=r_BAT3_EL; 

  
A_P_PV3_BAT3_A(k)=P_PV3_BAT3_A; 
A_P_WG2_BAT3_A(k)=P_WG2_BAT3_A; 

  
[aa bb]=size(Pinch_Data);%(A_SOC_BAT3); 

  
if stop-1==k  
    r_BAT3_EL=A_g_EL_FT1(k+1); % use end logic instead of RL at terminal 
    r_FC_BAT3=A_g_FC_BAT3(k+1); 
end 

     
P_RES3_A=(e_PV3_BAT3_A*P_PV3_BAT3_A) 

+(e_WG2_BAT3_A*P_WG2_BAT3_A)+(e_DSL3_BAT3_A*P_DSL3_BAT3)+(e_avail_FC_BAT3_A 

*r_FC_BAT3*P_FC_BAT3);%%%(A_g_FC_BAT3(k-1+c)*P_FC_BAT3); 
A_P_RES3_A(k)=P_RES3_A; 
P_BAT3_A= P_RES3_A -(e_BAT3_LD3_A*P_BAT3_LD3_A+ran(k)*0)-

(e_avail_EL_FT_A*r_BAT3_EL*P_BAT3_EL);%( A_g_EL_FT1(k-1+c)*P_BAT3_EL);%% 
A_LD_sys(k)=(e_BAT3_LD3_A*P_BAT3_LD3_A+ran(k)*250); 

  
A_P_BAT3_A(k)=(P_BAT3_A/BAT3_Cap)*100 ; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
P_NO_INT=(e_PV3_BAT3_A*P_PV3_BAT3_A) 

+(e_WG2_BAT3_A*P_WG2_BAT3_A)+(e_DSL3_BAT3_A*P_DSL3_BAT3)-

(e_BAT3_LD3_A*P_BAT3_LD3_A+ran(k)*0); 
SOC_BAT3_NO_INT=SOC_BAT3_A; 
SOC_BAT3_NO_INT=SOC_BAT3_NO_INT +(P_NO_INT/BAT3_Cap)*100; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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SOC_BAT3_A=SOC_BAT3_A +(P_BAT3_A/BAT3_Cap)*100 ; 
if SOC_BAT3_A<=0; 
    SOC_BAT3_A=0; 
end     
if SOC_BAT3_A>=100 
    SOC_BAT3_A=100; 
end 
A_SOC_BAT3_A(k)=SOC_BAT3_A; 

  
if SOC_BAT3_A<30 
   Deficit_SOC_BAT3_A=1; 
else 
   Deficit_SOC_BAT3_A=0; 
end 
 A_Deficit_SOC_BAT3_A(k)= Deficit_SOC_BAT3_A; 

  

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL_A=100*(Fout_FC_WT_H2O_A - Fout_WT_H2O_A)/WT_Cap; 
SOC_H2O_WT_A= SOC_H2O_WT_A + FC_WT_EL_A; 
if SOC_H2O_WT_A>=100 
    SOC_H2O_WT_A=100; 
end     
    if  SOC_H2O_WT_A<=0 
        SOC_H2O_WT_A=0; 
    end       
A_SOC_H2O_WT_A(k)=SOC_H2O_WT_A; 
A_F_FC_WT_EL_A(k)=FC_WT_EL_A; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC_A=100*(Fout_EL_FT_H2_A - Fout_FT_FC_H2_A)/FT_Cap; 
SOC_H2_FT_A=SOC_H2_FT_A + EL_FT_FC_A; 
if SOC_H2_FT_A>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_A=100; 
end 
if SOC_H2_FT_A<=0 
    SOC_H2_FT_A=0; 
end     
A_SOC_H2_FT_A(k)=SOC_H2_FT_A; 
A_F_EL_FT_FC_A(k)=EL_FT_FC_A; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 

  
if SOC_BAT3_A<stp_PV3_BAT3 
    q_PV3_BAT3_A=1; 
else 
    q_PV3_BAT3_A=0; 
end    
e_req_PV3_BAT3_A=q_PV3_BAT3_A  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
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a_PV3_BAT3_A=1; 
e_avail_PV3_BAT3_A= a_PV3_BAT3_A || r_PV3_BAT3_A; 
e_PV3_BAT3_A= e_avail_PV3_BAT3_A && e_req_PV3_BAT3_A && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
str_WG2_BAT3=0;                        % start charging battery if SOC max is 

< 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3_A<stp_WG2_BAT3 
    q_WG2_BAT3_A=1; 
else 
    q_WG2_BAT3_A=0; 
end    
e_req_WG2_BAT3_A=q_WG2_BAT3_A ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3_A=1; 
e_avail_WG2_BAT3_A = a_WG2_BAT3_A || r_WG2_BAT3_A; 

  
e_WG2_BAT3_A = e_avail_WG2_BAT3_A && e_req_WG2_BAT3_A && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     

  
if SOC_BAT3_A<str_DSL3_BAT3 || 

[SOC_BAT3_A>str_DSL3_BAT3&&SOC_BAT3_A<stp_DSL3_BAT3] && A_e_DSL3_BAT3_A(k+c-

1)==1 
q_DSL3_BAT3_A=1; 
else 
q_DSL3_BAT3_A=0; 
end 
e_req_DSL3_BAT3_A =q_DSL3_BAT3_A; 

  
a_DSL3_BAT3_A=1  ;                           %Availability logic for Diesel 

generator 

  
e_avail_DSL3_BAT3_A = a_DSL3_BAT3_A || r_DSL3_BAT3_A; 

  
e_DSL3_BAT3_A= e_avail_DSL3_BAT3_A && e_req_DSL3_BAT3_A && g_DSL3_BAT3; 

  

  
%ACTIVATION FOR FUEL CELL TO BATTERY 

  
str_FC_BAT3=90  ;                       %start and stop min and max threshold 

to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
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if SOC_BAT3_A<str_FC_BAT3  || SOC_BAT3_A>str_FC_BAT3 && 

SOC_BAT3_A<stp_FC_BAT3 %&& A_e_FC_BAT3_A(k+c-1)==1       %i==[2881:5832] 

ensures Summer operation only  
    q_FC_BAT3_A=1 ; 
else 
    q_FC_BAT3_A=0; 
end 
e_req_FC_BAT3_A =   q_FC_BAT3_A; 

  
  str_FC_WT_A=90 ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT_A=90; 

  
if SOC_H2O_WT_A<str_FC_WT_A  
  a1_FC_WT_A=1; 
else 
  a1_FC_WT_A=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT_A>str_FT_FC  
  a2_FT_FC_A=1; 
else 
  a2_FT_FC_A=0; 
end 

  
e_avail_FC_BAT3_A= a1_FC_WT_A && a2_FT_FC_A;  %|| r_FT_FC; 

     
%e_FC_BAT3 = e_avail_FC_BAT3 && e_req_FC_BAT3 &&A_g_FC_BAT3(k); 
% e_FC_BAT3 = e_avail_FC_BAT3 && (r_FC_BAT3 ||A_g_FC_BAT3(k));% ; 
% e_FC_BAT3 = e_avail_FC_BAT3 &&(r_FC_BAT3  ~); 

  
%e_FC_BAT3_A = e_req_FC_BAT3_A && A_g_FC_BAT3(k) ;  

  

  

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 

  

  
%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
str_EL_FT = 90       ;                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT_A<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY 

FROM ELECTROLYSER 
    q_EL_FT_A=1; 
else 
    q_EL_FT_A=0; 
end 
e_req_EL_FT_A= q_EL_FT_A; 
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str_BAT3_EL= 30   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
if SOC_BAT3_A>str_BAT3_EL || SOC_BAT3_A<str_BAT3_EL && SOC_BAT3_A>stp_BAT3_EL 

%&& A_e_EL_FT_A(k+c-1)>=1  %i==[2881:5832] ensures Winter operation only 
  a1_BAT3_EL_A = 1; 
else 

  
  a1_BAT3_EL_A=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT_A>str_WT_EL  
  a2_EL_FT_A=1; 
else 
  a2_EL_FT_A=0; 
end 

  
e_avail_EL_FT_A = a1_BAT3_EL_A && a2_EL_FT_A ;% || r_EL_FT; 
%e_EL_FT_A = e_req_EL_FT_A && (A_g_EL_FT1(k-1+c)&& A_g_EL_FT2(k-1+c)) ; 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=e_FC_BAT3_A   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
A_e_BAT3_LD3_A(k)=e_BAT3_LD3_A; 
A_e_PV3_BAT3_A(k)= e_PV3_BAT3_A;             
A_e_WG2_BAT3_A(k)=e_WG2_BAT3_A; 
A_e_BAT3_EL_A(k)=e_BAT3_EL_A ;             
A_e_WT_EL_A(k)= e_WT_EL_A ; 
A_e_EL_FT_A(k)=e_EL_FT_A  ;            
A_e_FT_FC_A(k)=e_FT_FC_A; 
A_e_FC_WT_A(k)=e_FC_WT_A; 
%A_e_FC_BAT3_A(k)=e_FC_BAT3_A; 
A_e_DSL3_BAT3_A(k)=e_DSL3_BAT3_A; 
% % %  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FEEDBACK THE STATES OF SOC AND LOGIC 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TO PINCH SECTION 
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% e_BAT3_LD3=e_BAT3_LD3_A; 
% e_PV3_BAT3= e_PV3_BAT3_A;             
% e_WG2_BAT3=e_WG2_BAT3_A; 
% e_BAT3_EL=e_BAT3_EL_A ;             
% e_WT_EL= e_WT_EL_A; 
% e_EL_FT=e_EL_FT_A;            
% e_FT_FC=e_FT_FC_A; 
% e_FC_WT=e_FC_WT_A; 
% e_FC_BAT3=e_FC_BAT3_A; 
% e_DSL3_BAT3=e_DSL3_BAT3_A; 
%  
% SOC_H2O_WT=SOC_H2O_WT_A; 
%  
% SOC_H2_FT=SOC_H2_FT_A; 
%  
% SOC_BAT3=SOC_BAT3_A; 

  

  
% %%%%%%%%%%%%%%%%%%%% END OF ACTUAL SYSTEM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%COUNTER INCREMENTAL LOOP%%%%%%%%%% 
  if k==stop 
  startt=stop+1; 
  stop=stop+24; 
 end    

     
%  Counter=Counter+1; 
%  if Counter ==25 
%      Counter=1; 
%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ii(k)=k; 

  
sstart(k)=start; 

  

   

  

  

  

  
%%%%%%%%%%%%%%% Q L STEP AHEAD PREDICITON %%%%%%%%%%%%%%% %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% ACTION ON FIRST PREDICITON %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%INSTANTENOUS LOAD POWER 
P_BAT3_LD3=LD3(k+1); 

  

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no  ;           %Area for 70W solar panel 
if k>start+7 && k<stop-8 
    Random=random('norm', 0, 1,1,1); 
else 
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    Random=1; 
end 
P_PV3_BAT3=Area_PV3*0.1*I_Rad(k+1); %+ Random) ;     % 0.1 is efficiency for 

polycrystalline  
%P_PV3_BAT3=Area_PV3*I_RADOM(k+1)*0.1 ; 

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(k+1))^3) * Ng * Nb*WT_no 

; 

  

  

  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL)  ;       % Power flow as a function of Power 

supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3)    ;     % Power flow as a function of Power 

supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 

  
Fout_FC_WT_H2O_B= e_FC_WT * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      % 

The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
A_Fout_FC_WT_H2O_B(k)=Fout_FC_WT_H2O_B; 

  

  
Fout_EL_FT_H2_B = e_EL_FT * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  

% The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
A_Fout_EL_FT_H2(k)=Fout_EL_FT_H2_B; 

  

  
Fout_FT_FC_H2_B= e_FT_FC * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 

% The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
A_Fout_FT_FC_H2_B(k)=Fout_FT_FC_H2_B; 

  

  
Fout_WT_H2O_B= e_WT_EL* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % The 

flow of H2O from the WT to the EL based on what the EL needs. The Flow is -VE 

since it depletes the Water Tank 
A_Fout_WT_H2O_B(k)=Fout_WT_H2O_B; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 

  

  
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY     edit the variables so 
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%it doesnt conflict the actual system you just need to compare the soc the 
%pinch for that interval 

  
P_RES3_B=(e_PV3_BAT3*P_PV3_BAT3) 

+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BAT3)+(0*P_FC_BAT3); 
P_BAT3_B= P_RES3_B-(e_BAT3_LD3*P_BAT3_LD3)-(0*P_BAT3_EL); 

  
A_P_BAT3_B(k)=(P_BAT3_B/BAT3_Cap)*100 ; 

  
SOC_BAT3_B1=SOC_BAT3_A+(P_BAT3_B/BAT3_Cap)*100 ; 
if SOC_BAT3_B1<=0; 
    SOC_BAT3_B1=0; 
end     
if SOC_BAT3_B1>=100 
    SOC_BAT3_B1=100; 
end 

  
B1_SOC_BAT3(k)=SOC_BAT3_B1; 

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT_B1= SOC_H2O_WT_A +FC_WT_EL; 
if SOC_H2O_WT_B1>=100 
    SOC_H2O_WT_B1=100; 
end     
    if  SOC_H2O_WT_B1<=0 
        SOC_H2O_WT_B1=0; 
    end       
B1_SOC_H2O_WT(k)=SOC_H2O_WT_B1; 

  

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT_B1=SOC_H2_FT_A + EL_FT_FC; 
if SOC_H2_FT_B1>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_B1=100; 
end 
if SOC_H2_FT_B1<=0 
    SOC_H2_FT_B1=0; 
end     
B1_SOC_H2_FT(k)=SOC_H2_FT_B1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF ACTION 1 PREDICITON %%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTION 2 ON  PREDICITON %%%%%%%%%% 

  

  

  
[aa bb]=size(Pinch_Data);%(A_SOC_BAT3); 
if bb>k+1 
Pinch_now=Pinch_Data(k); 
Pinch_after=Pinch_Data(k+1); 
else 
Pinch_after=Pinch_Data(k); 
Pinch_now=Pinch_Data(k) ; 
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end 

  
if k==1 
    P_BAT3_EL_B=P_BAT3_EL; 
    P_FC_BAT3_B=P_FC_BAT3; 
end 

  

  
E_Action = (Pinch_after-SOC_BAT3_A )*(BAT3_Cap/(100)); 
if E_Action<0 
   P_BAT3_EL_B = E_Action ; 
else  
    P_FC_BAT3_B=E_Action; 
end 
P_RES3=(e_PV3_BAT3*P_PV3_BAT3) 

+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BAT3)+(1*P_FC_BAT3); 
P_BAT3= P_RES3-(e_BAT3_LD3*P_BAT3_LD3)-(0*P_BAT3_EL_B); 

  
A_P_BAT3(k)=(P_BAT3/BAT3_Cap)*100 ; 
SOC_BAT3_B2=SOC_BAT3_A+(P_BAT3/BAT3_Cap)*100 ; 
if SOC_BAT3_B2<=0; 
    SOC_BAT3_B2=0; 
end     
if SOC_BAT3_B2>=100 
    SOC_BAT3_B2=100; 
end 

  
B2_SOC_BAT3(k)=SOC_BAT3_B2; 

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT_B2= SOC_H2O_WT_A +FC_WT_EL; 
if SOC_H2O_WT_B2>=100 
    SOC_H2O_WT_B2=100; 
end     
    if  SOC_H2O_WT_B2<=0 
        SOC_H2O_WT_B2=0; 
    end       
B2_SOC_H2O_WT(k)=SOC_H2O_WT_B2; 

  

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT_B2=SOC_H2_FT_A + EL_FT_FC; 
if SOC_H2_FT_B2>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_B2=100; 
end 
if SOC_H2_FT_B2<=0 
    SOC_H2_FT_B2=0; 
end     
B2_SOC_H2_FT(k)=SOC_H2_FT_B2; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%END OF ACTION 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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%%%%%%%%%%%%%%%%%%%%%%%%%% ACTION 3 ON PREDICTION %%%%%%%%%%%%%%%%%%%%%% 

  
P_RES3=(e_PV3_BAT3*P_PV3_BAT3) 

+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BAT3)+(0*P_FC_BAT3); 
P_BAT3= P_RES3-(e_BAT3_LD3*P_BAT3_LD3)-(1*P_BAT3_EL); 

  
A_P_BAT3(k)=(P_BAT3/BAT3_Cap)*100 ; 
SOC_BAT3_B3=SOC_BAT3_A+(P_BAT3/BAT3_Cap)*100 ; 
if SOC_BAT3_B3<=0; 
    SOC_BAT3_B3=0; 
end     
if SOC_BAT3_B3>=100 
    SOC_BAT3_B3=100; 
end 

  
B3_SOC_BAT3(k)=SOC_BAT3_B3; 

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT_B3= SOC_H2O_WT_A +FC_WT_EL; 
if SOC_H2O_WT_B3>=100 
    SOC_H2O_WT_B3=100; 
end     
    if  SOC_H2O_WT_B3<=0 
        SOC_H2O_WT_B3=0; 
    end       
B3_SOC_H2O_WT(k)=SOC_H2O_WT_B3; 

  

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT_B3=SOC_H2_FT + EL_FT_FC; 
if SOC_H2_FT_B3>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_B3=100; 
end 
if SOC_H2_FT_B3<=0 
    SOC_H2_FT_B3=0; 
end     
B3_SOC_H2_FT(k)=SOC_H2_FT_B3; 

  

  
%%%%%%%%%%%%%%%%%%%%%% END OF ACTION 3 ON PREDICITON %%%%%%%%%%%%%%%%%%%%% 

  

  

  

  
State_next= QQ_State_error_typeX_next(Pinch_after,SOC_BAT3_A) ; % Update the 

Value function 

  

  
%REWARD FOR THE ACTUAL ACTION 
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% Actual_Reward=RewardX3(Pinch_now,A_SOC_BAT3_A(k-1+c),SOC_BAT3_A,Action_sel) 
if Pinch_now<31 
Pinch_now=31; 
end 
if Pinch_now>89 
Pinch_now=89; 
end 
if Pinch_after<31 
Pinch_after=31; 
end 
if Pinch_after>89 
Pinch_after=89; 
end 

  

  
SOC_old=A_SOC_BAT3_A(k-1+c); 
SOC_new=SOC_BAT3_A; 

  
if SOC_new<30&&SOC_old<30 && SOC_old>SOC_new ||SOC_new<30   ;% Penalise the 

actionSOC_old>SOC_new &&&& SOC_new>90  
%    Penalty=(abs(SOC_new - SOC_old));%^2*0.5; % tunes sensitivity to failure 

  
elseif SOC_new>90&&SOC_old>90&&SOC_old<SOC_new ||SOC_new>90 ;% Penalise the 

actionSOC_old>SOC_new &&&& SOC_new>90  
%      Penalty=(abs(SOC_new - SOC_old));%^2*5; % tunes sensitivity to failure 
else 
%      Penalty=0; 
end 

  
% Penalty_A(k)=Penalty; 
%  if Penalty>100 
%      Penalty=100; 
%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CALC THE EFFECT OF ALL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTIONS 
ACT1=SOC_BAT3_NO_INT; 
ACT2=SOC_BAT3_NO_INT+((P_FC_BAT3*0.1*100)/BAT3_Cap) ; 
ACT3=SOC_BAT3_NO_INT+((P_FC_BAT3*0.3*100)/BAT3_Cap) ; 
ACT4=SOC_BAT3_NO_INT+((P_FC_BAT3*1*100)/BAT3_Cap)   ; 
ACT5=SOC_BAT3_NO_INT-((P_BAT3_EL*0.3*100)/BAT3_Cap) ; 
ACT6=SOC_BAT3_NO_INT-((P_BAT3_EL*0.5*100)/BAT3_Cap) ; 
ACT7=SOC_BAT3_NO_INT-((P_BAT3_EL*1*100)/BAT3_Cap)   ; 

  
SOC_ACTION=[ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 ACT7]; 
if Pinch_after>=30&&Pinch_after<80 
Best_min_ACT=min(find(SOC_ACTION>=Pinch_after)); 
elseif Pinch_after>80&&Pinch_after<=90 
       Best_min_ACT=min(find(SOC_ACTION<=Pinch_after)); 
end        

      
if Action_sel==Best_min_ACT 
   Actual_Reward=1;                       %Goal 
elseif SOC_new<Pinch_after  
    Actual_Reward=0-1*abs((SOC_new-Pinch_after)/Pinch_after)^2; %-W1 
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elseif SOC_new>Pinch_after  
       Actual_Reward=1-1*abs((SOC_new-Pinch_after)/Pinch_after)^2;   %G-W1 
elseif SOC_new>90&&SOC_old>90&&SOC_old<SOC_new ||SOC_new>90 
       Actual_Reward=-1*abs((SOC_new-Pinch_after)/Pinch_after)^2 -10;   %-

(W1+W2) penalise persistent erroroneuos actions 
elseif SOC_new<30&&SOC_old<30 && SOC_old>SOC_new ||SOC_new<30  
       Actual_Reward=-1*abs((SOC_new-Pinch_after)/Pinch_after)^2 -10; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if SOC_new<30&&SOC_old>30||SOC_new>90&&SOC_old<90  
   % Actual_Reward=1; 
else 
    %Actual_Reward=0; 
end 

  

  

  
% Actual_Reward=100-(abs(Pinch_after - SOC_BAT3_A) -Penalty);%(Pinch_after - 

SOC_BAT3_A)^2*10 

  
if SOC_new<30&&SOC_old>30||SOC_new>90&&SOC_old<90  
%    Actual_Reward=-1000; 
end 

  

  
% if abs(Pinch_after - SOC_BAT3_A)<3 
%     Actual_Reward=1000; 
% elseif abs(Pinch_after - SOC_BAT3_A)>=3&& abs(Pinch_after - SOC_BAT3_A)<5 
%     Actual_Reward=50; 
% elseif abs(Pinch_after - SOC_BAT3_A)>=5 
%     Actual_Reward=-2000; 
% end 

  
if SOC_new>30&&SOC_old<30||SOC_new<90&&SOC_old>90  
%    Actual_Reward=1000; 
end 

  
if k==350 
%     pause(2) 
end 

  

  
 if Actual_Reward<-1000 
%  Actual_Reward=-1000; 
 elseif Actual_Reward>2000 
%       Actual_Reward=2000; 
 end 

  
% % if Pinch_now<A_SOC_BAT3_A(k-1+c)&& Action_sel==3 
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% %     Actual_Reward=100 
% % else 
% % if   Action_sel==1 
% %      Actual_Reward=100-(Pinch_now-SOC_BAT3_B1)^2*10 
% % elseif   Action_sel==2   
% %     Actual_Reward=100-(Pinch_now-SOC_BAT3_B2)^2*10 
% % end   
% % end 
% %    
% % if Pinch_now>SOC_BAT3_A && Action_sel==2 
% %     Actual_Reward=100 
% % else 
% % if   Action_sel==1 
% %  Actual_Reward=100-(Pinch_now-SOC_BAT3_B1)^2*10 
% % elseif   Action_sel==3  
% %  Actual_Reward=100-(Pinch_now-SOC_BAT3_B3)^2*10 
% % end   
% % end 
% %  
% % if Pinch_now==SOC_BAT3_A && Action_sel==1 
% %     Actual_Reward=100 
% % else 
% %      if   Action_sel==3 
% %      Actual_Reward=100-(Pinch_now-SOC_BAT3_B3)^2*10 
% % elseif   Action_sel==2   
% %     Actual_Reward=100-(Pinch_now-SOC_BAT3_B2)^2*10 
% % end   
% % end 
%  
%  
%      
% % if Pinch_after>SOC_BAT3_A 
% %     Action_sel_next=2; 
% % end 
% % if Pinch_after<SOC_BAT3_A 
% %     Action_sel_next=3; 
% % end 
% % if Pinch_after==SOC_BAT3_A 
% %     Action_sel_next=1; 
% % end 
%  
%  
%  
% %REWARD FOR THE FIRST ACTION PREDICTED %%%% 
% 

Future_Reward_1=RewardX3_1(Pinch_after,SOC_BAT3_A,SOC_BAT3_B1,1);%SOC_BAT3_B1

, 
% %REWARD FOR THE SECOND ACTION PREDICTED %%%% 
% Future_Reward_2=RewardX3_2(Pinch_after,SOC_BAT3_A,SOC_BAT3_B2,2); 
%  
% %REWARD FOR THE THIRD ACTION PREDICTED %%%% 
% Future_Reward_3=RewardX3_3(Pinch_after,SOC_BAT3_A,SOC_BAT3_B3,3); 
%  
%  
% % UPDATE OF Q TABLE %%%%%% 
%  
%  %compare reward select best 
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%       Future_Reward=[Future_Reward_1, Future_Reward_2 ,Future_Reward_3]; 
%       Reward_Max=max(Future_Reward); 
%       if Future_Reward(1,1)==Future_Reward(1,3) 
%           Action_sel_next=2 
%       else 
     % Action_sel_next=find(Future_Reward(1:3)==Reward_Max) 
%       end  
%  

  
abs_Qmax=max(abs(Q_Table(State_next,:)));           %Uses the absolute 

maximum value of the Q_Table rather than the norminal max 
abs_Action=find((abs(Q_Table(State_next,:)))==abs_Qmax); 

  
Q_Table; 

  
if e_avail_FC_BAT3_A==1 && e_avail_EL_FT_A==1 && bb>k+2% 
Q_Table(State,Action_sel)=Q_Table(State,Action_sel)+ Alpha*(Actual_Reward + 

gamma*max(Q_Table(State_next,:) - Q_Table(State,Action_sel))); 
else 
Q_Table(State,Action_sel)=Q_Table(State,Action_sel);%+ Alpha*(Actual_Reward - 

Q_Table(State,Action_sel)); 
end 

  
Q_T(k)=Q_Table(State,Action_sel); 
Q_T_mean(k)=Q_T(k)/1000; 
dQ_T(k)=(abs(Q_T(k))- abs(Q_T(k-1+c)));%/abs(Q_T(k-1+c)); 

  
% if k>1&& abs(dQ_T(k-1)-dQ_T(k))>1000 &&Alpha<0.06       %%%ADAPTIVE 

LEARNING RATE 
%     Alpha=Alpha+0.01; 
%     if Alpha>0.1 
%         Alpha=0.1; 
%     end 
% end 

     
% tz=1:1:8759; 
% ys = smooth(tz,Q_T,0.025,'rloess'); 
% plot(tz,Q_T) 
% plot(tz,Q_T,tz,ys) 

  

  

  
ReplayQ(k,1)=State; 
ReplayQ(k,2)=Action_sel; 
ReplayQ(k,3)=State_next; 
ReplayQ(k,4)=Actual_Reward; 
ReplayQ(k,5)=Alpha*(Actual_Reward + gamma*max(Q_Table(State_next,:) - 

Q_Table(State,Action_sel))); 
ReplayQ(k,7)=SOC_BAT3_A; %after action 
ReplayQ(k,8)=Prob_sel; 
ReplayQ(k,9)=Pinch_now; 
ReplayQ(k,10)=Pinch_after; 

  
 if bb>k+1 
     Qmax=max(Q_Table); 
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     Qmax_past=0; 
     [Length_Repl ~]=size(ReplayQ); 

  
%     while Qmax>Qmax_past-0.01%|Qmax>0.01+Qmax_past 
Alpha_RR=Alpha;%0.05 
   for N=1:2%100 
       xx=0; 
%       if k==1000 
%           xx=1000; 
%       end 
%           if k==3000 
%           xx=2000; 
%           end 
%           if k==4000 
%               xx=3000; 
%           end 
%           if k==6000 
%               xx=4000; 
%                
%           end 
%               if k== 8000 
%                   xx=5000; 
%               end 

       
        Alpha_R=Alpha_RR/(1+N/100); 

          
         if startt>200 
             xk=Length_Repl-100; 
         else 
             xk=startt; 
         end 
         Replay_sel=ReplayQ(xk:Length_Repl,:); 
         Replay_sel=sortrows(Replay_sel,-5); 
         Length_Repl1=size(Replay_sel); 

          

          

          
         V_U=find(A_SOC_BAT3_A>90) ; % use the index of upper violation to 

replay 
         V_L=find(A_SOC_BAT3_A<30); 
         Vu=size(V_U); 
         vl=size(V_L); 
          Replay_sel=ReplayQ([V_U,V_L],:); 
%             Replay_sel=ReplayQ([V_U],:); 
           Replay_sel=sortrows(Replay_sel,7); 
           Length_Repl1=size(Replay_sel); 
           if Length_Repl1>200 
             xk=Length_Repl1-100; 
         else 
             xk=1; 
         end 
%             

  
for M=xk:1:Length_Repl1 
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%          Replay_sel=sortrows(ReplayQ,-5);%ReplayQ;% 
%        Qmax_past=max(Q_Table); 
            M=datasample(xk:Length_Repl1,1 ,'Replace',false); 
          

Q_Table(Replay_sel(M,1),Replay_sel(M,2))=Q_Table(Replay_sel(M,1),Replay_sel(M

,2))+Alpha_R*Replay_sel(M,5); 
%         Qmax=max(Q_Table); 
end 
%  Alpha_R=0.02; 

  
 end 

  
 end 

 

if  Action_sel==1 
      ACTION_1_COUNT=ACTION_1_COUNT+1; 
    else 
        ACTION_1_COUNT=ACTION_1_COUNT; 
    end 

     
    if Action_sel==2    
         ACTION_2_COUNT=ACTION_2_COUNT+1; 
    else 
        ACTION_2_COUNT=ACTION_2_COUNT ; 
    end 

     
    if Action_sel==3    
         ACTION_3_COUNT=ACTION_3_COUNT+1; 
    else 
        ACTION_3_COUNT=ACTION_3_COUNT   ; 
    end 

     
%     if Action_sel==4    
%          ACTION_4_COUNT=ACTION_4_COUNT+1 
%     else 
%         ACTION_4_COUNT=ACTION_4_COUNT    
%     end 

  

  
%%%%%%%%%%%%%%% IAE CALC %%%%%%%%%%%%%% 
SOC_ref=Pinch_Data(k); 
if Pinch_Data(k)<30||SOC_BAT3_A<30 
    SOC_ref=30; 
end 
if Pinch_Data(k)>90||SOC_BAT3_A>90 
    SOC_ref=90; 
end 

  
A_SOC_ref(k)=SOC_ref; 
A_NET_ref(k)=(SOC_ref/100)*BAT3_Cap; 
A_NET_ref_A(k)=(SOC_BAT3_A/100)*BAT3_Cap; 
IAE=abs(SOC_ref-SOC_BAT3_A)/SOC_ref;% change between system and model 
A_IAE(k)=IAE; 
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% tt=1:8760; 
% A_SOC_ref(8760)=30 
% plot(tt,A_SOC_ref,tt,A_SOC_BAT3_A) % 

  
%    %%%%%%%%%%%%%%%% IAE CALC %%%%%%%%%%%%%% 
% SOC_ref=Pinch_Data(k); 
% if Pinch_Data(k)<30%||SOC_BAT3_A<30 
%     SOC_ref=30; 
% end 
% if Pinch_Data(k)>90%||SOC_BAT3_A>90 
%     SOC_ref=90; 
% end 
%  
% A_SOC_ref(k)=SOC_ref; 
% IAE=abs(SOC_ref-SOC_BAT3_A)/SOC_ref;% change between system and model 
% A_IAE(k)=IAE; 
% %IAE_avg=sum(A_IAE)/8760; 
end 

  

  

  
end 
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Appendix F

RLS Probabilistic Adaptive PoPA .m

Code



rng('default')  

  
%Dont Temper with this Version for recalculates when there is error between 

model and system Pinch analysis in the whole Year 
%find(Recall(1,1:k)==1)% finds where adaptive recalculation occurred  
%Adaptive MPC PINCH recalculates every time there is difference between 
%model and Actual system. 

  

  
%PREDICTION TOP LEVEL INITIALIZATION FOR PV AND WIND DATA INPUT 
I_rad = dlmread('PV_POA.csv');         %Plane of Array for insolation 
I_Rad=I_rad'; 
%I_Rad=[I_Rad(2688:8760),I_Rad(1:2687)]; 

  

  
Ng=0.96; 
Nb=0.72; 
Air_den=1.23    ;                       %Air density 1.23 Kg/m3 
Cp=0.4; 
Area_sw=3.24 ;                          %Wind Turbine Swept Area 
WT_no=3; 
WT_wind = dlmread('WT_Wind.csv');      %Velocity of Wind m/s 
Wind_vel=WT_wind'; 

  

  
LD3=ones(1,8760)*1000;                  % Constant Load for a year 

  
LD3_daily=24*1000;                        %Load per day 

  
P_DSL3_BAT3= 2010; 

  
%Counter=0 ;                            %counts the no.of iteration 

  

  

  
%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% START OF MICROGRID 3 INITIALIZATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3=1; 
e_PV3_BAT3=0;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0  ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
e_DSL3_BAT3=0; 
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e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
%INITIALIZING AVAILABILITY OVERRIDE  
r_PV3_BAT3=0;           
r_WG2_BAT3=0; 
r_BAT3_EL=0;          
r_WT_EL=0; 
r_EL_FT=0;          
r_FT_FC=0; 
r_FC_WT=0; 
r_FC_BAT3=0; 
r_BAT3_LD3=0; 
r_DSL3_BAT3=0; 

  
%INITIALIZING GENERALITY CONSTRAINT FOR ACTIVATION (OVERRIDE) 

  
g_PV3_BAT3=1;                
g_WG2_BAT3=0; 
g_BAT3_EL=1;              
g_WT_EL=1; 
g_EL_FT=1;               
g_FT_FC=1; 
g_FC_WT=1; 
g_FC_BAT3=1; 
g_BAT3_LD3=1; 
g_DSL3_BAT3=1; 

  

  

  
%  
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 
e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 

  
e_BAT3_EL_A = e_EL_FT_A; 

293



  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=e_FC_BAT3_A; 
%  

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=80  ;%70                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=90;%80 
 SOC_H2O_WT_A=50;%30 
%  

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF REAL SYSTEM MICROGRID 3 

INITIALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  

  

  
% INITIALIZING BATTERY CAPACITY                                                    

% Battery3 capacity   3KAh*12V = 36KWh 
BAT3_Cap=36000;%20000;% 

  

  
%INITIALIZING DIESEL GENERATOR3 

  

  
%INITIALIZING FUEL CELL AND ELECTROLYSER DYNAMICS  
polyn_EL=[-0.000001426704372 0.027954416509736 2.502267281445165];  %Transfer 

function for Electrolyser  
polyn_FC=[0.000000895442340 0.033197516886985 -0.278092554468687];  %Transfer 

function for Fuel Cell  

  
nc_EL=15;                           % no. of cells in the electrolyser 
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nc_FC=40;                           % no. of cells in the fuel cell 
nF=0.87;                            % Efficiency  
ne=2;                               % no. of electron 
F=96485;                            % Faraday's constant W/mol 
P_BAT3_EL=4000;                          % Power required per time by the 

Electrolyser 
P_FC_BAT3=3000;                          % Max power the Fuel cell can 

deliver 

  
WT_Cap=2.1749e+03*2; 
FT_Cap=974.3583*2;%2000*10 

  
%INITIALIZE SOCs EL AND FC 
SOC_BAT3=80  ;                                %Tweek #SOC_BAT3 to alter the 

SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=100; 
SOC_H2O_WT=30; 

  
%%%% ELECTROLYSER ACTIVATION %%%%%%% 
EL_SUMMER=zeros(1,8760); 
EL_SUMMER(1:8760)=1; 
%EL_SUMMER(1:2160)=1; 
%EL_SUMMER(6553:8760)=1; 

  
%%%% FUEL CELL ACTIVATION %%%%% 
FC_WINTER=zeros(1,8760); 
FC_WINTER(1:8760)=1;%(100:8000)(2881:5832) 

  
%VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3=zeros(1,8760); 
A_e_PV3_BAT3= zeros(1,8760)      ;         
A_e_WG2_BAT3=zeros(1,8760); 
A_e_BAT3_EL=zeros(1,8760)       ;         
A_e_WT_EL= zeros(1,8760); 
A_e_EL_FT=zeros(1,8760)      ;              
A_e_FT_FC=zeros(1,8760); 
A_e_FC_WT=zeros(1,8760); 
A_e_FC_BAT3=zeros(1,8760); 
A_e_DSL3_BAT3=zeros(1,8760); 
A_F_FC_WT_EL=zeros(1,8760); 
A_F_EL_FT_FC=zeros(1,8760); 

  

  
A_g_FC_BAT3=zeros(1,8760);  
A_g_EL_FT1=zeros(1,8760); 
A_g_EL_FT2=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ACTUAL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%INITIALIZATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3_A=1; 
e_PV3_BAT3_A=0   ;               %PV3 is the solar panel in microgrid 3, WG2 

is the wind turbine in microgrid 3 

295



e_WG2_BAT3_A=0; 
e_BAT3_EL_A=0    ;               %EL is the ELectrolyser, WT is the Water 

Tank, FC is the Fuel Cell 
e_WT_EL_A=0    ; 
e_EL_FT_A=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC_A=0; 
e_FC_BAT3_A=0; 
e_FC_WT_A=0; 
e_DSL3_BAT3_A=0; 

  
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3_A =e_FT_FC_A       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=e_FC_BAT3_A; 

  
% %INITIALIZE SOCs EL AND FC 
 SOC_BAT3_A=80  ;                                %Tweek #SOC_BAT3 to alter 

the SOC LEVEL FOR BATTERY 3 
 SOC_H2_FT_A=100; 
 SOC_H2O_WT_A=30; 

  
% %VARIABLE DECLARATION FOR MEMORY 
A_e_BAT3_LD3_A=zeros(1,8760); 
A_e_PV3_BAT3_A= zeros(1,8760)      ;         
A_e_WG2_BAT3_A=zeros(1,8760); 
A_e_BAT3_EL_A=zeros(1,8760)       ;         
A_e_WT_EL_A= zeros(1,8760); 
A_e_EL_FT_A=zeros(1,8760)      ;              
A_e_FT_FC_A=zeros(1,8760); 
A_e_FC_WT_A=zeros(1,8760); 
A_e_FC_BAT3_A=zeros(1,8760); 
A_e_DSL3_BAT3_A=zeros(1,8760); 
A_F_FC_WT_EL_A=zeros(1,8760); 
A_F_EL_FT_FC_A=zeros(1,8760); 
A_R_e_FC_BAT3=zeros(1,8760); 
A_R_e_BAT3_EL=zeros(1,8760); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 
EL_ON1=zeros(24,24); 
EL_ON2=zeros(24,24); 
FC_ON=zeros(24,24); 

  

  
startt=1;  
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start=1; 
stop=24; 
Counter=0; 
Counter2=0; 

  

  
k=1; 

  
PINCH_DATA=[]; 
A_SOC_BAT3=zeros(1,240); 
Recall=zeros(1,240); 

  

 
ran=repmat(Rando,1,365); 
ran=repmat(noise_for_load,1,365); 

  

  
P_BAT3_EL=zeros(1,8760)*P_BAT3_EL; 
P_FC_BAT3=zeros(1,8760)*P_FC_BAT3; 
A_g_EL_FT=zeros(1,8760); 
% P_BAT3_EL(1)=4000; 
% P_FC_BAT3(1)=3000; 

  
A_SOC_ref=zeros(1,8760); 
A_IAE=zeros(1,8760); 
A_FC_ATTEMPT=zeros(1,8760); 
A_EL_ATTEMPT=zeros(1,8760); 
A_Power_FC=zeros(1,8760); 
number_count=0; 
EPL=zeros(1,8760); 
A_t_violation_EL=zeros(1,24); 
Unserved_load=0; 
Lost_Energy=0; 
Excess_Energy_lost=0; 

  

  
 WT_Cap=2.1749e+03*15;%15;%15; 
 FT_Cap=974.3583*10;%50;%2000*10  FT_Cap =9.7436e+03 

  

  

  

    

  

  
%history of Load distribution for the past year.  

  
CCC=dlmread('LD_ARRAY.csv'); 
LDD=CCC; 
LDD1=LDD(:,1:91); 
LD1=repmat(LDD1,1,24);% replicates distribution of load for the entire Winter 

season 
LDD2=LDD(:,91:182); 
LD2=repmat(LDD2,1,24); %Replicates distribution for SPRING 
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LDD3=LDD(:,182:273); 
LD3=repmat(LDD3,1,24); %SUMMER 
LDD4=LDD(:,273:362); 
LD4=repmat(LDD4,1,24); %AUTUMN 
LD_ARRAY=[LD1,LD2,LD3,LD4]*1.38%*1.38;% Combines the population of load 

distribution for the entire year. 
LD_ARRAY=LD_ARRAY'; 

 

LD3_A=repmat(Actual_load,1,365);% agussian 

  
A=1; 
B=0; 
XxY1=1; 
RLS=1; 
l=0; 
S_min=0; 
S_max=0; 
% LD3_A=dlmread('ACTUAL_LD.csv'); 
%$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
counta=0; 
counta_A=0; 

  
 WT_Cap=2.1749e+03*300;% 
 FT_Cap=974.3583*300;% 

  
 %LD3_A=dlmread('ACTUAL_LD_S2.csv')*1.5; 

  
 while k<=8760%71%719%8760 
for k=1:1:8761%72%720%8761% %determines the number of hours to run the Pinch 

analysis 
%for k=start:1:stop 

  
    Counter2=Counter2+1; 

 
for xx=k:1:stop 

  
    %Form a PDF using LD ARRAY at time K instance then Extract LD randomly 

for PDF 
    if k<2190 
    r1=1; %Range to select load from Load CLUSTER 1     
    r2=2190; % 

     
    %elseif k>2190%&&k<4380 
    elseif k<4380      %CLUSTER  2   
        r1=2190; 
        r2=4380; 
    elseif k <6570      %CLUSTER 3 
        r1=4380; 
        r2=6570; 
    elseif k>6570 
        r1=6570; 
        r2=8760; 
    end  
    counta=counta+1; 
    if counta>24 
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        counta=1; 
    end 
    LD_PD=fitdist(LD_ARRAY(r1:r2,counta),'Kernel'); 
    LD3(xx)=mean(LD_ARRAY(r1:r2,counta));% for regular adaptive PoPA 
    LD_R=random(LD_PD,1000,1); 

     
%         LD3_A(xx)=random(LD_PD,1,1); 

         
%     LD_RA=random(LD_PD,1000,1); 
    A_LD_R(:,xx)=LD_R; % contains random sampled load PDF 
end 

 
if (stop-start)==23||(A_SOC_BAT3_A(k-1)<30||A_SOC_BAT3_A(k-

1)>90)||(Upper_b(end,k-1)>5+A_SOC_BAT3_A(k-1) ||Lower_b(end,k-1)<-

5+A_SOC_BAT3_A(k-1))% &&SOC_BAT3>10/100*SOC_BAT3_A %Do recalculation only if 

the deviation is state>10%(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 
%  
%     P_BAT3_EL(k:end)=0;  %reset all Pinch logic if discrepancy occurs 
%     P_FC_BAT3(k:end)=0; 
 end 
% end 

 
%  for l=1:1:10 
  while 

S_min<30||S_max>90||S_min>90||S_max<30%||Smin>30&&Smax<90||Smin<30&&Smax<90||

Smin>30&&Smax<90 
             l=l+1;  

            
       start=k; 
       if k==1 
          stop=24; 
       startt=1; 
       end 
        if k==72%1625%73%36%20||k==24||40 %48&&l==1%41%24 
       pause(2) 
        display('paused for 0.5 Seconds') 
       end 

   
 if (stop-start)==23||(A_SOC_BAT3_A(k-1)<30||A_SOC_BAT3_A(k-

1)>90)||(Upper_b(end,k-1)>5+A_SOC_BAT3_A(k-1) ||Lower_b(end,k-1)<-

5+A_SOC_BAT3_A(k-1)) % &&SOC_BAT3>10/100*SOC_BAT3_A %Do recalculation only if 

the deviation is state>10%(A_SOC_BAT3(k-1)<30||A_SOC_BAT3(k-1)>90)|| 
  %Power_FC=0;  %reset the MOES if the horizon changes 
%   P_BAT3_EL(k:end)=0; 
%   P_FC_BAT3(k:end)=0; 
  %P_FC_BAT3=zeros(1,8760); 

   

   
  n=1000; %number of samples 
for z=1:1:n %iterate for the number of times montecarlo is needed.   

     
 if start>1 
SOC_BAT3=A_SOC_BAT3_A(start-1) ;                                %Tweek 

#SOC_BAT3 to alter the SOC LEVEL FOR BATTERY 3 
SOC_H2_FT=A_SOC_H2_FT_A(start-1); 
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SOC_H2O_WT=A_SOC_H2O_WT_A(start-1); 
% e_BAT3_EL = A_e_BAT3_EL_A(start-1);   
% e_FC_BAT3=  A_e_FC_BAT3_A(start-1); 

  

  
e_BAT3_LD3= A_e_BAT3_LD3_A(start-1)  ; 
e_PV3_BAT3= A_e_PV3_BAT3_A(start-1)  ;             
e_WG2_BAT3=  A_e_WG2_BAT3_A(start-1) ; 

  
e_WT_EL = A_e_WT_EL_A(start-1); 
e_EL_FT = A_e_EL_FT_A(start-1);            
e_FT_FC= A_e_FT_FC_A(start-1); 
e_FC_WT=  A_e_FC_WT_A(start-1); 

  

  
e_DSL3_BAT3= A_e_DSL3_BAT3_A(start-1); 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
%e_BAT3_EL = e_EL_FT; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
 end 
%%%%%%%%%%%%%%%%%%%%%%% 

  
 if start==1 
SOC_BAT3=80 ; 
SOC_H2O_WT=30; 
SOC_H2_FT=100   ; 
%INITIALIZING ACTIVATION STATES OF THE NODES 
e_BAT3_LD3=1; 
e_PV3_BAT3=0   ;               %PV3 is the solar panel in microgrid 3, WG2 is 

the wind turbine in microgrid 3 
e_WG2_BAT3=0; 
e_BAT3_EL=0    ;               %EL is the ELectrolyser, WT is the Water Tank, 

FC is the Fuel Cell 
e_WT_EL=0    ; 
e_EL_FT=0    ;                 %FT is the Hydrogen storage tank 
e_FT_FC=0; 
e_FC_BAT3=0; 
e_FC_WT=0; 
e_DSL3_BAT3=0; 

  
e_BAT3_EL = e_EL_FT; 

  
% ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 
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% ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FC_BAT3 =e_FT_FC       ;                      %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
% ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 
   end 

  

  

  

     
for j=k:1:stop %j=start:1:stop 
%    if start==1 %stop-start==23 && 
%        c=-1; 
%    else  
%        c=0; 
%    end 

  

  
if k>0 
    if 

k==stop&&l>1&&ceil(Lower_b(l,stop))~=50&&(Lower_b(l,startt)>=30&&Lower_b(l,st

artt)<=90) 
    sss=-1;%0 
else 
    sss=0; 
    end 
end 
%Counter=Counter+1 
%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  

  

  

  
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 
P_BAT3_LD3=A_LD_R(z,j); 

  

  
%POWER FROM PV SYSTEM 
PV3_no=217; 
Area_PV3=0.52*PV3_no        ;           %Area for 70W solar panel 

  
P_PV3_BAT3=Area_PV3*I_Rad(j)*0.1 ;     % 0.1 is efficiency for 

polycrystalline  

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(j))^3) * Ng * Nb*WT_no ; 
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%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL(j))  ;       % Power flow as a function of 

Power supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3(j))  ;     % Power flow as a function of 

Power supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 

  
Fout_FC_WT_H2O= e_FC_WT * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      % 

The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
%A_Fout_FC_WT_H2O(k,j)=Fout_FC_WT_H2O; 

  

  
Fout_EL_FT_H2= e_EL_FT * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  % 

The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
%A_Fout_EL_FT_H2(k,j)=Fout_EL_FT_H2; 

  

  
Fout_FT_FC_H2= e_FT_FC * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 % 

The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
%A_Fout_FT_FC_H2(k,j)=Fout_FT_FC_H2; 

  

  
Fout_WT_H2O= e_WT_EL* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % The 

flow of H2O from the WT to the EL based on what the EL needs. The Flow is -VE 

since it depletes the Water Tank 
%A_Fout_WT_H2O(k,j)=Fout_WT_H2O; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 

  

  
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
A_P_PV3_BAT3(z,j)=P_PV3_BAT3; 
A_P_WG2_BAT3(z,j)=P_WG2_BAT3; 
P_RES3=(e_PV3_BAT3*P_PV3_BAT3)+(e_WG2_BAT3*P_WG2_BAT3)+(e_DSL3_BAT3*P_DSL3_BA

T3)+(A_g_FC_BAT3(j+sss)*P_FC_BAT3(j+sss)); 
A_P_RES3(z,j)=P_RES3; 
P_BAT3= P_RES3-(e_BAT3_LD3*P_BAT3_LD3)-(A_g_EL_FT(j+sss)*P_BAT3_EL(j+sss)); 
if P_BAT3<=0 
   Deficit_P_BAT3=1; 
else 
    Deficit_P_BAT3=0; 
end 
A_Deficit_P_BAT3(z,j)=Deficit_P_BAT3; 
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if P_BAT3>P_BAT3_LD3&&SOC_BAT3>90&&SOC_H2_FT>90 && SOC_H2O_WT>40 
    Surplus_P_BAT3=1; 
else 
    Surplus_P_BAT3=0; 
end 
A_Surplus_P_BAT3(z,j)=Surplus_P_BAT3; 

  

  
A_P_BAT3(z,j)=(P_BAT3/BAT3_Cap)*100 ; 
SOC_BAT3=SOC_BAT3+(P_BAT3/BAT3_Cap)*100 ; 
if SOC_BAT3<=0; 
    SOC_BAT3=0; 
end     
if SOC_BAT3>=100 
    SOC_BAT3=100; 
end 

  
A_SOC_BAT3(z,j)=SOC_BAT3; 

  
if SOC_BAT3<30 
   Deficit_SOC_BAT3=1; 
else 
   Deficit_SOC_BAT3=0; 
end 
 A_Deficit_SOC_BAT3(z,j)= Deficit_SOC_BAT3; 

  
 if j<=1 
     c=1; 
 else 
     c=0; 
 end    

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL=100*(Fout_FC_WT_H2O - Fout_WT_H2O)/WT_Cap; 
SOC_H2O_WT= SOC_H2O_WT +FC_WT_EL; 
if SOC_H2O_WT>=100 
    SOC_H2O_WT=100; 
end     
    if  SOC_H2O_WT<=0 
        SOC_H2O_WT=0; 
    end       
A_SOC_H2O_WT(z,j)=SOC_H2O_WT; 
A_F_FC_WT_EL(z,j)=FC_WT_EL; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC=100*(Fout_EL_FT_H2 - Fout_FT_FC_H2)/FT_Cap; 
SOC_H2_FT=SOC_H2_FT + EL_FT_FC; 
if SOC_H2_FT>=100                           %LIMITS FOR SOC OF WATER TANK AND 

FLOW TANK 
    SOC_H2_FT=100; 
end 
if SOC_H2_FT<=0 
    SOC_H2_FT=0; 
end     
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A_SOC_H2_FT(z,j)=SOC_H2_FT; 
A_F_EL_FT_FC(z,j)=EL_FT_FC; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 

  
if SOC_BAT3<stp_PV3_BAT3 
    q_PV3_BAT3=1; 
else 
    q_PV3_BAT3=0; 
end    
e_req_PV3_BAT3=q_PV3_BAT3  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 

  
a_PV3_BAT3=1; 
e_avail_PV3_BAT3= a_PV3_BAT3 || r_PV3_BAT3; 
e_PV3_BAT3= e_avail_PV3_BAT3 && e_req_PV3_BAT3 && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
str_WG2_BAT3=0   ;                        % start charging battery if SOC max 

is < 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3<stp_WG2_BAT3 
    q_WG2_BAT3=1; 
else 
    q_WG2_BAT3=0; 
end    
e_req_WG2_BAT3=q_WG2_BAT3    ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3=1; 
e_avail_WG2_BAT3 = a_WG2_BAT3 || r_WG2_BAT3; 

  
e_WG2_BAT3 = e_avail_WG2_BAT3 && e_req_WG2_BAT3 && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     
if SOC_BAT3<str_DSL3_BAT3 %|| 

[SOC_BAT3>str_DSL3_BAT3&&SOC_BAT3<stp_DSL3_BAT3] && A_e_DSL3_BAT3(j+c-1)==1 
q_DSL3_BAT3=1; 
else 
q_DSL3_BAT3=0; 
end 
e_req_DSL3_BAT3 =q_DSL3_BAT3; 
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a_DSL3_BAT3=1       ;                           %Availability logic for 

Diesel generator 

  
e_avail_DSL3_BAT3 = a_DSL3_BAT3 || r_DSL3_BAT3; 

  
e_DSL3_BAT3= e_avail_DSL3_BAT3 && e_req_DSL3_BAT3 && g_DSL3_BAT3; 

  

  
%ACTIVATION FOR FUEL CELL TO BATTERY 
if FC_WINTER(k)==1 
    FC_ON_WINTER=1; 
else 
    FC_ON_WINTER=0; 
end 
str_FC_BAT3=99  ;      %90                 %start and stop min and max 

threshold to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
if FC_ON_WINTER==1 && SOC_BAT3<str_FC_BAT3  %|| SOC_BAT3>str_FC_BAT3 && 

SOC_BAT3<stp_FC_BAT3 && A_e_FC_BAT3(j-1+c)==1       %i==[2881:5832] ensures 

Summer operation only  
    q_FC_BAT3=1 ; 
else 
    q_FC_BAT3=0; 
end 
e_req_FC_BAT3 =   q_FC_BAT3; 

  
  str_FC_WT=90      ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT=90; 

  
if SOC_H2O_WT<str_FC_WT  
  a1_FC_WT=1; 
else 
  a1_FC_WT=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT>str_FT_FC  
  a2_FT_FC=1; 
else 
  a2_FT_FC=0; 
end 

  
e_avail_FC_BAT3= a1_FC_WT && a2_FT_FC ; %|| r_FT_FC; 

     

  
e_FC_BAT3 =  A_g_FC_BAT3(j-1+c); 

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 
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%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
str_EL_FT = 99       ;%90                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY FROM 

ELECTROLYSER 
    q_EL_FT=1; 
else 
    q_EL_FT=0; 
end 
e_req_EL_FT= q_EL_FT; 

  

  
if EL_SUMMER(k)==1                   %Scan the array if the index is equal to 

1 then logic is true else it is false for zero  
    EL_ON_SUMMER=1; 
    else 
    EL_ON_SUMMER=0; 
end     

  
str_BAT3_EL= 70   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
% if Counter<=1 
%     c=2; 
% else 
%     c=0; 
% end             %This corrects the indexing by assuming the past was zero 
if EL_ON_SUMMER==1 && SOC_BAT3>str_BAT3_EL || SOC_BAT3<str_BAT3_EL && 

SOC_BAT3>stp_BAT3_EL %&& A_e_EL_FT(j+c-1)==1  %i==[2881:5832] ensures Winter 

operation only 
  a1_BAT3_EL = 1; 
else 

  
  a1_BAT3_EL=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT>str_WT_EL  
  a2_EL_FT=1; 
else 
  a2_EL_FT=0; 
end 

  

  
e_avail_EL_FT= a1_BAT3_EL && a2_EL_FT ; %|| r_EL_FT; 
e_EL_FT=(A_g_EL_FT1(j-1+c) || A_g_EL_FT2(j-1+c)); 

  

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL = e_EL_FT; 
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%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL=e_EL_FT; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC=e_FC_BAT3   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
%store as z,j 

  
A_e_BAT3_LD3(z,j)=e_BAT3_LD3; 
A_e_PV3_BAT3(z,j)= e_PV3_BAT3;             
A_e_WG2_BAT3(z,j)=e_WG2_BAT3; 
A_e_BAT3_EL(z,j)=e_BAT3_EL ;             
A_e_WT_EL(z,j)= e_WT_EL ; 
A_e_EL_FT(z,j)=e_EL_FT  ;            
A_e_FT_FC(z,j)=e_FT_FC; 
A_e_FC_WT(z,j)=e_FC_WT; 
A_e_FC_BAT3(z,j)=e_FC_BAT3; 
A_e_DSL3_BAT3(z,j)=e_DSL3_BAT3; 

  
%%%%%%%%%%%%%%%%%%%% END OF MG3 LOW LEVEL PMS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
Pinch_Data(z,j)=SOC_BAT3; 
%PINCH_DATA(l,j,k)=SOC_BAT3; 

     

     
%  if l==1 && startt==k 
%  Pinch_Data_Raw_before_shaping(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==2 && startt==k 
%  Pinch_Data_Raw_before_shaping2(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==3 && startt==k 
%  Pinch_Data_Raw_before_shaping3(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==4 && startt==k 
%  Pinch_Data_Raw_before_shaping4(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==5 && startt==k 
%  Pinch_Data_Raw_before_shaping5(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==6 && startt==k 
%  Pinch_Data_Raw_before_shaping6(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==7 && startt==k 
%  Pinch_Data_Raw_before_shaping7(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%  if l==8 && startt==k 
%  Pinch_Data_Raw_before_shaping8(z,j)=SOC_BAT3; %first recompution L=1 
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%  end 
%  if l==9 && startt==k 
%  Pinch_Data_Raw_before_shaping9(z,j)=SOC_BAT3; %first recompution L=1 
%  end 
%   if l==10 && startt==k 
%  Pinch_Data_Raw_before_shaping10(z,j)=SOC_BAT3; %first recompution L=1 
%   end 
%   if l==11 && startt==k 
%  Pinch_Data_Raw_before_shaping11(z,j)=SOC_BAT3; %first recompution L=1 
%   end 
%  
%   
%    if l==24 && startt==k 
%  Pinch_Data_Raw_after_shaping(z,j)=SOC_BAT3 ;%first recomputation when L=24 
%    end 
% if l==24 
%  PINCH_DIAG(k,j)=SOC_BAT3;   % Extract the recomputation from here 
% end 
% Pinch_shaping(l,j)=SOC_BAT3;% insight  array vector to the iterative 

shaping via PoPA 
% PINCH_DATAA(Counter2,j)=SOC_BAT3; 

  
 end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATISTICAL ANALYSIS ON THE PINCH DATA %%%% 

  
 end% for monte carlo simulation 

 

parfor e=k:1:stop     %parallel for loop 
    MC_mean=mean(Pinch_Data(:,e)); % calc for each col 
    MC_std=std(Pinch_Data(:,e)); 

     
     Lower_bb(l,e)=MC_mean-(MC_std*1.96/sqrt(z)); 
    Upper_bb(l,e)=MC_mean+(MC_std*1.96/sqrt(z)); 
%      
     cxc=cdfplot(Pinch_Data(:,e)); 

     
    xdata=get(cxc,'Xdata'); 

  
    ydata=get(cxc,'Ydata') ; 

  
    pr_l(l,e)=max(find(xdata<31)); 

  
    L_V(l,e)=ydata(pr_l(l,e)); 

     
    xcx_l=find(ydata>0.01); 

     
    Lower=xdata(xcx_l(1)); 
    Lower_b(l,e)=xdata(xcx_l(1)); 

     
    xcx_u=find(ydata>0.99); 

     
    Upper=xdata(xcx_u(1)); 
    Upper_b(l,e)=xdata(xcx_u(1)); 
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   end  

    
%  if L_V(l,e)==0 
%     break 
%  end 

      
%run this loop while Smin and Smax violation exist 

  
    Recomp=1; %signal for recomputation 
 Recomputation(k)=Recomp; 

   
%PINCH ANALYSIS AND DETERMINATION OF G OVERIDE 

  
%%START PINCH%% 
SOC_BAT3_min=30 ;          %Minimum and Maximum Pinch Targets 
SOC_BAT3_max=90; 
S_UP=90; 
S_LO=30; 

  
% S_min=min(Pinch_Data(start:stop-1)); 
% S_max=max(Pinch_Data(start:stop-1)); 
if l==1 
Lower_b(l,start:stop)=Lower_b(l,start:stop);%*A+B;%*XxY1; 
% Upper_b(l,start:stop)=Upper_b(l,start:stop);%*XxY1; 
end 

  

  

  
S_min=min(Lower_b(l,start:stop))*A+B; 
S_max=max(Upper_b(l,start:stop)); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%RESIDUAL ERROR CORRECTION 
% Xxx=sum(Lower_b(1:100)) 
% yyy=sum(A_SOC_BAT_3_A(1:100)) 
% if k>2 
% XxY(k)=sum(A_SOC_BAT3_A(startt:k-1))/sum(Lower_b(startt:k-1)); 
% Xxx=A_SOC_BAT3_A(k-1)/Lower_b(k); 
% end 
%Smin %Update the maximum taget using correction 
% if k>25 
% S_min = S_min*(XxY(k) + (Xxx-XxY(k))/k);%Update the minimum target using 

the error correction 
% end 

  
% if k>2 
% XxZ(k)=sum(A_SOC_BAT3_A(startt:k-1))/sum(Upper_b(startt:k-1)); 
% Xxy=A_SOC_BAT3_A(k-1)/Upper_b(k); 
% end 
%Smax %Update the maximum taget using correction 
% if k>25 
% % S_max = S_max*(XxZ(k) + (Xxy-XxZ(k))/k);%Update the minimum target using 

the error correction 
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% end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
if S_min<=SOC_BAT3_min 
    [~, t_violation]=min(Lower_b(l,start:stop-1)); 
   t_violation=t_violation+start-1;% corrects the index of the minimum 

violation 
   %t_violation= find(Pinch_Data(1:stop)==S_min)     ;           % time of 

violation of the Lower pinch  

  
   E_target =(SOC_BAT3_min - S_min)*(BAT3_Cap/100);%*P_FC_BAT3)); 
   t_duration = ceil(E_target);%/BAT3_Cap;             %Time duration needed 

based on allowable amount of energy from battery per hour 
%    if t_violation-1<start  
%       t_violation=start+1 
%    end 
%   
%   A_g_FC_BAT3(t_violation)= 1; 
%   P_FC_BAT3(t_violation)=E_target;% 

   
%%DAY_AHEAD PoPA CUMMULATIVE ACTION 
  A_g_FC_BAT3(start)=1; 
  %Power_FC=E_target;   
  %Power_FC=Power_FC+E_target;% MOES cummulative from all previous violation 
  %A_Power_FC(startt,l)=Power_FC; 
  P_FC_BAT3(start)=E_target+P_FC_BAT3(start); 
  if (P_FC_BAT3(start)/BAT3_Cap*100)+Lower_b(1,start)>S_UP 
      P_FC_BAT3(start)=P_FC_BAT3(start)-

((Lower_b(1,start)+(P_FC_BAT3(start)*100/BAT3_Cap)-S_UP))*BAT3_Cap/100 ; % 

limits the FC for MOES to Upper Pinch limit  
  end 
%   if P_FC_BAT3(start)>6000 
%      P_FC_BAT3(start)=6000;% Limits FC power to the maximum capcity 
%   end 

   
elseif   S_max>SOC_BAT3_max  
 if RLS==0 
    Upper_b(l,start:stop)=Upper_b(l,start:stop); %activates correction factor 

only once 
 else 
     Upper_b(l,start:stop)=Upper_b(l,start:stop)*A+B;%*A+B;%*XxY1; 
 end 

   

     
    [~, t_violation_EL]=max(Upper_b(1,start:stop-1));% to change from day 

ahead to adaptive use start intead of startt which is the begining of the 

horizon 

     
        %t_violation_EL= max(find(Pinch_Data(1:stop)==S_max))     ;  

         
        %%A_g_EL_FT1(start:stop-1)= Pinch_Data(start:stop-1)>SOC_BAT3_max; 

former 

  
Ex_target=(S_max - SOC_BAT3_max)*(BAT3_Cap/(100));     % former 
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% A_g_EL_FT1(t_violation_EL)=1; 
% P_BAT3_EL(t_violation_EL)=abs(Ex_target);% 

  
%%DAY_AHEAD PoPA CUMMULATIVE ACTION 
    t_violation_EL=t_violation_EL+start-1; %start-1 
    Ex_target=(S_max - SOC_BAT3_max)*(BAT3_Cap/(100));% former 
%     Power_EL=Ex_target;   
%     Power_EL=Power_EL+Ex_target;% MAE cummulative from previous violation 
    A_g_EL_FT1(t_violation_EL)=1; 
    P_BAT3_EL(t_violation_EL)=Ex_target+P_BAT3_EL(t_violation_EL); 

     
   if Upper_b(l,t_violation_EL)-(P_BAT3_EL(t_violation_EL)/BAT3_Cap)*100<S_LO    

% Limits the energy extracted by the EL to be less than or equal to the lower 

Pinch 
     if Upper_b(l,t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)>0||Upper_b(l,t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)==0 % if the value is positive 

        
         P_BAT3_EL(t_violation_EL)=((Upper_b(l,t_violation_EL)-

P_BAT3_EL(t_violation_EL))+ (S_LO-(Upper_b(l,t_violation_EL)-

P_BAT3_EL(t_violation_EL))))*BAT3_Cap/100; 

          
        %P_BAT3_EL(t_violation_EL)=((Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))+ (S_LO-(Pinch_Data(t_violation_EL)-

P_BAT3_EL(t_violation_EL))))*BAT3_Cap/100; 

          
     elseif Upper_b(l,t_violation_EL)-(P_BAT3_EL(t_violation_EL)/BAT3_Cap)<0 

% for negative power violation limit of the EL 
          P_BAT3_EL(t_violation_EL)=(Upper_b(l,t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)+(S_LO+(abs(Upper_b(l,t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)))))*BAT3_Cap/100; 
    % Pinch_Data(t_violation_EL)=(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)+(S_LO+(abs(Pinch_Data(t_violation_EL)-

(P_BAT3_EL(t_violation_EL)/BAT3_Cap)))))*BAT3_Cap/100; 

      
     end 
   end     

     

     
%     if P_BAT3_EL(t_violation_EL)>4000 
%        P_BAT3_EL(t_violation_EL)=4000; %Limits EL power to max capacity 
%     end   

  
else 

  

     

     
    %%%%%%%%%%%%%% FROM ORIGINAL RLPOPA 
%  if 

ceil(Pinch_Data(stop))~=50&&(Pinch_Data(startt)>=30&&Pinch_Data(startt)<=90)%

Pinch_Data(stop)~=Pinch_Data(startt)&&Pinch_Data(startt)>=30 
%     EE_target=(Pinch_Data(stop) - Pinch_Data(startt))*(BAT3_Cap/(100)); 
%      if EE_target<0 
%            A_g_FC_BAT3(stop)=1;  
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%             A_g_EL_FT2(stop)=0; 
%          
%      else 
%          EE_target>0 
%          A_g_EL_FT2(stop)=1; 
%           A_g_FC_BAT3(stop)=0;  
%        
%      end       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%ORIGINAL AEEND 

     

     

     
if 

ceil(Upper_b(l,stop))<50%&&(Lower_b(l,startt)>=30)%&&Lower_b(l,startt)<=90)%&

&k==0%ceil(Pinch_Data(stop))~=ceil(Pinch_Data(startt))&&(Pinch_Data(startt)>=

30&&Pinch_Data(startt)<=90) 
    EE_target=(Upper_b(l,stop) - 50)*(BAT3_Cap/(100)); 

      
    if EE_target<0 %&& P_FC_BAT3(stop-1)>abs(EE_target) 
           A_g_FC_BAT3(stop-1)=1;  
           A_g_EL_FT2(stop-1)=0; 
           A_g_EL_FT1(stop-1)=0; 
           P_FC_BAT3(stop-1)=abs(EE_target); 
          % P_FC_BAT3(stop-1)=P_FC_BAT3(stop-1)-abs(EE_target);% has to be 

cummulative if not it will mismatch. if needed was 50KW and was match the 

begining and error occurs u want to integrate by supplying what is needed now 

+wat was there before.   
           P_BAT3_EL(stop-1)=0; 
%    
%      if P_FC_BAT3(stop-1)>6000 
%         P_FC_BAT3(stop-1)=6000;% Limits FC power to the maximum capcity 
%      end 

  

       
     else 
        if EE_target>0 && P_FC_BAT3(stop-1)~=0 && P_FC_BAT3(stop-

1)>abs(EE_target) 
          A_g_EL_FT2(stop-1)=0; 
          A_g_FC_BAT3(stop-1)=1;  
          P_BAT3_EL(stop-1)=0;%+P_BAT3_EL(stop-1)% you want to integrate the 

energy with wat was already matched if error occurs 
          P_FC_BAT3(stop-1)=P_FC_BAT3(stop-1)-EE_target;% to reduce the 

Energy previously set you need to remove it from the exixting energy 

            
%           if P_FC_BAT3(stop-1)>6000 
%              P_FC_BAT3(stop-1)=6000;% Limits FC power to the maximum 

capcity 
%           end 

              
        elseif EE_target>0 && P_FC_BAT3(stop-1)~=0 && P_FC_BAT3(stop-

1)<EE_target 
         A_g_EL_FT2(stop-1)=1; 
         A_g_FC_BAT3(stop-1)=0;  
         P_BAT3_EL(stop-1)=EE_target-P_FC_BAT3(stop-1);% 
         P_FC_BAT3(stop-1)=0; 
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%           if P_BAT3_EL(stop-1)>4000 
%              P_BAT3_EL(stop-1)=4000; Limits % EL power to max capacity 
%           end   

           
        else 
           A_g_EL_FT2(stop-1)=1; 
           A_g_FC_BAT3(stop-1)=0;  
           P_BAT3_EL(stop-1)=EE_target;%+P_BAT3_EL(stop-1)% you want to 

integrate the energy with wat was already matched if error occurs 
           P_FC_BAT3(stop-1)=0;  

            
%           if P_BAT3_EL(stop-1)>4000 
%              P_BAT3_EL(stop-1)=4000;  % Limits EL power to max capacity 
%           end 

           
        end 
     end    

  
end 
end 

  
% if Pinch_Data(stop-1)~=Pinch_Data(startt) 
%     E_target=  (Pinch_Data(stop-1) - 

Pinch_Data(startt))*(BAT3_Cap/(100*P_FC_BAT3)); 
%      if E_target<0 
%            A_g_FC_BAT3(stop-1)=1;    
%             A_g_EL_FT2(stop-1)=0; 
%      else 
%          E_target>0 
%          A_g_EL_FT2(stop-1)=1; 
%           A_g_FC_BAT3(stop-1)=0;  
%      end    
%  
% end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  END OF PINCH %%%%%%%%%%%%%%%% 

  

  

  
A_g_EL_FT=A_g_EL_FT1; 
A_g_EL_FT=A_g_EL_FT2~=0; 

  
A_g_EL_FT=A_g_EL_FT1+A_g_EL_FT2; 

  

  

  
A_Lower_b(start:stop)=Lower_b(l,start:stop); 
A_Upper_b(start:stop)=Upper_b(l,start:stop);  

  
 end 

  
if 

l==50%(S_min>SOC_BAT3_min&&S_max<SOC_BAT3_max&&ceil(Upper_b(l,stop))>=50&&cei

l(Upper_b(l,stop))<70)==0||l==50%&&(Lower_b(l,startt)>=30)) 
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    break; 
end 
 RLS=0; 

  

     

  
   end 

    

   
%%%%%%%%%%%%%%%%    

  

  
 RLS=1 ;  
 l=1;%reset L back to 1 
 S_min=0; 
 S_max=0; %reset the while loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% E.N.D OF M.P.C 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  

  

  
if k==1%||stop-start==21||stop-start==22 
    e=1; 
else 
    e=0; 
end 

  
if    k==1%  k<8760%     tweek to alter availability 
 e_avail_EL_FT_A=1; 
e_avail_FC_BAT3_A=1; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LIMIT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CONVERTER 
EL_max=15000; 
EL_min=1000; 
FC_max=15000; 
FC_min=1000; 
if P_BAT3_EL(k-1+e)>EL_max  %Constrain the max power of EL 
   P_BAT3_EL(k-1+e)=EL_max; 
elseif P_BAT3_EL(k-1+e)>0&&P_BAT3_EL(k-1+e)<EL_min; 
       P_BAT3_EL(k-1+e)=EL_min; 
end 
if P_FC_BAT3(k-1+e)>FC_max 
    P_FC_BAT3(k-1+e)=FC_max; 
elseif P_FC_BAT3(k-1+e)>0&&P_FC_BAT3(k-1+e)<FC_min 
    P_FC_BAT3(k-1+e)=FC_min; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_EL_FT_A=A_g_EL_FT(k-1+e)*e_avail_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 
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%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A;                             

%The Logic for SOC to CONVERTER is the same as CONVERTER TO SOC 
e_FC_BAT3_A=e_FT_FC_A; 
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT_A=A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A; 

  

  

  
%%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% MICROGRID3 %%% MICROGRID 3 %%%%%% 

MICROGRID3 %%% MICROGRID 3  

  
%%%%%ITERATION %%%% ITERATION 

  
%INSTANTENOUS LOAD POWER 
if k<2190 
   lr=1000; 
elseif k<4380 
    lr=3000; 
elseif k<6570 
    lr=5000; 
elseif k>6570 
    lr=7000; 
end 

     

  
 counta_A=counta_A+1; 
    if counta_A>24 
       counta_A=1; 
    end 

  
% P_BAT3_LD3_A=datasample(LD_ARRAY(r1:r2,counta_A),1);%selects randomly a 

load within the season% A_LD_R(lr,k); 
P_BAT3_LD3_A=LD3_A(k); 
A_LD(k)=P_BAT3_LD3; 

  

  
%POWER FROM PV SYSTEM 
% PV3_no=217; 
Area_PV3=0.52*PV3_no ;           %Area for 70W solar panel 
 if k>startt+7 && k<stop-8 
     %Random=random('norm', 0, 10,1,1); 
    Random; 
 else 
     Random=0; 
 end 

  
P_PV3_BAT3_A=Area_PV3*0.1 *(I_Rad(k)) ;%+Random);  ;%   % 0.1 is efficiency 

for polycrystalline  
P_PV3_BAT3_A=Area_PV3*0.1 *(I_Rad(k)+ran_PV(k)); 
%P_PV3_BAT3=Area_PV3*I_RADOM(k)*0.1 ;  

  
% I_RADOM(k)=I_Rad(k)+Random 
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%  
% REAL(k)=Area_PV3*I_Rad(k)*0.1 
% DIST(k)=Area_PV3*I_RADOM(k)*0.1 
%I_REAL(k)=I_Rad(k) 

  

  

  

  
%POWER WIND TURBINE GENERATOR 

  
P_WG2_BAT3_A= 0.5 * Air_den *Area_sw  * Cp* ((Wind_vel(k))^3) * Ng * Nb*WT_no 

; 

  

  

  
%FUEL CELL AND ELECTROLYSER POWER FLOW 

  
I_EL=polyval(polyn_EL,P_BAT3_EL(k-1+e)*A_g_EL_FT(k-1+e)*e_avail_EL_FT_A)  ;       

% Power flow as a function of Power supplied to the electroliser 
I_FC=polyval(polyn_FC,P_FC_BAT3(k-1+e)*A_g_FC_BAT3(k-1+e)*e_avail_FC_BAT3_A);     

% Power flow as a function of Power supplied to the electroliser 

  
%*e_BAT3_EL *e_FC_BAT3* 
e_FC_WT_A=e_FC_BAT3_A; 
Fout_FC_WT_H2O_A= e_FC_WT_A * 0.85 * nc_FC * 3600* I_FC  / (nF*ne*F)  ;      

% The flow of H2O from FC to WT +VE flow since it goes in to the Water Tank 
A_Fout_FC_WT_H2O_A(k)=Fout_FC_WT_H2O_A; 

  

  
Fout_EL_FT_H2_A= e_EL_FT_A * nF*nc_EL *  3600* I_EL/(ne*F)  ;                  

% The flow of H2 from EL to FT   +VE flow since it goes into a Flow Tnak 
A_Fout_EL_FT_H2_A(k)=Fout_EL_FT_H2_A; 

  

  
Fout_FT_FC_H2_A= e_FT_FC_A * nc_FC * 3600 *I_FC /(nF*ne*F)   ;                 

% The flow of H2 out of the FT to the FC  based on the needs of the  FC i.e 

*eff -VE flow since it flows out    
A_Fout_FT_FC_H2_A(k)=Fout_FT_FC_H2_A; 

  

  
Fout_WT_H2O_A= e_WT_EL_A* 1.3 * nF * nc_EL * 3600 * I_EL /(ne*F) ;        % 

The flow of H2O from the WT to the EL based on what the EL needs. The Flow is 

-VE since it depletes the Water Tank 
A_Fout_WT_H2O_A(k)=Fout_WT_H2O_A; 

  
%%WATER TANK AND FLOW TANK MAX CAPACITY CALCULATION 
%WT_Cap=1.3*24*(I_FC*nc_FC*nF)*3600/(ne*F)                          

%Calculate at max Power then set it manually.  Water Tank capacity should 

hold moles/hr for 24hrs  

  

  
%FT_Cap=1.3*24*(I_EL*nc_EL*nF)*3600/(ne*F)                          %Storage 

Tank capacity should hold moles/hr for 24hrs 
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A_FC_ATTEMPT(k)=e_avail_FC_BAT3_A*A_g_FC_BAT3(k-1+e); 
A_EL_ATTEMPT(k)=e_avail_EL_FT_A*A_g_EL_FT(k-1+e); 
%NET ENERGY FLOW OF POWER STORED IN THE BATTERY  
if stop-start==23 
    c=-1; 
else 
    c=0; 
end 

  
A_P_PV3_BAT3_A(k)=(e_PV3_BAT3_A*P_PV3_BAT3_A); 
A_P_WG2_BAT3_A(k)=P_WG2_BAT3_A; 
A_P_BAT3_AA(k)=SOC_BAT3_A*BAT3_Cap/100; 
A_P_DSL3_A(k)=(e_DSL3_BAT3_A*P_DSL3_BAT3); 
A_P_EL_A(k)=(e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-1+e)); 
A_P_FC_A(k)=(e_avail_FC_BAT3_A*A_g_FC_BAT3(k-1+e)*P_FC_BAT3(k-1+e)); 

  

  
P_RES3_A=(e_PV3_BAT3_A*P_PV3_BAT3_A) 

+(e_WG2_BAT3_A*P_WG2_BAT3_A)+(e_DSL3_BAT3_A*P_DSL3_BAT3)+(e_avail_FC_BAT3_A*A

_g_FC_BAT3(k-1+e)*P_FC_BAT3(k-1+e));%(r_FC_BAT3*P_FC_BAT3);%% 
A_P_RES3_A(k)=P_RES3_A; 
P_BAT3_A= P_RES3_A -

(((e_BAT3_LD3_A*P_BAT3_LD3_A))+(e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-

1+e)));%( r_BAT3_EL*P_BAT3_EL);% 
%% 
%LOLP CALCULATION 
ENERGY_in_SYSTEM(k)=(SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A ; 
if ((SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A)<(BAT3_Cap*30/100) 
    DEFICIT=((SOC_BAT3_A*BAT3_Cap/100)+P_RES3_A); 
    LOAD_D=(((e_BAT3_LD3_A*P_BAT3_LD3_A))+(e_avail_EL_FT_A*A_g_EL_FT(k-

1+e)*P_BAT3_EL(k-1+e))); 
    number_count=number_count+1; 
else 
    DEFICIT=0; 
    LOAD_D=0; 
end 
DEFICIT_A(k)=DEFICIT; 
LOAD_D_A(k)=LOAD_D; 

  
if P_BAT3_A<0 &&SOC_BAT3_A<30 
    UnServed_load=(P_BAT3_A)+Unserved_load; 
end 

  
%% 
A_P_BAT3_A(k)=(P_BAT3_A/BAT3_Cap)*100 ; 
SOC_BAT3_A=SOC_BAT3_A +(P_BAT3_A/BAT3_Cap)*100 ; 
if SOC_BAT3_A<=0; 
    SOC_BAT3_A=0; 
end     
if SOC_BAT3_A>=100 
    Excess=SOC_BAT3_A +((P_BAT3_A/BAT3_Cap)*100)-100;%Calculate Excess Energy 

not saved in the battery 
    Excess_Energy_lost=(Excess*BAT3_Cap)/100+Excess_Energy_lost; 
    SOC_BAT3_A=100; 

     
end 
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A_SOC_BAT3_A(k)=SOC_BAT3_A; 

  
if SOC_BAT3_A<30 
   Deficit_SOC_BAT3_A=1; 
else 
   Deficit_SOC_BAT3_A=0; 
end 
 A_Deficit_SOC_BAT3_A(k)= Deficit_SOC_BAT3_A; 

  

  
% WATER STORED IN THE WATER TANK 
 FC_WT_EL_A=100*(Fout_FC_WT_H2O_A - Fout_WT_H2O_A)/WT_Cap; 
SOC_H2O_WT_A= SOC_H2O_WT_A +FC_WT_EL_A; 
if SOC_H2O_WT_A>=100 
    SOC_H2O_WT_A=100; 
end     
    if  SOC_H2O_WT_A<=0 
        SOC_H2O_WT_A=0; 
    end       
A_SOC_H2O_WT_A(k)=SOC_H2O_WT_A; 
A_F_FC_WT_EL_A(k)=FC_WT_EL_A; 

  
%HYDROGEN STORED IN THE FLOW TANK 
EL_FT_FC_A=100*(Fout_EL_FT_H2_A - Fout_FT_FC_H2_A)/FT_Cap; 
SOC_H2_FT_A=SOC_H2_FT_A + EL_FT_FC_A; 
if SOC_H2_FT_A>=100                           %LIMITS FOR SOC OF WATER TANK 

AND FLOW TANK 
    SOC_H2_FT_A=100; 
end 
if SOC_H2_FT_A<=0 
    SOC_H2_FT_A=0; 
end     
A_SOC_H2_FT_A(k)=SOC_H2_FT_A; 
A_F_EL_FT_FC_A(k)=EL_FT_FC_A; 

  
%ACTIVATION FOR PV TO BATTERY  
str_PV3_BAT3=0      ;                     % start charging battery if SOC max 

is < 90% 
stp_PV3_BAT3=90; 

  
if SOC_BAT3_A<stp_PV3_BAT3 
    q_PV3_BAT3_A=1; 
else 
    q_PV3_BAT3_A=0; 
end    
e_req_PV3_BAT3_A=q_PV3_BAT3_A  ;            %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 

  
a_PV3_BAT3_A=1; 
e_avail_PV3_BAT3_A= a_PV3_BAT3_A || r_PV3_BAT3_A; 
e_PV3_BAT3_A= e_avail_PV3_BAT3_A && e_req_PV3_BAT3_A && g_PV3_BAT3; 

  

  
%ACTIVATION FOR WIND TURBINE WG2 TO BATTERY BAT3 
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str_WG2_BAT3=0;                        % start charging battery if SOC max is 

< 90% 
stp_WG2_BAT3=90; 

  
if SOC_BAT3_A<stp_WG2_BAT3 
    q_WG2_BAT3_A=1; 
else 
    q_WG2_BAT3_A=0; 
end    
e_req_WG2_BAT3_A=q_WG2_BAT3_A ;          %The logic determines when the 

battery SOC is below the stop point then the Battery makes a request 
a_WG2_BAT3_A=1; 
e_avail_WG2_BAT3_A = a_WG2_BAT3_A || r_WG2_BAT3_A; 

  
e_WG2_BAT3_A = e_avail_WG2_BAT3_A && e_req_WG2_BAT3_A && g_WG2_BAT3; 

  
%ACTIVATION FOR DIESEL TO BATTERY 
str_DSL3_BAT3=20; 
stp_DSL3_BAT3=30; 
if k<=1 
    c=1; 
else 
    c=0; 
end     

  
if SOC_BAT3_A<str_DSL3_BAT3 || 

[SOC_BAT3_A>str_DSL3_BAT3&&SOC_BAT3_A<stp_DSL3_BAT3] && A_e_DSL3_BAT3_A(k+c-

1)==1 
q_DSL3_BAT3_A=1; 
else 
q_DSL3_BAT3_A=0; 
end 
e_req_DSL3_BAT3_A =q_DSL3_BAT3_A; 

  
a_DSL3_BAT3_A=1  ;                           %Availability logic for Diesel 

generator 

  
e_avail_DSL3_BAT3_A = a_DSL3_BAT3_A || r_DSL3_BAT3_A; 

  
e_DSL3_BAT3_A= e_avail_DSL3_BAT3_A && e_req_DSL3_BAT3_A && g_DSL3_BAT3; 

  

  
%ACTIVATION FOR FUEL CELL TO BATTERY 

  
str_FC_BAT3=90;                       %start and stop min and max threshold 

to make request by Battery for Fuel cell to supply power 
stp_FC_BAT3=80; 
if SOC_BAT3_A<str_FC_BAT3  || SOC_BAT3_A>str_FC_BAT3 && 

SOC_BAT3_A<stp_FC_BAT3 && A_e_FC_BAT3_A(k+c-1)==1       %i==[2881:5832] 

ensures Summer operation only  
    q_FC_BAT3_A=1 ; 
else 
    q_FC_BAT3_A=0; 
end 
e_req_FC_BAT3_A =   q_FC_BAT3_A; 
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  str_FC_WT_A=90 ;                             %start and stop min and max 

threshold to make request for Fuel cell to supply power to Battery based on 

Water Tank not full and Flow tank above minimum  
  stp_FC_WT_A=90; 

  
if SOC_H2O_WT_A<str_FC_WT_A  
  a1_FC_WT_A=1; 
else 
  a1_FC_WT_A=0; 
end 

  
str_FT_FC =10   ;                                  %start and stop SOC 

HYDROGEN FLOW TANK REQUIRED to supply FUEL CELL 
stp_FT_FC =10; 
if SOC_H2_FT_A>str_FT_FC  
  a2_FT_FC_A=1; 
else 
  a2_FT_FC_A=0; 
end 

  
e_avail_FC_BAT3_A= a1_FC_WT_A && a2_FT_FC_A;  %|| r_FT_FC; 

     
%e_FC_BAT3 = e_avail_FC_BAT3 && e_req_FC_BAT3 &&A_g_FC_BAT3(k); 
% e_FC_BAT3 = e_avail_FC_BAT3 && (r_FC_BAT3 ||A_g_FC_BAT3(k));% ; 
% e_FC_BAT3 = e_avail_FC_BAT3 &&(r_FC_BAT3  ~); 

  
%e_FC_BAT3_A = e_req_FC_BAT3_A && A_g_FC_BAT3(k) ;  

  

  

  
%ACTIVATION FOR BATTERY TO LOAD 
% e_BAT3_LD3=e_avail_BAT3_LD3 && e_avail_BAT3_LD3  && g_BAT3_LD3 

  

  
%ACTIVATION FOR ELECTROLYSER TO FLOW TANK 
str_EL_FT = 90       ;                    %start and stop SOC for engaging 

the ELECTROLYSER TO SUPPLY FLOW TANK  
stp_EL_FT= 100; 
if SOC_H2_FT_A<str_EL_FT                  %FT MAKES REQUEST FOR H2 SUPPLY 

FROM ELECTROLYSER 
    q_EL_FT_A=1; 
else 
    q_EL_FT_A=0; 
end 
e_req_EL_FT_A= q_EL_FT_A; 

  

  
str_BAT3_EL= 40   ;                   %start and stop SOC for engaging the 

BATTERY TO SUPPLY ELECTROLYSER 
stp_BAT3_EL =33; 
if SOC_BAT3_A>str_BAT3_EL || SOC_BAT3_A<str_BAT3_EL && SOC_BAT3_A>stp_BAT3_EL 

&& A_e_EL_FT_A(k+c-1)>=1  %i==[2881:5832] ensures Winter operation only 
  a1_BAT3_EL_A = 1; 
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else 

  
  a1_BAT3_EL_A=0; 
end 

  

  
str_WT_EL =10   ;                      %start and stop SOC WATER TANK 

REQUIRED to supply ELEctrolyser 
stp_WT_EL =10; 
if SOC_H2O_WT_A>str_WT_EL  
  a2_EL_FT_A=1; 
else 
  a2_EL_FT_A=0; 
end 

  
e_avail_EL_FT_A = a1_BAT3_EL_A && a2_EL_FT_A ;% || r_EL_FT; 
%e_EL_FT_A = e_req_EL_FT_A && (A_g_EL_FT1(k-1+c)&& A_g_EL_FT2(k-1+c)) ; 

  
%ACTIVATION FOR BATTERY TO ELECTROLYSER 
e_BAT3_EL_A = e_EL_FT_A; 

  
%ACTIVATION FOR WATER TANK TO ELECTROLYSER 
e_WT_EL_A=e_EL_FT_A; 

  
%ACTIVATION FOR FLOW TANK TO FUEL CELL 
e_FT_FC_A=e_FC_BAT3_A   ;                             %The Logic for SOC to 

CONVERTER is the same as CONVERTER TO SOC 

  
%ACTIVATION FOR FUEL CELL TO WATER TANK 
e_FC_WT=e_FC_BAT3; 

  
A_e_BAT3_LD3_A(k)=e_BAT3_LD3_A; 
A_e_PV3_BAT3_A(k)= e_PV3_BAT3_A;             
A_e_WG2_BAT3_A(k)=e_WG2_BAT3_A; 
A_e_BAT3_EL_A(k)=e_BAT3_EL_A ;             
A_e_WT_EL_A(k)= e_WT_EL_A ; 
A_e_EL_FT_A(k)=e_EL_FT_A  ;            
A_e_FT_FC_A(k)=e_FT_FC_A; 
A_e_FC_WT_A(k)=e_FC_WT_A; 
%A_e_FC_BAT3_A(k)=e_FC_BAT3_A; 
A_e_DSL3_BAT3_A(k)=e_DSL3_BAT3_A; 
% % %  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FEEDBACK THE STATES OF SOC AND LOGIC 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TO PINCH SECTION 

  
% e_BAT3_LD3=e_BAT3_LD3_A; 
% e_PV3_BAT3= e_PV3_BAT3_A;             
% e_WG2_BAT3=e_WG2_BAT3_A; 
% e_BAT3_EL=e_BAT3_EL_A ;             
% e_WT_EL= e_WT_EL_A; 
% e_EL_FT=e_EL_FT_A;            
% e_FT_FC=e_FT_FC_A; 
% e_FC_WT=e_FC_WT_A; 
% e_FC_BAT3=e_FC_BAT3_A; 
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% e_DSL3_BAT3=e_DSL3_BAT3_A; 
%  
% SOC_H2O_WT=SOC_H2O_WT_A; 
%  
% SOC_H2_FT=SOC_H2_FT_A; 
%  
% SOC_BAT3=SOC_BAT3_A; 

  

  
% %%%%%%%%%%%%%%%%%%%% END OF ACTUAL SYSTEM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%COUNTER INCREMENTAL LOOP%%%%%%%%%% 
  if k==stop 
  startt=stop+1; 
  stop=stop+24; 

   
 end    

     
%  Counter=Counter+1; 
%  if Counter ==25 
%      Counter=1; 
%  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ii(k)=k; 

  
sstart(k)=start; 

  

  

  

  

  

  

  
%%%%%%%%%%%%%%%% IAE CALC %%%%%%%%%%%%%% 
SOC_ref=Pinch_Data(k); 
if Pinch_Data(k)<30||SOC_BAT3_A<30 
    SOC_ref=30; 
end 
if Pinch_Data(k)>90||SOC_BAT3_A>90 
    SOC_ref=90; 
end 

  
A_SOC_ref(k)=SOC_ref; 
IAE=abs(SOC_ref-SOC_BAT3_A)/SOC_ref;% change between system and model 
A_IAE(k)=IAE; 

  
if SOC_BAT3_A>90&&e_avail_EL_FT_A*A_g_EL_FT(k-1+e)*P_BAT3_EL(k-1+e)<1 
    EPL(k)=(SOC_BAT3_A-90)*BAT3_Cap/100; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ERROR 

REGRESSION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOT 
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% XxY1=XxY1 

+((SOC_BAT3_A*((Lower_b(l,k)+Upper_b(l,k))/2)/((Lower_b(l,k)+Upper_b(l,k))/2)

^2)-XxY1)/24;%stop-Start;% Average  
%    XxY1=1; 
% A_XxY(k)=XxY1; 

  
%%%%%%%AX+B Linear regression 
if stop-startt<22 
   mdl = fitlm(mean([A_Upper_b(1:k);A_Lower_b(1:k)]),A_SOC_BAT3_A(1:k)); 
   A=mdl.Coefficients{1,1};% coefficient for multiplying vairable 
   B=mdl.Coefficients{2,1};%intercept 
else 
    A=1; 
    B=0; 
end 
   A_A(k)=A; 
   A_B(k)=B; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%% %%%%%%%%%%%%%%%% 

  

  
set(groot,'defaultFigureVisible','off') 

  

  

  
end 
tt=1:k; 
plot(tt,A_SOC_ref(1:k),tt,A_SOC_BAT3_A) % 

  
IAE_a=sum(A_IAE)/k 
LOLP=(sum(DEFICIT_A)/sum(LOAD_D_A))/number_count 

  
end 
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