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Abstract

In this thesis, we develop the application of Bayes linear kinematics and Bayes linear Bayes
graphical models to problems in medical diagnosis and prognosis. In medical diagnosis
or prognosis, we might use information from a number of covariates to make inferences
about the underlying condition, prediction about survival or simply a prognostic index.
The covariates may be of different types, such as binary, ordinal, continuous, interval
censored and so on. The covariates and the variable of interest may be related in various
ways. We may wish to be able to make inferences when only a subset of the covariates is
observed so relationships between covariates must be modelled. In the standard Bayesian
framework, such a case might suggest the use of Markov chain Monte Carlo (MCMC)
methods to integrate over the distribution of the missing covariate values but this may be
impractical in routine use. We propose an alternative method, using Bayes linear kine-
matics within a Bayes linear Bayes model in which relationships between the variables
are specified through a Bayes linear structure rather than a fully specified joint probabil-
ity distribution. This is much less computationally demanding, easily allows the use of
subsets of covariates and does not require convergence of a MCMC sampler. In earlier
work on Bayes linear Bayes models, a conjugate marginal prior has been associated with
each covariate. We relax this requirement and allow non-conjugate marginal priors by
using one-dimensional numerical integration. We compare this approach with one using
conjugate marginal priors and with a Bayesian analysis using MCMC and a fully specified
joint prior distribution. We illustrate our methods with an application to prognosis for
patients with non-Hodgkin’s lymphoma in which we treat the linear predictor of the life-
time distribution as a latent variable and use its expectation, given whatever covariates

are available, as a prognostic index.
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Chapter 1

Introduction

1.1 Motivation

Real world data often involve multiple variables and need complex models to reach re-
alistic conclusions. As we encounter widely applicable models, we often need advanced
computational methods to fit them. Therefore, methods such as Markov Chain Monte
Carlo (MCMC), which allow sampling from the posterior distribution when there is no
analytical solution are often used. Bayes linear Bayes models and Bayes linear kinematics
(Goldstein and Shaw, 2004) offer an alternative approach which is computationally much

simpler.

This thesis addresses the methodology of using Bayes linear Bayes network models in
the context of medical diagnosis and prognosis problems. The main aim of this thesis is
to construct a Bayes linear Bayes prognostic network. This can be done by relating 7' to

a latent prognostic index.

A Bayes linear analysis (Goldstein and Wooff, 2007) differs from a full Bayesian anal-
ysis in that only first and second order moments are specified in the prior. Posterior
(termed adjusted) moments are then calculated when data are observed. The introduc-
tion of Bayes linear kinematics and Bayes linear Bayes models (Goldstein and Shaw, 2004)
extends Bayes linear methods to allow the incorporation of observations of types which
are not readily accommodated in a straightforward Bayes linear analysis. For example,
beliefs about certain unknown quantities might be updated by full conditional Bayesian
inference when observations are made on conditionally Poisson or binomial variables and

then information can be propagated between these unknowns, or to other unknowns, via
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a Bayes linear belief structure. This approach avoids the need for computationally in-
tensive methods such as Markov chain Monte Carlo which are often required in standard

Bayesian analyses.

In routine clinical use, in diagnosis or prognosis, the use of methods such as MCMC
is not ideal. The methods are computationally demanding and require attention to issues
such as convergence. We aim in this thesis to investigate a method which does not have

these drawbacks and which can be used even when only a subset of covariates is available.

This proposed method is based on the new idea of using the non-conjugate prior update
to construct Bayes linear kinematic prognostic index values. In this way, we construct a

Bayes linear kinematic network.

1.2 Bayesian network models and why they are im-

portant

A Bayesian network (BN) is a representation of the joint probability distribution of a
number of variables which makes use of conditional independence relationships among

the variables. We can represent a Bayesian network as a directed acyclic graph (DAG).

Bayesian network models can be useful by combining expert knowledge with the theory
of probabilities. There are many reasons why these models are useful and important.
Firstly, they are graphical models, so we can represent the relationships between the nodes
or vertices clearly, intuitively and in an attractive way. These relationships can often be
represented as cause and effect, but this is not always the case. Secondly, these models also
can represent more complex problems in a simple graph with dependence relationships.
Thirdly, because of the rapid development of computer languages and softwares, we can

learn from “big data” and even construct very large and complex networks.

In this thesis, we investigate developing Bayesian methods for selecting, fitting and
using models with appropriate conditional independence structures, i.e. graphical models,
in the context of medical diagnosis and prognosis problems. So we fit some survival models
such as a Weibull distribution to a data set on patients with non-Hodgkin lymphoma,
with missing data values for some covariates. That leads us to follow the advice of Farrow
(2003) to elicit the structure of the covariance matrix. In some cases, especially when the
covariates are a sequence of measurements taken over time, it might be appropriate to use

a generalised autoregression model (Pourahmadi, 1999; Daniels and Pourahmadi, 2002).

2
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Bayesian networks may be constructed using expert judgement. However, we may

wish to construct a network by inference from historical data.

In order to make inference in Bayesian networks, we need first to learn about the
structure of the network. Kulaga (2006) considered that, when he had a small number of
variables such as 5, he can manage all the potential models and then calculate the posterior
probability for them and choose the best one. However, he mentioned that when the
number of variables increases, the number of models will increase at an exponential rate.
Therefore, the solution for this problem is to use Markov chain Monte Carlo (MCMC)
methods. Also he explained the idea of a Markov blanket for the BN which is defined
as a set of nodes that separates a target node from the rest of the nodes in the network
which includes its parents, its children and other nodes sharing a child. He then defined

this object for a dynamic structure.

Husmeier et al. (2005) gave some insight about how we can learn a BN from complete
and incomplete data. They used a Metropolis Hastings algorithm to construct a BN in
computational molecular biology and bioinformatics, such as sequence alignment, molec-
ular evolution and genetic networks. Scutari and Denis (2014) gave many examples of
BN in the real world. One example used data for medical diagnosis to predict the human

body composition which forms the body weight: bone, fat and lean.

Efficient algorithms are available for information propagation “inference” within cer-
tain classes of BN, where the conditional distributions are all (finite) categorical or all
Gaussian. Inference using networks with other conditional distributions can be more diffi-
cult. Furthermore, the problem of using data to inform the construction of a BN (“network
learning”), particularly the structure of the network, remains challenging. Heckerman and
Chickering (1995) use a score metric to describe learning Bayesian network from gathering

knowledge and statistical data.

1.3 Bayesian networks in medical diagnosis and prog-

Nnosis

An important application since the early days of Bayesian networks has been in medical
diagnosis. Diagnosis can be viewed as a decision problem and Bayesian networks can
assist physicians in making the right decisions, diagnosing the disease early and choosing

the most appropriate treatment and thereby improving the outcomes for patients in terms
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of health and, in some cases, survival. Therefore, Bayesian networks are powerful tools for
helping physicians to make important decisions that lead to the correct treatment with
low risk for patients. Similarly, among patients with a particular disease, the prognosis
may vary according to various risk factors. A Bayesian network (BN) can be used to
improve the efficient use of information in making a prognosis and informing decisions on

treatment.

In survival analysis, Langseth (1998) constructed a Bayesian network for survival
times using a proportional hazard model. The results showed that his network is useful

for qualitative observations. See also (Kjaerulff and Madsen, 2013).

Verdurmen (2003) proposed a model to predict whether clients are likely defaulters at
any time during the loan time. He demonstrated a Bayesian network with an exponential
survival model. He compared his method to a proportional hazards model and showed
that his model can represent much more complex functions than the semi-parametric

hazards model.

Jiang et al. (2014) developed a new Bayesian network with high dimensional data to
predict patient survival. They developed a new algorithm for Bayesian networks that was
used to predict the survival of a patient separately each year. Also, their results showed
that their method was better than a proportional hazard model for several reasons such as
that their algorithm can deal with data with high dimensions. Kraisangka and Druzdzel
(2014) used a BN to interpret a proportional hazards model. Then they compared the
accuracy of their BN for the proportional hazards model with Kaplan-Meier estimates
and with a BN learned from data. The results showed that constructing a BN from a
proportional hazards model is more accurate than the other methods, even if they have

a small number of data recorded.

Bayesian decision networks can combine probabilistic models under uncertainty and
utilities to help the users make decisions that maximise the expected utility. See Korb and
Nicholson (2004). Bayesian decision making requires specification of two elements. One
is “beliefs”: a probability distribution over the possible outcomes, or, at least, sufficient
judgments about the uncertain outcomes to be able to evaluate the necessary expectations.
The other is a utility function over the possible outcomes. Gosling (2014) briefly mentions
elicitation of utility functions from patients and other people, but is largely concerned
with elicitation of the probabilistic beliefs of experts rather than utilities. However, in
a decision-making context, the utility element can not be ignored and, in practice, this

requires the use of some structure which, as far as possible, does not impose assumptions
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but makes the results usable and interpretable.

Therefore, it is important to consider beliefs and utilities together. Often, if the
outcome involves different attributes, then the utility function in this case will be a multi-
attribute utility function. For instance, years of life, cost in time and inconvenience to
the patient, etc. As a result, this requires us to consider using the joint distribution of
outcomes, hence necessitating the elicitation of a belief structure involving the depen-
dencies. According to Gosling et al. (2013), the prior elicitation of such dependencies
can be difficult due to several reasons such as differences in the experimental methods
that are used to measure the outcomes and quantities of interest might be on different
scales (e.g, between body mass index K g/m? and blood pressure measurements mmH g).
However, analysis of the decision problem and the associated utility function can show

that decisions can be sensitive to beliefs about dependencies.

The methodology for imprecision in multi-attribute utility functions developed by
Farrow and Goldstein (2010) leads to an overall utility function involving a linear combi-
nation of various marginal utilities and various products of marginal utilities. Therefore,
evaluation of expected utility requires the evaluation of expectations of these quantities.
The expectation of a product requires consideration of dependence between the stochas-
tic quantities involved. Farrow and Goldstein (2010) did not explicitly consider this but
an extension of the methodology to allow this and, furthermore, to deal with imprecise

specification of these expectations seems to be within reach.

1.4 Bayes linear and Bayes linear Bayes methods

Farrow and Goldstein (2006) were motivated in their decision analytic work by problems
in the design of experiments using a Bayes linear approach to statistical inference. In the
Bayes linear approach, probability distributions are not fully specified but only certain
moments are required. See Farrow and Goldstein (1993); Goldstein and Wooff (2007).
In recent years an extension of Bayes linear methods, using Bayes linear kinematics and
Bayes linear Bayes graphical models, suggested by Goldstein and Shaw (2004), has allowed
the combination of Bayes linear structures describing the dependencies between quantities
with explicit use of observable quantities with non-Gaussian distributions. The original
idea in Goldstein and Shaw (2004) has been developed and applied in a number of papers,
including Wilson and Farrow (2010); Gosling et al. (2013) and Wilson et al. (2013). We

consider that Bayes linear analysis gives a good approximation to full-Bayes analysis while
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in Bayes linear analysis we do not need to specify the prior in a probabilistic way, but we

need to specify only the first and the second moments.

1.5 Project aims
The main aims of the project are

e Develop Bayesian methods for selecting, fitting and using models with appropriate
conditional independence structures, i.e. graphical models, in the context of medical
diagnosis and prognosis problems. In addition, we are looking for improvements to

some existing methods.

e Investigate methods for a wider class of conditional distributions, e.g. a survival

distribution.

e Build probabilistic models for diagnosis and prognosis with various Bayesian network
learning algorithms to help the physicians and others to make decisions about their

patients more accurately and efficiently.

e Construct a Bayes linear kinematic network which can be used when we observe
only some of the covariates. Develop methods for incorporating different kinds of

covariates in such a network.

e Make comparisons between different methods to construct Bayes linear kinematic

prognostic networks.

1.6 Outline of the thesis

The remainder of the thesis has the following structure. In Chapter 2 we describe the
data which will be used for illustration in the thesis. These include data on survival
for patients with Non-Hodgkin lymphoma and leukemia. We give an overview of the

explanatory variables in these data sets.

Chapter 3 reviews the basic ideas of Bayesian inference and Markov Chain Monte
Carlo (MCMC) methods which are used to compute posterior distributions. We also give

an introduction to generalised linear models and particularly the logistic regression model
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with the logit link function. We discuss variable selection methods and in particular
Bayesian variable selection methods. We illustrate the missing data problem and data
augmentation and give an example involving lung transplant data. We use the logistic
regression model to fit the data where the response variable represents whether the lung

is used for transplant or not.

In Chapter 4, we introduce probabilistic graphical models, concentrating on directed
acyclic graphs, and give some algorithms that are well known in the field of graphical
models. We give some important definitions and concepts related to Bayesian networks.
We explain some important and useful methods to construct Bayesian networks and learn
from the data. We introduce a method called the arc deletion method which depends on

finding the most optimal network using MCMC methods.

Chapter 5 deals with survival analysis with some important aspects and definitions
related to our work. An important feature in survival analysis is censoring. We give an
explanation for the most familiar survival models such as proportional hazard models,
piecewise constant hazard models and accelerated failure time models. We also discuss
prognostic indices and how we compute them. We mention also in this chapter some
parametric distributions in survival such as the exponential and Weibull distributions.
Part of this chapter also deals with Bayesian inference in survival analysis using MCMC
techniques and how to make inference about the coefficients in various models. We give
an example using the Non-Hodgkin lymphoma data which involves some missing data and
show how to deal with this kind of problem. We use rjags, (Plummer, 2013) a package
in R, (R Core Team, 2018) to do the analysis.

In Chapter 6, we introduce Bayes linear methods. We start the chapter by giving
some definitions and theory related to Bayes linear methods. Then we explain Bayes
linear kinematics with some aspects such as the issue of commutativity and the use of
multiple updates in Bayes linear kinematics with a number of examples. We use the idea of
transforming the parameters. We introduce a novel feature which uses the non-conjugate
marginal updates in order to find the posterior mean and variance, before the information
is propagated through other unknown quantities within a Bayes linear structure. In this
chapter, we also give different types of examples such as using binomial observations and
Poisson observations and compute the results with the posterior means and variance using

full-Bayes analysis.

Chapter 7 describes two sorts of problems. The first is illustrated using the leukaemia

example in which we use Bayes linear kinematics with non-conjugate prior updates to
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compute the posterior moments for the model parameters. Then we compare different
types of methods including log-mode and lognormal forms of Bayes linear kinematics and
full Bayes methods. Secondly, we describe the application of Bayes linear kinematics
to prognostic index calculation in survival. We illustrate this using the non-Hodgkin
lymphoma data. We introduce a novel method that uses a Bayes linear Bayes prognostic
network with different sorts of variables such as binary, ordinal, unordered categorical
and interval censored variables. We use an offline learning model to determine values
for some parameters that we need to calculate the Bayes linear Bayes prognostic index
values. We find that the prognostic index values from the Bayes linear Bayes model and
the prognostic index values that are calculated from MCMC methods are similar. We
give some results and graphs to represent the relationships between the prognostic values
for both Bayes analysis and Bayes linear methods. Our prototype prognostic network
produces prognostic index values using all, or only some, of the possible covariates almost

instantly and has the potential to be used, for example, as a Web-based calculator.

Chapter 8 describes simulation experiments to compare the methods that we use in
this thesis. We give three different examples with different ranges of ages and sexes
and compare two methods for dealing with categorical variables: the direct and indirect
methods.

In Chapter 9, we provide some conclusions and propose some future work in this area.



Chapter 2

Example data sets

2.1 Introduction

In this chapter, we will look in detail at the two data sets that we have used for illustration
in this thesis, the non-Hodgkin’s lymphoma and leukemia data sets. We give general
information about the data and some important definitions for the covariates within each

data set.

2.2 Scotland and Newcastle Lymphoma Group (SNLG)
data

2.2.1 Background of SNLG data set

In 1979, there was formed a group called the Scotland and Newcastle Lymphoma Group
(SNLG) that built up a database on about 18,000 patients with lymphoma within North-
ern England and Scotland. The process of collecting the data is called Population Ad-
justed Clinical Epidemiology (PACE) and this process was used by the Northern Regional
Haematology Group (NRHG). See Proctor and Taylor (2000). The period of time that
they needed to collect the data was about 10 years, from 1992 to 2002. The lymphoma
group includes specialists from different disciplines such as medicine, pathology, surgery,
radiology and clinical oncology. The collected data have been used by various groups of

people working in individual centres in order to improve the choice of treatment, such
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as chemotherapy or radiotherapy, for the patients. In the thesis, we will focus on non-
Hodgkin’s lymphoma (NHL) which is one of the most common sorts of cancer. Particu-
larly, we use a subset of the SNLG data set.

2.2.2 Non-Hodgkin’s Lymphoma (NHL)

Non-Hodgkin lymphoma is a type of cancer that begins in the cells of the immune system.
The immune system fights infections and other diseases. The lymphatic system is regarded

as a part of the immune system. The lymphatic system includes the following

e Lymph vessels: the lymphatic system has a network of lymph vessels. Lymph

vessels branch into all the tissues of the body.

e Lymph: the lymph vessels carry clear fluid called lymph. Lymph contains white
blood cells, particularly lymphocytes such as B cells and T cells.

e Lymph nodes: lymph vessels are connected to small, round masses of tissue called
lymph nodes. Groups of lymph nodes are found in the neck, chest, underarms, groin
and abdomen. Lymph nodes store white blood cells. They trap and remove bacteria

or other harmful substances that may be in the lymph.

See Freedman et al. (2012).

There are more than 12,000 people diagnosed with NHL in the UK every year. The
chance of developing the disease increases as people get older and most cases occur in

people aged over 65 years with slightly more men than women. See NHS (2018).

2.2.3 Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common sort of non-Hodgkin lym-
phoma. It is a cancer of blood cells called lymphocytes. Nowadays, the number of patients
with the illness in the USA and Europe is approximately 15-20 cases for every 100,000
people, (Martelli et al., 2013). DLBCL is not just one disease. There are a number of
different types of DLBCL. The most common type of it is described as the “not otherwise
specified” form or DLBCL-NOS. See Miranda et al. (2013).

10
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2.2.4 SNLG data set

The NHL data set incorporates variables that are widely used by clinicians in choosing
the appropriate therapy for patients, (Lucas et al., 1998). The relevance of most of these
variables is supported by literature on prognostic factors in NHL. First, the information

that can be extracted from the clinician about NHL is divided into three groups:

e Pre-treatment information, (i.e. information that is required for treatment selec-

tion).
e Treatment information, (7.e. the various treatment alternatives).

e Post-treatment information, (i.e. side effects, and early and long-term treatment

results for the disease).

The most important pre-treatment variables are the variable “Clinical Stage”, which
expresses severity of the disease according to a common clinical classification, and histo-
logical classification, which stands for the assessment by a pathologist of tumour tissue
obtained from a biopsy. The most important post-treatment variables include the variable
“early result”, being the endoscopically verified result of the treatment, six to eight weeks

after treatment. Possible outcomes are:

e Complete remission, i.e. tumour cells are no longer detectable.

e Partial remission, some tumour cells are detectable, no change or progressive dis-

ease.

Another important post-treatment variable is “3-year result”, which represents the

patient either surviving three years following treatment or not.

2.2.5 Non-Hodgkin Lymphoma Example: General overview of

the covariates

In this section, we describe the covariates in the non-Hodgkin lymphoma data set in
detail. We have 14 prognostic variables that have been selected from the clinical research
by Professor Proctor, Dr. Sieniawski and Mrs White (Sieniawski et al., 2009). The

dependent-variable is survival time with censoring indicator coded as “1” for death and

11
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Stage Description

I Lymphoma is discovered in one lymph node
site.
Lymphoma is discovered in two or more
11 lymph node regions and on the same side of
the diaphragm.
Lymphoma is discovered in lymph node re-
III | gions and on both sides of the diaphragm.

Diffuse or disseminated involvement of one
IV or more distant extranodal organs with or
without associated lymph node involvement.

Table 2.1: Ann Arbor staging process

“0” for a censored observation. Here, we give more information about the covariates which

include binary, continuous, categorical and interval censored variables.

e Age: This variable represents the patient’s age at diagnosis. It has mean 62 years

and standard deviation 14.2 years. This variable is regarded as a continuous variable.

e Sex: This is a binary variable, taking the value 1 for male and 2 for female. In our
data we have 704 male and 687 female. It seems that the disease is slightly more

common in the male than the female.

e Clinical Stage: This is an ordinal variable with 4 levels. It represents the way
that the doctor can discover the lymphoma in the body of the patient, giving you
the number of places that show the lymphoma. See Cancer Research UK (2018a).
Knowing the stage of the illness will help the doctors to make an accurate decision
about the suitable treatment that the patient needs. The staging process used here
is Ann Arbor Staging (Carbone et al., 1971) which is widely used. The categories
are ordered from I to IV with the earlier category (I) refering to the least extent of
spread and the latter category (IV) refering to the greatest extent of spread. We
coded the stages with the values 1,2,3 and 4. See Table 2.1.

e ECOG: This is the Eastern Cooperative Oncology Group performance status,
(Oken et al., 1982). It is an ordinal variable. It has 5 states from 0 to 5 where
the status 5 refers to the death of the patient. So, in our case, we restricted this to
0 to 4. Table 2.2 shows the definitions for ECOG.

12
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Performance Description
scale

0

The patient is fully active and has no perfor-
mance restrictions.
The patient has limited restriction to do

1 strenuous physical activity and he or she has

the ability to perform the light work.
The patient can take care of himself. How-

2 ever, he will be unable to perform any work
activities.
The patient has a limited capacity to take
3 care of himself and confined to bed or chair

with more than 50% of waking hours.
The patient is completely unable to perform
4 any work activities and can not take care of
himself and confined to bed or chair.

Table 2.2: ECOG performance

e Serum Lactate Dehydrogenase (LDH): Although this variable is actually con-
tinuous, it is often categorised and represented as an ordinal variable. Studies show
the importance of this variable in the prognosis of non-Hodgkin’s lymphoma. See
Yadav et al. (2016). The survival time of the patient has been negatively related
with the levels of Serum LDH and statistical analyses show that individuals with
lower levels of LDH, tend to have longer survival times, (Ferraris et al., 1979). For
more information about LDH in the SNLG data set, see Consul (2016). In the SNLG
data set, LDH is actually recorded as an interval censored variable. Observations
within the normal range are simply recorded as “normal”. Observations outside the

normal range are recorded as the actual values.

e Haemoglobin (HB): This variable is coded as a continuous variable. The mea-
surements of HB are in grams (g) per deciliter (dl) g/dl. Tt is a protein which is
located in the red blood cells and it carries the oxygen from the lungs to the body’s
tissues and returns carbon dioxide from the tissues back to the lungs. The normal
range of HB depends on the age and sex of the person. Table 2.3 represents the

normal range for different groups, (Longmore et al., 2014).

e White Blood Cell (WBC): This variable is treated as a continuous variable on
(0,00). White blood cells are also called leukocytes and they are the cells of the

immune system that are involved in protecting the body against both infectious

13
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Patient’s Group | HB (g/dl)
Adult man 13.8 to 17.2
Adult woman 12.1 to 15.1

Pregnant woman | 11 to 12
Children 11 to 16

Table 2.3: Normal range for HB

disease and foreign invaders. See Maton (1997). The range of the WBC in this
thesis is between 1.1 and 27.2, where 1 unit is 50 x 107 /1.

2.2.6 Binary variables

Some covariates in the NHL data set are represented as binary variables, such as serum
albumin, blood urea nitrogen, etc. In fact, these variables are coded in different ways but
the way we put it in the model is using the values either -1 or 1. Below is the list of all

the binary variables with a brief description of each variable.

e Serum Albumin (Albumin): This is a binary variable. Albumin is considered to
be the most abundant protein in the blood plasma for humans and is produced in
the liver. Low albumin indicates liver disease and high albumin indicates dehydra-
tion. The albumin concentration in blood is 35-55 g/1 for the normal range. Any
observation outside the above range is a sign of abnormality. In the SNLG data,

albumin is categorised as either normal or abnormal.

e Blood Urea Nitrogen (urea): This variable is also binary. Urea measures the
amount of nitrogen in the blood that comes from the waste product urea. The
normal range for urea nitrogen in blood is 5 to 20 mg/dl, see Hosten (1990). The
values outside the above range are considered to be abnormal. In the SNLG data,

urea is categorised as either normal or abnormal.

e Alkaline Phosphatase (AP): Alkaline phosphatase is an important component
in hard tissue formation, highly expressed in mineralised tissue cells. See Golub and
Boesze-Battaglia (2007). The normal range for AP for those aged over 16 years is
36-113 IU/1. Different age groups have different AP values. Any value outside the
normal range is regarded as abnormal. In the SNLG data, it is recorded as a binary

variable with value 1 refering to normal and value 2 refering to abnormal.

14
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Variable | No. missing | Percentage missing
Albumin 97 6.97
Urea 51 3.67
Ap 78 5.61
Extranod 1 0.07
Bulk 109 7.84
Marrow 196 14.09
Bsy 13 0.93

Table 2.4: The percentage of missing values for several covariates in NHL

e Extranodal without Bone Marrow (extranod): This happens when the lym-
phoma spreads outside the lymph nodes. See Brooks (2008). The variable is

recorded as either “present” or “absent”.

e Bulk Disease (Bulk): This is to measure whether the patient has bulk disease or
not. It describes the tumours which are very large in size, also called bulky tumours.
See Pfreundschuh et al. (2008). This is a binary variable.

e Bone Marrow Involvement (marrow): Bone marrow is the soft tissue inside
the bones where blood cells are made. See El-Galaly et al. (2012). The variable
records whether or not the patient has shown evidence of lymphoma disease that is

in bone marrow.

e B-symptoms (Bsy): The patient with non-Hodgkin lymphoma may have some
symptoms such as sweating at night, temperature that goes and returns without any
infection, losing weight (more than one tenth of the total weight) and unexplained
itching. See Cancer Research UK (2018b). These symptoms are called B-symptoms.
The presence and absence of B-symptoms has an important significance in prognosis
exactly the same as in the staging of NHL. The variable records the presence or

absence of B-symptoms.

2.2.7 Missing data

Several of the covariates have missing values for some patients. This is summarised in
Table 2.4.
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2.3 Leukemia example

2.3.1 Introduction

In this thesis, we use also a data set on patients with leukemia. These data are taken from
the North West Leukemia Register in the UK in order to investigate the leukemia survival
time for 1043 patients between 1982 and 1998 where 879 died and 164 were censored. See
Henderson et al. (2002).

2.3.2 General overview of the covariates

In this data set, we have some covariates which we believe might have an effect on the
survival times for the individuals. These covariates are age, sex, white blood cell count
(WBC) and a measure of the deprivation of the area of residence which is called the
Townsend score (Townsend et al., 1988). We give the censoring indicator “1” for death

and “0” for censored data. The covariates are

e Age: This variable represents the age of the patient in years.

e Sex: This is the sex of the patient. We coded the variable to be “1” for the male
patient and “-1” for the female patient. We have 547 (52%) female and 496 (48%)

male.

e White blood cell (WBC): See Section 2.2.5 for more details about white blood
cell count at the time of diagnosis (with 1 unit= 50 x 10%/1).

e Deprivation score (Depscore): This variable measures the deprivation for the
residential area of the patient. We use the Townsend deprivation index (TDI)
(Townsend et al., 1988). The scale of the variable is from -7 to 10 with lower
values indicating more severe deprivation. Alston et al. (2007) mentioned that TDI

can vary by region and they found that deprivation affected cancer rates.

2.4 Summary

In this chapter, we have given some general and useful information about the data sets

that will be used in the thesis. An overview of the different sorts of covariates has been
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given in both cases, SNLG and leukemia.
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Chapter 3

Bayesian inference and Generalised
Linear Models (GLMs)

3.1 Introduction

In this chapter, we will explain in detail what Bayesian inference is and illustrate gener-
alised linear models by introducing one of the most common models that is used widely
in medical studies, which is the logistic regression model. In Section 3.2, we give an intro-
duction to Bayesian inference, henceforth abbreviated to BI. In Section 3.3, we explain
some important methods to calculate some summary statistics related to the posterior
distribution (e.g. the posterior mean and the posterior variance) using various meth-
ods. In Section 3.4, we explain Markov Chain Monte Carlo methods (MCMC) which
are very widely used in Bayesian statistics. In Section 3.4.4, we give an explanation of
the Gibbs sampler, a common method in MCMC, which depends on the calculation of
the full conditional distribution for the parameter of interest given all the variables in
the model. Section 3.4.8 demonstrates the use of another method in MCMC which is
called the Metropolis-Hastings method. This method involves generating samples from a
proposal distribution in order to evaluate the posterior distributions. In Section 3.5, we
illustrate the generalised linear model (GLM) with some common link functions related
with GLM. In Section 3.7, we demonstrate different kinds of variable selection methods,
focussing on Bayesian variable selection methods. We introduce one type of prior which is
used with variable selection and is called a spike and slab prior, with more details about

this prior discussed in Section 3.7.5. In Section 3.8, we define the missing data mechanism
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with different sorts of missingness. We give a brief introduction to data augmentation in
Section 3.9. In Section 3.10, we have an example on lung transplants. In this example we
fit a logistic model as the response variable is whether the lung is used for transplant or
not. The lung transplant example also illustrates the missing data problem. Finally we

give the summary of Chapter 3 in Section 3.11.

3.2 Introduction to Bayesian inference

Bayesian inference has become widely used in different disciplines, such as medicine,

biology, clinical trails, bioinformatics, survival analysis, physics and so on.

The idea behind doing Bayesian inference is to infer about the “unknown” quantity of
interest, say €, in the model and learn about it from the data. Therefore, there is always
uncertainty which is associated with this parameter and we represent this in the form

of the joint probability density for all unobserved quantities. See Gamerman and Lopes
(2006).

In a Bayesian context, we always describe the uncertainty in the values of the unknown
quantities in terms of probability distributions which represent beliefs about the values.
Therefore, we assign probabilities to the values of those unknown quantities, say 6. The
distribution before observing data is known as the prior distribution. If this is a continuous
distribution, we can write its density as 7(f). After observing the data, y, we update our
prior belief and find the posterior probability distributions 7(6 | ). The information that
has come from the data is found in the likelihood function, L( | y) which refers to the
sampling density for the data. Multiplying the prior density with the likelihood function,

gives the posterior density as follows

m(O)L(0 | y)
Jm(O)L(O | y) db°

(0 |y) = (3.1)

The integral in the denominator, known as the normalising constant, is often in-
tractable. In such cases we need to use numerical methods in order to evaluate posterior
distributions. The most common sort of numerical method in recent years is Markov chain
Monte Carlo (MCMC) methods. See, for example, Gilks et al. (1996). Often MCMC may
be implemented using software such as “BUGS” (Spiegelhalter et al., 1996).
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3.3 Numerical integration methods

In Chapter 6 we will discuss Bayes linear kinematics and Bayes linear Bayes graphical
models. We will see that it is necessary to revise our mean and variance of an underlying
unknown quantity when we observe and associated variable. We will deal with cases
where the observable variables are not Gaussian and, in particular, in Section 6.7, we will
introduce a new method which involves using a non-conjugate prior distribution for the
underlying quantity. We will need to use numerical integration to evaluate the revised
moments. Therefore, in the section, we review some methods of numerical integration

which may be used.

Suppose that we need to calculate the posterior mean of 8 as follows

[ Om(O)L(0 | y)do
BO 1Y) =" oLe] yao

and the posterior variance of 6 will be

Sometimes we can calculate all these integrals analytically especially when the prior
distribution is conjugate (if the posterior distribution and the prior belong to the same
family of distributions, then the prior is called a conjugate prior) to the likelihood but
this is not always the case. These integrals are often complicated when we deal with the
problem of non-conjugate prior distributions especially when there is more than a small
number of parameters in the analysis. Therefore, we need numerical methods to solve

problems of this kind.

3.3.1 Trapezoidal rule

The main idea of using numerical integration is to calculate an approximate solution for
definite integrals. One of these numerical methods is called the trapezoidal rule. See
Jones et al. (2014). This method gives an approximate value for an integral between two

values.
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\ r; =a+iAx \ f(z) \ evaluate \
Zo—a+0Az | f(0) |0.00000
21 =a+ 1Az | £(0.05) | 0.00214
v =a+2Az | £(0.10) | 0.00729
23 =a+3Az | £(0.15) | 0.01382
vi=a+4Az | £(0.20) | 0.02048
vs =a+5Az | f(0.25) | 0.02637
z6 =a+6Az | £(0.30) | 0.03087
vr=a+TAx | £(0.35) | 0.03364
vs=a+8Ax | £(0.40) | 0.03456
vo = a+9Az | £(0.45) | 0.03369

710 = a + 10Az | £(0.50) | 0.03125

Table 3.1: Evaluate the functions in order to compute trapezoidal rule

Suppose we have the integral
b
I= / f(x)dx.

This can be done by dividing the interval between a and b into n subintervals of width

Ax. So, Ax = (b— a)/n. Then, to calculate the trapezoidal approximation, we have

Ax

T = S F@0) + 2 (@2) + -+ 2 (wacs) + (2]

where z; = a + iAx. Now let us explain the method with a simple example.

Suppose we need to calculate the following integral, f®62(1 — #)3df. We have in this
case a = 0, b = 0.5 and also give n = 10 for example. Then Az = 0.05, and we have the

values shown in Table 3.1.

Therefore, the numerical integration for the above integral gives T' = 0.01092 following
the calculations from Table 3.1. Now the exact solution for this integral 0.01094. As a
result, there is an absolute error 2 x 107% between the two values. Thus the solution
using the trapezoidal rule is close to the exact value. We notice that we can obtain a

more accurate result by increasing the number of subintervals, say n = 100.
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3.3.2 Laplace approximation method

It is very important in Bayesian framework to calculate the integrals of the form

_ Jg(O)L(8]y)m(0)db
= JL(Oly)n(0)db (3.2)

where g(0) is an arbitrary function of 6 and L(f|y) is the likelihood function and 7(f) is
the prior density. We can write (3.2) as

[ g(0)el I+ qp

I~ ot gy (3.3)

where £(0|y) = log f(y1, ..., yn|0) is called the log likelihood function and f(#) = log{n ()}
is the log of the prior density = (6).

For instance, if # has one-dimension, then g(f) = 6 gives us the posterior mean of the
distribution. More generally, when we have g(f) = 6, we can gain the pth moment of the
posterior distribution. See Press (2009). Now the denominator of (3.3) is called the nor-
malising constant which is sometimes analytically intractable. So, we need approximation

methods to evaluate both integrals in (3.3).

The Laplace approximation is one of the analytical methods that is useful to compute
the integrals in (3.3). This method of approximation was introduced by Tierney and
Kadane (1986). It depends on the normal approximation in order to calculate the posterior
mean and posterior variance and so on. Moreover, recent developments have led to the use
of the integrated nested Laplace approximation (INLA) method which is a very efficient
method to give accurate approximations for the posterior marginals in seconds or in

minutes while using MCMC methods needs more time to run. See Rue et al. (2009).

Suppose that we are interested in calculating the expectation in (3.3). So we can

rewrite it in the following expression

_ [ exp{—nk*(9)}db
[ exp{—nk(0)}df

E{g(0)|y} (3.4)

where n is the number of data points,

—nk(6) = log{L(0ly)} + log{m(6)}
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and
—nk™(0) = log{g(#)} + log{L(f|y)} + log{m(6)}.

Now, we use Taylor expansions for k and k* to find the modes 8 and §* respectively.
—k(0) = max{—k(#)} and - EH(0%) = max{—k"(6)}

and retain these to the quadratic terms. For instance, to estimate the denominator, we

have

/exp{—nk(Q)}dﬁ ~ V2ron Y% exp{—nk(f)}

d2

~1/2
— 22k(0)] eé] . Likewise, we can do the same thing for the numerator.

where o = {

We obtain

B{g(0)ly} ~ ( (35

, ~1/2
where, 0* = {— ddoﬂk*(é)]a:é] :

Now let us give an example to illustrate how to use the Laplace method to obtain the

posterior moments.
Suppose we have a Poisson likelihood function, so that
n

L(0ly) = I f(5il6) oc 677",

i=1

Then our conjugate prior for # is a gamma density with two parameters, the shape

parameter a and the rate parameter b, so § ~ Gamma(a,b) and
m(0) oc 9 te™ a>0, b>0
So, the posterior density 7(6|y) will be

7T(6|Q) x 9a+ngj7167(b+n)6’.

Therefore, let a* = a + ny and b* = b+ n. It is obvious that the exact posterior mean

is
*

a

E(fly) = >
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Now, we are interested in finding the approximation of the posterior mean using the

Laplace method. We have
[ 0t +1O)}qg

[ OO} g

E(fly) ~

which can be written as
_ Jexp{—nk*(0)}d0

Bl ~ k(010
where
—nk(0) =log{L(0ly)} + log{m(0)}
=nylog(f) — nb + (a — 1) log(0) — bO
=(ny+a—1)log(d) — (b+n)d
=(a* —1)log(f) — b*0
and

—nk™(0) =log(0) + log{L(0]y)} + log{(6)}
= a"log(0) — b*6.

Now, we need to find the modes 0 and 0 respectively as follow

d *
@[—nk(e)]: G b=
S0,
~oat—1
6:
b*
and J .
* g_*:
@[—nk(G)]—e b* =0
S0,
~ a*
0* = —.
b*

25



Chapter 3. Bayesian inference and Generalised Linear Models (GLMs)

By substituting 8 in {—nk(0)} and 6* in {—nk*(0)}, we obtain
-1 -1
—nk(0) =(a* — 1) log (a o ) - b*(“ o )

=(a* — 1) {log (a*b: 1) - 1] .

—nk*(0) =a"log (Zi) —b* <Z:>
=a* llog (Z:) - 1] :

We should also find the second derivative of the Taylor expansions in order to find o

Similarly,

and o*. So

RO R

and » 1 o

o= SOl =Y
Likewise, , .

592[— nk*(6)] = —%

S0, ,

e G
Thus,

So, our approximate posterior mean is calculated exactly as in (3.5)

)}
}

ey = (2) 22t
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. v exp{a*[log<g>—1]}
Y= exp{(a»« _ 1>[1og<“’;f> ‘1”

For example, let a = 2, b = 3, n = 10, y = 5. We obtain E(f|y) ~ 4.00013 while the

exact posterior mean E(f|y) = a*/b* = 4. Therefore, the absolute error (representing the

difference between the exact value and the approximate value) is 0.00013, which is very

small.

3.4 Markov Chain Monte Carlo methods

3.4.1 Introduction

Markov Chain Monte Carlo (MCMC) techniques have become the most popular methods
for evaluating posterior distributions. These techniques allow sampling from the posterior
distribution of the unknown parameters in the model when there is no analytical solution.
The idea of using MCMC was originally proposed by Metropolis et al. (1953) as an efficient
method for simulation. There are two main algorithms in MCMC that are used in the
majority of cases, the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990)
and Metropolis-Hastings algorithms (Hastings, 1970).

The use of Monte Carlo methods in Bayesian statistics has dramatically increased
since the early 1990s. The basic idea of methods of this kind is to draw random samples
from probability distributions and, when the number of draws becomes large, Monte Carlo
methods give good approximations to properties of the distributions. These methods are
used when there is no analytic solution or there is a difficulty in finding the numerical
solution. Therefore, we obtain an approximate solution using these methods. See Jackman
(2009); Lesaffre and Lawson (2012); Gelman et al. (2014). In the following subsections,
we will demonstrate the most common direct and indirect sampling methods to evaluate

the posterior summaries in Bayesian statistics.

In Chapters 6, 7 and 8, when we introduce new ideas in Bayes linear kinematics and
Bayes linear Bayes models, we will compare our results using these ideas in examples with

real data and in simulation experiments with results obtained using standard Bayesian
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analysis and MCMC methods.

We use software called rjags (Plummer, 2013) to fit the models and do the analysis
as well as using R (R Core Team, 2018).

3.4.2 Monte Carlo integration

In this subsection, we explain the direct sampling method for Monte Carlo integra-
tion. Suppose that we have the function f(0) and our target is to find § = E{g(0)} =
[ 9(8)f(6)db. So, if 61, ....60, % f(6), we have

> a(6) (36)

and that converges to E{g(#)} with probability 1 as n — oo, using the strong law of large
numbers. In the case of Bayesian inference, f(#) is the posterior distribution and § is the
posterior mean of g(f). As a result, in order to compute the posterior mean, we need just

a sample of size n from the posterior distribution. See Carlin and Louis (2008).

3.4.3 Importance sampling

Geweke (1989) suggested an important method for sampling indirectly from the posterior
(target) distribution. Let 7(0|y) oc L(A|y)m(€) be the target distribution and suppose that

we wish to find the approximate mean for it. So

] 9(0O)L(0y)m(0)do
JL(O]y)m(6)db

E|g(0)ly] =

where L(fy) is the likelihood function and 7(#) is the prior density.

Now, suppose we can easily sample from a density s(d) and we define w(f) as an
importance weight, w(0) = L(0|y)m(8)/s(0). We have

() 0)s(6)do

E {Q(Q)Q} - w(f 5829)
z 9(0:)w(0)
"L
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where 6; < s(f) and this s(#) stands for the importance function. We also notice that
if s(f) is a good approximation to the posterior density then all the weights will be

approximately equal. So the algorithm for importance sampling can be written as follows.

Algorithm 1: Importance sampling algorithm for calculating the posterior mean
of a distribution

1 for 1 =1 to n do.

2 sample 6; ~ s(0).

s w; < L(Oy)m(0:)/s(6:)

4 end for a

5

See Carlin and Louis (2008); Jackman (2009).

3.4.4 The Gibbs sampler

In this section, we demonstrate the basic idea of using the Gibbs sampler method and
how to implement it in practice.

Assume that our model has n parameters, say § = (61,65, ...,6,). This method in-
volves generating samples from the full conditional distributions, m(6; | 0;4,y), where
i =1,2,...,n and the observed data are y.

The algorithm starts with assigning some initial values (9%0), e 9510)) and then we apply

the algorithm as follows

Algorithm 2: Gibbs sampling algorithm

1 Initialise 0;,7 =1, ..., n.
2 Fork=1,.. K.
3 Sample 0 from (01 | oi=b b, oy O ),

4 Sample 65" from (0 | o\, Qék_l), ey 0D ).

Sample %) from (6, | 9§k), Hék), Qék), s (97(;“_)1, Y).

Change counter k to k + 1, and return to step 2.

S W
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Let %) = (€§k), ...,0%)" Then the sequence ... 05~V 9*) 9*+D forms a Markov chain.
As k — 0o, the distribution of 8% tends to the joint distribution of 64, ...,6,,, known as

the target distribution, which in Bayesian statistics, is typically the posterior distribution.
See, e.g., Gilks et al. (1996).

3.4.5 Burn-In and convergence in MCMC samples

It is important to check whether the distribution of our sampled values is close to the sta-
tionary distribution of the Markov chain. Therefore, “burn-in” is the process of removing
the initial values which are related to the non-stationary part of the Markov chain. We
can visualise the convergence of the samples and that can be done by looking at the trace
plots of these random samples against the iterations of samples in the model particularly
if two or more parallel chains are use. For instance, if the burn-in is 1000 iterations,
and we need to make the number of iteration 10000, then we are determining 11000 of
the generated samples in order to give a summary of the posterior distribution of the

parameter of interest.

There are other tools that can help to assess the convergence of MCMC chains such as
diagnostic statistics. Some of these statistics are available when using the software rjags
in the “CODA” package which was written by Plummer et al. (2006).

We give a brief introduction to two statistics that have been used widely to assess
convergence. The first statistic is called the Brooks-Gelman-Rubin (BGR) statistic. See
Brooks and Gelman (1998); Gelman and Rubin (1992). This statistic deals with two types
of variability when we have multiple chains running. The first one is the variability of
the observations within each chain and the second is the variability between the chains.
If the variability between the chains is relatively small compare to the variability within
each chain, then the chains are judged to have converged to the posterior distribution.
See Hosmer et al. (2013).

Now before we illustrate the second statistic, let us take the case when we assume
that we have k chains where 7 = 1, ..., k. Each chain gives sampled values with ¢ = 1,...,n
denoted as p1;;. Therefore, the variance of the parameter values for one chain j is

2 L&

> (g — fig)?

=1

where [i; is the mean of the sampled parameter values in the chain j. We define the
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variability within the chain as W which represents the mean of the the variances of all of

the chains

and we denote the variability between the chains as B, which is given by
1 & _ 9
B=o—=> nlu;— i),
k—1:

where i is the mean of all the sample value from all the chains. So we can compute the

expected marginal posterior variance for the parameter as follows

) . 1
S, ="" w4 B,
n

n

As we can see, this Sp refers to the weighted mean of the two variances W and B.

Now, we introduce the second statistic which is called the “effective sample size” which

was suggested by Spiegelhalter et al. (2002) and can be computed as
S

Neffective = nk? (37)

and this formula has been defined as a function in rjags as effectiveSize(). So for

example, we might consider the mixing of the chains to be satisfactory if the variability

between the chain is lower than the expected posterior variability and that makes the

quantity in (3.7) larger. Gelman and Hill (2007) suggested that the effective sample

size should be at least 100 samples in order to conclude that we have obtained sufficient
MCMC samples.

3.4.6 Thinning

Thinning is the process of discarding all-but-every k-th sample from a sequence of MCMC
samples of the posterior distribution. See Link and Eaton (2011). To illustrates the idea

of thinning in Monte Carlo methods, assume we have the following situation.

We have generated samples which are dependent. The posterior mean E(f]y) of the
unknown quantity is approximated by the sample mean 6 and the accuracy of this ap-

proximation is measured by the Monte Carlo variance of §. This Monte Carlo variance
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will be larger than it would be given a sample of independent draws from the posterior
distribution. This is the case when the value of the samples from successive iterations are

positively autocorrelated.

Now the autocorrelation across iterations can be reduced by thinning the chain. That
will give us the sampled values from iterations k, 2k, 3k, ... where k is an integer, £ > 1.
Thinning gives a sample of n/k values and increased Monte Carlo variance. However,
when we have a positive auto correlation, this increase can be small. There are cases
where time-consuming computations are done on each sampled value after it is collected.
In such cases it may be more computationally efficient to increase n and then thin using
k > 1 before executing these post-sample computations. For instance, the computation
of the posterior predictive means. Thinning is also important to assess the convergence
and when we have a problem with storage space which is nowadays not as likely to be a

problem as computers generally have very big storage spaces. All these issues are discussed
by Geyer (1992).

3.4.7 Example: normal random sample

Suppose we have a random sample from a normal distribution with mean p and variance
o?. Hence, Y; | u,7 ~ N(u,1/7), where 7 = 1/06% and i = 1,2,...,n. We use a semi-

conjugate prior for ;1 and 7 which is represented as follows
w~ N(a,1/b) and T ~ Gal(c,d)

with u and 7 independent, so that 7(u, 7) = w(u)w (7). Applying Bayes theorem here, the

joint posterior density for p and 7 is

m(p, 7 [ y) o w(p, T)L(p, 7 | y) (3-8)

where L(u, 7 | y) is the likelihood function. To find the full conditional distribution for
i, we need to condition on the second parameter which is 7 here, to obtain f(u | 7,v).
Likewise, if we condition on p, we get f(7 | ,y). Therefore, the FCD (which stands for
full conditional distribution) for ;1 and 7 can be summarised respectively in the following

expressions

7 N ab + nyt 1
HITY b+nt "b4+nr
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and
n {2 (s 2
7|y ~ Ga(c—ir §,d+§{s + (y — ) })
where s? = Y (y; — )?/n and § = ¥ y;/n. In order to implement our algorithm, we need

to give initial values for p and 7. So, for example we could use our prior means to be
starting values for the Gibbs algorithm, where 4() = ¢ and 7(®) = ¢/d. We obtain new

values 7®) and p® from 7+~ and p*=Y by successive generation of values

) (ab + ngrk-b 1 )
e b+ ntk=1) 7 h4 prk-1)
® ~ Ga(c + g d+ g{SQ + (g — u““))?}).
A R function is written to illustrate how to generate samples from the posterior distribution
of pand 7. See Appendix A.3.1. So the trace plots (which show the history of the sampled
parameter value across the iterations of the chain and therefore where the chain has been

exploring) and the autocorrelation plot for g and 7 using a Gibbs algorithm are shown in

Figure 3.1.
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Figure 3.1: Trace plots and the autocorrelation plots for u and 7

33



Chapter 3. Bayesian inference and Generalised Linear Models (GLMs)

As we can see from the trace plots in Figure 3.1, there is good mixing for both pa-
rameters and the chain has converged, so these chains are stationary. We notice from
the trace plots that there is not any long term trend in our chains. As a result the local
average value of 1 and 7 in the chain is roughly constant. Similarly, we can see in the
autocorrelation plots, that the samples that we generated from MCMC using the Gibbs

sampler are almost independent samples.

3.4.8 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm arose when the algorithm of Metropolis et al. (1953)
was generalised by Hastings (1970). It is one of the MCMC algorithms that has been used
widely in the Bayesian framework. The aim of this algorithm is to sample realisations
from the posterior distribution 7(f|y). It is useful particularly when it is difficult to

sample from the FCDs.

Suppose we wish to sample realisations from the posterior density m(6|y) and all of the
FCDs are non-standard. Furthermore, suppose that we have a proposal distribution with
density ¢(6*|f), which can be easily sampled. This distribution can help us to propose
new values 0* from the current value 6. So the algorithm can be written as in Algorithm
3.

Algorithm 3: Metropolis-Hastings algorithm

1 sample 6* from the proposal distribution ¢(6*|0®1).
2
(6 ]y)a (6710 V)

A f—
(0D y)q(6¢-1|6*)

(3.9)

a =min(4,1).
sample U ~ Unif(0, 1).
if U < « then
o) = g*.
else
et — gt—1)
end if

© 00 N O ook~ W
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3.4.9 Metropolis within Gibbs algorithm

If we have a posterior distribution with FCDs, it may be that some of these FCDs can
be sampled directly and others cannot. In the latter case we can use Metropolis-Hastings
updates. This type of algorithm is called Metropolis within Gibbs. This algorithm uses
each of the full conditional distribution in turn. In each case we either sample directly or

apply the Metropolis-Hastings update for the FCDs when direct sampling is difficult.

The selection of a suitable proposal distribution in a Metropolis-Hastings scheme for
the whole collection of unknowns could be cumbersome. Nevertheless, it is possible some-
times to sample from the FCDs for a subset of 6. Suppose that the full conditional

distribution for the j*" component of 4 is written as:
7T(0j | 81, 02, ceeny Qj—l? 0j+17 ey Qn, y) = 7T(9j | Q_j,g) ] = 1, ey N

A Metropolis within Gibbs algorithm is given by Algorithm 4.

Algorithm 4: Metropolis-Hastings Algorithm: Component-wise Transitions.

!

1. For j =1, ...,n. Initialise the chain with #(0) = (950), 9&0), e 9(0)) .

n

2. Obtain a new value 6) = ng), ng), e Qr(lj) from #U—Y using consecutive values
generated from proposal distributions:

ng) ~ W(@l | Qéj_l), Héj_l), - 05{”,3;) using a Metropolis-Hastings step with
proposal q; (Hf | 99_1)>
6 ~ 7r<92 199~V 99D Q(j_l),y> using a Metropolis-Hastings step with

proposal ¢o <0; | Héj_1)>

6Y) ~ 7T<9n ] ng_l), Héj_l), e 0}{‘”,y> using a Metropolis-Hastings step with
proposal ¢, (0;; | 97({_1))

3. Set j+1 and return to step 2

For the j component of 6, if it is feasible to sample from a FCD of a known form,
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then we could do so.

3.5 Generalised linear model

3.5.1 Introduction

In Chapter 6, in the context of Bayes linear kinematics and Bayes linear Bayes models, we
will consider how non-Gaussian observable variables can be linked to corresponding vari-
ables in an underlying linear structure. This involves ideas related to those of generalised
linear models. Therefore, in this section, we introduce some basic ideas of generalised

linear models.

In a normal linear model, we typically write Y; ~ N(u;, 0?) where

p
pi = Bo + Z Bjrij (3.10)

j=1
where By, 51, ..., B, are the regression coefficients of the model and z;; is the value of the
covariate j for observation ¢. So we can write the regression model as Y; = u; + €;, where
g (i = 1,...,n) have a normal distribution with a constant variance ¢* and they are
independent, i.e. Cov(e;,e;) = 0 for i # j. As a result, the requirements in the linear
model assume that the response variable must be continuous and normally distributed.
These requirements are not valid in many cases such as in social science research where
the outcome variable has dichotomous, ordinal or nominal outcomes. In such cases we

can often use generalised linear models (GLMs).

The GLMs are more complicated than linear models. Generally speaking, there is
not any closed form of the posterior distribution with these kinds of models so typically

MCMC methods are used to sample from the posterior distributions.

3.5.2 Linear predictors and link functions

In the linear regression model, we have

E(Y;) =i = Bo+ > Bjzij.
j=1

36



Chapter 3. Bayesian inference and Generalised Linear Models (GLMs)

Model Link function g(6) Error distribution
Linear regression n==0 Normal distribution
Logistic regression n = log (1%) Binomial distribution
Probit regression n=ao"10) Binomial distribution
Poisson regression n = log () Poisson distribution
Complementary log-log | n = log [—log(1 — )] | Binomial distribution

Table 3.2: Most common link functions with corresponding with their generalised linear models
(adapted from Lynch, 2007).

Now, we define and introduce the linear predictor as a linear combination of the model

parameters [ in the following form
p
mi = g[BE(Y:)] = g() = o+ D Bz (3.11)
j=1

or, in matrix notation,

As we can see, in the linear model p; = 1; whereas in a generalised linear model there
is a link function that links the mean and the the linear function: n; = g(u;) where g(+)
is a known function called the link function. The link function must be monotonic and
differentiable. We notice that (3.11) does not have an error term and that is because the

expected value of Y is the linear predictor.

In GLMs there are two important features: the conditional distribution of the response
variable Y, which need not be normal but it could be a member of the exponential family
and the link function which relates the mean of Y to the linear predictor. See Dobson
and Barnett (2008) or Faraway (2006).

Some common GLMs with their link functions are given in Table 3.2

3.6 Bayesian analysis for a logistic regression model

Suppose that we have the simple logistic regression model

ni = g(xi, B) = Bo + Bii. (3.12)
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and that we use the logit link function, n; = log[6;/(1 — 6;)], where

ebotBizi
0(w:) = (1 + 650+ﬁ1$¢> ’

where 6(x;) represents the probability of the event for subject ¢ who has the covariate z;. In
the Bayesian framework, we should specify the prior density for the model parameters. If
the prior distribution for Sy and f; is a bivariate normal distribution which is a common
selection (see for instance, Section 14.8 of Gelman et al., 2008) then our prior for the

intercept and the slope can be represented as
B= (B, 51) ~ N(m,V).

Now, in order to apply Bayes’ theorem, we need to determine the likelihood function

for the parameters 3y, 81 given the observed response variable y. So

n

n eBotPrzi Yi ePotBizi 1-y;
:H<1+eﬁo+ﬂm> [“(Wﬂ ‘

The quantity 7 (3, Bily) is called the posterior density for the parameters given the

.
—

data y which have been observed and can be written as

7@ (Bo, B1)L(Bo, B1ly)
f()

7 (Bo, Bily) = (3.13)

where

v) = [ [ 700, B0L(Bo, B1ly)dBd5.

Unfortunately, the expression in (3.13) is very difficult to evaluate, in particular the
integral in the denominator. So there are several methods which have been suggested to
compute the posterior density. One of them is use the numerical methods of approximation
such as a Laplace approximation or a quadrature method. Other methods that are widely
used in Bayesian inference are Monte Carlo methods such as MCMC methods and the
purpose of using those methods is to sample from the posterior distribution. See Section
3.4.
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3.7 Variable selection methods

3.7.1 Introduction

In most studies, we look for the prediction of a response variable using covariates in order
to explain the response. This relationship is unknown between the response and the
covariates. In a Bayesian analysis, if we have no particular reason to wish to avoid using
some covariates and we do not wish specifically to make inferences about the hypothesis
that a covariate has no effect, there is not usually any need to consider removing covariates.
This is particularly true when the sample size is large compared to the number of covariates
(eg Hoeting et al., 1999). However, in some cases, for example when the sample size is
small compared to the number of covariates or when costs associated with measurements

or computations are important, we may wish to select only a subset of covariates to use.

In this thesis, we are interested in variable selection because of its relevance to structure
learning in Bayesian networks. In the lung transplant example in Section 3.10 we have
many covariates and address the question of whether we need all of these covariates or
not. In this example, making a quick decision rather than waiting for all measurements

to become available has some benefits as the lungs deteriorate over time.

3.7.2 Bayesian variable selection methods

In the last 20 years, we have seen many approaches to tackle the area of Bayesian variable
selection (BVS). In this section we will concentrate on the principles of BVS methods. We

might use selection approaches when we have some uncertainty about the statistical model.
Assume that we have n models M = (M, ..., M,,) fordata Y. Under M,,, Y ~ p(Y'|5,, M,,)

where 3, is a vector of unknown parameters corresponding to the covariates in M,,.

Here, we need to use Bayesian techniques to assign a prior probability distribution
p(5n|M,,) and p(M,,) for each model. This specification can be recognised as a three stage
hierarchical mixture model to generate the data Y. See Chipman et al. (2001).

1. Sampling the model M; from p(My), ..., p(M,).
2. Sampling the parameter vector ; from p(f5;|M;).

3. Sampling the data Y from p(Y|5;, M;).
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Hence the probability that the “true” model was really M, conditioning on having
observed Y is the posterior model probability
p(M;)p(Y | M;)
2 p(Mi)p(Y | M; i)

p(M;|Y) =

We can write the marginal or (integrated) likelihood function of the model M; averaged

over the possible values of model parameters as follows:
p(Y | M;) = [ p(Y | Mj, 8)(8; | My)ds;.

Depending on these posterior probabilities, the relative probability or posterior odds

between two models M; and M, is

p(M,|Y) _ p(My) [p(Y | My, Bar)p(Bar, | M1)dB
p(Ma|Y)  p(Ma) [p(Y | Ma, Bar, )p(Bus, | Ma)dB

(3.14)

So, (3.14) demonstrates how we can use the data Y through the Bayes factor

Jp(Y | My, B, )p(Bu, | Mi)df
(Y | My, Bas, )p(Basy | Ma)d3

to update the prior odds p(M;)/p(Ms) to obtain the posterior odds. See Chipman et al.
(2001).

In other words,

posterior odds = prior odds x Bayes factor.

3.7.3 Bayesian variable selection using Zellner’s g-prior

In variable selection, we should choose the prior distribution with care. In the linear
regression model, Y = X3 + ¢, we need to construct a family of priors in this model. So,
Zellner (1986) proposed a particular prior that belongs to the conjugate normal-gamma

family called a g-prior. In this prior

Mot . Al ~N<ﬁa, <XTX>) (3.15)
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where [, is the prior mean of S and the prior variance—covariance matrix of 3 is a
scalar multiple g of the Fisher information matrix and that depends on the observed data

through the design matrix X.

3.7.4 Bayesian variable selection using reversible jump Markov

chain Monte Carlo

A reversible jump Markov chain Monte Carlo algorithm in Bayesian variable selection can
produce an MCMC chain which moves within the model space. See Green (1995). So, it
moves from model M, to model M, by passing the choice of regression coefficients be-
cause the Metropolis-Hastings algorithm depends on f(y | M,,). Therefore after selecting
the model M,,«, we need to sample the parameters [, .To generalise this method, the
joint sampling of the parameters 3, and the model M,, should be used with a Metropolis-
Hastings approach. A proposal ((,+,M,+) is generated from the proposal distribution
q(Bnr, My | B, My,) (the combination of values from the space of parameter vectors and
model identifiers) given the current value (/3,,M,). We accept the proposal with proba-
bility

o = min (17 J (B, My | y)q(Br, My, | B, Mn*))

f(/an Mn | y)Q(ﬁn*a Mn* | Bm Mn)

— min <1 f(y | ﬁn*v Mn*)f(ﬁn* Mn*)f(Mn*)Q(Bn, Mn | Bn*v Mn*)>
7 T | By M) f(Ba | M) f(My)q(Brs, My | B, M)

where the second line follows from Bayes’ theorem. The proposal is done in 2 steps with

Step 1: A proposal for M.

Step 2: A proposal for [« which implies that
Q(Bn’ﬂ Mn* ﬂna Mn) = Q(Mn* Bn» Mn)Q(Bn*

ﬁnaMn*7Mn)-

The challenge is to ensure that the detailed balance condition holds which means that
the move from model (B, M) to model (B+, My+) should be as easy as the opposite
move. However, it is not immediately clear how to guarantee this condition when the
dimensions of the model changes which occurs with variable selection. According to Chib
and Greenberg (1995), reversibility is guaranteed by the reversible jump MCMC approach.
See also Green (1995); Lesaffre and Lawson (2012).
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3.7.5 Spike and slab priors

3.7.5.1 Introduction

A method that combines variable selection with inference for regression parameters, makes
use of the variable selection priors known as spike and slab priors. These types of priors are
defined as a mixture of two distributions, spike and slab distributions where the spike prior
has a mass concentrated on zero and the slab prior has a possibly uniform distribution
over the range of that prior. See Walli (2010). Mitchell and Beauchamp (1988) suggested
these priors for BVS in normal linear regression models. They defined them as a mixture
of a Dirac measure concentrated at zero and a uniform diffuse component. Therefore we

can write the prior as

T(Bi | 6:) = 0immsian(Bi) + (1 — 03) Topike (5s)

George and McCulloch (1993) proposed an alternative spike and slab prior that can be

easily implemented in Gibbs sampler. This prior has the form

Bi| 0 ~ (1 = 6;)N(0,0%) + ;N (0, o)

s 4

where ¢; is large, ¢; > 1 and Pr(6; = 1) = 1 — Pr(6; = 0) = p;. In subsection 3.7.5.2 we
will illustrate two Bayesian variable selection (BVS) methods using spike and slab priors.

We will assume that the intercept 3y has a diffuse prior, Sy ~ N (0, a%o) with ago large.

3.7.5.2 Gibbs variable selection using spike and slab priors

Dellaportas et al. (2002) proposed another method for BVS based on a spike and slab
prior. In their method which is called Gibbs variable selection (GVS), they introduced

variable indicators in the model. That is, the linear predictor of the model is equal to
d
Yi=a+ Y 0uby
k=1

where [, are the regression coefficients. The joint density of y, 3,6 is

f(,8,0) = f(y, Bry By, 0) = f(y [ B,0)f(Br | Biry, 0)f (B [ 9).f(9)
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Here, B) is the vector of regression coefficients excluding 3;. After removing the

constant term, the full conditional distribution for the regression parameters is f(fy |
Kuo and Mallick (1998) assumed that the prior of § is independent of §, so that

T(Br | By, 6) = f(Br | Bay)- Now, f(y|3,9) only contains 3, when 6, = 1. Removing the
constant terms then yields two expressions:

Tw|B,0)f(Br|Bwy) if dp=1

FBe |y, By, ) = ‘
FBr | Bwy) if  0,=0

For GVS, it is also assumed that §;, depends only on dy, i.e., f(Bk|Bw),d) = f(Br| k).
Dellaportas et al. (2002) suggested taking

F(Br | 0x) = (L = 8k)N (pow 71,) + 66N (p11x T1) (3.16)

for suitable choices of 73, < 77. Notice that f(y|/3,0) contains S}, only when ¢, = 1 and,

combined with the prior in (3.16), the full conditional density for §; becomes

f | B,0)N (paw, ) if =1

) 75 =
fBr |y, By, 0) {N(u%,n?k> it 5 =0

where the distribution N (pox, 75,) is the prior when f(5; | 6, = 0) and is called a pseudo-
prior, and the distribution N (u1x,73,) is the prior when f(8x | 6, = 1). Finally, the full
conditional density for d;, is Bernoulli with success probability /(1 + 7) with the odds

1, equal to

SOk =110w), 8 y) _ fy|B, 0k =1,0m)f(B] 0k =1,0w)f (0 =1]dw)
o =010w),B,y)  f(y|B 0k =0,0u)f(B]d=0,00)f(0r =0]dx)

See Lesaffre and Lawson (2012).

3.7.5.3 Stochastic Search Variable Selection using spike and slab priors

The Stochastic Search Variable Selection (SSVS) method was suggested by George and

McCulloch (1993) for variable selection in linear regression. The linear predictor is given
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by
d
Vi=a+ )Y Bz
=1

where f1, ..., B4 are assumed to have a mixture prior of spike and slab Gaussian com-
ponents. The spike element is a normal distribution concentrated closely around zero,
representing the real absence of the variable in the model. The slab component has a
large variance to allow for the “nonzero” coefficients to spread over a larger range of val-
ues. This kind of separation is being regulated by two tuning parameters 7, and ¢, where
72 > 0 is the variance in the spike component and ¢277 > 0 is the variance in the slab

component.

The components of the SSVS hierarchical prior are as follows:

By | azk ~ N(0,0’%k)
Uék | T Tigs Ok ~ (1 — 51:)@07&(-) + 5k¢rfk(')>
o ~ IG(ag, by),
Ok | wi ~ Bern(wy),

WE ~ U(O, 1).

with ag = vs/2 and by = “¥ §,. Moreover, 73, = 72 and 73, = cirf. Here, 0 indicates

the component of the mixture (for §; = 0 the k'™ regressor is “practically zero”); v, (.) is
the Kronecker delta concentrated at point x; vs and &5 possibly depend on d and wy, is the
prior probability that (5 is nonzero. For details see Lesaffre and Lawson (2012). SSVS
can be extended to GLMs without much difficulty (George et al., 1996).

3.8 Missing data

3.8.1 Introduction

In this section, we introduce some important definitions and assumptions that relate
to incomplete data. There is extensive literature which tackles the problem of missing
data from two points of view, the frequentist and Bayesian perspectives, such as Little
and Rubin (2014); Daniels and Hogan (2008); Raghunathan (2015); Molenberghs and
Kenward (2007).
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In real life applications, we do not always observe all of the planned data. Hence,
missing data are common in many applications. For example, suppose that we are aiming
to do the analysis for data that have some covariates with missing values. In this case,
reducing the number of cases by deleting those with missing values will not be an ideal
thing to do as our inference might be adversely affected. In this thesis, we will use

Bayesian inference to deal with the missing data problem.

In the case of completely observed data, it is not necessary to build the model for the
covariates. However, when there are missing covariate values, it is important to build a
model for the relationships among the covariates in the study. This is called a missing
data model. See Zhao (2010). We denote the observed data as Y, the missing values as

Yiniss, S0 Y = (Yops, Yiniss) and € is the parameter vector of interest.

3.8.2 Missing data mechanism

Suppose that we have the missing data indicator [ which can take the value 1 if Y is

observed and 0 otherwise. So the joint probability distribution of (Y, I) is
fY10,¢) = f(Y]0) f(1Y, ¥).

The conditional probability distribution for I given Y and the unknown quantity
represents the missing data mechanism. In order to obtain the distribution of the observed

data, we need to integrate out the distribution of Y, as follows
f(Y:)b& [|07 ¢) = /f(YZ)bsa Ymiss’9>f<I‘Y:)b57 Ymissa 'l/})deiss-

We can classify the missing data mechanism into different types of missingness termed
missing at random (MAR), missing completely at random (MCAR) and missing not at
random (MNAR). See Little and Rubin (2014); Tian et al. (2009).

3.8.3 Missing at random (MAR)

The missing data are said to be missing at random (MAR) if [ is conditionally independent

of the missing values given the observed values, that is, if

f(ID/(-)bsa Ymiss>w) = f(I’YE)bmw)-
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Then the likelihood function is

f(YE)bsa I‘ea ¢) = /f(I’YE)bm w)f(Y;)bsa YmiSS|9)deiSS
= fI[Yobs, 1) f (Yobs|0).

3.8.4 Missing completely at random (MCAR)

Sometimes we need to make a stronger assumption than MAR. We say that the missing
data are missing completely at random (MCAR) if the distribution of I does not depend

on either the missing or observed values, that is
f(-[D/ObSv Ymissa @/)) = f(]|1/))

Notice that, in Bayesian inference, it is not usually necessary to assume MCAR. It is
usually sufficient to have MAR. The MAR assumption is more plausible when we observe
a large number of variables since the observed values are then more likely to provide

enough information to make missingness conditionally independent of the missing values.

3.8.5 Missing not at random (MNAR)

In the missing data mechanism, sometimes the MAR and MCAR conditions do not hold.
Then the probability of some quantity being missing depends upon unobserved data.
Therefore there is no simple way to represent the joint distribution. This type of mech-
anism is called missing not at random (MNAR). See Molenberghs and Verbeke (2005);
Daniels and Hogan (2008).

3.8.6 Missing data and Bayesian inference

In Bayesian inference, missing data can be treated like other unknown quantities and we
can integrate over their possible values to make inferences about model parameters. This
is often conveniently done using MCMC methods. However, if the data are missing not

at random (MNAR) then the data might not be informative about all model parameters.
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3.9 Data augmentation (DA)

3.9.1 Introduction

There are some models that have intractable likelihood functions which lead to more
difficult calculations. To make things more simple, we introduce extra variables which
are called auxiliary variables. In fact, these variables are not observed but if they were
observed that would make the likelihood more straightforward. Then we can treat these
auxiliary variables as if they were missing data. As a result, we can define the data
augmentation (DA) as the addition of unobserved auxiliary variables to the observed
data.

Tanner and Wong (1987) proposed the use of the DA method in the Bayesian context
in order to compute the posterior distribution. They introduce the term “data augmen-
tation”. See Imai and Van Dyk (2005).

3.10 Lung transplant example

3.10.1 Introduction

As an example we consider some data on lung transplants. See Andreasson et al. (2016,
2017). A lung transplant is surgery to remove a person’s diseased lung and replace it
with a healthy lung from a deceased donor. Lung transplants are used for people who are
likely to die from lung disease within 1 to 2 years. Lung transplants are not carried out
frequently in the UK, mainly due to the lack of available donors. During 2013—2014 there
were 198 lung transplants performed in England. See NHS (2016). In our data we have
30 covariates, with { X7, ..., X5} representing measurements on the inflammatory proteins
before ex vivo lung perfusion (EVLP) and {Xjg, ..., X30} representing the measurements
afterwards. Increasing the inflammatory proteins will deteriorate the lungs and as a result
the lungs will no longer be used in transplant. The study concerned the use of EVLP. This
is a technique for assessing and potentially reconditioning human donor lungs previously
unacceptable for clinical transplantation with the potential to dramatically push the limits

of organ acceptability. See Andreasson et al. (2014).

The response variable Y is a binary variable indicating whether or not the lung was
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used.

Suppose that we adopt the following model. We have a number of lungs n = 41 and
we have 30 covariates that might predict the use of the lungs. For illustration, we choose

some of these covariates. See the rjags model specification in Appendix A.3.2.

Then we suppose that Y; is an observation from the Bernoulli(;) distribution. Let the

probability that the lung is used be

Pr(lung i used) = 6; and  Pr(lung i not used) =1 — 6,.

Then we have the logistic model as follows:

0; 30 _ ,
log (1 - 9_) = Bo+ D Byl — T5) = 2,3,
i j=1

where é = (60,61, ...,530), and X, = (inl — X1y eeey Tizo — i’go)/, Tij is the value of the
covariate j for lung ¢ and z; = Y1, z; ;/n. The reason why we subtract the mean is
because it is easier to construct a prior by thinking about the middle of the covariates

rather than one of the ends.

Therefore the likelihood function for @ = (61, ..., 6,,)" is

n

Lo | y) = [[67(1—6) .

=1

We have

!/
e%‘é

= ezié So 0; and (1—06;)=(1+ egiﬁ)il'

Therefore, the likelihood of 5 can be written as

n eg;é bi 1 1-y;
L(B |z y) = / ( / >
N g 14 ez 14 ez
n ’ Yi
1<
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parameters | mean | S.D.
Bo -0.5 | 1.3
Ioht 0 3.16
Ba 0 3.16
B3 0 3.16
Ba 0 3.16
Bs 0 3.16
Be 0 3.16
B7 0 3.16
Bs 0 3.16

Table 3.3: The prior summaries for some regression coefficients

We give 8 a multivariate normal prior distribution

B ~ N(u,X)

where p is the prior mean vector and X' is the prior variance and covariance matrix. We

set the prior mean for f, for example, in the following way:.

Suppose that we consider a lung where z;; = z; for j = 1,...,30. Suppose that we
assess the probability that the lung will be used as Py. Then we use the logit function to

calculate the prior mean for 3y, we have

B = 1o (5,

Now, to elicit the prior standard deviation, we can elicit assessments of the lower and
upper quartiles for the proportion of such lungs which will be used. Let these be Py, and
Po3 respectively. Then

Pos Poi _
log (1 — P03> —log < P ) = 1.35/ Var (/)

1—-Py

since ®(1.35/2) = 0.75. In this way we obtain E(5y) and Var(f).

By considering a lung where x;; = 27 but z,;; = z; for j = 2, ..., 30, we can, in a similar
way, obtain a prior mean and variance for 5y + (2] — Z1) and hence a prior mean for
By and, if we judge By and [; to be independent a priori, a prior variance for g;. We
can assess prior means and variances for {fs, ..., 30} similarly. The prior moments for

Bo, ..., Ps are given in Table 3.3.
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In the example, some of the covariate values are missing, so we need a missing data
model. For instance, the first covariate X; has some missing data. We adopt a normal
model for it:

X1 ~ N(my, V1)

with prior distributions for

my ~ N(mm, %1) and v ~ Gamma(cl, dl)
1

For the second covariate X,, we also adopt a normal distribution, but the mean of

this covariate depends on x; so that
X2 ~ N(m27 ‘/2>

where

ma = Boz2 + Par(x1 — mq),
502 ~ N(mm, Voz) ) 521 ~ N(m21> V21)a

and  — ~ Gamma(cg,ds),
Vo

and so on. So we impose the order of the covariates in this example. In general,
j—1

Xj ~ N(m],‘/]) where m; = BO,j -+ kzlﬁj’k(xk — mk) with ﬁod' ~ N(moj,vb]‘) and

Bik ~ N(mjg, Vig).

3.10.2 Computing the posterior distribution in the lung trans-

plant example

The rjags software is used to compute the posterior distribution. A burn in of 6000
samples and then an additional 100000 Gibbs samples were used. Table 3.4 gives the
posterior summaries of the regression coefficient corresponding to the priors that were
mentioned in Section 3.10.1. Plots of the densities for these priors and posterior are given

in Figure 3.2.

Note that some of these posterior distributions are centred close to zero. So it may
be that we can simplify the model and the corresponding Bayesian network by setting

some of these coefficients to zero and omitting the corresponding arcs from the Bayesian
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density

density

density

Figure 3.2: Posterior and prior densities for coefficients in the lung transplant example (dashed
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parameters | mean | S.D. | 95% credible interval
5o 20.444 | 0.451 | (-1.346 , 0.458)
3, 1693 | 1.023 | (-3.739, 0.353)
5o 0.160 | 0.642 (-1.124 | 1.444)
By 2875 | 1.202 | (0.471, 5.279)
By 0.631 | 0.699 (-0.767 , 2.029)
Bs 0.006 | 0.452 | (-0.461, 2.274)
By 20.620 | 0.770 | (2,160, 0.920)
3, 2177 | 1.336 | (-4.849, 0.495)
e 20.493 | 0.440 | (-1.373, 0.387)

Table 3.4: The posterior summaries for some regression coefficients

network.

The comparison of the prior and posterior standard deviation shows that all of the prior

standard deviations were bigger than the corresponding posterior standard deviations.

In fact, in this example we have many covariates with few observations, so we could
use the idea of variable selection. See Section 3.7. One possibility is that, before doing
EVLP, we might decide to use the lung straight away, on the basis of {Xj,..., X5} or a

subset of them.

Therefore, we need to use variable selection here because we might not need all the
covariates to decide whether to use the lung or not. There are two reasons why we prefer
to use variable selection in this example. One of them is making the calculations of the
probabilities easily and the other relates to time saved when we just measure some of the
covariates rather than all of them. As the lungs deteriorate over time, it may be better

to make a decision quickly rather than spend time making further observations.

3.10.3 Prior and posterior predictive distribution

The prior predictive distribution fy(y|z) is defined as the distribution of a new observation

which is marginalised over the prior and can be written as

foly | 2) = [ fylB.2)m(8)ap.

where 7(3) is the prior density for 5. The posterior predictive distribution f;(y|z) is

fily | 2) = [ FI8.2)w(Bly)ds.
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where 7(3|y) is the posterior density for 3.

The probability that the lung is used when x = x* is given as

Pr(y* =1|z2") = Eg),.[Pr(y* = 1] 2", B)]

:L"*IB
(&
= Eﬂ\w P
1+em B

where Q* = (17:1:;7 "‘7x§0)/ and ﬁ = (607617 "‘7530),'

We can use an approximation method such as Monte Carlo integration in order to find
the posterior predictive probability. The posterior predictive probability depends on the

posterior distribution for 3 and the new observation of the covariates z;.

Therefore, the posterior predictive probability is approximately

1 N acB(’
Pr(y*=1]z") NZ( )

i=1 1+ex*ﬁ()

where 1), ..., BV) are the samples drawn from the posterior distribution of 3, 7(3| Y, T).
We notice that our posterior predictive probabilities are close to the observed values of .

See Figure 3.3.
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Figure 3.3: Boxplot of the posterior predictive probability that Y = 1 for the lung transplant
example.
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3.11 Summary

In this chapter, we have given a general description of Bayesian analysis with some im-
portant terms and definitions that relate to it. We have investigated some numerical
integration methods such as the trapezoidal rule and Laplace approximation method as
we need them to compute the posterior mean and variance. We have discussed in this
chapter using different sorts of Monte Carlo integration, such as importance sampling,
Gibbs sampling and Metropolis Hastings. We mentioned some statistics that we need
to test the convergence of the samples in MCMC. We gave a motivational example to
illustrate the idea of using a Gibbs sampling algorithm to generate realisations from the
posterior distribution. We gave an introduction to GLM with the most common link func-
tions such as logit and probit. We have given some background about Bayes analysis for
logistic regression and some variable selection methods with different sorts of prior such as
spike and slab prior. We also demonstrated some concepts about missing data and data
augmentation because, in real life, we do not always observe all the observations from the
experiments. We used a logistic regression model to fit the data in the lung transplant
example. We obtained the posterior means and variances for all the coefficients in the
model and compared them with the prior distribution that we elicited. We investigated
the variable selection method from the Bayesian point of view for the lung example and
we found that it is important to use some of the covariates in this example rather than all
of them because in this case the lung deteriorates. We calculated the posterior predictive

probability for the lung being used.
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Chapter 4

Bayesian networks

4.1 Introduction

Probabilistic graphical models (PGMs) are graphical representations of the problem un-
der research. See Pearl (1988); Lauritzen (1996); Koller and Friedman (2009). These
models have been used in a variety of applications for decades because they can be useful
to combine expert knowledge with the theory of probability. These models also have very
important aspects. First of all, we can visualise these models in an attractive way. Sec-
ondly, these models also can represent complex problems in a simple graph. Finally, we
can learn from the data and even construct a very large complex network because of the
rapid development of computer software. One of the most familiar sorts of PGMs that

we are interested in is called Bayesian networks (BNs). See Mateo Cerdan (2010).

This chapter introduces the methodology of Bayesian networks including methods for
learning both the structure and parameters from data. We will tackle the possibility
of using different methods for constructing Bayesian networks based on Markov Chain
Monte Carlo (MCMC) methods. The idea is to obtain the most optimal configuration of

the network and we review methods for choosing network structures.

We start in Section 4.2 by introducing some notation, definitions and important con-
cepts in Bayesian Networks. In Section 4.3, we give the main point for comparison between
regression models and BN models. There are two fundamental concepts in developing BNs
from data: parameter learning and structure learning. So we give a brief demonstration
about what they are in Section 4.4 and Section 4.5. We explain in detail two algorithms

to learn about the structure of the network, Grow-Shrink and Hill-Climbing, using an R
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package called “bnlearn”. See Scutari and Ness (2012).

In this chapter, we also describe different types of BNs such as the categorical, Gaus-
sian and hybrid and other types of Bayesian networks. In Section 4.11 we propose a
method called arc deletion in order to choose the most likely configuration. This de-
pends on an imposed ordering of the nodes. We apply this method to the non-Hodgkin

lymphoma data set.

4.2 The methodology of Bayesian networks

In this section, we will give some important definitions and notation related to graphical

models.

Bayesian networks (BNs) are very effective and flexible models to represent the prob-
abilistic relationship between variables. Bayesian networks also have different names:
Recursive graphical models, Bayesian belief networks, belief networks etc. The graph
G = (V, E) of a BN consists of a set of variables, nodes or vertices V = {X1, X5, ..., X, }
and a set E of directed edges, arcs or arrows between these variables where the directed
edges represent the dependence relations between the nodes. If there is an arc from X;
to X, then Xj is called a parent of X; and X is called a child of X;. If we define a path
between two nodes in the network, say A and B (i.e. A — B), then the following path
is not allowed in BN, A — B — A because it is cyclic graph. As a result, we refer to a
directed acyclic graph (DAG) as one representation of a BN. Therefore, we can write the

joint probability distribution function for all the variables as follows:

Pr(Xy,..., X,) = ﬁ Pr(X; | parents(X;)) (4.1)

i=1
where parents(X;) is the set of parents of X;.

In order to construct a network we need to proceed in two stages. At the qualita-
tive level, we need to choose the graph (G) of the BN which satisfies the relationship
between the variables in terms of conditional dependence and independence relations. At
the quantitative level, the local probabilities are determined for the marginal distributions
at root nodes (a root node is defined as a node which has no parents) and the conditional
probability distributions for the other variables. As a result we can calculate the joint

probability distribution (global distribution) as a product of all these marginal and con-
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ditional distributions in the model. For more information, see Jensen (1996); Neapolitan
(2003); Korb and Nicholson (2004) and Scutari and Denis (2014).

Other important terms in BNs are ascendant and descendant. To explain the relation-
ship between the two concepts, suppose we have three variables X7, X, and X3. Then, if
there is a directed path from X; to X5 and there is a directed path from X5 to X3, we

called X; an ascendant of X, and X3 a descendant of X.

As a result, in a BN, each variable is conditionally independent of its non-descendants

given its parents.

4.2.1 Causality in Bayesian networks

In this subsection, we give an explanation of a causal model in Bayesian networks. The
main feature of BNs is the directed edges between the vertices. Some networks can
represent cause and effect relationships between the nodes. So the causal model is defined
as a set of vertices K of a directed acyclic graph (DAG), where each vertex in the graph
matches to a different element of K, such as the example shown in Figure 4.1. In some
cases the relationship can be interpreted as a cause and effect relationship, where the
nodes refer to the variables in the model and the links indicate the direct causal influence

between the vertices. See Pearl and Verma (1995).

Figure 4.1: Causal network example.

From the network in Figure 4.1 we can infer that it could be that Asthma and Cancer
are the effect of a patient’s smoking or we can say that Smoking causes Cancer and
Asthma. It is sometimes more complicated to construct BNs with causal relationships
because we have to give the right meaning to the relations. Otherwise it does not make

sense from the scientific or medical point of view. See Margaritis (2003).
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Figure 4.2: D-separation (directed acyclic graph). Left: serial connection, Middle: diverging
connection, Right: converging connection.

4.2.2 D-separation

There are different ways to represent the relationships between the variables in a BN. Some
variables are directly related to each other and the rest are indirectly related with other
nodes in the network. Pear] (2000) introduces an important definition which is related to
a DAG called “d-separation” or directed separation. It can be defined as follows. Suppose
that we have two nodes such as A and B in a causal network, then for all the paths

between A and B, there is a middle node C' which separates them in the following cases,

e if there is a serial connection or diverging connection when we observed the inter-
mediate node C. Or

e converging connection when there is no evidence about C'.

See Jensen (1996); Korb and Nicholson (2004).

In order to explain Pearl’s idea of separation in a DAG, let us take the following simple
example. Suppose that we have three disjoint sets of nodes, for example, A, B and C'
in a DAG (G). Then C is said to d-separate A from B, if A 1. B | C,i.e. Pr(A, B |
C) =Pr(A| C)Pr(B | C), where A 1. B | C means that A and B are conditionally
independent given C' and Pr(A | C) is the conditional probability of A given C' and no

evidence for its descendants.
We can represent the d-separation model in the DAGs in Figure 4.2.

The DAG on the left of Figure 4.2 can be represented mathematically as follows

Pr(A, B|C) = Prﬁ’(g’)c) - Pr(A)Prg’;(‘é;Pr(B ) _ pr(ajoype(B(C).

since, Pr(A|C) = %. So, C' separates A and B.

Likewise, we can check if the node C separates A and B in the DAG in the middle of
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Figure 4.2 in the following expression

Pr(4, B|C) — Pr(é’(g’)m _ Pr(C)Pr(P‘i’(g;Pr(B ) _ pr(ajcypi(BlO).

So, again, C separates A and B.

However, in the third case, on the right of Figure 4.2, there is no such simplification

and C does not separate A and B.

4.2.3 Markov blanket

A Markov blanket is defined as a set of nodes that separates a target node from the
rest of the nodes in the network which includes its parents, its children and other nodes
sharing a child. Figure 4.3 represents an example of a Markov blanket of node E when
the nodes {C,D} are the parents of the node E and the nodes {G,H} are the children of it
and the node F is the children’s other parent. The rest of the nodes such as {A,B,I} are
conditionally independent of E given the blanket {C, D, F, G, H}. See Scutari and Denis
(2014) and Kutaga (2006).

Figure 4.3: Markov blanket of node E.
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4.3 Comparison of Bayesian networks with regres-

sion models

The point of a BN is that, unlike a standard regression model where we do not specify a
distribution for the covariates, only a conditional distribution for the dependent variable
given the covariates, in a BN we specify the joint distribution of all variables so that we can
use it even when some are not observed. Specifying this full joint distribution allows us to
make predictions when only some variables are observed. There are some studies which
show that using BN models is preferable and gives an accurate results compared with
other regression models. See Witteveen et al. (2018); Gevaert et al. (2006). According to
Sesen et al. (2013), they illustrated that BNs are an efficient tool in survival studies and

able to predict the survival time for the patient more precisely.

4.4 Bayesian network parameter learning

4.4.1 Introduction

In constructing BNs, we often wish to learn about the values of parameters from data. If
we have a given DAG, G with P variables defined, then inference about the parameter 6
when we have observed some data D = {x1,zs,...,xp} is called parameter learning. In
the case where all of the nodes in the BN are discrete or categorical variables with a finite
number of possible values, then we usually use the conditional probability table (CPT)
and this type of BN is called a multinomial Bayesian network. The main task here is to
make inference about all the values in the CPT when we have given a certain structure. If
we have the case where the CPT is unknown, then we can learn from the observed data in
order to produce the CPT. There are many algorithms that deal with parameter learning
in the case that we have complete data and the case when we observe one or some of the
variables in the data sets. See Ji et al. (2015).

We can learn about the parameters using either frequentist or Bayesian techniques.
Most of the material in this thesis deals with Bayesian methods. Therefore, we focus in

this chapter on parameter learning from the Bayesian point of view.
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4.4.2 Parameter learning with complete data set

In the case of learning about the parameters in a BN when we have complete data, there
is extensive literature. As a simple case suppose that we have a multinomial Bayesian
network. Suppose that we need to determine our uncertainty about the parameters 6 =
{64, 0,,...,0p} of a multinomial probability distributions using Bayesian inference, such
that 25:1 0, = 1. Therefore, the likelihood function in this case will be

L(6 | D) =[] 6"

p

where ny,...,n, are non-negative integers such that 2521 n, = n. We need to choose a
suitable prior distribution m(#). The most appropriate and conjugate prior to use is a

Dirichlet prior which can be described by a set of hyperparameters aq, as, ..., ap, so that
7(0) H@;‘l’*l.
P

As this is a conjugate prior, the posterior distribution will also be a Dirichlet distri-

bution with the hyperparameters {n; + ay,ns + ag, ...,np + ap} as follows

w6 | D) o [Joprter.
p
See Buntine (1991) and Koller and Friedman (2009).

4.4.3 Parameter learning with incomplete data set

We can learn about the parameter values from the data after we specified a suitable

network and that can be done by computing the conditional probability distributions.

Many methods in statistical data analysis require complete data in order to obtain
the results. However, in real life, this condition does not always hold. Therefore, struc-
ture learning of BN and parameter learning by some methods in this case is analytically
intractable. See Riggelsen (2006). However, MCMC methods may be used.

We will focus on using MCMC methods to learn about the parameters in different

models with various types of missingness.
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4.5 Bayesian network structure learning

4.5.1 Introduction

The main idea behind a Bayesian network structure is the way that we can summarise
the conditional independence relationships among the variables graphically. In addition to
independencies, a BN structure can sometimes be interpreted as cause and effect relations
through the direction of edges. See Section 4.2.1. So, the parent node represents the
“direct cause” and the child node represents the “effect node”. See Margaritis (2003).

In some cases, the structure of a BN is chosen subjectively using expert opinion.
However, in other cases, we may wish to choose a suitable structure based on analysis of
data. In addition, learning a network may also take into account the prior information
about the independencies of the variables in the problem (for instance, obtained from

research or accumulated knowledge).

In the following sections, we explain in detail how we can develop Bayesian network
structure and learn about it from the data. The determination of BN structure is one
of the most challenging problems that people need to investigate. For example, some
causal BN can not easily be determined by experts and the structure and variables might
be changed when we add new data. We will use different types of algorithms in this
chapter in order to construct Bayesian networks. However, we concentrate on finding BN

structure using some Bayesian approaches and numerical techniques such as MCMC.

We will consider algorithms for constructing Bayesian network structure. For instance,
determining network structure is a combination of imposing an ordering of the nodes and
subsequent arc deletion. Bayesian methods such as Markov Chain Monte Carlo schemes

(MCMC) are used to pick the most likely configuration.

Some authors describe the selection of the network structure with greatest posterior
probability. Heckerman and Chickering (1995) describe the combination of prior knowl-
edge from experts with observed data in order to construct a BN with higher posterior

probability.

Suppose we have given been given data and we are aiming to find the posterior prob-

ability distribution for the structure of the network S and suppose that S* is the most
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likely structure that is supported by data, then
S* = argmaxg {Pr(S| D)} (4.2)

where S* is the best structure and D is the data. We apply Bayes’ theorem to (4.2) in

order to find the posterior distribution for S,
Pr(S | D) «x Pr(D | S)Pr(S)

where the likelihood function Pr(D | S) can be evaluated by integrating out 6, as in the

following expression

Pr(D | §) = /@ Pr(D | 6, S)Pr(6 | S)de. (4.3)

For more details, see Husmeier et al. (2005).

4.5.2 Inferring causality

It is sometimes of interest to make inferences about whether one or more variables cause
other variables in the sense that a change in one or more variables brings about a change
in one or more other variables. Such a relationship is, of course, a stronger statement than
association or probabilistic dependence. A long and widely held view is that causality can
only be inferred from the results of controlled experiments in which the values of some
variables are deliberately changed and the changes in other variables are measured. More
recently the availability of network structure learning algorithms has led to the idea that
their use might allow inference about causality from observational data. However, such
an inference depends on being sure that there are no unobserved , hidden, variables which
might account for observed associations. See, for example, Section 7.1.4 of Jensen and
Nielsen (2007).

4.6 Bayesian networks for categorical variables

4.6.1 Introduction

As we know there are various types of variables that might be included in Bayesian

networks. For example, we have binary variables which can only take two values such as
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the variable sex can only take male or female. Categorical variables can take more than
two values. We can divide categorical variables into two groups, ordinal variables and
nominal variables. The ordinal variables are the variables that we can describe in ordered
categories such as patient’s condition (excellent, good, fair, poor). Nominal variables
are classified as unorderd categories such as eye colours (brown, blue, black, green). So,
constructing a BN for categorical variables requires that all the variables should contain
categorical data and the network is then described as a categorical BN. This discrete BN
can take the form of a conditional probability table (CPT).

4.6.2 Motivational example for categorical Bayesian network

Suppose we have the following Bayes network containing four nodes which is adopted

from Jensen (1996). They are Cloudy (C), Sprinkler (S), Rain (R) and Wet grass (W).
All four nodes are binary with two possibilities “TRUE” or “FALSE”. Suppose that we

have the structure shown in Figure 4.4.

Therefore, the joint probability distribution for the 4 variables in the network will be
Pr(C,S,R,W) = Pr(C)Pr(S | C) Pr(R | C) Pr(W | R,S).

So the probability that it is cloudy is 0.5. That is Pr(C) = 0.5 and Pr(not C) = 1 —
Pr(C) = 0.5. As we use a directed acyclic graph, we know that the two nodes Rain and
Sprinkler depend on whether it was cloudy or not. So, the node Rain has four possible

conditional probabilities which are

Pr(R | C) =0.38,
Pr(R | -C) =0.2,
Pr(-R | C) = 0.2,

Pr(=R | ~C) = 0.8.

Likewise, the node Sprinkler also has four possible conditional probabilities as it depends
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P(C=F) P(C=T)
0.5 0.5

| P(S=F) P(S=T)

0.5 0.5
0.9 0.1

C|P(R=F) PR=T)
F 0.8 0.2
T 0.2 0.8

S R|P(W=F) P(W=T)
F F 0.8 0.2
T F| 02 0.8
F T| 02 0.8
T T| 02 0.8

Figure 4.4: A simple Bayesian network, adapted from Jensen (1996).
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on the node Cloudy as well and we can write these probabilities as

Pr(S | C) = 0.1,
Pr(S | —C) = 0.5,
Pr(=S | C) = 0.9,

Pr(=S | ~C) = 0.5.

The last node in our network is Wet grass and because this node depends on both Rain
and Sprinkler, this node has 8 potential conditional probabilities which are shown in
Figure 4.4.

4.7 An introduction to the R package “bnlearn”

4.7.1 Introduction

The name of the R package “bnlearn” (Scutari, 2010) is an abbreviation of “Bayesian
network learning”. It is a R package that is used to learn about the structure of Bayesian
networks, estimate the parameters from frequentist and Bayesian perspectives, and make
some inference about the unknown quantities. There are many different algorithms that
we can use to learn about the structure. We will use one of the constraint-based structure
learning algorithms called the “Grow-Shrink (GS)” algorithm. We also use one of the
score-based structure learning algorithms called the “Hill Climbing (HC)” algorithm. See
Scutari (2010). In the following sections, we will give more details about each algorithm

with an illustrated example.

4.7.2 Grow-Shrink algorithm (GS) in bnlearn package

Margaritis (2003) suggested an algorithm called Grow-Shrink (GS) which depends on the
Grow-Shrink Markov blanket algorithm which we can describe as a simple Markov blanket
detection algorithm to learn about the structure of a Bayesian network. The main idea of
this algorithm is based on finding the structure for each Markov blanket say for example,
MB(b) in the network, where the node b € V. Then for each b the GS algorithm works
to determine MB(b) in two phases: the grow phase and shrink phase. See Edera et al.
(2014).
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Algorithm 5: Grow-Shrink Algorithm, adapted from Margaritis (2003).

1 2« 0.

2 While 3 F € Z — {E} such that FF L E | {2, do 2+ QU {F}. [Growing phase]
3 While 3 F € 2 such that ' L E | 2 —{F}, do 2 < 2 — {F'}. [Shrinking phase]
4 B(E) « (2.

In Algorithm 5, we start the growing phase with the empty set (2. Then we add
variables to {2 unless they are dependent on E given the current contents of (2. In this
case, we might add some variables which are actually outside the blanket which can be
identified and removed from the Bayesian network at the shrinking phase. See Margaritis
(2003).

4.7.3 Hill-Climbing algorithm (HC) in bnlearn package

This algorithm is one of the score-based structure algorithms which simply learn about the
structure of a BN based on heuristic optimisation methods. We can assign a network score
for each selected BN that reflects its goodness of fit and then the algorithm attempts to
maximise this score. See Scutari (2010). An example of this type of algorithm is a greedy
search algorithm such as the Hill-Climbing algorithm. The algorithm usually starts with
no arcs. At each iteration we can add an arc, delete an arc or reverse an arc provided
that we do not create a directed cycle. The most common score which is used in this

algorithm is the Bayesian Information Criterion (BIC).

Then we choose the structure that gives us the highest values of the score function.

The algorithm ends when no further increase can be made.

Algorithm 6: Hill-Climbing algorithm, adapted from Scutari (2010).

1 Select a network structure N which is usually empty but that is not necessary.

2 Calculate the score of N, defined as Scorey = Score(N).

3 Put maxscore = Score(N).

4 If maxscore increases, repeat the following steps

5 (a) for every possible arc addition, deletion or reversal not resulting in a cyclic
network:

6 (i) Calculate the score of the modified network N*, Scoren+ = Score(N*).

7 (ii) If Scorey« > Scoren, set N = N* and Scorey = Scorep-.

8 (b) Set the new value of Scorey in order to update mazxscore.

9 Return the DAG N.
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Accommodation type
apartment house
age age
work tenure | response | <30 | 31-45 | >45 | <30 | 31-45 | >45
rent yes 18 15 6 34 10 2
skilled no 15 13 9 28 4 6
ow yes 5 3 1 56 26 35
no 1 1 1 12 21 8
rent yes 17 10 15 29 3 7
anskilled no 34 17 19 44 13 16
owi yes 2 0 3 23 52 49
no 3 2 0 9 31 51
rent yes 30 23 21 22 13 11
office no 25 19 40 25 16 12
own yes 8 5 1 54 191 | 102
no 4 2 2 19 76 61

Table 4.1: Danish do-it-yourself

Another possibility is to use the Laplace approximation score function in order to
compute the posterior distribution for the parameters in the model structure. Using a
Laplace approximation can provide us with more efficient results but it is less accurate as
it uses approximate integrations. See Needham et al. (2007); Chickering and Heckerman
(1997).

Clearly the Hill-Climbing algorithm could be adopted to use other scores such as the

expectation of a utility function.

4.7.4 Motivational example

In this example, the data represent a sample of employed men in Denmark aged between
18 and 67. See (Hand et al., 1994). They were asked a question about whether they had
carried out work on their home. The response variable is yes or no, with four categorical
explanatory variables: Age: under 30, 31-45 and over 45, Accommodation type: apart-
ment or house, Tenure: rent or own, Work of respondent: skilled, unskilled, office. These

data are represented in Table 4.1.

We use the Grow-Shrink and Hill-Climbing algorithms with the BIC score function to
construct a Bayesian network for this example. The resulting DAGs are shown in Figures
4.5 and 4.6.
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N ‘

Figure 4.5: Bayesian network structure learning based on Grow-Shrink algorithm.

response

Figure 4.6: Bayesian network structure learning based on Hill-Climbing algorithm.



Chapter 4. Bayesian networks

4.8 Bayesian networks for Gaussian variables

4.8.1 Learning the parameters in Gaussian Bayesian network

In this section, we discuss cases where we do not have a multinomial distribution network.
For instance, suppose we have a network where all the nodes are continuous random
variables and a multivariate normal distribution is considered to be appropriate. Let us
explain the idea how we can model a simple Bayesian network with three nodes A, B and

C. Suppose we have decided to use the network in Figure 4.7.

A ~ N(ua,02) B|A,C~ N(upjac,0d)

C|A~ N(ugia, o)

Figure 4.7: Gaussian Bayesian network for three variables.

Then, we have E(A) = ua = foa, since A = Bya + e and Var(A) = Var(ex) = 03.

Similarly, the mean and variance for the node C given that we have observed A are

E(C|A) = pucia = Po,c + Bac(A — pa).

and

Var(C | A) = oy = .00} + 0.

and so on for the node B. In order to learn about the parameters in this network, we need
to make inference about the coefficients 5y a, Bo., Bo.c, Ba.c, BB, Bc,p and the conditional
variances 0%, 0%, 04 in this simple model. We could use MCMC methods to fit this model
and evaluate the posterior mean and variance where we can use a multivariate normal
prior distribution for all 8 = (80,4, fo,B, Bo,c: Ba,c, BaB, Bes) and writing 7¢ = 1/0% for

G = A B,C, we give 7¢ a gamma prior distribution with some parameters ag and Ag.
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4.9 Other sorts of Bayesian networks

We have discussed simple multinomial and Gaussian networks represented by directed
graphs. There are other kinds of Bayesian networks. Here we briefly discuss some of the

most common types.

4.9.1 Hybrid Bayesian networks

In BNs, if we combine discrete variables, continuous variables and any other type of
variables such as interval censored variables in the network, such a network is called
a hybrid BN. Unfortunately, learning about the structure and the inference about the
parameters in hybrid BN needs special methods as the inferential problems for these

networks are less tractable. See Scutari and Denis (2014).

4.9.2 Dynamic Bayesian network models

The main difference between BN models and dynamic Bayesian network (DBN) models
is that the latter incorporate time series structure. We suppose in DBN that each time
slice is dependent on the previous time. There is extensive literature on DBN such as
Murphy and Russell (2002); Russell and Norvig (2016).

4.9.3 Influence diagrams

An influence diagram is a Bayesian network that includes decision nodes and a node
representing a value or utility function. See Kjaerulff and Madsen (2005). So we can
select the optimal decision based on maximising the expected utility function. The random
variables in an influence diagram can be represented with circles while the decision nodes

are represented with rectangles. See Howard and Matheson (2005).

4.9.4 Chain graphs

This type of graph is a mixture of directed and undirected networks, where the directed
networks represent the Bayesian networks and the undirected graphs represent Markov
networks. See Lauritzen and Wermuth (1989); Studeny (1998); Buntine (1995). Graphs
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Figure 4.8: Chain graph for 5 variables {A,B,C,D,E}.

of this type represent more complex probability distributions. Figure 4.8 represents an
example of a chain graph with 5 variables in the network. The components of this chain
are {A},{B} and {C,D,E}.

4.10 Information propagation in Bayesian networks

In this section, we describe briefly the problem of making inferences about the unknown
quantities in Bayesian networks using algorithms such as information propagation and

the Lauritzen-Spiegelhalter algorithm. See Lauritzen and Spiegelhalter (1988).

The Lauritzen-Spiegelhalter algorithm for a categorical network exploits the structure
of the network in computing the marginal distributions. The idea of this algorithm is that
the we have a structured joint tree which is basically a join tree. Then the information is

propagated through this joint tree. See Lepar and Shenoy (1998).

Now, for the Gaussian networks, all the variables in the network have Gaussian dis-
tributions. Therefore, the joint probability distribution for all of these variables is a
multivariate normal distribution. See Section 4.8 for an example of a Gaussian network.
We can write the joint probability distribution in a Gaussian network as a product of the

conditional distributions when each conditional density is independent normal as follows

f(xklxh cery xkfl) ~ N(Mka Tk)
where pp = my + Z?;ll Bjk(x; — ;). Notice that my refers to the unconditional mean
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of z, and 7, = 1/V},, where V} is the conditional variance of x; given we have observed

T1, ..., Tp_1. See Geiger and Heckerman (1994).

However, in more complicated cases, simple tractable methods are not usually avail-
able. We can either use computationally intensive numerical methods or approximations.
See Needham et al. (2007); Wilkinson (2007).

In this thesis, Chapter 7, we propose a new method for such networks. This network

is called a Bayes linear Bayes prognostic network.

4.11 Proposed technique to construct a Bayesian net-

work

The main idea for this method is to construct a BN using arc deletion and an imposed

ordering of the nodes.

We use as an example, a subset of the variables in the non-Hodgkin lymphoma data.
So we are starting our model by assuming that the observational covariates such as Sex

and Age are independent and the lifetime distribution 7" depends on both of them.

The assumption of independence is acceptable since Sex and Age are always observed

so that we are always conditioning on both of them.

Bayesian methods such as Markov Chain Monte Carlo (MCMC) schemes are used to
pick the most likely configuration. The algorithm starts with:

Step 1: Fit the life time distribution which in this case the Weibull distribution.

Step 2: We then introduce the presence indicator [ with [ = 1 if the arc is present

and 0 otherwise.

Step 3: We have the product of those indicators. E.g.

IA(1—1Ip)lc
where A and C are present, B is absent. In general, for a network with N nodes, the
indicator for a configuration C' is I, = [[*, I]//(1 — I;)"~% where I; is the indicator for
node 1.
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Step 4: Finally we calculate the posterior mean of the indicators which is the posterior
probability that those coefficients are non-zero. We also calculate the poste-
rior mean of a product of indicators which is the posterior probability of the

corresponding network structure.

See Appendix A.4.1 and Appendix A.4.2 for rjags specification and R code to apply this

algorithm.

4.11.1 Example: non-Hodgkin lymphoma

We apply this method to the non-Hodgkin lymphoma example, with the possibility of

fitting all the covariates at once and we find the most likely configuration as follows.

For illustration, we use six variables in the non-Hodgkin lymphoma example which are
Age, Sex, T, Wbc, Hb and Albumin. As we can see from the original BN in Figure 4.9, we
have 14 edges among all the nodes. After applying the MCMC approach, we obtain a BN
which is shown in Figure 4.10 which has 8 edges representing the relationships between
the nodes. This is because the posterior probabilities of some of the coefficients are very

close to zero. As a result, we dropped some of the edges.

We suppose that the log of survival lifetime has a normal distribution with
log(T3) | @i, xip ~ N(pi, %)

where
i = Bot + Boy a1t + By 1Ty

and

Bot ~ N (pot, 05y
By ~ N(Mlm Ui)
5z2,t ~ N(Mzn O-gt)'

Suppose the indicator for Sex is X;;. Then

X1 ~ Bern(p) , p ~ Beta(2,3)
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Figure 4.9: Fully-connected (apart from Age and Sex) Bayesian network for non-Hodgkin lym-
phoma data with imposed ordering of the nodes.

9.

Figure 4.10: Most likely configuration which depends on the posterior probability of the coeffi-
cients which are non-zero.
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Arcs Netl | Net2 | Net3 | Netd | Netb | Net6
Age — Whc 0 0 1 0 1 0
Hb — Whbe 0 0 0 0 1 1
T — Whbec 1 1 0 1 0 1
T — Hb 1 0 1 1 1 1
Age — Hb 1 1 0 0 0 1
Sex — Hb 0 0 0 0 0 0
Age — T 1 1 1 1 1 1
Sex — T 1 1 1 1 1 1
Sex — Whe 1 1 1 1 1 1
T — Albumin 0 0 0 0 0 0
Age — Albumin 0 0 0 0 0 0
Sex — Albumin 1 1 1 1 1 1
Hb — Albumin 1 1 1 1 1 1
Whbec — Albumin 0 0 0 0 0 0

Table 4.2: The posterior probabilities for the first six most likely configurations based on the
original network that have been chosen from all possible configurations.

Suppose that the Age is represented by X, . Then

X9 ~ N(ftage, agge) . fage ~ N(60,10)

1

2
Uage

Tage = , Tage ~ Gammal(3, 2)

The bar chart in Figure 4.11 demonstrates the contribution of each arc in the network

by taking the mean of all the nodes which are represented in Table 4.2.

From Figure 4.11, we notice that we have eight arcs with posterior probability greater
than 0.5. For instance, there is an arc from Age to T since the posterior probability for

this arc is 1, etc.

Finally, we conclude that there is not an arc from 7" to Albumin since the posterior

probability for this arc is 0.
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Figure 4.11: Bar chart representing the posterior probabilities that the arcs are present.

4.12 Summary

In this chapter, we have demonstrated some methodology about probabilistic graphical
models, especially Bayesian networks. We have defined some concepts that relate to BNs.
We compared Bayesian networks with the other models such as regression models. We
explained in detail the two key phases in constructing Bayesian networks from data which
are parameter learning and structure learning. We described the R package “bnlearn”
which is used to learn about the structure of the network and make inference about the
parameters using both frequentist and Bayesian analyses. We explained two algorithms
that can be used to construct Bayesian networks, the Grow-Shrink and the Hill-Climbing
algorithms and we gave a motivational example to apply these algorithms. We talked in
brief about different sorts of Bayesian networks. We demonstrated the use of MCMC to
select Bayesian network structure in order to choose the most likely configuration in terms
of the posterior probability. This method can reduce the number of nodes or edges and
that led to making the calculation for the network simpler than for the fully connected
network. We applied this method to the non-Hodgkin lymphoma example and obtained

the new proposed configuration.
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Survival analysis

5.1 Introduction

In this chapter, we explain some basic features of survival analysis and some important
definitions that are related to our work. Generally speaking, in survival, we regard the
starting point as “fixed” and we observe the time until some end point. For example,
birth to death, time from cancer remission to recurrence and the time from first heart
attack to second. An important aspect for this type of analysis is censoring. For more
details, see Clark et al. (2003); Aalen (2008); Collett (2015); Ibrahim et al. (2001); Cox
and Oakes (1984); Moore (2016).

In Section 5.2, we give a short outline of the general background of survival models
including some features of those models and the important definitions that we need to deal
with that type of data. In Section 5.3, we explain some important features that relate to
survival analysis. We give a general overview of the most common survival models which
for example allow the hazard function to be related to some predictive variables. These
kinds of models include proportional hazard models which we illustrate in Section 5.5. In
Section 5.6, we explain prognostic indices and how we can calculate an index based on a
survival analysis. In Section 5.7, we demonstrate with details the most familiar parametric
models in survival analysis, such as the exponential and Weibull distributions. In Section
5.8, we refer to using Bayesian inference in survival analysis using MCMC techniques to
make inference about the coefficients of the covariates in the model. In Section 5.9, we
use Bayesian survival analysis and particularly a R package called rjags with the model

specification to make inference about the coefficients and apply that to the leukemia data
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set and show some results.

5.2 General background on survival analysis

There are some reasons why the survival models are different from standard regression
models. The main reason is that survival distributions are restricted to (0,00) and typ-
ically not symmetric but are positively skewed while often, in other regression models
we assume that the data follow the Gaussian distribution. Moreover, survival data often
include censored observations. There are two possibilities to deal with this sort of data.
First, we can resolve the problem of asymmetry in survival data by transforming the data
using, for example a logarithmic transformation and secondly, we can adopt other suitable

distributions that fit the survival data such as the exponential and Weibull distributions.

5.3 Some important aspects of survival data

5.3.1 Censored time

Let T be the time from a well-defined point known as the starting point until the oc-
currence of an event of interest. Then we refer to T as either a survival or failure time.
These survival times are often censored and it is known as a censored time C. There are

three common types of censoring in survival analysis.

Right censoring (happening frequently in survival analysis) occurs when we do not
observe T but know that (T" > C'). It might occur often for different reasons, such as
the patient is still alive after the study ends or failure to keep in contact with him/her

because he/she moved to another country.

Left censoring (less common than right censoring in survival) occurs when we do not
observe T' but we know that the event occurred before a particular time (recruitment)
(T < C). For example, suppose that a study was conducted to investigate the time to
tumour recurrence following surgical resection of the original tumour from its primary
site. During periodic six-month surveillance to detect tumour recurrence, certain patients
were found to be positive for new tumour masses at the original or metastatic sites. Since
such recurrence might have occurred before the patients attended the follow-up sessions,

their actual recurrence time should therefore be less than six months. See Collett (2015).
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Interval censoring was explained in depth in Zhang and Sun (2010). It occurs when
T is known to lie between two times C; and Cy, (C; < T < Cs5) but the precise value is
unknown. This type of censoring is more unusual in survival data. For methods to deal
with these data, see Andreas (2011).

5.3.2 Independent and non-informative censoring

There are a large number of statistical methods that use failure time data with the
assumption that the censoring is noninformative of the failure time. This means that the
observation that the patient is censored at time ¢, can tell us only that T' > c¢. Suppose
that we have the possible censoring time C}, so the noninformative censoring can be
achieved by saying that C; is independent of T}, i = 1,2, ...,n. So if we have a group of
patients who have the same values of prognostic variables, the patient that has a censored
survival time ¢, should be considered as representative of all other patients in that group
who survive to time c¢. See Collett (2015); Klein and Moeschberger (2005); Kalbfleisch
and Prentice (2011) for more detail.

5.4 Survival function, hazard function and cumula-

tive hazard function

Let T; be the survival time which is measured from the start date, for example the date

of the diagnosis of patient 7. The lifetime distribution function is

Fi(t) = Pr(T; < 1).

The survival function is
Si(t) =Pr(T; > t) =1— Fi(t)

which represents the probability that patient ¢ will survive at least until time t. Notice

that, since 7' is non-negative, therefore, S;(0) = 1 and tli)m S;(t) = 0.
The lifetime probability density function is

(0 = A1)
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The hazard function, sometimes known as the “instantaneous failure (death) rate”, is

_ i)
0= 5w

(5.1)

We can specify the relationship between the hazard function and the survival function

in (5.1). We can rewrite it as

=50 = 50 s
So . g
m@:ém@mz—éé%mz—m&u
Hence,

Si(t) = expl—Hi(t)]

where H;(t) is the cumulative hazard function, which measures the sum of the risks that

the patients face between 0 and ¢.

5.5 Survival models

5.5.1 Proportional hazard models

In survival analysis, we might be interested in building models which allow the hazard
function to be related to some explanatory or predictive variables. Therefore, the hazard
function h,(t) depends upon the values of the variables that we measured or observed for
the patient 7. For instance, if we have three variables, (X1, Xs, X3), the values taken for
patient ¢ are, (z;1,%;2,%;3). If X3 is the age in years of the patient at diagnosis, so for

patient 7, we might have x; 3 = 65.

The proportional hazard model was suggested by Cox (1972). It is a regression model
which is commonly use in medical research to investigate the relationship between the
survival time for patients and one or more predictive variables. The proportional hazard
assumption is very common in survival data analysis. Although the Cox regression model
involves a semi-parametric model, we can also have a parametric proportional hazards

model. This model can be formulated as follows. Suppose we have values of the variables
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(i1, Ti2, ..., Tip) taken from the patient at diagnosis. Then the hazard of death of patients
at a specific time depends upon (z; 1, ; 2, ..., ;). We can write the proportional hazard

model as
hi(t) = ho(t) exp(n;)

where hg(t) is the baseline hazard which is the same for all patients and 7; is a linear

predictor (combination) of the p explanatory variables in z; where z; = (z;1, ..., zi,) . So,
ni = Bo + Prxig + Boxio + -+ BpTip

The linear predictor n; is also called the risk score or prognostic index of the patient 7.
The coefficients (fy, ..., 5,) have unknown values and we use our data to make inference

about these values.

Suppose we have two patients ¢ and j, who have different x—values. Therefore, the

hazard function for patient 7 is
hi(t) = ho(t) exp(Brxin + Boxio + -+ - + BpXip)
and, the hazard function for patient j is

hj(t) = ho(t) exp(Brxj1 + Bajo + - + Bpzjp).

As a result, the ratio of hazards for patients ¢ and j is

hi(t)  ho(t) exp(Brizin + Boxio + -+ + Bpip)
hi(t)  ho(t) exp(Bixjan + Baxjo + -+ + Bpxjp)

_ exp(B1zia + Pazio + -+ + BpTip)
exp(B1wj1 + oty + -+ Bpxjp)

= exp(Bi[min — ] + Bolwin — 20 + -+ Bplzip — T5p)) (5.2)

Based on (5.2), it is obvious that h;(t)/h;(t) does not depend on t.

In order to use a parametric hazard model, we should give ho(t) a particular functional
form which may involve one or more unknown parameters. For example, if we use a
Weibull distribution, then the hazard function is

hi (t) = ’Y)\it’y_l
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where \; = exp(n;) and where 0, = Sy + Sixi1 + -+ + Bpxip and Py, ..., B, and v are

unknown parameters.

Directed acyclic graphs (DAGs) are a very attractive and flexible way to represent the
(in)dependence relationships between the variables in the model. Figure 5.1, shows the
case when we know all the values of the parameters in the survival model (the coefficients
of the predictive variables and any other unknown parameters). The lifetime variable T is
stochastically dependent on the linear predictor » which in turn depends deterministically
upon the predictive variables (Xi, Xs,---,X,). The double ring around 7 indicates that

it has deterministic dependence on its parents.

@
()
oNOoRO

Figure 5.1: Basic survival model

5.5.2 Piecewise constant hazard model

We will use a piecewise constant hazard model for the leukaemia data later in Chapter
7 to illustrate Bayes linear kinematics. We are interested in making inferences about
the model parameters using different methods such as full Bayes and non-conjugate prior

methods.

We can define a piecewise constant hazard model (PCH) as a model in which the time
is divided into disjoint intervals, and then we specify a constant hazard in each interval.

However, those hazards are allowed to be different from interval to interval.

So, we choose fixed time points sg, s1, ..., Sg, where sg = 0 and s — oo. We can also
define the k** interval as [sk—1,5k). Therefore, the baseline hazard function for interval
Sp—1 <t < s will be

ho(t) = Aok
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and the hazard function for patient ¢ is

hl(t) = )\i,k = ¢i7k)\0,k = eni,k.

’

where 7; , = ggék is the linear predictor, z; = (1,21, ..., 7;) and B, = (Br.oy -+ Br.a)
As a result, the integrated hazard function H;(t) = f5 hi(2)dz will be as follows

Hi(t) = Z i (Sr — 8p21) + Xig(t — sk-1),

r:s<t
forr=(1,....,k—1).
Now, we can write the survival function and the probability density function for patient
¢ at time s, <t < sy conditioning on 1" > s, respectively as

Sz(t | T Z 8]671) = exp[—)\@k(t — Sk,1>],

and
[it | T > sp—1) = Aipexp[—Nig(t — Sp—1)]-

If we fix 5 for all kK and k =1, ..., K then this is a proportional hazards model.

5.5.3 Accelerated failure time model

An accelerated failure time or accelerated life model is the same as the usual linear
regression models except that the response variable in the accelerated failure model is
just the log of the survival times. See Zhou (2015); Wei (1992).

This model has a survival function which differs from the survival function in a pro-
portional hazard model. In a proportional hazard model, we scale the hazard function

while, in an accelerated life model, we scale time in the following method.

Suppose that we have the base line survival function Sy(¢). Then we assume that the

survival function for patient ¢ takes the form
Si(t) = So(Git)

where (; is a positive constant called the acceleration factor for patient ¢. Therefore, we

can make (; depend on the covariates for each patient. So, in order to specify the model
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we need to specify the baseline Sy and constants ;. We set log((;) = n; = Bo + frxia +

-+« + Bpx;p, where x4, ..., x;, are the covariate values for patient <.

5.6 Prognostic index

5.6.1 Introduction

We use prognostic indices to predict the outcome in patients with a certain disease. The
value of the prognostic index depends on the clinical information about patients. A
prognostic index can be useful to make a decision about the appropriate treatment for
the patients. Henderson et al. (2001) mentioned the significance of using the prognostic
indices in different situations. These included its use in the selection of treatments by
clinicians, especially for a fatal disease, and its importance for the patients and their
families to know and think about the future scenario in the remaining years for their

patients by supporting and giving them the hope for the best in their lives.

The prognostic index is defined mathematically as a linear predictor based on the
explanatory variables in the model. In a proportional hazards model, the prognostic index
of patient 7 represents the logarithm of the multiplier of the hazard function of patient <.
(i.e., if h; is the hazard function, then h;(t) = ho(t)e, where ho(t) is the baseline hazard,
so the prognostic index 7; = log[h;(t)/ho(t)]. A greater value for it corresponds to worse

prognosis.

5.6.2 Computing the prognostic index

A prognostic index is an index of the prediction of the survival time for the patients
with a certain disease. In order to calculate this index, we might fit one of the survival
models, say a Weibull distribution. Suppose that we have a survival lifetime distribution,
T; ~ Weibull(a, €7), where « is the shape parameter in the model and \; = €” is the scale
parameter. So, 7; = log();) is the prognostic index for patient i, where (1 = 1,2,...,n).

We can write the prognostic index in the following way

J
n; = Bo + Z Bit; ; (5.3)

J=1
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where (8o, b1, . .., Bs) are the regression coefficients of interest and z; ; are the covariates

in the model.

Given a set of data on past patients, we can find the posterior distribution of the
coefficients Sy, £, ..., 8. Since the index 7 is linear in these coefficients, the predictive
mean of n for a new patient with given covariate values can be found using the posterior

means of 3y, ..., 5.

To make the index more interpretable for users, we can convert it to a [0, 100] scale.
If we have a large data set of past patients from the same or a similar population, we
can compute the index for all patients in this data set. Then, if these past index values,

™) and the values for a new patient is 7*, we base a

in increasing order, are 77(1), ...,17(
transformed index on the rank within this data set I = 100[R(n*) + 0.5]/(n + 1) where

R(n*) = max(j : n¥) < n*) where n® — —oo and n("*) — oc.

Alternatively, if the distribution of past n values is approximately normal, perhaps
after transformation, we might find the sample mean m, and sample standard deviation
S, and calculate I = 1009 ([n* —m,]/S,), where ®() is the standard normal cumulative

distribution function.

5.7 Parametric models in survival analysis

5.7.1 Exponential survival model

The exponential distribution has an aspect that its hazard function does not depend on t.
It is a special case of the Weibull distribution. Suppose we have observations (¢y, ta, ..., tn)/
which are independent and identically distributed (i.i.d.) from the survival model. This
model is an exponential model with one parameter A which has the probability density
function, f(t; | A) = Ae i, Let (61,0, ...,0,) be the censoring indicators, where d; = 0
if ¢; is a censored observation and d; = 1 if ¢; is a survival time observation. The survival
function for an exponential distribution is S(t; | A) = e . The hazard function is
flti| X)) Ae M

h(ti | )‘) = S(tz ’ )\) - et =A

The likelihood for patients ¢ = 1,...,n with death or right censoring times t¢q,...,%,
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then takes the form

n

L(0, D) = [TLfi(t)]" [Silt)] (5:4)

i=1
where 9; = 1 for a patient whose death time ¢; is observed and §; = 0 if the lifetime is

censored at time ¢;.
We can rewrite the likelihood function in (5.4) as

n

L(0, D) = H[hi(ti)]‘” [Si(t:)] (5.5)

— \" e—)\nf

where ng = > §; and nt = 3. ¢;.
=1 =1

5.7.2 Weibull survival model

We will use a Weibull model with Bayes linear kinematics in a Bayes linear kinematic

prognostic network in Chapter 7.

The Weibull distribution has an additional parameter, «, called the shape parameter.

The survival function for a Weibull distribution is

S(t; | A) = exp(—At?).

Therefore the probability density function is
F(ts | X) = Mo~ exp(—\t?),
and the hazard function is

h(t; | A) = axt* L.
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5.8 Bayesian inference in survival analysis

5.8.1 Introduction

There is literature that deals with using frequentist methods in survival analysis. However,
we are interested in this thesis to use Bayesian methods such as MCMC method. We can
also use Bayesian inference in survival analysis in order to make some inferences about
the unknown parameters in the model. We can fit different sorts of models in survival
such as exponential, Weibull and Weibull mixture models, etc. We use rjags to fit
all these models with different types of data sets such as the non-Hodgkin lymphoma
data and leukemia data. In the following sections we illustrate how we can find the
posterior distribution for the parameters of interest using Bayesian methodology. For

further information, see, for example, Ibrahim et al. (2001).

5.8.2 Bayesian analysis for exponential lifetime distribution

The likelihood function for the exponential distribution is given by (5.5).

The conjugate prior for \ is a gamma density with two parameters. The first parameter

« is called the shape parameter and the second parameter [ is called the rate parameter.
The prior density is

T\ |, B) oc X Le™ (5.6)

Hence, combining the prior density and the likelihood in (5.5) and (5.6) respectively,

we obtain the posterior density as follows
m(A[t,6,a, ) ccm(A| e, B)L(A [ 2,0)

“A(B+>t:)
=1

T\ t,8,a, B) oc X*T47 e (5.7)

Based on (5.7), the posterior density is a gamma (a1, 1) distribution, where oy = av+d

n
and 1 = 0+ > t;. The posterior mean and posterior variance are given respectively as
i=1

oa+d

E1(>\ ’ t,é,O@B) = =
b+ ;ti
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and
a+d

Varl()\ ‘ t757a76) =
B+ 31

Likewise, in order to calculate the posterior predictive density of a future observation

tf, we have

Ftr | t.6,0,5) = /0°° £ty | NrN | 46, a, B)dA

where f(t; | \) = Ae 7. Therefore, the posterior predictive density is

(B + 3 ti)otd . ABEY 1)
1t 6 = / Ae s \artd=1 S
f( f ’ 9 76(7 ﬁ) F(Oé + d) 0 € € !

B+ Z; ti)a+d oo \o+d —A(,3+Zn: ti+tf)d)\
= @ i=1
I'la+d) /0 ‘

(B + 32 ta)e __ Ta+dt)

I'(a+d) (5+ iti+tf>a+d+l
=1

B+ i t;)te

= (a+d) x D atd+l
(B+ Tt tr)

—(a+d
) (5.8)

o<(6+;ti+tf

where (5.8) represents the kernel of the posterior predictive density when ¢; > 0.

5.8.3 Bayesian analysis for Weibull lifetime distribution

Suppose X is a design matrix with dimension n x (j + 1) where the i** row of X indicates
the covariate values of patient ¢, X; = (1,21, %2, ...,%;;), n is the number of patients
and j is the number of covariates that are used in the model. Let T" be the survival times,
T = (t1,ty,...,1,). The censoring indicator §; (as in Section 5.8), represents whether a

patient’s death time ¢; is observed or right censored.

Suppose that the lifetime random variable 7" has a Weibull distribution with two
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parameters (v, A) and the data we use are subject to right censoring. Therefore, the

probability density function for a patient ¢ is given by
Fti | M) = Avt]exp(—At)).

Let the number of patients whose death time t; is observed be ng and the number of
patients who had right censoring be n.. The scale parameter \; of a patient 7 depends on
the covariates,

A = exp(n;) = exp(;3)

where 8 = (8o, 1, .- ﬁp)/, Bo is the intercept and f; is the regression coefficient for the

4t covariate.

The linear predictor n; for the i** patient is given by
p
ni = Bo+ Prxig + -+ BpTip = Po + Z Bz
j=1
So the survival function for the i** patient is

The likelihood function for the observed and censored data is written as

L= [Hfi(ti | /\iﬁ)] [Hsi(ti | /\“7)]

1€d i€Ec
= [H )\i’}/t?_ll [H exp(—)\it?)]
ied Vi
i€d i€dUc

where ¢ and d are sets representing the censoring and the observed times respectively.

Then the log likelihood function is

> {log)\l- + (v — 1)10gtz} + nglogy — Y Nit].

i€d i=1

To apply Bayesian inference, we need the prior density for the unknown parameters.
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In this case, suppose that v and A have independent prior distribution.

Our prior distribution for the regression coefficient § will have a multivariate normal
prior distribution 8 ~ Npi1(p, V) and we use a gamma prior distribution for . The

multivariate normal prior density is
1 /
(2m)PHO2 |12 eXP{ ~5|(B= VB~ ) }

Here p is the prior mean vector p = (po, 1, ..., ,up)' and V is a covariance matrix with
dimension (p+ 1) x (p + 1).

Suppose v ~ Gamma(a, b), so the prior density will be

a
a

m(y | a,b) = @’ ~exp(—b7)

a

o ¥ exp(—b).

The joint posterior density for v and 5 is given by
m(v, 8| D) < w(y,8)L(v,8 | D).

So

n

7(7y, B | D) ocy®t ™ exp { Z {5@;6 +0;(y— 1) logt; — t] exp(a:;ﬁ)}
. =1 (5.9)
~by = (B V(B - u)}

We notice that (5.9) does not have a closed form, so there is need for numerical
integration or MCMC methods. As a result, a Metropolis-Hastings algorithm should be
used to evaluate the posterior distribution for v and . See Consul (2016).

5.8.4 Example: inference about the two parameters of Weibull

distribution in the non-Hodgkin lymphoma example

In this Bayesian analysis for the Weibull distribution, we use a Metropolis-within-Gibbs

algorithm and apply it to the non-Hodgkin lymphoma data.

Suppose the random variable 7" has a Weibull distribution with two parameters o and
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A. Then the likelihood function will be
L= (aX)™exp |(a—1)) 6 log(ti)] exp [—)\ th‘]
i=1 i=1
where 6; is the event indicator. Let t = (1, ...,t,) and § = (61, ...,5,)".

Now, in order to make inference about o and A, we need to specify the prior for the two
quantities. So, we suppose that a and A are independent. In addition, & ~ Gamma(a, b)

and A ~ Gamma(r, s).
Therefore, the posterior distribution will be
(o, AlL, 8) o w(a)w(A) L

o< a®"texp[—ba] N exp[—sA] (aX)"exp |(a— 1)) log(ti)] exp [—/\ > ot

i=1 i=1
Then the full conditional distribution (FCD) of « is

(o, Alt, 9)
m(Alt, 0)

x m(a, Alt, )

o q@tna—l exp[—ba] exp [(az —1) zn: 0; log(ti)l exp l—)\ Xnit?]

i=1 =1

W(CY|)\7L é) -

and the FCD of ) is

T(Ma, t,8) oc AT Lexp [—)\ (Z & + s)]
i=1

Now, suppose, for example, we fix a. Then the posterior distribution m(\|a,t,d) ~
Gamma(r + ng, Y0, t& + ).

We notice that, the posterior distribution of A has a closed form. However, the poste-
rior distribution of o does not have a closed form, so we can use MCMC methods to draw
samples from that distribution using a Metropolis within Gibbs algorithm. A R function

is written in Appendix A.5.1 to generate samples from the posterior distribution of o and
A

To sample « in this case, we have to use a proposal distribution of a, say a* ~ N(«, 02)
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with acceptance probability A where

_ 7oA L9)
— w(al\ L, 6)
o latna)—1 eXp[—bOC*] €xp [(Oé* - 1) o1 0 log(ti)] exXp [_)‘ > t?*}

astna=lexp[—ba]exp [(a — 1) X0, §; log(t;)] exp [ A D1 t9]

The results in Figure 5.2 show that our samples for both parameters using Metropolis

with Gibbs algorithm are mixing well and the chains converged.
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Figure 5.2: Trace plots, the autocorrelation plots and posterior densities for o and A.

5.9 Bayesian survival analysis using rjags

5.9.1 Introduction

In this section, we explain how to fit a lifetime distribution using rjags. The MCMC
algorithm uses data augmentation (see Section 3.9) to deal with censored lifetimes. The

censored lifetimes are sampled at each iteration of the Gibbs sampler. While, in this case,
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this is less computationally efficient than writing code to evaluate the exact likelihood, it

is convenient especially in more complicated models.

5.9.2 Leukaemia example

As an example we use the leukemia data set, and an exponential distribution for the
lifetime 7;. So
T; ~ exp(N\;)

where i = 1, ..., n. Therefore, the probability density function (pdf) for the lifetime distri-
bution 7; is

Fti]N) = e i,

The data were collected by North-West Leukemia Register in the UK for n = 1043
patients from 1982 to 1998. These are right censored data where 879 patients died and
164 were censored. The variable of interest in this study is the time in days until a patient

dies.
There are four covariates in this study. See Section 2.3.2. We code them as follows.
1. The age, A; in years of patient i. We define z;; = A; — 60.

2. The sex of the patient. We have, x;5 = —1 if the patient is female and x;, = 1 if the

patient is male.

3. White blood cell count (WBC) W; at the time of diagnosis with 1 unit= 50 x 10%/I.
We use x;3 = W; — 8.

4. The Townsend score, used directly as the covariate x;4.

The time for patient 7 is ¢; and the event indicator is §; where §; = 1 if it is an observed

death time and §; = 0 if it is a censoring time.

5.9.3 Model specification for leukemia data

The model specification for the exponential survival time for the leukemia data has been

written in rjags in Appendix A.5.2.
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We have then 4 coefficients in this model, 3 = (Bo, B, Bas B, Ba)', where f3y is the
intercept, (1 is the coefficient of age , 35 is the coefficient of sex, (3 is the coefficient of
wbc and (3, is the coefficient of the deprivation score in our model. These coefficients are
given independent normal prior distributions. The prior means, prior standard deviations,

posterior means and posterior standard deviations are given in Table 5.1. The likelihood
is given in (5.4) and (5.5).

5.9.4 Results

We fitted the exponential survival model to the leukemia data set with 100000 iterations

and two chains. Figure 5.3 shows the trace plots and the densities for the coefficients.

Table 5.1 shows the posterior means and standard deviation for these coefficients. We
can say that all the coefficients in this model show good mixing. Therefore, the local

averages of all ﬁ - (607 Bagm Bsem Bwbm 5depsco're>, in the chains are roughly constant.

Prior Posterior
Parameter | Mean | SD | Mean | SD
o -6.90 | 0.12 [-6.52 | 0.048
Bage 0.040 | 0.030 | 0.039 | 0.002
Bsex 0.050 | 0.150 | 0.148 | 0.061
Bube 0.080 | 0.173 | 0.004 | 0.001
Baepscore 0.120 | 0.110 | 0.021 | 0.009

Table 5.1: Prior and posterior means and standard deviations for each of the coefficients in the
exponential survival model.

Now, suppose we consider new patients. That means we are interested in plotting the
survival function for these particular patients, for example, male and age 63, etc. There-
fore, we have X\ for that patient denoted A\*. If the posterior median for A* is A\*, and the
lower and upper limits of the 95% interval are \j 1,5 and Af 475 respectively, then the cor-
responding quantities for the survival probability at time ¢ are exp(—A}t), exp(—A§ ga5t)
and exp(—A§ g75t). These are plotted against ¢ in Figure 5.4. We apply this technique
with eight different patients. The values of the covariates for each patient are presented
in Table 5.2.

Figure 5.4 shows the predictive survival probability for these patients. For instance,
we use the patients 1 and 2 in Table 5.2 to produce the graph on the top left of Figure
5.4 and we use patients 3 and 4 in the Table 5.2 to produce the graph on the top right
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Patient | Age | Sex WBC | Deprivation
63 male 6.8 2.02

63 female | 197 7.66

61 male 13.3 -1.96

83 female | 160 -2.59

48 male 1.4 -1.7

87 female | 1.4 -3.47

61 male 3.8 4.35

84 female | 30.5 4.35

O U = W N~

Table 5.2: Eight different new patients in the leukaemia example.

of Figure 5.4, etc. We notice that we have narrow credible intervals. See Appendix A.5.3

for the rjags code.
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Figure 5.4: Predictive survival probability for eight different patients in the leukemia example.
Top left: Patient 1 (blue) and patient 2 (pink). Top right: Patient 3 (blue) and patient 4 (pink).
Bottom left: Patient 5 (blue) and patient 6 (pink). Bottom right: Patient 7 (blue) and patient
8 (pink).
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5.10 Summary

We have given general background information on survival analysis in this chapter. We
illustrated some useful model that relate the survival lifetime distribution to some co-
variates in the model. These models are proportional hazard models, piecewise constant
hazard model and accelerated failure time model. We discussed prognostic indices which
are used to predict the outcome in patients with a certain disease. We showed for ex-
ample, how to calculate this index by fitting the Weibull lifetime distribution. In this
chapter, we demonstrated how we can calculate the posterior distribution for the param-
eters in the survival analysis for exponential and Weibull distributions. We used rjags
to compute all the posterior means and variances for the parameters of interest in the
model. We showed some results and graphs which show that the sampler mixed well and
the chains converged. We found that for different new patients in the leukaemia example,

we predicted the survival probability with narrow credible intervals.
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Bayes linear kinematics and Bayes

linear Bayes graphical models

6.1 Introduction

In Chapter 7, we will describe some novel applications of Bayes linear kinematics to
survival data. In this chapter we describe and illustrate Bayes linear methods which
are the basis for Bayes linear kinematics. We then describe and illustrate Bayes linear
kinematics and Bayes linear Bayes models and introduce some novel developments of the

theory.

In Bayesian analysis, we need to specify the prior distribution as our prior beliefs.
Therefore, we need to specify our prior distribution with uncertainty and that can be
expressed using probability. After observing some data, we calculate the likelihood func-
tion and finally, compute the posterior density which is proportional to the prior density,
multiplied by the likelihood. With many dimensions in our analysis, probably, we need
intensive calculations in order to obtain the results and so we depend on numerical integra-
tion methods. One common method that is used in many different fields is Markov chain
Monte Carlo (MCMC), which requires intensive and often time-consuming calculations.
However, the Bayes linear kinematics (BLK) method can obtain the results faster than
MCMC. Furthermore, the BLK method depends only on a second order prior specifica-
tion, which does not require any assumption about artificial probability distributions. In
this chapter, we explain Bayes linear methods in Section 6.2. In Section 6.3, we describe

the methods of Bayes linear kinematics. We introduce a novel feature which is the use of
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non-conjugate marginal updates in Section 6.7, so we can compute the posterior moments.
In Section 6.10, we consider some special types of observational variables, especially those
which may be relevant to our prognostic index application. Finally, we give some theory
about the BLK direct and BLK indirect methods which we shall use later in Chapter 7.

6.2 Bayes linear methods

6.2.1 Basic theory

In the standard Bayesian paradigm, we should specify the full joint prior distribution
for all unknown quantities. By using Bayes’ theorem, we update our prior beliefs by
conditioning on the observations and then calculating the posterior distributions. A Bayes
linear analysis is distinct from the full Bayesian approach in that we only need to specify
the first and the second-order moments for the prior and then calculate posterior moments.
For instance, if we have a random quantity X then we specify the prior expectation and
variance of X respectively as follows Ey(X) and Varg(X). Furthermore, for two quantities

X, and X,, we also need to specify a prior covariance Covy(Xy, Xs).

Suppose that we have two vectors a = (ay, ..., ozp)/ and 8 = (B4, ..., B) where a is the
observed quantities and [ is the inferential quantities. Assume that we have made a full
second-order prior specification for the set A = a U . Bayes linear methods (Goldstein
and Wooff, 2007) suggest a way to update beliefs about 3 by a linear fitting on « which

can be done using the Bayes linear updating equations for 5 | a

E(8) = Eo(B) + Covo(8, @) Varg " (a)[e — Eg ()]

(6.1)
Var; () = Varg(3) — Covy(f, a)Varal(a)Covo(a, B)

where E;(3) and Var;(f) are the adjusted expectation and adjusted variance for g | a.

Alternatively, we can express the relationship as
B =Eo(B) + Hya|a — Eo(a)] + Upa (6.2)

where Hp), = Covo(3, @) Var, ' () and the random vector Ug), has mean zero and variance
Var(Ug|a) = Varg(8) — Covy(3, ) Vary ' (o) Covo(a, B).

If Varg(«) is not invertible, we need to use a suitable generalised inverse, for instance
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a Moore-Penrose inverse. The idea of using a Moore-Penrose inverse was introduced by
Moore and Barnard (1935) and Penrose (1955) to obtain the inverse of the matrix even
when the matrix is rectangular or singular. So, this sort of inverse can be defined using

the following four properties in the definition

Definition The Moore—Penrose inverse of the p x n matrix V' is the n x p matrix
which is denoted by V' and that satisfies the conditions

VVity =V,

VvVt =V,
(Vvh =vv,
VTVY = VTV

Schott (2016) mentioned that this Moore—Penrose inverse has one important aspect
that can distinguish it from other generalised inverses. He showed that the Moore-Penrose

inverse is uniquely defined.

6.2.2 Bayes linear adjusted expectation

Suppose that we are interested in an unknown quantity 6. Our prior expectation for
is Eo(0). We observe a collection of data y = (y1,9s,--.,¥s) . Consider that E(0 | y),
our adjusted expectation of 0, is a linear function of the observed data y which can be

represented as
E(O|y)=a+ By + Baya + - + Bayn

We choose «a, 5y, (o, ..., B, in order to minimise the following quantity

E[(Q —a—fiyr — Paya — 0 — Bnyn)Q}

So, the adjusted expectation for 6 |y is E(0 | y).

Now, let A =a+ (Y. To find the constant o and the vector 5, we need to minimise

the loss function as follows
L=E[(0-A)]
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Hence, we can write A as

A=a+fY =a+ Y —EY)+E(Y)] =a+8EY)+ Y - E(Y)
="+ 3y —E(Y)]

where o = a + S'E(Y).

Now,
E[(e - A)2] = [E(0 — A)]" + Var(6 - A)

= lE(@ —a* =AY - E(Y)])] + Var(§ — a* — BY — E(Y)))

(Eo(0) — o) + Var(6 — BY).

If we choose Ey() = a* then the first term will be zero. We need to differentiate the

second term with respect to 3.

aaﬁvar(e ~68Y) = ;ﬁ Var(6) + 5 Var(Y)3 — 2Cov(6,Y)S

= 28 Var(Y) — 2Cov(6,Y)

Equating this to 0, we obtain 3 = Cov(#,Y)Var~(Y). The adjusted expectation of
|y is
A=+ Y = E(Y)]

where o* = Ey(0) and 5 = Cov(,Y)Var—*(Y). Hence,

A =E;(0) = Eo(0) + Cov(8, Y)Var *(Y)[Y — E(Y)].

6.2.3 Bayes linear adjusted variance

In this subsection, we illustrate the derivation of the adjusted variance in Bayes linear
analysis. This adjusted variance can be obtained from the error terms from the Bayes
linear fit R(Y|D), where D = (D, ..., D,)" represents the subset of the values that have

been observed.
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Therefore,
R(Y|D)=Y — E(Y|D)

where E(Y|D) = E(Y) 4+ Cov(Y, D)Var ' (D)[D — E(D)]. The adjusted quantity also has
two important properties:
ER(YI|D)] =0

and
Cov [R(Y|D),E(Y|D)] = 0.

Hence, we can write Y = R(Y|D) + E(Y|D), so that

Var(Y') = Var(R[Y'|D]) + Var(E[Y|D]).

We also have

Var(Y|D) = Var(R[Y|D]) = E|(Y — E[Y|D))?.

To evaluate Var(Y'|D), we need to specify our prior variances and covariances so that

Var(Y|D) = Var(Y) — Cov(Y, D)Var—'(D)Cov(D,Y). (6.3)

For more detail, see Goldstein and Wooff (2007).

6.2.4 Bayes linear approach: motivational example and compar-

ison with full-Bayes analysis

Suppose we have a simple linear regression model, y; = £y + f12; + €;. Suppose that we
want to predict the height (V') in inches of a student from the student’s shoe size (X) using
this relationship. Suppose that we have collected some data (yi1,21), (Y2, %2), -, (Yn, Tn)

from a class of students. Therefore, we can write the regression model in terms of

1 T
1

X =, x_Q and B = Fo ,
Do B o
1 =z,
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So, we can write our linear regression model in matrix form
Y=XB+¢

where X represents the design matrix, 3 refers to the parameters in the model and the

error term € ~ N(0,0?). We assume that o2 is known.
We have
E(Y) = XE(B)
and
Var(Y) = XVar(8) X' + Var(e)
To apply Bayes theorem, we need to specify our prior distribution.

Suppose that our prior beliefs are such that

E(fo)

Eo(ﬁ) = E(Bl)

_|55.6667
| 1.6667

and

Varo() = | ) COV(ﬂo,ﬂl)] _ [36.5 _4]

Cov(fy, f1)  Var(p) —4 0.5

and it is known that o2 = 2.

We can update our beliefs about 5y and [; after observing some data, in this case
n = 52 students. The data are shown in Figure 6.1. Bayes theorem is used to update

these beliefs and the posterior distribution is calculated.

The posterior mean vector and the posterior variance matrix are summarised respec-

tively as follows:

E(8ly) =

E(50|y)] B {55.7072]

E(Bly)| | 1.5972

and

Var(Bly) =

Var(5oly) — Cov(fBo, Bily)| | 0.7122  —0.0848
Cov(Bo, Bily)  Var(Bily) | |—0.0848 0.0107 |

Now to do Bayes linear method, we start with the Bayes linear equations

E*(Bly) = Eo(8) + Covo (B, y)Vary ' (y)[y — Eo(y)]
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Figure 6.1: Plot of shoe-size and height data.

and
Var*(8ly) = Varg(53) — Covo(8, y) Vary ' (y)Covo(y, B).

In order to calculate the posterior moments [E*(5|y), Var®(8ly)] in a Bayes linear

approach, we have to specify our partial prior belief about .

We use the same prior mean and prior variance as in the full-Bayes analysis,

Hence,
Eo(Y) = XE(5)
where,
1 7.0
1 10.0 55.667
X = and E = .
Lo o(8) [1.667]
1 7.0

We also have Covo(f3,y) = Varg(8)X  and Varg(y) = X Varg(8)X' + 021, where, I,

is the identity matrix with dimension 52x52.

Substituting all of this information into the Bayes linear equations we obtain posterior
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moments as follows

E*(8ly) = [55.7072]

1.5972

and

Var® =
(Bly) [—0.0848 0.0107

0.7122 —0.0848]
As we can see from the results that we have obtained from applying Bayes analysis
and from using Bayes linear method are exactly the same for the posterior mean vector

and posterior variance and covariance matrix for 3. For further information, see Appendix

A.6.1.

6.3 Bayes linear kinematics

6.3.1 Probability kinematics

Jeffrey (1965) supplied a method known as probability kinematics for revising a proba-

bility specification which depends on new probabilities over a partition.

Suppose that we have a partition K = (K, ..., K,) and corresponding probabilities
Pro(K;) = p; and > ; p; = 1. Suppose that we have obtained some information which
can cause us to update our probabilities of these events to Pry(Kj), ..., Pri(K,). Then we

can impose the condition that, for any future event L

Therefore, the new marginal probability of L can be found by probability kinematics
on Pry(K,),...,Pri(K,) as

Pr (L) = 3 Pro(L | Ki)Pry (K

i=1

However, successive revisions of this kind might not necessarily be commutative. There
is some good literature which addresses the condition for commutativity. See Field (1978);
Diaconis and Zabell (1982) and a simple example was given by Wilson (2011) explaining

the case when we have a lack of commutativity.
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6.3.2 Bayes linear kinematics

In a full-Bayes analysis, we need to specify the full joint prior density for all the unknown
quantities. Then our beliefs adjusted by observing the data can be represented by the

posterior distribution and we can obtain the posterior means and posterior variances.

Bayes linear kinematics is defined as a special form of Bayes linear analysis where,
instead of observing a = (a1, s, ... ,ap)/ as we mentioned in Section 6.2, we simply
update our beliefs about this set by obtaining some information. Then those changes in
our beliefs can be propagated through other unknown quantities within a Bayes linear

structure.

Named after probability kinematics proposed by Jeffrey (1965), Bayes linear kinemat-
ics was suggested by Goldstein and Shaw (2004) with the idea that, instead of observing
a directly in equation (6.1), we observe some information about another quantity / and
that changes our beliefs about « to E(a|l) and Var(a|l). Then we wish to propagate
these updates to .

In order to propagate these changes in our beliefs, we could use a full-Bayes analysis
which requires a full probabilistic specification and more intensive calculations such as
MCMC methods. However, we can use Bayes linear kinematics by adjusting the expec-
tation vector and variance matrix based on (6.2) and therefore, we can adjust our mean

and variance of A = a U [ as

Eq1(A) = Eo(A) + Covo(A, a)Vary ! a)[ all) (a)}
Var,r(A) = Varg(A) — Wo(A, o) Varg(@)Wy(A, a) + Wo(A, a)Var(a | I)Wy(A,a) (6.5)
A) — Wo(A, a) [Varg(a) — Var(a | 1)] Wy(A, a),

where Wy (A, a) = Covo(A, a)Vary ' (a). Therefore, the equations (6.5) are called Bayes
linear kinematics equations.
6.3.3 Commutativity

Now suppose we wish to make multiple updates. First we receive information I, and
that can update our beliefs about A to Q1(A; I,,), where Q1(A; I,) = [E(A|1,), Var(A|l,)]

using equations (6.5). Now afterwards, we observe some information /3 which changes
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our beliefs about A to Q2(A4; I, Iz). Again we can use Bayes linear kinematics to gain
Q2(A; 1o, 1p).

Consider the opposite case of observing the two parts of information. Firstly, we ob-
serve I3 and update our beliefs about A to Q1 (A; I3) and we apply Bayes linear kinematics
to gain 1(A; Iz). Then later we receive information I, which changes our beliefs about

a to Q2(A; Is,1,). Then we use Bayes linear kinematics to gain Q2(A4; I, I,).

Now for commutativity of these two updates we should have
Q2(A7 Iaa [ﬁ) = QQ(Aa [,37 [a>

There are some necessary and sufficient conditions for a unique commutative solution
in Bayes linear kinematic updates which were introduced by Goldstein and Shaw (2004).
In this paper, they proposed a sufficient condition which states that, if

Var(a|l,) < Varg(e) or  Var(B|Iz) < Vare(5), (6.6)

then, there is a unique commutative solution. If this condition holds, the Bayes linear

kinematic update equations can be written as

E(9)(A) = Var)(A) lVarl_l(A; I)E1(A; 1) + Vary ' (A; 1)E (A; 1)
(6.7)
- Varal(A)Eo(A)l ,

and
1

Var ) (A) = [Varll(A; I,) + Var; '(A; Is) — Varg'(A)| . (6.8)

The equations (6.7) and (6.8) give the commutative solution even if we swap the

updates in those equations.

6.3.4 Multiple updates in Bayes linear kinematics

Suppose we have n collections of random quantities, @1, ..., ), where

Qi = (Qih ceey Q'ml)l
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for e = 1,...,n. We define a full second order prior specification for ) = @; U ... U@, and
put in the expression Wy(Q) = {EO(Q), Varo(Q)} and we receive some information D; and
that changes our beliefs about @; to become W1(Q;|D;) = {El(Qi|Di),Var1(Qi|Di)}. To
obtain the Bayes linear kinematic update for ) which depends on (6.5), we have

E1(Q|D;) = Eq(Q) + Covo(Q, Q) Vary (@) [E1(Qi|D;) — Eo(Qy))] (6.9)
and

Var; (Q|D;) =Var(Q) — Covy(Q, Qi)var()_l(Qi>COV0(Qia Q)

6.10
+ COV()(Q7 Qi)Varal(QZ-)Varl(Q¢|Di)Varal(Qi)Covo(Qi, Q) ( )

These Bayes linear kinematic changes might not have a unique commutative solution.
Goldstein and Shaw (2004) give conditions to make these updates have a unique solution.

We deal with (); as scalar. Therefore, the sufficient condition will be
Varal(Qi)Varl(QADi) <1 (611)

for all i = 1,...,n. As a consequence, when the condition in (6.11) holds, the solution is

E,(Q|D) = Var,(Q|D) ZVar (QID:)E1(QID:) — (n — 1)Varg (Q)Eo(Q)|  (6.12)
and _1
Var, (Q|D) = Z\/arl (Q|D;) — (n—1)Var51(Q)] (6.13)

where D = (Dy, ..., D,)’, or alternatively we can write (6.12) and (6.13) in general in the

following form

P(X | ]) :ipxu (J — 1)P(X), (6.14)
P(X | DE(X | I) :ijpxu E(X | I,) - (J — 1)P(X)E(X). (6.15)

where, [P(X | I)]7! is the adjusted variance and E(X | I) is the adjusted expectation,
I=(I,..,1;) and P(X) = Var(X)~" is the prior precision matrix.
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D@ @@

Figure 6.2: Bayes linear Bayes graphical model with two variables

6.4 Bayes linear Bayes graphical models

A Bayes linear Bayes graphical model is a combination of fully Bayesian and Bayes linear
graphical models allowing conditioning on marginal distributions of any form and to take
advantage of Bayes linear kinematics to involve full conditional updates within Bayes
linear adjustments. See Goldstein and Shaw (2004).

In complex models, experts often make full marginal probabilistic specifications, but
they are not able to assess the full joint probability distribution for all unknown quantities
in the model. Goldstein and Shaw (2004) developed a formalism for updating their beliefs
about these quantities which depends on Bayes linear kinematics. They introduced a
directed graphical model which is a directed graph G = (V, E) where V = (X1, Xy, ..., X)
is a collection of nodes and F is a collection of edges. A Bayes graphical model is the model
when the generalised conditional independence relationship is probabilistic conditional
independence (Lauritzen, 1996; Cowell et al., 2007) and by taking second-order belief as
the generalised conditional independence, we obtain a Bayes linear graphical model. See
Goldstein and Wilkinson (2000); Goldstein and Shaw (2004).

Bayes linear Bayes graphical models are similar to Bayesian networks, where the nodes
represent the parameters in the model or the random variables, and the arrows represent
the relationships or the association between the parameters. In Bayesian networks, we
make use of the property of conditional independence between variables given other ran-
dom variables. Goldstein and Wilkinson (2000) proposed the idea of using belief separa-

tion. To demonstrate this idea, let us take the following simple example.

Suppose we have unknown quantities Xy, Xo, I, Io. We can present our beliefs about
(X1, X3) as a Bayes linear belief structure and present our beliefs about each of (X, I)
and (X3, I) as a full-Bayes specification. Figure 6.2 shows a simple way to represent the

relationships between all the unknown quantities in a Bayes linear Bayes graphical model.

We notice from Figure 6.2 that the undirected edge between the pair (X, X3) with
magenta colour represents a Bayes linear structure and the directed blue arrows refer to

the conditional distributions which have a full-Bayes specification.
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Suppose that we have multiple unknowns Xy, Xs,..., X;. Let X = (X1, X, ..., X))
First of all, we need to give the second order prior specification in terms of the expectations
and the variances of each X; and the covariance matrix between the variables. In addition,
we have variables Iy, I, ..., I; that shall be observed where the conditional distribution
of (I; | X) is specified probabilistically. Each I; is associated with an element X; of X and
is conditionally independent of the rest given X;. Then, a Bayes linear Bayes graphical
model can propagate the information using full Bayes and Bayes linear kinematics. The
mechanism is that, if we observe I;, then Bayes theorem is used to calculate the E(X; | ;)
and Var(X; | I;). These changes are passed through the rest of the network using the

Bayes linear kinematic equations in (6.5).

We can see from Figure 6.3, that we have three main conditions here.

e If we have a set of unknown quantities, say K = {Z, X1, Xo, ..., Xy, [1, 5, ..., I s},
where Z = X;,1, then the collection of quantities (Z, X1, Xs, ..., X;) has a Bayes

linear belief structure.
e We specify a full-Bayesian analysis for each (X, I;), for i = 1,2, ..., J.

e Each I; is conditionally independent of K \ {X;, I;} given Xj.

In the case where we have m = 4, a Bayes linear Bayes graphical model might be repre-

sented by Figure 6.3.

Figure 6.3: Bayes linear Bayes graphical model
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6.5 Transformation of the parameters

6.5.1 Introduction

Suppose we have some distribution with a bounded parameter such as a binomial distri-
bution, 0 < 0; < 1, (i = 1,2,...,n) or Poisson with §; > 0. We can link the parameters
0y, ...,0, using a Bayes linear structure exactly as in Section 6.4 where 6., ...,0, corre-
spond to X, ..., X,,. However, there are some benefits in using a transformation for these
parameters. For example we might use the logit function in the binomial case or log in

the Poisson case. Then the transformed parameter for a Poisson distribution will be

n: = 10g(9¢)

= (12)
n=log {14

The transformed parameters 7, ..., n, are then linked in a Bayes linear structure. After

or in the binomial case,

observing I; that changes our prior mean and variance for 7;, these changes are propagated

by using Bayes linear kinematics.

One of the reasons why we should use the transformation is that #; has a bounded
scale and this boundary makes the use of the Bayes linear method less attractive. There-
fore, doing the transformation can guarantee that we can use the linear updates without
worrying about crossing the boundary. Secondly, If the parameter is bounded between 0
and 1, that means the variance will depend on the mean and in a Bayes linear analysis the
variance should not depend on the mean. Thirdly, when we do not transform, the variance
for #; might increase when we observe the data. Transforming the parameter n; can avoid
this problem and lead to a reduction in the variance when the data have been observed.
For instance, suppose |6 ~ Poisson(d), § ~ Gamma(1,5). Hence, the variance is 1/25.
Now suppose that we observe I = 2. Therefore the posterior density will be Gamma(3, 6).
As a result, the posterior variance is (1/12) > (1/25). For more information, see Wilson
and Farrow (2010); Wilson et al. (2013); Wilson and Farrow (2017).
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6.5.2 Guide relationship

Following West et al. (1985), Wilson and Farrow (2010, 2017) use a guide relationship
to suggest how we should relate the moments of 7; to those of \;. For example, when A,
is the mean of Poisson distribution, we can use, as a guide, 7; ~ log()\;). In this case,
Wilson and Farrow (2017) discuss three methods to determine the moments of 1, given
those of \;, and vice versa. They refer to these as the log-mode method, the log-moment
method and the lognormal method. Wilson and Farrow (2017) show that, in each case, if
i ~ Ga(ay, 0;), then, for some functions hy and hg, we have E(n;) = hi(c;) — log(6;) and
Var(n;) = ha(ay).

6.5.3 Mode and log-curvature method

Once the parameters have been transformed from a bounded scale to the whole real line
we hope that the posterior distribution will be close to symmetric. However, the distribu-
tion may not be straightforward. We might choose to use a conjugate prior distribution
for the untransformed parameter, for example, a gamma distribution for a Poisson pa-
rameter. We then need to relate the hyperparameters of this distribution to moments on
the transformed scale. Wilson and Farrow (2017) discuss three methods in the Poisson
case. In this section we explain the principal idea of using one of these, the mode and
log-curvature method (“log mode”) for the transformed parameters. Suppose we obtain
the mode of the posterior distribution which can be done by finding the first derivative of
the log posterior density with respect to our parameter of interest. We will consider the
case when we have a single mode, say 7 and we fit the normal distribution based on the

second derivatives of the log posterior density at 7.

Let the transformed parameter be n = g(). Suppose

m(n | y) ~ N(#, Var(n))

where Var(n) is the inverse of the curvature of the log posterior density at the mode 7

.

This second derivative can be calculated numerically using Newton’s method as we

N L
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shall illustrate in Section 6.7.3. See Gelman et al. (2014).

We give an example explaining the method using binomial observations. Suppose we
have a random variable, Y; ~ Bin(n, 0), so 6 is restricted, 0 < # < 1. For Bayes linear
fitting, it is better to have an unrestricted range for the parameter. Therefore we use a

transformation to make sure the range of the parameter will be, —oo < 7 < oo with

= (12)
m=log (15 )

A conjugate prior for 6 is a beta density, i.e. 6; ~ Beta(a;, b;). The idea is to find

the mean of 7; which is equal to the mode of log[f;/(1 — ;)] and the variance of 7; is the

inverse of the curvature of the log density at the mode 7.

We have

m(8) = I(a;)I"(b;)

gyt (1 — ;)1

and because 0, = ( e ) Di —9,(1—6,).

1+e" ) dTh
By using the last derivative, we can find the Jacobian. As a result, the density of 7;
will be

~ I(a; +b) ( el )%1( 1 )me( el )( 1 )
© I(a;) (b)) \1+em 1 +em 1+em)\1+em

rri(ire) () 610

Taking log of (6.16), we have

eni
1 )| = i1 i1 .
og [g(n;)] = Constant + a; log < > + b; log (1 n e’h')

L +em
The first derivative of log[g(n;)] with respect to n; is

dlog[g(m)]  a bie"

dn; (I4+em) (1+em)
Putting the first derivative equal to 0, we obtain Eq(n;) = log(a;/b;). In order to find
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the variance of n;, we should find the second derivative of the log density of g(n;) with

respect to 1; which is

d*log g(m:)] _
dn?

aie”i 1 bie”i
(L+em)z = (1+em)?|

By substituting e” = a;/b; and doing some algebra, the variance of n; will be

1
d*log [g(nl)]} Cbita 1 N 1

Var0(77z') == |: d77‘2 a:b; a b,

See Wilson and Farrow (2010).

6.5.4 Log-moment method

Suppose that we have an exponential survival time with probability density function

fi(t) = N\ exp{—=A\it}, (6.17)

and survival function

Now to make inference about the unknown parameter A, we could give A\ a gamma
prior distribution and that is conjugate to the density and the survival function in (6.17)
and (6.18).

The likelihood function for the individual ¢ is

where §; = 1 if individual 7 dies and 9; = 0 if individual 7 is censored. The prior distribution
of \; is gamma distribution with shape parameter «; and scale parameter 6;, so \; ~
Ga(ay, 0;). Therefore, the posterior density for A; will be Ga(a; + 6;,0; + t;).

As in the case where we have Poisson observations, X |\ ~ Po()), a suitable conjugate
prior will be a gamma distribution. Wilson and Farrow (2017) proposed n = g(A) = log(\)
in order to make 1 unbounded rather than use the bounded parameter A\. See Section

6.5.1.
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If we use the guide relationship with the conjugate update of a gamma distribution,

then the mean and the variance of 7; as those of log \; gives

Eo(ni) = 91(cw, 0;) = fi = hi(a;) — log(6;)

(6.19)
Varo(m-) = QQ(Oéi, 91) =4 = h2(04z‘)-

In the log-moment method, we can calculate the mean and the variance of n; and that

gives us

hi(ai) = (o) and  ho(aq) = ¥1(oy)

where 9(-) is the digamma function and v(+) is the trigamma function. See Wilson and
Farrow (2017). These are the exact moments of 7; if n; = log(\;) and \; ~ Ga(ay, 6;).
6.5.5 Lognormal method

In this method we equate the first and second moments of the gamma prior distribution for
A to those of a lognormal distribution and use the mean and variance of the corresponding
normal distribution for n. We put «;/6; = exp(f;+¢;/2) and «;/6? = exp(2f;+q;)[exp(q;) —
1], that is giving

hi(c;) = log [Oéi a; /(o + 1)} and  ho(ay) =log(l +a; )
So,

a; = [exp(q;) — 117" and ;= [exp(q;) — 1] exp(—q;/2) exp(—f;).

See Wilson and Farrow (2017).

In this thesis, we use the lognormal method in the leukaemia example to compare the
three methods, full-Bayes method, Bayes linear kinematic methods using conjugate prior
update and BLK using non-conjugate prior update.

6.6 Example: Sulfinpyrazone

The Anturane Reinfarction Trial Research Group (1980) reported a clinical trial on the

use of the drug sulfinpyrazone in patients who had suffered myocardial infarctions (“heart
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Groups

Death Total

1
2

44 560
62 540

Table 6.1: Sulfinpyrazone example

attacks”). The idea was to see whether the drug had an effect on the number dying.

Patients in one group were given the drug while patients in another group were given a

“placebo”; that is an inactive substitute. Table 6.1 gives the number of all “analysable”

deaths up to 24 months after the myocardial infarction and the total number of eligible

patients who were not withdrawn and did not suffer a “non-analysable” death during the

study. We present the data in Table 6.1 as a bar graph in Figure 6.4.

200 300 400 500 600
| | | | |

100
|

Group 1

B Death
@ Survived

Group 2

Figure 6.4: Bar plot for the two groups in sulfinpyrazone example.

We have X; out of n; die in group i. Hence, X; |6; ~ Bin(n;,6;) and in our beliefs we

do not regard 6, 05 as independent.

Let @ = (6,6,)". For illustrative comparison with the Bayes linear kinematic approach

we first show a full-Bayes analysis. Let 7 = (n1,72)" where 1, = log[f; /(1 — 6,)] and 7, =

log[f2/(1 — 02)]. We give 1y, 12 a bivariate normal prior distribution with E(n;) = E(72).

Suppose that 6, has probability 0.95 of being in the interval 0.05 < 6, < 0.20. The

119



Chapter 6. Bayes linear kinematics and Bayes linear Bayes graphical models

corresponding interval for n, is —2.944 < 1y < —1.386. Therefore, Eo(n,) = —2.165 and
the prior variance of 7y, Varg(n,) = [(—1.386 +2.944) /(2 x 1.96)]2 = 0.397% = 0.158.
In order not to prejudice the analysis, we set E(n;) = E(ny). The prior variance of 7,
Varg(m) = 4 x Varg(nz) = 0.794%> = 0.630 and the reason behind increasing the prior
standard deviation o,, = 20,, is because we have less uncertainty about the death rate
when the placebo is given. As a result, we have a 95% symmetric prior interval for 7y,
—3.721 < n; < —0.609 and thus, 0.02 < 6; < 0.35 which is a wider interval than that for
0.

As we mentioned earlier, in this example #; and 6, are dependent in our prior beliefs.

We suppose that in our prior beliefs, n; and 7y are correlated with p = 0.5. Then the

prior covariance value can be calculated as follows, Covg(ny, 1) = p\/ Varg () Varg(ny) =
Varg(ny) = 0.158.

Now, in order to use a full-Bayes analysis, we need to transform the parameters in
the model 6; to the new parameters 7; for ¢ = 1,2. It is more convenient to work with an
unbounded scale than work with a (0,1) scale. See Section 6.5 for more detail. We give

11,n2 a bivariate normal distribution with density

2 2
(11, 7) X €xp {2(11p2) K’“;‘“) - (%) - 2p<(”1‘“;1)§;2‘“2))] } (6.20)

We observe z;, ¢ = 1,2. The likelihood function is binomial, X; ~ Bin(n;, ;)

L(0;x) = ﬁ f(z]0,) H <x1>9:ﬂ1 gy,

=1 =1

Then we transform the parameter 6; to n; = log[6;/(1 — 6;)] where n; € (—00, o). The

likelihood function for the transformed parameters will be

L1, mos ) = <$Z> <1 n e’7i> (1 n 6772_) i=1,2. (6.21)

Therefore, by applying Bayes’ theorem, the marginal posterior density of n; is ex-
pressed by combining (6.20) and (6.21). We have

S (771 772)L(7717 23 xi)dﬂz
S S, me)L(nr, m2; ;) dnydnys

m(m | z;) = i=1,2. (6.22)
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From (6.22) , we find the posterior moments for 1; respectively using numerical inte-
gration as E(n; | x1,22) = —2.452 and Var(n; | x1,22) = 0.0231. Likewise, the posterior
moments for 7y are E(ny | x1,22) = —2.074 and Var(n, | z1,22) = 0.0162.

Figure 6.5 and 6.6 show the posterior densities for § and 7 respectively. See the R
functions in Appendices A.6.2 and A.6.3.

0,
N2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

/I T T T T T T T T T T T T
0.00 0.05 010 0.15 020 0.25 0.30 0.35 -4 -3 -2 -1 0

0; N1

Figure 6.5: The prior (black) and posterior = Figure 6.6: The prior (black) and posterior
(blue) density of #; and 6. The dashed line  (blue) density of 71 and 7;. The dashed line is
is when 61 = 0. when 177 = ns.

We can see from the contour plot in Figure 6.5 which represents the posterior density,
that most of the probability lies in the side where 6, > 0; and that means that the death
rate is probably higher with the placebo than with sulfinpyrazone. As a result we conclude
that using sulfinpyrazone has a good effect on the patients. Likewise, we notice also from
Figure 6.6 that most of the probability for 7;,ns lies in the side where 1, > 1; which

corresponds with the results from Figure 6.5.

Now we describe a Bayes linear kinematic analysis of the sulfinpyrazone example. We
give 0; a beta prior distribution; ; ~ Beta(a;, b;). We need to specify the parameters
ai,as,by and by. In order to find a; and b; to specify the prior mean and variance for 6;,
we will use the prior moments given to 1y, 79 in the full-Bayes analysis and work backward

using the mode and curvature method as demonstrated in Section 6.5.3.
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We have
a;
E0(771> = log (b)
So
(Z:) — eEO(Ul)
Hence,
a;
bi = eBo(m)
We have
i~ () + (2
o\"i) = a; bz
S
© 1 eEo(m)
Varo(ni) = (a) -+ < @ )
and

(1 + 6EO(771)>

a; = ——+.
Varo(ni)

Hence, a1 = 1.77, by = 15.42, a5 = 7.07 and by = 61.61.

By applying Bayes’ theorem, our posterior density of 6; is Beta(a; + x;,n; + b; — z;),
where (21, z2) =(44,62) and (ny, ny) =(560,540) as shown in Table 6.1. The summary of

the results is given in Table 6.2.

97; Eo(e) E1 (9) Varo(ﬁ) Var1 (0)
1] 0.103 | 0.079 | 0.0051 | 0.00013
2 1 0.103 | 0.113 | 0.0013 | 0.00017

Table 6.2: The prior means and variances for § and the posterior means and variance using the
conjugate prior

After observing x;, we need to update our prior beliefs about n;. Therefore, we calcu-

late the posterior mean and variance for 7; given x; as

E1<7’]1) = IOg(Al/Bl)7 where A1 =a +x1 = 45.77 and B1 = bl +n —x = 531.42.
So, Ei(m) = —2.452. Also, Vary (1) = (4= + 5-) = 0.0237

Similarly, the posterior mean and variance for 7y given xy are, Ei(n2) = log(As/Bs),
where Ay = ay + x5 and By = by + ng — x9. So, Ei(ny) = —2.056. Also, Var(n) =
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ni | Eo(n) | Ei(n) | Vare(n) | Vari(n)
1 [-2165 | -2.452 | 0.630 | 0.0237

2 |-2.165 | -2.056 | 0.158 0.0163

Table 6.3: The prior means and variances for 7 and the posterior means and variance based on
using the conjugate prior update by the corresponding observations.

(A% + B%) = 0.0163. Table 6.3 summarises the above calculations.
We now carry on and apply the Bayes linear kinematic equations to the results that

we have made. So, the Bayes linear kinematic equations for 7, after observing x, are

COV0(771> 772)

E1(n2;21) = Eo(n2) + {El(m) - Eo(m)}

Varg(n1) (6.23)
. _ COVO(UI; 772)2 Varl(m) '
Var (i 1) = Varo(e) = Varo(n1) B Varg(n:)

and also, the Bayes linear kinematic equations for 7, after observing x, are

B3 72) = Bolm) + o) [ ) — By )

Varg(72) (6.24)
AV . _ COVo(ma 772)2 Var, (772) ’
ra(mie2) = Varolm) = =ty |1 Varotm)

So,
Ei(ne; 1) = —2.237,  E;i(m;22) = —2.056,

Var;(ne; z1) = 0.1199, Vary (n;; x2) = 0.4883.

So, this information is propagated through 7, and 7, using Bayes linear kinematics
and we evaluate the unique commutative Bayes linear kinematic solution, as
E2) (n1; 1, 2) = Var(a) (m; @1, x2) | Vary ' (n1)Eq (m)+
Vary ™ (15 22)Eq (1 22) — Varol(m)Eo(m)} (6.25)

-1

Var(oy (s a1, 72) = |Vary () + Vary (3 22) = Varg (1)
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and

E) (12; 21, T2) = Var(a) (n2; 1, x2) | Vary ' (m2)E1(n2)+
Vary ! (ng; 21)Ex (n2; 1) — Val“al(%)Eo(??Q)} (6.26)

-1
Var() (n2; 21, 22) = | Vary ' (n2) + Vary ' (no; 1) — Varal(m)]

That gives us,

E(z)(?’]l;l'l,xg) = —2439, E(g)(ng;l'l,xQ) = —2071,
Var gy (n1; 21, 22) = 0.0234, Varg)(n2; 21, 22) = 0.0158.

These results differ only slightly from those obtained by the full-Bayes analysis. Alter-

natively, we can write (6.25) and (6.26) as a vector ) = (11, 72)" in the following expression

Ey(ale) = Vary(ale) | 32 Vary (nf)Bi (o) — Vary ()Ba(o) | (6:27)
Vara(nlz) = | 3 Vary (gl —Varal(n)] (6.28)

where 2 = (21, 22)’.

Therefore, the following algorithm is to find the Bayes linear kinematic adjusted mo-

ments of 71, 7s.

1. Find ai, ag, bl, bg.
2. Find A; and B; and Ay and B, using the data x; and n; and x5 and ne.

3. Find E{(n; | 1) and Vary(n; | x1) from A; and B; and E;(ny | x2), Vari(ny | x2)
from As and B,.

4. Use BLK formulae in (6.27) and (6.28).

So, the information is propagated through n; and 7y to update our beliefs having

observed z1 and x5 , as we can see from Figure 6.7.
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g

Figure 6.7: Bayes linear Bayes graphical model to update our belief about n; and 7.

6.7 Bayes linear Bayes models with non-conjugate

marginal priors

6.7.1 Introduction

In Chapter 7, we will describe a novel Bayes linear Bayes prognostic network. This
will be able to use data from covariates of many types, including those where there is no
convenient conjugate prior. Furthermore, even when there is a convenient conjugate prior,
we will see that there can be advantages in using a prior of a different, non-conjugate,
form. Therefore, in this section we introduce a new extension to the theory of Bayes linear

kinematics to allow the use of non-conjugate marginal priors.

It is well known that, in the Bayesian framework, if the posterior density and the
prior density have the same family of distribution such as normal or beta or gamma, then
we denote this prior as a conjugate prior. However, in many applications, the prior and
the posterior do not belong to the same family. In other words, the prior has a different
type of distribution from the posterior, so this prior is called a non-conjugate prior. This
thesis aims to use non-conjugate priors in order to apply Bayes linear kinematics and that
can be done using one-dimensional numerical integration and we compare this approach
with one using conjugate priors and with a Bayesian analysis using MCMC and a fully

specified joint prior distribution.

Wilson (2011), in his thesis, explained in detail how to use Bayes linear Bayes analysis
with conjugate marginal priors and he tackled two distributions of observations, binomial
and Poisson. However, sometimes this conjugacy condition does not hold. For example,
in the case where we have a binomial likelihood, we might use a logit-normal prior. This

kind of marginal posterior distribution does not have a closed form. Therefore, we need
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to use some numerical integration method such as quadrature or Laplace approximation
method to evaluate the posterior mean and the posterior variance. Those posterior means

and variances are very important to calculate Bayes linear kinematics.

The use of non-conjugate marginal updates in Bayes linear kinematics is a new feature
which is introduced for the first time in this thesis. As well as extending the range of types
of variable which can be accommodated in a Bayes linear Bayes model, it avoids the need
to pass updated hyperparameters through a link function, or guide relation, by instead
updating moments of unknown quantities directly on the Bayes linear scale. Although

numerical integration is required, this is typically one-dimensional.

In this thesis we aim to compare the posterior means, variances and covariances using
three methods, full-Bayes analysis, Bayes linear kinematics with conjugate prior and Bayes
linear kinematics with non-conjugate marginal prior distributions. We will demonstrate

in Subsection 6.7.3 how to calculate the posterior using a Laplace approximation method.

6.7.2 Non-conjugate marginal priors

While there are advantages in using a link function, as in Wilson and Farrow (2010, 2017),
the use of a conjugate prior and then calculation of the change in mean and variance of a
transformed parameter is a somewhat restrictive arrangement. Removing the requirement
for a conjugate prior allows many different kinds of observational distributions. The price
to be paid for this is that we need to use a numerical integration to find the adjusted mean
and variance of X; given Y; = y;. However this is typically a one-dimensional integration
and suitable fast approximation methods can often be used. Suppose that we give X; a
prior distribution with density f;(z) and that the likelihood from observing Y; = y; is
L;(z; y;). Then the posterior density of X is proportional to g;(x) = f;(z)L;(z; y;).
For example, in the Poisson case, we might give a normal prior distribution to = log A

and the likelihood is proportional to exp(—A)A%.

In suitable cases, particularly where the support is unbounded, we might use a simple
normal approximation. Let G;(z) = logg;(z). Then we can finding the maximum m
of G;(x) as an approximation to the posterior mean and use v = —[0*G;(x)/dx?]*
evaluated at x = m as an approximation to the posterior variance. Alternatively, we

write the posterior mean as

[Zozgi(z) do _ 25, exp{log(x)G,(x)} dx
250 gi(x) dx 2o exp{Gj(x)} dx
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and then use Laplace approximations (Tierney and Kadane, 1986) for the integrals in
the numerator and denominator. Another possibility would be to use Gauss-Hermite

quadrature (e.g. Naylor and Smith, 1982).

6.7.3 Finding the marginal posterior by Laplace approximation

As a first step in summarising a posterior density, we might seek the posterior mode. In
practice, we look for one single posterior mode and, if the posterior density is symmetric
and unimodal, this locates the centre of the distribution. However, if the posterior density
is not symmetric and unimodal then the posterior mode is a poor point summary. In order
to make sure that our posterior mode is unique, we should run a mode-finding algorithm

with different initial values.

We can use the Newton-Raphson method to find the posterior mode. See Gelman
et al. (2014). It is an iterative method which depends on a quadratic Taylor series ap-

proximation of the log posterior density,

a(0) =log [ £(0]y)],

where f(0|y) = k7 () f(y|0) is the posterior density and k = [ 7(0)f(y|0)dd and k does
not depend on #. Then,

a(0) = log(k™") + log [w(0)] + log [ £(y]0)] -

In order to to find the posterior mode of 6, we should find the first derivative of q(6)

with respect to 6 and set the first derivative equal to 0.

!

og[r(8)]  dlog [F(ylo
L6 d?l(ee) _dl gd[g ©)] , dlog [dJ;(yl I (6.29)

Sometimes (6.29) does not have a closed form solution for the posterior mode which
means that there is no analytical solution for this equation. Therefore, we have to use a

numerical optimisation method such as Newton’s method as follows.

We start with an initial value § = 6, and carry on iterating:
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where " () is the second derivative of q(6). The sequence 6y, 61,65, ... finally converges

to the optimal solution 0.

As we mentioned in Section 3.3, there are different techniques to compute the pos-
terior mean E(n|z) in the one-dimensional case. For example, we could use a Laplace

approximation to approximate the posterior mean. Using (3.4) we obtain

—nk*(n) = log(n) + log [L(n|z)] + log [x(n)] .

by using the steps that we explained in Subsection 3.3.2. See Tierney and Kadane (1986).

6.7.4 Binomial observations

Suppose we have a random variable X which has a binomial distribution with parameter
0 which represents the probability of success, so X ~ Bin(n, 8). It is better to transform
0 € (0,1) to n € (—o0,00), for the reasons that we mentioned in Section 6.5. The

likelihood function will be

flz)0) = (Z)em — g,

So, the likelihood function for the transformed parameter n using the logit link function

rein=()(55) (=)

Suppose that, the prior density for 1 has a normal distribution with mean p and

is

precision 7 = 1/02. Then its density is

7(n) e zln—m)?

Using Bayes theorem, the posterior density of 7 is

1 " T 2
—Z(n—w)?] Jnz
f(n|x) o (1 e”) e e,
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The log posterior density of n can be written as

o 70k = K-+ o (1) = 5100 ] -0

14 en

where k is constant. Then, the first derivative w.r.t. 7 is

dlog [f(n|z)] _n( e

o = 1+67,>—T(n—/~b)+x-

Putting the first derivative equal to 0, we have, x — ne?’/(1 +¢e") — 7(n — p) = 0.
This equation does not have a closed form solution for the posterior mode for 7, so we
should use the Newton-Raphson method to obtain the mode 7),,04.. After obtaining the
posterior mode, we have to substitute it in log [f(n]z)] because we need it to evaluate the

denominator of (3.4).

The second derivative for the log posterior density will be

d*log [f(n|z)] ne” (7’(1 +em)? + ne”)
dn? (14 en)?

a (14 en)?

Then, we can calculate the variance of n using the second derivative

71 .
Clog[f(lz)]| -~ _ (A4 emmor)”
an - 7‘(1 —|— eﬁmode)2 —|— neﬁmode ’

Var(n) = - [

Likewise, we repeat the calculations above to approximate the numerator of (3.4). We

have,

fr(nlz) o 77( ) e~ 3l gna

14en
where, f*(n|z) = nf(nlz). Hence, log [f*(nl|z)] = log(n) + log [f(n|z)].

Finally, finding the first derivative w.r.t. n and equating it to 0, we have

dlog [f*(n|z)] 1_n< e’
dn n

= Hen)—T(n—u)Jﬂr:O

Again, we have to solve this numerically to find 7,,, the posterior mode for f*(n|z).
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The second derivative for log [f*(n|x)] is

d’log[f(nlz)] 1 ne’
2

dn? n B (14 en)?

To calculate the variance of n we use the second derivative. So

var*(m:_[dﬂog%;mxn] :_[ L e |

Now, the posterior mean for 7 using the Laplace approximation is

(6.31)

Var* expllo “(h o
B(plr) ~ YV () expil g[f( (2]}

Var(n) exp{log [f ﬁmode'x)]}‘

So, we can rewrite (6.31) as

Var*(n) 77m|x

n|x ,/ ode|x

because exp{log [f (7m[2)]} = f (m|).

Similarly, we can find the posterior expectation for n?, E(n?|z) and the posterior

variance, Var(n|z) = E(n?|z) — [E(n|z)]” .

Alternatively, we could use a simple method based on finding the mode and the cur-
vature of log [f(n|z)] and use these to approximate the mean and variance, i.e., the mean

is the mode 7,04¢, and the variance is
1
B <d2f (nl@)
dT’Q ﬁmode
6.7.5 Poisson observations

Suppose we have a random variable X which has a Poisson distribution with the parameter
0, X ~ Poisson(f). The probability density function will be

fre—?

z!

6 > 0.

f(z)6) =

130



Chapter 6. Bayes linear kinematics and Bayes linear Bayes graphical models

It is more convenient to transform the parameter of the Poisson distribution # using
n; = log(;).

As in the case of binomial data, we explain the method of applying the non-conjugate
prior to obtain the marginal posterior mean using a Laplace approximation. We have data
which is given by Davies and Goldsmith (1972) and reproduced in Hand et al. (1994). The
data represent the number of failures of piston rings in two compressors and are shown
in Table 6.4.

Compressor | Failures
1 46
2 33

Table 6.4: Piston ring Failures in two compressors

We specify our prior mean and variance for n; to be Eg(n;) = 3.384 and Varg(n;) =

0.0340. So the Poisson likelihood function for compressor 1 is

z ox elfme=e™
J (1|

and the prior for n; is
m ~ N(3.384,0.0340).

We also suppose that Eg(n2) = Eo(n1) = 3.384 and Var(n2) = Varg(n;) = 0.0340 and
the covariance between 1; and 7y is Covg(n1,72) = p\/ Varg(n;)Varg(n,) = 0.008475 where
p = 0.25.

So the prior mean vector and the prior variance covariance matrix for n are respectively

Eo(n) = (3.384,3.384)" and

0.0340 0.008475]

Var, =
() {0.008475 0.0340

The marginal posterior mean for n; using the Laplace approximation is

o) — S f (e |ny)m(n)dm
Bmlen) = o ) )
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Consider the log of the numerator of the posterior mean,
L*(m1) = log(m) — 14.75(n; — 3.384) + 461, — ™,

where L*(n;) is the log of the numerator for the expectation. We need to differentiate
L*(nm) with respect to 1, and put that derivative equal to zero in order to find the mode
;. So, we obtain 7} = 3.6493 numerically, and substituting 7] in L*(7;) to evaluate this
log likelihood function, we have L*(7)}) = 129.6765.

Now to find the variance, we should obtain the second derivative of L*(7;) with respect

to m1 and substitute 77 = 3.6493. So the variance is

. d’L"(n
Var(nl) = — [dn(%l)

-1
= 0.147.
m=ny

So the approximate value for the numerator for the expectation is
o*el () = 2.520404 x 10
where ¢* = (/Var(n}). Now we can repeat the similar steps to approximate the integral
in the denominator. As a result, we have

2.520404 x 10%°
Blmlen) = 501637 x 1051 = 36413

and
Var(m|z1) =~ E(ni|z,) — [E(m]z1)]* = 0.0144

Table 6.5 shows the posterior means and the posterior variances for n = (1, 72) using

the Laplace approximation method.

Compressor | i=1 | i =2
E(n;|x;) 3.641 | 3.439
Var(n;|z;) | 0.0144 | 0.0160

Table 6.5: Posterior means and posterior variance using Laplace approximation

Now these changes are propagated through to the other group using Bayes linear
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kinematics and that gives us

Ex(nlz:) = Eo(n) + Covo(n, 1) Varg* (m:) [Ex (mil) — Eo(ns)]

and

Vari (n|z;) =Varg(n) — Covy(n, m)Varal(m)CovO(m,n)
+ Covo(n, m)VarEl(m)Varl (m!wi)Varal(m)CovO(m, 77)-

So that our solution is a unique commutative solution, the condition Vary ' (1;) Var(n;|z;) <
1 should hold. Clearly it does.

So, having observed = = (1, :172)', the Bayes linear kinematic commutative solution

Z Varfl(nhfi)El(n\xi) - Varal(n)Eo(n)

i=1

Es(n|z) = Vary(n|z)

Vary(n|z) = | Y Vary ' (n|z;) — Varal(n)}

=1

So, we have
Ey(n|z) = (3.643,3.468)

and

0.0142 0.0017
Vars(n|x) = [ ] :

0.0017 0.0157

6.8 Example 1: Sulfinpyrazone with non-conjugate

marginal priors

We return to the sulfinpyrazone example which we described in Section 6.6. We have
the prior means and prior variances-covariance, Eo(n;) = Eo(n2) = —2.165, Varg(n;) =
0.630, Varg(nz) = 0.158 and Covg(n,72) = 0.158. This time we simply give 7; and 7

normal prior distributions.

Now, in order to do BLK, we need to obtain Ei(ni|z1), Ei(n2]x2), Vary(m|x;) and

Vary(nz|x2). To obtain these posterior means and variances, we use a non-conjugate

133



Chapter 6. Bayes linear kinematics and Bayes linear Bayes graphical models

marginal prior with one-dimensional numerical integration. Therefore, we can use a

Laplace approximation. The posterior means and variances for 7; and 7 are shown
in Table 6.6.

Group 1=1 1=2
E(ni|x;) | -2.4527 | -2.0561
Var(n;|z;) | 0.0234 | 0.0164

Table 6.6: Posterior means and variances for 7.

Now, we use Bayes linear kinematics to propagate these changes to the other group

which gives us

Ei(n|z1) = (—2.4527, —2.2372),
Ei(n|z2) = (—2.0561, —2.0561).

and
00234 0.0059]
Var T1) = ,
1(nf) 0.0059 0.1198]
0.4884  0.0164)
Var To) = .
1(nf2) 0.0164 0.0164]

For a unique commutative solution, we have

Ey(n|x) = Vars(n|z) ZVarl (n|@:)Eq(n|z;) — Varg ' (n)Eo(n)

=1

and

Vary(n|z) =

-1
Z Var; ! (n]z;) Vargl(n)] .

So, we have
Es(n)z) = (—2.4445, —2.0691)’
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and

0.0232 0.0008
Vary(n|z) = [ ] )

0.0008 0.0159

We notice that Eq(n|x) and Vary(n|x) are very close to those obtained by the full-Bayes

analysis.

6.9 Example 2: Surgical deaths

6.9.1 Data and model

The data in this example were introduced by Mosteller and Tukey (1977) and reproduced
in Hand et al. (1994). The data are collected from two areas in the United States and
describe the number of patients classified by sex and age. Table 6.7 shows the number of
patients under the surgical operations and the patients who die in one area. The plot of

the data is given in Figure 6.8.

In this model, we denote the number of deaths in age group g, area a and sex s as
Y‘-q7a78.
So Y5~ Bin(ngas, Pgas,)

P
log| 225 | = g0
0g (1 — Pg,a,s) Ng,a,

So we can write 7) as an estimate, 7 = log [15/(1 - f’)} where

and

P number of deaths

number of patients’

ie. P = Yg.as/Ngas- We also define the covariate x, to be z, — 40 where Z, is the

age-group midpoint.

We need to specify the prior mean vector and prior variances and covariances matrix
for n, So(n) = [Eo(n), Vare(n)).

We follow Farrow (2003) to construct a more structured model.
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Figure 6.8: Proportion of death for males and females in area 1 against age [Top Left]. A plot of
) = log [P/(1 — P)] for both males and females in area 1 against age [Top Right]. Proportion of

death for males and females in area 2 against age [Bottom Left]. A plot of 7 = log [13 /(1 — 13)]
for both males and females in area 2 against age [Bottom Right].
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Area 1
Total undergoing Number dying
surgery
Age | Males | Females | Males | Females
0-4 | 2104 1952 34 22
5-14 | 4272 3911 9 11
15-24 | 2835 2989 23 5
25-34 | 2785 2606 19 8
35-44 | 1930 1886 16 15
45-54 | 1497 1524 59 40
55-64 | 960 1013 101 52
65-75 | 652 855 185 118
76-83 | 186 287 97 108
>83 69 125 68 103

Table 6.7: Death rates amongst subjects classified by age and sex

Therefore,
Ng,a,s = 5(1,5 + Ya,sTqg + Wy a,s (632)

where w, , 5 is a specific uncertainty factor for group g, a, s.

We construct the coefficients § and v respectively as follows:

Bi1 = Bo+ Ba+ Bs + 011,
Ba1 = Po — Ba+ Bs + 02,1,
Brz2 = Po+ Ba— Bs + 012,
Baa = Po — Ba — Bs + 02,2,

Y11 =Y + Ya + Vs + K11,
V2,1 = Y0 — Ya T Vs T K21,
V1,2 =Y + Ya — Vs T K12,

72,2 =70 — Ya — Vs + Rg22.

We give prior means and variances to 5o, Ba; Bs, 0, Y0, Ya, Vs» 01,1, ---, 022, and K1 1, ..., K22,
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all of which are mutually independent. We also define w in the following expression

Wyas = wé‘fa + wéfs + wé‘f(fs (6.33)
where, for g = 2, ..., 10,
wie) = 6wy o + elr)
wl®) = ¢ w4 el (*)
Wit = ¢ Wi + ein)

The autoregressive structure in (x) describes our prior beliefs about deviations of the

regression lines from the straight-line model in (6.32). The random variables eg%, egfg and

eg‘f&f’g are all given zero means. For g = 1,...,G, where G = 10 is the number of groups,

Var(el”) = 7,7, Var(el?)) = 7,1 and Var(el%?)) = 7, }. Furthermore, e;i)i is independent of
(@)
g'.d
parameter ¢ is chosen to reflect the degree of smoothness we expect to see in deviations

from the straight-line. We choose |¢| < 1 and set Var(wé‘i)l) =7;1/(1 — ¢?), so that the

1 1

process is stationary, we then choose the variance 7, !, 7,1 and 7, ! to give a suitable

unless ¢ = ¢ and d = d and d, and d’ are each one of a, s and a, s. The autoregressive

marginal variance to wgy o s and suitable covariances between areas and sexes. This leads

to the prior means, variances and covariances for the elements of 7.

We regard areas as exchangeable and sexes as exchangeable so the marginal distribu-

tion for each subvector 7, s is the same for each a, s.

The prior mean for 7, 5 is

Eo(1as) = (—9.312, —8.382, —7.142, —5.902, —4.662, —3.422, —2.182, —0.880, 0.298, 1.042).

The marginal prior variance for 7y, s is 1.006 for ¢ = 1,...,10 and the prior autocor-

relations are as follows

Lag 1 2 3 4 ) 6 7 8 9
Correlation | 0.912 | 0.833 | 0.762 | 0.697 | 0.640 | 0.587 | 0.540 | 0.498 | 0.460
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6.9.2 Bayes linear kinematic analysis

We combine full-Bayes marginal updates, using the Laplace approximation and Bayes
linear kinematics in order to obtain Si(n) = [Ei(n|x), Vari(n|z)]. Then, we propagate
these changes in beliefs to other age groups using the Bayes linear kinematics equations
(6.12) and (6.13).

6.9.3 Results

For comparison with the BLK analysis we also present the results of a full-Bayes analysis

in which posterior summaries are computed using MCMC.

First we do an analysis for each area-sex group separately. We use Bayes linear kine-
matics on 7. We use R to do all these updates and produce some graphs which show
how BLK is close to the full-Bayes analysis. Figure 6.9 represents the adjusted means
for 7415 (red) using BLK with the non-conjugate prior and the corresponding posterior
means from the full Bayes analysis. We notice that the posterior means are close to each
other. In addition, we can see that our posterior expectations using BLKs are closer to the
corresponding data for age group g, area 1 and sex s than the prior expectations. That
is an indicator that our prior variance and covariance structure that we used allowed the
inference to reflect the relationships between the variables very well. Figure 6.10 shows
the posterior expectations, using BLK with + 2 standard deviation limits which we can

calculate, using
(El(n;x) — 2 xy/Vari(n; x), E1(n; 7) + 2 x Varl(n;:r)> :

Tables 6.9, 6.11, 6.13 and 6.15, show the posterior means for n from BLK, full-Bayes
analysis and the values of 7 for the four combinations of area and sex. We can see that,
almost all of these posterior means are very close to each other in both methods full-Bayes
and BLK. Therefore, the non-conjugate method produces similar results to MCMC but

much more quickly. This is also shown in Figure 6.11.

The posterior variances using full-Bayes analysis and the marginal posterior variances
using BLK are shown in Tables 6.8, 6.10, 6.12 and 6.14 for the four combinations of sex
and area. We can see that most of these marginal posterior variances from BLK and

full-Bayes are very close to each other. For example, the posterior variances using BLK

139



Chapter 6. Bayes linear kinematics and Bayes linear Bayes graphical models

= MCMC

~ -1 ¢ BLKs with non—conjugate prior

~ -

o -

=

o~

I

< _]

I

©o _|

]
T T T T T
(o] 20 40 60 80

Age

Figure 6.9: Adjusted means for 74 1 s using Bayes linear kinematics with the non-conjugate prior
and the posterior means using full Bayes analysis (MCMC).
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Figure 6.10: Adjusted means, £2 standard deviation limits for males in area 1.
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g,s | Vari(n) (BLK) | Var(n) (full-Bayes)
1) 0.0266 0.0372
2.1) 0.0401 0.0456
(3,1) 0.0317 0.0375
(4,1) 0.0356 0.0371
(5.1) 0.0335 0.0372
(6,1) 0.0156 0.0156
(7.1) 0.0102 0.0102
®.1) 0.0071 0.0071
9.1) 0.0182 0.0192
(10,1) 0.0705 0.0978

Table 6.8: Posterior variances of 7 from BLK and full-Bayes analysis for the males in Area 1.

g,s | Ei(n) (BLK) | E{(n) (full-Bayes) | 7 (observations)
1,1 | -4.5358 -5.1039 “1.1089
(2,1) -5.4083 -5.7371 -6.1605
(3.1) | -4.9401 ~1.9809 ~4.8062
(4,1) | -4.9048 4.9211 “1.9807
(5.1) | -4.5003 “1.5458 “4.7844
6.1) | -3.2192 "3.2200 73,1935
(71) | -2.1401 2.1401 ~2.1406
(8,1) -0.9262 -0.9252 -0.9260
9.1) 0.1002 0.2195 0.0861
(10,1) 2.2184 2.2268 4.2195

Table 6.9: Posterior means of n from BLK, full-Bayes analysis and the values of #) for the males
in Area 1.

for males and females in Area 1 are slightly less than the posterior variances using full-
Bayes analysis. However, some of the posterior variances using BLK for both males and
females in Area 2 are slightly bigger than the marginal posterior variances using full-Bayes

analysis.

Now, we expand the analysis so that the data from both areas and both sexes are
analysed together. In fact, we have 4 groups in this example (2 areas x 2 sexes). So, to
do that we give a vector of 10 prior means (for the 10 age-groups for males in Area 1).

Then the mean vector for the whole data set is just this vector repeated 4 times.

We also give a 10 x 10 variance matrix for the males in area 1, V. Now we should

have a 40 x 40 variance matrix
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Table 6.10: Posterior variances of n from BLK and full-Bayes analysis for the females in Area 1.

g,s | Vary(n) (BLK) | Vary(n) (full-Bayes)
(1.2) 0.0433 0.0605
2.2) 0.0490 0.0563
(3.2) 0.0637 0.0733
(4.2) 0.0666 0.0638
(5.2) 0.0434 0.0444
(6.,2) 0.0210 0.0227
(7.2) 0.0169 0.0173
(8.2) 0.0090 0.0002
9.2) 0.0131 0.0133
(10,2) 0.0389 0.0400

9,8 Ei(n) (BLK) | E{(n) (full-Bayes) | 7 (observations)
(1,2) -5.0447 -5.0211 -4.4742
(2,2) -6.0085 -5.8132 -5.8708
3.2) | 5l 26.0258 26.3916
(4.2) | -5.5102 75,6181 57831
(5.2) | -4.7927 47759 “1.8262
(6,2) -3.6784 -3.6621 -3.6136
(7.2) | -2.9699 72,9022 2.9167
(8,2) -1.9175 -1.8190 -1.8319
9.2) | -0.4554 20.4544 20,5053
(10,2) | 1.3058 1.3335 1.5437

Table 6.11: Posterior means of n from BLK, full-Bayes analysis and the values of # for the

females in Area 1.

Table 6.12: Posterior variances of 1 from BLK and full-Bayes analysis for the males in Area 2.

g,s | Vari(n) (BLK) | Vary(n) (full-Bayes)
(L1) 0.1167 0.1251
2.1) 0.0685 0.0751
3.1) 0.0596 0.0593
1) 0.0698 0.0658
(5.1) 0.0599 0.0561
(6.1) 0.0282 0.0286
(7.1) 0.0142 0.0146
(8.1) 0.0079 0.0080
(9,1) 0.0180 0.0187
(10,1) 0.0540 0.0560
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g,s | Ei(n) (BLK) | E1(n) (full-Bayes) | 7 (observations)
(1,1) | -5.1069 75.0346 “1.0532
2.1) | -5.5059 54175 75,8487
(3,1) -4.4720 -4.7241 -4.4667
(4,1) | -4.5038 “1.7009 “1.8091
(5,1) -4.3459 -4.3733 -4.5917
(6,1) -3.4048 -3.4342 -3.4624
(7,1) -2.2176 -2.2194 -2.2070
(8,1) -1.0685 -1.0503 -1.0448
9.1) | -0.1349 20.1276 20.1804
(10,1) | 0.0413 0.0757 1.0609

Table 6.13: Posterior means of 7 from BLK, full-Bayes analysis and the values of #) for the males
in Area 2.

g,s | Vary(n) (BLK) | Var(n) (full-Bayes)
1.2) 0.3022 0.3634
(2,2) 0.2260 0.2324
(3.2) 0.1768 0.1688
(4.2) 0.1126 0.1158
(5.2) 0.0516 0.0628
(6.2) 0.0409 0.0426
(7.2) 0.0220 0.0247
(3.2) 0.0129 0.0130
(9,2) 0.0143 0.0141
(10,2) 0.0621 0.0604

Table 6.14: Posterior variances of n from BLK and full-Bayes analysis for the females in Area 2.

g,s | Ei(n) (BLK) | Ei(n) (full-Bayes) | E1(n) (observations)
(1,2) -7.8966 -7.6528 -0.4323
(22) | -7.2931 77,1886 6.7776
(3.2) | -6.4877 26.5292 71253
(4,2) -5.5623 -5.6222 -5.8101
(5,2) -4.4997 -4.5046 -4.2474
(6,2) -3.9025 -4.0223 -4.1442
(7.2) | -2.0437 2.9917 72,9430
(8.2) | -2.0036 ~2.2280 22762
(9,2) -0.6615 -0.7188 -0.8309
(10,2) 1.9224 2.0961 3.1697

Table 6.15: Posterior means of  from BLK, full-Bayes analysis and the values of 7 for the
females in Area 2.
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Figure 6.11: Posterior means for n using full-Bayes analysis, BLK with non-conjugate prior and
the empirical data. Top left: Posterior means for n for males in Area 1. Top right: Posterior
means for n for females in Area 1. Bottom left: Posterior means for n for males in Area 2.

Bottom right: Posterior means for n for females in Area 2.
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Yo SpaVopsVo L polh
paVo, Vo | poVo | psVo
sV 1 Vo Vo 1 palh
poVo 1 psVo 1 paVo 1 Vo
where the first row and the first column of Vj(n) represent the males in Area 1, the second
row and the second column of Vj(n) represent the females in Area 1, the third row and
the third column of V(n) represent the males in Area 2 and the fourth row and the
fourth column of Vj(n) represent the females in Area 2 and pg, pa and pg are correlation

coefficients, where
pz is the proportion of uncertainty shared by all 4 groups,
p% is the proportion of uncertainty shared by 2 groups which are the same sex, and
p% is the proportion of uncertainty shared by 2 groups which are the same area.
So,
0 < pp+(ps = p5) + (P — pg) <1

In this example, we give p3 = 0.64, p% = 0.81 and p% = 0.68. We also have assigned
values to Var(f), Var(84) and Var(Bs), where Var(83y) = paVar(B11), Var(B4) = (p% —
P2 Var(Bu), Var(Bs) = (o — p)Var(Bu), and Var(su) = (o4 + 2 — pE)Var(B1,) and so
on. So, the posterior mean using BLK in (6.27) for n is E1(n) as follows

Area|Sex|g=1 |2 3 4 5 6 7 8 9 10

1 1 [-4.603|-5.445|-5.009 |-4.919 |-4.487 |-3.222|-2.137|-0.921 | 0.282 | 2.691
1 2 |-4.7541-5.493 |-5.018 |-4.921 | -4.488 |-3.222 |-2.137 [-0.921 | 0.282 | 2.691
2 1 [-4.754|-5.493|-5.018|-4.921 |-4.488 |-3.222 |-2.137|-0.920 | 0.282 | 2.691
2 2 [-4.754|-5.493|-5.018{-4.921 |-4.488 |-3.222 |-2.138 |-0.924 | 0.190 | 1.727

The posterior correlation matrix for n using Bayes linear kinematics is shown in Ap-

pendix (A.6.4).
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6.10 Categorical and censored variables

6.10.1 Introduction

In a Bayes linear analysis we might observe variables which, typically, we might suppose
have approximately normal distributions, perhaps after transformation. In some prob-
lems, such as the survival applications in Chapter 7, we observe variables which could not
be given a normal distribution even after transformation, for example discrete or cate-
gorical variables. In a Bayes linear Bayes model we relate such an observable variable to
an underlying latent variable Z. Thus we typically have a latent vector Z = (7, ..., Zr)T
where in an analogous full-Bayes analysis, Z might be given a multivariate normal distri-

bution. In this section we consider some particular types of observable variables.

6.10.2 Binary variables

A categorical variable which can take only two values is a binary variable. Typically the

values may be labelled 0 or 1.

Two possibilities arise in the case of a binary variable X. The first method, called the
direct method, is to let X = 1 if the corresponding Z > 0 and X = 0 if Z < 0 and, for this
reason, we assign Z a normal prior distribution. In this case the support of the posterior
distribution is bounded at zero and we need to use a quadrature method rather than the

normal or Laplace approximation.

A second possibility, which we call the indirect method, is often appropriate in appli-
cations such as a prognostic index. Suppose that Pr(X = 1|Z) =60 = h™'(Z) where h™1()
is the inverse of a suitable link function h(), for instance, logit, Z = log{6/(1 — 0)}, or
probit, Z = ®71(), where @ is the standard normal cumulative distribution function. In
this case the likelihood function is % (1 —6)!=% and the posterior support is not bounded

so we can use methods such as a Laplace approximation.

6.10.3 Ordinal variables

Ordinal variables are categorical variables where the values are ordered. A suitable model

to use with an ordinal variable is an ordinal logistic regression.
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Let X be an ordinal variable with K categories. One of the simplest ways to model
that is to obtain
PI'(X = 1) = 01,

Pr(X =2|X # 1) = 0y,
Pr(X =3|X #1,X #2) =05,
and so on. These conditional probabilities are not constrained to sum to one.

We consider the case of ordinal variables as a generalisation of the case of binary
variables. Suppose that we have ordered categories labelled {1,..., K'}. Then we need
K — 1 cut points {¢, ¢, ...,cx_1} for Z. For example, in the non-Hodgkin lymphoma
data set, we have an ordinal variable called Stage. This variable can take the values
(0,1,2,3). We relabel these (1,2,3,4). Then we should have in this case three cut points.
To avoid non-identifiability, we need to fix two cut points. This is because the distribution

of Z has two parameters, the mean and the variance.

Again, as in the case of binary variables, using the direct method, X = k if and only
if cp_1 < Z < ¢ for a set of thresholds {cy, ..., cx_1} where ¢g — —o0 and cx — oo. In
this case the posterior distribution support is bounded, often both below and above, so

we might use a quadrature method to find the posterior moments.

We can also apply the indirect method. Suppose that Pr(X < k) = h™(cp — Z) for
a suitable link function h(). It is convenient to use h() = ®~!(). In this case we might
suppose that there is a latent variable Z* which has a normal distribution N(Z, 1), given Z.
Therefore, the likelihood is h™* (¢, —Z)—h~*(c;_1—Z), for example ®(cy—2Z)—P(c_1—2).

In this case the posterior support for Z is unbounded.

6.10.4 Unordered categorical variables

Dealing with a categorical variable with K > 2 unordered categories labelled 1, ..., K|
other than by conditioning the whole model on the categories, requires the use of an
underlying vector variable with K — 1 elements. This can be handled within the general
Bayes linear kinematic and Bayes linear Bayes framework since the elements Z can be

vectors. For example in an indirect approach we can set

exp(ZM)

PI‘(Xj = k’) = e
] exp(Zj,i)

(2
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and this provides the likelihood. We can then give each Z;; a normal distribution with

variance 1. A constraint, such as Z;; = 0 or K Zjr = 0 is applied for identifiability.

In a direct approach, observing X; = k corresponds to observing Z;;, > 0 and Z;; <0
for all ¢« # k.

6.10.5 Interval-censored variables

A variable subject to interval censoring may be handled by methods similar to the direct
and indirect methods in the case of ordinal variables. In the direct case, if X is not
censored, then Z = X and we make a direct observation. If the observation is censored,
then we observe that c¢,_1 < Z < ¢ for lower and upper bounds c¢;_; and ¢, and the
posterior support is bounded. In the indirect method we suppose that, when X is not
censored, we observe Z* = X and, when X is censored, we observe that ¢,_1 < Z* < ¢, ,
where, Z* ~ N(Z,1). Hence, in the latter case, the likelihood is ®{(c;,—Z)} —P{(cx—2)}.

6.10.6 Marginal update calculations for ordinal observations

Consider an ordinal variable X, using the direct method. Suppose that Z has prior mean
Eo and prior variance Vy. Let Sy = 1/V, be the prior standard deviation. Suppose
that we use probits. Let ®() be the standard normal distribution function and ®~()
be its inverse. Let W = ®{(Z — E()/Sp}. Then W has a prior uniform distribution on
(0,1). We can also transform the cut points in the same way: C, = ®{(C — Ey)/So}.
The observation X selects the observed interval. The posterior distribution of W is then
simply a uniform distribution over that interval, U(C}, C,), where C; represents the lower
cut point and C), refers to the upper cut point. We use a trapezium rule to integrate over
that interval by setting up a grid of W values over the interval and then calculate the
values of Z = Eg+Sq® ! (W). Finally we find the average value of Z and the average value
of Z? over the interval. We used a R function to make the adjustment for both binary
and ordinal variables in the non-Hodgkin lymphoma example, since a binary variable is

equivalent to an ordinal variable with just two categories. See Appendix A.6.5.

When we use the indirect method, we can obtain unbounded support for the posterior

rather than obtain bounded support in the direct method.

In the case of binary variables in the model, such as albumin in the non-Hodgkin
lymphoma data, our likelihood in this case will be 6% (1 — )=X. We transform the
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parameter 6 here, so that we can use, for example, logit, Z = log[f/(1 — #)]. Then the

likelihood can be written as

f(X,2) = <1 j—zez)m (1~iez>l_w’

and the prior for Z in this case is Z ~ N(m, 1) where m is the prior mean of Z and we

fix the variance of Z to be 1.

Therefore, the posterior density of Z is

m(Z]x) o< f(Z2) (X, Z)

x g exp(Z — m)’ exp(Za)1 + exp(Z)]

Then the support of the posterior density 7(Z|z) in this case is unbounded so we can
use a Laplace approximation to calculate the posterior means and variances for Z when

we update these moments using BLK.

6.11 Summary

In this chapter, we have investigated Bayes linear methods with some theoretical aspects
of this approach. Bayes linear analysis is different from full-Bayes analysis as Bayes linear
methods specify just the first and second order moments and then calculate the posterior
moments. So we do not need to specify the prior in a probabilistic way as in a full-Bayes
analysis. We explained the idea of Bayes linear analysis using a motivational example.
We explained Bayes linear kinematics and mentioned the concept “commutativity” and

how to do multiple updates using BLK.

We also described Bayes linear Bayes graphical models as a combination of Bayesian
networks and Bayes linear structure. We use the idea of transformation of the parameters
for different reasons. However, the most important one is that # may have a bounded

range and this boundary makes the use of Bayes linear methods less attractive.

After transforming the parameters, we can use the mode and log-curvature method
that we explained in Section 6.5.3. We apply the mode and curvature method to con-
struct the prior mean and variance for the transformed parameters. We use an example

concerning the use of sulfinpyrazone.
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This chapter has some proposed ideas including the use of non-conjugate updates
in order to calculate Bayes linear kinematics. An example is when we have a binomial
likelihood and logit-normal prior. In the case of a non-conjugate prior, we need to use
some numerical integration methods such as a Laplace approximation or the trapezoidal
rule. However, these integrations are low-dimensional, often one-dimensional, in contrast

to the high-dimensional integrations required by a full-Bayes analysis.

We have done two examples in this chapter and the results show that using a non-
conjugate prior distribution gives posterior moments closer to those obtained with a full
Bayes analysis. The ability to use non-conjugate marginal updates also widens the range

of types of observations which can be incorporated in a Bayes linear Bayes model.

We finish this chapter by considering how different types of variables can be handled
in a Bayes linear Bayes model. In addition, we have proposed two methods (the direct
and the indirect method) which are suitable in some applications such as a prognostic

index.
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Application to survival data

7.1 Introduction

This chapter deals with the application of Bayes linear Bayes models and Bayes linear
kinematics to survival data. We divide this chapter into two parts. The first part deals
with the leukaemia example with investigation and comparison of the full-Bayes method,
the BLK method with conjugate prior and our proposed method which is BLK with non-
conjugate prior update. This example applies BLK to a data set to make inferences about
the values of model parameters. In this part, we start with the introduction of piecewise
constant hazard (PCH) models in Section 7.2.2. Then we give a brief description of the
leukaemia data set in Section 7.3. In Section 7.3.3, we illustrate in detail the Wilson and
Farrow approach which depends on using BLK in a PCH model. Section 7.3.4 uses the
idea of non-conjugate prior updates in order to produce posterior means and the posterior
variance-covariance matrix for the parameters of interest 3 using BLK. We compare the
results from using the non-conjugate method with full Bayes methods and BLK with a
conjugate prior in Section 7.3.6. In Section 7.3.7, we do some diagnostic plots for the

leukaemia example to check the validity of the assumptions.

The second part tackles another type of application with data on patients with non-
Hodgkin lymphoma. The idea here is to construct a Bayes linear kinematic network to
compute a prognostic index value for a patient given observations on some or all of a set
of covariates. The calculation will be fast and relatively simple. The use of Bayes linear
kinematics eliminates the problem of non-commutativity which has been experienced in

some related work. We start the second part by outlining the novelty of using a latent
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prognostic index and how it relates to survival time for patients. In Section 7.4.3, we
explain how we can construct a Bayes linear kinematic prognostic network with various
sorts of covariates. In Section 7.5.1, we give an explanation of the general strategy for

constructing the prognostic network, including the use of the offline learning model.

We propose the BLK method with non-conjugate prior update and investigate its
application to a rapid computation of prognostic index values in survival analysis when
a patient’s values may only be available for a subset of covariates. We explain the offline
learning in Section 7.6.3 which simply uses a full-Bayes analysis and MCMC to learn
about the values of the parameters. As in the leukaemia example, in Section 7.6.6, we
give diagnostic plots for the non-Hodgkin lymphoma in order to assess the validity of our
assumptions and to support model selection. In Section 7.6.8, we show the summary of
the results for our proposed method using the non-conjugate prior updates in order to
evaluate the Bayes linear kinematic approach and compare it with the full-Bayes analysis
using MCMC methods. We identify important differences between the direct and the
indirect methods and compare the results of using these methods in Section 7.7. In
Section 7.8, we explain the prototype calculator for the prognostic index for patients and

how it works. Finally, we give a summary of the chapter in Section 7.9.

7.2 Bayes linear Bayes retrospective analysis

7.2.1 Introduction

As our first illustrative example, we will show a retrospective analysis. Here we have a
data set with data on a collection of patients and we wish to use Bayes linear kinematics to
learn about the values of model parameters. Specifically, we will use a piecewise constant
hazard model. Such models will be described in more detail in Section 7.2.2. Briefly, time
is divided into a number of intervals and the log hazard for patient ¢ in interval £ has the

form

J
Nige = Bro + > BjnTij (7.1)
=1

where z; ; is the value of covariate j for patient ¢. We wish to learn about the values of
the coefficients By, ..., ks for each interval k£ and we use Bayes linear kinematics to do
this.
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7.2.2 Piecewise constant hazard models

In a piecewise constant hazard (PCH) model, we do not assume a particular form for the
baseline hazard function hg(t). Instead we relax the parametric assumption about the
baseline hazard. Time is divided into different time intervals. Then we assume that the
hazard is constant within each interval. However, the hazards are allowed to vary from

interval to interval. See Section 5.5.2.

Suppose that we have patients ¢ = 1,...,n and patient ¢ has the covariates x; =
(1,41, ..., %5, 5) . A hazard function h,(t) is associated with patient i at time ¢. The hazard
functions of patients when we assume a proportional hazards model (Cox, 1972) are related
as hi(t) = ¢;iho(t), where ¢; is a constant and hg(t) is the baseline hazard function. We

might wish to relate the hazard function for patient ¢ to the patient’s covariates as follows

6: = ep(e' ) (72)

for some parameters 3 = (o, 51, B
In this scenario, we assume that the parameter values 3 are constant over time, which
means that the effect of the covariates for the patient is constant over time. Sometimes
this is not the case, so if we wish to allow for this possibility we need to use a dynamic
model which allows changes in the effects of the covariates over time. This dynamic model

can be written as

¢i(t) = exp(z;B(t)). (7.3)

Now the piecewise constant hazards model, (see, for example, Ibrahim et al., 2001;
Wilson and Farrow, 2017) uses some fixed cut-points g, 1, ..., s, such that sy = 0 and
s — oo is greater than the largest death time. Therefore, the time can be divided into

intervals. We define the interval Iy as [sg_1, Sg). So the baseline hazard will be
ho(t) = Ao ks for sp_1 <t < sy
and the hazard function for patient i is
hi(t) = N k.

More detail about the integrated hazard function H;(t), the survival function S;(¢) and

the probability density function for patient 7 is given in Section 5.5.2.
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In order to apply Bayesian analysis for the dynamic model, first we need to introduce
the likelihood function allowing for right censored observations. The likelihood for patients

1=1,...,n1is
n K

L=T1]1ILix
=1 k=1
where
Lij = (Ai)"* exp{—Nix(ti — s1-1)} (7.4)

where 0;;, = 1 if the patient ¢ dies in the interval Iy, d;, = 0 if the patient 7 is censored
or survives in [ and ¢, = t; if patient ¢ dies in interval Iy, t;, = t;, if patient ¢ survives

in interval I}, or ¢;; = t; if patient ¢ is censored at time ¢} in interval Ij.

7.2.3 Full Bayes analysis for piecewise constant hazard model

In this section, we give a brief description of the full-Bayes analysis to compute the
posterior means and posterior variances for all the parameter values 3 in a piecewise

constant hazards model.

Given that the patient survives to the beginning of the interval I, the conditional
lifetime distribution is an exponential distribution with parameter \;; for patient 7 in
interval Ij. In each interval, our beliefs about ); ; are updated when we observe the data
in that interval. These changes in belief are propagated to the quantity 7, (the linear

predictor) as follows

log()\i,k) =Nk = LTﬁk

To compute the posterior distribution of 7; 5, we need to combine the likelihood func-
tion in (7.4) with a suitable prior distribution, for example, a normal prior distribution
for g = (@?, ,@;‘:)T Since the prior is not conjugate to the likelihood, we need numer-
ical methods to compute posterior summaries and Markov chain Monte Carlo (MCMC)

methods are usually used.
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7.3 Example: Leukaemia

7.3.1 Introduction

This example refers to the data of Henderson et al. (2002) which are described in Section
2.3. In this example, we have 1043 patients. The dependent variable in this study is the
time 7" measured in days until the event (death) occurs. Of the 1043 patients, 879 died

and 164 were right censored. See Section 2.3 for more details.

We have a number of covariates that were thought to have an effect on survival with

this disease. We manipulate these covariates as follows:

e The age A; represents the age of patients in years. So we use z;; = A; — 60.

e The sex of the patients. We give ;5 = 1 if the patient is male and z; o = —1 if the

patient is female.
e White blood cell count W; at the time of diagnosis. We use z;3 = W, — 8.

e Deprivation score (Depscore): This variable measures the deprivation for the resi-
dential area of the patient. We use the Townsend deprivation index (TDI) (Townsend
et al., 1988). The scale of the variable is from -7 to 10 with lower values indicating

more severe deprivation.

We wish to use a piecewise constant hazard model for leukemia survival. Therefore, the
hazard function for patient ¢ in interval Iy is exp{ S0 + Z?Zl Bk} For instance, if we
have a male patient with age 60, his white blood cell count is 8 and deprivation score 0,

then the hazard function in this case will be exp{ ko + Br2} and so forth.

7.3.2 Exploratory plots in the leukaemia example

Figure 7.1 shows scatter plots of pairs of variables. When we compare Age and log(7’) in
Figure 7.1, we see that most of the people are in the age group [50-80] and the younger

people are tending to live longer than the older ones.

When we plot one covariate against another, that is plotting Age against log(WBC),
Age against Deprivation, log(WBC) against Deprivation, we can see that we have a ran-

dom scatter for points for both males and females.

155



Chapter 7. Application to survival data

10
10

log(WBC)
Deprivation
Deprivation

-5

log(T)
log(T)
log(T)

20 40 60 80

Age log(WBC)
Figure 7.1: Exploratory plots for the covariates in leukaemia example
red dots for females.

Deprivation

. Black dots for males and

When we plot log(WBC) against log(7") and Deprivation against log(7'), there is no

suggestion that the variance changes. However, we will need to examine diagnostic plots

after fitting the model.

7.3.3 Wilson and Farrow approach

Wilson and Farrow (2017) applied Bayes linear kinematics to these data using a piecewise

constant hazards model with 10 time intervals. So, they define s, = —vlog(1 — uk), for
u = 0.1 and v = 500 in order to give us these 9 cut-points which are (52.7, 111.6, 178.3,

255.4, 346.6, 458.1, 602.0, 804.7, 1151.3).

In order to make inference (i.e. posterior means, posterior variances and covariances)

about the collection of parameter values ﬁj = (8o, 514, Bojs B4, Pay)' in the model, we
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need to specify our prior beliefs for these parameters.
Wilson and Farrow (2017) specified the prior moments for each of the parameters.

This prior specification is developed as follows. To obtain suitable prior moments for
Bo,1, we assume a constant hazard with a wide range for the mean lifetime for “baseline”
patients. Therefore, we use the mean of -6 and standard deviation of 0.8 for 3, ;. That can
give us £2 standard deviations range which corresponds to a range for the mean lifetime
from 81 to 1998. See Wilson and Farrow (2017).

Now consider 3;; which represents the coefficient of Age. The range of the Ages of
the patients is between 14 and 92. We expect that the hazard is increasing as the age
is increased. Wilson and Farrow (2017) elicited the mean and the variance for 8y, by
assuming that the patient ¢ is 10 years older than patient i'. So, the ratio of the hazard

functions for these two patients is

) = eXp<10ﬂ1,1)7

if patient ¢ and i have the same values for the other covariates. We can suggest a
range 0.8 < h;(t)/hy(t) < 1.8. Suppose that these values give us an approximate 95%
interval for a normal prior distribution for f; ;. Therefore, we obtain Ey(f;,1) = 0.02 and

Varg(81,1) = 0.0004.

We can apply this process for the rest of the coefficients in the first time interval,
B21,P31 and [41. We apply this prior elicitation process to the other time intervals.
Table 7.1 gives the prior means and variances for 3 for the first time interval. The values

for the other time intervals are the same.

To complete the prior specification we need to specify prior correlations between the
parameters. Following Wilson and Farrow (2017) we make (3, ; independent of j. s,
unless 7 = 7. That is, the coefficients of different covariates are independent of each
other. Again following Wilson and Farrow (2017), we construct the covariances between

Bri, -, B using a stationary first order autoregressive process. We write, for j = 2, ..., k,

BTJ = Br + ¢<5r,j71 — Br) + €rj

. . . . !
where €, ; is a zero-mean random variable with ¢, ; independent of €, ) unless » = r and

j =74 and Var(e, ;) = Ve,
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For stationarity, we choose |¢| < 1 and write
Br,l = Br + 6:

where € is a zero-mean random variable with € independent of €, unless r = r and €
independent of ¢,/ ; for all 7 and all j > 1, and set Var(eX) = V,,(1 — ¢*)~*. The value
of ¢ is chosen to determine the temporal prior correlation in (3,1, ..., 5, in conjunction
with the choice of Var(B,) (see Wilson and Farrow, 2017). Having chosen the values of
¢, Var(B,) and Var(f, ), the value of V_, is determined since

Var(8,;) = Var(B,) + V. .(¢*) "

The values chosen were those used by Wilson and Farrow (2017). Thus ¢ = 0.92, Var(B,) =

0 for r =0, ...,4 and the other choices are given in Table 7.1.

Effect Mean Variance
Baseline Boa -6.000 0.64

Age Bia 0.020  0.0004
Sex B2, 0.000 0.1225
WBC Bs1 0.005 0.000025

Deprivation score (3,7 0.000 0.01

Table 7.1: Prior means and prior variances for each of the effects. Adapted from Wilson and
Farrow (2017).

Wilson and Farrow (2017) used conjugate gamma prior distributions for the hazards
Ni,j = exp(n; ;). They considered three different methods for linking the moments of A; ;

to those of 7, ;, the log-mode, log-moment and lognormal methods. See Section 6.5.

In this thesis, we will use the same prior specifications as Wilson and Farrow (2017).
Then we will use our proposed method which depends upon using the non-conjugate

marginal prior (i.e. the non-conjugate method) to update our prior beliefs about .

7.3.4 Use of non-conjugate updates in the leukaemia example

Our method of using the non-conjugate update might be regarded as an approximation to
a full-Bayes analysis. Wilson and Farrow (2017) compared the behaviour of Bayes linear
kinematic belief adjustments with full-Bayes posterior inferences in the case of a piecewise

constant hazard survival model and found that the results were generally close.
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Let us explain how our method works in this example. Suppose we have

ik = 10g(Aig) = prik.

We are interested in finding the moments of 3, (i.e. E{(3) and Var;(/3)) using Bayes lin-
ear kinematics. To do that, we need to specify prior means and prior variance-covariance
for 3 which are Eq(f) and Vary(3) respectively. Then, when we have observed patient i
in interval I}, we can use the Laplace approximation method to gain a new mean and new
variance for 7;; and propagate that through 8 and apply the proper BLK in the following

way.

We revise the mean and variance using

E, (ﬁ | Dn) = EO,B + VOﬁ nvo nn<E1 EO,n)v (7-5)
Varl(é | Dn) = Vosn Vonnvlm n%nnvt)nﬁ
+Vo.8.8 = Vo.snVomnVons- (7.6)

where D, is a single observation, E(3) is a vector of prior mean of 3, Vj 5, is a vector
of the covariance between ( and 7, Vo,_nl,n is a scalar prior variance of 1, Vj 3 is the prior
variance for 3, E{(8 | D,) is the posterior mean of 3 updated by the single observation
D,, and Var,(8 | D) is the posterior variance of 3 updated by a single observation D,,.

That is, we let n = log(\) then we give 7 a normal prior distribution with mean Eq(n)
and variance Varg(n). Then we obtain a Bayesian update using the numerical methods
such as the Laplace approximation method. See Section 6.5.3. Therefore, the update of
n will be non-conjugate. Hence, we obtain E;(n) and Var;(n). Then we use these E;(n)

and Vari(n) in (7.5) and (7.6) to find the posterior means and the posterior variances for
B.

To combine the updates from all observations, we use Bayes linear kinematics. When

a unique commutative update exists, it can be written as

J
P(BID) = 2 P(EID;)~(J-1DP(B), (7.7)
J
P(BID)EB| D) = > P(B|D)EB|D;)—(J-1)P(BE(B), (7.8)

<.
Il
=

where D = (D, ..., D;)" and P(8) = Var(8)~! is the prior precision matrix. See Section
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6.3.4 and equations (6.14) and (6.15).

Our use of non-conjugate updates allows our model to be closer to the corresponding
full-Bayes model. We can see from Figure 7.3 that the Bayes linear kinematic adjusted

expectations are even closer to the full-Bayes posterior means.

7.3.5 Full Bayes analysis for the leukaemia example

For comparison with the Bayes linear kinematic analysis we also carry out a conven-
tional full-Bayes analysis. In terms of the prior specification, we assume that all ﬁj =
(Boj» Bij> B2.js Ba.j, Baj) have a multivariate normal distribution. There are 50 parameters
in this case ( 5 in each time interval). We represent the prior means and prior variances
in the first interval in Table 7.1.

To apply a full Bayes analysis, we need to specify our likelihood function which is

written in (7.4) in addition to the prior specification.

A Bayesian posterior update is done using the fully specified prior. We give a (non-
conjugate) normal prior for 7; ;. Therefore, the posterior update for n; ; is non-conjugate.
The computations are done using MCMC. Specifically we used rjags (Plummer, 2017).
The rjags model specification is given in Appendix A.7.1.

7.3.6 Results in the leukaemia example

A preliminary analysis gave results which suggested that the hazard was not constant
over the first time interval. This was indicted by an excess of residuals close to the left
hand end of the histogram, in a residual plot made in the same way as Figure 7.4. To deal
with this problem, an extra cut-point was introduced at s; = 10.5, giving eleven intervals
in total. The value of 11.5 was chosen by examination of histograms and Kaplan-Meier
plots (See Figure 7.2) of lifetimes in the affected region. Because the hazard appeared to
change rapidly in this region, we did not reduce the incremental variance Varg(3) in the

prior specification for S but kept it the same as for the other transitions.

We calculated posterior moments of the parameters using the Bayes linear Bayes
approach, with conjugate updates using both the log-mode and the log-normal methods
and with non-conjugate updates. We also calculated posterior distributions using a full-
Bayes analysis. The log-mode and log-normal methods were chosen because the log-mode

method was used by Wilson and Farrow (2017) and the lognormal method is closer to the
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Figure 7.2: Kaplan-Meier estimates S (t) with confidence intervals with several lifetime such as
15, 52, 300 and all the observations.
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j T Bi1 x 107 B2 x 10 Biz x 10° Bia x 107

1 | 105 | 4.352 (0.331) | -0.199 (0.665) | 4.625 (0.526) | 3.275 (1.342)
2 | 527 | 3.692 (0.356) | 0.252 (0.703) | 3.072 (0.800) | 4.262 (1.515)
3 | 111.6 | 3.126 (0.386) | 0.263 (0.793) | 2.8%2 (0.919) | 2.540 (1.774)
4 | 178.3 | 2.502 (0.403) | 0.310 (0.858) | 3.465 (1.007) | 1.266 (1.959)
5 | 255.4 | 2.345 (0.416) | 0.589 (0.896) | 3.564 (1.106) | 1.147 (2.013)
6 | 346.6 | 1.823 (0.423) | 0.420 (0.012) | 2.589 (1.265) | 0.747 (2.069)
7 | 458.1 | 1.557 (0.440) | 0.090 (0.961) | 2.595 (1.364) | 1.137 (2.170)
8 [ 602.0 | 1.590 (0.493) | 0.425 (1.047) | 3.449 (1.499) | 0.033 (2.373)
0 | 804.7 | 1.495 (0.532) | 1106 (1.149) | L.762 (L.712) | -2.322 (2.720)
10 | 1151.3 | 2.320 (0.580) | 1.429 (1.254) | -0.700 (2.063) | -4.815 (2.983)
11| oo | 2.887 (0.783) | 1.523 (1.647) | -1.179 (2.539) | -4.543 (4.045)

Table 7.2: Posterior means and standard deviations for each of the parameters in each interval
using the non-conjugate method.

non-conjugate method.

We compare the results from four methods. Table 7.2 gives us the posterior means for
the effects of all the covariates in all the intervals and the posterior standard deviations
are given in brackets, using the non-conjugate method. When we look at Table 7.2, we
notice that all the posterior means of the effect of age are positive and most of those for
sex as well. That means increasing the age and the sex being male both increase the

hazard of death from leukaemia.

Furthermore, the age effect is decreasing over time and then eventually increasing
while the sex effect increases over the time. So, in general, all the covariates in the model

have an effect on the survival time for the patients with leukaemia.

Figure 7.3 shows the comparison between Bayes linear Bayes analysis using the con-
jugate prior based on the log-normal and log-mode method, full-Bayes analysis and the
non-conjugate method. We see that, the posterior means for the Bayes linear kinematic
method using the non-conjugate prior gives very similar results to the full-Bayes approach.
However, the computations for the non-conjugate BLK were much faster than those for

the full Bayes approach.

We have also noticed that the posterior means using the log-normal method are also

very close to our posterior means using the non-conjugate method.
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Figure 7.3: The effect of age and sex on the hazard functions of individuals with leukaemia.
Triangles represent the posterior means for the full Bayesian method, circles represent different
types of Bayes linear Bayes methods such as the black colour represents the posterior means
using the non-conjugate prior update method. The transformed time is [1 — exp(—t/v)]/u with
u = 0.1 and v = 500. The posterior means are plotted at the mid-points of the time intervals on
the transformed scale.

7.3.7 Diagnostic checking in the leukaemia example

In this section, we produce some residual plots to check the validity of the assumptions

made in the leukaemia example.

7.3.7.1 Residuals in survival analysis

For a general, non-Bayesian, discussion of residuals in survival analysis see, for example,
Collett (1994). Several types of residuals have been defined for survival models. These
include Cox-Snell residuals (Cox and Snell, 1968).

In non-Bayesian analyses, the Cox-Snell residual for patient ¢ is an estimate of
—log S;(t;), where S;(t) is the survival function for patient i and ¢; is that patient’s survival

time. In the case of a censored observation, the Cox-Snell residual is also censored.
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Clearly there is a 1—1 correspondence between — log S;(t;) and F;(t;), where F;(t) =
1 — S;(t) is the cumulative distribution function (cdf) of the lifetime distribution for
patient i. Given Fj(¢) and that the lifetime T} is a random value from this distribution,
then F;(T;) has a uniform U(0, 1) distribution. Furthermore ®~![F;(T;)] has a standard

normal distribution, where ®() is the standard normal cumulative distribution function.

In the context of a model fitted to data, an observed lifetime ¢; is known but the
parameters of Fj(t) have a posterior distribution. Therefore F;(¢;) also has a posterior
distribution and we can compute summaries, such as quantiles, of this distribution. In the
case of a censored observation, the actual lifetime T} is also unknown but we can compute

summaries of the posterior predictive distribution of F;(T;).

The two examples in this chapter, leukaemia and non-Hodgkin lymphoma, are prob-
lems of different kinds. The details of how residuals are calculated and used differ between
them.

7.3.7.2 Computing the residuals in the leukaemia example

The leukaemia example is a purely Bayes linear Bayes example in which the objective
is to make inferences about the values of the model parameters. Because the model
is a piecewise constant hazard model, all of the parameters are the coefficients 3 in a
linear model (including the baseline). The inferences are calculated using Bayes linear
kinematics (BLK). As no Markov chain Monte Carlo (MCMC) computations are involved,
we can not compute the residuals as a byproduct of the MCMC.

The Bayes linear Bayes model does not assign a distribution (either prior or posterior)
to . However, for the purpose of computing residuals, as an approximation, we use a
multivariate normal distribution for the posterior distribution of 3. We use the posterior
mean vector and variance-covariance matrix calculated by BLK. We draw a large number,
M, eg M = 1000, of random samples of 3 from this multivariate normal distribution. Let
these randomly sampled vectors be g ,..., 3, . For each sampled vector ﬁm and each

patient ¢, we calculate a residual R,,; as follows.

If the lifetime ¢; for patient i is observed (not censored) then we simply calculate
Ry = Fi(t;; Bm) which is the cdf evaluated at time ¢; with the covariate values for

patient ¢ and the parameter values ém

If the observation for patient i is right-censored at time ¢; then we calculate Fi(c;; 3, ).

If the actual lifetime for patient ¢ is T; > ¢;, then R,,,; = Fi(T3; @m) is uniformly distributed
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on the interval (F(c;; 8 ),1). So we draw a random sample U, ; from the uniform distri-

bution U(0,1) and set R,,; = Fz(%ﬁm) + Upill — E(c,,ém)]
Having done this, for each patient ¢, we have a random sample of M draws from
the distribution of the patient’s residual. We can calculate summaries, such as the three

quartiles, from these values.

R code is shown in Appendix A.7.2 to compute the residuals and R a function to find
the cdf of a piecewise constant hazard model is shown in Appendix A.7.3. The number
of patients is n and the number of saved sets of parameter values is M. As a result, we

can compute the three quartiles of each residual.

For the purpose of the graphs which follow, the medians of the residuals are used.

7.3.7.3 Results

Figure 7.4 shows a histogram of the residuals in the leukemia example. This suggests that

these residuals have approximately a uniform distribution.

We also need to plot the residuals against the covariates. For example, we plot Age
against the residuals in Figure 7.5. It is clearly “random scatter” of points. There is no
particular pattern shown in this graph. So, our assumptions are plausible as the residuals

are distributed with constant variance for both males and females.

Figure 7.6 shows the scatter plot of log(WBC) and residuals. Again we do two plots,
one for males and one for females. Also, there is no concern about any particular changes

in the variance.

In Figure 7.7, we plot the Deprivation score against residuals for males and females,
again we need to assess the validity of the model assumptions. These residuals are in the

range (0,1) and show no dependence on the Deprivation score.

Figure 7.8 shows the scatter plot of the posterior means of 1 against residuals for
males and females. We can see a random pattern indicating a good fit for the model. As

a result, we conclude that there is no reason to reject the model assumptions.
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Figure 7.4: Histogram of the posterior medians of the residuals in leukaemia example.
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Figure 7.5: Scatter plots for Age against residuals for both sexes. The blue dots for males and
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Figure 7.8: Scatter plots for the posterior mean of 7 against residuals for both sexes. The blue
dots for males and pink dots for females.

7.4 Bayes linear Bayes prognostic networks

7.4.1 Introduction

We now consider applications of a different type. We wish to build a system to calculate
prognostic index values for individual new patients. This calculation will be done using
Bayes linear kinematics. This makes the calculations very fast and, as we shall see, we
will be able to compute a value even when observations on some covariates are missing.
In Section 7.4.2, we will explain the use of a latent prognostic index and its advantages.
In Section 7.4.3, we will describe the general structure of a Bayes linear Bayes prognostic
network. In Section 7.5, we will describe how such networks are built, including the use
of historical data. In Section 7.6, we will apply these ideas to an example refering to

patients with non-Hodgkin lymphoma.

7.4.2 The use of a latent prognostic index

A traditional prognostic index measures the hazard of an individual relative to the baseline

in a proportional hazards model. Typically, it is the logarithm of the relative hazard. See
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Section 5.6. If we have a fixed list of covariates S = {X7, ..., X;}, then the index must
be a function of the values xq,...,z; taken by these covariates. Conventionally, when
constructing a prognostic index, we try to choose a suitable function g(x, ..., 7). Suppose
now that we have a list Sp.x = {X1, ..., Xs} of covariates which can be observed but that
we might not always observe all of X1, ..., X; but rather we observe some subset of Sy .x.
Suppose that the possible observed subsets are Sy, ..., Sy,. We need a different function
gm for each possible subset S,,. To do this in a coherent and principled way, we introduce
the idea of a latent variable Zp. We will refer to this as a prognostic index but we will
not observe it. Instead, when we supply an index value to a user, we will give our current
expectation of Zr, given the information available to us. As in a traditional prognostic
index, Zr is a quantity on which the lifetime distribution depends. For example, in a
Weibull model with survival function exp{—\;t*} for subject i, we can use Zr = n;, =

log()\;) as the prognostic index. If
J
ni = Bo + Z B Xij
j=1

where X ; is the value of covariate j for subject ¢, but not all of X 1, ..., X; ; are observed
for subject i, then we use I = E(n; | S;) where S; is the subset of observations made for

patient 7. We refer to I as the predicted prognostic index value.

This allows us to compute a (predicted) prognostic index value given observations of
any subset of the possible covariates, for example when some values are missing or when
some variables are only measured in certain cases. Furthermore, the use of Bayes linear

kinematics and a Bayes linear Bayes model allows us to do this quickly and efficiently.

Additional flexibility is provided by modelling the joint distribution of Zr and the
covariates, often through latent variables associated with the covariates, so that Zr is not
known precisely even when all of the covariates are observed. In this way we always use

an expectation of Zr as our declared index value.

7.4.3 Prognostic networks

Suppose that the nodes X1, ..., X; can represent covariates. With each covariate X we
associate a variable Z, which may be unobserved. The value, or more generally, the
distribution of X} depends on the value of Z,. Just as X, depends on Zj, suppose

that we have a lifetime T which depends on Z;. In general we can have covariates
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Xy, ..., X  depending on Zy, ..., Z; respectively and then an additional dependent node T’
depending on an element Z;,;. The variables Z, ..., Z;,; are related in a Bayes linear
structure. Then Z;.; represents our prognostic index. When we observe some or all of
the covariates this changes our expectation of Z;,; and therefore the index value which
we would report. See Figure 7.9. Notice that, in Figure 7.9, the red, undirected, edges
represent a Bayes linear structure and that the blue directed edges represent fully-specified

conditional probability distributions.

Figure 7.9: Bayes linear Bayes graphical model

The introduction of a latent variable Z,, associated with the covariate X allows co-
variates of different types to be used such as ordinal variables and censored variables.

However, we are free to set X, = Zj if this is appropriate.

We need to specify a mean vector and a variance-covariance matrix for the elements
of the Bayes linear structure, 71, ..., Z;, Z;.1. The variance-covariance matrix might be
developed in a general, unstructured way as suggested by Figure 7.9. Alternatively, we
might impose some structure and exploit conditional independences, perhaps by intro-
ducing mediating nodes which induce correlation between related covariates. This might
be done by expert judgement. A subjective covariance structure might be developed us-
ing an approach similar to methods described in Farrow (2003). On the other hand we
might use an automatic method, using an algorithmic approach to determine a suitable

network structure. Methods for structure learning for Bayesian networks are discussed
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in, for example, Heckerman and Chickering (1995); Neapolitan (2003); Margaritis (2003)
and Wang et al. (2015). See Chapter 4.

We might also select certain important variables which are always observed and con-

dition the rest of the model on these.

However we determine the structure, we need to quantify it by specifying means,
variances and covariances. Again these might be chosen subjectively. More likely we will
use historical data and use an offline learning phase in which we fit an analogous model,
with a fully specified prior distribution, using, for example, Markov chain Monte Carlo
(MCMC) methods to compute posterior summaries. This latter approach is described in

our example in Section 7.6.3.

Once we have a fully specified model, in routine use with new patients, we compute
adjusted expectations of the prognostic index given observations of some or all of the
covariates. Because we can do the calculation when only a subset of the covariates is ob-
served, we can include a greater number of potential covariates in our model and therefore

use more information when it is available.

7.5 Construction of Bayes linear Bayes networks

7.5.1 General strategy

While, in some cases, we might construct our network using only the subjective judgements
of experts, more typically we might use historical data to learn values of parameters in

our model.

We have an offline learning phase and we use values that we infer from that model in
the network. In practice, we use the posterior expectation that we obtained from the offline
learning model to construct the Bayes linear Bayes prognostic network. At this stage in
our research, we use the posterior means of model parameters as values in our Bayes linear
Bayes model. The historical data are, however, independent of future patients, given the
model parameters. This raises the possibility, which we will pursue in future research,
that we can avoid any such compromise and obtain exactly the expectations which we
need. For example, in (6.14) and (6.15), clearly we can obtain the posterior expectations
of P(X) and P(X)E(X) directly from the MCMC computations in the learning phase.

However, further work is required to address the problem of parameter uncertainty in the
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adjusted expectations and precisions. Nevertheless, with a large historical data set, such

effects are likely to be small.

7.5.2 Specifying the covariance structure

First of all, we need to construct a variance-covariance matrix of the possibly latent
covariates Z. As an alternative to using an inverse-Wishart prior, we can use the following

approach.

Suppose that
Z =Ge+p.

where e ~ N(0, V.), and, for example, when Z has five elements, V. can be written as

' 0 0 0 0
0 ' 0 0 0
V.=10 0 ' 0 0
0 0 0 7' o0

|0 0 0 0 75 1_
So the matrix G will be ) )
1 0 0 0
Y21 0 0
G= |71 73 0 0
Yar Ya2z a3 10
V51 Y52 V53 Ysa 1)

Therefore, the variance-covariance matrix Var(Z) = GV.G' = X.

There are four reasons to use this approach rather than just use, for example, an

inverse Wishart prior.

1. This structure lends itself to using a more structured network, with some arcs miss-

ing.

2. This structure allows us to use a collection of univariate normal distributions rather
than a multivariate normal distribution. This avoids problems with standard MCMC
software such as JAGS when a multivariate normal vector is sometimes only par-

tially observed.
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3. The generalised autoregressive stucture automatically creates a missing-data model.
Ibrahim et al. (2001), Section 8.3, suggest a sequence of conditional distributions

for covariates. See also Zhao (2010).

4. The generalised autoregressive structure provides greater flexibility in specifying a
prior distribution for the variance-covariance matrix than an inverse-Wishart prior.
In an inverse-Wishart prior, once E(XY) is specified, only one parameter is left to
specify the uncertainty. In contrast, in the generalised autoregressive structure, we
can give the regression coefficients 7,1, ¥31, V32, - . . @ multivariate normal prior and
also give, for example, a multivariate normal prior to the logarithms of the precisions

T1, T2y« ..

Therefore, we use this structure, adapted from Pourahmadi (1999); Daniels and Pourah-
madi (2002). This structure uses a square-root-free Cholesky decompsition of X! as

follows.

The Cholesky decomposition of a symmetric positive definite matrix () with dimension

p X p can be expressed in the following way

Q=255
where S is non-singular and lower-triangular with elements @k Suppose that for each k

we divide column k of S by Ekk so that
Q=SDS (7.9)

where D is diagonal with elements 5171, ...,@,,p and S is lower triangular with elements
Cik = Ejk / Ek,k for 7 > k and unit diagonal. This is a square-root-free Cholesky decompo-
sition of ). See Watkins (2004).

The idea of using a “generalised autoregressive” representation was introduced by
Pourahmadi (1999), to provide a non-restrictive parameterisation of the covariance matrix.
Suppose that we can write Z; = ¢; and, for j = 2, ..., J,

j—1

Z; = $ijiZ; + ¢,

=1

where g; ~ N (O,T;l) and ¢; is independent of £ unless j = j'. The coefficients Oji

. . !’ .
are generalised autoregressive parameters. Therefore, ¢ = (e1,...,¢;) = PZ where P is
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the lower triangular matrix with unit diagonal and, for j > £, elements —¢; ;. So the
diagonal covariance matrix of € is D~' = PXP’, where ¥ is the covariance matrix of Z.
Rearranging this we obtain

>~'=PDP.

where P’ is upper triangular. By reversing the order of the elements of the vectors we
obtain (7.9).

7.5.3 Offline learning

Once we have determined a structure for our model we assume that Z has a multivariate
normal distribution and, with suitable prior distributions assigned, use MCMC to compute

posterior means for model parameters, as discussed in Section 7.5.1.

The assumption of a multivariate normal distribution for Z is convenient but, given
that we can choose a link function between the element of Z and the covariates Xy, ..., X,

and 7', it is not restrictive.

Specifically we use a generalised autoregressive structure for Z in the model fitting.

So we set

Zy =i + &1

where £; ~ N(0,7;'). Then, for j > 1, we set

j—1
Zj =i+ Y ik Zr — 1) + €5
k=1
where €; ~ N (0, Tj_l) and g1, ...,e; are independent.
We then give multivariate normal priors to p1, ..., pty41 and to a1, ..., v41,7. We also
give priors to the conditional precisions 71, ..., 7;.1. It is simple to give these parameters

independent gamma priors but we could also, for example, give a multivariate normal

prior to (log 7y, ...,log T i1).

The mean vector for Z is just p = (u1,...,pus+1)" and the variance-covariance matrix

of Z is given by

Y =GD'¢ (7.10)
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where D is the diagonal matrix with diagonal elements 7y,...,7,;,; and G is the lower
triangular matrix with diagonal elements g;; = 1 and off-diagonal elements g;, = ;i for

g >1andk < j.

7.6 Example: Non-Hodgkin lymphoma

7.6.1 Introduction

As an example we use patients with non-Hodgkin lymphoma. The historical data were
collected by the Scotland and Newcastle Lymphoma Group from patients in Scotland
and the North of England, UK, (Proctor and Taylor, 2000), See Section 2.2. Apart from
survival time, which is subject to right censoring, the variables include Age, Sex, Stage
(Ann Arbor Stage, Carbone et al., 1971), ECOG (Eastern Cooperative Oncology Group
performance status, Oken et al., 1982), the last two of which are both ordinal variables,
and a large number of other covariates, some of which may or may not be observed.
Some of these are binary and some are interval-censored, since the results were either
recorded as “normal”, if the measurement was inside the normal range, or as an actual
value if it was not. For further details, see, for example, Zhao (2010). See also Chapter
2. In our example, for illustration, we use a subset of these covariates. We use Age, Sex,
Haemoglobin (HB), White Blood Cell (WBC), Stage and Albumin. Of these, HB and

WBC are continuous variables, Stage is ordinal and Albumin is binary.

We chose to separate Age and Sex, which are always observed, and to condition the
rest of the model on these. Thus the means of 71, ..., Z,,, Z,,.1, but not the variance and

covariances, depend via a linear model on age and sex.

We adopted a general covariance structure for the Bayes linear network and we impose
the order of the covariates in the following expression {hb, wbc, stage, albumin, T}, since
we always observed {hb, wbc} to form a generalised autoregression. In future work we

plan to investigate the use of more structure.

Thus our generalised autoregressive structure becomes the following. We set

Zl = Ho,1 + Hage,1Lage + Hsex,1Tsex + €1
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where £; ~ N(0,7;'). Then, for j > 1, we set

j—1
Zj = Ho,j + Hage,jTage + Hsex,j Tsex + Z ’7j7k(Zk - luk) + €j
k=1
where €; ~ N(O,Tj_l) and €1,...,e; are independent. Here x5 is the patient’s age in

years minus 60 and x4, is 1 for a male patient and —1 for a female patient.

In our offline learning model, we suppose that the distribution of 7;, the lifetime of
patient ¢ is a Weibull distribution with two parameters, o and \;, where log(\;) = Z;

and Z;; is the prognostic index value for patient 1.

Then we use the generalised autoregressive structure to relate each variable with oth-
ers in the model. All the variables that we use in the example have means which are

conditional on age and sex since we always observed age and sex.

As a result, we obtain the posterior distribution for all the parameters in the model

and then use the posterior means to produce a Bayes linear kinematic network.

We obtain the variance-covariance matrix for Z from the coefficients ~; 5, using (7.10).

7.6.2 Exploratory plots in the non-Hodgkin lymphoma example

Before constructing our model, we should look at some plots. So, we plot the covariates
used in the NHL example. These covariates are Age, Sex, HB, WBC, Stage and Albumin.
In Figure 7.10, we plot Age against Stage which has 4 levels and for both sexes. From
these boxplots, we notice that there is no change in the difference between male and
female in each stage. Similarly, the boxplots of log(HB) and Stage show no indication

that the difference in log(HB) between males and females depends on Stage.

Figure 7.11 shows the boxplots of plotting log(WBC) against Stage and for males
and females. This again suggests that the difference between log(WBC) does not depend
on the Stage. The same conclusion can be drawn from plotting log(7T") against Stage in
Figure 7.11.

Albumin is classified into two categories, Albumin 1 and Albumin 2. In Figure 7.12,
we plot Albumin against Age, log(HB), log(WBC) and for males and females. These plots

show no concern about the validity of the model assumptions.

Figure 7.13 shows scatter plots for the continuous variables in the data set, Age, HB
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Figure 7.10: Box plots for Stage and Age and box plots for Stage and log(HB).

and WBC. From these scatter plots, we can not see any pattern in the observations which

suggests a violation of the model assumptions, so we carry on the analysis.

7.6.3 Offline learning: Introduction

We use a full-Bayes specification and MCMC to learn the values of the parameters. As an
example, we use a data set containing 1391 patients with non-Hodgkin lymphoma. See
Chapter 2. A large proportion of these patients had at least some missing covariate values.
Therefore, it was necessary to include a missing-data model in our model specification.
So we construct a model for the joint distribution of all of the variables, including the
covariates. This is done using a generalised autoregressive structure. The main model was
the same as the Bayes linear Bayes model except that we specified a prior distribution for
the unknown model parameters, including the thresholds for ordinal covariates and the
means and variance-covariance matrix in the Bayes linear structure. The prior for the
parameters of the Bayes linear structure was specified using the generalised autoregressive
approach described in Section 7.6.1. This structure implies the missing-data model. The

coefficients and conditional precisions in the generalised autoregression were converted to
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give the variance-covariance matrix X for Z using (7.10).

7.6.4 Offline learning model with the direct method

In our example the computations were done using JAGS using the R package rjags
(Plummer 2017; R Core Team, 2018).

Suppose we use the direct method with the case of the ordinal variables. Then, it
is necessary to learn about the values of the thresholds, ¢y, ..., cx_1. However, since the
mean and variance of Z are both unknown, for identifiability we fix two thresholds. Thus
if K =3, wecan fix c; = 0 and ¢ = 1. If K = 4, then we can fix ¢; = 0 and ¢3 = 2
and then give ¢y/2 a scaled beta prior distribution. For K > 4, we can fix ¢; = 0 and
cx—1 = 1 and then give {uy, ..., ui_3} a Dirichlet prior distribution and let ¢;;; = Z{zl U;.

For example, for ECOG, K = 5 for living patients.

In the case of Stage, K = 4. Without loss of generality we can fix ¢; = 0 and
c3 = 2. We make inference about the second cut point. We give ¢y a scaled beta prior
distribution. So ¢3/2 = ¢* where ¢* ~ Beta(a,, b.). We also assume that the underlying

latent variable which is associated with this variable has a normal distribution with some

2

mean and unknown variance o2, so Z ~ N(u,, 0>

) where the mean p, is also unknown.

See Appendix A.7.4 for the rjags model specification using the direct method.

In the offline-learning phase, we use full Bayes analysis with MCMC computations.
As a result, we learn about all the parameters that we need to produce the prognostic
index values. Then, we use these parameter values from the offline learning as the prior in
the BLK network. We use the generalised autoregressive structure as described in Section
7.6.1 and obtain posterior means for the mean vector and variance-covariance matrix of
Z to use in the BLK network.

Let us explain how we use the parameters of our generalised autoregression in Table 7.3
to obtain these mean parameters and variance covariance matrix. For the direct model,
we obtain the posterior means and posterior variances as described in Appendix A.7.4.
Then, we calculate Eq(Z) from the following

HO = (KYO.hba Y0.wbes Y0.stages V0.albumin 70.75) >

!

= ('Yage.hba Yage.wbey Vage.stages Vage.albumin Vage.t) ’

I

Cage
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Parameter =~ Mean Standard deviation
Yo.t 0.00 10.00
Vsex.t 0.00 31.62
Vage.t 000 3162
Ywbe.t 0.00 31.62
Yalbumin.t 1.00 100.0
Vstage.t 0.00 31.62
Vhb.t 0.00 31.62
Y0.hb 100 100.0
Yhb.age 0.00 31.62
Yhb.sex 0.00 31.62
Y0.wbe 10.0  31.62
Ywbc.age 0.00 31.62
Ywbe.sex 0.00 31.62
Ywbe.hb 0.00 31.62
Y0.stage 00.0 31.62
Vstage.age 0.00 31.62
f)/stage.sex 0.00 31.62
Vstage.hb 0.00 31.62
Vstage.wbe 0.00 31.62
Y0.albumin 00.0 31.62
Yalbumin.age 0.00 31.62
Valbumin.sex 0.00 31.62
Yalbumin.hb 0.00 31.62
Yalbumin.wbc 0.00 31.62
Yalbumin.stage 0.00 31.62

Table 7.3: Prior means and prior standard deviations for each of the parameters in the NHL

example.
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and

’

= (756x.hb7 Vsex.wbes ’Ysex.stagea Vsex.albumin 73690.75) .

i

—Sexr

Now, to obtain Vo(Z), we have 7, = (T, nps T2.wbes Tz .stages Ls Tz,t)/ as we fixed T, qipumin tO
be 1 and we have 7, 5, ~ Gamma(2, 300), 7, 5. ~ Gamma(2,30), 7, stage ~ Gamma(2, 3)
and 7,,; ~ Gamma(1.5,0.5).

We define the matrix V. exactly as in Section 7.5.2. We also define the matrix G as

follows. _ -
1 0 0 0

Va1 0 0

G= |71 732 0 0

Va1 a2 a3 10

V51 Ys2 Y53 Yea 1

where Y21 = Yhb.wbes V31 = Vhb.stager V32 = Ywbe.stages V41 = Vhb.albumin, V42 = Ywbc.albumins V43 =

Vstage.albumin, V51 = Vhb.ts V52 = Ywbe.ts V53 = Vstage.t and V54 = Yalbumin.t-

Therefore, the variance-covariance matrix will be V4(Z) = GV.GT.

As a result, in the BLK network, we use the prior mean Ey(Z) and prior variance-

covariance matrix Vy(Z) as follows.

For the prior means we use

, MO(ZHB) /JJO(ZWBC) ﬂO(ZStage) ,UO(ZAlbumin) NO(ZT)
By = (126.6473 8.0231 1.2037 —0.8868 0.5150)

Nage(ZHB) ,U/age(ZWBC) ,uage(ZStage) /Lage(ZAlbumin) ,uage(ZT)
Poge = ( —0.1777 0.0087 0.0121 0.0189 0.0098 )

and

/Lsex(ZHB) /Lsex(ZWBC) ,usex(ZStage) Msem(ZAlbumin) ,usex(ZT)
Pow = ( —4.9052  —0.0084 0.0500 0.0165 ~0.0628)
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Therefore,

EO (Zz) = Mo + MageTage,i + HsexTsex,i-

where 244 is the age in years of patient ¢, minus 60 and x4, ; is 1 for a male patient or

-1 for a female patient, and

ZHB ZwBc ZStage £ Albumin Zr
Zup (3232214 —2.1272 —6.9139 —8.6734 —3.6989
Zwee | —2.1272 12,1289 0.0969  0.8100  0.3861
Vo(2) = Zgupe | —6.9139 00969  1.8214 04274  0.2169
Zatumin | —8.6734  0.8100  0.4274  1.3136  0.3980
Zr  \—3.6989 0.3861  0.2169  0.3980  0.4619

7.6.5 Offline learning model with the indirect method

In addition to the direct method, we introduce a novel method which is called the indirect
method. In this case we relate ordinal variables to the latent variables using ordinal logistic
regression. To specify this model (see Appendix A.7.11), suppose we have the variable X
which is an ordinal variable with K categories, say K = 4 with ¢ = 1,...,n. Then we have

probabilities that relate to each category as follows

pi1=1—qi1
Pi2 = i1 — qi2
Pi3 = qi2 —4i3
Pi4 = Gi3-

This ensures that the sum of these probabilities is 1. We can represent ¢ as
logit(gi ) = Z; — ¢,

where the cut-points are ¢, = (¢, ¢2, ¢3) since we have four categories.

We can deal with different sorts of covariates in this model exactly as we do with
the direct method. So, for example, in the case of a binary variable, since the binary
distribution has one parameter, we fix the variance of Z to be 1 and the cut-point to be 0.

To include an ordinal variable with K = 4 in this model, we should have three cut-points
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(0, cg, 1) where ¢y ~ Beta(a, b).

In the non-Hodgkin lymphoma example, after obtaining the posterior distribution for
all the parameters from the historical data, using a generalised autoregression, we then
convert the parameters to the form of Eo(Z) and V4(Z). As a result, our prior means and

variances for use in the BLK network can be represented as

po = (126.5844 | 8.0292 , 0.1596 , —0.8988 , 0.6034)'
Page = (—0.1766 , 0.0087 , 0.0182, 0.01910 , 0.0134)/

and
fsex = (—4.9086 , —0.0080 , 0.0789 , 0.0157 , —0.0846)/
Therefore,
E0<Zz) = o + HageLage,i + HsexTsex iy
and

[323.2659 —2.1548 —10.5563 —8.9206 —4.3637]
—2.1548 12.1275  0.1440 0.8379  0.4687
VWo(Z) = |—10.5563  0.1440 1.3452 0.6220  0.7403
—8.9206  0.8379 0.6220 1.4024  0.4692
| —4.3637  0.4687 0.7403 0.4692  0.7790

7.6.6 Offline learning: Diagnostic checking in the direct method

7.6.6.1 Introduction

The non-Hodgkin lymphoma (NHL) example concerns the construction and use of a Bayes
linear kinematic prognostic index calculator. There are two phases: the offline-learning
stage, which is a full-Bayes analysis with MCMC computations, and the Bayes linear
kinematic calculation of prognostic index values for new patients, based on a Bayes linear
Bayes network. The appropriate place to calculate and examine residuals in this case is in
the offline-learning stage as this is where the model is developed. Some covariate values

in this example are missing.
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Since we use MCMC to do the model-fitting calculations, it is possible to calculate
residuals within a rjags run. It is simpler to compute the residuals within rjags, espe-
cially as the lifetime distribution is Weibull and so the cdf has a simple form. At each
MCMC iteration the parameters are sampled and so are the lifetimes for censored ob-
servations. We thus obtain samples from the posterior distribution of the residuals as
discussed in Section 7.3.7.1. In particular for a censored observation, we obtain samples
from the posterior predictive distribution of F;(7;). We could use a separate R program
to deal with the missing covariate values, but there are some difficulties in doing that.
On the other hand, since there will be a large number of residuals, sampling the residuals
directly within rjags might cause difficulties with storage and with processing the results.
In fact, no such difficulties were encountered in this example. If they were, we could use

thinning to reduce the number of stored samples.

7.6.6.2 Results

In this section, we produce some residual plots in the non-Hodgkin lymphoma example in
order to support the selection of our model. In Figure 7.14, we notice that the distribution
in the histogram of these residuals is approximately uniform as required. In addition, to
check the model assumptions, we plot the residuals against the covariates in the example.
For instance, we plot Age against the residuals in Figure 7.15. It is clearly a “random
scatter” of points and there is no evidence of any pattern here. So, our assumption which
stated that the residuals are distributed with constant variance is plausible for both male

and female.

In Figure 7.16, we plot log(WBC) against the residuals. We can see that, there is no
concern about the relationship between log(WBC) and residuals. The points are randomly

scattered in this graph.

Figure 7.17 shows the scatter plot of HB and residuals. Again we do two plots, one for
males and one for females. Also, we can see random scatter with no evidence of changes

in the variance.

In Figure 7.18, we plot the Age against residuals but this time we ignore Sex. We
do a separate plot for each value of Albumin. Again, everything appears to be in order.
There is a random scatter of points. We also notice that there are more observations for
the value of Albumin 1 than the value of Albumin 2.

Figure 7.19 shows the scatter plots for residuals against Age. As we have 4 stages in
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Figure 7.14: Histogram of the posterior means of the residuals.

the variable Stage, we have 4 plots, one for each stage. These graphs raise no concerns
about the variability in the variance, which means we have a constant variance in all the

stages.

In Figure 7.20, we plot the posterior mean for 1 using two methods, full Bayes and
Bayes linear kinematics, against the residuals and for male and female using the direct
method. Again, we have scatter random observations for both methods and for male and
female. There is no clear pattern in these plots. As a result, there is no evidence against

the validity of our assumptions.

7.6.7 Diagnostic checking in the indirect method

Now we examine the residuals in the case of the indirect model.

Again, the histogram in Figure 7.21 shows approximately a uniform distribution. We
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Figure 7.15: Scatter plots for Age against residuals for both sexes. The blue dots for male and
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Figure 7.16: Scatter plots for log(WBC) against residuals for both sexes. The blue dots for male
and the pink ones for female.
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Figure 7.17: Scatter plots for HB against residuals for both sexes. The blue dots for male and
the pink ones for female.
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Figure 7.19: Scatter plots for Age against residuals for 4 stages in the covariate Stage.
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Figure 7.21: Histogram of the posterior means of the residuals in NHL example using the indirect
method.

also notice that all our Figures 7.22, 7.23, 7.24, 7.25, 7.26 and 7.27 are very similar graphs
to those produced for the direct method. In conclusion, there is no concern about the

validity of the model assumptions.

7.6.8 Prognostic index: Comparison with full Bayes analysis

We calculated the BLK prognostic index values for all of the patients in the dataset using

the direct method with parameter values obtained from the offline learning.

For comparison with the BLK prognostic index values, we used MCMC to calculate
“full Bayes” values. The missing-data ability can be achieved in a full-Bayes model by
modelling the joint distribution of all of the variables, rather than just the conditional

distribution of the lifetime given the covariates. To make the results comparable and
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Figure 7.22: Scatter plots for Age against residuals for both sexes in the indirect method. The
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Figure 7.23: Scatter plots for log(WBC) against residuals for both sexes in the indirect method.
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Figure 7.24: Scatter plots for HB against residuals for both sexes in the indirect method. The

blue dots for male and the pink ones for female.
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Figure 7.26: Scatter plots for Age against residuals for 4 stages in the covariate Stage using the
indirect method.
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Figure 7.27: Scatter plots for posterior mean of 1 using full Bayes and Bayes linear kinematic
against residuals for both sexes in the indirect method. The blue dots for male and the pink
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represent routine use in practice, we fixed parameters in the “full Bayes” calculation at

the values obtained from the offline learning.

Figure 7.28 shows histograms of the “full Bayes” and BLK prognostic index values for
all the patients using the direct method. We notice from Figure 7.28 that both histograms
for the prognostic index values using MCMC and BLK are almost the same. The mean
“full Bayes” value is 0.5352, with standard deviation 0.3348 and the mean prognostic
index value using BLK is 0.5345 with standard deviation 0.3345. Now Figure 7.29 shows
that our adjusted means for the prognostic values are close to the posterior mean from
the full-Bayes analysis as we can see the straight line of equality is passing through the
points which means our BLK method fit the straight line very well. We also use another
graph to compare the two methods. This graph is called a “Bland and Altman plot”,
or agreement plot. This shows the agreement between two methods. Bland and Altman
(1986) described such plots which can be done by calculating the mean difference between
the two methods and the standard deviations for the differences. In other words, we have,

for n cases
ma = Z(ZBLK,Z' — Znomes)-

where 7 BLK,i 1s the prognostic index value calculated using the BLK network and 7 MCMC,i
is the “full-Bayes” value for patient i. The lower and the upper limit are my £ 254, where
Sy is the sample standard deviation of the differences. The sample standard deviation is

Sq = 0.167.

As we can see from Figure 7.30, there are 96% of the data points within the limits.
That indicates that our proposed method to construct Bayes linear kinematic network in

Figure 7.9 gives a reasonable result.

In Figure 7.31 the “full Bayes” values are again plotted against the BLK values.
However, this time cases where a particular covariate is missing are shown in red. There
is one plot for each of the covariates (other than Age and Sex). We see that in three
cases, the red dots appear to be fairly evenly distributed among the black dots. However,
in the case of the covariate Albumin, there is a distinct group of red dots where the BLK
index value is smaller than the corresponding “full Bayes” value. It is not clear why, for
example, any model misspecification with respect to Albumin would affect the BLK and
“full Bayes” results in distinctly different ways. This feature should be the subject of

further research.

The purpose of our Bayes linear Bayes prognostic network is the quick and easy routine
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Figure 7.28: Histogram of prognostic index values from MCMC (a), Histogram of prognostic
index values from BLK using the direct method (b).
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Difference (BLK-MCMC)

Mean of BLK and MCMC

Figure 7.30: Bland and Altman agreement plot for the direct method. The difference Z BLK —

Zyome is plotted against the mean (ZBLK + ZMCMC)/Q where Zprx and Zycume are the
BLK and full Bayes posterior means of Zp respectively.

calculation of prognostic index values for new patients, potentially using a large number
of covariates but able to work when only some of these are observed. The missing-data
ability can be achieved in a full-Bayes model by modelling the joint distribution of all the
variables, rather than just the conditional distribution of the lifetime given the covariates.
However, in a full-Bayes model, we need to integrate over the joint distribution of the
missing covariates, conditional on the observed values, which may be computationally de-
manding. In our Bayes linear Bayes network, even with non-conjugate marginal updates,
we need, at most, a series of one-dimensional integrations which can usually be done very

quickly.

Furthermore, a full-Bayes analysis typically requires a lot of decisions to be made
about the forms of relationships between variables and these choices may have little basis
either in expert judgement or the analysis of historical data. In contrast, the Bayes linear
Bayes approach requires a more limited specification of relationships in terms of first and
second moments and focussing on these more limited judgements might lead to sounder

choices.

Our method might be regarded as an approximation to a full-Bayes analysis. Wilson
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Figure 7.31: Predicted prognostic index values, Bayes linear against full Bayes in the non-
Hodgkin lymphoma example using the direct method. In each plot, cases where a particular
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and Farrow (2017) compared the behaviour of Bayes linear kinematic belief adjustments
with full-Bayes posterior inference in the case of a piecewise constant hazard survival
model and found that the results were generally close. Our use of non-conjugate updates
allows our model to be closer to the corresponding full-Bayes model and we hope that this
will bring Bayes linear kinematic adjusted expectations even closer to full-Bayes posterior

means.

7.7 Comparison between the “direct” and the “indi-

rect” methods

We repeated the calculations using the indirect method and the corresponding indirect

model in the offline learning.
There are some differences between the direct and the indirect methods here.

In the indirect method, the support of the posterior is unbounded because the likeli-
hood is a function of all the values of the probability and for all the values of Z. As a
result, we obtain an unbounded posterior distribution rather than the bounded support

for the posterior in the direct method.

In the indirect method, in order to construct a Bayes linear kinematic network, we
need to specify three things, Z = (71, ..., Zn)/ which represent a Bayes linear structure,
X =(Xq,..., Xn)/ which represent what we observe and something between them which
is the probability P that depends deterministically on Z. For instance, in the case of
an ordinal variable, P is a vector of probabilities and those probabilities depend on the
values of Z. Notice that X is not determined by Z, but the probabilities of X depend on
Z. So, if we observe x, then the likelihood we obtain is the probability for the category
that X is in, and that probability is a function for all the values of Z.

Figure 7.32 shows a comparison between the full Bayes and Bayes linear kinematic
posterior means using the indirect method. We see that almost all of the observations lie
close to the line of equality which indicates that using the indirect method give us values
very close to these given by the full-Bayes method. Figure 7.33 shows that the histograms
of full-Bayes and BLK values look normally distributed which is slightly different from
the BLK in the direct method. In addition, the agreement plot in Figure 7.34 shows no

clear pattern of the trends of these observations.
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As for the direct method, in Figure 7.35 the “full Bayes” values are again plotted
against the BLK values of the indirect method. However, this time cases where a particular
covariate is missing are shown in red. There is one plot for each of the covariates (other
than Age and Sex). We see that, in all the cases, the red dots appear to be fairly evenly
distributed among the black dots.
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Figure 7.32: Adjusted mean using full-Bayes and BLK in the indirect method.
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Figure 7.34: Bland and Altman agreement plot for the indirect method. The difference 7 BLK —

ZMCMC is plotted against the mean (ZBLK + ZMCMC)/Q where Zp;x and ZMCMC are the
BLK and full Bayes posterior means of Z respectively.
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Bayes linear
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Figure 7.35: Predicted prognostic index values, Bayes
Hodgkin lymphoma example using the indirect method.
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7.8 Prototype prognostic index calculator

In this section, we consider transformation of the adjusted means for the prognostic index
values that we calculate from BLK. We wrote a R function which prompts the user to
type in the information about the covariates and then gives the user the prognostic value
for that particular patient. This can help doctors to know about the current situation of
patients. Let the adjusted expectation of Z; for patient i be 2TZ We use transformed
index values in the range of (0,100) by using the percentiles of a normal distribution fitted

to the values of ZTJ- for all patients in the data base. That can be done by computing

ZTi —m
100 X @ | ———-

where ®() is the standard normal cumulative distribution function and m and S are the
sample mean and sample standard deviation of the values of Zp for patients in the data
base. So, for example, if a patient has an index value of 80, this means that this patient

has a high risk value. A R function is shown in Appendix A.7.10.

7.9 Summary

In this chapter, we have explained in detail two examples concerning leukaemia and non-
Hodgkin lymphoma. For the leukaemia example, we have reviewed the Wilson and Farrow
(2017) approach and extended that to our non-conjugate method and we compared our
method with three different methods.

We also have reviewed some aspects that relate to Bayes linear kinematics and Bayes
linear Bayes graphical models and then described the application of these ideas to the

routine calculation of prognostic index values in medical survival.

Initially, we have explained the general strategy of a novel method to construct a Bayes
linear Bayes prognostic network. In particular we introduced the idea of using a latent
prognostic index and presenting its expectation as a value to be used. We also made some
comparisons between full-Bayes and Bayes linear kinematics using the direct method and
between the direct and indirect methods. We found that the prognostic index values from
MCMC (full-Bayes) and BLK look similar. Our prototype prognostic network produces

prognostic index values using all, or some, of the possible covariates almost instantly and
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has the potential to be used, for example, as a Web-based calculator.

The general procedure has two phases. The first is to do some inference using past
data in an offline learning model. That can be done using MCMC and we obtain the pos-
terior distributions for all the parameters in the model. Secondly, we use these posterior
distributions to help us construct a Bayes linear kinematic network. These parameter
values are treated as fixed in the BLK network. In practice we might re-run the offline
learning from time to time, as new data become available, to obtain new parameter values.

This might also be necessary, for example, if a new treatment is introduced.

In conclusion, when using existing methods in more complicated networks, we might
have to use computationally intensive methods or some kind of approximations. However,
our proposed methods can do fast computations in networks which are not Gaussian, even

when not all covariate values are observed.
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Chapter 8

Simulation experiment in survival

analysis

8.1 Introduction

In this chapter, we investigate further the Bayes linear Bayes methods. We use some
simulation experiments to examine the behaviour of the direct and indirect methods. In
the following section, we will give more explanation about the way that we generated our

simulated data.

The main idea of this chapter is to predict the prognostic index Zp using three meth-
ods, BLK using the direct method, BLK using the indirect method and full-Bayes analysis

and to compare the results.

In Section 8.2, we will describe simulation experiments in which the data are generated
according to a model corresponding to the direct method. The R code for generating the
simulated data is given in Appendix A.8.1. These simulated data are then used to predict
the prognostic index using both the direct and indirect Bayes linear Bayes methods and
also the full-Bayes method assuming both a direct model and an indirect model. The
results are then compared. The R code for computing the predictions using BLK is given
in Appendix A.8.3 for the direct method and Appendix A.8.5 for the indirect method.
In the “full Bayes” method used for these comparisons, the population model parameters
are treated as known, as in the BLK methods but, unlike the BLK methods, a fully
probabilistic prediction, with a multivariate normal distribution for Z, is computed, using

MCMC, with rjags. The rjags code is given in Appendix A.8.2 for the direct method
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and Appendix A.8.4 for the indirect method.

In Section 8.3, the experiments are repeated except that, this time, the data are
generated according to a model corresponding to the indirect method. In Section 8.4,

conclusions are drawn.

8.2 Data simulated according to the direct model

8.2.1 Simulation method

The simulated data sets are based on the non-Hodgkin lymphoma example. We used the
same covariates as in Chapter 7, that is Age, Sex, Hb, Wbc, Stage and Albumin. We
have chosen the non-Hodgkin lymphoma as an example to apply our methods because it

contains an example of a continuous covariate, a binary covariate and an ordinal covariate.

To do the simulation, we generate the values of Z = (Zup, Zwie, Zstage: Z Atbumin, 1)’
randomly from a multivariate normal distribution over Z. Then, given these Z, we gener-
ate randomly all the covariate values X. In other words, we draw samples from the con-
ditional distribution of X |Z. We use the vector of means E¢(Z) and variance-covariance
matrix Varg(Z) as we described in Chapter 7, to do the generation. Therefore, the calcu-

lations to specify the prior mean vector for Z, Eq(Z) for non-Hodgkin lymphoma will be

as follows:
po = (126.6473 , 8.0231 , 1.2037 , —0.8868 , 0.5150)/
Hage = (—0.1777 , 0.0087 , 0.0121 , 0.0189 , 0.0098)l
fsex = (—4.9052 , —0.0084 , 0.0500 , 0.0165 , —0.0628)/
Therefore,

EO (Zz) = o + HageLage,i + HsexTsex,i-

where x4 ; is the age in years of patient ¢, minus 60 and .., is 1 for a male patient or

-1 for a female patient.
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The prior variance-covariance matrix for Z, Varg(Z) is

323.3027 —2.1272 —6.9139 —8.6734 —3.6989]
91272 121289  0.0969  0.8100  0.3861
Varg(Z) = | —6.9139  0.0969 1.8214  0.4274  0.2169
~8.6734 0.8100 04274 13136  0.3980
| -3.6080 03861 02169  0.3980  0.4619

When we do the simulation in the direct method (see Section 7.6.3), we simulate
(randomly) values for Z. These values can be positive or negative. If we have a binary

variable and the value of Z is positive, then X =1 and if Z is negative, then X = 0.

In the case of ordinal variables, if the number of categories is K, we have K — 1
cut-points. For instance, if we have 4 categories as in the case of the covariate Stage
in the non-Hodgkin lymphoma example, then we have three cut-points. In general, if ¢
represents the cut-point, then X = k if and only if ¢,_1 < Z < ¢ for a set of thresholds

{c1,...,cx_1} where ¢g = —o0 and ¢ — 0.

We also treated the covariates Hb and Wbc as normal random variables in the direct
model. We modelled Z, = Xy and Z 5. = Xoype in the offline learning model. The actual
prediction values of Zr are generated normally with the prior mean and prior variance

that were obtained from offline learning with the real data.

Then we calculated predictions of the prognostic index using both the direct method

and the indirect method and also using full Bayes.

We have done three examples in this section. We generate 1200 simulated cases for

each of the three examples in this chapter.

In the first example, we are going to do all the simulations in terms of male patients

aged 60 to avoid unnecessary extra complications in these simulations.

We also applied our approach to a second example. In this example, we have different
ages and sexes. In particular, we have 1/3 of patients with age 50, 1/3 with age 60 and
1/3 with age 70. Therefore, we have 1/6 male aged 50, 1/6 female aged 50, 1/6 male aged
60, 1/6 female aged 60, 1/6 male aged 70 and 1/6 female aged 70. So, we have 1/2 of the

patients male and 1/2 female.

In the third example, we artificially increase the variance of Zr and we use exactly the

same age-sex groups from example 2. This has the effect of increasing the range of actual
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values somewhat. In order to increase the variance of Z7, we need to adjust Vary(Z).

Therefore, suppose that we have

where V. is the variance matrix for the covariate Z., ¢ = (Vip, Var, Var, ‘QT)T and Vppr =
Var(Zr).
Then,
Var(Z,|Zr) = V. — cVar(Zy) 't (8.1)

and

E(Z,|Zr) = B(Z,) + cVar(Zr) Y[ Zr — E(Z7)). (8.2)

Alternatively, we can write (8.1) and (8.2) as follows

Z,=E(Z,)+ cVar(Zp) M Zr — E(Z7)] + U,

e

where U, ~ (0, Var[Z,.|Z7]).

Now, suppose that the new variance of Zr is Var*(Zr), then we can write the new

variance of Z,. as

V¥ = cVar(Zy) 'Var* (Zr)Var(Zr) ¢t + V., — eVar(Zy) 't
Var*(Zr) 1

Var(Zr)? Var(ZT)}

Var*(Zr) — Var(Zr) }

:VC+CCT{

_ T
N ‘/c T { V&I'(ZT)2

and the new covariance is

c* = cVar(Zr) ' Var* (Zr).

In general, if Var*(Zr) = bVar(Zr) then,

(b — 1) T
‘/ * — ‘/C + ——
¢ Var(ZT) e
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and

¢ = be.

In summary, we used three sets of simulated data as follows. In each case 1200 cases

were generated
Example 1: all cases male, aged 60.

Example 2: 200 cases in each of 6 groups: male aged 50, male aged 60, male aged 70,
female aged 50, female aged 60, female aged 70.

Example 3: variance of Z7 artificially increased, age-sex groups as in Example 2, b=3.

8.2.2 Results

Figure 8.1 shows scatter plots of predictions, i.e. posterior means, of Zr given the data,
against the true values of Z for Example 1. Four methods are used: full Bayes assuming
a direct model, full Bayes assuming an indirect model, BLK using the direct method
(“BLK direct”) and BLK using the indirect method (“BLK indirect”).

When the direct method was used for prediction, the parameter values used were those
learned by fitting the direct model to the real data.

When the indirect method was used for prediction, the parameter values used were

those learned by fitting the indirect model to the real data.

In Figure 8.1, we have the predictions of the prognostic index values for the actual
values of Zp, direct and the indirect method and full-Bayes. These graphs show how suc-
cessful the methods are at predicting the actual values. The behaviour of the predictions

by all the methods is similar as all the points are spreading near the line of equality.

We notice from Figure 8.1 that the predictions are not going as far away from the
mean as the actual values do. This is because of “regression to the mean”. In addition,
we can see that the predictions from Bayes linear kinematics using the direct model are

very similar to the predictions from the full Bayes analysis.

Similarly, we can see the same pattern when we use the indirect method with parameter
values that we extracted from the offline learning model with the indirect model as the

observations lie close to the line of equality.

Figure 8.2 shows the comparison between the various full-Bayes and BLK methods.
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These figures show that the two BLK methods look very similar. In addition, the two

full-Bayes methods look similar as well.

We should also mention an important point here. The standard deviation for the
actual values is bigger than for the predictions (full Bayes and BLK). This is what we
would expect to happen because the data do not provide perfect information. If the data
were completely non-informative then the prediction would always be the prior mean and
the standard deviation of the predictions would be zero. If the data are more informative
then the predictions will be closer to the true values and the standard deviation of the

predictions will be closer to that of the true values.

From Figure 8.3 and Figure 8.4 in Example 2, Figure 8.5 and Figure 8.6 in Example
3, we can see that increasing the variance makes the relationship between actual and

predicted and, more so, between different prediction methods appear stronger.
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Figure 8.1: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated
using the direct model. (a): actual Zp vs full Bayes direct. (b): actual Zp vs full Bayes indirect.
(c): actual Zp vs BLK direct. (d): actual Zp vs BLK indirect. (Example 1)
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Figure 8.2: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the direct model. (a): full
Bayes direct vs full Bayes indirect. (b): full Bayes direct vs BLK direct. (c): full Bayes direct
vs BLK indirect. (d): BLK direct vs BLK indirect. (e): full Bayes indirect vs BLK indirect.
(f): full Bayes indirect vs BLK direct. (Example 1)
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Figure 8.3: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated
using the direct model. (a): actual Zp vs full Bayes direct. (b): actual Zp vs full Bayes indirect.
(c): actual Zr vs BLK direct. (d): actual Zr vs BLK indirect. (Example 2)
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Figure 8.4: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the direct model. (a): full
Bayes direct vs full Bayes indirect. (b): full Bayes direct vs BLK direct. (c): full Bayes direct
vs BLK indirect. (d): BLK direct vs BLK indirect. (e): full Bayes indirect vs BLK indirect.
(f): full Bayes indirect vs BLK direct. (Example 2)
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Figure 8.5: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated
using the direct model with increasing the variance of Zr. (a): actual Zr vs full Bayes direct.
(b): actual Zp vs full Bayes indirect. (c): actual Zp vs BLK direct. (d): actual Z7 vs BLK
indirect. (Example 3)
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Figure 8.6: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the direct model with
increasing the variance of Zp. (a): full Bayes direct vs full Bayes indirect. (b): full Bayes direct
vs BLK direct. (c): full Bayes direct vs BLK indirect. (d): BLK direct vs BLK indirect. (e):
full Bayes indirect vs BLK indirect. (f): full Bayes indirect vs BLK direct. (Example 3)
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8.3 Data simulated according to the indirect model

8.3.1 Simulation method

In this section, we simulate data according to a model corresponding to the indirect
method (see Section 7.6.3). As with the direct simulations, we first generate a vector
Z using a multivariate normal distribution. The mean vector and variance matrix of
this distribution are those determined following the offline-learning phase with the non-

Hodgkin’s lymphoma data in Chapter 7. Thus

1o = (126.5844 , 8.0292 , 0.1596 , —0.8988 , 0.6034)’
fiage = (—0.1766 , 0.0087 , 0.0182 , 0.0191 , 0.0134)’
[isex = (—4.9086 , —0.0080 , 0.0789 , 0.0157 , —0.0846)’

Therefore,

EO(ZZ) = o + HageTage,i + HsexTsex,i-
Also

(323.2659 —2.1548 —10.5563 —8.9206 —4.3637
—2.1548 12.1275  0.1440 0.8379  0.4687

Varyg(Z) = |—10.5563  0.1440 1.3452 0.6220  0.7403
—8.9206  0.8379 0.6220 1.4024  0.4692
—4.3637  0.4687 0.7403 0.4692  0.7790 |

As in the direct model, we generate all the values of Z randomly from a multivariate
normal distribution over Z. From these Z values, we compute the covariates X, this time
according to the indirect model. Then, we use the different methods, full-Bayes and BLK
in order to calculate the predictions of the prognostic index values using the simulated
covariate values. We use three examples, as in Section 8.2. The details of these examples

are given respectively as follows

e Example 1: all cases male, aged 60.

e Example 2: 200 cases in each of 6 groups: male aged 50, male aged 60, male aged
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70, female aged 50, female aged 60, female aged 70.

e Example 3: variance of Z; artificially increased, age-sex groups as in Example 2,

b=3.

We generate 1200 simulated cases. In the BLK methods, we use the non-conjugate
prior update to obtain the predictions for the prognostic index values. The results are

shown in Figures 8.7-8.12 which correspond to Figures 8.1-8.6 for the direct data.

8.3.2 Results

Figure 8.7 shows scatter plots of predictions, i.e. posterior means, of Z given the data,
against the true values of Zr for Example 1. Four methods are used: full Bayes assuming

a direct model, full Bayes assuming an indirect model, BLK direct and BLK indirect.

As in Section 8.2, parameter values obtained from the offline learning with the real
data were used. When the direct method was used for prediction, the values used were
those from fitting the direct model. When the indirect method was used for prediction,

the values used were those from fitting the indirect model.

We notice from Figure 8.7 that the predictions are reasonably good and the predictions
from Bayes linear kinematics using the indirect model follow a similar pattern to the

predictions from the full Bayes analysis.

Figure 8.8 represents the comparison between the various full-Bayes and BLK methods.
These figures show that the two BLK methods look very similar. In addition, the two full-
Bayes methods look similar as well. The relationship between the full-Bayes predictions

and BLK predictions is not quite as strong.

We notice also from Figure 8.9 and Figure 8.10 in Example 2, having different age
groups can make the relationship fairly stronger between the actual and different predicted

values.

For Example 3, Figures 8.11 and 8.12 (for the indirect model) show that when we
increased the variance of Zr, we have obtained results which appear better than when we
use a small variance of Zp. We set up the new variance of Z; to be Var*(Z;) = bVar(Z;),

where b = 3 in this example.

220



Chapter 8. Simulation experiment in survival analysis

(a) (b)

+— AN — 45‘ N —
] ; J<
= °
a — S £ 4 - o3
_ © _
cr_la o & ; c|0 o S ¥
L_T_s ‘T| | E FI' —
| T T T | T T T
-1 0 1 2 -1 0 1 2
Actual Actual
(c) (d)
AN — AN —
*&3 o ] é o VTG
a ) g .
N4
_ % _
a - > 4 ° »
- _| - _
| |
| T T T | T T T
-1 0 1 2 -1 0 1 2
Actual Actual

Figure 8.7: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated
using the indirect model. (a): actual Zp vs full Bayes direct. (b): actual Zp vs full Bayes
indirect. (c): actual Zp vs BLK direct. (d): actual Z7 vs BLK indirect. (Example 1)
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Figure 8.8: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the indirect model. (a):
full Bayes direct vs full Bayes indirect. (b): full Bayes direct vs BLK direct. (c): full Bayes
direct vs BLK indirect. (d): BLK direct vs BLK indirect. (e): full Bayes indirect vs BLK
indirect. (f): full Bayes indirect vs BLK direct. (Example 1)
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Figure 8.9: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated

using the indirect model. (a): actual Zp vs full Bayes direct. (b): actual Zp vs full Bayes
indirect. (c): actual Zp vs BLK direct. (d): actual Z7 vs BLK indirect. (Example 2)
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Figure 8.10: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the indirect model. (a):
full Bayes direct vs full Bayes indirect. (b): full Bayes direct vs BLK direct. (c): full Bayes

direct vs BLK indirect. (d): BLK direct vs BLK indirect. (e):
indirect. (f): full Bayes indirect vs BLK direct. (Example 2)
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Figure 8.11: Different comparisons between predictions of the prognostic index and the actual
values of Zp, direct method and the indirect method and also using full Bayes, for data simulated
using the indirect model with increasing the variance of Zp. (a): actual Zp vs full Bayes direct.
(b): actual Zp vs full Bayes indirect. (c): actual Zp vs BLK direct. (d): actual Z7 vs BLK
indirect. (Example 3)
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Figure 8.12: Comparing one method with another method to predict the prognostic index using
both direct method and the indirect method for data simulated using the indirect model with
increasing the variance of Zp. (a): full Bayes direct vs full Bayes indirect. (b): full Bayes direct
vs BLK direct. (c): full Bayes direct vs BLK indirect. (d): BLK direct vs BLK indirect. (e):
full Bayes indirect vs BLK indirect. (f): full Bayes indirect vs BLK direct. (Example 3)
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8.4 Conclusion

In conclusion, the Bayes linear Bayes approach produced solutions more quickly than the
full Bayes method. For example, the time that we need to obtain the results for 1200
simulated patients on a desk-top computer using full-Bayes analysis is about 544 seconds,
while the time we need to produce the results using the Bayes linear kinematic method

is about 3.3 seconds, which is very much faster than the full Bayes method.

The Bayes linear kinematic predictions appeared to be only slightly less close to the
true values than the full-Bayes predictions. Whether the simulated data were generated
using the direct or the indirect model, it seemed to make little difference whether the

predictions were calculated according to the direct or indirect method.

Importantly, the Bayes linear kinematic methods can easily be used if only some of

the covariates are observed.

Following the results that we have obtained so far from the simulations, we may
recommend the use of either method, the direct or the indirect, as they both give very close
results to each other. Both methods are faster and easier to use once we have obtained
the parameter values that we extract from the offline learning. The indirect method may
be preferred as it gives unbounded posterior support rather than the bounded posterior

in the direct methods.
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Conclusion and Future Work

9.1 Summary of the project

In this thesis we have been concerned with methods that use Bayesian inference and par-
ticularly Bayes linear Bayes methods for different types of distribution, such as binomial,
Poisson, etc. Firstly, in Chapter 1 we reviewed some literature related to our work such as

using structure learning in Bayesian networks and Bayesian networks in survival analysis.

Chapter 2 described two data sets that we used in this thesis which are non-Hodgkin
lymphoma (NHL) and leukemia data. We have explained in detail the covariates in each

data set.

We consider full-Bayes analysis methods such as MCMC techniques in Chapter 3.
Initially, we gave an introduction to Bayesian inference. We have discussed some numerical
integration methods that we need in this thesis such as Laplace approximation and the
trapezoidal rule. Various types of MCMC algorithms have been illustrated in this chapter,
for example, Monte Carlo integration, importance sampling and, of course, the three
most important algorithms in Bayesian analysis, Gibbs sampling, Metropolis-Hastings
algorithm and Metropolis within Gibbs. We also mentioned how we can obtain samples
from the posterior distributions using MCMC and check the convergence of the chains.
The second part of this chapter dealt with generalised linear models (GLMs) with common
link functions such as logit and probit. We then gave the theory of some variable selection
methods and how we can use Bayesian analysis to select the most important variables
in the model. We used an illustrative example of a Bayesian logistic regression model.

We also explained some variable selection methods which depend on various forms of
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prior distribution, such as spike and slab prior and Zellner’s ¢ prior. In many data sets,
some values are missing. This chapter has described the problem of missing data and the
related method of data augmentation. We use the lung transplant example with many
covariates and a logistic regression model to illustrate the idea of variable selection from a
Bayesian perspective with some results showing that the posterior predictive probabilities

are close to the observed values of the dependent variable.

In Chapter 4, we reviewed a special type of probabilistic graphical models called a
Bayesian network (BN). Then we gave some important terms and definitions in Bayesian
networks. We explained the main points of difference between Bayesian networks and
regression models. In particular, in regression model we do not specify a probability dis-
tribution for the covariates. However, in a BN, we specify the joint probability distribution
for all of the variables so we can use it even when we observe only some of these variables.
We may wish to learn about the parameter of a Bayesian network from data. This is
called parameter learning in BN. We explained, in brief, learning the parameters in both
cases, with complete data and incomplete data. We gave different examples of learning
from data in different cases, such as a categorical network and a Gaussian network. We
used an R package called “bnlearn”, which stands for Bayesian network learning, to learn
about the structure of BNs. We focused on using two algorithms to construct the network
which are the “Grow-Shrink” (GS) algorithm and the “Hill-Climbing” algorithm. These
algorithms depend on a score function such as the Bayesian information criterion (BIC)
to specify the optimal Bayesian network. We explained both algorithms in a motivational
example. Finally, we used a proposed method to construct a Bayesian network. The
method is called “arc-deletion” method. This method requires that we impose the order
of the nodes in the network. Then we used MCMC to select the most likely configuration
and that depends on the posterior probability of the coefficients being non-zero in the
model. We applied this method to the non-Hodgkin lymphoma data set. We found that
the most likely structure from this method had fewer arrows, i.e. we dropped some of
the arcs as the posterior probability for them was close to zero. That is beneficial as we
do not need as many calculations to compute the joint probability distributions as in a

fully-connected network.

We gave general background on survival analysis in Chapter 5. We illustrated some
useful models that relate the survival lifetime distribution to some covariates in the model.
These models are proportional hazard models, piecewise constant hazard models and

accelerated failure time models. We described a prognostic index which is used to predict
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the outcome in patients with a certain disease. We showed for example, how to calculate
this index by fitting the Weibull lifetime distribution. In this chapter, we demonstrated
how we can calculate the posterior distribution for the parameters in survival analysis for
exponential and Weibull distributions. We used the software called “rjags” to compute
all the posterior means and variances for the parameters of interest in the model. We
showed some results and graphs showing that our sampler mixed well and the chains

converged.

The main contribution of the thesis is in Chapters 6 and 7. In Chapter 6 we inves-
tigated Bayes linear methods with some theoretical aspects of this approach. In Bayes
linear methods, we do not need to specify the prior in a probabilistic way as in full-Bayes
analysis. We explained the idea of Bayes linear analysis using a motivational example. We
explained Bayes linear kinematics (BLK) and mentioned the concept of “commutativity”

and how to do multiple updates using BLK.

We explained Bayes linear Bayes graphical models as a combination of Bayesian net-
works and Bayes linear structure. We use the idea of transformation of the parameters for
different reasons. However, an important reason is that, when a quantity # has a bounded

range, this makes the use of Bayes linear methods less attractive.

After transforming the parameters, we can use the mode and log-curvature method
that we explained in Section 6.5.3 to relate the distribution of the parameters to moments
on the transformed scale. We apply the mode and curvature method to construct the
mean and variance for the transformed parameters. We use an example for illustration.
In this chapter we introduced a new method for updating our means and variances which
depends on non-conjugate prior updates in order to calculate Bayes linear kinematics. In
the case of a non-conjugate prior, we need to use some numerical integration methods such
as Laplace approximation, Gauss-Hermite quadrature and the trapezoidal rule. However,
the integrations are typically one-dimensional in contrast to the multi-dimensional in-
tegrations often required in a full-Bayes analysis. The use of non-conjugate priors also
extends the range of types of variable which we can use in a Bayes linear Bayes model.
We used two examples to demonstrate the idea of using non-conjugate prior updates.
Finally, we illustrated briefly various sorts of variables that we can deal with, such as

binary, ordinal, unordered categorical and interval censored variables.

Chapter 7 reviewed two examples, using data on patients with leukaemia and non-
Hodgkin lymphoma. For the leukaemia example, we reviewed the Wilson and Farrow

approach using a piecewise constant hazards model. Then we used our non-conjugate
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updates in this example in order to compare the results with Wilson and Farrow (2017).
We did some diagnostic checking in the leukaemia example to assess the validity of the

assumptions in our model.

For the non-Hodgkin lymphoma example, firstly, we introduced Bayes linear Bayes
prognostic networks and then applied this idea to the NHL example. Secondly, we intro-

duced the novelty of the model relating 7" to a latent prognostic index.

Initially, we have explained the general strategy of offline learning to construct a Bayes
linear Bayes network and then Bayes linear kinematics in the routine use of a Bayes linear
Bayes prognostic network. We described the offline learning model using rjags and how
we can use the posterior means of the parameters in the model. We introduced two
different structures for the Bayes linear Bayes model, called the direct method and the
indirect method. Then we used BLK and did some comparisons between full-Bayes and
Bayes linear kinematics. We found that the prognostic index values from MCMC (full-
Bayes) and BLK look similar. A Bland and Altman agreement plot showed that only 4%
of the prognostic index values were outside the limits. Our prototype prognostic network
produces prognostic index values using all, or some, of the possible covariates almost

instantly and has the potential to be used, for example, as a Web-based calculator.

We also set out some advantages and disadvantages of using the direct and the indirect
method.

In summary, the indirect method is preferable to the direct method as the latter has
bounded support for the posterior and the indirect method give us posterior means which
are closer to the MCMC values than those which the direct method gives.

Since, at present, we use a separate, offline, full-Bayes model to choose parameter
values for the Bayes linear Bayes model, in practice, from time to time, after we have
observed new data, we might run the offline learning again with the addition of new cases

and update the Bayes linear kinematic network.

Finally, in Chapter 8, we implemented a simulation experiment to compare the direct
and the indirect methods based on the results of these methods in Chapter 7. So we
generated repeated simulations when the direct model is correct but both direct and
indirect methods are used to generate the prognostic index distributions. We used full
Bayes and BLK methods to compute predictions. We repeated this for the indirect model

as well.
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9.2 A review of the objectives of the project

In Chapter 1 of this thesis, we stated the aim of the project with some listed points. These

were as follows

1. Develop Bayesian methods for selecting, fitting and using models with appropriate
conditional independence structures, i.e. graphical models, in the context of medical
diagnosis and prognosis problems. In addition, we are looking for improvements to

some existing methods.
2. Investigate methods for a wider class of conditional distributions.

3. Build probabilistic models for diagnosis and prognosis with various Bayesian network
learning algorithms to help the physicians and others to make decisions about their

patients more accurately and efficiently.

4. Propose the novelty of using the non-conjugate prior update in order to obtain the

posterior moments using Bayes linear kinematics.

5. Construct a Bayes linear kinematic network which can be used when we observe
only some of the covariates. Develop methods for incorporating different kind of

covariates in such a network.

6. Propose two new methods, the direct and the indirect methods to compute the
prototype prognostic network and has the potential to be used, for example, as a
Web-based calculator.

We have achieved some of these objectives of the study. For instance, in Chapter 4 we
have constructed a Bayesian network with a Weibull lifetime distribution for the leukemia
data. We made imposed an order on the covariates in the model and we put the covariates
that we always observed first in the network. We also introduced a method to construct
a Bayesian network which depends on selecting the most likely configuration and that

depends on the posterior probability of the coefficients being non-zero.

The main way in which we achieved the objectives was by the extension of methods
for Bayes linear Bayes graphical models to allow non-conjugate marginal updates and the

application of this to a Bayes linear Bayes prognostic index.
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In Chapter 6, we gave the general theory and some examples where we showed that
the adjusted moments from Bayes linear kinematics and the posterior moments from
full-Bayes analysis were close to each other. We discussed examples such as binomial ob-
servations and Poisson observations. We developed methods for incorporating variables of
different types into a Bayes linear Bayes network. All these examples used non-conjugate

prior updates which is an extension of the work done by Wilson and Farrow (2010, 2017).

Chapter 7 showed problems of different kinds using the leukaemia example and the
non-Hodgkin lymphoma example. In the leukaemia example we demonstrated the use of
Bayes linear kinematics to fit a survival model and make inferences about the values of
parameters, using our novel non-conjugate marginal updates. In the non-Hodgkin lym-
phoma example, we showed the idea of constructing a Bayes linear Bayes prognostic index
which depends on fitting an offline learning model for a Weibull survival time and making
inferences about the parameters in the model and then using Bayes linear kinematics to
update our beliefs about Z = (74, ..., Z, ZJ+1)’ in routine use with new patients. We are
particularly interested to predict Z;,; which is linked with the survival time. We com-
pared the posterior moments with full Bayes analysis which gave us reasonable results. We
also compared the direct and the indirect method and we found that the indirect method
is more accurate than the direct method and the reason is that, in the indirect method,
we have an unbounded support for the posterior distribution with ordinal variables rather

than the bounded posterior support in the direct method.

In Chapter 8, we did some simulation experiments in survival analysis in order to
compare the direct and the indirect methods motivated by the results in the non-Hodgkin

lymphoma example in Chapter 7.

9.3 Future work

There is further work to do on selecting Bayesian network structure. Our idea is to use
a score criterion the expectation of a suitable utility function. Similarly work can be
done which applies this idea to variable selection methods. The idea is to use the more
important covariates in the model again depending upon the maximisation of the expected

utility.

We have investigated an “arc-deletion” method, which can calculate the posterior

mean of the indicators, in other words the posterior probability that those coefficients are
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non-zero. This method can drop some of the arrows from the network and that leads to
simplifying the calculation of the joint probability distribution. We can do more work
to improve this method by changing the directions of the arrows to obtain the optimal
structure. That is, we can apply a utility function as a score function in algorithms such
as “Hill-Climbing” and “Grow-Shrink”. Further work is also required on the choice of

suitable utility functions.

In our Bayes linear Bayes graphical models we used a general, that is fully-connected,
covariance structure. There is a need for further research on using structures which are

not fully-connected and which exploit conditional independence.

In our Bayes linear kinematic prognostic index calculation we used the posterior means
of model parameters produced in the offline learning phase. Ideally we would use posterior
expectations of the functions of model parameters which are needed in the Bayes linear

kinematic calculation. Further work is needed to develop this.
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Appendix

A.1 General Appendix

A.1.1 Software

In this thesis, we use the software called jags, which stands for “Just Another Gibbs
Sampler” (Plummer, 2017). It uses MCMC to fit many different kinds of models specified
using a model specification language based on the BUGS language (Spiegelhalter et al.,
1996). To run jags we use the rjags package (Plummer, 2013) within R (R Core Team,
2018).

A.2 Appendix to Chapter 2

A.2.1 Few observations of SNLG data

t died age sex albumin ap bsy...
0.016438356 1 72 1 2 2 2.
0.250228311 1 63 1 1 1 2 ...
0.084018265 1 70 1 1 2 1...
0.168949772 0 58 2 1 1 2

Table A.1: Few observations of SNLG data.
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A.2.2 Few observations of leukaemia data

t t.cen age sex
1 0 61 1
1 0 76 1
1 0 74 1
1 0 79 2
1 0 83 2

wbc

13.3
450.0
154.0
500.0
160.0

depsc
-1.96
-3.39
-4.95
-1.40
-2.59

Table A.2: Few observations of leukaemia data.

A.3 Appendix to Chapter 3

A.3.1 R function to generate samples from the posterior distri-

bution of ;1 and 7.

function(y,prior,n.iter,start=1list(mu=0,tau=1))

{

ybar<-mean (y)
n<-length(y)
Sy<-sum((y-ybar) “2)
musamples<-numeric(n)
tausamples<-numeric(n)
iteration<-1l:n.iter
tau<-start$tau
a<-prior$a

b<-prior$b

m<-prior$m

p<-prior$p

ind<-a+n/2

for (i in 1:n.iter)
{d<-p+n*tau

mean<- (p*m+n*tauxybar) /d
sd<-sqrt(1/d)
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mu<-rnorm(1,mean,sd)

musamples [i]<-mu

scale<-b+0.5*(Sy+n* ((ybar-mu) “2))
tau<-rgamma(1,ind,scale)

tausamples[i]<-tau

}
results<-list(iter=iteration,mu=musamples,tau=tausamples)
return(results)

}

A.3.2 Rjags specification for the logistic regression model of

lung transplant example with missing covariates data

model{

for(i in 1:41){

y[i] “dbern(p[il)

logit(p[i])<- betaO+betal*(new.x1[i]-mean(new.x1[]))+

beta2* (new.x2[i] -mean(new.x2[]))+

beta3*(new.x3[i] -mean(new.x3[]))+betad* (new.x4[i]-mean(new.x4[]))+
betab*(new.x5[i] -mean(new.x5[]))+betab* (new.x6[i] -mean(new.x6[]))+

beta7* (new.x7[i]-mean(new.x7[]))+beta8*(new.x8[i]-mean(new.x8[]))

new.x1[i] “"dnorm(m39,m40)

new.x2[i] “dnorm(m41[i] ,m42)

new.x3[i] "dnorm(m43[i] ,m44)

new.x4[i] “dnorm(m45[i] ,m46)

new.x5[i] “"dnorm(m47[i] ,m48)

new.x6[i] “"dnorm(m49[i] ,m50)

new.x7[i] "dnorm(m51[i] ,m52)

new.x8[i] “"dnorm(m53[i] ,mb4)
m41[i]<-betal.x2+betal.x1x2* (new.x1[i]-mean(new.x1[]))
m43[i]<-betal.x3+betal.x3x2* (new.x2[i]-mean(new.x2[]1))+
beta2.x3x1*(new.x1[i]-mean(new.x1[]))
m45[i]<-betal.x4+betal.x4x1*(new.x1[i]-mean(new.x1[]))+

beta2.x4x2*(new.x2[i] -mean(new.x2[]))+beta2.x4x3* (new.x3[i] -mean(new.x3[]))
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m47[i]<-betal.xb+betal.xbxl*(new.x1[i] -mean(new.x1[]))+
beta2.x5x2*(new.x2[i] -mean(new.x2[]) )+

beta2.x5x3*(new.x3[i] -mean(new.x3[]))+beta2.x5x4* (new.x4[i] -mean(new.x4[]))

m49[i]<-betal.x6+betal .xbx1*(new.x1[i] -mean(new.x1[]))+
beta2.x6x2*(new.x2[i] -mean(new.x2[]))+
beta2.x6x3*(new.x3[i] -mean(new.x3[]))+beta2.x6x4*(new.x4[i] mean(new.x4[]))+

beta2.x6x5*(new.x5[i] -mean(new.x5[]))

m51[i]<-betal.x7+betal.x7x1*(new.x1[i]-mean(new.x1[]1))+
beta2.x7x2*(new.x2[i] -mean(new.x2[]))+
beta2.x7x3*(new.x3[i] -mean(new.x3[]))+
beta2.x7x4* (new.x4[i] -mean(new.x4[]1))+
beta2.x7x5* (new.x5[i] -mean(new.x5[]))+

beta2.x7x6*(new.x6[i]-mean(new.x61[]))

m53[i]<-betal.x8+betal.x8x1* (new.x1[i]-mean(new.x1[]1))+
beta2.x8x2*(new.x2[i] -mean(new.x2[]))+

beta2.x8x3*(new.x3[i] -mean(new.x3[]))+beta2.x8x4* (new.x4[i] -mean(new.x4[]))+
beta2.x8x5* (new.x5[i] -mean(new.x5[]))+beta2.x8x6%* (new.x6[i] -mean(new.x6[]))+
beta2.x8x7*(new.x7[i] -mean(new.x7[]))

}

m39~dnorm(0,0.03)

m40~dgamma (2, 3)

m42~dgamma (2, 3)

m44~dgamma (2, 3)

m46~dgamma (2, 3)

m48~dgamma (2, 3)

m50~dgamma (2, 3)

m52~dgamma (2, 3)

m54~dgamma (2, 3)

betal.x2"dnorm(0,0.03)
betal.x1x2 dnorm(0,0.03)
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betal.
.x3%x2"dnorm(0,0.03)
.x3x17dnorm(0,0.03)
.x4"dnorm(0,0.03)

.x4x1%dnorm(0,0.03)
beta2.
beta2.

betal
beta2
betal
betal

betal.
.x5x1%dnorm(0,0.03)
beta2.
beta?2.
.x5x4"dnorm(0,0.03)

betal

beta2

betal
betal

beta2.
beta2.
beta?2.
beta2.

betal.
.x7x17dnorm(0,0.03)
.X7x2%dnorm(0,0.03)
beta?2.
beta2.
beta2.
beta?2.

betal
beta2

betal
betal

beta2
beta2

x3~dnorm(0,0.03)

x4x2~dnorm(0,0.03)
x4x3~dnorm(0,0.03)

x5~dnorm(0,0.03)

x5x27dnorm(0,0.03)
x5x3~dnorm(0,0.03)

.x6~dnorm(0,0.03)
.x6x17dnorm(0,0.03)

x6x2~dnorm(0,0.03)
x6x3~dnorm(0,0.03)
x6x4~dnorm(0,0.03)
x6x5~dnorm(0,0.03)

x7"dnorm(0,0.03)

x7x3"dnorm(0,0.03)
x7x4~dnorm(0,0.03)
x7x57dnorm(0,0.03)
x7x6~dnorm(0,0.03)

.x8"dnorm(0,0.03)

.x8x1%dnorm(0,0.03)
beta?2.
.x8x3 dnorm(0,0.03)
.x8x4~dnorm(0,0.03)
beta?2.

x8x2~dnorm(0,0.03)

x8x57dnorm(0,0.03)
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beta2.x8x6~dnorm(0,0.03)
beta2.x8x7 dnorm(0,0.03)

beta0~dnorm(-0.5,0.6)
betal~dnorm(0,0.1)
beta2”dnorm(0,0.1)
beta3”dnorm(0,0.1)
beta4d~dnorm(0,0.1)
beta5~dnorm(0,0.1)
beta6~dnorm(0,0.1)
beta7~ dnorm(0,0.1)
beta8~dnorm(0,0.1)

}

A.4 Appendix to Chapter 4

A.4.1 Rjags specification to compute the posterior probabilities
for the coefficients which are non-zero for non-Hodgkin

lymphoma data

modelq{

for(i in 1:636){

is.cen[i] "dinterval(t[i],t.cen[i])

t[i] “"dnorm(mu.t[i],tau)

mu.t[i]<-betaOt+beta.tage[zbeta.tage] *age[i]+beta.tsex[zbeta.tsex]*sex[i]

age[i] "dnorm(mu.age[i],taul)
mu.age[i] "dnorm(60,0.005)

sex[i]~dcat(p[])

hb[i] “dnorm(mu.hb[i],tau2)
wbc[i] “dnorm(mu.wbc[i],tau3)
albumin[i] “dcat (p1[])
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mu.wbc [i]<-betal.wbc+

beta.wbcage [zbeta.wbcage] xage[i]+
beta.wbcsex[zbeta.wbcsex] *sex[i]+
beta.wbchb[zbeta.wbchb]*hb[i]+
beta.wbct [zbeta.wbct]*t [i]

mu.hb[i]<-betal.hb+beta.hbt [zbeta.hbt]*t[i]+

beta.hbage[zbeta.hbage] *age[i]+beta.hbsex[zbeta.hbsex]*sex[1i]

pi~dbeta(2,3)
plil<-pi
pl[2]<-1-pi

pil~dbeta(l,2)
pll[1l<-pil
p1[2]<-1-pil

tau~dgamma(2,3)

taul~dgamma(1,3)
tau2~dgamma(1,3)
tau3~dgamma(1,3)

betalt~dnorm(0, 3)
betal0.hb~“dnorm(0,1)
betal.wbc~“dnorm(1,2)

beta.wbcage[1] “"dnorm(0,0.1)
beta.wbcage[2]<-0
zbeta.wbcage~dcat (pi.wbcagel[])
pi.wbcage[1]<-0.5
pi.wbcage[2]<-1-pi.wbcage[1]

zzbeta.wbcage<-2-zbeta.wbcage
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beta.wbchb[1] “"dnorm(0,0.2)
beta.wbchb[2]<-0
zbeta.wbchb~dcat (pi.wbchb[])
pi.wbchb[1]<-0.5
pi.wbchb[2]<-1-pi.wbchb[1]
zzbeta.wbchb<-2-zbeta.wbchb

beta.wbct[1] "dnorm(0,1)
beta.wbct [2]<-0
zbeta.wbct~dcat (pi.wbct[])
pi.wbct[1]<-0.5
pi.wbct[2]<-1-pi.wbct[1]
zzbeta.wbct<-2-zbeta.wbct

beta.hbt[1] "dnorm(0,0.3)
beta.hbt [2]<-0
zbeta.hbt~dcat (pi.hbt[])
pi.hbt[1]<-0.5
pi.hbt[2]<-1-pi.hbt[1]
zzbeta.hbt<-2-zbeta.hbt

beta.hbage[1] “"dnorm(0,0.5)
beta.hbage[2]<-0
zbeta.hbage~dcat (pi.hbagel[])
pi.hbage[1]<-0.5
pi.hbage[2]<-1-pi.hbage[1]
zzbeta.hbage<-2-zbeta.hbage

beta.hbsex[1] “"dnorm(0,0.2)
beta.hbsex[2]<-0
zbeta.hbsex“dcat (pi.hbsex[])
pi.hbsex[1]<-0.5
pi.hbsex[2]<-1-pi.hbsex[1]
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zzbeta.hbsex<-2-zbeta.hbsex

beta.tage[1] “dnorm(0,0.2)
beta.tage[2]<-0
zbeta.tage“dcat(pi.tagel])
pi.tagel[1]1<-0.5
pi.tage[2]<-1-pi.tage[1]
zzbeta.tage<-2-zbeta.tage

beta.tsex[1] "dnorm(0,1)
beta.tsex[2]<-0
zbeta.tsex"dcat(pi.tsex[])
pi.tsex[1]<-0.5
pi.tsex[2]<-1-pi.tsex[1]

zzbeta.tsex<-2-zbeta.tsex

beta.wbcsex[1] "dnorm(0,0.2)
beta.wbcsex[2]<-0

zbeta.wbcsex~dcat (pi.wbcsex[])

pi.wbcsex[1]<-0.5
pi.wbcsex[2]<-1-pi.wbcsex[1]

zzbeta.wbcsex<-2-zbeta.wbcsex

A.4.2 R code to select the most likely configuration using arc

deletion method

narcs<-9

N<-2"narcs

pick<-matrix(nrow=N,ncol=narcs)

m<-N
for(arc in 1:narcs)

{
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m<-m/?2

pick[,arc]<-rep(rep(1:2,c(m,m)),2" (arc-1))

n.iters<-40000

zl<-matrixout

z2<-1-z1

z<-c(z1,z2)

dim(z)<-c(n.iters,narcs,2)

pmat<-matrix(nrow=n.iters,ncol=N)

for( ¢ in 1:N)

{pmat[,c]<-1

for( arc in 1:narcs){
pmat[,c]<-pmat[,cl*z[,arc,picklc,arc]]

}

}

g<-colMeans (pmat)

sum(q)

A.5 Appendix to Chapter 5

A.5.1 R function to generate samples from the posterior distri-

bution of o and )\ using Metropolis-Hastings algorithm

function(t,N,n,prior,sigma,show=TRUE,start=1ist (alpha=2,lambda=1))

{
n<-length(t)
result<-matrix(ncol=2,nrow=N)

colnames(result)<-c("alpha","lambda")

a<-prior$a;b<-prior$b;r<-prior$r;s<-prior$s

d<-sum(delta)
alpha<-start$alpha
lambda<-start$lambda

naccept<-0
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for(i in 1:N){
lambda<-rgamma(1,d+r,s+sum(t~2))
proposal<-rnorm(1,alpha,sigma)
if (proposal>0){
logprob<-(a+d-1)*log(proposal/alpha)-b*(proposal-alpha)-
lambda* (sum(t proposal)-(sum(t~alpha)))+(proposal-alpha)*sum(delta*log(t))
u<-runif (1)
if (Log(u)<logprob){
alpha<-proposal

naccept<-naccept+1

}
}
result[i,]<-c(alpha,lambda)
}
if (show==T)

message (paste("Acceptance rate=",naccept/N))

return(result)

A.5.2 Rjags model specification to fit the exponential survival

time with the leukemia data

Setting initial values

is.na(t)<-leuk$status==
is.censored<-1-leuk$status

t.cen<-leuk$t.cen

tinits1<-leuk$t.cen+b
is.na(tinitsl)<-leuk$status==

tinits2<-tinitsi1+5

Model specification

model{
for(i in 1:1043)
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is.censored[i] "dinterval(t[i],t.cen[i])
t[i] “dexp(lambdali])
lambda[i]<-exp(betalO+beta.agex(age[i]l-mean(age[]))+beta.sex*sex[i]
+beta.wbc* (wbc[i]-8)+beta.depscorex(depscore[i] -mean(depscore[])))
}
beta0~dnorm(-6.90,69.44)
beta.age dnorm(0.04,1111.111)
beta.sex"dnorm(0.05,44.44)
beta.wbc~dnorm(0.08,33.41)
beta.depscore”dnorm(0.12,82.64)
}

A.5.3 Rjags model specification to calculate the survival prob-

ability for a new patient

model{
lambda.star<-exp(betalO+beta.age*63+beta.sex+beta.wbc*6.8+beta.depscore*x2.02)
for(i in 1:1043)

{

is.censored[i] "dinterval (t[i] ,t.cen[i])

t[i] “dexp (lambda[i])

lambda[i] <-exp(betalO+beta.age*age[i] +beta.sex*sex[i]+beta.wbcxwbc[i]+
beta.depscore*xdepscore[i])

}

beta0~dnorm(0.0,10)

beta.age dnorm(0.0,0.1)

beta.sex"dnorm(0.1,10)

beta.wbc”dnorm(0.1,20)

beta.depscore”dnorm(0.0,20)

}

Explanation of calculation of the survival probability

Suppose we consider a new patient. That means we are interested in plotting the sur-

vival function for one particular patient, say, for example, male and age 63, etc. Therefore,
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we have A\ for that patient denoted \*. If the posterior median for \* is A7, and the lower
and upper limits of the 95% interval are A} .5 and A} 4. respectively, then the corre-
sponding quantities for the survival probability at time t are exp(—A},t), exp(—A§ ga5t)

and exp(—A§ g75t)-

As a result, we have

u<-exp(-0.002429%t)
1<-exp(-0.001996%t)
m<-(1+u) /2

plot(t,m,type="1",col=4,ylab="Survival probability",xlab="Time")
lines(t,1l,type="1",col=2,1ty=2)
lines(t,u,type="1",col=2,1ty=2)

A.6 Appendix to Chapter 6

A.6.1 R functions to use Bayes linear approach

function(E_y,E_beta,V_yy,V_beta,C_betay,y){
dif<-y-E_y
C_ybeta<-t(C_betay)
g<-solve(V_yy,C_ybeta)
el<-E_beta+t (g)%*%dif
d<-C_betaylh*hg
v1<-V_beta-d
return(list(el=el,vi=v1))}

first<-function(E_beta,V_beta,y,sigma){
n<-length(y)
E_y<-X7%*%E_beta
C_betay<-V_beta%*t (X)
V_yy<-X%*%C_betay+diag(sigma,n)
result<-simplefun(E_y,E_beta,V_yy,V_beta,C_betay,y)
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return(result)}

A.6.2 R function for sulfinpyrazone example using logits

function(thetal,theta2,n,x,prior)

{# Evaluates posterior density for logit example.
# prior is meanl, mean2, sdl, sd2, correlation
ni<-length(thetal)
n2<-length(theta2)
stepl<-thetal[2]-thetall[1]
step2<-theta2[2] -theta2[1]
thetal<-matrix(thetal,nrow=nl,ncol=n2)
theta2<-matrix(theta2,nrow=nl,ncol=n2,byrow=T)
etal<-log(thetal/(1-thetal))
eta2<-log(theta2/(1-theta2))
deltal<-(etal-prior[1])/prior[3]
delta2<-(eta2-prior[2])/prior[4]
r<-prior[5]
d<-1-r"2
logprior<- -(deltal”2 + delta2"2 - 2*r*deltalxdelta2)/(2*d)
J<-thetal*(1l-thetal)*theta2*(1l-theta?2)
logprior<-logprior-log(J)
loglik<-x[1]*log(thetal)+(n[1]-x[1])*1log(1l-thetal)
+x[2]*1og(theta2)+(n[2]-x[2])*1log(1-theta2)
logpos<-logprior+loglik
logpos<-logpos-max (logpos)
posterior<-exp(logpos)
int<-sum(posterior)*stepl*step2
posterior<-posterior/int
e2<-sum(etal”2*posterior)*stepl*step2
ans<-list(density=posterior,int=int,e2=e2)

ans
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A.6.3 R function to find the posterior mean and variance for 7;

and 7, in sulfinpyrazone example

function(etal,eta2,n,x,prior)

{
nl<-length(etal)
n2<-length(eta2)
stepl<-etal[2]-etal[1]
step2<-eta2[2]-eta2[1]
etal<-matrix(etal,nrow=nl,ncol=n2)
eta2<-matrix(eta2,nrow=nl,ncol=n2,byrow=T)
thetal<-exp(etal/(1+etal))
theta2<-exp(eta2/(1+theta2))
deltal<-(etal-prior[1])/prior[3]
delta2<-(eta2-prior[2])/prior[4]
r<-prior[5]
d<-1-r"2
logprior<- -(deltal”2 + delta2"2 - 2*xr*deltalxdelta2)/(2*d)
J<-exp(etal)/(1+exp(etal)) "2*xexp(eta2)/(1+exp(eta2)) "2
logprior<-logprior-log(J)
loglik<-x[1]*log(exp(etal)/(1+exp(etal)))+(x[1]-
n[1])*log(1+exp(etal))
logpos<-logprior+loglik
logpos<-logpos-max(logpos)
posterior<-exp(logpos)
int<-sum(posterior)*stepl*step2
posterior<-posterior/int
e2<-sum(etal*posterior)*stepl*step2
ans<-list(density=posterior,int=int,e2=e2)

ans
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A.6.4 Posterior correlation matrix for n for both areas and sexes

in surgical death example using Bayes linear kinematic

See Table A.3—A.7.

A.6.5 R function to make adjustment for both binary and ordi-

nal variables in the direct method

function(y,E0,V0,cuts,nstep=100){
S0<-sqrt (VO)
k<-length(cuts)
if (y==0)1
lower<-0 }
else
{lower<-pnorm(cuts[y] ,E0,S0)}
if (y==k)
{upper<-1}
else {
upper<-pnorm(cuts[y+1] ,E0,S0)}
u<-seq(lower,upper,length.out=(nstep+1))
Z<-qnorm(u,E0,S0)
22=7%7Z
E1<-(sum(Z)-(Z[1]+Z[nstep+1])/2) /nstep
E1Z2<-(sum(Z2)-(Z2[1]+Z2[nstep+1])/2) /nstep
V1<-E1Z2-E1%E1
ans<-list(E=E1,V=V1)

return(ans)
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1 2 3 4 ) 6 7 8

1 | 1.0000 | 0.2246 | 0.0742 | 0.0332 | 0.0197 | 0.0082 | 0.0024 | 0.0008
2 | 0.2246 | 1.0000 | 0.2088 | 0.0662 | 0.0352 | 0.0140 | 0.0039 | 0.0010
3 | 0.0742 | 0.2088 | 1.0000 | 0.1726 | 0.0653 | 0.0244 | 0.0070 | 0.0016
4 1 0.0332 | 0.0662 | 0.1726 | 1.0000 | 0.1917 | 0.0564 | 0.0152 | 0.0034
5 | 0.0197 | 0.0352 | 0.0653 | 0.1917 | 1.0000 | 0.1701 | 0.0408 | 0.0090
6 | 0.0082 | 0.0140 | 0.0244 | 0.0564 | 0.1701 | 1.0000 | 0.1204 | 0.0236
7 | 0.0024 | 0.0039 | 0.0070 | 0.0152 | 0.0408 | 0.1204 | 1.0000 | 0.1023
8 | 0.0008 | 0.0010 | 0.0016 | 0.0034 | 0.0090 | 0.0236 | 0.1023 | 1.0000
9 | 0.0010 | 0.0007 | 0.0007 | 0.0011 | 0.0025 | 0.0057 | 0.0224 | 0.1334
10 | 0.0017 | 0.0010 | 0.0007 | 0.0008 | 0.0012 | 0.0023 | 0.0081 | 0.0463
11 | 0.1330 | -0.0840 | -0.0377 | -0.0264 | -0.0175 | -0.0071 | -0.0015 | -0.0005
12 | -0.0779 | 0.3824 | -0.0001 | -0.0403 | -0.0305 | -0.0127 | -0.0026 | -0.0007
13 | -0.0735 | -0.0643 | 0.2788 | -0.0442 | -0.0564 | -0.0243 | -0.0051 | -0.0012
14 | -0.0366 | -0.0517 | -0.0137 | 0.2466 | -0.0548 | -0.0366 | -0.0083 | -0.0018
15 | -0.0157 | -0.0231 | -0.0174 | -0.0173 | 0.2417 | -0.0434 | -0.0128 | -0.0027
16 | -0.0068 | -0.0102 | -0.0087 | -0.0260 | -0.0533 | 0.1307 | -0.0433 | -0.0117
17 1 -0.0019 | -0.0027 | -0.0016 | -0.0066 | -0.0173 | -0.0484 | 0.1057 | -0.0388
18 | -0.0006 | -0.0006 | -0.0002 | -0.0012 | -0.0030 | -0.0112 | -0.0317 | 0.0660
19 | -0.0005 | -0.0003 | -0.0001 | -0.0002 | -0.0004 | -0.0019 | -0.0059 | -0.0321
20 | -0.0005 | -0.0004 | -0.0001 | -0.0001 | -0.0002 | -0.0007 | -0.0020 | -0.0118
21 | 0.1264 | -0.0321 | -0.0621 | -0.0255 | -0.0119 | -0.0060 | -0.0022 | -0.0006
22 | -0.0312 | 0.3860 | -0.0562 | -0.0415 | -0.0220 | -0.0113 | -0.0040 | -0.0009
23 | -0.0465 | -0.0225 | 0.2157 | -0.0420 | -0.0423 | -0.0216 | -0.0070 | -0.0015
24 | -0.0218 | -0.0297 | -0.0530 | 0.2439 | -0.0349 | -0.0333 | -0.0114 | -0.0022
25 | -0.0075 | -0.0110 | -0.0387 | -0.0148 | 0.2371 | -0.0331 | -0.0170 | -0.0032
26 | -0.0035 | -0.0055 | -0.0214 | -0.0258 | -0.0361 | 0.1340 | -0.0493 | -0.0114
27 | -0.0011 | -0.0015 | -0.0065 | -0.0076 | -0.0135 | -0.0400 | 0.1001 | -0.0400
28 | -0.0003 | -0.0003 | -0.0013 | -0.0013 | -0.0017 | -0.0080 | -0.0345 | 0.0625
29 | -0.0003 | -0.0002 | -0.0005 | -0.0002 | 0.0000 | -0.0012 | -0.0065 | -0.0364
30 | -0.0002 | -0.0002 | -0.0005 | -0.0002 | -0.0001 | -0.0005 | -0.0024 | -0.0145
31| 0.1123 | -0.0143 | -0.0196 | -0.0233 | -0.0317 | -0.0100 | -0.0045 | -0.0015
32| 0.0058 | 0.2251 | 0.0041 | -0.0285 | -0.0416 | -0.0134 | -0.0058 | -0.0019
33 | -0.0166 | -0.0076 | 0.1837 | -0.0257 | -0.0603 | -0.0204 | -0.0083 | -0.0025
34 | -0.0105 | -0.0211 | 0.0002 | 0.2095 | -0.0657 | -0.0304 | -0.0127 | -0.0037
35 | -0.0029 | -0.0098 | -0.0099 | -0.0053 | 0.2079 | -0.0287 | -0.0202 | -0.0060
36 | -0.0010 | -0.0045 | -0.0057 | -0.0208 | -0.0606 | 0.1324 | -0.0427 | -0.0139
37 | -0.0002 | -0.0015 | -0.0015 | -0.0078 | -0.0279 | -0.0330 | 0.1008 | -0.0381
38 | 0.0000 | -0.0004 | -0.0003 | -0.0019 | -0.0074 | -0.0093 | -0.0322 | 0.0696
39 | 0.0000 | -0.0002 | -0.0001 | -0.0005 | -0.0019 | -0.0020 | -0.0078 | -0.0304
40 | 0.0002 | -0.0001 | -0.0001 | -0.0004 | -0.0011 | -0.0009 | -0.0029 | -0.0123

Table A.3: Posterior correlation matrix for n for both areas and sexes in surgical death example
using Bayes linear kinematic and for the columns 1—8
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9 10 11 12 13 14 15 16
1 | 0.0010 | 0.0017 | 0.1330 | -0.0779 | -0.0735 | -0.0366 | -0.0157 | -0.0068
2 | 0.0007 | 0.0010 | -0.0840 | 0.3824 | -0.0643 | -0.0517 | -0.0231 | -0.0102
3 | 0.0007 | 0.0007 | -0.0377 | -0.0001 | 0.2788 | -0.0137 | -0.0174 | -0.0087
4 1 0.0011 | 0.0008 | -0.0264 | -0.0403 | -0.0442 | 0.2466 | -0.0173 | -0.0260
5 | 0.0025 | 0.0012 | -0.0175 | -0.0305 | -0.0564 | -0.0548 | 0.2417 | -0.0533
6 | 0.0057 | 0.0023 | -0.0071 | -0.0127 | -0.0243 | -0.0366 | -0.0434 | 0.1307
7 1 0.0224 | 0.0081 | -0.0015 | -0.0026 | -0.0051 | -0.0083 | -0.0128 | -0.0433
8 | 0.1334 | 0.0463 | -0.0005 | -0.0007 | -0.0012 | -0.0018 | -0.0027 | -0.0117
9 | 1.0000 | 0.2145 | -0.0007 | -0.0004 | -0.0005 | -0.0005 | -0.0005 | -0.0027
10 | 0.2145 | 1.0000 | -0.0010 | -0.0006 | -0.0005 | -0.0004 | -0.0004 | -0.0012
11 | -0.0007 | -0.0010 | 1.0000 | 0.3101 | 0.1676 | 0.0790 | 0.0386 | 0.0176
12 1 -0.0004 | -0.0006 | 0.3101 | 1.0000 | 0.3477 | 0.1474 | 0.0700 | 0.0312
13 | -0.0005 | -0.0005 | 0.1676 | 0.3477 | 1.0000 | 0.3009 | 0.1326 | 0.0581
14 | -0.0005 | -0.0004 | 0.0790 | 0.1474 | 0.3009 | 1.0000 | 0.2249 | 0.0867
15 | -0.0005 | -0.0004 | 0.0386 | 0.0700 | 0.1326 | 0.2249 | 1.0000 | 0.1858
16 | -0.0027 | -0.0012 | 0.0176 | 0.0312 | 0.0581 | 0.0867 | 0.1858 | 1.0000
17 1 -0.0098 | -0.0040 | 0.0059 | 0.0103 | 0.0189 | 0.0274 | 0.0547 | 0.1586
18 1 -0.0450 | -0.0192 | 0.0017 | 0.0027 | 0.0047 | 0.0068 | 0.0135 | 0.0362
19 1 0.0939 | -0.0549 | 0.0012 | 0.0011 | 0.0015 | 0.0018 | 0.0033 | 0.0078
20 | -0.0429 | 0.2034 | 0.0020 | 0.0014 | 0.0014 | 0.0012 | 0.0014 | 0.0027
21 | -0.0006 | -0.0009 | 0.1272 | -0.0296 | -0.0655 | -0.0347 | -0.0200 | -0.0106
22 | -0.0006 | -0.0008 | -0.0299 | 0.3519 | -0.0598 | -0.0486 | -0.0305 | -0.0169
23 | -0.0005 | -0.0006 | -0.0178 | 0.0285 | 0.2380 | 0.0067 | -0.0186 | -0.0141
24 | -0.0005 | -0.0005 | -0.0200 | -0.0236 | -0.0260 | 0.2264 | -0.0075 | -0.0243
25 | -0.0004 | -0.0004 | -0.0162 | -0.0245 | -0.0475 | -0.0228 | 0.2045 | -0.0370
26 | -0.0019 | -0.0010 | -0.0089 | -0.0139 | -0.0278 | -0.0280 | -0.0322 | 0.1321
27 | -0.0079 | -0.0036 | -0.0028 | -0.0043 | -0.0088 | -0.0090 | -0.0135 | -0.0335
28 | -0.0386 | -0.0184 | -0.0008 | -0.0011 | -0.0023 | -0.0023 | -0.0034 | -0.0112
29 | 0.0992 | -0.0465 | -0.0005 | -0.0005 | -0.0008 | -0.0006 | -0.0007 | -0.0026
30 | -0.0337 | 0.1927 | -0.0006 | -0.0006 | -0.0008 | -0.0005 | -0.0005 | -0.0012
31 | -0.0013 | -0.0008 | 0.1198 | -0.0020 | -0.0166 | -0.0230 | -0.0324 | -0.0126
32 | -0.0013 | -0.0008 | 0.0155 | 0.2199 | 0.0093 | -0.0229 | -0.0394 | -0.0154
33 | -0.0015 | -0.0008 | 0.0116 | 0.0408 | 0.2069 | 0.0167 | -0.0358 | -0.0137
34 | -0.0018 | -0.0007 | 0.0000 | -0.0013 | 0.0313 | 0.2038 | -0.0329 | -0.0208
35 | -0.0025 | -0.0008 | -0.0055 | -0.0130 | -0.0122 | -0.0065 | 0.1836 | -0.0306
36 | -0.0051 | -0.0014 | -0.0030 | -0.0074 | -0.0086 | -0.0194 | -0.0514 | 0.1321
37 | -0.0144 | -0.0038 | -0.0010 | -0.0027 | -0.0029 | -0.0079 | -0.0254 | -0.0259
38 | -0.0512 | -0.0139 | -0.0004 | -0.0010 | -0.0011 | -0.0028 | -0.0084 | -0.0122
39 | 0.0850 | -0.0241 | -0.0002 | -0.0004 | -0.0004 | -0.0009 | -0.0024 | -0.0036
40 | -0.0467 | 0.2231 | -0.0002 | -0.0004 | -0.0004 | -0.0006 | -0.0014 | -0.0017

Table A.4: Posterior correlation matrix for n for both areas and sexes in surgical death example
using Bayes linear kinematic and for the columns 9—16
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17 18 19 20 21 22 23 24
1 |-0.0019 | -0.0006 | -0.0005 | -0.0005 | 0.1264 | -0.0312 | -0.0465 | -0.0218
2 | -0.0027 | -0.0006 | -0.0003 | -0.0004 | -0.0321 | 0.3860 | -0.0225 | -0.0297
3 | -0.0016 | -0.0002 | -0.0001 | -0.0001 | -0.0621 | -0.0562 | 0.2157 | -0.0530
4 1-0.0066 | -0.0012 | -0.0002 | -0.0001 | -0.0255 | -0.0415 | -0.0420 | 0.2459
5 | -0.0173 | -0.0030 | -0.0004 | -0.0002 | -0.0119 | -0.0220 | -0.0423 | -0.0349
6 |-0.0484 | -0.0112 | -0.0019 | -0.0007 | -0.0060 | -0.0113 | -0.0216 | -0.0333
7 | 0.1057 | -0.0317 | -0.0059 | -0.0020 | -0.0022 | -0.0040 | -0.0070 | -0.0114
8 [ -0.0388 | 0.0660 | -0.0321 | -0.0118 | -0.0006 | -0.0009 | -0.0015 | -0.0022
9 | -0.0098 | -0.0450 | 0.0939 | -0.0429 | -0.0006 | -0.0006 | -0.0005 | -0.0005
10 | -0.0040 | -0.0192 | -0.0549 | 0.2034 | -0.0009 | -0.0008 | -0.0006 | -0.0005
11 | 0.0059 | 0.0017 | 0.0012 | 0.0020 | 0.1272 | -0.0299 | -0.0178 | -0.0200
12 | 0.0103 | 0.0027 | 0.0011 | 0.0014 | -0.0296 | 0.3519 | 0.0285 | -0.0236
13 | 0.0189 | 0.0047 | 0.0015 | 0.0014 | -0.0655 | -0.0598 | 0.2380 | -0.0260
14 | 0.0274 | 0.0068 | 0.0018 | 0.0012 | -0.0347 | -0.0486 | 0.0067 | 0.2264
15 | 0.0547 | 0.0135 | 0.0033 | 0.0014 | -0.0200 | -0.0305 | -0.0186 | -0.0075
16 | 0.1586 | 0.0362 | 0.0078 | 0.0027 | -0.0106 | -0.0169 | -0.0141 | -0.0243
17 | 1.0000 | 0.1306 | 0.0264 | 0.0084 | -0.0041 | -0.0065 | -0.0062 | -0.0110
18 | 0.1306 | 1.0000 | 0.1277 | 0.0386 | -0.0012 | -0.0018 | -0.0017 | -0.0028
19 | 0.0264 | 0.1277 | 1.0000 | 0.1790 | -0.0006 | -0.0007 | -0.0004 | -0.0006
20 | 0.0084 | 0.0386 | 0.1790 | 1.0000 | -0.0009 | -0.0009 | -0.0005 | -0.0005
21 | -0.0041 | -0.0012 | -0.0006 | -0.0009 | 1.0000 | 0.3729 | 0.1715 | 0.0907
22 | -0.0065 | -0.0018 | -0.0007 | -0.0009 | 0.3729 | 1.0000 | 0.3524 | 0.1684
23 | -0.0062 | -0.0017 | -0.0004 | -0.0005 | 0.1715 | 0.3524 | 1.0000 | 0.2607
24 | -0.0110 | -0.0028 | -0.0006 | -0.0005 | 0.0907 | 0.1684 | 0.2607 | 1.0000
25 | -0.0210 | -0.0052 | -0.0008 | -0.0006 | 0.0493 | 0.0891 | 0.1215 | 0.2390
26 | -0.0481 | -0.0144 | -0.0026 | -0.0012 | 0.0250 | 0.0446 | 0.0591 | 0.1064
27 | 0.1064 | -0.0345 | -0.0069 | -0.0031 | 0.0082 | 0.0145 | 0.0189 | 0.0336
28 | -0.0358 | 0.0660 | -0.0324 | -0.0157 | 0.0023 | 0.0037 | 0.0044 | 0.0077
29 | -0.0094 | -0.0432 | 0.0974 | -0.0570 | 0.0017 | 0.0019 | 0.0017 | 0.0023
30 | -0.0040 | -0.0190 | -0.0554 | 0.2044 | 0.0025 | 0.0024 | 0.0016 | 0.0015
31 | -0.0060 | -0.0021 | -0.0013 | -0.0007 | 0.1172 | 0.0353 | 0.0053 | -0.0130
32 | -0.0075 | -0.0026 | -0.0014 | -0.0008 | 0.0391 | 0.2332 | 0.0341 | -0.0123
33 | -0.0077 | -0.0029 | -0.0014 | -0.0006 | -0.0029 | 0.0129 | 0.1712 | -0.0081
34 | -0.0120 | -0.0043 | -0.0018 | -0.0006 | -0.0023 | -0.0052 | 0.0265 | 0.1977
35 | -0.0237 | -0.0081 | -0.0029 | -0.0009 | -0.0026 | -0.0078 | -0.0040 | 0.0068
36 | -0.0406 | -0.0162 | -0.0055 | -0.0014 | -0.0028 | -0.0070 | -0.0078 | -0.0178
37 | 0.1078 | -0.0319 | -0.0129 | -0.0027 | -0.0020 | -0.0044 | -0.0054 | -0.0116
38 | -0.0329 | 0.0743 | -0.0444 | -0.0099 | -0.0007 | -0.0014 | -0.0018 | -0.0037
39 | -0.0107 | -0.0369 | 0.0816 | -0.0324 | -0.0002 | -0.0005 | -0.0005 | -0.0010
40 | -0.0045 | -0.0168 | -0.0713 | 0.2374 | -0.0001 | -0.0004 | -0.0004 | -0.0007

Table A.5: Posterior correlation matrix for n for both areas and sexes in surgical death example
using Bayes linear kinematic and for the columns 17—24
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25 26 27 28 29 30 31 32
1 |-0.0075 | -0.0035 | -0.0011 | -0.0003 | -0.0003 | -0.0002 | 0.1123 | 0.0058
2 | -0.0110 | -0.0055 | -0.0015 | -0.0003 | -0.0002 | -0.0002 | -0.0143 | 0.2251
3 | -0.0387 | -0.0214 | -0.0065 | -0.0013 | -0.0005 | -0.0005 | -0.0196 | 0.0041
4 1-0.0148 | -0.0258 | -0.0076 | -0.0013 | -0.0002 | -0.0002 | -0.0233 | -0.0285
5 | 0.2371 | -0.0361 | -0.0135 | -0.0017 | 0.0000 | -0.0001 | -0.0317 | -0.0416
6 |-0.0331 | 0.1340 | -0.0400 | -0.0080 | -0.0012 | -0.0005 | -0.0100 | -0.0134
7 1-0.0170 | -0.0493 | 0.1001 | -0.0345 | -0.0065 | -0.0024 | -0.0045 | -0.0058
8 |-0.0032 | -0.0114 | -0.0400 | 0.0625 | -0.0364 | -0.0145 | -0.0015 | -0.0019
9 | -0.0004 | -0.0019 | -0.0079 | -0.0386 | 0.0992 | -0.0337 | -0.0013 | -0.0013
10 | -0.0004 | -0.0010 | -0.0036 | -0.0184 | -0.0465 | 0.1927 | -0.0008 | -0.0008
11 | -0.0162 | -0.0089 | -0.0028 | -0.0008 | -0.0005 | -0.0006 | 0.1198 | 0.0155
12 1 -0.0245 | -0.0139 | -0.0043 | -0.0011 | -0.0005 | -0.0006 | -0.0020 | 0.2199
13 | -0.0475 | -0.0278 | -0.0088 | -0.0023 | -0.0008 | -0.0008 | -0.0166 | 0.0093
14 | -0.0228 | -0.0280 | -0.0090 | -0.0023 | -0.0006 | -0.0005 | -0.0230 | -0.0229
15 | 0.2045 | -0.0322 | -0.0135 | -0.0034 | -0.0007 | -0.0005 | -0.0324 | -0.0394
16 | -0.0370 | 0.1321 | -0.0335 | -0.0112 | -0.0026 | -0.0012 | -0.0126 | -0.0154
17 1 -0.0210 | -0.0481 | 0.1064 | -0.0358 | -0.0094 | -0.0040 | -0.0060 | -0.0075
18 1 -0.0052 | -0.0144 | -0.0345 | 0.0660 | -0.0432 | -0.0190 | -0.0021 | -0.0026
19 | -0.0008 | -0.0026 | -0.0069 | -0.0324 | 0.0974 | -0.0554 | -0.0013 | -0.0014
20 | -0.0006 | -0.0012 | -0.0031 | -0.0157 | -0.0570 | 0.2044 | -0.0007 | -0.0008
21 | 0.0493 | 0.0250 | 0.0082 | 0.0023 | 0.0017 | 0.0025 | 0.1172 | 0.0391
22| 0.0891 | 0.0446 | 0.0145 | 0.0037 | 0.0019 | 0.0024 | 0.0353 | 0.2332
23| 0.1215 | 0.0591 | 0.0189 | 0.0044 | 0.0017 | 0.0016 | 0.0053 | 0.0341
24 | 0.2390 | 0.1064 | 0.0336 | 0.0077 | 0.0023 | 0.0015 | -0.0130 | -0.0123
25 | 1.0000 | 0.2124 | 0.0645 | 0.0148 | 0.0039 | 0.0019 | -0.0260 | -0.0325
26 | 0.2124 | 1.0000 | 0.1661 | 0.0354 | 0.0084 | 0.0033 | -0.0116 | -0.0146
27 | 0.0645 | 0.1661 | 1.0000 | 0.1206 | 0.0267 | 0.0092 | -0.0061 | -0.0077
28 | 0.0148 | 0.0354 | 0.1206 | 1.0000 | 0.1368 | 0.0451 | -0.0020 | -0.0025
29 | 0.0039 | 0.0084 | 0.0267 | 0.1368 | 1.0000 | 0.2041 | -0.0012 | -0.0013
30 | 0.0019 | 0.0033 | 0.0092 | 0.0451 | 0.2041 | 1.0000 | -0.0005 | -0.0006
31 | -0.0260 | -0.0116 | -0.0061 | -0.0020 | -0.0012 | -0.0005 | 1.0000 | 0.3297
321 -0.0325 | -0.0146 | -0.0077 | -0.0025 | -0.0013 | -0.0006 | 0.3297 | 1.0000
33 | -0.0478 | -0.0227 | -0.0113 | -0.0035 | -0.0017 | -0.0008 | 0.2494 | 0.3341
34 | -0.0328 | -0.0230 | -0.0135 | -0.0044 | -0.0019 | -0.0008 | 0.1801 | 0.2334
35| 0.1801 | -0.0172 | -0.0199 | -0.0067 | -0.0026 | -0.0009 | 0.1129 | 0.1447
36 | -0.0414 | 0.1344 | -0.0326 | -0.0133 | -0.0050 | -0.0014 | 0.0591 | 0.0753
37 | -0.0285 | -0.0325 | 0.1027 | -0.0350 | -0.0140 | -0.0037 | 0.0245 | 0.0311
38 | -0.0090 | -0.0127 | -0.0349 | 0.0697 | -0.0497 | -0.0137 | 0.0079 | 0.0097
39 | -0.0023 | -0.0031 | -0.0091 | -0.0313 | 0.0864 | -0.0245 | 0.0037 | 0.0040
40 | -0.0014 | -0.0016 | -0.0042 | -0.0166 | -0.0621 | 0.2242 | 0.0048 | 0.0046

Table A.6: Posterior correlation matrix for n for both areas and sexes in surgical death example
using Bayes linear kinematic and for the columns 25—32
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33 34 35 36 37 38 39 40
1 ]-0.0166 | -0.0105 | -0.0029 | -0.0010 | -0.0002 | 0.0000 | 0.0000 | 0.0002
2 1 -0.0076 | -0.0211 | -0.0098 | -0.0045 | -0.0015 | -0.0004 | -0.0002 | -0.0001
3 | 0.1837 | 0.0002 | -0.0099 | -0.0057 | -0.0015 | -0.0003 | -0.0001 | -0.0001
4 1-0.0257 | 0.2095 | -0.0053 | -0.0208 | -0.0078 | -0.0019 | -0.0005 | -0.0004
5 | -0.0603 | -0.0657 | 0.2079 | -0.0606 | -0.0279 | -0.0074 | -0.0019 | -0.0011
6 |-0.0204 | -0.0304 | -0.0287 | 0.1324 | -0.0330 | -0.0093 | -0.0020 | -0.0009
7 1 -0.0083 | -0.0127 | -0.0202 | -0.0427 | 0.1008 | -0.0322 | -0.0078 | -0.0029
8 | -0.0025 | -0.0037 | -0.0060 | -0.0139 | -0.0381 | 0.0696 | -0.0304 | -0.0123
9 |-0.0015 | -0.0018 | -0.0025 | -0.0051 | -0.0144 | -0.0512 | 0.0850 | -0.0467
10 | -0.0008 | -0.0007 | -0.0008 | -0.0014 | -0.0038 | -0.0139 | -0.0241 | 0.2231
11 | 0.0116 | 0.0000 | -0.0055 | -0.0030 | -0.0010 | -0.0004 | -0.0002 | -0.0002
12 | 0.0408 | -0.0013 | -0.0130 | -0.0074 | -0.0027 | -0.0010 | -0.0004 | -0.0004
13 | 0.2069 | 0.0313 | -0.0122 | -0.0086 | -0.0029 | -0.0011 | -0.0004 | -0.0004
14 | 0.0167 | 0.2038 | -0.0065 | -0.0194 | -0.0079 | -0.0028 | -0.0009 | -0.0006
15 | -0.0358 | -0.0329 | 0.1836 | -0.0514 | -0.0254 | -0.0084 | -0.0024 | -0.0014
16 | -0.0137 | -0.0208 | -0.0306 | 0.1321 | -0.0259 | -0.0122 | -0.0036 | -0.0017
17 | -0.0077 | -0.0120 | -0.0237 | -0.0406 | 0.1078 | -0.0329 | -0.0107 | -0.0045
18 | -0.0029 | -0.0043 | -0.0081 | -0.0162 | -0.0319 | 0.0743 | -0.0369 | -0.0168
19 | -0.0014 | -0.0018 | -0.0029 | -0.0055 | -0.0129 | -0.0444 | 0.0816 | -0.0713
20 | -0.0006 | -0.0006 | -0.0009 | -0.0014 | -0.0027 | -0.0099 | -0.0324 | 0.2374
21 | -0.0029 | -0.0023 | -0.0026 | -0.0028 | -0.0020 | -0.0007 | -0.0002 | -0.0001
22 | 0.0129 | -0.0052 | -0.0078 | -0.0070 | -0.0044 | -0.0014 | -0.0005 | -0.0004
23| 0.1712 | 0.0265 | -0.0040 | -0.0078 | -0.0054 | -0.0018 | -0.0005 | -0.0004
24 | -0.0081 | 0.1977 | 0.0068 | -0.0178 | -0.0116 | -0.0037 | -0.0010 | -0.0007
25| -0.0478 | -0.0328 | 0.1801 | -0.0414 | -0.0285 | -0.0090 | -0.0023 | -0.0014
26 | -0.0227 | -0.0230 | -0.0172 | 0.1344 | -0.0325 | -0.0127 | -0.0031 | -0.0016
27 | -0.0113 | -0.0135 | -0.0199 | -0.0326 | 0.1027 | -0.0349 | -0.0091 | -0.0042
28 | -0.0035 | -0.0044 | -0.0067 | -0.0133 | -0.0350 | 0.0697 | -0.0313 | -0.0166
29 | -0.0017 | -0.0019 | -0.0026 | -0.0050 | -0.0140 | -0.0497 | 0.0864 | -0.0621
30 | -0.0008 | -0.0008 | -0.0009 | -0.0014 | -0.0037 | -0.0137 | -0.0245 | 0.2242
31| 0.2494 | 0.1801 | 0.1129 | 0.0591 | 0.0245 | 0.0079 | 0.0037 | 0.0048
32| 0.3341 | 0.2334 | 0.1447 | 0.0753 | 0.0311 | 0.0097 | 0.0040 | 0.0046
33 | 1.0000 | 0.3250 | 0.1931 | 0.0995 | 0.0409 | 0.0125 | 0.0044 | 0.0043
34 | 0.3250 | 1.0000 | 0.2965 | 0.1426 | 0.0578 | 0.0173 | 0.0053 | 0.0042
35| 0.1931 | 0.2965 | 1.0000 | 0.2554 | 0.0988 | 0.0290 | 0.0078 | 0.0046
36 | 0.0995 | 0.1426 | 0.2554 | 1.0000 | 0.2152 | 0.0613 | 0.0153 | 0.0071
37| 0.0409 | 0.0578 | 0.0988 | 0.2152 | 1.0000 | 0.1702 | 0.0405 | 0.0167
38 | 0.0125 | 0.0173 | 0.0290 | 0.0613 | 0.1702 | 1.0000 | 0.1586 | 0.0621
39 | 0.0044 | 0.0053 | 0.0078 | 0.0153 | 0.0405 | 0.1586 | 1.0000 | 0.2440
40 | 0.0043 | 0.0042 | 0.0046 | 0.0071 | 0.0167 | 0.0621 | 0.2440 | 1.0000

Table A.7: Posterior correlation matrix for n for both areas and sexes in surgical death example
using Bayes linear kinematic and for the columns 33—40
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A.6.6 R function to make adjustment for both binary and ordi-

nal variables in the indirect method

function(y,E0,V0,cuts,tol=1E-5,n=20)
{#
# y is an ordinal variable with possible values 1,2,...,m.
# If m=2 then we must set VO=1.
m<-length(cuts)+1
# Initial approximation
z0<-EO
d<-1
for (i in 1:n)
{if (abs(d)>tol)
{if (y==m)
{puz<-1}
else
{euz<-exp(cuts[y]-z0)

puz<-euz/(1l+euz)

}

if (y==1)
{plz<-0}
else

{elz<-exp(cuts[y-1]-z0)
plz<-elz/(1+elz)
+
f<-(puz+plz)-1-(z0-E0)/VO
fd<--(1/V0+puz* (1-puz)+plz*(1-plz))
d<-f/fd
z0<-z0-d
}
b
vpost0<- -1/fd
# Tierney and Kadane normalising constant (denominator)
if (y==m)
{puz<-1}
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else

{euz<-exp(cuts[y]-z0)
puz<-euz/(1+euz)

}

if (y==1)

{plz<-0}

else

{elz<-exp(cuts[y-1]-z0)
plz<-elz/(1+elz)

}

g0<-log(puz-plz)-((z0-E0) ~2)/(2*V0)
eta0<-exp(g0) *sqrt (2*pi*vpost0)

# Mean shift

C<-5*sqrt (vpost0)-z0

# Tierney and Kadane numerator for E(Z+C)
z1<-z0

d<-1

for (i in 1:n)

{if (abs(d)>tol)
{f<-(puz+plz)-1-(z1-E0) /VO+1/(z1+C)
fd<--(1/V0+puz* (1-puz)+plz*(1-plz)+(z1+C) " (-2))
d<-f/fd

zl<-z1-d

if (y==m)

{puz<-1}

else

{euz<-exp(cuts[y]-z1)
puz<-euz/(1+euz)

}

if (y==1)

{plz<-0}

else

{elz<-exp(cuts[y-1]-z1)
plz<-elz/(1+elz)

}
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}

}

vi<- -1/fd
gl<-log(z1+C)+log(puz-plz) - ((z1-E0) "2)/(2*V0)
etal<-exp(gl)*sqrt(2xpixvl)

# Tierney and Kadane approximation to E(Z+C) and E(Z)
El<-etal/etal

postmean<-E1-C

# Tierney and Kadane numerator for E([Z+C]~2)
z2<-z1

d<-1

for (i in 1:n)

{if (abs(d)>tol)
{f<-(puz+plz)-1-(22-E0) /V0+2/ (z2+C)
fd<--(1/VO0+puz* (1-puz)+plz* (1-plz)+2*(z2+C) "~ (-2))
d<-f/fd

z2<-z2-d

if (y==m)

{puz<-1%}

else

{euz<-exp(cuts[y]-z2)

puz<-euz/(1+euz)

}

if (y==1)

{plz<-0}

else

{elz<-exp(cuts[y-1]-z2)

plz<-elz/(1+elz)

}

}

}

v2<- -1/fd
g2<-2x1log(z2+C)+log(puz-plz)-((z2-E0) “2) / (2*V0)
eta2<-exp(g2) *sqrt (2xpixv2)

# Tierney and Kadane approximation to E([Z+C]"2) and Var(Z)
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E2<-eta2/etal
postvar<-E2-E1°2

return(list (El=postmean,Vi=postvar))

A.7 Appendix to Chapter 7

A.7.1 Rjags model specification for the leukaemia data using a

piecewise constant hazards model

model

{for (i in 1:n)

{is.censored[i] “dinterval (t[i],t.cen[i])

t[i]“dexp(lambdalil)

log(lambdal[i] )<-betal[period[i]]+beta.age[period[i]]*(age[i]-60)
+beta.sex[period[i]]*sex[i]+beta.wbc[period[i]]*(wbc[i]-8)

+beta.depsc[period[i]]*depscore[i]

3

#Priors:

betal[1] “dnorm(-6,p0)
beta.age[1] "dnorm(0.02,p.age)
beta.sex[1] “dnorm(0,p.sex)
beta.wbc[1] “dnorm(0.005,p.wbc)
beta.depsc[1] “dnorm(0,p.depsc)

p0<-1.5625
p.age<-2500
p.sex<-8.16
p.wbc<-40000
p.depsc<-100

rho<-0.92
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rf<-1-rho*rho

p0.e<-p0/rf

p.age.e<-p.age/rf

p.sex.e<-p.sex/rf

p.wbc.e<-p.wbc/rf

p.depsc.e<-p.depsc/rf

for (j in 2:11)
{betaOm[jl<- -6 + rho*(betaO[j-1]+6)
betaO[j] “dnorm(betalOm[j],p0.e)

beta.

beta
beta

beta.
.wbcm[j]<-0.005+rho*(beta.wbc[j-1]-0.005)
beta.

beta

beta.
beta.

3

agem[j]<-0.02 + rhox*(beta.agel[j-1]1-0.02)

.age[j] “dnorm(beta.agem[j],p.age.e)

.sexm[j]<-rho*beta.sex[j-1]

sex[j] “dnorm(beta.sexm[j],p.sex.e)

wbc [j] "dnorm(beta.wbcm[j],p.wbc.e)
depscm[jl<-rhoxbeta.depsc[j-1]
depsc[j] “dnorm(beta.depscm[j],p.depsc.e)

for (i in 1:n)
{ali] “dnorm(0,1)

bli]~

}
}

dnorm(0,1)

A.7.2 R code to compute the posterior medians for residuals in

leukaemia example

probs<-c(0.25,0.5,0.75)

residual<-matrix(nrow=n,ncol=3)

for (i in 1:n)

{samples<-numeric(m)

etamat<-matrix(nrow=m,ncol=10)
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u<-runif(1,0,1)
for (j in 1:m)
{eta<-etacalc(x[i,],betalj,])
etamat[j,]<-eta
lambda<-exp(eta)
if (censored[i]==0)
{Fc<-ppch(t[i],lambda,cuts)
samples [j]<-Fc+u*(1-Fc)
}
else
{samples[jl<-ppch(t[i],lambda,cuts)
}
}
residual[i,]<-quantile(samples,probs)

}

A.7.3 R function ppch for finding the cdf of a piecewise constant

hazard model

ppch<-function(t,lambda,cuts)
{nint<-length(cuts)
tmax<-cuts[nint]+t
cuts<-c(0,cuts, tmax)
S<-1
for (k in 1:nint)
{if (t>cuts[k])
{tk<-min(t,cuts[k+1])
S<-S*exp(-lambda [k] * (tk-cuts [k]))

}
}
F<-1-S
return(F)

b

263



Appendix A. Appendix

A.7.4 Offline learning model for non-Hodgkin lymphoma data
in the direct method

g s s s
#### 0ffline learning model for non-Hodgkin lymphoma data in the ####

i ##HRRREE direct method ########H###HEH

B L L B L L L L I R R IS SR R R T

model
{
for (i in 1:1391){
is.censored[i] ~ dinterval (t[i], t.cenl[i])
t[i] "dweib(alpha,lambdali])
log(lambdali]) <- mean.Z.t[i]

Z.t[i] “"dnorm(mean.Z.t[i] ,tau.Z.t)
mean.Z.t[i]<- gammaO.t+gamma.t.age*age[i]+gamma.t.wbc*(Z.wbc[i]-mean.Z.wbc([i])
+gamma.t.sex*sex[i] +gamma.t.albumin*(Z.albumin[i]-mean.Z.albumin[i])

+gamma.t.stage*(Z.stage[i]l-mean.Z.stage[i])+gamma.t.hb*(Z.hb[i]-mean.Z.hb[i])

hb[i] “"dnorm(mean.Z.hb[i] ,tau.Z.hb)
Z.hb[il<-hb[i]

mean.Z.hb[i]<-gammaO.hb+gamma.hbage*age [1] +gamma.hbsex*sex [i]

wbc[i] "dnorm(mean.Z.wbc[i] ,tau.Z.wbc)

Z.wbc[i]<-wbc[i]
mean.Z.wbc[i]<-gammaO.wbc+gamma.wbcage*age [i] +gamma.wbcsex*sex [1]
+gamma . wbchb* (Z.hb[i]-mean.Z.hb[i])

stage[i]l "dinterval(Z.stage[i],cut.stage[1:3])

Z.stage[i] ~ dnorm(mean.Z.stagel[i], tau.Z.stage)
mean.Z.stage[i]<-gamma0.staget+gamma.stageage*age[i] +gamma.stagesex*sex[i]
+gamma . stagehb*(Z.hb[i]-mean.Z.hb[i])

+gamma . stagewbc* (Z.wbc[i]-mean.Z.wbc[i])

264



Appendix A. Appendix

albumin[i] "dinterval(Z.albumin[i],0)

Z.albumin[i] "dnorm(mean.Z.albumin[i], 1)

mean.Z.

+gamma.

+gamma.

+gamma.

+gamma.

albumin[i]<-gammaO.albumin
albuminage*age[i] +gamma.albuminsex*sex[i]
albuminwbc* (Z.wbc[i]-mean.Z.wbc[i])
albuminstage*(Z.stage[i]l-mean.Z.stagel[i])
albuminhb*(Z.hb[i]-mean.Z.hb[i])

alpha ~ dgamma(4, 4)# prior for alpha
gamma0.t ~ dnorm(0, 0.01)

gamma .
gamma.
gamma.
gamma .
gamma .

gamma.

t
t
t
t
t
t

.sex"dnorm(0,0.001)
.age”dnorm(0.0,0.001)
.wbc“dnorm(0.0,0.001)
.albumin~dnorm(1,0.0001)
.stage“dnorm(0.0,0.001)
.hb~dnorm(0.0,0.001)

gammaO.hb~dnorm(100.0,0.0001)
gamma . hbage “dnorm(0.0,0.001)
gamma . hbsex“dnorm(0.0,0.001)

gammaO .wbc~“dnorm(10.0,0.001)
gamma .wbcage~dnorm(0.0,0.001)

gamma . wbcsex~dnorm(0.0,0.001)
gamma . wbchb~dnorm(0.0,0.001)

gammaOl.stage~dnorm(0.0,0.001)
.stageage~dnorm(0.0,0.001)
.stagesex“dnorm(0.0,0.001)
.stagehb”dnorm(0.0,0.001)
.stagewbc“dnorm(0.0,0.001)

gamma
gamma
gamma

gamma
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gammaO.albumin~dnorm(0,0.001)
gamma.albuminage~dnorm(0,0.001)
gamma .albuminsex~dnorm(0,0.001)
gamma . albuminwbc“dnorm(0,0.001)
gamma .albuminstage“dnorm(0,0.001)
gamma . albuminhb~dnorm(0,0.001)

tau.Z.wbc~dgamma(2,30)
tau.Z.stage dgamma(2,3)
tau.Z.hb"dgamma(2,300)
tau.Z.t"dgamma(1.5,0.5)

cut.stage[1]<-0
cut.stage[2]<-c2
cut.stage[3]<-2
c2<-cc*2
cc”dbeta(l,1)

A.7.5 R function to adjust the mean and the variance of the
Gaussian random variables in non-Hodgkin lymphoma
data

##### posterior mean and variance for hb ######
function(y,E0,V0)
{# observed variables (hb, wbc)

Ey<-EO[1]

Ez<-E0[3:5]

Vy<-VO[1,1]

Vz<-V0([3:5,3:5]

C<-V0[3:5,1]

E1<-Ez+Cx*(y1-Ey) /Vy
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V1<-Vz-C%*%t (C) /Vy
P1<-solve (V1)
return(list(E=E1,P=P1))

#i#tH###### posterior mean and variance for wbc #H###H###

function(y,EO0,V0)

{# observed variables (hb, wbc)
Ey<-EO0[2]
Ez<-E0[3:5]
Vy<-V0[2,2]
Vz<-V0[3:5,3:5]
C<-V0[3:5,2]
E1<-Ez+C*(y2-Ey) /Vy
V1<-Vz-Cl*%t (C) /Vy
P1<-solve (V1)
return(list(E=E1,P=P1))

A.7.6 R function to update the mean and the variance of the

ordinal and the categorical random variables

######## posterior mean and variance for Z.stage ####### ##
function(y,E0,V0,cuts,nstep=100){

S0<-sqrt (V0)

k<-length(cuts)

if (y==0){

lower<-0 }

else

{lower<-pnorm(cuts[y] ,E0,S0)}

if (y==k)

{upper<-1}

else {
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upper<-pnorm(cuts[y+1] ,E0,S0)}
u<-seq(lower,upper,length.out=(nstep+1))
Z<-qnorm(u,E0,S0)
22=7%7Z
E1<-(sum(Z)-(Z[1]+Z[nstep+1])/2) /nstep
E1Z2<-(sum(Z2)-(Z2[1]+Z2[nstep+1])/2) /nstep
V1<-E1Z2-E1%E1
ans<-list(E=E1,V=V1)

return(ans)

######## posterior mean and variance for Z.albumin #########
function(y,E0,V0,cuts,nstep=100)
{# y is an integer in [0,k]
S0<-sqrt (V0)
k<-length(cuts)
if (y==0){
lower<-0
}
else
{lower<-pnorm(cuts[y] ,E0,S0)}
if (y==k){
upper<-1
}
else
{upper<-pnorm(cuts[y+1] ,E0,S0)}
u<-seq(lower,upper,length.out=(nstep+1))
Z<-gnorm(u,E0,S0)
Z22<-7%Z
E1<-(sum(Z)-(Z[1]+Z[nstep+1])/2) /nstep
E1Z2<-(sum(Z2)-(Z2[1]1+Z2 [nstep+1])/2) /nstep
V1<-E1Z2-(E1*E1)
out<-list(E=E1,V=V1)

return(out)
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A.7.7 R function to adjusted the mean and the variance for stage

and albumin using BLK with non-conjugate prior update

function(y,E0,V0,var,cuts)

{#var=3:stage, var=4:albumin
if (var==3)
{adjusted<-adjstage(y,E0[3],V0[3,3],cuts=c(-3.2,-1.5,1,4,5) ,nstep=100)
}
if (var==4)
{adjusted<-adjalbumin(y,E0[4],V0[4,4],cuts=c(-1.325,1,2.5) ,nstep=100)
}
Vxadj<-adjusted$V
Exadj<-adjusted$E
Ez<-E0[3:5]
Vz<-V0[3:5,3:5]
C<-VO[3:5,var]
E1<-Ez+Cx* (Exadj-EO[var]) /VO0[var,var]
V1<-Vz-CY%*%t (C) /VO [var,var] +C%*%t (C) *Vxadj/ (VO [var,var] *VO [var,var])
P1<-solve(V1)
return(list (E=E1,P=P1))

A.7.8 R function to compute the posterior mean using BLK in

order to obtain the prognostic index value for one patient

function(patdata,V0,mu0,musex,muage,cuts)

{
EO<-muO+muage*patdata[5] +musex*patdatal[6]
P0O<-solve(V0O[3:5,3:5])
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n<-3

J<-4

d<-n*xnx*]J
El<-matrix(nrow=n,ncol=J)
Pi1<-numeric(d)
dim(P1)<-c(n,n,J)

# covariate (hb)

if (is.na(patdatal[1])==TRUE)
{P1[,,11<-PO

E1[,1]1<-E0[3:5]

}

else

{ adjusti<-adjbynorm(patdatal1],E0,VO0)
P1[,,1]1<-adjust1$P

E1[,1]<-adjust1$E

}

# covariate (wbc)

if (is.na(patdata[2])==TRUE)
{P1[,,2]<-PO

E1[,2]<-E0[3:5]

}

else

{ adjust2<-adjbynorm(patdatal[2],E0,V0)
P1[,,2]<-adjust2$P

E1[,2]<-adjust2$E

}
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## covariate (stage)

if (is.na(patdata[3])==TRUE)
{P1[,,31<-PO

E1[,3]<-E0[3:5]

}

else

{ adjust3<-adjbynoncon(patdatal3],E0,V0,3,cuts)
P1[,,3]<-adjust3$P

E1[,3]<-adjust3$E

}

#### covariate (albumin)

if (is.na(patdata[4])==TRUE)
{P1[, ,4]1<-PO

E1[,4]<-E0[3:5]

}

else

{ adjust4<-adjbynoncon(patdatal4],E0,V0,4,cuts)
P1[,,4]<-adjust4$P

E1[,4]<-adjust4$E

}

V0<-V0[3:5,3:5]

E0<-E0[3:5]
PP<-matrix(0,nrow=3,ncol=3)
PPEE<-rep(0,3)

for(j in 1:4)
{PP<-PP+P1[,,]j]
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PPEE<-PPEE+P1[,,j1%*%E1[, j]
}

PP<-PP-3%*P0O
PPEE<-PPEE-3*P0%*%EO
EE<-solve(PP,PPEE)
return(EE[3])

A.7.9 R function to obtain the adjusted expectation of Z; for

patient 1

function(data,VO0,mu0,musex,muage,cuts)
{
indexvalues<-numeric(1391)
for (i in 1:1391)
{
indexvalues[i]<-BLKindex(datal[i,],V0,mu0,musex,muage,cuts)

3

return(indexvalues)

A.7.10 R function for prototype prognostic index calculator

function(params)

{

mean <- mean(out) ### out: is the posterior expectation of prognostic index values.
std.dev <- sd(out)

HHH#HH R H AR #E AGE

write(file="","Please enter the Age in years of the patient at time of diagnosis.")
age<-scan(n=1)

HHH#AH R H AR #E SEX

write(file="","Please enter the Sex of the patient.
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Enter 1 for male or 2 for female.")

sex<-scan(n=1)

Hud#ndH RS #A#E STAGE

write(file="","Please enter the Clinical Stage of the patient (1, 2, 3 or 4).")
stage<-scan(n=1)

H###H#SHAH#SHAH HB

write(file="","Please enter the Haemoglobin (g/l) measurement for the patient.")
hb<-scan(n=1)

HfH T WBC

write(file="","Please enter the White Blood Cell count for the patient.")
wbc<-scan(n=1)

HEfH SRS ALBUMIN

write(file="","Please enter 1 if the Serum Albumin

measurement for the patient is normal")

write(file="","or 2 if it is abnormal")

albumin<-scan(n=1)

eta<-BLKindex(datal[1l,],params$V0,params$mu0, params$musex, params$muage, params$cuts)
ind<-100*pnorm(eta,mean,std.dev)

index.patient<-round(ind)

write(file="","Index value is")

write(index.patient,file="")

write(file="","The index is on a scale from 0 to 100,

Greater index values indicate greater risk.")

A.7.11 Offline learning model for non-Hodgkin lymphoma data

in the indirect method

S S S 2
#### Offline learning model for non-Hodgkin lymphoma data in the ####
HHHHHH Y indirect method #######HHH##HA
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B g s S S

modeld{
for(i in 1:1391){
stagel[i] ~ dcat(pl[i,1:4])

pli,1] <- 1-qli,1]

for(r in 2:3){

pli,r] <- qli,r-11 - qli,r]
}

pli,4] <- qli,3]

for(r in 1:3){
logit(qli,r]) <- Z.stagel[il- cuts[r]
}

is.censored[i] “dinterval (t[i], t.cen[i])
t[i] "dweib(alpha,lambdali])
log(lambdal[i]) <- mean.Z.t[i]

hb[i] “dnorm(mean.Z.hb[i] ,tau.Z.hb)
Z.hb[il<-hb[i]

mean.Z.hb[i]<-gammaO.hb+gamma.hbage*age [i] +gamma.hbsex*sex[i]

wbc[i] “dnorm(mean.Z.wbc[i],tau.Z.wbc)

Z.wbc[i]<-wbc[i]
mean.Z.wbc[i]<-gammaO.wbc+gamma.wbcage*age [i] +gamma.wbcsex*sex [i]
+gamma . wbchb* (Z.hb[i]-mean.Z.hb[i])

Z.stage[i] ~ dnorm(mean.Z.stagel[i], tau.Z.stage)

mean.Z.stage[i]<-gammal.staget+gamma.stageage*age[i] +gamma.stagesex*sex[i]
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+gamma . stagehb*(Z.hb[i]-mean.Z.hb[i])+gamma.stagewbc* (Z.wbc[i]-mean.Z.wbc[i])

albumin[i] “dinterval(Z.albumin[i],0)

Z.albumin[i] “"dnorm(mean.Z.albumin([i],1)
mean.Z.albumin[i]<-gammaO.albumin+gamma.albuminage*age [i]
+gamma.albuminsex*sex[i] +gamma.albuminwbc* (Z.wbc[i]-mean.Z.wbc[i])
+gamma.albuminhb*(Z.hb[i]-mean.Z.hb[i])

+gamma.albuminstage*(Z.stagel[i] -mean.Z.stagel[i])

Z.t[i] "dnorm(mean.Z.t[i] ,tau.Z.t)
mean.Z.t[i]<- gammaO.t+gamma.t.age*age[i]+gamma.t.wbc*(Z.wbc[i]-mean.Z.wbc[i])
+gamma.t.sex*sex[i]+gamma.t.albumin*(Z.albumin[i]-mean.Z.albumin[i])

+gamma.t.stagex(Z.stage[i]-mean.Z.stage[i])+gamma.t.hb*(Z.hb[i]-mean.Z.hb[i])

## priors over thresholds

cuts[1] <- 0
cuts[2] <- c2
cuts[3] <- 1

c2<-cc
cc~dbeta(l,1)

alpha ~ dgamma(4, 4)# prior for alpha
gamma0.t ~ dnorm(0, 0.01)

gamma .t .sex dnorm(0,0.001)
gamma.t.age dnorm(0.0,0.001)

gamma .t .wbc“dnorm(0.0,0.001)
gamma.t.albumin~dnorm(1,0.0001)
gamma.t.stage dnorm(0.0,0.001)
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gamma .t .hb~“dnorm(0.0,0.001)

gammaO.hb~dnorm(100.0,0.0001)
gamma . hbage“dnorm(0.0,0.001)
gamma . hbsex“dnorm(0.0,0.001)

gammaO.wbc~dnorm(10.0,0.001)
gamma . wbcage“dnorm(0.0,0.001)
gamma . wbcsex~dnorm(0.0,0.001)
gamma . wbchb~dnorm(0.0,0.001)

gammaO.stage“dnorm(0.0,0.1)

gamma . stageage~dnorm(0.0,0.01)
gamma . stagesex~“dnorm(0.0,0.01)
gamma . stagehb~”dnorm(0.0,0.01)
gamma . stagewbc“dnorm(0.0,0.01)

gammaO .albumin~dnorm(0, 10)
gamma .albuminage“dnorm(0,10)
gamma .albuminsex~dnorm(0,10)
gamma . albuminwbc~dnorm(0, 10)
gamma .albuminstage~dnorm(0,10)

gamma . albuminhb~dnorm(0,10)

tau.Z.wbc“dgamma(2,30)
tau.Z.stage dgamma(2,3)
tau.Z.hb"dgamma(2,300)
tau.Z.t"dgamma(1.5,0.5)
}
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A.7.12 R functions to do the adjustment by the categorical ran-

dom variables in the indirect method

function(y,E0,tol=1E-5,n=20)

{#

# Initial approximation

z0<-EO

d<-1

for (i in 1:n)

{if (abs(d)>tol)

{ez<-exp(z0)
pz<-ez/(l+ez)
f<-y-(z0-E0)-pz
fd<--(1+pz*(1-pz))

d<-f/fd
z0<-z0-d
}
+
ez<-exp (z0)
v0<- -1/fd

# Tierney and Kadane normalising constant (denominator)

g0<-z0*xy -((z0-E0)"~2)/2-log(l+ez)

etal0<-exp(g0)*sqrt (2xpi*v0)

# Mean shift

C<-5*sqrt(v0)-z0

# Tierney and Kadane numerator for E(Z+C)

z1<-z0

d<-1

for (i in 1:n)

{if (abs(d)>tol)

{ez<-exp(z1)
pz<-ez/(1+ez)
f<-y-(z1-E0)-pz+1/(z1+C)
fd<--(1+pz*(1-pz)+(z1+C) " (-2))
d<-f/fd
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z1<-z1-d
}
+
ez<-exp(zl)
vi<- -1/fd

gl<-log(z1+C)+zlxy -((z1-E0)~2)/2-log(l+ez)
etal<-exp(gl)*sqrt (2xpixvl)
# Tierney and Kadane approximation to E(Z+C) and E(Z)
Ei<-etal/eta0
postmean<-E1-C
# Tierney and Kadane numerator for E([Z+C]"2)
z2<-z1
d<-1
for (i in 1:n)
{if (abs(d)>tol)
{ez<-exp(z2)
pz<-ez/(1l+ez)
f<-y-(z2-E0) -pz+2/(z2+C)
fd<--(1+pz* (1-pz) +2*(z2+C) " (-2))

d<-f/fd
z2<-z2-d
}
}
ez<-exp(z2)
v2<- -1/fd

g2<-2%log(z2+C) +z2xy -((z2-E0)~2)/2-1log(l+ez)
eta2<-exp(g2) *sqrt (2xpi*v2)

# Tierney and Kadane approximation to E([Z+C]~2) and Var(Z)
E2<-eta2/etal

postvar<-E2-E172

return(list (El=postmean,Vi=postvar))

}
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A.8 Appendix to Chapter 8

A.8.1 R code for simulation from the direct model with direct

parameter values in the NHL example

library (MASS)
library(rjags)

# library(tmvtnorm)

# library(matrixcalc)

# library(corpcor)

n<-1200

sex<-rep(1l,n) # all male

age<-rep(0,n) # because each case aged 60 and we centred
# them as 60-60=0

# We use EO0(Z) and VO(Z) that we obtained from the
# offline learning model to generate n=1200 samples
# from a multivariate normal distribution for Z.

Z<- mvrnorm(n, EO, VO)

hb<-Z[,1]
wbe<-Z[, 2]

# Ordinal variables such as stage
x_3_stage<-ifelse(Z[,3]>cuts[3],3,2)
x_3_stage<-ifelse(Z[,3]<cuts[2],1,x_3_stage)
x_3_stage<-ifelse(Z[,3]<cuts[1],0,x_3_stage)

stage<-x_3_stage

# Binary variables such as albumin
x_4 albumin<-ifelse(Z[,4]1>0,1,0)
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albumin<-x_4_ albumin

# Actual values of Z_T
actual Z<-Z[,5]

Then we have the matrix Z with dimension 1200X5 where

for example Z[,1] is the generated values for the covariate

Hb and Z[,2] is the generated values for the covariate Wbc

and so on. The last column of the matrix Z, Z[,5] represents

the actual values for Z_T. Afterwards, we use the model

comparison (in rjags) in Appendix A.8.1. to compute the posterior
means of Z_T using MCMC. Then we use Bayes linear

kinematic to compute the posterior means for Z_T and

H OH OH O H OH OH O H OH H

compare the results between the two methods.

A.8.2 Rjags model specification for model comparison for non-

Hodgkin lymphoma data in the direct method

g
##### model comparison for non-Hodgkin lymphoma data in the ##i#i##
#HHH R R R # S direct method ######HHHAHH
g

model

{
for (i in 1:1391){

mean.Z.t[i]<- gammaO.t+gamma.t.age*age[i]+gamma.t.wbc*(Z.wbc[i]-mean.Z.wbc([i])
+gamma.t.sex*sex[i]+gamma.t.albumin*(Z.albumin[i]-mean.Z.albumin[i])

+gamma.t.stagex(Z.stage[i]-mean.Z.stage[i])+gamma.t.hb*(Z.hb[i]-mean.Z.hb[i])

hb[i] “dnorm(mean.Z.hb[i] ,tau.Z.hb)
Z.hb[i]<-hb[i]

mean.Z.hb[i]<-gammaO.hb+gamma.hbage*age [i] +gamma.hbsex*sex[i]
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wbc[i] "dnorm(mean.Z.wbc[i] ,tau.Z.wbc)

Z.wbc[i]<-wbc[i]
mean.Z.wbc[i]<-gammal.wbc+gamma.wbcage*age [i] +gamma.wbcsex*sex [i]
+gamma . wbchb* (Z.hb[i]-mean.Z.hb[i])

stage[i] “dinterval(Z.stage[i],cut.stage[1:3])
Z.stage[i] ~ dnorm(mean.Z.stagel[i], tau.Z.stage)
mean.Z.stage[i]<-gamma0.stage+gamma.stageage*age [i]+gamma.stagesex*sex[i]

+gamma . stagehb*(Z.hb[i]-mean.Z.hb[i])+gamma.stagewbc* (Z.wbc[i]l-mean.Z.wbc[i])

albumin[i] “dinterval(Z.albumin[i],0)

Z.albumin[i] "dnorm(mean.Z.albumin[i], 1)
mean.Z.albumin[i]<-gamma0.albumin+gamma.albuminage*age [i]
+gamma.albuminsex*sex[i] +gamma.albuminwbc* (Z.wbc[i]-mean.Z.wbc[i])
+gamma .albuminstage*(Z.stage[i]-mean.Z.stage[i])
+gamma.albuminhb*(Z.hb[i]-mean.Z.hb[i])

}

cut.stage=c(0,c2,2)
c2<-2%*cc

A.8.3 Computing the predictions of Z; using Bayes linear kine-

matic for the direct method

albumin<-albumin+1
stage<-stage+l
data<-data.frame (hb,wbc,stage,albumin,age,sex)

data<-as.matrix(data)

patdata<-datal1,]
EO<-muO+muage*patdatal[5] +musex*patdata[6]

#H######### posterior mean and variance for hb #######H#H#H
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adjbynorm<-function(y,E0,V0)
{# observed variables (hb, wbc)
Ey<-EO0[1]
Ez<-E0[3:5]
Vy<-VOo[1,1]
Vz<-V0[3:5,3:5]
C<-V0[3:5,1]
E1<-Ez+C*(y1-Ey) /Vy
V1<-Vz-Chx%t (C) /Vy
P1<-solve (V1)
return(list (E=E1,P=P1))

#H#####HH### posterior mean and variance for wbc ######H#H#H#HE
adjbynorm<-function(y,EO0,VO0)
{# observed variables (hb, wbc)
Ey<-E0[2]
Ez<-E0[3:5]
Vy<-V0[2,2]
Vz<-V0[3:5,3:5]
C<-V0[3:5,2]
E1<-Ez+Cx* (y2-Ey) /Vy
V1<-Vz-C%*%t (C) /Vy
P1<-solve(V1)
return(list(E=E1,P=P1))

adjstage<-function(y,E0,V0,cuts,nstep=100){
S0<-sqrt (VO)
k<-length(cuts)
if (y==0){
lower<-0 }

else
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{lower<-pnorm(cuts[y] ,E0,S0)}
if (y==k)
{upper<-1}
else {

upper<-pnorm(cuts[y+1] ,E0,S0)}
u<-seq(lower,upper,length.out=(nstep+1))
Z<-qgnorm(u,E0,S0)
22=7%7Z
E1<-(sum(Z)-(Z[1]+Z[nstep+1])/2) /nstep
E172<-(sum(Z2)-(Z2[1]1+Z2[nstep+1])/2) /nstep
V1<-E1Z2-E1%E1
ans<-list(E=E1,V=V1)

return(ans)

#H###H#### posterior mean and variance for Z.albumin ########## adjalbumin
adjalbumin<-function(y,E0,V0,cuts,nstep=100)
{# y is an integer in [0,k]

S0<-sqrt (V0)

k<-length(cuts)

if (y==0){

lower<-0

}

else

{lower<-pnorm(cuts[y] ,E0,S0)}

if (y==k){

upper<-1

}

else

{upper<-pnorm(cuts[y+1] ,E0,S0)}

u<-seq(lower,upper,length.out=(nstep+1))

Z<-gnorm(u,E0,S0)

22<-7%Z

E1<-(sum(Z)-(Z[1]+Z[nstep+1])/2) /nstep

E1Z2<-(sum(Z2)-(Z2[1]+Z2[nstep+1])/2) /nstep
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V1<-E1Z2-(E1*E1)
out<-list(E=E1,V=V1)

return(out)

adjbynoncon<-function(y,EO0,V0,var,cuts)
{#var=3:stage, var=4:albumin
if (var==3)
{adjusted<-adjstage(y,E0[3],V0[3,3],cuts=c(-4.5,0,2*%cc.m, 2,4.5),nstep=100)
}
if (var==4)
{adjusted<-adjalbumin(y,E0[4],V0([4,4],cuts=c(-4.5,0,4.5) ,nstep=100)
}
Vxadj<-adjusted$V
Exadj<-adjusted$E
Ez<-E0[3:5]
Vz<-V0[3:5,3:5]
C<-VO[3:5,var]
E1<-Ez+C* (Exadj-EO[var]) /VO[var,var]
V1<-Vz-C/*%t (C) /VO [var,var] +C%*’t (C) *Vxadj/ (VO [var,var] *VO [var,var])
P1<-solve (V1)
return(list (E=E1,P=P1))

HEH#HHHAHBH R HAH RS HAH B HAH RS HE
BLKindex<-function(patdata,VO,mu0,musex,muage,cuts)
{

EO<-muO+muage*patdatal[5] +musex*patdata[6]

PO<-solve(V0[3:5,3:5])

n<-3

J<-4

d<-n*nx*]J
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El<-matrix(nrow=n,ncol=J)
Pi1<-numeric(d)
dim(P1)<-c(n,n,J)

# covariate (hb)

if (is.na(patdata[1])==TRUE)
{P1[,,11<-PO

E1[,1]<-E0[3:5]

}

else

{ adjusti<-adjbynorm(patdatal1],E0,VO0)
P1[,,1]1<-adjust1$P

E1[,1]<-adjust1$E

}

# covariate (wbc)

if (is.na(patdata[2])==TRUE)
{P1[,,2]1<-PO

E1[,2]<-E0[3:5]

}

else

{ adjust2<-adjbynorm(patdatal[2],E0,V0)
P1[,,2]<-adjust2$P

E1[,2]<-adjust2$E

}

# covariate (stage)
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if (is.na(patdata[3])==TRUE)
{P1[,,31<-PO

E1[,3]<-E0[3:5]

}

else

{ adjust3<-adjbynoncon(patdatal3],E0,V0,3,cuts)
P1[,,3]<-adjust3$P

E1[,3]<-adjust3$E

}

# covariate (albumin)

if (is.na(patdata[4])==TRUE)
{P1[, ,41<-PO

E1[,4]<-E0[3:5]

}

else

{ adjust4<-adjbynoncon(patdatal4],E0,V0,4,cuts)
P1[,,4]1<-adjust4$P

E1[,4]<-adjust4$E

+

V0<-V0[3:5,3:5]

E0<-E0[3:5]
PP<-matrix(0,nrow=3,ncol=3)
PPEE<-rep(0,3)

for(j in 1:4)
{PP<-PP+P1[,,j]
PPEE<-PPEE+P1[,,j1%*%E1[, j]
}

PP<-PP-3*P0
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PPEE<-PPEE-3%*P0%*%EOQ
EE<-solve(PP,PPEE)
return(EE[3])

}

# BLKindex(patdata,V0,mu0,musex,muage,cuts)

indexBLKall<-function(data,V0,mu0,musex,muage,cuts)
{
indexvalues<-numeric(1200)
for (i in 1:1200)
{
indexvalues[i]<-BLKindex(datal[i,],V0,mu0,musex,muage,cuts)

¥

return(indexvalues)

# out<-indexBLKall(data,V0,mu0,musex,muage,cuts)

A.8.4 Rjags model specification for model comparison for non-

Hodgkin lymphoma data in the indirect method

g s s
##### model comparison for non-Hodgkin lymphoma data in the #####
#HHH R R # S indirect method ##t#######HH#H#H
s
model{

for(i in 1:1391){

stagel[i] ~ dcat(pl[i,1:4])

pli,1] <- 1-qli,1]

for(r in 2:3){

pli,r] <- qli,r-1]1 - qli,r]
}
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pli,4] <- qli,3]

for(r in 1:3){
logit(qli,r]) <- Z.stagel[il- cuts[r]
}

mean.Z.t[i]<- gammaO.t+gamma.t.age*age[i]+gamma.t.wbc*(Z.wbc[i]l-mean.Z.wbc[i])
+gamma.t.sex*sex[i]+gamma.t.albumin*(Z.albumin[i]-mean.Z.albumin[i])

+gamma.t.stagex(Z.stage[i]-mean.Z.stage[i])+gamma.t.hb*(Z.hb[i]-mean.Z.hb[i])

hb[i] “dnorm(mean.Z.hb[i] ,tau.Z.hb)
Z.hb[il<-hb[i]

mean.Z.hb[i]<-gammaO.hb+gamma.hbage*age [i] +gamma.hbsex*sex[i]

wbc[i] “dnorm(mean.Z.wbc[i],tau.Z.wbc)

Z.wbc[i]<-wbc[i]

mean.Z.wbc [i]<-gamma0.wbc+gamma.wbcage*age [i]+gamma .wbcsex*sex [i]
+gamma . wbchb* (Z.hb[i]-mean.Z.hb[i])

Z.stage[i] ~ dnorm(mean.Z.stage[i], tau.Z.stage)
mean.Z.stage[i]<-gammaOl.stage+gamma.stageage*age[i] +gamma.stagesex*sex[i]

+gamma . stagehb*(Z.hb[i]-mean.Z.hb[i])+gamma.stagewbc* (Z.wbc[i]-mean.Z.wbc[i])

albumin[i] “dinterval(Z.albumin[i],O0)

Z.albumin[i] "dnorm(mean.Z.albumin[i], 1)
mean.Z.albumin[i]<-gamma0.albumin+gamma.albuminage*age[i]+gamma.albuminsex*sex[i]
+gamma.albuminwbc*(Z.wbc[i]-mean.Z.wbc[i])
+gamma.albuminstage* (Z.stage[i] -mean.Z.stage[i])
+gamma.albuminhb*(Z.hb[i]-mean.Z.hb[i])

}

cuts=c(0,c2,1)
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c2<-cc

A.8.5 Computing the predictions of Z; using Bayes linear kine-

matic for the indirect method

albumin<-albumin+1
stage<-stage+l
data<-data.frame(hb,wbc,stage,albumin,age,sex)

data<-as.matrix(data)

patdata<-datal1l,]
EO<-muO+muage*patdata[5]+musex*patdatal6]

#H#####H##E posterior mean and variance for hb ##########
adjbynorm<-function(y,E0,V0)
{# observed variables (hb, wbc)
Ey<-EO[1]
Ez<-E0[3:5]
Vy<-Vo[1,1]
Vz<-V0[3:5,3:5]
C<-VO0[3:5,1]
E1<-Ez+Cx*(y1-Ey) /Vy
V1<-Vz-C%*)%t (C) /Vy
P1<-solve(V1)
return(list (E=E1,P=P1))

######HH### posterior mean and variance for wbc ######H###HS
adjbynorm<-function(y,E0,V0)
{# observed variables (hb, wbc)

Ey<-EO0[2]

Ez<-E0[3:5]

Vy<-Vo[2,2]
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Vz<-V0[3:5,3:5]
C<-V0[3:5,2]
E1<-Ez+Cx(y2-Ey) /Vy
V1<-Vz-C%*%t (C) /Vy
P1<-solve (V1)
return(list (E=E1,P=P1))

### function to find posterior mean and variance for
# Z.albumin and Z.stage.
function(y,E0,tol=1E-5,n=20)
{#
# Initial approximation
z0<-EO
d<-1
for (i in 1:n)
{if (abs(d)>tol)
{ez<-exp(z0)
pz<-ez/(1+ez)
f<-y-(z0-E0) -pz
fd<--(1+pz*x(1-pz))

d<-f/fd
z0<-z0-d
}
}
ez<-exp(z0)
v0<- -1/fd

# Tierney and Kadane normalising constant (denominator)
g0<-z0*y -((z0-E0)"2)/2-log(1l+ez)
eta0<-exp(g0) *sqrt (2xpi*v0)

# Mean shift

C<-5*sqrt (v0)-z0

# Tierney and Kadane numerator for E(Z+C)

z1<-z0
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d<-1
for (i in 1:n)
{if (abs(d)>tol)
{ez<-exp(z1)
pz<-ez/(l+ez)
f<-y-(z1-E0) -pz+1/(z1+C)
fd<--(1+pz*(1-pz)+(z1+C) " (-2))

d<-f/fd
z1<-z1-d
3
+
ez<-exp(zl)
vi<- -1/fd

gl<-log(z1+C)+zl*xy -((z1-E0)"2)/2-log(1l+ez)
etal<-exp(gl)*sqrt(2*xpixvl)
# Tierney and Kadane approximation to E(Z+C) and E(Z)
El<-etal/etal
postmean<-E1-C
# Tierney and Kadane numerator for E([Z+C]"2)
z2<-z1
d<-1
for (i in 1:n)
{if (abs(d)>tol)
{ez<-exp(z2)
pz<-ez/(l+ez)
f<-y-(z2-E0) -pz+2/(z2+C)
fd<--(1+pz* (1-pz) +2* (2z2+C) " (-2))

d<-f/fd
z2<-z2-d
3
+
ez<-exp(z2)
v2<- -1/fd

g2<-2x1log(z2+C)+z2xy -((z2-E0)"2)/2-1log(1l+ez)
eta2<-exp(g2) *sqrt (2xpi*v2)
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# Tierney and Kadane approximation to E([Z+C]~2) and Var(Z)
E2<-eta2/etal

postvar<-E2-E172

return(list (El=postmean,Vi=postvar))

+

adjbynoncon<-function(y,E0,V0,var,cuts)
{#var=3:stage, var=4:albumin
if (var==3)
{adjusted<-adjstage(y,E0[3],V0[3,3],cuts=c(-4.5,0,cc.m, 1,4.5),nstep=100)
}
if (var==4)
{adjusted<-adjalbumin(y,E0[4],V0[4,4],cuts=c(-4.5,0,4.5) ,nstep=100)
}
Vxadj<-adjusted$V
Exadj<-adjusted$E
Ez<-E0[3:5]
Vz<-V0[3:5,3:5]
C<-VO0[3:5,var]
E1<-Ez+C* (Exadj-EO[var])/V0[var,var]
V1<-Vz-C)*x%t (C) /VO [var,var] +C%*Jt (C) *Vxadj/ (VO [var,var] *VO [var,var])
P1<-solve (V1)
return(list (E=E1,P=P1))

HEHHHHEHAHHEHAH RS R RS R RS
BLKindex<-function(patdata,V0,mu0,musex,muage,cuts)
{

EO<-muO+muage*patdatal[5] +musex*patdatal6]

P0O<-solve(VO[3:5,3:5])

n<-3

J<-4

d<-n*n*J

El<-matrix(nrow=n,ncol=J)
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Pi<-numeric(d)

dim(P1)<-c(n,n,J)

# covariate (hb)

if (is.na(patdatal[1])==TRUE)
{P1[,,1]1<-PO

E1[,1]<-E0[3:5]

+

else

{ adjusti<-adjbynorm(patdatal1],E0,V0)
P1[,,1]1<-adjust1$P

E1[,1]<-adjust1$E

}

# covariate (wbc)

if (is.na(patdata[2])==TRUE)
{P1[,,2]1<-PO

E1[,2]<-E0[3:5]

}

else

{ adjust2<-adjbynorm(patdatal[2],E0,V0)
P1[,,2]<-adjust2$P

E1[,2]<-adjust2$E

}

# covariate (stage)

if (is.na(patdata[3])==TRUE)
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{P1[,,3]1<-PO
E1[,3]<-E0[3:5]
b

else

{ adjust3<-adjbynoncon(patdatal3],E0,V0,3,cuts)
P1[,,3]<-adjust3$P

E1[,3]<-adjust3$E

}

# covariate (albumin)

if (is.na(patdata[4])==TRUE)
{P1[, ,41<-PO

E1[,4]<-E0[3:5]

}

else

{ adjust4<-adjbynoncon(patdatal4],E0,V0,4,cuts)
P1[,,4]<-adjust4$P

E1[,4]<-adjust4$E

}

V0<-V0[3:5,3:5]

E0<-E0[3:5]
PP<-matrix(0,nrow=3,ncol=3)
PPEE<-rep(0,3)

for(j in 1:4)
{PP<-PP+P1[,, j]
PPEE<-PPEE+P1[,,jl1%*%E1[, j]
}

PP<-PP-3%P0
PPEE<-PPEE-3*P0%*%EQ
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EE<-solve(PP,PPEE)
return(EE[3])

# BLKindex(patdata,V0,mu0,musex,muage,cuts)

indexBLKall<-function(data,V0,mu0,musex,muage,cuts)
{

indexvalues<-numeric(1200)
for (i in 1:1200)
{
indexvalues[i]<-BLKindex(datal[i,],V0,mu0,musex,muage,cuts)
}

return(indexvalues)

# out<-indexBLKall(data,V0,mu0,musex,muage,cuts)
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A.9 List of abbreviations and notations

Table A.8: Glossary of abbreviation

Symbols Meaning

AP Alkaline phosphatase.

BLK Bayes linear kinematic.

BN Bayesian network.

bnlearn Bayesian network learning.

Bsy B-symptoms.

BUGS Bayesian inference using Gibbs sampler.
BVS Bayesian variable selection.

CpPT Conditional probability table.

DA Data augmentation.

DAG Directed acyclic graph.

DBN Dynamic Bayesian network.

Depscore Deprivation score.

DLBCL Diffuse large B-cell lymphoma.
DLBCL-NOS | Diffuse large B-cell lymphoma- Not Otherwise Specified.
ECOG Eastern Co-operative Oncology Group.
Extranod Extranodal without bone marrow.
EVLP Ex vivo lung perfusion.

FCD Full conditional distribution.

GLM Generalised Linear Model.

GVS Gibbs variable selection.

HB Haemoglobin.

i.i.d. Independent and identically distributed.
INLA Integrated nested Laplace approximation.
JAGS Just another Gibbs sampler.

LDH Serum lactate dehydrogenase.

MAR Missing at random.

Marrow Bone marrow involvement.

MB Markov blanket.
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Table A.9: Glossary of abbreviation

Symbols | Meaning

MCAR | Missing completely at random.

MCMC | Markov chain Monte Carlo.

MNAR | Missing not at random.

NHL Non-Hodgkins Lymphoma.

NRHG | Northern Regional Haematology Group.
PACE Population Adjusted Clinical Epidemiology.
PCH Piecewise constant hazard.

PGM Probabilistic graphical model.

SNLG Scotland Newcastle Lymphoma Group.

SSVS Stochastic search variable selection.
TDI Townsend deprivation index.
Urea Blood urea nitrogen.

WBC White blood cell.
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Table A.10: Glossary of notations

Symbols Meaning

7(0) Prior distribution of parameter ¢

L(0y) Likelihood function.

m(0|y) Posterior distribution of parameter 6 given data y.
g(0) Arbitrary function of 6.

g(+) Link function.

0(z;) The probability of the event for subject i.

Yobs The observed data.

Yniss The missing values.

P Unknown quantity for the missing data mechanism.
F(t) Lifetime distribution function.

S(t)
f(t)

h(t)

H(t)

ty

A

P

Py

Po1, Po3
foly | )
fily | x)

D = {.flfl,
01,....0p
(6 [ D)
S*

€1,.-,€p

75}

Survival function.

Lifetime probability density function.

Hazard function.

Cumulative hazard function.

Posterior predictive density of future observation.
Acceptance probability.

Standard normal cumulative distribution function.
Probability that the lung be used.

Lower and upper quartiles for the proportion.
Prior predictive distribution.

Posterior predictive distribution.

Observed data.

Multinomial probability distribution.

Posterior distribution of 6.

Best structure in Bayesian network.

Autoregression innovations for transformed parameters.
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Table A.11: Glossary of notations

Symbols

Meaning

EO, Varo, COVO
Eq, Vary, Covy
Y

{X1,.., X}
R(Y|D)

¥(-)

Y1(+)

I,

81y -4y Sk—1

0=, n)
Zm+1 - ZT

A

ZBLK,i
Zycmci

Prior expectation, variance, covariance.
Posterior expectation, variance, covariance.
Regression coefficients in autoregression model.
Covariates in the model.

Error terms from the Bayes linear fit.
Digamma function.

trigamma function.

Interval k in a piecewise constant hazard model where k£ =1, ...

Cut-points in a piecewise constant hazard model.
Transformed parameters.

Prognostic index.

Prognostic index value calculated using BLK.
Prognostic index value calculated using full Bayes.
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