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Abstract

Ubiquitous cheap processing power and reduced storage costs have led to increased deploy-

ment of connected devices used to collect and store information about their surroundings.

Examples include environmental sensors used to measure pollution levels and temperature,

or vibration sensors deployed on machinery to detect faults. This data is often streamed

in real time to cloud services and used to make decisions such as when to perform main-

tenance on critical machinery, and monitor systems, such as how interventions to reduce

pollution are performing.

The data recorded at these sensors is unbounded, heterogeneous and often inaccurate,

recorded with different sampling frequencies, and often on irregular time grids. Connection

problems or hardware faults can cause information to be missing for days at a time.

Additionally, multiple co-located sensors can report different readings for the same process.

A flexible class of dynamic models can be used to ameliorate these issues and used to

smooth and interpolate the data.

Irregularly observed time series can be conveniently modelled using state space mod-

els with a continuous time latent-state represented by diffusion processes. In order to

model the wide array of different environmental sensors the observation distributions of

these dynamic models are flexible, in all cases particle filtering methods can be used for

inference and in some cases the exact Kalman filter can be used. The models along with

a binary composition operator form a semigroup, making model composition and reuse

straightforward. Heteroskedastic time series are accounted for by using a factor structure

to model a full-rank time-dependent system noise matrix for the dynamic models which

can account for changes in variance and the correlation structure between each time series

in a multivariate model. Finally, to model multiple nearby sensors a dynamic model is

used to model a time-dependent common mean and a time-invariant Gaussian process can

account for the spatial variation between the sensors.

Functional programming in Scala is used to implement these time series models. Func-

tional programming provides a unified principled API (application programming interface)

for interacting with different collection types using higher order functions. This, combined

with the type-class pattern, makes it possible to write inference algorithms once and de-

ploy them locally using serial collections and later on unbounded time series data using

libraries such as Akka streams using techniques from functional reactive programming.
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Chapter 1

Time Series and Bayesian

Inference

The main contribution of this thesis is to unite principled Bayesian statistical modelling

for time series data with state of the art functional programming, illustrated here using the

Scala programming language [Odersky et al., 2004]. This unification enables flexible model

building and scalable statistical inference algorithms. Three Scala libraries have been

developed which implement the ideas discussed in this thesis, the first is for performing

Bayesian inference in Dynamic State Space Models1, discussed in chapters 4, 5 and 7.

The second2 is a companion package to a publication [Law and Wilkinson, 2017], which

considers a class of composable state space models with diffusion processes representing the

continuous time latent-state. The third is a library for spatial modelling using Gaussian

Processes3.

The time series data considered comes from the Urban Observatory [James et al.,

2014a], a large sensor network in the North East of England. The data is open and freely

available for use by both industry and researchers4. However, since the data is often

missing or inaccurate, space-time models can be applied to smooth readings, provide

forecasts and interpolate missing data. The models developed in this thesis aim to model

the range of sensor data in the Urban Observatory. The models can be easily composed,

re-used and built upon. Additionally the models and inference schemes can be deployed

on unbounded streaming sensor data.

This chapter provides a concise introduction to Bayesian inference and time series

analysis with a focus on computational inference, using simple examples. This helps to

establish notation used in the remainder of this thesis and gives a grounding for some of

1https://git.io/dlm
2https://git.io/statespace
3https://git.io/gaussianprocesses
4http://uoweb1.ncl.ac.uk/
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Chapter 1. Time Series and Bayesian Inference

the more advanced tools and techniques presented in later chapters. For a comprehensive

overview of Bayesian statistics see Gelman et al. [2013]. For an overview of modern

Bayesian inference in time series see Prado and West [2010]. Gamerman and Lopes [2006]

provides an in-depth guide to Markov chain Monte Carlo methods for Bayesian statistics.

Chapter 2 highlights important aspects of programming languages, with an empha-

sis on functional programming which can be used to build expressive APIs (application

programming interfaces) for statistical model building and inference. This chapter intro-

duces a reactive streams implementation in Scala, Akka Streams. Reactive programming

is natural for analysis of unbounded time series data. Chapter 3 introduces probabilis-

tic programming languages as embedded domain specific languages (DSL) in functional

programming languages using the tools introduced in Chapter 2.

Chapter 4 is the first chapter with a focus on time series modelling and introduces

Gaussian dynamic linear models (DLMs) including specification, composition and infer-

ence for univariate and multivariate models, culminating in a multivariate DLM example

for a pollution sensor in the Urban Observatory. In addition, a continuous time exten-

sion to the DLM using a diffusion process to represent the latent-state is considered in

section 4.7.

Chapter 5 considers non-Gaussian state space models including filtering and parameter

inference. The chapter concludes with three case studies, Student’s-t distributed models

for Nitrogen Monoxide (NO) and temperature showing improved model diagnostics com-

pared to the Gaussian DLM example in chapter 4 and a count model for regularly observed

traffic data.

Chapter 6 is adapted from a published paper [Law and Wilkinson, 2017] and consid-

ers irregularly observed time series data with a composable latent-state represented by

multiple diffusion processes. This chapter emphasizes the streaming nature of modern

time series data and how inference can be performed online for live unbounded data using

streaming data frameworks such as Akka streams.

Chapter 7 introduces heteroskedastic time series and factor models. Using the same

model building API as chapters 4 and 5, multivariate DLMs with non-diagonal, time de-

pendent system and observation noise matrices can be built in order to model multivariate

time series with dependent latent-state and observation noise variances.

Finally, Chapter 8 is concerned with Gaussian processes (GP) for spatial modelling of

multiple nearby sensors. The GP is used to interpolate temperature data in an example

from the Urban Observatory.

Chapter 9 considers the contribution of this thesis and explores the possibility of further

work in the domain of Bayesian time series modelling and functional programming.

2
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1.1 Introduction to Bayesian Inference

There are several paradigms of statistical inference commonly used in modern statistics

and machine learning. They include classical (or frequentist), Bayesian and likelihood-

based. This thesis is solely concerned with Bayesian statistics.

Bayesian statistics is concerned with expressing uncertainty using probability. Consider

reasoning about an unknown outcome such as the flip of a coin, result of a football match

or a scientific experiment. Before the unknown event has occurred an individual may have

an opinion on the outcome, for instance the probability of heads a coin flip is thought

to be 1
2 . Each individual can have different beliefs, for instance a passionate football fan

may have extra confidence in his or her own team and believe they can win even if they

are not the bookmakers favourites. These beliefs can be updated in the presence of new

information, for instance the star striker in the football example can pull up injured leading

up to the game and the passionate fan starts to lose hope. Bayesian inference formalises

this belief updating by combining prior beliefs with data. Prior beliefs are encoded using

probability distributions.

In order to understand Bayesian inference, it is important to first consider some rules

of probability. A probability is a number between 0 and 1 which represents whether an

event will occur, an event that can not occur will have probability 0 whereas an event

which is certain to occur is said to have probability 1.

Consider an example of flipping a coin. If the coin is fair then Pr(H) = 0.5 and

Pr(T) = 1 − P (H) = 0.5 since Pr(¬A) = 1 − Pr(A) where A is any event and ¬A is

the complement of A. The outcome of a coin flip is called an event and {H,T} is the

sample space. The events are mutually exclusive (formally Pr(H ∩ T ) = 0) which means

Pr(H ∪ T ) = P (H) + P (T ).

Consider two independent events, for instance flipping two fair coins, then the prob-

ability of landing heads on both coins is given by the product of landing heads on each

coin. That is Pr(H1∩H2) = Pr(H1)Pr(H2) = 1
2 · 12 = 1

4 . However, if the coins are flipped

at different times and it is known that the first coin has landed heads then the probability

of landing two heads is changed to Pr(H2|H1) = Pr(H1 ∩H2)/Pr(H2) = 1
4/

1
2 = 1

2 by the

law of conditional probability

Definition. The law of conditional probability states Pr(A|B) = Pr(A∩B)
Pr(B) .

Theorem 1.1. Bayes’ theorem states that Pr(A|B) = Pr(A)Pr(B|A)
Pr(B) .

Proof. Bayes’ theorem can be derived from the definition of conditional probability 1.1.

Given two events A,B in the set of events, then the probability of both events occurring

3
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is commutative Pr(A ∩B) = Pr(B ∩A) and

Pr(A|B)Pr(B) = Pr(A ∩B) = Pr(B ∩A) = Pr(B|A)Pr(A)

Pr(A|B) =
Pr(A)Pr(B|A)

P (A)
.

In the context of Bayesian inference; the quantity Pr(B|A) is known as the like-

lihood and Pr(A) is known as the prior. This equation is often written Pr(A|B) ∝
Pr(A)Pr(B|A), read as the posterior is proportional to the prior times the likelihood.

Informally, this allows us to turn conditional probabilities around.

A parametric model is a statistical model consisting of a probability distribution con-

trolled by finitely many parameters ψ, the model is believed to explain data collected from

an experiment. A parametric statistical model can be thought of as a family of statis-

tical models which express different relationships based on the value of the parameters.

In the Bayesian paradigm, parameters are considered uncertain and follow a probability

distribution. Before the data are observed, a parameter prior distribution p(ψ) is specified

and after the data, Y , are observed a parameter posterior distribution can be identified

as p(ψ|Y ).

As an example, consider a (possibly biased) coin flip experiment. The parameter

of interest is the probability of heads ph. A Beta distribution is chosen for the prior

of ph, p(ph) = B(α, β). The Beta distribution has support between 0 and 1, which is

appropriate for a probability. The likelihood of a coin flip is Bernoulli, however the coin

should be flipped several times in order to learn the parameter ph. The distribution for

n independent Bernoulli trials is the Binomial distribution, hence the likelihood can be

written as Bin(Y ;n, ph). The coin is flipped n = 10 times and the results are displayed

below:

{H,H, T,H,H,H, T, T,H, T}

Then Y = 6, and it remains to determine the posterior distribution of the parameter ph

representing the probability of obtaining heads. Applying Bayes’ theorem

p(ph|Y ) =
p(ph)Bin(Y ;n, ph)∫ 1

0 p(Y |ph)dph

∝ pα−1h (1− ph)β−1
(
n

Y

)
pYh (1− ph)n−Y

= pY+α−1
h (1− ph)n−Y+β−1.

4



Chapter 1. Time Series and Bayesian Inference

0

1

2

3

0.00 0.25 0.50 0.75 1.00
ph

D
en

si
ty

Posterior
Prior

Figure 1.1: The prior and posterior distribution for the coin flip example, the posterior is
more concentrated than the prior and seems to hint that the coin is biased towards heads.

The posterior distribution is a Beta distribution which we denote by B(Y +α, n−Y +β).

In order to complete this example, suitable values should be chosen for the hyper

parameters of the prior distribution, eg. α = 3 and β = 3. Then fill in the values Y = 6

and n = 10. Figure 1.1 shows the prior and posterior distributions for the parameter ph.

The posterior distribution is more concentrated than the prior and seems to show that

the coin is biased towards heads. If more trials were conducted, the parameter posterior

distribution tends to be even more concentrated.

If it was decided that more trials were needed to determine the fairness of the coin,

then the results of this preliminary experiment do not need to be discarded. The prior

distribution of ph can be set to be the posterior distribution found in the initial 10 coin

flips since the likelihood factorises over flips.

Parametric statistical modelling in the Bayesian paradigm follows the same steps out-

lined above in the coin flip experiment. First a model is specified for the data, then a

prior distribution is chosen for the parameters, these can be based on expert judgement

or from the outcome of previous similar experiments. The likelihood of the parameters
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given the observed data is written (or calculated in the case of an intractable likelihood)

and Bayes’ theorem is applied to determine the posterior distribution of the parameters

given the observed data.

The coin flip experiment is particularly simple, the Beta prior distribution is conjugate

to the Binomial likelihood meaning the posterior distribution can be calculated in closed

form and is the same distribution as the prior. However, this is the general framework for

reasoning with uncertainty using Bayes theorem. In practice, posterior distributions are

often intractable and computational techniques are used to evaluate summary statistics

of interest from the posterior distribution, such as the mean and posterior probability in-

tervals. Section 1.3 introduces commonly used computational techniques for more general

intractable problems.

1.2 Time Series Modelling

A time series is a sequence of observations indexed by time. In statistical analysis of time

series, a single realisation of a time series at time t is a random variable and can be written

as Yt ∼ p(Yt|Y1:t−1 = y1:t−1) where p is a probability distribution of random variables

and Y1:t−1 represents the set containing the past t − 1 observations of the time series

Y1:t−1 = {Y1, Y2 . . . , Yt−1}. Some examples of time series include stock prices, weather

systems and sensor data such as those found in the Urban Observatory [James et al.,

2014a].

Time series modelling is concerned with forecasting, interpolation and inference for

model parameters. If the joint probability model for an observed time series y1:N =

{y1, y2, . . . , yN} can be written as p(Y1:n), for any n ≥ 1 then a forecast from this model

can be determined using the law of conditional probability 1.1

p(YN+1|Y1:N = y1:N ) =
p(Y1:N+1)

p(Y1:N )
(1.1)

Specifying such a model is challenging in general. Forecasts and interpolation can be facil-

itated by the use of a parametric statistical model. In a parametric model, data collected

until time t = N is used to determine the posterior distribution of the parameters of a

model p(ψ|Y1:N ), then the parameter posterior distribution can be used to determine the

behaviour and relationships present in the data and perform forecasting or interpolation.

Bayesian time series modelling correctly quantifies forecast uncertainty by taking into

account parameter uncertainty. The Bayesian paradigm allows prior knowledge to be

incorporated formally at the model fitting stage and is natural for sequential learning as

the posterior at time t becomes the prior at time t + 1. The distributions of interest

in statistical time series modelling include the posterior distribution of the parameters

p(ψ|Y1:N ), one-step and k-step forecast distributions and smoothing distributions used for

6
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interpolation.

To derive the forecast distributions consider a time series model which has a joint

distribution of the observations and parameters p(Y1:t, ψ), then a one-step forecast is the

marginal distribution:

p(Yt+1|Y1:t = y1:t) =

∫
ψ
p(Yt+1|Y1:t = y1:t, ψ)p(ψ|y1:t)dψ. (1.2)

This marginal distribution is the integral over the parameter posterior distribution deter-

mined using the currently available observed data y1:t. Similarly a k-step forecast can be

produced:

p(Yt+k|Y1:t = y1:t) =

∫
Y

∫
ψ

k∏
i=1

p(Yt+i|Y1:t = y1:t, ψ)p(ψ|y1:t)dψdYt+1:t+k

An example of a time series model is the autoregressive process of order p = 1, often

written AR(1)

Yt = µ+ φ(Yt−1 − µ) + εt, εt ∼ N (0, σ2). (1.3)

The innovations, εt are independent and Normally distributed. The autoregressive model

is so called because it regresses upon earlier observations. The AR(p) process is dependent

on only the previous p observations of the series. It is said the AR(p) is a Markov chain

of order p.

Definition. The series Y1:t has the first order Markov property if p(Yt|Yt−1 = yt−1, . . . , Y0 =

y0) = p(Yt|Yt−1 = yt−1)

In other words the next observation is conditionally independent of the past values of

the series given the current value.

Definition. A time series is said to be Markov chain of order p if p(Yt|Yt−1 = yt−1, . . . , Y0 =

y0) = p(Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p)

The Markov transition kernel of the AR(1) process is:

p(Yt|Y1:t−1) = p(Yt|Yt−1) = N
(
µ+ φ(Yt−1 − µ), σ2

)
. (1.4)

The parameters of the AR(1) process are ψ = {µ, φ, σ}, the AR(1) process is stationary

if the absolute value of the autoregressive parameter is less than one, ie |φ| < 1. In order

to fit the AR model to real-world data it remains to determine the posterior distribution

of the parameters conditional upon the observed data, p(ψ|y1:N ). The posterior distribu-

tion for this model (and most real world problems) is not analytically tractable, and so
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computational inference algorithms are used as introduced in section 1.3. The problem of

inferring the posterior distribution of an AR(1) model is considered in Section 1.3.3. Once

the parameter posterior distribution of the parameters of the AR(1) model is known then

forecast distributions can be determined.

1.2.1 State Space Models

The previous example for the AR(1) process considers a parametric statistical model in

which realisations of the time series depend only on static parameters, ψ. In a state

space model the parameters depend on a latent stochastic process which is not observed.

Each observation is then considered conditionally independent given the corresponding

realisation of the latent-state. State-space models are a flexible class of models and can be

used to model univariate and multivariate times series with both non-stationary and non-

linear relationships. In addition, complex models can be built from simple components

incorporating seasonality and trends. Models can be considered in continuous or discrete

time, thus simplifying the calculations for certain problem types. For an overview of state

space modelling and filtering, see Doucet et al. [2001].

The evolution of the latent-state is often considered to be a first order Markov process

governed by a transition kernel:

p(θt|θ1:t−1) = p(θt|θt−1). (1.5)

An observation is then related to a corresponding latent-state using an observation distri-

bution:

p(Yt|θt, y1:t−1) = p(Yt|θt). (1.6)

The observation distribution can be chosen to be appropriate for the time series of interest

and represents the independent measurement error of the observed process Y1:N . The

observations are conditionally independent given the latent state. A problem of interest is

to determine the filtering distribution, which is the distribution of the latent-state given

the observations up to time t:

p(θt|y1:t) =
p(θt|y1:t−1)p(yt|θt, y1:t−1)

p(yt|y1:t−1)
This is an application of Bayes’ theorem: the prior distribution is the advanced state at

time t given the data up to time t− 1, p(θt|y1:t−1), also known as the one step ahead pre-

dictive density of the state. The likelihood is the conditional likelihood of an observation,

p(yt|θt) = p(yt|θt, y1:t−1) since yt is conditionally independent of y1:t−1 given θt. The one

step ahead predictive density of the state can be calculated as:

8
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p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1

This allows the one-step ahead predictive density, p(yt|yt−1) to be computed:

p(yt|yt−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt

This forms the basis for filtering and forecasting in a general state space model. For the

case when the model is specified by Gaussian transition and observation distributions,

filtering is available in closed form via the Kalman filter which is introduced in section 4.2.

In more general state space models where the observation and transition distributions are

non-Gaussian, the particle filter introduced in section 1.3.5 can be used to determine the

filtering distribution.

In addition to learning the posterior distribution of the latent-state, the posterior

distribution of the static parameters ψ associated with the observation and transition

distributions can be determined using appropriate MCMC algorithms. The main MCMC

algorithms used in this thesis are introduced in section 1.3.

1.3 Markov Chain Monte Carlo

It is often the case that the posterior distribution of a specified model is not available in

closed from. In this case sampling based methods can be used to approximate the posterior

distribution. This section introduces the building blocks of the inference algorithms used

throughout this thesis with simple illustrative examples. The inference methods include

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. For a

comprehensive review of MCMC see Brooks et al. [2011] and SMC see Doucet et al. [2001].

Real world models often have many parameters and hence an algorithm which scales

well to high dimensions is required. Markov chain Monte Carlo (MCMC) methods form

such a class of scalable algorithms.

MCMC methods work by repeatedly sampling from a Markov transition kernel until

the Markov chain has converged to a unique stationary distribution coinciding with the

target posterior distribution. In order to verify that the Markov chain converges to the

target posterior distribution it must be proven that the stationary distribution of the

Markov chain exists and is unique.

Sometimes an MCMC algorithm can be initialised far away from an area of high

posterior density. This is no problem in theory and eventually the Markov chain will

sample from its stationary distribution as the number of iterations tends to infinity. The

initial iterations are sometimes referred to as burn in (or warm-up) and can be discarded

before calculating summaries of the posterior distribution.

9
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The nature of MCMC samplers means that the samples are autocorrelated, meaning

samples from the distribution are not independent. Thinning can be applied by discarding

values such that only every nth value of the chain is retained. Thinning helps to reduce

auto-correlation but can mean the MCMC algorithm is required to run for longer in order

to calculate summary statistics of interest from the posterior distribution.

1.3.1 Pseudo Random Number Generators

All statistical computer simulation algorithms rely on pseudo random number generators

(PRNGs). PRNGs are not actually random number generators, but rely on a deterministic

transformation of a random number state in order to produce numbers which appear

random. This state is mutated each time another random number is requested. It is

important to know how the pseudo random numbers are distributed in order to be able to

simulate from other arbitrary distributions. For the algorithms which follow, it is assumed

that a good quality PRNG is available which produces uniform random numbers between 0

and 1. For more information on PRNGs see Ripley [1987], note that special considerations

must be made for simulating random numbers in parallel [Wilkinson, 2005].

1.3.2 Metropolis-Hastings

The Metropolis-Hastings algorithm is an MCMC algorithm used to simulate values from a

target distribution which can not be sampled from directly [Metropolis et al., 1953, Hast-

ings, 1970]. The Metropolis-Hastings (MH) algorithm converges to a unique stationary

distribution which is the target distribution.

The MH algorithm is straightforward to program and implement. Suppose the most

recently accepted parameter value is ψ, the likelihood is specified as π(Y |ψ), the prior

is p(ψ) and the proposal distribution for the parameters is q(ψ?|ψ). First a new set of

parameters are simulated from the proposal distribution then the un-normalised posterior

π(Y |ψ?)p(ψ?) is evaluated at the value of the newly sampled parameters and the proposed

parameter is accepted with probability according to the Metropolis choice

A(ψ?|ψ) = min

(
1,
p(ψ?)π(Y |ψ?)q(ψ|ψ?)
p(ψ)π(Y |ψ)q(ψ?|ψ)

)
. (1.7)

This process forms a Markov chain with stationary distribution equal to the posterior

distribution, p(ψ|Y ). A common choice for the proposal distribution is a multivariate

Normal distribution centred at the previously accepted value q(ψ?|ψ) = MVN(ψ?|ψ,Λ).

Λ is a covariance matrix which is a tuning parameter. The value of Λ is chosen such that the

proportion of accepted moves in the MH sampler is approximately 1
3 [Sherlock et al., 2009].

If the proportion of accepted moves is too high, then the sampler is inefficient, produces

highly auto-correlated samples and is not exploring the full posterior distribution, however
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the algorithm is guaranteed to converge to the correct posterior distributions if more draws

from the Markov chain are simulated. If the proportion of accepted moves is very low then

the sampler does not have many unique samples from the posterior distribution.

The MH algorithm can be simplified by choosing a proposal distribution symmetric

about the previously accepted value in the Markov chain, the acceptance ratio simplifies

to:

A(ψ?|ψ) = min

(
1,
p(ψ?)π(Y |ψ?)
p(ψ)π(Y |ψ)

)
(1.8)

An algorithm for simulating M iterations from the Metropolis-Hastings Kernel is sum-

marised in algorithm 1.

Algorithm 1: Metropolis-Hastings algorithm

Result: Return ψi, i = 1, . . . ,M
1 Given observed data Y , a proposal distribution q Initialise ψ1 ∼ p(ψ);
2 for i in 2:M do
3 Propose ψ? ∼ q(ψ?|ψi−1);
4 Calculate A(ψ?|ψ) = p(ψ?)π(Y |ψ?)q(ψi−1|ψ?)

p(ψi−1)π(Y |ψi−1)q(ψ?|ψi−1)
;

5 Sample u ∼ U [0, 1];
6 if u < A(ψ?|ψ) then
7 Set ψi = ψ?;
8 else
9 Set ψi = ψi−1;

10 end

Example: Coin Flip

The Metropolis-Hastings algorithm can be applied to the coin flip example, the proposal

distribution should be chosen carefully so that values of ph are not proposed outside of the

acceptable range of (0, 1). The proposal distribution is chosen to be a beta distribution

q(p?h|ph) = B(p?h|λph + τ, λ(1− ph) + τ).

λ and τ are tuning parameters, λ controls the variance of the distribution, τ is very

small and prevents the sampler getting stuck around zero or one. The mean of the B(α, β)

distribution is β/(α+ β), hence the mean of the distribution is λph+τ
λ+2τ ≈ ph. The variance

is αβ
(α+β)2(α+β+1)

≈ ph
λ . Alternatively, the parameter ph can be transformed using, for

example, a logistic function and the parameter can be proposed using a random walk.

Figure 1.2 shows the results of two chains each with 10,000 draws, the chain on the

left was run with τ = 0.01 and λ = 1000 and the proportion of accepted values is too high

11
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Figure 1.2: Traceplots and histograms for the Metropolis-Hastings algorithm applied to
the coin flip example. A sampler where the proportion of accepted values is too high (0.92),
(left). A sampler where the proportion of accepted is close to optimal (0.33), (right).

(0.92) (this is because the variance of the proposal distribution is too small) and does not

approximate the posterior accurately. The chain depicted on the right with τ = 0.01 and

λ = 2 has 0.33 proportion of accepted moves and the density is very close to the analytic

posterior distribution overlaid in red.

Tuning Metropolis algorithms in high dimensions can be challenging and is typically

a manual process. However, there are adaptive algorithms which adjust the proposal

distribution as the chain is running to target an optimal proportion of accepted values. If

not done carefully, this can affect the stationary distribution of the Markov chain resulting

in convergence to the incorrect posterior distribution [Andrieu and Thoms, 2008].

1.3.3 Gibbs Sampling

Gibbs Sampling is an MCMC algorithm which utilises full conditional distributions which

are semi-conjugate [Geman and Geman, 1987]. The Gibbs sampler is a special case of

the Metropolis-Hastings algorithm where the acceptance ratio always evaluates to one

12
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and hence the “proposed” value is always accepted. The Metropolis-Hastings algorithm is

more general and allows for more flexible prior specifications, however it is often difficult

to tune for high dimensional problems. When the MH algorithm is running efficiently, it

rejects most proposed moves. Gibbs sampling does not have to reject moves as samples

are drawn from the exact conditional distributions.

Gibbs sampling proceeds by constructing the full-conditional distributions. If the

parameter set is m-dimensional, ψψψ = {ψ1, . . . , ψm}, then it is often possible to utilise

conjugate structure in the conditional distributions of the parameters. Full conditional

distributions of the form p(ψi|ψ−i, Y ), i = 1, . . . ,m are calculated, where ψ−i represents

the parameter set without the ith element. The full conditional distributions are designed

to be conjugate to the prior distribution and hence straightforward to sample from, though

this does limit the choice of prior distribution. Algorithm 2 shows a general forward-sweep

Gibbs sampling algorithm.

Algorithm 2: Forward-sweep Gibbs Sampling algorithm

Result: Return ψ(i), i = 1, . . . ,M
1 Given observed data Y ;
2 ψ is a set of m parameters;

3 Sample ψ(1) from the prior distribution p(ψ);
4 for i in 2:M do
5 for j in 1:m do
6 Sample from the full conditional distribution for the jth parameter

ψ
(i)
j ∼ p(ψ

(i)
j |ψ

(i)
1 , . . . , ψ

(i)
j−1, ψ

(i−1)
j+1 , . . . , ψ

(i−1)
m , Y );

7 end

8 end

Example: AR Process

Consider an autoregressive process of order one

αt = µ+ φ(αt−1 − µ) + ηt, ηt ∼ N (0, σ2). (1.9)

The static parameters of the AR(1) process are ψ = {φ, µ, σ}. The likelihood of N

observations of this time series process can be written as

p(α0:N |ψ) = N
(
α0|µ,

σ2

1− φ2
) N∏
t=1

N (αt|µ+ φ(αt−1 − µ), σ2). (1.10)

If the prior distribution of the autoregressive parameter φ is chosen to be Normal with

mean µφ, and variance σ2φ then the full conditional can be derived as follows:

13
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p(φ|α0:N , σ, µ) = p(φ)p(α0)

N∏
t=1

p(αt|α1−t, ψ)

= N (φ;µφ, σ
2
φ)p(α0)

N∏
t=1

N (µ+ φ(αt−1 − µ), σ)

= N

 µφ
σ2
φ

+ 1
σ2

∑N
i=1(αi − µ)(αi−1 − µ)

1
σ2
φ

+ 1
σ2

∑N
i=1(αi − µ)2

,
1

1
σ2
φ

+ 1
σ2

∑N
i=1(αi − µ)2

 (1.11)

ignoring the contribution from the initial distribution, p(α0). Conditionally conjugate

prior distributions are specified for the remaining static parameters in the model

µ ∼ N (µµ, σ
2
µ),

σ ∼ Inv-Gamma(ασ, βσ). (1.12)

Then the remaining full conditional distributions can be written as

p(µ|α0:N , φ, σ) = N

 µµ
σ2
µ

+ 1−φ
σ2

∑N
i=2(αi − φαi−1)

1
σ2
µ

+ (n−1)(1−φ)2
σ2

,
1

1
σ2
µ

+ (n−1)(1−φ)2
σ2

 ,

p(σ2|α0:N , φ, µ) = Inv-Gamma

(
ασ +

N

2
, βσ +

1

2

N∑
i=1

((αi − µ)− φ(αi−1 − µ))2

)
. (1.13)

The full conditional distributions are simulated from conditional on the most recently

sampled parameter values to complete one iteration of the Gibbs sampler for the AR(1)

model. In this example simulated observations from an AR(1) process with known pa-

rameter values is used. In order to simulate realisations from an AR(1) process, firstly the

value of α0 is simulated from the stationary distribution p(α0) = N (µ, σ2/(1− φ2)), then

1,000 observations are sampled using the Markov transition kernel for the AR(1) process

in equation (1.4). Figure 1.3 shows the diagnostic plots for the posterior distributions of

the AR(1) model parameters after running the Gibbs sampling scheme for this synthetic

data set.

1.3.4 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) methods use first order derivatives of the log-posterior in

order to target areas of high posterior density; thus, avoiding the random walk behaviour

of the Metropolis-Hastings algorithm [Duane et al., 1987] while retaining the flexible choice

14
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Figure 1.3: Diagnostic plots for the static parameters of the AR(1) model using the Gibbs
sampler. There are 10,000 iterations with 1,000 iterations discarded as burn-in and every
4th iteration is retained to reduce auto-correlation. Trace plots of the marginal parame-
ter posterior distributions, (left). Empirical posterior densities of the static parameters,
(right).

of prior distributions. The gradient information used in HMC can lead to faster mixing and

hence a reduced number of iterations are required at the expense of computing derivatives

of the log-posterior. HMC is especially useful for drawing samples from high dimensional

posterior distributions. HMC can not be used to sample discrete parameters, but it is

sometimes possible to integrate discrete parameters out of a model.

The intuition for HMC is developed from Hamiltonian dynamics. Hamilton’s equations
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are written as

dp

dt
= −∂H

∂q
,

dq

dt
= +

∂H
∂p

.

Where q represents a particle position and p is the momentum of the particle. The

Hamiltonian of a physical system can be written as the sum of the kinetic and potential

energy

H(q,p) = T (q) + V (p). (1.14)

The HMC algorithm uses a combination of Gibbs sampling, Hamiltonian dynamics and

a Metropolis-Hastings step; hence, it is sometimes called Hybrid Monte Carlo. First, the

posterior distribution is augmented with an additional momentum parameter φ, this is

an auxiliary parameter which is not of direct interest when calculating the parameter

posterior distribution. The static parameters, ψ correspond to the position in Hamilton’s

equations, the kinetic energy is T (φ) = 1
2φ

Tφ since φ = mq̇ (q̇ is the first derivative of

position with respect to time, i.e. the particle velocity) where m = 1 is the particles mass

and T = 1
2mq̇

2. The joint density of the position and momentum can be written as

p(ψ, φ) ∝ exp

{
log p(ψ|y)− 1

2
φTφ

}
, (1.15)

where log p(ψ|y) is the log of the target posterior distribution written up to a normalising

constant and represents the negative potential energy. The kinetic energy is the kernel of a

standard multivariate Normal distribution, the identity covariance matrix can replaced by

a tuning parameter, Σ termed the mass matrix, from analytical mechanics [Betancourt,

2017]. Hamilton’s equations are discretised in order to update the values of the static

parameters, ψ (the position in Hamilton’s equations) and the momentum φ. A special

discretisation is used which exactly conserves volume in the Hamiltonian called a leapfrog

step:

φt+ε/2 = φt +
ε

2
∇ψ log p(ψt|y),

ψt+ε = ψt + εφt+ε/2,

φt+ε = φt+ε/2 +
ε

2
∇ψ log p(ψt+ε|y), (1.16)

where ∇ψ log(p(ψ|y)) is the gradient of the un-normalised log-posterior distribution. ε is

16
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a tuning parameter in the HMC algorithm and represents the step-size of a leapfrog step.

The full algorithm is written in Algorithm 3.

Algorithm 3: Hamiltonian Monte Carlo

Result: Return ψi, i = 1, . . . ,M
1 Given p(ψ), log p(ψ|y) and tuning parameters ε, L;
2 Sample ψ0 ∼ p(ψ);
3 for i in 1:M do
4 Sample φ ∼ MVN(0, Σ).;
5 Set ψ? := ψi−1, φ

? := φ;
6 for j in 1:L do
7 ψ?, φ? = Leapfrog(ψ?, φ?, ε)
8 end
9 Calculate α = log p(ψ?|y)− 1

2φ
?TΣ−1φ? − log p(ψi−1|y) + 1

2φ
TM−1φ;

10 Sample u ∼ U(0, 1);
11 if log(u) < α then
12 Set ψi := ψ?

13 else
14 Set ψi := ψi−1
15 end
16 function Leapfrog(ψ, φ, ε):

17 φ̃ = φ+ ε
2∇ψ log p(ψ|y);

18 ψ̃ = ψ + εM−1φ̃;

19
˜̃
φ = φ̃+ ε

2∇ψ log p(ψ̃|y);

20 return ψ̃,
˜̃
φ;

HMC can be more efficient in terms of mixing then random walk Metropolis-Hastings

schemes for models with a high dimensional parameter space [Neal et al., 2011]. Selecting

the tuning parameters corresponding to the leapfrog step size ε and the number of leapfrog

steps per iteration, L is typically done using short pilot runs of the chain and targeting an

acceptance rate of 0.65. Efforts have been made to automate selection of tuning parameters

in the HMC algorithm and have led to the No-U-turn sampler which performs the optimum

number of leapfrog steps [Hoffman and Gelman, 2014] and empirical HMC [Wu et al., 2018].

In both cases the optimum number of leapfrog steps are chosen such that the discretised

steps in the posterior distribution do not make a U-turn, by first heading away from the

previously accepted parameter value, then turning back in the direction of the previous

parameter when the value of the gradient changes.

One drawback of HMC is deriving and programming gradients of the log posterior

distribution as this can be tedious and error prone. In order to simplify this requirement,

automatic differentiation (AD) programs can be used, which evaluate the function and

the exact derivative of a function at a point: see chapter 3 for an in-depth discussion of
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AD. Stan is an example of a program which implements AD for HMC and variational

inference [Carpenter et al., 2016]. TensorFlow [Abadi et al., 2015] is a software library

which implements deep learning architectures and trains them using gradient descent and

calculates gradients automatically using back-propagation. TensorFlow Probability is a

recent add on which aims to bring Bayesian inference to TensorFlow [TensorFlow, 2018].

To illustrate the basic concepts, the HMC algorithm is applied to the problem of

identifying the static parameters of the AR(1) model first introduced in Section 1.3.3.

The log-measure is simply the log-likelihood of the AR(1) process plus the log-priors on

the parameters. An advantage of using HMC over Gibbs sampling in this case is the

freedom of choosing more appropriate prior distributions for the parameters. The prior

distributions chosen for the static parameters are given in Equation 1.17.

φ ∼ B(3, 4)

µ ∼ N (0, 1) (1.17)

σ ∼ 1

2
Cauchy(6, 6)

A half Cauchy prior distribution is used for the standard deviation, σ, of the AR(1) pro-

cess [Polson et al., 2012]. The probability density function of the half-Cauchy distribution

with location ` and scale γ is:

p(σ) =
2I(σ > 0)

πγ

[
1 +

(
σ−`
γ

)2] , (1.18)

where I(σ > 0) is an indicator function which takes the value 1 when σ > 0 and 0 otherwise.

The likelihood of the AR(1) process is given in equation 1.10. The log-likelihood is:

log p(α1:N |y) =
1

2
log(1− φ2)− 1

2
log(2πσ2) +

1

2σ2
(α1 − µ)2(1− φ2)

− N

2
log(2πσ2)− 1

2σ2

N∑
t=2

(αt − µ− φ(αt−1 − µ))2. (1.19)

The autoregressive parameter φ and the variance σ2 are bounded parameters. For the

AR(1) model to be stationary −1 ≤ φ ≤ 1 and the standard deviation is strictly positive

σ > 0. There exist modifications to the HMC algorithm for sampling constrained parame-

ters, the simplest of which is to compute a change of variables for the bounded parameters

and perform HMC in the unconstrained space.

The un-normalised log-posterior and the gradient, ∂ log p(ψ|α1:N )
∂ψi

must be evaluated
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Constraint g(x) g−1(x) dg−1(x)
dx

d
dx log

(
dg−1(x)

dx

)
x > a log(x− a) exp(x) + a exp(x) 1

a < x < b log
(
y−a
b−y

)
b−a

(1+exp(−x)) + a (b−a) exp(−x)
(1+exp(−x))2 −1 + 2 exp(−x)

1+exp(−x)

x < b log(b− x) b− exp(−x) exp(−x) −1

Table 1.1: Transformation functions and derivatives for use in Hamiltonian Monte Carlo

with respect to unconstrained parameters ψ′ = g(ψ). In order to evaluate the probability

density function of ψ′ given the probability density function of ψ is fψ(ψ) then:

fψ′(ψ
′) =

∣∣∣∣ d

dψ
g−1(ψ)

∣∣∣∣ fψ(g−1(ψ′)) (1.20)

The evaluation of the log-posterior using the unconstrained parameters requires the log-

Jacobian (a Jacobian is a matrix of first-order partial derivatives) and the evaluation of

the gradient requires the derivative of the log-Jacobian. Each constraint requires a unique

transformation, the required transformations, inverses and derivatives are presented in

Table 1.1.

The transformations required to transform the parameters to the unconstrained pa-

rameters are ψ′ = {φ′, µ′, σ′} = {log(φ/(1−φ)), µ, log(σ)}. The inverse transformation, re-

quired when computing the un-normalised log-posterior is ψ = {1/(1−exp(−φ′)), µ′, exp(σ′)}.
The density of the prior distributions evaluated at the unconstrained parameters using the

log-Jacobian is:

log p(φ′) = (αφ − 1) log(φ′) + (βφ − 1) log(1− φ′)− log(B(αφ, βφ)

− φ′ − 2 log(1 + exp(−φ′))

log p(µ′) = −1

2
log(2πσ2µ)− 1

2
(µ′ − µ2µ)2

log p(σ′) = log(2)− log(πγ)− log

([
1 +

(
σ′ − `
γ

)])
+ σ′.

The gradient of the log-posterior consists of the partial derivatives with respect to each of

the static parameters. Equation 1.21 shows the partial derivatives required for the HMC

algorithm.
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∂ log p(α1:N |ψ)

∂φ
=

(α− 1)

φ
+

1− β
1− φ

− φ

1− φ2 −
φ(α1 − µ)2

σ2

+
1

σ2

N∑
t=2

(µ− αt−1)(αt − µ− φ(αt−1 − µ))

∂ log p(α1:N |ψ)

∂µ
= − 1

σ2µ
(µ− µµ)− 1

σ2
(α1 − µ)(1− φ)

+
(1− φ)

σ2

N∑
t=2

(αt − (µ+ φ(αt−1 − µ))) (1.21)

∂ log p(α1:N |ψ)

∂σ
= − γ

γ + σ − ` + 1− (α1 − µ)2(1− φ2)
σ3

− 1

σ

−N
σ

+
1

σ3

N∑
t=2

(αt − (µ+ φ(αt−1 − µ)))2

Figure 1.4 shows diagnostic plots from 10,000 iterations of the HMC algorithm, a step size

of ε = 0.1 with L = 10 leapfrog steps were chosen which resulted in 0.51 proportion of

accepted moves in the HMC sampler.

1.3.5 Sequential Monte Carlo

MCMC algorithms typically require all of the data at once to make inferences; however

time series are sequential and new observations can arrive potentially changing the results

of the inference. Consider that the posterior distribution of the parameters of a statistical

model for a time series observed at times t = 0, . . . , N are determined and used to make

a prediction for a time-step k steps ahead. After k further time-steps, the analysis is to

be repeated and there are now an additional k new observations. The full MCMC must

then be re-run taking into account the new observations.

Sequential Monte Carlo (SMC) algorithms can be used in order to avoid this re-

computation. SMC methods allow online inference, by using the posterior distribution

at timestep t to be the prior distribution at time t+ 1. Consider a state space model for

a time series of the form:

Yt|θt ∼ π(Yt|θt),
θt|θt−1 ∼ p(θt|θt−1),

θ0 ∼ p(θ0).
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Figure 1.4: Diagnostic plots for the static parameters of the AR(1) model inferred using
Hamiltonian Monte Carlo with the parameter value used to simulate the data denoted
using a dotted line. Traceplots of the marginal posterior distributions, (left). Marginal
posterior density, (middle). Autocorrelation function, (right).

The time series is observed discretely and has measurement noise modelled using a general

observation distribution π(Yt|θt) at times t = 1, . . . , N . The observations are condition-

ally independent given the corresponding realisation of the latent-state π(Yt|θt, y1:t−1) =

π(Yt|θt). The latent-state is Markovian and has a general transition density which can be

forward simulated from p(θt|θt−1).
The problem of interest is to determine the filtering distribution, which can be inferred

using MCMC. However, SMC can be used to develop an online recursive algorithm to
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determine the latent-state at time t+ 1 given an estimate of the filtering state up to time

t, p(θt|Y1:t)
The most straightforward SMC algorithm is the bootstrap particle filter [Gordon et al.,

1993]. Suppose that the filtering state at time t is approximated by a set of M weighted

samples so that p(θt|y1:t) ≈ {(θ(i)t , w
(i)
t ), i = 1, . . . ,M}. Then a new measurement is

observed at time t + 1, Yt+1. The filtering state at time t + 1 can be calculated by

first advancing the particles approximating the filtering density θ
(i)
t+1 ∼ p(θt+1|θ(i)t ) for

i = 1, . . . ,M . Now the likelihood weights corresponding to each particle are calculated

using the observation likelihood w
(i)
t+1 = π(yt+1|θ(i)t+1). The particles are then re-sampled

by sampling the particles with replacement with probability proportional to each particle’s

weight.

Algorithm 4: Bootstrap Particle Filter

Result: Return {θ(i)t : i = 1, . . . ,M}, t = 1 : N
1 Given observations y1:N ;

2 Simulate from the prior distribution θ
(i)
0 ∼ p(θ0), for i = 1, . . . ,M ;

3 for t in 1 to N do
4 for i in 1 to M do
5 Advance the ith state particle to the time of the next observation

θ
(i)
t ∼ p(θt|θ

(i)
t−1);

6 Calculate the conditional likelihood the particle w
(i)
t ∼ π(yt|θ(i)t );

7 end
8 Resample the particles with replacement such that the probability of including

particle i is proportional to w
(i)
t ;

9 end

The bootstrap particle filter algorithm is applied to a dynamic Poisson process:

Yt|λt ∼ Poisson(λt),

λt = exp(αt),

αt = µ+ φ(αt−1 − µ) + ηt, ηt ∼ N (0, σ2)

The rate of the Poisson process evolves in time according to an autoregressive process of

order one. The rate of the Poisson distribution is strictly positive, so the latent-state α0:N

is exponentiated. The resulting model is non-linear and non-Gaussian. 300 simulations

are made from the Poisson process then the filtering state mean and 95% credible intervals

are estimated using M = 1, 000 particles in the bootstrap particle filter. Figure 1.5 shows

the simulated observations, Yt, the rate λt and the filtered state.
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Figure 1.5: Summary of the filtering distribution of an inhomogeneous Poisson Process
with an AR(1) latent-state using a particle filter. Simulated observations, (top). Simulated
latent-rate, (middle). Particle filtered state with 95% credible intervals, (bottom).

The credible intervals of the filtered state are calculated by ordering the unweighted

state particles and selecting the appropriate particles for the chosen interval. In this case,

for a 95% interval with M = 1, 000 particles the 975th and 25th particles are chosen for

the upper and lower bound for each time point.
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1.4 Summary

This chapter has provided a brief introduction to Bayesian inference for time series analysis

including algorithms for determining intractable posterior distributions. The purpose of

this chapter is to establish notation and give a background on the inference methods used

in this thesis.
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Chapter 2

Functional Programming for

Statistical Computing

Computing is an important part of modern statistics, as exemplified by the computation-

ally intense inference methods presented in Chapter 1. Therefore, choice of computing

environments and programming languages are an important consideration.

Parallel programming is becoming increasingly important. Previously, processor clock

speed was increasing year on year, due to the number of transistor chips per silicon chip

doubling every year in a process known as Moore’s Law [Moore, 1998]. Recently, Moore’s

law is not being obeyed, and instead investments have been made in multi-core architec-

ture. Parallel programming is challenging, due to modifying shared memory which can

cause race-conditions where objects are modified by two threads simultaneously. Scala pro-

vides first class support for concurrent and parallel programming in the form of Futures

and parallel collections respectively. In addition, the Big Data library Apache Spark [Za-

haria et al., 2010] is written in Scala and can be used to perform operations efficiently on

data which can’t fit on a single machine.

Scala is a functional programming language which makes heavy use of function compo-

sition, higher-order functions (HOFs, see section 2.1.4) and type classes (enabling ad-hoc

polymorphism) to build large applications from simple functions. These features, along

with referential transparency (section 2.1.1) allow programmers to build complex programs

whilst maximising code-reuse and minimising lines-of-code. This style of programming is

a departure from object oriented or imperative programming and as such can be difficult

to learn for those coming from languages which emphasize this approach. The functional

approach is often described as declarative which means the programmer expresses the

intent of a transformation without telling the computer how to perform the operations.

Imperative languages use for-loops or while loops to modify collections of elements which

feature additional mutable variables, such as counters which are not of interest to the final
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calculation. Using loops can result in off-by-one errors whereby all elements in a collection

are not modified as intended. These run-time errors are hard to debug and are virtually

eliminated using HOFs to modify elements of a collection.

The category theory (functors, applicatives, monads etc.) presented in this chapter

unifies the collection types (and other type constructors) in a mathematical framework.

This means that when a type constructor (such as a List, Vector which are collections with

have different performance characteristics or a Future which can be used to asynchronously

retrieve a result without blocking the main thread) forms a monad then the interface for

the type is predictable and hence a functional programmer with knowledge of monads

knows how to write programs using this data type.

All of the code used to perform statistical inference in this thesis (except the graphics

which were created using R [R Core Team, 2015] and ggplot2 [Wickham, 2016]) was

developed using Scala, a statically typed functional programming language which runs on

the Java virtual machine. This chapter introduces the functional features in Scala which

are useful for statistical computing. The features illustrated here are present in other

statically typed functional programming languages such as Haskell. In addition, some

features are present in dynamic languages such as R, which has support for higher order

functions as exemplified in the apply family of functions. Scala was chosen since it runs

on the Java virtual machine which means deployment of programs on different operating

systems and in the cloud is straightforward. Scala has access to all available Java libraries

which means building on existing established libraries is straightforward. Scala has an

interactive console which can be used to quickly explore and prototype new ideas without

starting a new project. Finally, Scala has a performance advantage over dynamic languages

such as R and Python, typically slow running elements of an R program are re-written

using C/C++ or FORTRAN which results in context switching, slower development and

code which is harder to maintain.

This chapter introduces the fundamental concepts of functional programming and ap-

plies them to building a novel functional particle filter in section 2.1.15.

2.1 Principles of Functional Programming

In functional programming, a program is comprised of many small functions each of which

are easy to test and reason about in isolation. These small functions are composed together

to form a larger program, which in practice is more difficult to reason about and test. The

programmer gains confidence in the correctness of the program by ensuring each individual

function in the composition is correct.
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2.1.1 Referential Transparency and Pure Functions

Referential transparency is a fundamental principle of functional programming. A func-

tion is referentially transparent if it produces the same output value for the same function

parameters upon repeated evaluation and produces no side effects. This enables the pro-

grammer to directly replace any referentially transparent function with the value of that

function without changing the output of the program. This is called reasoning by substi-

tution. A function which is referentially transparent is often called deterministic.

A pure function is a function which is referentially transparent, inculpable and total.

A function is total if it returns a value (not an exception) for every possible input. Pure

functions are more straightforward to test, reason about and reuse by composing with

other pure functions. A function is called inculpable if it is free from side effects.

Functions which have side effects are not referentially transparent. An example of

a side effect is printing to the screen, reading from a file or database, accepting input

from the user or mutating a global variable. Some or all of these actions are needed for

a program to be useful. Functional programming makes side effects explicit and good

functional design ensures that side effects are only performed when needed, typically at

the edges of a program.

An example of a common side effect in statistical programming is generating a random

number. In Scala (which is not a pure functional programming language) a random double

between 0 and 1 can be generated using scala.util.Random. nextDouble (). When calling

this function it is impossible to know which random number will appear next without

knowing the current state of the random number generator. Additionally, when this

function is called multiple times in a program it will return different values. This is due to

the fact that the function has the side effect of mutating the global random number state.

The state monad can be used to implement a purely functional random number generator

and this is expanded upon in section 2.1.11.

2.1.2 Static Types

Functions can accept a range of parameters and each of these parameters has a type.

For instance the function f(x) = x + 1 is a mathematical function which adds one to its

parameter, x. In this case, the parameter type is implicitly a numeric type as the method

+ is associated with numbers. The return type of the function f is also a numeric type.

Types can be either inferred (as in the function f) or they can be made explicit. The

example Scala code below shows a version of the function f written with an explicit type

declaration of Int => Int.

val f: Int => Int = x => x + 1
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If this function was applied to a String data-type, the program would not compile. In

a language with dynamic types, the program would run and possibly try to convert the

String into an Int this can lead to runtime errors which are typically difficult to debug

as they can potentially go unnoticed.

Static types are not exclusive to functional programming, however programs using

static types are typically easier to reason about; Scala and Haskell are examples of func-

tional programming languages with static types.

2.1.3 Immutable Data

Immutable data is an important aspect of functional programming. An Immutable data

structure can not be modified in place. This is a strict requirement which ultimately

makes code easier to reason about. However it means that typical imperative programming

constructs, such as for-loops and while-loops can not be used.

2.1.4 Higher Order Functions

In programming languages which have functions as first class citizens, functions can be

passed as an argument to other functions. Functions which accept other functions as

arguments or have a function as a return type are called higher order functions.

In order to motivate the introduction of higher order functions, consider a datatype

which can be used to represent a sequence of data (for instance a time series): a singly

linked list of integers. This can be defined recursively by first defining a case class

(which is a Scala object with methods defined to create the class and update the abstract

members head and tail) Cons which constructs a list by binding an element of type Int

and a list of elements of type Int together.

sealed trait List

case class Cons(head: Int, tail: List) extends List

case object Nil extends List

This is an algebraic data type (ADT) known as a sum type, a List can be either a Cons

with a single element head and the rest of the list, tail or an empty list Nil. Cons is

short for construct and can be used to construct a list, the tail of the final Cons is the

empty list

val list = Cons(1, Cons(2, Cons(3, Nil)))

This defines a singly-linked list containing the integers 1, 2 and 3. A common operation

performed on lists is to apply a function, f, to each element in the list; in imperative

programming this would be done using a loop. The loop is used to extract each element

from the list in turn and mutate the value in place by applying f. However, data structures
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are immutable in functional programming and mutating values is not possible; a copy of the

list with the function applied to each element should be produced. In addition, iterating

through a loop by incrementing a counter variable is also not possible, a recursive function

must be used. The function is of the following form, taking a list of integers and the desired

function from Int => Int and returning a List[Int]

def map(fa: List)(f: Int => Int): List = fa match {

case Nil => Nil

case Cons(x, xs) => Cons(f(x), map(xs)(f))

}

map utilises pattern matching to access the subtypes of the List data type: if the list is

empty it returns the empty list, and if the list is a Cons then the function f is applied to

the first element of the Cons and prepended to a recursive call to the map function.

Another operation commonly performed using collections is reduction, for instance

summing the elements of the list. The required function is again recursive

def sum(l: List): Int = {

def loop(rem: List, acc: Int): Int = rem match {

case Nil => acc

case Cons(x, xs) => loop(xs, acc + x)

}

loop(l, 0)

}

The sum function has a tail recursive helper function loop, tail recursive functions are

optimised by the compiler in a process called tail call elimination which removes the

recursive calls from the stack so the sum of very long lists can be calculated without

overflowing the stack [Friedman and Wise, 1974]. map can also be re-written using a tail

call. The accumulator acc is initialised to zero (the identity operator for addition) and the

binary function applied each iteration of the loop is plus. This can be further generalised

to accept any binary operation, f: (Int, Int) => Int and any zero, b:

def foldLeft(l: List)(b: Int)(f: (Int, Int) => Int): Int = l match {

case Nil => b

case Cons(x, xs) => foldLeft(xs)(f(b, x))(f)

}

foldLeft can be used sum the elements of the list

val sum = foldLeft(list)(0)((a: Int, b: Int) => a + b)

Listing 2.1: Summing integers in a singly linked list using a higher order function

A complementary function, foldRight can also be defined which reduces the values of a
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list from the right.

map, foldLeft and foldRight are commonly used higher order functions implemented

in the Scala standard library for many collection types, each with different performance

properties. Higher order functions are common across collections, hence learning the

operations for one collection will generalise to other collections. Section 2.1.6 shows how

collection types sharing the same higher-order functions can be abstracted over.

2.1.5 Polymorphism

The definition of the singly linked List in section 2.1.4 is for lists of integers, however lists

can be used to hold any data type. Polymorphism is a way of abstracting over a type,

allowing the programmer to write a function once for many different data types. This

is straightforward in untyped programming languages such as R and Python, however

the application of a function expecting different types can cause runtime errors which

are difficult to debug. Polymorphism allows the programmer to retain type safety whilst

writing functions which can be applied to multiple similar data types. The List can be

redefined in the following way

sealed trait List[+A]

case class Cons[A](head: A, tail: List[A]) extends List[A]

case object Nil extends List[Nothing]

The type A is a placeholder for any type, or a type variable. This means any data type can

go into a list, Double , String or another List[Double], however this list must contain the

same types (lists which contain a mixture of different data types are called Heterogeneous-

lists or H-lists). The notation +A means the type A is covariant which means that if a A is

a subtype of B then List[A] is a subtype of List[B]. The higher order functions which

operate on lists can be redefined in order to be type agnostic

def map[A, B](l: List[A])(f: A => B): List[B]

def foldLeft[A, B](l: List[A])(b: B)(f: (B, A) => B): B

Consider writing a function to sum the values in a list, it does not matter which type of

number the list holds, Double , Int or Float, + is defined for all of these number types.

Hence a function implementing a reduction with + on a list containing any of these number

types will look equivalent:

def sumInts(l: List[Int]): Int =

l.foldLeft(0)(_ + _)

def sumFloats(l: List[Float]): Float =

l.foldLeft(0)(_ + _)

def sumDoubles(l: List[Double]): Double =
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l.foldLeft(0)(_ + _)

Listing 2.2: Calculate the sum of different data types contained in a list

The code block in listing 2.2 shows repeated code and this is liable to code bugs if one

definition is updated and the others neglected. These functions can be written such that

they are agnostic to the type of numeric value, thus reducing the amount of code to

maintain. The Scala library Spire1 is used to write polymorphic functions for general

numeric values. Spire also provides additional number types such as Rational , a perfect

precision fraction, Complex[A], an implementation of complex numbers and type classes

from abstract algebra such as Group and Ring. Spire also has an implementation of a

purely functional random number generator as motivated in section 2.1.10.

def sum[A: Numeric](xs: List[A]): A =

xs.foldLeft(0)(_ + _)

Listing 2.3: A polymorphic function which calculates the sum of a list containing Nu-

meric types

The function in listing 2.3 will sum a list containing any data type which has a Numeric

instance. Numeric is a type class [Hall et al., 1994] which implements operations specific

to numbers, Int and Double both have Numeric instances defined in the Scala standard

library and hence this function will apply to both number types. Using polymorphism

and type bounds, type safety is retained and the function can be written once for all types

which have a Numeric instance. This makes programs easier to debug as the compiler

will warm about types which do not “line up”. The type class pattern is used to write

generic functions. New implementations of the Numeric type class can be defined by the

user in order to extend the usefulness of generic functions, as explored later in section 3.5

on automatic differentiation.

2.1.6 Higher Kinded Types

List is sometimes referred to as a type constructor and is similar to other collection types

such as Option or Vector . An Option is a collection which can be either empty (None)

or contain exactly one element (Some) and can used for handling failure. Vector is a

collection of none or more elements, similar to List. The implementations of List and

Vector are different and both have different performance characteristics. A singly linked

list provides O(1) access to the head of the list but O(n) access time to a specific element.

Vector is implemented as a trie [Fredkin, 1960] with a branching factor of 32 and this

means that random access to elements in a Vector is faster than in a List. Different

1https://github.com/non/spire
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collections should be chosen for different purposes, but it does not mean that all functions

have to specialise for a given collection.

All these collections (and other type constructors) share common abstractions which

can be used to unify them and then write code which is polymorphic not just in the type,

but in the type constructor. This allows for greater code re-use.

Higher kinded types are not common in non-functional languages and are far from

ubiquitous even in functional languages. However they provide powerful abstractions

leading to cleaner, more elegant code. The abstractions come from a branch of mathe-

matics known as category theory and are hence well defined. This section provides a brief

introduction to category theory; see Barr and Wells [1990] for a comprehensive review.

For an introduction to category theory aimed at programmers, see Milewski [2018].

Category theory is concerned with describing functions and function composition be-

tween mathematical objects in a very general way.

Definition. A category C is a collection of objects and morphisms which go between them

such that for the objects X, Y and Z in C and morphisms g : X → Y and h : Y → Z

1. There must exist a morphism f : X → Z which is the composition of g and h,

f = h ◦ g

2. Each object in a category must have an identity morphism written as idX : X → X

3. Composition of morphisms must be associative, for all f : X → Y , g : Y → Z and

h : Z →W then h ◦ (f ◦ g) = (h ◦ f) ◦ g = h ◦ f ◦ g

4. For every morphism g : X → Y then idY ◦ g = g = g ◦ idX

The collection of objects in a category C is often denoted obj(C) and morphisms hom(C).
The set of morphisms from X to Y is written as homC(X,Y ). Figure 2.1 shows a com-

mutative diagram for a category. Following the arrows of the commutative diagram from

any given start and end point is equivalent.

An example of a category is the category of sets, where each set is an object and the

morphisms are functions between the sets, the identity morphism is the identity function.

In functional programming, the category under consideration is similar to the category of

sets, each object is a collection of types and the morphisms are the functions between the

types.

2.1.7 Functors

A functor is a structure preserving mapping from one category to another.
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idX idY

idZ

g

f
h

Figure 2.1: Representation of a simple category, C, as a directed graph.

Definition. If C and D are categories, then a functor F : C → D takes each object X in C
to an object F (X) in the category D and each morphism, f : X → Y in C to a morphism

in D, F (f) : F (X)→ F (Y ) such that

1. F (idX) = idF (X) for each X in C

2. F (g ◦ f) = F (g) ◦ F (f) for all morphisms, f and g in C

Since functional programming is mainly concerned only about the category Set, all

functors are actually endofunctors, F : Set→ Set. An endofunctor is defined as a functor

from a category to itself, F : C → C.
A functor represents a type constructor which can be mapped over. The signature of

the map function for each collection List, Option or Vector can be written as follows:

def map[A, B](fa: List[A])(f: A => B): List[B]

def map[A, B](fa: Option[A])(f: A => B): Option[B]

def map[A, B](fa: Vector[A])(f: A => B): Vector[B]

The function f: A => B is lifted into the context of List, Option and Vector respectively.

The higher order function map allows f to operate on an element in a context. The map

functions defined above are identical apart from the type constructor, the type constructor

can thus be abstracted over using the functor type class:

trait Functor[F[_]] {

def map[A, B](fa: F[A])(f: A => B): F[B]

}
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The type constructor F[_] has been abstracted over using a higher kinded type, the

Functor . Now functions can be defined in terms of type constructors which form a functor

without reference to the specific type constructor. The Scala library Cats2 (a shortening

of Category) provides type class instances for built in Scala types. Cats implements type

classes in a more sophisticated way, and when combined with Spires type classes, allows

polymorphic functions to be written in idiomatic Scala style without sacrificing readability:

def addOne[F[_]: Functor , A: Numeric](fa: F[A]): F[A] =

fa map (_ + 1)

This function can be applied to any functor containing Numeric values.

2.1.8 Applicatives

The data constructors considered so far are also applicatives [McBride and Paterson, 2008].

An applicative is a special functor which has a pure method which lifts a value into the

context of the applicative and a ap which can be used to apply a function to a value in

the applicative context (the F[_])

trait Applicative[F[_]] extends Functor[F] {

def pure[A](a: A): F[A]

def ap[A, B](fa: F[A])(f: F[A => B]): F[B]

}

To define pure, use the type constructors for the collections:

def pure[A](x: A): List[A] = x :: Nil

def pure[A](x: A): Option[A] = Some(x)

def pure[A](x: A): Vector[A] = Vector(x)

Note that :: is used as an infix Cons operator. In Cartesian closed categories, like Set, ap

can be defined in terms of zip and map. In category theory an applicative defined in terms

of ap is a lax closed functor and an applicative defined in terms of zip is a lax monoidal

functor. In Cartesian closed categories, these are equivalent. As such, the applicative type

class can be defined in terms of the functions zip, map and pure. The type signature of

zip is given by

def zip[A, B](fa: F[A], fb: F[B]): F[(A, B)]

Then ap can be derived

def ap[A, B](fa: F[A])(f: F[A => B]): F[B] =

map(zip(f, fa)){ case (fi, a) => fi(a) }

2https://typelevel.org/cats/
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The definition of zip for the list collection can be defined recursively as follows,

def zip[A, B](fa: List[A], fb: List[B]): List[(A, B)] = (fa, fb) match {

case (Nil, lb) => Nil

case (la, Nil) => Nil

case (a :: ta, b :: tb) => (a, b) :: zip(ta, tb)

}

If the lists are different lengths, zip will return a list of tuples the same length as the

shortest list.

For a useful example of an applicative functor, consider the (built in) type used to

encapsulate asynchronous execution, Future . Asynchronous execution is where execution

is started on a given function but does not have to complete before the program resumes,

this allows multiple asynchronous functions to operate in parallel. The following three

function signatures are used to query a datastore,

def getName(id: Int): Future[String]

def getAge(id: Int): Future[String]

def getAddress(id: Int): Future[String]

Each of these functions perform similar operations but connect to different data sources to

retrieve the information. Each function is independent of the others, as the only argument

is the id. Presumably, these functions can be started simultaneously and can run in

parallel. The Scala standard library provides a specialised sequence method for performing

computations which return a Future in parallel, Future.sequence :

Future.sequence(List(getName(id), getAge(id), getAddress(id)))

// Future[List[String]]

The function sequence can be generalised to any applicative and any collection which has

a traverse instance, this is expanded upon in section 2.1.14.

2.1.9 Natural Transformation

A functor is a morphism between two categories (which itself has morphisms between its

objects). A natural transformation is a morphism between functors which preserves the

structure of the categories.

Definition. If F : C → D and G : C → D are both functors between the categories C and

D then a natural transformation α : F ⇒ G is a family of morphisms such that

1. For all X ∈ C then αX : F (X)→ G(X) is a morphism in D called the component of

α at X

2. For each morphism f ∈ C, f : X → Y then αY ◦ F (f) = G(f) ◦ αX
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F (X) F (Y )

G(X) G(Y )

F (f)

αX

G(f)

αY

Figure 2.2: Commutative diagram of the natural transformation.

Figure 2.2 shows a commutative diagram of the second natural transformation law.

A natural transformation between rank-1 types, a constructor such as List[A] or

Vector[A], for any type A can be defined as follows

trait ∼>[F[_], G[_]] {

def apply[A](a: F[A]): G[A]

}

val toList = new (Option ∼> List) {

def apply[A](a: Option[A]): List[A] = a.toList

}

This natural transformation may appear trivial, but it is the cleanest way to write this

function in Scala. If the function is written näıvely, as def toList[A](l: Option[A]): List[A]

then the method will compile but the type is Option[Nothing] => List[Nothing] (as re-

vealed by defining the function val toListFn = toList _ in the Scala console) and can

not be run on, for instance, an Option[Int] since Int is not Nothing . This is caused by

type erasure at runtime.

Natural transformations are useful for understanding Monads which are ubiquitous in

functional programming, introduced in Section 2.1.10. In addition, natural transforma-

tions are used when interpreting embedded programming languages written using the Free

Monad [Swierstra, 2008]. Embedded probabilistic programming languages are considered

in chapter 3.

2.1.10 Monads

The collections considered so far are monads. A monad represents a value in a context

which can be manipulated in a consistent way [Wadler, 1995]. Monads are integral to safe

purely functional programming and are used to encapsulate unsafe program behaviour such
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T 3 T 2

T 2 T

Tµ

µT

µ

µ

(a)

T T 2

T 2 T

ηT

Tη

µ

µ

(b)

Figure 2.3: (a) Commutative diagram expressing the first condition of the monad laws.
(b) Commutative diagram expressing the second condition of the monad laws.

as IO (input output), async programs, random number generators and partial functions.

Suitable monads for these unsafe behaviours include cats effect IO3, Future , Breeze Rand

and Option respectively. These monads have unsafe methods which can be used to access

the contents of the monad and hence perform the side effect. The unsafe access method

is only performed at the end of the program when the side effect is desired, until then

combinations of map and flatMap are used to manipulate the values inside of the monadic

context.

Definition. A monad on the category C is an endofunctor, T : C → C with two natural

transformations, η : Idc → T and µ : T ◦ T → T such that

1. µ ◦ Tµ = µ ◦ µT

2. µ ◦ Tη = µ ◦ ηT = IdT

Tµ : T (T ◦ T )→ T is a natural transformation defined by taking the natural transfor-

mation µ and the endofunctor, T : C → C then (Tµ)C = TµC . The natural transformation

µT is a similar transformation with T composed from the right. Figure 2.3 shows com-

mutative diagrams of the monad laws.

To define a monad in Scala, simply define the two natural transformations required.

The natural transformation corresponding to η : IdC → T is pure, inherited from the

Applicative type class. The second natural transformation, µ : T ◦ T → T , is referred to

as join

3https://typelevel.org/cats-effect/
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trait Monad[F[_]] extends Functor[F[_]] {

def join[A](fa: F[F[A]]): F[A]

def pure[A](x: A): F[A]

}

Typically, in functional programming monads are defined in terms of flatMap

def flatMap(fa: F[A])(f: A => F[B]) =

join(map(fa)(f))

which is a map followed by a join or flatten. Typically, a monad is defined in terms of

flatMap and pure

trait Monad[F[_]] {

def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]

def pure[A](x: A): F[A]

}

Note that map can be written in terms of flatMap and pure and ap can be written in

terms of flatMap and map. This means when a monad instance is defined for a given type,

only flatMap and pure must be defined and the methods from functor and applicative are

available. Hence all monads are applicative functors, but the converse is not true.

Option is a monad which can be used to turn a partial function into a total-function

by capturing error states in the type information. Consider two functions which could fail:

def sqrt(x: Double): Option[Double] =

if (x < 0) None else Some(math.sqrt(x))

def log(x: Double): Option[Double] =

if (x <= 0) None else Some(math.log(x))

In order to compose these two functions, a flatMap can be used:

def composed(x: Double): Option[Double] =

sqrt(x).flatMap(y => log(y))

The same principal can be extended to more than two applications:

def composeMore(x: Double): Option[Double] =

sqrt(x).flatMap(y => log(y)).flatMap(z => log(z))

The readability of the sequential application of these partial functions can be improved

by using a for-comprehension which is a syntactic-sugar for applications of flatMap and

map:

def composeFor(x: Double): Option[Double] = for {

y <- sqrt(x)
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z <- log(y)

res <- log(z)

} yield res

The functions returning an Option (or any monad) are placed on the right side of the arrow

<- extracting the value from the monadic context. The values on the left represent the

value inside of the monadic context and can be referenced in the same for-comprehension.

The function composeFor is equivalent to composeMore . The for-comprehension is “desug-

ared” into a chain of flatMaps and maps. This is equivalent to do-notation in Haskell.

In general, different monads do not compose [Jones and Duponcheel, 1993], hence

functions with different monadic contexts can not be mixed inside of a for-comprehension.

However different contexts are often required, and for certain combinations monad trans-

formers can be used which combine monadic contexts [Liang et al., 1995]. Alternatively,

extensible effects and the freer monad can be used for combining effects [Kiselyov et al.,

2013]. The freer monad allows the user to combine monadic effects such as error handling

and asynchronous computation. These effects are both required when connecting to a

remote data source such as a web API or database.

2.1.11 Purely Functional Pseudo Random Number Generator

The State monad can be used to keep track of internal state which is cumbersome to

pass around as an argument. The state monad is a constructor with a function from the

current state to a tuple containing the new value and a new value of the state:

case class State[S, A](run: S => (S, A))

Since it is a monad, there are implementations of flatMap and pure:

def flatMap[B](f: A => State[S, B]): State[S, B] = State { x =>

val (st, a) = run(x)

f(a).run(st)

}

def pure[B](a: B) = State(st => (st, a))

The State monad can be used to implement a purely-functional pseudo-random number

generator (PRNG) by threading a PRNG state through multiple function calls.

Sequences of apparently random numbers are generated by mutating an internal PRNG

state each time a function returning a random number is evaluated. Each time a pseudo-

random number is asked for a different value is returned and the internal PRNG state is

mutated

def randNaive = scala.util.Random.nextDouble()

randNaive
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// 0.26167644649515154

randNaive

// 0.4732297985296451

This function violates referential transparency (note that a def is needed here rather than

a val since val is eagerly evaluated) since each time randNaive returns different values at

each invocation. In order to consider a purely functional random number generator the

internal state can be passed around explicitly. One of the simplest implementations of

a pseudo random number generator is a linear congruential generator. This generator is

defined by a recursive relation

Xn+1 = (aXn + c) modm (2.1)

where m > 0 is the modulus, 0 ≤ c < m is the increment and 0 < a < m is the multiplier

and the initial seed is 0 ≤ X0 < m. It is challenging to choose the parameters a, c and m

to produce a long apparently random chain, a problem which is not considered here. The

generator can be implemented in Scala as follows:

def linearGenerator(a: Long, c: Long, state: Long) =

a * state + c

def toDouble(x: Long) =

(x >>> 11) * math.pow(2, -53)

def myGenerator(state: Long): (Long, Double) = {

val newState = linearGenerator (6364136223846793005L,

1442695040888963407L, state)

(newState , toDouble(newState))

}

The linear generator is initialised with no modulus and this is equivalent to the modulus

being Long.MaxValue . The function toDouble performs a logical right bit-shift by 11

places, then divides by 253 (53 = 64 - 11). This is because a Scala Double is stored using

64 bits. The right shift of the Long value by 11 bits and the subsequent division ensures

there is no numeric overflow. This has the effect of transforming the seed to be a Double

between zero and one. In order to generate a new number, myGenerator must be given an

initial value, which is the initial state of the of the random number generator

myGenerator(13515670)

// (3730281199248434349 ,0.2022189490103492)

The function returns the next state on the left of the tuple and a “random” number

between zero and one. The function can be initialised from a “random” or chosen seed.

In practice, pseudo-random number generators are more complex than this. A well used

PRNG with a long non-repeating chain is the Mersenne Twister algorithm [Matsumoto
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and Nishimura, 1998].

A function to draw a pseudo-random number can be now be written as:

type Rand[A] = State[Long, A]

def randDouble: Rand[Double] =

State(myGenerator)

Then in order to sample several numbers, flatMap can be used

val res = for {

firstNumber <- randDouble

nextNumber <- randDouble

} yield (firstNumber , nextNumber)

println(res.run(13515670))

// (2060103227662993080 ,(0.2022189490103492 ,0.11167841974883075))

The state monad passes along the state to the next invocation of randDouble . In order to

extract the pseudo-random numbers from the state monad, the function run is called with

a starting seed. The result is on the right of the tuple with the next seed on the left. This

construct forms a referentially transparent PRNG. Note also, that the same initial seed is

used as in the previous example and hence the same pseudo-random number is produced.

The next number however is different, showing that the PRNG state is mutated in the

background.

Since State is a functor, map can be used to transform the output of the function

randDouble in order to build other random generators:

def randInt(from: Int, to: Int): Rand[Int] =

randDouble.map(x => (x * (to - from) + from).toInt)

def randBool: Rand[Boolean] =

randDouble.map(_ > 0.5)

The State monad can be used to define a Rand monad using other algorithms which gen-

erate uniformly distributed random variables, and these can be transformed appropriately

to generate values distributed according to other useful distributions. For example the

Box-Muller transform is an efficient method of generating standard Normal random num-

bers [Box and Muller, 1958].

2.1.12 Kleisli Composition

Function composition is essential to functional programming. Consider a data analysis

pipeline which has several functions used to clean and process data:

val f[A, B]: A => B

val g[B, C]: B => C
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val h[C, D]: C => D

def pipeline[A, D]: A => D = f andThen g andThen h

The functions are composed using the andThen operator. The pipeline function is written

in what is known as pointfree style, by composing functions without reference to the

arguments.

Now consider that each function in the process may fail, failure can be denoted by

returning an Option[A]

val f[A, B]: A => Option[B]

val g[B, C]: B => Option[C]

val h[C, D]: C => Option[D]

def pipeline[A, D]: A => Option[D] = (a: A) =>

f(a).flatMap(b => g(b)).flatMap(c => h(c))

It is not easy to see that the pipeline function is just the composition of f, g and h since

the functions are chained with calls to flatMap . This can be written using Scala’s monadic

for comprehension:

def pipeline[A, D]: A => Option[D] = (a: A) =>

for {

b <- f(a)

c <- g(b)

d <- h(c)

} yield d

This notation is easier, but still takes longer to parse than function composition using

andThen . There is another data type which can be used to compose monadic functions in

a natural way, Kleisli

case class Kleisli[F[_], -A, B](run: A => F[B])(implicit m: Monad[F]) {

def andThen[C](f: Kleisli[F, B, C]): Kleisli[F, A, C] =

Kleisli((a: A) => m.flatMap(run(a))(f.run))

}

This type is also a monad if the type returned by the function is a monad. A Kleisli

represents a function A => M[B] and provides the methods andThen and compose . Now

the monadic pipeline can be written as

def pipeline[A, B]: Kleisli[Option , A, D] =

Kleisli(f) andThen Kleisli(g) andThen Kleisli(h)

This emphasises the compositional nature of the pipeline function and it’s easy to create

new pipelines by combining monadic functions. This can be useful for developing MCMC
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kernels, where functions are defined from parameters to a monadic distribution over the

parameters [Ścibior et al., 2015], ie. P => Rand[P]. Kleisli composition can then be used

to combine and re-use functions for sampling parameters in hierarchical models.

2.1.13 Foldable

Foldable represents a type class which can be collapsed into a single value from the left

or right with a binary reduction function using the functions foldLeft and foldRight

respectively. The collection data types considered so far (List, Vector, Option) are all

Foldables. The function signatures of foldLeft and foldRight are

trait Foldable[F[_]] {

def foldLeft[A, B](fa: F[A])(z: B)(f: (B, A) => B): B

def foldRight[A, B](fa: F[A])(z: B)(f: (A, B) => B): B

}

foldLeft and foldRight generalise many recursive functions for summarising a collection.

Calculating the an estimate of the log-likelihood using a particle filter can be implemented

using a foldable collection as outlined in section 2.1.15.

2.1.14 Traversable

Traversable is a type class which can be used to apply monadic functions (f: A => M[B])

to a collection and return the result in the monadic context. For a concrete example,

consider a stochastic function which advances the state of a Markov Chain:

val stepState: Double => Rand[Double] =

x0 => Gaussian(x0, 0.5)

Listing 2.4: A random walk step utilising a distribution Monad

This function is the Markov transition kernel for a random walk, the function signature

is Double => Rand[Double], where Rand is a monad which represents a probability dis-

tribution [Giry, 1982]. This distribution is a Monad which has the special property that

a random sample can be drawn from it. Consider a particle filter (introduced in sec-

tion 1.3.5), where a collection of particles must be advanced to the next time point of

interest. Since this is just applying a function to each element of a collection, a map

function might be used:

val particles: Vector[Double]

val advanced: Vector[Rand[Double]] = particles map stepState

This results in a Vector[Rand[Double]], interpreted as a collection of distributions for

each particle. If instead the intended type was Rand[Vector[Double]], a distribution over
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the particles, then the traverse function can be used

def traverse[G[_]: Applicative , A, B](

xs: Vector[A])(f: A => G[B]): G[Vector[B]]

This definition is similar to the map function, however allows proper application of a

function which returns an applicative G. The example of running several Futures in parallel

from section 2.1.8 shows the use of sequence which is an application of traverse with the

identity function. The traverse type class can be written as

trait Traverse[F[_]] extends Functor[F[_]] with Foldable[F[_]] {

def traverse[G[_]: Applicative , A, B](

xs: F[A])(f: A => G[B]): G[F[B]]

}

The defining function of the Traverse type class traverse can be implemented in terms

of a fold [Meijer et al., 1991]. For a specific collection, List, traverse can be implemented

as

def traverse[G[_]: Applicative , A, B](fa: List[A])(f: A => G[B]): G[List[B]] =

fa.foldLeft(G.pure(List[B]()))(

(b, a) => G.map2(f(a), b)(_ :: _) )

2.1.15 Functional Particle Filter

Consider implementing a particle filter using the Foldable type class and traverse . The

particle filter computes the approximate posterior distribution up to the current time of

the latent-state using a cloud of particles. When performing inference the entire series of

posterior distributions (the filtering distributions) are of interest. If the bootstrap particle

filter is implemented using a foldLeft without accumulating the intermediate states, then

they will be lost.

In section 2.1.13 the foldable type class was introduced which reduces a collection of

values into one value. The key functions in the foldable type class are foldLeft and

foldRight , two similar related functions are scanLeft and scanRight which keep the

intermediate values from the binary reduction.

Consider the partially observed Poisson model from section 1.3.5, where the latent

state is represented by the random walk (stepState ) from listing 2.4. To simulate data

from the model, define a transition kernel which advances the state xt ∼ p(xt|xt−1), then

sample an observation from the Poisson distribution with rate λt = exp(xt):

def step(x0: Double): Rand[(Double , Double)] = for {

x1 <- stepState(x0)

y <- Poisson(math.exp(x1))
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} yield (x1, y)

val init = (Gaussian(0.0, 1.0).draw, 0)

val data = MarkovChain(init){ case (x, y) => step(x) }

The particle filter is decomposed into smaller functions which can be reused and com-

bined, the conditional log-likelihood of an observation and the Markov transition kernel

to advance the state are model-specific, however any suitable resampling scheme can be

used.

def conditionalLl(x: Double , y: Int): Double = {

val lambda = math.exp(x)

Poisson(lambda).logProbabilityOf(y)

}

def mean(xs: Double): Double =

xs.sum / xs.size

def resample(

weights: Vector[Double],

particles: Vector[Double]): Rand[Vector[Double]]

case class PfState(

ll: Double ,

x0: Vector[Double])

def stepPf

(state: PfState , y: Int): Rand[PfState] = {

for {

advanced <- x0.traverse(stepState)

w = advanced map (x => conditionalLl(x, y))

ll = state.ll + mean(w)

resampled <- resample(w, advanced)

} yield PfState(ll, resampled)

}

Note that the implementation of resample is not provided, only the signature. Multi-

nomial, stratified and systematic resampling are all common, acceptable choices. foldM

(from the Cats library) is used in order to apply the monadic function stepPf to a time

series of observations. The signature for foldM is:

def foldM[G[_]: Monad , A, B](fa: F[A], z: B)(f: (B, A) => G[B])

The difference between foldM and foldLeft is that the binary reduction function is

monadic and hence the function stepPf can be used in order to calculate the posterior

distribution of the final latent-state represented by the unweighted particle cloud and the

pseudo-marginal log-likelihood:
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def pFilter(x0: Vector[Double], ys: Vector[Int]): Rand[PfState] = {

val init = State(0.0, x0)

ys.foldM(x0)(stepPf)

}

The intermediate states of the particle filter can be accumulated in stepPf by updating

the state of the filter PfState to contain a list of particle clouds and appending the most

recent particle cloud to the head of the list

case class PfState(

ll: Double ,

x: List[Vector[Double]])

def stepPfAccum

(state: PfState , y: Int): Rand[PfState] = {

for {

advanced <- state.x.head.traverse(stepState)

w = advanced map (x => conditionalLl(x, y))

ll = state.ll + mean(w)

resampled <- resample(w, advanced)

} yield PfState(ll, resampled :: state.x)

}

This can then be applied using foldM and the particle clouds representing the latent state

will be accumulated.

Although all these type classes have properties and laws associated with them from

category theory, the laws are not enforced in the types. In order to verify that the collec-

tions introduced in this chapter are monads, for instance, property based testing with the

Cats Laws library [Typelevel, 2018] can be used.

Property based testing differs from typical unit testing. In property based testing

a property is specified and random data is generated in order to attempt to falsify the

property. To determine if a type class forms a monad, then the property tests are the

monad laws from section 2.1.10. New properties can be defined for bespoke functions,

or laws from other algebraic structures, such as groups or rings can be used. This can

be useful when combining collections of parameters defined using a custom case class. In

order to summarise the parameters by calculating the mean and variance, a monoid (a

monoid is a set S with a closed, associative binary function, f : S × S → S with an

identity element e such that for every x ∈ S, f(x, e) = x = f(e, x)) can be defined for the

class of parameters. The associative binary function is defined to be the addition of two

parameters and the identity is an empty parameter. The monoid laws can be checked in

order to verify the addition of two parameters has been implemented correctly.
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2.2 Parallel and Distributed Programming

Modern hardware is parallel, with most consumer computers (and even mobile phones)

containing CPUs with multiple cores. The sequential collection types, List and Vector

do not take advantage of multithreading. In Scala, there are parallel collections which

share the same monadic interface which enables functions to be written in a generic way

and easily parallelised to take advantage of environments with multiple CPU cores.

Any collection can be transformed into a parallel collection, by calling .par. Higher

order functions defined on the parallel collections will run in parallel. map and filter are

naturally parallel and evaluated by splitting the collection up and evaluating the map or

filter on each partition using different threads. Reduction operations need more careful

consideration. foldLeft and foldRight are inherently sequential, however reduce can be

implemented using an associative binary function and then the reduction can be performed

in parallel using a parallel tree reduction.

Consider evaluating the likelihood of a linear model, see section 3.6.1 for the model

specification. The likelihood can be written as:

p(y|ψ) = (2πσ2)−
N
2 exp

{
− 1

2σ2

N∑
i=1

(yi − (β0 + β1x))2

}
The log-likelihood can then be written as:

log p(y|ψ) = −N
2

log(2πσ2)− 1

2σ2

N∑
i=1

(yi − (β0 + β1x))2

This log-likelihood can be evaluated in Scala using a map followed by a reduce

ys.

map { case (x, y) => Gaussian(beta0 + beta1 * x, sigma).logPdf(y) }.

reduce(_ + _)

Where ys: F[(Double, Double)] is a collection of tuples containing the dependent and

independent variables. To apply the function to a parallel collection, apply .par to the

collection:

ys.par.

map { case (x, y) => Gaussian(beta0 + beta1 * x, sigma).logPdf(y) }.

reduce(_ + _)

The parallel reduction will only speed up processing if the collections are very large, or

the individual likelihood contributions are expensive to evaluate.

If the data contained in the collection is too large to fit into the memory of a single

computer, then higher order functions such as map and reduce can be used for distributed
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computing [Dean and Ghemawat, 2008]. This pattern was named MapReduce after the

familiar higher order functions. MapReduce is commonly used when a large amount of

input data can not fit in the memory of a single node. The large dataset is partitioned onto

several worker nodes, orchestrated by a single master node. During the map stage, each

worker node performs a function independently on each element of the data. Next, results

are grouped by key and sent to appropriate worker nodes such that all data belonging to

each key is stored on an individual worker machine. This if referred to as the shuffle stage.

In the reduce stage a binary operator is used to combine the elements. If the data for a

given key can not fit on a single worker node, then the binary reduction operator must be

associative and can be performed in multiple steps across multiple worker nodes. The map

and reduce steps can be performed by multiple nodes in parallel, meaning computationally

intensive tasks can be sped up by increasing the number of worker nodes. In practice the

speed of computation does not increase linearly, because of the cost of messaging between

nodes during the setup and shuffle stages.

MapReduce is a general pattern which can be used to implement many algorithms,

including the page rank algorithm used by Google to rank search results [Brin and Page,

1998]. MapReduce aims to make distributed programming easier by removing the pos-

sibility of race-conditions. Listing 2.5 shows a word count implementation written in a

MapReduce style. The map stage assigns the number one to each word in the collection.

The shuffle stage is represented by the function groupBy which groups by word, each group

is a tuple where the first element is a single word and the second element is a collection of

tuples containing the same word and the number one. The reduce stage is implemented

using map and reduce , the map takes each tuple containing each word and collection and

performs the binary reduction function + to add the numbers associated with each word.

The reduce function is a fold without an initial value, as such it can only be performed

on a non-empty collection.

val wordCount: Map[String , Int] = words.

map(w => (w -> 1)).

toList.

groupBy(_._1).

map { case (w, ws) => (w, ws.map(_._2).reduce(_ + _)) }

Listing 2.5: Illustrative MapReduce program written using Scala

Apache Spark [Apache, 2018b] is a platform for distributed computing for big data. Spark

utilises a high level functional interface written in Scala allowing parallel processing for

large datasets and streaming data. Spark primarily stores data in main memory of compute

nodes, whereas Hadoop [Apache, 2018a] (a map reduce implementation) stores the data

on the HDD or SSD of the worker nodes, and this means Spark is typically orders of
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magnitude faster for the same tasks. Apache Spark has additional capabilities, including

batch processing of streaming data and a library for machine learning called MLlib. The

main collection type in Apache Spark is the resilient distributed dataset (RDD) which is

an immutable distributed monadic collection partitioned onto different nodes in the Spark

cluster. The RDD can be operated on using the higher order functions familiar to users

of the built in Scala collections.

2.3 Streams

Scala is eagerly evaluated, but can be lazy if required. A list is not explicitly lazy and

hence can not represent an infinite data structure. In order to represent a lazy (possibly

infinite) collection a Stream is defined. A stream is a cons list where the tail of the list is

represented as a function of no arguments (sometimes called a thunk).

Infinite data structures are common in statistical programming, for instance a Markov

chain representing a random walk can be defined as an infinite sequence, using the step

function from listing 2.4:

Stream.iterate(0.0)(x => step(x).draw)

// Stream(0.0, ?)

iterate is a function def iterate[A](x0: A)(f: A => A): Stream[A] defined for all

collection types in Scala, however with a stream it is not required to specify the resulting

length of the collection.

2.3.1 Akka Streams

Sometimes datasets are too large to fit in to the main memory of a single machine. In some

cases distributed programming can be used as introduced in section 2.2. However time

series data arrives continuously and batch processing of time series data can be inefficient

if online algorithms are available. Akka Streams4 is a Scala library which defines its

own stream data-type in order to facilitate large scale processing of streaming data from

disparate sources. Akka Streams is built upon the actor model [Hewitt et al., 1973], a

model for concurrent programming based upon message passing between actors.

Actors are straightforward to reason about, they can send and receive messages, create

child actors and modify local state. Actors have a queue of messages received from other

actors which they can respond to by doing work, updating internal state and sending

messages. Since messages are “fire-and-forget” an actor can never be locked or waiting on

work to complete, if there is a message in the mailbox to respond to the actor can work on

it and send the message immediately. This is the key to the actor model of concurrency,

4http://akka.io
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as exemplified by the Erlang programming language. In addition, there can be no race

conditions as the actor only has local state and no shared state.

Actors can create child actors when performing new tasks.This allows for redundancy

and if one child actor fails (for instance due to a hardware error) then a message is returned

to the parent actor and the parent can spawn a new child to complete the task. Failures

are sent through the network of actors in exactly the same way as any other message.

Akka streams is an abstraction built on top of Akka actors. Akka streams is an

implementation of the reactive streams standard5 providing tools for dealing with large,

potentially unbounded streams of data from various sources. Akka streams can query

multiple heterogeneous data sources without blocking and perform processing online as

each observation arrives. If data is arriving too frequently for the processing stages, then

backpressure can be used to reduce the rate of the producer. The backpressuring method

is user specified. Some examples include thinning the stream or buffering elements if it is

expected that the time between observations will eventually increase.

Akka Streams have three main components. Source represents the data flow and can

be read from a database, web connection, file etc. A Flow is a processing stage and a Sink

represents the termination of a data flow (writing to a file, printing to the screen etc.)

Within this framework it is possibly to model large scale streaming data.

A Source is a stream, a lazy list which can be initialised in a number of ways, for

example a pure Source consisting of a sequence, or an impure source such as reading

from a file or database. Source has two type arguments, one which describes the actual

type of the data and the other which describes the context of the data. A pure source

consisting of a sequence of numbers will have type Source[Int, NotUsed], since no context

is required, Akka defines a special type NotUsed . If the same data is read from a database

or file, then an asynchronous context is required to read from the data source and the type

is Source[Int, Future[IOResult]]. Future is a monad which encapsulates a concurrent

task, starting the connection to the database does not result in the main thread of the

program blocking. The Source now has an associated context.

A Flow[Int, A, NotUsed] can be used to transform the stream of integers defined

previously. The Flow can consist of any combination of one or more of the higher order

functions defined for Akka streams, these include scan, fold, map recognisable from the

Scala collections library. Flows are reusable transformations and can be applied to a

Source with or without a context. A Source connected to a Flow defines another Source ,

as expected.

A Sink is the final connection needed to be able to run a computation within the Akka

streams framework. No data flows through the Akka stream until it is fully connected to

a Sink and run using a materialiser.

5http://www.reactive-streams.org/
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Akka streams can be used to implement reactive programs which respond to new

data continually. Consider an application which always runs, modelling an environmental

process recorded on a sensor and transferred in real time to a database. Akka streams are

an abstraction over the actor model, as such they require an actor system to run. The

actor system and a materialiser are initialised:

implicit val system = ActorSystem("EnvironmentSensor")

implicit val materializer = ActorMaterializer()

These are initialised as implicit which means they do not have to passed explicitly to each

method in the program. This reduces the amount of code and improves the readability of

the main program. Next an Akka source for reading from a database is defined:

val connectDatabase: Future[Data]

val src: Source[Data, Future[IOResult] =

Source.fromFuture(connectDatabase)

connectDatabase is a connection which returns the Future monad. A Flow is used to

select the last 300 data points (updated live as new data arrives) and perform an inference

algorithm:

def inference: Seq[Data] => Parameters

def myFlow = Flow[Data].

sliding(300).

map(inference)

Next, a Sink is defined which writes the result back to the database:

def mySink: Sink[Parameters , Future[IOResult]]

Finally the program can be run by connecting the source to the flow and sink then running

it.

src.via(myFlow).runWith(mySink)

Constructing data flows like this is a natural way of processing streaming data and time

series. Additionally, the Akka stream is a pure function, the side effects of reading and pro-

cessing the data do not occur until the pipeline is run with a materializer, using runWith .

The Akka stream can be thought of as a collection like List and hence instances of Functor

and Foldable can be defined.
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2.4 Summary

This chapter has outlined the properties of functional programming, with illustrative ex-

amples in Scala, that make it suitable and powerful for scientific and statistical applica-

tions. Static typing reduces difficult to find runtime errors and ensures that refactoring

code is straightforward with the help of the compiler. This means code is not over-

engineered from the start of project as changes can be made to any size code base as

and when the specification grows. Static typing does not increase the size of the code

base since well defined abstractions from category theory allow for polymorphic code with

type safety. Type inference, allows return types which are obvious to be omitted from

the source code and inferred by the compiler which is especially helpful when defining

anonymous functions.

Higher order functions such as map and reduce are preferred over explicit “for” loops,

these are easier to reason about and straightforward to parallelise on one machine (using

parallel collections) or in a distributed environment (using Apache Spark). This makes

speeding up slow running code on parallel architectures trivial to implement and test.

When the aforementioned abstractions are used to write functions which are polymorphic

over different collection types, then the same functions can be used to run serially or on a

Spark cluster. Thus reducing runtime errors. This saves programmer time and compute

resources.

Use of higher-order functions and type classes were illustrated with a novel functional

implementation of a particle filter. The implementation safely encapsulates the side-effect

of randomly advancing the particle cloud using a monad for random number generation,

Rand. A reduction function foldM can be used to apply the function to any collection with

a Foldable instance. This is an elegant way to write a statistical algorithm which can be

applied to multiple collection types.

Finally, reactive Streams are a natural way to model unbounded time series data from

a variety of services. Akka streams use the higher order functions familiar to functional

programmers. Flows consisting of HOFs can be freely reused and combined to perform

inference algorithms on live streaming data. The time series algorithms developed in chap-

ters 4 to 7 are implemented using Akka streams.
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Probabilistic Programming

Bayesian inference using probabilistic programming is becoming of interest to large industry-

backed artificial intelligence (AI) labs such as Google, Uber and Stripe [TensorFlow, 2018,

Uber, 2018, Stripe, 2018]. Deep learning continues to solve inference problems with large

amounts of labeled data allowing self-driving cars and image recognition along with many

traditional applications of statistical models such as retention and campaign response

modelling. However deep neural networks are typically used as a “black box” and state of

the art networks can involve many parameters [Huang et al., 2017]. Some dense convolu-

tional neural networks can have millions of parameters, the values of these parameters are

impossible to reason about independently and require a large amount of data to learn.

In a Bayesian model, the likelihood and prior distribution must be specified using the

judgment of the statistician and/or additional subject matter experts. This results in an

interpretable model which can be used to explain relationships present in the data and

perform accurate predictions with uncertainty. Bayesian methods are especially useful

when an experiment has only a small number of observations, for instance in an A/B

test using a small number of highly valuable customers or in a clinical trial where patient

data is scarce. Bayesian methods provide a natural encoding for uncertainty; if only a

small number of observations are available to inform the likelihood then the posterior

distribution will reflect the prior. Specifying uncertainty honestly along with predictions

can allow practitioners to make informed decisions in the presence of uncertainty. Well

specified Bayesian models ensure industries such as insurance and finance, which price

products and shares based on mathematical and statistical models, can be transparent in

the decisions that they make.

Traditionally, parameter inference in Bayesian statistics has involved constructing be-

spoke MCMC schemes for each newly proposed statistical model. This results in new

models being explored more slowly than practitioners would like, sometimes resulting in

plausible models not being considered since efficient inference schemes are challenging to
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develop or implement. Probabilistic programming aims to reduce the barrier to performing

Bayesian inference by developing a domain specific language (DSL) for model specification

which does not rely on a detailed understanding of the parameter inference algorithms.

In this way new models can be explored without relying on detailed understanding of the

underlying inference methods.

There exist many DSLs for performing Bayesian inference. The most well known in

the statistical community are BUGS [Lunn et al., 2000b] and Jags [Plummer et al., 2003]

in which a simple syntax can be used to specify complex hierarchical models. BUGS

and Jags both use Gibbs sampling to perform inference. Stan is another popular DSL

which uses similar syntax to BUGS and Jags. Stan uses Hamiltonian Monte Carlo (HMC)

with automatic differentiation for efficient sampling [Carpenter et al., 2016]. Stan also

implements approximate variational inference schemes.

TensorFlow is a program created at Google for deep learning and neural networks. The

core of TensorFlow has been used to build TensorFlow Probability [TensorFlow, 2018],

a Python library for Bayesian inference utilising the TensorFlow architecture. Tensor-

Flow probability uses automatic differentiation and GPU acceleration from TensorFlow

for variational inference and HMC. Ridesharing company Uber have developed a Python

library called Pyro [Uber, 2018] for probabilistic programming, marrying deep learning

and Bayesian inference using PyTorch [Paszke et al., 2017] for automatic differentiation

and GPU acceleration. Another probabilistic programming language written in Python of

note is PyMC3 [Salvatier et al., 2016]. These probabilistic programming languages can be

easily deployed in existing Python projects. However the syntax for implementing a model

is more verbose than that of BUGS, JAGS and Stan. Hakaru [Narayanan et al., 2016] is

an example of a probabilistic programming language with both an embedded DSL written

in Haskell and a more accessible DSL written in the style of Python. This design choice

was to minimise the learning curve of those coming from languages similar to Python.

An effort has been made to formalise the semantics of Bayesian inference in category

theory by defining a probability monad grounded in measure theory [Giry, 1982, Lawvere,

1962]. A more pragmatic approach using the sampling based probability monad, built

upon the State monad introduced in section 6.1.5, with applications to robot localisation

and mapping is presented in Park et al. [2005]. A probability monad defined using mea-

sure terms for efficiently computing values such as the expectation of a distribution is

introduced in Ramsey and Pfeffer [2002].

BUGS, Jags and Stan are written in DSLs which are in turn interpreted, or compiled

to lower-level languages. For instance in a Stan script, arbitrary C++ can be written to

define a model or inference scheme, but in a C++ program the Stan DSL for defining a

model cannot be easily used. This is in contrast to an embedded DSL, where the DSL is

written directly in the target language and can be deployed inside a larger program.
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Rainier [Stripe, 2018] is an embedded probabilistic programming language written in

Scala developed by the online payment processing company, Stripe. Rainier provides a

monadic syntax for specification of models. The model has an associated compute graph

which can be used to calculate the log of the un-normalised posterior and its gradient using

automatic differentiation. The log-posterior and its gradient is then used for HMC [Duane

et al., 1987]. The monadic interface is familiar to functional programmers and means that

the well researched and developed features of existing functional programming languages

can be used when developing probabilistic programs. This is demonstrated in the examples

presented in this chapter: a random effects model is presented in section 3.6.3. The linear

models required in the random effects model are reused from example 3.6.1. This code

reuse is straightforward with a well developed programming language such as Scala and

this is the main advantage of embedded probabilistic programming languages.

Embedded DSLs are straightforward to write in functional languages using, for ex-

ample, free monads and generalised algebraic data types [Swierstra, 2008]. Ścibior et al.

implements an algebra in Haskell for operating on distributions using a Generalised Al-

gebraic Datatype and the Free Monad [Ścibior et al., 2015]. This allows the implemen-

tation details of complex programs (in this case statistical inference algorithms) to be

decoupled from the model specification. Since the DSL is implemented in the same pro-

gramming language, it is straightforward to use within existing programs. An alternative

representation for an embedded probabilistic programming language using finally tagless

encoding is considered in [Kiselyov and Shan, 2009].The importance of building DSLs for

scientific computing is expanded upon in an article advocating the use of Lisp in bioin-

formatics [Khomtchouk et al., 2016]. Lisps are a collection of dialects of dynamically

typed functional programming languages, which share many similarities with functional

programming in Scala.

This chapter provides a high-level description of the implementation of several monadic

probabilistic programming languages. The first defines a sampling-based probability

monad which can be used to perform exact rejection sampling in section 3.2. It is acknowl-

edged that exact rejection sampling is not scalable to real-world problems and more sophis-

ticated parameter inference methods must be developed. In section 3.3 the Rainier prob-

abilistic programming language is introduced and used to develop a Metropolis-Hastings

algorithm. This section demonstrates how the modelling API is decoupled from the in-

ference algorithm. The modelling API constructs a function representing the log of the

un-normalised posterior (and its derivative) which can be used to implement Metropolis-

Hastings. Section 3.4 describes methods for tuning Hamiltonian Monte Carlo algorithms,

including dual-averaging, the No-U-turn sampler and eHMC [Wu et al., 2018]. The eHMC

algorithm was implemented in Scala and contributed to the Rainier probabilistic program-

ming language. This allows users to perform inference using HMC without specifying the
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step-size and number of leapfrog steps. sections 3.5.1 and 3.5.2 presents an overview of

automatic differentiation, the key to implementing efficient gradient-based inference algo-

rithms in probabilistic programs. Section 3.6 shows several examples of monadic prob-

abilistic programs written using Rainier, the language is concise and embedded within

the Scala programming language allowing straightforward code-reuse via function calls as

exemplified in the random effects example in section 3.6.3. The probabilistic programming

language is embedded in the host language which means all the features implemented in

the host language are available to the user. This is much more straightforward than devel-

oping a programming language from the ground up. Finally, section 3.7 presents a novel

probability monad using sampling importance resampling and presents an for inference

of the filtering distribution of a partially observed Markov process model with a Poisson

observation distribution.

3.1 Probability Monad

In order to define a probabilistic program using the abstractions introduced so far, it

remains to show that probability measures form a monad. Monads are well understood

and ubiquitous in functional programming and programming language theory, hence have

well supported language features such as the for-comprehension in Scala and do-notation

in Haskell. Their uniformity enables programmers to manipulate monadic values in a

consistent way using map and flatMap independent of the monadic context. This makes

defining probabilistic programs straightforward using powerful, well-developed functional

programming languages with support for monads.

The foundations of the probability monad were first developed by Lawvere [1962] and

it was extended in Giry [1982]. A review of the Giry monad is presented in Ramsey

and Pfeffer [2002]. The Giry monad is defined on the category of measurable spaces,

which is not a cartesian-closed category and hence is not suitable for applications of

higher order functions, additionally distributions over functions are not supported. A

probability monad based on Quasi-Borel spaces has been proposed to ameliorate these

problems [Heunen et al., 2017].

This theoretical underpinning paves the way for developing monadic probabilistic pro-

gramming DSLs in functional programming languages with minimal efford beyond speci-

fying the two natural transformations required for the distribution to form a monad (see

section 2.1.10).
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3.2 A Sampling Based Probability Monad

The aim is to implement a domain specific language for probabilistic modelling and in-

ference. This section considers a simple, sampling based probability monad with exact

rejection sampling for inference. Later sections introduce more complex inference algo-

rithms for performing inference using real-world models.

The first challenge is to specify a probability distribution in the programming language.

The probability distribution must assign positive probability to each outcome and the

probability of each outcome should sum to one. For discrete distributions with finite

support this is straightforward to verify. As an example consider the Bernoulli distribution.

The support of the Bernoulli distribution is {1, 0} which can be interpreted as true or false.

Then the probability of a 1 is assigned the value p > 0, and hence p+ (1− p) = 1. A trait

for a general distribution which can be sampled from can be written as

trait Dist[A] {

def probabilityOf(a: A): Double

}

Then the Bernoulli distribution can be written as

case class Bernoulli(p: Double) extends Dist[Boolean] {

def probabilityOf(a: Boolean): Double =

if (a) p else (1 - p)

}

The function probabilityOf is the probability mass function of the Bernoulli distribution.

A function which verifies the distribution satisfies the probability axioms can be written

as

def sumToOne[A](d: Dist[A], support: List[A]): Boolean =

support.map(d.probabilityOf).sum == 1.0

def positive[A](d: Dist[A], support: List[A]): Boolean =

support.map(d.probabilityOf).forall(_ >= 0)

The function sumToOne verifies that the probabilities corresponding to each possible out-

come in the support of the distribution sum to one. positive verifies that the probability

of each outcome is non-negative. However, when considering a distribution with infinite

support, such as any continuous distribution, then all possible outcomes can not be enu-

merated. Consider a uniform distribution on a bounded interval [0, 1], any value between

0 and 1 is equally likely and there are infinite values in the interval. The probability

of a random variable distributed according to a continuous distribution taking a single

value is zero. The probability of the random variable taking a value in a given inter-

val is Pr(a < X ≤ b) which can be found using the cumulative distribution function of
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a continuous distribution. Individual traits can be defined for continuous and discrete

distributions, continuous distributions can evaluate the (natural log of the) probability

density function, logPdf , and discrete distributions can evaluate the (natural log of the)

probability mass function, logPmf :

trait Continuous[A] {

def logPdf(a: A): Double

def gen: Rand[A]

}

trait Discrete[A] {

def logPmf(a: A): Double

def gen: Rand[A]

}

Listing 3.1: Abstract interfaces for discrete and continuous distributions

These traits replace the earlier Dist trait. Each distribution trait has a method gen, which

can transform the distribution to a sampling based distribution, Rand. Rand is defined with

the following interface:

trait Rand[A] { self =>

def draw(): A

def sample(n: Int): List[A] = List.fill(n)(draw)

def map[B](f: A => B): Rand[B] = new Rand[B] {

override def draw = f(self.draw)

}

def flatMap[B](f: A => Rand[B]): Rand[B] = new Rand[B] {

override def draw = f(self.draw).draw

}

def pure[A](a: A): Rand[A] = new Rand[A] {

override def draw = a

}

}

Then the only function which remains abstract and must be defined for a new Rand is

draw, hence this monad has no information about the logPdf or logPmf functions. pure is

represented by the dirac distribution. map and flatMap provide ways of transforming and

combining distributions to build complex statistical models from individual distributions.

The function map can be used to apply a function to elements inside of the distribution,

for example a uniform distribution on the interval [0, 1] can be transformed to a new

support using map:

def uniform(a: Double , b: Double): Rand[Double] =

Uniform.map(x => x * (b - a) + a)
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To show an application of flatmap consider building a Bayesian statistical model where

each parameter in the model has a prior distribution. The joint prior distribution of the

parameters is combined with the likelihood in order to calculate the posterior distribution

of the parameters given the observed data. Consider a coin flip experiment with a biased

coin, the data consists of n coin flips and the unobserved parameter of interest is the

probability of heads, ph. A beta prior distribution is chosen for the parameter and the

likelihood is the Binomial distribution with n trials and probability of success ph. flatMap

can be used to combine the prior and the likelihood to determine the posterior distribution

of ph:

val a = 1

val b = 1

val n = 10

val program: Rand[(Double , Int)] = Beta(a, b).flatMap(p =>

Binomial(n, p).map(y => (p, y)))

If map was used then the program would be of type Rand[Rand[(Double, Int)]]. This

program can then be used to forward simulate data from the model:

program.draw

// (0.7444018968952699,6)

This tuple consists of a draw from the prior distribution for p = 0.744... and the number

of heads observed, 6. Consider the problem of estimating the posterior distribution of

the parameter ph using this sampling monad given that we know 6 heads were observed

from the 10 coin flips. The program can be sampled from many times, conditional on

the number of observed heads. This inference algorithm is exact rejection sampling, and

works by computing many realisations from the forward model and matching the resulting

samples to the data. To implement exact rejection sampling, define condition which filters

the draws which match a predicate c

def condition(c: A => Boolean): Dist[A] = new Dist[A] {

override def draw = {

val a = self.draw

if (c(a)) a else this.draw

}

}

The for comprehension (see section 2.1.10) can be used to express the program as:

val program: Dist[(Double , Int)] = for {

p <- Beta(a, b)

heads <- Binomial(n, p)
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} yield (p, heads)

Listing 3.2: Probabilistic program expressing a coin flip example with a beta prior

distribution for the probability of heads

For a more complete sampling based probability monad in Scala, see 1. The posterior

distribution of ph can be determined using the condition function:

program

.condition { case (ph, heads) => heads == 6 }

.sample(1000)

// (0.5728470229411422,6)

// (0.7147104470387118,6)

// (0.6365933523815765,6)

// (0.7618795585149065,6)

// ...

The program then returns 1,000 draws, each draw has six heads out of ten total coin

flips. The first argument of the tuple represents draws from the posterior distribution of

the probability of heads - summary statistics such as the mean can then be calculated.

This is not a very efficient method of inference and as the number of trials increases then

selecting draws which match the predicate c becomes more difficult and results in many

wasted computations. However, the probabilistic program expression (program) is concise

and clear in its intent, this monadic syntax can be used with more efficient inference

algorithms as expanded upon in the following sections.

This method of inference does not use the logPdf or logPmf as defined for the Continuous

and Discrete distribution traits. Inference algorithms such as Metropolis-Hastings and

HMC use the log of the un-normalised posterior to perform inference efficiently. These

distributions can be used as a monad with a different specification for flatMap which

combines the distributions in order to generate the log of the un-normalised posterior

distribution. This is expanded upon in section 3.3.

3.3 Metropolis-Hastings

The sampling based probability monad introduced in section 3.2 is inefficient for inferential

purposes. In the case of the coin flip example (and many other statistical models) the

likelihood is available and is the probability mass function of the Bernoulli distribution.

Metropolis-Hastings (see section 1.3.2) is a popular method for performing inference for

models with intractable posterior distributions, where the likelihood can be specified and

evaluated up to a normalising constant. In a Bayesian model, the prior distribution of

1https://github.com/jliszka/probability-monad/
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the parameters is also required, the log-density of the prior can be summed with the

log-likelihood, forming a function from the parameters to the log of the un-normalised

posterior.

The Metropolis-Hastings algorithm requires a function for the log of the un-normalised

posterior val posterior : P => Double . In addition a proposal distribution is required

of the form val prop: P => Dist[P]. A common choice for the proposal distribution

in MH is a symmetric multivariate Normal distribution with mean equal to value of the

previously accepted parameter value in the Markov chain and the variance left as a tuning

parameter. These two functions depend on the model specification, but the rest of the

algorithm is identical for any model:

def step[P](

pos: P => Double ,

prop: P => Rand[P]): Rand[P] = { p: P =>

for {

ps <- prop(p)

a = pos(ps) - pos(p)

u <- Uniform(0, 1)

next = if (log(u) < a) ps else p

} yield next

}

Listing 3.3: Kernel of the Metropolis algorithm using a symmetric proposal distribution

The function step implements a single step of the Metropolis algorithm, assuming the

proposal distribution is symmetric. The Markov kernel can then be used in an iterate

function to form a lazily evaluated stream (see section 2.3). The stationary distribution of

the Markov chain is equal to the posterior distribution, and the samples from the Markov

chain can be used to construct any summary of the posterior distribution which is required.

In Ścibior et al. [2015], the probability monad is implemented as a free monad, and sev-

eral inference algorithms are developed and interpreted using a sampling-based interpreter.

The model specification language is independent of the chosen inference algorithms, and

additionally the inference algorithms can be composed. An example in the paper shows

how straightforward it is to compose a particle filter with a Metropolis-Hastings algorithm

to implement a pseudo-marginal Metropolis-Hastings algorithm (see section 5.3). Among

the inference algorithms is a Metropolis-Hastings algorithm which utilises the prior distri-

bution as the proposal distribution for the parameters. The reason for this choice is that

there was no way to collect the information from the model specification to implement a

generic proposal distribution function as mentioned in section 8 of the paper.

The Scala library Rainier[Stripe, 2018] can be used to address this problem. Rainier is

a probabilistic programming language which uses HMC for sampling, however the sampler
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is independent of the model building API and hence new samplers can be implemented

which utilise the monadic model building API.

Rainier builds a compute graph over the parameters of a model. The compute graph is

essentially a variadic function (a function which an undetermined number of arguments)

from many input parameters to an output. This variadic function is a representation of the

un-normalised log posterior function and can return both the evaluation of the function

and the gradient (using automatic differentiation, see section 3.5). The compute graph

can be compiled to a function with signature Array[Double] => Double representing the

evaluation of the log of the un-normalised posterior or Array[Double] => Array[Double]

representing the gradient. The function built using the compute graph is used to imple-

ment a Metropolis algorithm.

The distributions defined in listing 3.1 can be used to build the function to evaluate

the log of the un-normalised posterior. A new function param is defined which allows the

distribution to be used as a prior distribution. When defining the proposal distribution

for the parameters, the support must be respected. A straightforward way to implement

this is to appropriately transform the parameter such that an unconstrained random walk

proposal can be used. The distribution trait can be augmented with the additional meth-

ods:

def transform(x: A): A

def logJacobian(x: A): Double

When the parameters are added to the compute graph, using param they are transformed

to the support of the distribution when evaluating the log-density. The log-Jacobian of

the transformation is added to the log-density and this is needed since the parameters

are proposed in the unconstrained space. The function param can then be defined for a

continuous distribution as

def param = {

val x = new Variable

val constrained = transform(x)

val density = logPdf(constrained) + logJacobian(x)

RandomVariable(constrained , density)

}

This is similar for a discrete distribution, but the logPdf is replaced with the logPmf .

Table 1.1 summarises possible transformations for bounded parameters. Note that the

derivatives of the transformations are not needed for the Metropolis algorithm.

Additionally, each distribution has a fit method which allows the logDensity of that

distribution to be used as the likelihood. The coin flip model can then be specified as a

Rainier model with some small changes
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Figure 3.1: Diagnostics for the posterior distribution of the probability of heads, p in a coin
flip experiment. The traceplots of the MCMC draws, (top). The autocorrelation function
for the posterior distribution of p showing a slow decay, indicating correlated samples from
the posterior, (middle). The empirical marginal posterior density of p, (bottom).

val model = for {

p <- Beta(3, 3).param

_ <- Binomial(p, 10).fit(6)

} yield p

Listing 3.4: Rainier probabilistic program expressing a coin flip example with a beta

prior distribution for the probability of heads

The model can be sampled from using the Metropolis algorithm with a random walk

proposal q(ψ?|ψ) = N (ψ?|ψ, 0.05Ip) where Ip is the p× p identity matrix:

model.sample(Metropolis(0.05), 1000, 10000, 5)

This performs Metropolis samples with 1,000 burn-in followed by 10,000 sampling iter-

ations with a thin of 5 resulting in 2,000 samples from the posterior distribution. The

argument to the Metropolis function is the diagonal element of the Normal proposal dis-

tribution. This implementation of the Metropolis algorithm could be changed in order

to accept as an argument a covariance matrix for the symmetric normal proposal distri-

bution. Alternatively, the function could accept an arbitrary proposal distribution and

density and hence be used as a Metropolis-Hastings sampler.

Figure 3.1 shows the samples from the posterior distribution of the parameter ph from

the coin-flip model.

This implementation of the Metropolis algorithm means the specification of the model
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is decoupled from the inference algorithm. The log of the un-normalised posterior is

generated from the compute graph of the model in listing 3.4 which can be specified using

the monadic DSL. While this inference method is straightforward to implement, widely

applicable and guaranteed to converge, it is not necessarily efficient. A more efficient

method of generating samples from the posterior distribution is required for fitting real

world models.

3.4 Automatic Tuning of HMC

One of the aims of probabilistic programming is to separate the details of the inference

algorithm from the implementation of the statistical model. This allows for rapid explo-

ration of different models without having to devise new inference algorithms. Metropolis-

Hastings has convergence guarantees and if run for long enough will give samples from the

posterior distribution. However this can often be an unacceptably long time. The pro-

posal distribution requires tuning in order to achieve the optimal acceptance rate (which

is subject to conditions), of around 0.234 [Roberts et al., 1997]. Adaptive methods can

be used to tune the proposal distribution automatically [Atchadé et al., 2005]. Even op-

timal tuning of the proposal distribution does not take into account the geometry of the

posterior distribution, which is contained in the gradient of the posterior. More efficient

gradient-based algorithms can be used for drawing samples from the posterior distribution.

Hamiltonian Monte Carlo was first introduced in section 1.3.4 and can be implemented

using functional programming principles. The components of a statistical model which are

required to use HMC for parameter inference are the log of the un-normalised posterior

distribution (as in the Metropolis-Hastings algorithm implemented in section 3.3) and the

gradient of the log of the un-normalised posterior.

The Hamiltonian Monte Carlo algorithm provides an efficient proposal distribution for

parameters by augmenting the parameter space with a momentum parameter. However,

HMC requires the user to specify the step size and number of leapfrog steps. If the step

size is too small and number of leapfrog steps too low this can reduce the efficiency of the

sampler to that of a random walk, however if the number of leapfrog steps is too large the

algorithm can traverse the parameter space first in one direction and then return to an area

it has already traversed, performing a U-turn and wasting computation. Dual averaging

can be used during the warm-up phase of the Markov chain to determine a suitable leapfrog

step size [Nesterov, 2009]. The modified dual averaging scheme presented in Hoffman and

Gelman [2014] is summarised below.

The purpose of setting an appropriate step size in the HMC algorithm is to avoid

wasting computation. The acceptance rate is the governing quantity, hence define the

statistic Hk = δ−αk where δ is the target acceptance rate, αk is the acceptance probability
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at iteration k and ε is the step-size of the HMC algorithm. Then define the expectation

of Hk:

h(ε) = E(Hk|ε) ≈
1

k

k∑
i=1

E(Hi|ε) (3.1)

The aim of the dual averaging algorithm is to reduce this expectation to zero and hence

the actual acceptance rate converges in mean to the target acceptance rate. Values of the

tuning parameter are updated using,

log εk = µ−
√
k

γ(k + k0)

k∑
i=1

Hi (3.2)

where γ and µ are free parameters, µ is the value which log εk is shrunk towards and γ

controls the rate at which the step-size is shrunk. The parameter k0 is a free-parameter

chosen to stabilise the algorithm during early iterations by avoiding unrealistically large

values of the step size. The second term in equation (3.2) will converge to zero as the

number of iterations increases. A sequence of weighted averages is used to calculate the

final step-size

log ε̄k = ηk log εk−1 + (1− ηk) log ε̄k−1 (3.3)

which converges for values of ηk = k−β with β ∈ [0.5, 1]. Which means as k → ∞ the

value of log ε̄k−1 − log ε̄k → 0 as required. The dual averaging algorithm is run for a

pre-determined number of warmup iterations at the start of the HMC algorithm using the

value of εk at each leapfrog step. At the end of the warmup run, the value ε̄k is used in the

final monitoring run of the HMC sampler. It is known that the optimal leapfrog step size at

the stationary distribution can be different to that of the warmup phase, hence sometimes

long warmup runs are required. The recommended value for the target acceptance rate

is δ = 0.65. Algorithm 5 presents an implementation of the function required to update

the step size during the warmup phase of an HMC chain at each iteration of the HMC

algorithm given in algorithm 3. Updating the step size is performed after line 9 in the HMC

algorithm, just after the log-acceptance probability, logα is calculated. For initialisation

at k = 0 set H0 = 0.

Algorithm 5 is suitable for selecting the step-size during the warm-up phase of HMC,

Hoffman and Gelman discuss ways of defining Ht and hence selecting the optimal step-size

in the No-U-Turn sampler, since there is no single accept/reject step.

After the tuning of the step-size, an appropriate number of leapfrog steps is calculated

in order to avoid performing a U-turn and wasting computation. To test for the presence

of a U-turn the following calculation is performed:
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Algorithm 5: Update Step Size function for performing Dual Averaging in an
HMC algorithm to automatically select an appropriate step size

1 function UpdateStepSize(k, logα, Hk−1, δ = 0.65, µ = log(10ε0), β = 0.75,
γ = 0.05, k0 = 10.0):

2 Calculate R = 1/(k + k0);
3 Calculate Hk = (1−R)Hk−1 +R(δ − α);

4 Set log εk = µ−
√
kHk
γ ;

5 Set log ε̄k = k−β log εk + (1.0− k−β) log ε̄k−1;
6 return Hk, log εk, log ε̄k;

d

dt

[
1

2
(ψ? − ψ) · (ψ? − ψ)

]
= (ψ? − ψ) · φ? (3.4)

where ψ? represents the proposed parameter after ` ≤ L leapfrog steps, ψ represents the

parameter at the start of the iteration before any leapfrog steps and φ? is the momentum

after ` leapfrog steps. This is the time derivative of the distance between the initial

position and final position. If the calculated derivative is less than zero, the sampler has

performed a U-turn and further leapfrog steps are proposing parameters in an area which

has already been explored.

Empirical Hamiltonian Monte Carlo (eHMC) can be used to learn a distribution of the

longest steps until a U-turn [Wu et al., 2018]. eHMC begins by assuming an appropriate

step-size has been selected and an initial value for the number of leapfrog steps, `0 has been

specified. Then the empirical distribution of longest steps until U-turn can be determined.

To construct the empirical distribution, the number of leapfrog steps in a single direction

are calculated until the U-turn condition in equation (3.4) is less than zero and this value

is recorded as `u. If `u > `0 then the value of φ and ψ at `0 steps are used as the

new proposed values. Alternatively, if `u < `0 then a further `0 − `u leapfrog steps are

performed. This ensures the position and moment are advanced exactly `0 leapfrog steps

and determines the number of steps until a U-turn without wasting computation. The

proposed values of ψ and φ are then used in an unaltered HMC algorithm. The values of

`u at each step are recorded during the warm-up phase to form the empirical distribution

of longest steps until U-turn.

During the main sampling run of eHMC, the empirical distribution of longest step

lengths is sampled from to determine the number of leapfrog steps to perform in the HMC

kernel. The key to the effectiveness of this algorithm is that the number of leapfrog steps

is independent of the current position of Markov chain. eHMC is implemented in Rainier

by the author as a tuning free method for performing inference using HMC.

The NUTS algorithm is more complex and a calculation for the number of steps is

performed at each iteration of the main sampling run. The condition in equation (3.4) is
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used in order to determine the number of leapfrog steps to perform. However it is noted

that selecting the number of steps directly using this condition at each iteration means

that time reversibility is not guaranteed. The leapfrog steps are run both forward and

backward in time to preserve reversibility.

Firstly the momentum is sampled from a multivariate Normal distribution φ? ∼
N (0, Ip), then a slice variable is sampled from u ∼ U(0, exp(log p(ψ|y)− 1

2φ
?Tφ?)). Then

a binary tree is constructed by sampling a direction, v ∈ {−1, 1} and taking a number of

leapfrog steps with step-size vε. At each level, j of the tree, 2j leapfrog steps are taken,

for each step if log(u) ≤ log p(ψ?|y) − 1
2φ

?Tφ? then the proposed pair is added to the

candidate set. The binary tree stops growing when either direction has made a U-turn or

the position corresponds to area of extremely low likelihood. If a branch of the tree makes

a U-turn, the level of the tree corresponding to that branch is not added to the candidate

set. Finally, the position (and momentum) is sampled uniformly from the candidate set.

A more recent version of NUTS uses multinomial resampling of the trajectories instead of

the slice-sampling step described above [Betancourt, 2017].

The combination of dual-averaging and eHMC or NUTS allows for “tuning-free” infer-

ence algorithms, which empowers practitioners to explore new models without implement-

ing new inference algorithms. There are limitations to these algorithms, however, in that

they require an log of the un-normalised posterior function which can be both evaluated

and differentiated. Hence, if there does not exist a re-parameterisation, discrete param-

eters can not be used as this introduces discontinuities in the log of the un-normalised

posterior and results in the function not being differentiable. Recently gradient based

proposal methods for PMMH (see section 5.3) have been explored by approximating both

the gradient and the likelihood using the particle filter [Nemeth et al., 2016].

3.5 Automatic Differentiation

The need to calculate gradients in many inference and optimisation algorithms such as

Hamiltonian Monte Carlo (HMC), variational inference [Kucukelbir et al., 2017] and the

Metropolis-adjusted Langevin algorithm [Roberts and Rosenthal, 1998], among others has

led to an interest in automatic differentiation (AD). AD is a way of calculating derivatives

of functions while at the same time evaluating them. This is not numerical differentiation

or symbolic differentiation but rather exact differentiation which returns the value of a

derivative at a point [Wang et al., 2018]. It is straightforward to implement forward mode

automatic differentiation in a class based language. However, the number of computations

performed using forward mode AD depends on the dimension of the input space, and

hence does not scale well to parameter inference in models involving a large number of

parameters. On the other hand the number of computations required for reverse mode
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automatic differentiation scales with the dimension of the output. In gradient based

inference methods used for Bayesian inference the gradient of the log-posterior with respect

to the free-parameters is required, this is a function from Rn → R and hence reverse mode

AD is typically more efficient. Automatic differentiation can be used to automate the

calculation of exact derivatives needed when performing the leapfrog steps in HMC.

3.5.1 Forward Mode Automatic Differentiation

Dual numbers can be used in order to calculate derivatives automatically and exactly.

Each real number has a corresponding dual number, which is the number, y ∈ R plus a

small innovation, ε such that ε2 = 0.

Derivatives can be calculated by evaluating functions using the dual number, for in-

stance the function f : R→ R defined by f(x) = x2+2x+5, the derivative is f ′(x) = 2x+2.

In order to calculate the derivative automatically using dual numbers, the function is eval-

uated using the dual number equivalent to a chosen value of x for instance x = 5, has the

dual number 5 + ε then

f(5 + ε) = (5 + ε)2 + 2(5 + ε) + 5,

= 25 + 10ε+ ε2 + 10 + 2ε+ 5,

= 40 + 12ε.

In this way, the evaluation of f using the dual number has resulted in the evaluation of

f(x), and f ′(x) simultaneously with f ′(x) being given by the coefficient of ε. This is the

essence of forward mode automatic differentiation.

Dual numbers can be used to implement forward mode automatic differentiation in

Scala by overloading the numeric operators needed to implement the desired function.

Firstly a class representing the dual number is defined as an algebraic data type:

case class Dual(real: Double , eps: Double)

Then primitive numeric operators are implemented, with their associated derivative in the

eps argument:

def plus(x: Dual, y: Dual) =

Dual(x.real + y.real, x.eps + y.eps)

def minus(x: Dual, y: Dual): Dual =

Dual(y.real - x.real, y.eps - x.eps)

def times(x: Dual, y: Dual) =

Dual(x.real * y.real, x.eps * y.real + y.eps * x.real)

def div(x: Dual, y: Dual) =
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Dual(x.real / y.real,

(x.eps * y.real - x.real * y.eps) / (y.real * y.real))

Listing 3.5: Primitive functions implemented using dual numbers

The operators can be used to simultaneously evaluate a function and its derivative. Note

that the function times uses the product rule and div uses the quotient rule to calculate the

second argument. Consider the function g(x) = 5x with derivative g′(x) = 5. A function

with type Dual => Dual can be implemented using the functions defined in listing 3.5

def f(x: Dual): Dual = times(x, Dual(5, 0))

The function can then be evaluated at x = 3, substitution is used to reason about the

evaluation of the function

f(Dual(3, 1)) = times(Dual(3, 1), Dual(5, 0))

= Dual(3 * 5, 1 * 5 + 0 * 3)

= Dual(15, 5)

Constants are represented as a Dual number with zero in the eps argument. Special

functions such as log, exp and trigonometric functions can be can be implemented in

terms of dual numbers. The Numeric type class can be used to implement the operators,

then the function can be written exactly the same as a function of built in numeric types.

This implementation allows univariate functions to be automatically differentiated.

Example: Normal Likelihood

Consider n-independent observations assumed to follow a Normal distribution:

yi ∼ N (µ, 22), i = 1, . . . , n, (3.5)

with known standard deviation σ = 2. The prior distribution is chosen to be µ ∼ N (0, 1)

and the log-posterior is

p(µ|y) ∝ p(µ)

N∏
i=1

p(yi|µ)

= (2π)−
1
2 exp

(
−µ

2

2

)
(8π)−

N
2 exp

(
−1

8

N∑
i=1

(yi − µ)2

)

Then taking the log gives

log p(µ|y) = −1

2
log(2π)− µ2

2
− N

2
log(8π)− 1

8

N∑
i=1

(yi − µ)2
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The kernel of the log-posterior is a function of mu, defined as a Numeric value:

def logPos[A: Numeric](ys: Vector[Double], mu: A) =

- 0.5 * (mu * mu) - 0.125 * ys.

map(_ - mu).

map(x => x * x).

reduce(_ + _)

The derivative of the log-posterior with respect to µ can be calculated by-hand

∂ log p(µ|y)

∂µ
= −µ+

1

4

N∑
i=1

(yi − µ)

When the function logPos is evaluated it should return the log-posterior and the derivative

in a Dual object. The derivative calculated using dual numbers can then be compared to

the analytic derivative.

logPos(ys, Dual.pure(2.0))

Automatic differentiation using dual numbers is equivalent to applications of the chain

rule:

(f ◦ g)′ = (f ′ ◦ g)g′ (3.6)

Combinations of primitive functions can be differentiated using repeated applications of

the chain rule. flatMap can be defined for the Dual class which encapsulates the chain rule.

This presentation of forward mode automatic differentiation was first outlined by [Welsh,

2018].

case class Dual[A: Numeric](real: A, eps: Double) {

def flatMap[B: Numeric](f: A => Dual[B]): Dual[B] =

val x = f(real)

val nextEps = eps * x.eps

Dual(x.real, nextEps)

}

The Numeric context bound is required since the primitive functions, such as multi-

plication, are defined explicitly in terms of their real result and derivative; hence an

eps: Double has to be multiplied by a real: A when applying the product rule for dif-

ferentiation:

def times(x: Dual[A], y: Dual[A])(implicit ev: ConvertableFrom[A]) =

Dual[A](x.real * y.real,

x.eps * ev.toType[Double](y.real) +

y.eps * ev.toType[Double](x.real))
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The derivatives of special functions can be written as:

def sin[A: Numeric](a: Dual[A])(implicit ev: A =:= Double) =

Dual(math.sin(real), math.cos(real) * eps)

def log[A: Numeric](a: Dual[A])(implicit ev: A =:= Double) =

Dual(math.log(a.real), a.eps / a.real)

The derivatives of the special functions can also be written using flatMap

def sin(a: Dual[A])(implicit ev: A =:= Double) =

a.flatMap(x => Dual(math.sin(x), math.cos(x)))

def log(a: Dual[A])(implicit ev: A =:= Double) =

a.flatMap(x => Dual(math.log(real), 1 / real))

Implementing forward mode AD using a monad and the Numeric type class means the

function g(x) = 5x can be written as:

def g[A: Numeric](x: A): A = x * 5

Then flatMap can be used to apply another function with signature Double => Dual[Double].

If the function applied is h(x) = 2x then the expected result evaluated at x = 3 is

h(g(3)) = 30 and (h ◦ g)′(3) = 10. The function can be applied as follows

def h(x: Double): Dual[Double] = pure(x).times(const(2.0))

g(Dual.pure(3.0)).flatMap(h)

// Dual(30.0, 10.0)

The implementation becomes more complex as functions of multiple arguments are

considered, since a separate ε is required for the derivative with respect to each argu-

ment [Manzyuk, 2012]. Figure 3.2 is a representation of a function with multiple argu-

ments f(x1, x2) = x1x2 + x21. The arrows represent function application, intermediate

nodes represent the result of each primitive function and are labelled x3 and x4.

Differentiation of the function with respect to all variables in the graph using forward

mode automatic differentiation requires two traversals of the graph. The derivative of a

node, xk with parent nodes Pa(xk) with respect to the input variable x1 is derived from

the chain rule

∂xk
∂x1

=
∑

j∈Pa(xk)

∂xk
∂xj

∂xj
∂x1

. (3.7)

Figure 3.3 shows the forward pass required to calculate the gradient ∂f
∂x1

∣∣∣∣
x1=1,x2=2

.

This single forward pass evaluates the function and the derivative with respect to x1 given

the known derivatives of primitive functions such as product and power. A second pass

has to be computed in order to determine the derivative with respect to x2. The gradient
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f

+
x4

×

x3

x2

x2 x1

Figure 3.2: A computational graph showing the decomposition of f(x1, x2) = x1x2 + x21
into primitive functions.

f = 3
df
dx1

= 4

+
x4 = 2
dx4

dx1
= 2

×

x3 = 1
dx3

dx1
= 2

x2
x2 = 2
dx2

dx1
= 0

x1 = 1
dx1

dx1
= 1

Figure 3.3: A computational graph showing the applications of the chain rule required to
calculate the partial derivative ∂f

∂x .

calculated by hand is, ∂f
∂x1

= x2 + 2x1

A method used to implement automatic differentiation for functions of multiple argu-

ments f : Rn → R is to track a vector of derivatives. The definition of the Dual class can

be altered (now called DualV for vector) to include multiple derivatives:

case class DualV(real: Double , dual: Vector[Double])

Then functions are defined to create dual numbers from constants and variables. How-

ever the dimension of the resulting function is required a-priori, the dimension corresponds

to the number of parameters in the log-posterior since the length of the vector dual must

be equal to the number of parameters:

def constant(x: Double , dim: Int) =

DualV(x, Vector.fill(dim)(0.0))

def variable(x: Double , dim: Int, index: Int) =
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DualV(x, Vector.fill(dim)(0.0).updated(index , 1.0))

The operators must be defined again for the class DualV, however they are identical to

the univariate calculations and are performed element-wise. The location of the indices

determines if each parameter should be treated as a constant or a variable when calculating

the dual argument.

Then to define the log-posterior of a model involving multiple parameters each constant

must be lifted into dual number using constant , with the variables lifted using variable .

Consider the same Normally distributed example from equation (3.5), but this time the

standard deviation is also unknown. The prior for the mean is Normal and the prior for

the variance is the inverse Gamma distribution with shape and rate, α = 3, β = 3. The

log-density of the prior distributions can be written as:

def priorMu(mu: DualV): DualV = {

val muMu = const(0.0, 2)

val sigmaMu = const(1.0, 2)

-0.5 * log((0.5 * const(math.Pi, 2)) * sigmaMu) -

0.5 * ((mu - muMu) * (mu - muMu))

}

def priorSigma(sigma: DualV): DualV = {

val alpha = const(3.0, 2)

val beta = const(3.0, 2)

-(alpha + 1) * log(sigma) - (beta / sigma)

}

Then the log-likelihood for the model can be written as:

def ll(ys: Vector[Double])(mu: DualV , sigma: DualV): DualV = {

-const(ys.length , 2) * log((2 * const(math.Pi, 2)) * (sigma * sigma)) -

(const(0.5, 2) / (sigma * sigma)) * ys.

map(y => const(y, 2) - mu).

map(x => x * x).

reduce(_ + _)

}

Where ys is the observed data. Notice that each constant has to be lifted into the context

of the dual number using const with the correct dimension. Now the log-posterior is the

sum of the log-priors and the log-likelihood. When the log posterior is evaluated using the

variables mu and sigma the log-posterior and the gradient will be returned simultaneously

in the DualV class.

The log-likelihood and gradient information can be used to implement HMC. Au-
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f = 10

+

x4 = 6

×

x3 = 4

x2

x2 = 3 x1 = 2

dx4
dx1

= 3

df
dx3

= 1

dx3
dx1

= 4

dx4
dx2

= 2

df
dx4

= 1

Figure 3.4: A computational graph with derivatives of each input variable calculated on
the nodes of the adjoint graph.

tomatic differentiation can be a part of a monadic probabilistic program which allows

distributions to be composed into hierarchical models. Each distribution implements the

density in terms of dual numbers and hence the mechanics of calculating and deriving the

log of the un-normalised posterior for a model are abstracted away from the end user.

3.5.2 Reverse Mode Automatic Differentiation

Reverse mode AD is typically faster than forward mode AD when functions have a larger

input space than output space ie. f : Rn → Rm where n > m. The log of the un-

normalised posterior is a function from the parameters of dimension n to a single real

number.

In order to differentiate a function using reverse mode automatic differentiation the

steps are similar to forward mode differentiation, the derivatives of simple primitive func-

tions are defined (see the implementation of numeric operations for dual numbers in list-

ing 3.5). The function is then decomposed into its constituent primitive functions as shown

in Figure 3.2. The derivative of f(x1, x2) = x1x2 + x21 with respect to each node of the

adjoint graph is calculated at x1 = 2, x2 = 3 in figure 3.4.

Then proceeding in reverse through the graph to calculate the derivative of the function

with respect to the input variables:

∂f

∂xk
=

∑
j∈Ch(xk)

∂xj
∂xk

∂f

∂xj

where Ch(xk) represents the set of children of node xk. Figure 3.5 shows the reverse sweep

through the computation graph required to calculate the derivative with respect to all of

the arguments of the function.

Reverse mode AD is a graph traversal and can be implemented in an FP language
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f = 10
df
df

= 1

+

x4 = 6
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dx4

= 1
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dx3

= 1
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dx2
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dx4
dx1
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dx2
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df
dx4
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Figure 3.5: Reverse pass through the graph to calculate the deriviative of f(x1, x2) =
x1x2 + x21 with respect to all the input variables.

using pattern matching on the operators. This is the approach used by Rainier.

3.6 Example Probabilistic Programs

This section contains some example programs written using the Rainier DSL. The models

are intentionally simple, as they are intended to represent the starting point of a prob-

abilistic program. Areas in which assumptions of these simple models can be relaxed in

order to improve model fit are highlighted. This emphasizes the flexibility of probabilistic

programming.

For each of the examples the HMC algorithm with dual averaging and L = 5 leapfrog

steps was used with 10,000 iterations for the warm-up run during which the initial leapfrog

step size is determined followed by 50,000 sampling iterations with a thinning factor of 5.

3.6.1 Linear Model

Linear models are statistical models specifying a relationship between covariates, X ∈
Rn×p and a univariate outcome Y ∈ Rn for each example via the coefficient β, a (p+ 1)-

vector. Each row of the outcome matrix Y is denoted as yi and is related to each row of the

covariate matrix, xi by the coefficient matrix β. The covariate matrix has a column vector

of ones prepended as the first column which represents the intercept. The observations

have independent normally distributed noise with equal variance:
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Figure 3.6: (a) Simulated data from a linear model with β0 = 4.0, β1 = −1.5, σ = 0.5 and
covariates simulated independently from a standard Normal distribution. (b) Parameter
posterior diagnostic plots for the linear model using the HMC kernel and simulated data,
the actual values of the parameters are plotted using the dashed lines. The traceplots of
the MCMC draws, (top). The autocorrelation function for each parameter plots, (middle).
The empirical marginal parameter posterior densities, (bottom).

yi = βTxi + εi, εi ∼ N (0, σ2), (3.8)

β ∼ MVN(µβ, Σβ),

σ ∼ Exponential(λσ).

The model assumptions can be relaxed, but then model interpretation can become more

challenging. 1,000 observations from this model are simulated with β0 = 4.0, β1 =

−1.5, σ = 0.5 and the covariates simulated from the standard Normal distribution. The

bivariate relationship of the simulated data is plotted in Figure 3.6 (a).

Listing 14 shows a probabilistic program for a linear model with covariates x and

outcome y. Each parameter is added to the model using the .param notation and the, p

covariates (p = 1) are related to each scalar outcome using Predictor .from. The linear

model is expressed as a function which can be re-used in more complex hierarchical models,

such as the random effects model presented in section 3.6.3.

0 def linearModel(pa: Real, pas: Real, pb: Real, pbs: Real,

1 sigma: Real, data: Vector[(Double , Double)]) = for {

2 alpha <- Normal(pa, pas).param

3 beta <- Normal(pb, pbs).param

4 _ <- Predictor[Double].from { x =>
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5 Normal(alpha + beta * x, sigma)

6 }

7 .fit(data)

8 } yield Map("alpha" -> alpha , "beta" -> beta, "sigma" -> sigma)

9

10 val model = for {

11 sigma <- Exponential(3.0).param

12 params <- linearModel(0.0, 0.01, 0.0, 0.01, sigma , data)

13 } yield params

Listing 3.6: Simple linear model with one covariate and an intercept with a Normal

observation model and fully specified prior distributions

Figure 3.6 (b) shows posterior inferences using simulated data with β0 = 4.0, β1 =

−1.5, σ = 0.5 and the covariates simulated from a standard Normal distribution.

It is straightforward to change the observation distribution of this model, for instance

to a generalised linear model with a Poisson observation distribution by changing line 5

to

Poisson((alpha + beta * x).exp)

In addition the standard deviation parameter sigma is no longer required when using a

Poisson observation distribution. Any suitable prior distributions can be specified for the

parameters; they do not have to be conditionally conjugate, as would be required for Gibbs

sampling.

3.6.2 Mixture Model

In a mixture model the observed data is assumed to arise from a finite mixture of inde-

pendent distributions. The mixture model considered here is a mixture of m = 3 Normal

distributions with different mean values, µk, k = 1, . . . ,m and a common variance.

yi ∼ N (µk, σ
2),

k ∼ F(θ),

θ ∼ Dir(αααθ),

µk ∼ N (µµk , σ
2
µk

),

σ ∼ Exponential(λσ).

where each index k is drawn from a discrete distribution F with probabilities θ. The

likelihood of the mixture model can be written as:
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p(y|θ, µ, σ) =
m∑
k=1

θkN (y;µk, σ). (3.9)

This mixture distribution has a smooth log-density and hence can be differentiated and

inference can be performed using HMC. In addition the mixture distribution is already

implemented in Rainier. The mixture model can be defined as

def normalise(alphas: Seq[Real]) = {

val total = alphas.reduce(_ + _)

alphas.map(a => a / total)

}

val model = for {

unnormThetas <-

RandomVariable.traverse(Vector.fill(3)(Gamma(3.0, 1.0).param))

thetas = normalise(unnormThetas)

mus <- RandomVariable.traverse(Vector.fill(3)(Normal(0, 1).param))

sigma <- Exponential(3.0).param

dists = mus.

map(mu => Normal(mu, sigma)

components: Map[Continuous , Real] = dists.zip(thetas).toMap

_ <- Mixture(components).fit(ys)

} yield thetas ++ mus ++ sigma

Listing 3.7: Rainier model for a Gaussian mixture model with m = 3 components.

The probability of each mixing component is θi, i = 1, 2, 3. The mixing components

must be greater than zero and sum-to-one, they are drawn from a Dirichlet distribution by

drawing each component from a Gamma distribution with scale, θ = 1 then normalising

the values. Figure 3.7 (a) shows a simulation from the mixture model and (b) shows the

posterior diagnostics for the means and mixing components.

3.6.3 Random Effects Model

Hierarchical models give an opportunity to emphasise the manipulation of probabilistic

programs as values in the embedded DSL. This model is a random effects model with

p classes each with n observations. Each class is modelled using an independent linear

regression.
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Figure 3.7: (a) 10,000 simulations from a three component Normal mixture model
with mean values µ = {−2.0, 1.0, 3.0}, common variance σ = 0.5 and proportions
θ = {0.2, 0.3, 0.5} (b) Parameter posterior marginal density plots for the mixture model
parameters, the parameter values used to simulate the data are vertical dashed lines.
Note that the inferred components are permuted due to the truth, due to the permutation
symmetry in the posterior.

Yij = αi + βixj + εij , εij ∼ N (0, σ2),

αi ∼ N (αc, σ
2
a),

βi ∼ N (βc, σ
2
b ).

Each of the i = 1, . . . , p classes have the same covariates xj , j = 1, . . . , n and have a

linear relationship with independent coefficients, αi and βi. The standard deviation of the

observation, σ is assumed to be the same for each class and observation. The coefficients

of the covariates for all models are assumed to be Normally distributed with the same

mean and variance, this induces correlation between the p linear models. αc, σa, βc, σb and

σ are given the following prior distributions:

αc ∼ N (0, 106),

σa ∼ Gamma(10−3, 103),

βc ∼ N (0, 106),

σb ∼ Gamma(10−3, 103),

σ ∼ Exponential(3).
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The Gamma distribution is parameterised here using shape, k and scale, θ such that the

mean is kθ. Each observation is represented by a class containing the index of the class,

the covariate, x, and the observation, y:

case class Observation(

id: Int,

x: Double ,

y: Double

)

Then the prior distributions are translated to Rainier. The Normal distribution is param-

eterised by its mean, µ and standard deviation σ.

val prior = for {

alphaC <- Normal(0.0, 1000).param

alphaSigma <- Gamma(0.001, 1000).param

betaC <- Normal(0.0, 1000).param

betaSigma <- Gamma(0.001, 1000).param

sigma <- Exponential(3).param

} yield (alphaC , alphaSigma , betaC , betaSigma , sigma)

A function to fit a single linear regression for the ith class can be re-used from the function

linearModel presented in section 3.6.1.

linearModel returns a RandomVariable monad which is its own probabilistic program,

but this program only specifies the model for a single class. The collection of observations,

x and y for a single class can be grouped by the id of the class using groupBy and a linear

regression can be fit for each class using map. When the function groupBy is called on the

collection of observations, it returns a Map[Int, Iterable[ Observation ]], the key of the

map is an integer representing the id of each class and the Iterable in the value of the

Map corresponds to the observations for each class. The application of linearModel to

each element of the Map returns an

Iterable[ RandomVariable [(Double, Double)] which is converted to a Vector before ap-

plying the function RandomVariable .traverse . traverse “reverses” the order of the ef-

fects to return a RandomVariable [Vector[(Double, Double)]] which is a model and can

be sampled from.

val model: RandomVariable[Map[String , Real]] = for {

(ac, sa, bc, sb, sigma) <- prior

_ <- RandomVariable.traverse(

observations.

groupBy(_.id).

map { case (id, obs) =>

linearModel(ac, sa, bc, sb, sigma , obs.map(ys => (ys.x, ys.y)))
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Figure 3.8: Diagnostic plots for the hierarchical random effects model with the values used
to simulate the overlaid using dashed lines. Traceplots, (top). Autocorrelation function,
(middle). Empirical marginal posterior densities, (bottom).

}.toVector)

} yield (ac, sa, bc, sb, sigma)

This implementation emphasises the compositionality of probabilistic programs em-

bedded in a host language. The higher order functions, groupBy and map are familiar

to any functional programmer and can be used to combine simple models into complex

hierarchical models.

The diagnostics of the draws from the posterior distribution obtained using HMC on

the random effects hierarchical example are presented in figure 3.8. The actual values used

to simulate the data are plotted using dashed lines.

3.7 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods were introduced in section 1.3.5. Several func-

tional implementations of SMC algorithms such as the SMC2, pseudo marginal Metropolis-
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Hastings (introduced in section 5.3) and resample move SMC have been proposed in Ścibior

et al. [2018]. The approach by Ścibior et al. uses a sampling based probability monad

and a conditioning monad. SMC and MH inference methods are developed which are

called inference transformers, these are similar to monad transformers which allow (some)

monads to compose. The SMC and MH kernels can then be combined to produce the

aforementioned algorithms. This section presents a simple implementation of an SMC

monad which reuses elements of the sampling based probability monad in section 3.2 in

order to build general transition kernels by composing distributions with calls to flatMap .

In SMC a distribution is represented by a particle cloud with associated importance

weights, {(xi, wi) : i = 1, . . . , N}. Hence a distribution monad with an internal particle

cloud can be used to implement SMC:

trait Smc[A] {

val cloud: Vector[(A, Double)]

implicit val n: Int

def flatMap[B](f: A => Smc[B]): Smc[B] = {

val sms = cloud.flatMap {

case (x, lw) => {

val next = f(x)

next.cloud.map { case (x, lw1) => (x, lw1 + lw) }

}

}

SmcDist(sms).resample

}

def resample: Smc[A] = {

val logWeights = cloud.map(_._2)

val ns = logWeights.size

val maximum = logWeights.max

val expMax = logWeights map (x => exp(x - maximum))

val meanWeight = expMax.sum / ns

val likelihood = maximum + log(meanWeight)

val indices = Multinomial(DenseVector(expMax.toArray)).

sample(n).toVector

val newParticles = indices map (i => cloud(i))

SmcDist(newParticles map { case (x, lw) => (x, likelihood) })

}

}

case class SmcDist[A](cloud: Vector[(A, Double)])

(implicit val n: Int) extends Smc[A]

This defines the Smc trait which contains a particle cloud consisting of a vector of tuples,

each tuple contains the value of the particle and the associated log-weight. Additionally,
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the trait contains the flatMap and resample methods. SmcDist behaves as a constructor

for an Smc trait and defines the particle cloud and has as an implicit argument, the value

for the size of the particle cloud n. flatMap applies a monadic function transforming the

values in the particle cloud and updating the weights using by calculating the product

(addition on the log-scale). Next, the particle cloud is put back into the context of the Smc

monad using the constructor and resampled. The resample method uses the log-sum-exp

trick as expanded upon in section 5.2.1. The flatMap method is used to compose empirical

distributions represented by particle clouds, since the Smc monad has a particle cloud of

dimension n used to represent the distribution, composing with another distribution with

dimension m results in a particle cloud of dimension n×m. This is especially troubling for

filtering in time series where each observation has an associated unknown latent variable;

in this case the particle cloud grows as the length of the time series increases. To avoid the

program exhausting memory and allow filtering to scale to large time series the particle

cloud must be thinned at each application of flatMap . Thinning is performed by sampling

a fixed number of particles when performing the resample step at the end of the flatMap ,

the multinomial distribution with n×m weights is used to sample n particles.

The constructor in listing 3.8 evaluates the parameter a by name, this is a lazy evalu-

ation of the argument. This means that a distribution of weighted values can be created

using a suitable sampling function.

def apply[A](numParticles: Int, a: => A): Smc[A] = {

implicit val n = numParticles

SmcDist(Vector.fill(n)((a, 0.0)))

}

Listing 3.8: Constructor for the SMC class which evaluates the argument by name in

order to represent a distribution of values using n points

The sampling function then creates a weighted particle cloud. Any distribution which has

been implemented using the Rand monad introduced in section 3.2 can be reused for an

Smc by implementing a new method in the Rand class:

def smc(implicit n: Int): Smc[A] =

Smc(n, draw)

Now any distribution which is already defined in Rand can be used in the transition kernel

for the latent state in the particle filter, this utilises the apply function defined in listing 3.8.

Rand however does not provide an implementation for the likelihood, in order to use a

distribution as a likelihood and evaluate the pdf or pmf then a new trait must be defined:

trait Likelihood[A] extends Smc[A] {

def ll(y: A): Double
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def ll(ys: A*): Double = ys.map(ll).sum

def fit(ys: A*): Smc[A] =

SmcDist(cloud map { case (x, lw) => (x, lw + ll(ys: _*)) })

}

This trait leaves the likelihood for a single observation of generic type unimplemented

and provides implementations for sequences of observations. The fit method is used to

calculate the likelihood of a new observation in the Smc monadic program.

The Normal distribution can be implemented by re-using the random generator already

defined using the Rand monad to define the particle cloud and by defining the ll as the

probability density function:

def normal(mu: Double , sigma: Double)(implicit numParticles: Int):

Likelihood[Double] = new Likelihood[Double] {

val cloud: Vector[(Double , Double)] =

Rand.normal(mu, sigma).smc(numParticles).cloud

implicit val n: Int = numParticles

def ll(y: Double) = Gaussian(mu, sigma).logPdf(y)

}

In order to determine the posterior distribution of a latent-variable at time t given the

particle cloud at time t− 1 then flatMap is applied to the distribution at time t− 1 using

a state transition function represented by a distribution or composition of distributions.

As an example consider an AR(1) state space model introduced in section 1.3.5

def kernel(xs: Smc[Double], y: Double): Smc[Double] =

for {

a <- xs

x1 <- normal(p.mu + p.phi * (a.head - p.mu), p.sigma)

_ <- normal(x1, 0.5).fit(y)

} yield (x1 :: xs)

The function kernel is a single step of the bootstrap particle filter with resampling per-

formed at every step. This single step of the bootstrap particle filter can be applied to

a time series using the function foldLeft , returning an Smc monad containing a list of

posterior distributions representing the latent-state:

def pFilter(

p: Parameters ,

ys: Vector[Double]): Smc[List[Double]] = {

val sd = p.sigma / sqrt((1 - p.phi * p.phi))

val init: Smc[List[Double]] = for {

x0 <- Smc.normal(p.mu, sd)

} yield List(x0)
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Figure 3.9: Simulated latent-state of the AR(1) model with µ = 1, φ = 0.8, σ = 0.3 and
the mean of the filtered state with 90% credible intervals.

ys.foldLeft(init)(kernel)

}

Figure 3.9 shows the output from applying the particle filtering algorithm to a simulated

AR(1) dataset. The mean of the filtering distribution is calculated along with a 90%

credible interval for the state.

The SMC monad implemented in this chapter can be used to develop arbitrary tran-

sition kernels by transforming the distributions from section 3.2 into weighted particle

clouds. The particle clouds can then be combined using flatMap to make arbitrarily com-

plex latent-state transition distributions. Conditioning is performed by calculating the

weights using the fit method defined in the Likelihood trait, representing conditional

likelihood of an observation in the state space model . To prevent the particle cloud from

growing large when applying a flatMap , implicit thinning is used by sampling a fixed

number of particles during the multinomial resampling step. This implementation uses

forward simulation from the transition kernel to build a particle filter, this means the im-

plementation is very general and can support any transition kernel which can be forward
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simulated.

3.8 Summary

Probabilistic programming aims to unify Bayesian inference with general programming

languages in order to simplify model exploration and inference. The allows practitioners

to develop novel statistical models with minimal consideration for the underlying inference

algorithms.

This chapter presents a high level overview of the Rainier probabilistic programming

language embedded in Scala. This understanding lead to the contribution of eHMC to the

inference methods provided to practitioners using the Rainier probabilistic programming

language.

In order to maximise the utility of these models, the programming languages should be

embedded in existing general purpose programming languages. Functional programming

languages have powerful, theoretically sound abstractions from category theory, such as

monads, which can be used to develop embedded DSLs for probabilistic programming.

The monadic DSLs introduced in this chapter provide a powerful modelling lan-

guage embedded in the Scala language. The for-comprehension (or similar do-notation

in Haskell) is familiar to Scala programmers and can be used to manipulate distribution

objects. The monadic syntax provided by the for-comprehension is reminiscent of the

syntax in BUGS, Jags and Stan, allows experts in these languages to easily transition to

using the embedded DSL in Scala. In addition, the embedded nature of the language al-

lows practitioners to utilise the features which come with Scala such as functions which can

be used to develop hierarchical models in a modular, composable fashion, as exemplified

in section 3.6.3.

Section 3.7 introduced a new probability monad using sampling importance resampling

to perform parameter inference. The new language was demonstrated using a partially

observed Markov process with a Poisson observation distribution.
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Chapter 4

Dynamic Linear Models

Dynamic Linear Models (DLM) are a flexible and well studied class of time series models

suitable for modelling non-stationary time series with both univariate and multivariate

observations. Dynamic linear models are otherwise known as linear dynamical systems or

state space models, the latter name highlighting the latent unobserved state but alluding to

a larger class of models with (possibly) non-linear dynamics and non-Gaussian latent-state

and observation distribution. DLMs are linear, Gaussian systems which means the latent-

state is continuous and Gaussian and the observations consist of a linear transformation

of the latent-state plus Normal noise representing measurement error. Special properties

of the Normal distribution allow the Kalman filter [Kalman, 1960] to be used to determine

the distribution of the latent-state at each time conditional on all the information up to

that time, called the filtering distribution.

Dynamic linear models are flexible, have online forecasting available in a closed form

using the Kalman Filter and are therefore well suited to the domain of interest, dynamic

sensor networks such as the Urban Observatory. Specification of different models for var-

ious environmental phenomenon is straightforward, by specifying observation and system

matrices as in section 4.1. Additionally, simple models can be composed to model com-

plex univariate and multivariate systems as described in section 4.1.1 for univariate models

and section 4.1.2 for multivariate models. Inference is scalable for large streams of data

since filtering can be performed online using the Kalman Filter described in section 4.2,

the filter can be applied to a potentially unbounded stream of incoming data. Online

filtering allows forecasts to be updated given the latest observations without re-running

offline inference algorithms (such as MCMC). Simultaneous online state and parameter

estimation is also possible using particle filtering methods and marginalisation in the case

of the Rao-Blackwell particle filter introduced in section 4.6.

This chapter will introduce the DLM and the Kalman filter for online state-inference in

section 4.2 and offline parameter inference using forward filtering backward sampling and
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MCMC in section 4.4. Section 4.5 describes practical, numerically stable, implementations

of the Kalman filter using Joseph form [Bucy and Joseph, 2005] updating and singular

value decomposition of the latent-state covariance matrix. Section 4.6 introduces online

simultaneous state and parameter estimation using particle filtering. An extension of the

DLM such that the latent state is represented in continuous time using a Gaussian diffusion

process is presented in section 4.7. The continuous time latent-state enables the DLM to

be used to model irregularly observed data in a natural way. See West and Harrison [1997],

Petris et al. [2009] for detailed treatments of Dynamic Linear models.

4.1 Introduction to the DLM

Dynamic linear models consist of a latent state, θt ∈ Rn, t = 0, . . . , N , the state evolution

kernel is a linear Gaussian Markov process, θt ∼ N (θt;Gtθt−1,Wt). Observations, Yt ∈ Rp

are observed at discrete time points, t = 1, . . . , N . The observations are conditionally

independent given the latent-state at time t and are corrupted with Gaussian noise. A

general DLM is written as

Yt = F Tt θt + vt, vt ∼ MVNp(0, Vt),

θt = Gtθt−1 + wt, wt ∼ MVNn(0,Wt), (4.1)

θ0 ∼ MVNn(m0, C0).

Here, Ft is an n × p known observation matrix, Gt is an n × n known system evolution

matrix. Vt is the p× p observation covariance matrix representing the measurement noise

and Wt is the n × n system covariance matrix. The observation matrix and the system

matrix (Ft and Gt) are typically chosen by the statistician or scientist analysing the

data whereas the system and observation covariance matrices are learned from data using

appropriate inference schemes. This framework can be used to analyse both stationary

and non-stationary time series. Figure 4.1 shows a directed a-cyclical graph (DAG) of the

DLM which shows the dependence structure of the model.

The first order polynomial DLM is a simple example of a useful dynamic linear model.

The latent state is a random walk with Gaussian innovations. This is a Markov process

with transition kernel p(xt|x1:t−1, σ) = N (xt|xt−1, σ2).
The first order polynomial DLM can be written as follows with static observation and

system matrices Ft = 1 and Gt = 1
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Figure 4.1: Directed a-cyclical graph of a Dynamic linear model. The bottom row shows
the evolution of the latent-state, the horizontal arrows represent state transitions. The top
row shows the observations, which are conditionally independent given the latent-state at
each time point.

−10

0

10

20

30

40

50

0 250 500 750 1000
time

va
lu

e

key observation state

Figure 4.2: Simulated observations and latent-state from a first order DLM with m0 =
0, C0 = 1,W = 3, V = 2.

Yt = θt + vt, vt ∼ N (0, V ),

θt = θt−1 + wt, wt ∼ N (0,W ),

θ0 ∼ N (m0, C0). (4.2)

Figure 4.2 shows 300 simulated values from the first order DLM given in Equation 4.2

with initial state θ0 ∼ N (0, 1). The first order DLM has time homogeneous V and W .
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Figure 4.3: Simulated values from a second order DLM showing a strongly nega-
tive trend with parameter values V = 3,W = diag(2.0, 1.0),m0 = (0.0 0.0)T , C0 =
diag(100.0, 100.0).

The first order model does not display much structure and is useful as a building block

in larger models. The second order DLM can be used to model linear trends. In the second

order model the latent-state is two dimensional; as such, the system noise matrix W is a

2× 2 matrix. The observation matrix and system evolution matrices are given by

F =

1

0

 , G =

1 1

0 1

 . (4.3)

Figure 4.3 shows a simulation from the second order DLM with a strongly negative trend

dominated by state 1.

Dynamic linear models are closely related to linear models. Linear models express a

static relationship between independent observations and associated covariates via a linear

Gaussian model. The regression DLM can be considered as an extension of a linear model

to time varying coefficients. If it is thought that the time series of covariates X1:N is

related to the time series Y1:N in a time inhomogeneous way, then this relationship can be

expressed as a regression DLM

Yt = βTt xt + vt, vt ∼ MVNp(0, Vt),

βt = Gtβt−1 + wt, wt ∼ MVNn(0,Wt),

β0 ∼ MVNn(m0, C0). (4.4)
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Figure 4.4: Simulated values from a Regression time series, where the independent time
series X1:N is a random walk with transition kernel xt|xt−1 = xt−1+ut, ut ∼ U(−1, 1). Co-
variates following a random walk with uniform innovations, (top). Simulated observations,
(bottom).

In the regression DLM, the coefficients, β0:N of the dependent time series X1:N evolve in

time according to the system evolution matrix, Gt and the identified system covariance

matrix, Wt. Figure 4.4 shows a simulation from a regression time series.

Seasonality is an important pattern in time series modelling, such as in environmental

monitoring of temperature, humidity or pollutants. It is possible to model seasonality

using a time dependent observation matrix. The observation matrix consists of trigono-

metric functions which create a Fourier series. Equation 4.5 shows the observation matrix,

P represents the period of the seasonality, t is the current time of the observation and h is

the harmonic. In practice multiple harmonics are used to capture seasonality at varying

time scales. In this case, the system evolution matrix is a 2h × 2h identity matrix. We

have that
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Ft =



sin(2πtP )

cos(2πtP )
...

sin(2πhtP )

cos(2πhtP )


(4.5)

An alternative, and more common approach to modelling seasonality is to encode the

transformation into the system matrix. This has the added benefit that the model matri-

ces, Ft and Gt, are independent of time for regular observations. The G matrix is a block

diagonal matrix consisting of rotation matrices

G =


R(ω, 1) 0 . . . 0

... R(ω, 2) . . . 0

... 0
. . . 0

0 . . . 0 R(ω, h)

 (4.6)

The rotation matrices are parameterised by the frequency ω = 2π
P and the harmonic h

where P is the period of the seasonality. The rotation matrices are:

R(ω, h) =

cos(hω) − sin(hω)

sin(hω) cos(hω)

 . (4.7)

The corresponding observation matrix is 2h× 1 with alternating zeros and ones:

F =
(

1 0 1 . . . 1 0

)T
. (4.8)

Many environmental time series display seasonal patterns, such as temperature which is

higher at noon and during summertime and PM10 (particulate matter measuring less

than 10µm in diameter) which is typically higher during rush hour traffic and lower at

weekends.

4.1.1 Model Composition

In order to model complex univariate time series, the simple models discussed in the

previous section can be composed by combining the system and observation matrices, Gt

and Ft respectively and the system and observation covariance matrices, Wt and Vt. The

observation matrices are to be horizontally concatenated to produce a new observation

matrix, whereas the system evolution and system noise covariance matrices are block

concatenated. The composition of two models with observation and system matrices F1,
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G1 and F2, G2 is:

F =

F1

F2

 , G =

G1 0

0 G2

 . (4.9)

The system covariance matrix is also block concatenated, whereas the observation covari-

ance matrices are not combined and the leftmost observation matrix in the composition

is selected:

V =
[
V1

]
, W =

W1 0

0 W2

 . (4.10)

As an example, consider a seasonal model with a linear trend, the observation and system

matrices for the first order linear trend are F = 1 and G = 1. The observation and system

matrices for the seasonal model are as in equations 4.8 and 4.6 respectively. The composed

model matrices are:

F =



1

1

0

1

. . .

1

0


, G =



1 0 . . . 0

0 R(ω, 1) 0 . . . 0
... 0 R(ω, 2) . . . 0
... 0

. . . 0

0 . . . 0 R(ω, h)


. (4.11)

The observation and system noise covariance matrices are 1-dimensional and 2h + 1-

dimensional square matrices respectively. A simulation from a seasonal model with a

linear trend with h = 3 harmonics is plotted in figure 4.5. DLM composition for a uni-

variate model forms a semigroup with an associative binary operation defined as above.

The binary operation to combine DLMs is closed which means that the composition of

two DLMs is also a DLM and can be composed to form arbitrarily complex models.

4.1.2 Modelling Multivariate Time Series

Some time series are very closely related, such as exchange rates from several different

European countries or environmental processes such as temperature in neighbouring coun-

ties. These examples of closely related time series can be modelled using a joint DLM.

DLMs can be combined to model multivariate time series where each observation Yt is a

p-dimensional vector.

96



Chapter 4. Dynamic Linear Models
observation

state1
state2

state3
state4

state5
state6

state7

750 800 850 900 950 1000

750 800 850 900 950 1000

time

time

Figure 4.5: Simulated observations, (top) and states, (bottom) from a seasonal DLM
composed with linear trend DLM. The parameter values were chosen to be V = 1.0,
W = diag(0.01, 0.2, 0.4, 0.5, 0.2, 0.1, 0.4).
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Any two DLMs can be combined into a multivariate DLM, by block concatenating the

observation matrices, system matrices and error matrices. If the model matrices are F1, F2

and G1, G2 then the resulting model matrices of the multivariate DLM are:

F =

F1 0

0 F2

 , G =

G1 0

0 G2

 . (4.12)

In order to couple these DLMs, the latent-state can be coupled by introducing parameters

in the off diagonal of the system evolution matrix, G. Additionally, the system noise

covariance matrix can be considered to be a full rank non-diagonal matrix. This can prove

problematic for models with a high dimensional latent-state due to the large number of

parameters to estimate. A factor model or a parameterised covariance function can be

used to reduce the number of free parameters in a large covariance matrix. Factor models

are considered in chapter 7.

4.2 Kalman Filter

One area of interest when modelling time series data using DLMs is to determine the

filtering distribution p(θ1:N |Y1:N , ψ) where ψ = {V,W,m0, C0} represents the static pa-

rameters. The Kalman filter is a recursive, online algorithm which can be used to estimate

the latent-state of a DLM.

The Kalman filter consists of repeated applications of Bayes theorem where the poste-

rior of the latent-state from the previous step is used as the prior in the subsequent step.

An inductive argument, and special properties of the Normal distribution can be used to

derive the Kalman filter recursions. Suppose the posterior latent-state at time t is given

by p(θt|y1:t) = N (mt, Ct) then the mean of the prior state at time t+ 1 is given by

at+1 = E(θt+1|y1:t)
= E(E(θt+1|θt, y1:t)|y1:t),
= E(Gt+1θt|y1:t) = Gt+1mt

This is an application of the law of total expectation. The variance can be calculated

similarly using the law of total variance:
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Rt+1 = Var(θt+1|y1:t)
= E(Var(θt+1|y1:t, θt)|y1:t) + Var(E(θt+1|y1:t, θt)|y1:t),
= E(Wt+1|y1:t) + Var(Gt+1θt|y1:t),
= Wt+1 +Gt+1CtG

T
t+1

The mean of the one-step forecast for the observation at time t+ 1 is given by:

ft+1 = E(Yt+1|y1:t),
= E(E(Yt+1|θt+1, y1:t)|y1:t),
= E(Ft+1θt+1|y1:t),
= Ft+1at+1.

The variance of the one-step forecast is given by:

Qt+1 = Var(Yt+1|y1:t),
= E(Var(Yt+1|θt+1, y1:t)|y1:t) + Var(E(Yt+1|θt+1, y1:t)|y1:t),
= E(Vt+1|y1:t) + Var(Ft+1θt+1|y1:T ),

= Vt+1 + Ft+1Rt+1F
T
t+1.

Now suppose yt+1 is observed and the latent-state is updated to the posterior distribution.

p(θt+1|y1:t) = N (at+1, Rt+1) is the prior distribution of the latent-state at time t+ 1, the

conditional likelihood of the observation is p(yt+1|θt+1) = N (Ft+1θt+1, Vt+1) then the

posterior p(θt+1|y1:t+1) can be found using Bayes theorem:
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p(θt+1|y1:t+1) ∝ p(yt+1|θt+1)p(θt+1|y1:t)
= N (yt+1;Ft+1θt+1, Vt+1)N (θt+1; at+1, Rt+1)

∝ exp

{
1

2
(yt+1 − Ft+1θt+1)

TV −1t+1(yt+1 − Ft+1θt+1)

+
1

2
(θt+1 − at+1)

TR−1t+1(θt+1 − at+1)

}

∝ exp

{
1

2
θTt+1(R

−1
t+1 + F Tt+1V

−1
t+1Ft+1)θt+1 − 2θTt+1(F

T
t+1V

−1
t+1yt+1 + at+1R

−1
t+1)

}
= N (mt+1, Ct+1).

Then the mean and covariance can be written as

mt+1 = Ct+1(F
T
t+1V

−1
t+1yt+1 + at+1R

−1
t+1), (4.13)

Ct+1 = (R−1t+1 + F Tt+1V
−1
t+1Ft+1)

−1. (4.14)

This can be expressed in a sequential form using the Woodbury matrix identity [Woodbury,

1950], which states:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (4.15)

Using this identity the covariance can be re-written as

Ct+1 = Rt+1 −Rt+1F
T
t+1(Vt+1 + Ft+1Rt+1F

T
t+1)

−1Ft+1Rt+1,

= Rt+1 −Rt+1F
T
t+1Q

−1
t+1Ft+1Rt+1.

Then the mean can be re-written as

mt+1 = mt +Rt+1F
T
t+1Q

−1
t+1(yt+1 − Ft+1at+1),

using applications of the same identity. The Kalman gain is defined as Kt = RtF
T
t Q
−1
t .

The Kalman gain dictates the update to the state posterior mean and covariance. The

system and observation covariance matrices can be thought of as the ratio of signal to

noise. If the signal is strong (V is small relative to W ) then the observation is considered

to be reliable, however if the opposite is true then the latent-state is considered to be more

reliable. If the observation noise covariance matrix is small relative to the system noise

covariance matrix, then the Kalman gain is larger and hence a larger correction is applied
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to the state mean.

The Kalman filter for a general DLM is summarised in Algorithm 6. Since the latent-

state is Gaussian, it is entirely determined by its mean and variance, hence the filter

involves updating the mean and variance at each time point.

Algorithm 6: The Kalman filter to determine the filtering distribution of a DLM

Result: Return p(θ0:N |y1:N , ψ) = N (m0:N , C0:N )
1 Given observations Y1:N and static parameters ψ = {V,W,m0, C0};
2 for t in 0 to N − 1 do

3 Calculate prior state θ̃t+1 ∼ N (at+1, Rt+1);
4 at+1 = Gt+1mt;
5 Rt+1 = Gt+1CtG

T
t+1 +Wt+1;

6 Calculate one step prediction: ŷt+1 ∼ N (ft+1, Qt+1);
7 ft+1 = Ft+1at+1;
8 Qt+1 = Ft+1Rt+1F

T
t+1 + Vt+1;

9 Observe yt+1 then update the state θt+1 ∼ N (mt+1, Ct+1);
10 mt+1 = at+1 +Kt+1et+1;
11 Ct+1 = Rt+1 −Kt+1Ft+1Rt+1;

12 where Kt+1 = Rt+1F
T
t+1Q

−1
t+1, et+1 = yt+1 − ft+1.

13 end

In the case of a missing observation, the state update is not performed and the state

is simply advanced to the time of the next non-missing observation. This results in the

uncertainty in the state estimate growing until the time of the next observation.

The filter can be modified in the case of partially missing data. Consider a p-dimensional

observation Yt where m < p observations are missing and the indices of the missing vari-

ables are known and given by ki, i = 1, . . . ,m. Then the observation matrix, Ft and

observation Yt are modified by omitting rows corresponding to the indices ki and the ob-

servation noise matrix Vt is modified to remove the rows and columns corresponding to

the indices ki. Then the dimension of the fitted mean Ftxt is equal to the dimension of

Y
(−ki)
t . Then the state-update step can be performed in the presence of partially missing

data.

The Kalman filter is straightforward to implement in Scala using the functional pro-

gramming principles introduced in chapter 2. The implementation follows the same pat-

tern to that of the particle filter presented in section 2.1.15. First a single step of the

algorithm is expressed as a pure function from the state at time t to the updated state

(Gaussian, A) => Gaussian where A represents an observation and Gaussian represents

the latent state defined by a Normal distribution. Next a reduction function such as

foldLeft (or scanLeft if the intermediate filtering distributions are of interest) is used to

run the filter over the entire collection.
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4.3 Backward Smoothing

Backward smoothing produces posterior distributions of the latent-state with less uncer-

tainty than the Kalman filter, which is useful for interpolating missing measurements.

Unlike the Kalman filter, the backward smoother cannot be performed online since it

requires knowledge of the entire time series.

Suppose a time series is observed at times t = 1, . . . , N then the Kalman filter is

performed to learn the filtering distribution p(θ1:N |y1:N , ψ) which is entirely determined

by the mean and covariance of the latent-state at times t = 0, . . . , N . In order to perform

backward smoothing the algorithm starts with the posterior of the latent-state at time

N , N (mN , CN ). The algorithm then proceeds in reverse by considering the backwards

transition probability

p(θt|y1:N , θt+1) = p(θt|y1:t, θt+1),

=
p(θt|y1:t)p(θt+1|θt, y1:t)

p(θt+1|y1:t)
,

=
p(θt|y1:t)p(θt+1|θt)

p(θt+1|y1:t)
.

This follows since Yt+1:N is conditionally independent of θt given θt+1, and θt+1 is condi-

tionally independent of Y1:N given the previous value of the state θt. Then:

p(θt|y1:N ) =

∫
p(θt, θt+1|y1:N )dθt+1,

=

∫
p(θt|θt+1, y1:N )p(θt+1|y1:N )dθt+1,

=

∫
p(θt|y1:t)p(θt+1|θt)

p(θt+1|y1:t)
p(θt+1|y1:N )dθt+1,

= p(θt|y1:t)
∫
p(θt+1|θt)p(θt+1|y1:N )

p(θt+1|y1:t)
dθt+1.

The backward smoother for a DLM as specified in equation (4.1) starts with the final

filtered state p(θN |y1:N ) = N (mN , CN ) and proceeds recursively for t = N − 1, . . . , 1:

st = mt + CtG
T
t+1R

−1
t+1(st+1 − at+1),

St = Ct − CtGTt+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.

For a DLM the distributions of the backward smoother are Gaussian and available in
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closed form. Starting with the mean:

st = E(θt|y1:N ),

= E(E(θt|y1:N , θt+1)|y1:N ),

θt is conditionally independent of yt+1:N given θt+1 hence

p(θt|y1:t, θt+1) ∝ p(θt|y1:t)p(θt+1|θt, y1:t)
= p(θt|y1:t)p(θt+1|θt)
= N (θt;mt, Ct)N (θt+1;Gt+1θt,Wt+1)

= (2πCt)
− 1

2 exp

(
−1

2
(θt −mt)

TC−1t (θt −mt)

)
× (2πWt+1)

− 1
2 exp

(
−1

2
(θt+1 −Gt+1θt)

TW−1t+1(θt+1 −Gt+1θt)

)
∝ exp

(
−1

2

[
θTt
(
C−1t +GTt+1W

−1
t+1Gt+1

)
θt − 2θt

(
mtC

−1
t +Gt+1W

−1
t+1θt+1

)])
= N

(
(C−1t +GTt+1W

−1
t+1Gt+1)

−1(mtC
−1
t +Gt+1W

−1
t+1θt+1), (C

−1
t +GTt+1W

−1
t+1Gt+1)

−1) .
Then from the Woodbury Matrix Identity [Woodbury, 1950], which states:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.

Then the mean and covariance can be expressed as

E(θt|θt+1, y1:t) = mt + CtG
T
t+1(Gt+1CtG

T
t+1 +Wt+1)

−1(θt+1 −Gt+1mt)

= mt + CtG
T
t+1R

−1
t+1(θt+1 − at),

Var(θt|θt+1, y1:t) = Ct − CtGTt+1R
−1
t+1Gt+1Ct.

Then finally, the mean is given by

st = E(E(θt|y1:N , θt+1)|y1:N )

= mt + CtG
T
t+1R

−1
t+1(st+1 − at+1),

since E(θt+1|y1:N ) = st+1. Now consider the variance, from the law of total variance:
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St = Var(θt|y1:t, θt+1)

= Var(E(θt|y1:t, θt+1)|y1:N ) + E(Var(θt|y1:t, θt+1)|y1:N )

= Var(mt + CtG
T
t+1R

−1
t+1(θt+1 − at+1)|y1:N ) + Ct − CtGTt+1R

−1
t+1Gt+1Ct

= CtG
T
t+1R

−1
t+1Var(θt+1 − at+1|y1:N )R−1t+1Gt+1Ct + Ct − CtGTt+1R

−1
t+1Gt+1Ct,

= CtG
T
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct + Ct − CtGTt+1R

−1
t+1Gt+1Ct,

= Ct − CtGTt+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.

as required.

Algorithm 7: The backward smoothing algorithm for a general DLM

Result: Return smoothed state p(θ0:N |y1:N , ψ)
1 Given observations of the time series, y1:N and a value of the static parameters ψ;
2 Perform the Kalman filter using algorithm 6, then using the filtered output m1:N ,

C1:N , a1:N , R1:N ;
3 Sample θN ∼ N (mN , CN );
4 for t in N : 1 do

5 Calculate st = mt + CtG
T
t+1R

−1
t+1(θt+1 − at+1),;

6 Calculate St = Ct − CtGTt+1R
−1
t+1Gt+1Ct,;

7 end
8 The smoothing state is N (st, St)

Backward smoothing is summarised in algorithm 7. Figure 4.6 shows a the Kalman

filter and smoothed states for a simulated first order DLM.

4.4 Parameter Inference using Gibbs Sampling

The static parameters in the DLM are ψ = {Vt,Wt,m0, C0}. Consider a model where

the initial state is known and it remains to specify constant system and observation noise

covariance matrices. Gibbs sampling can be used in order to determine the posterior

distributions of V and W . In most cases, it is simpler to target the joint distribution of

the latent-state and static parameters p(ψ, θ0:N |y1:N ). The joint distribution of all the

random variables in the model can be written as

p(θ0:N , Y1:N , ψ) = p(ψ)p(θ0)
N∏
t=1

p(yt|θt, V )p(θt|θt−1,W ). (4.16)

This factorisation is possible since the observations are conditionally independent of each

other given the corresponding state and the state evolution is a first order Markov process.
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Figure 4.6: Kalman filter and backward smoothing applied to simulated data from the
first order DLM first depicted in Figure 4.2 in order to learn the filtering and smoothing
distributions. 99% probability intervals are included for the smoothed and filtered state,
dashed represents the smoothing state and dot-dash represents the filtered state. The
filtered state is more uncertain as expected.

A block Gibbs sampler is used to create a Markov chain whose stationary distribution is

equal to the joint posterior distribution p(θ0:N ,W, V |y1:N ). First consider deriving the full

conditional distribution of a diagonal observation variance matrix, V . The prior distri-

bution of the observation variance, V , is chosen to be the inverse Gamma distribution,

p(V ) = Inv-Gamma(αv, βv). The conditional likelihood p(yt|θt, V ) is Normal, with mean

F T θt and variance V . The inverse Gamma distribution is conjugate to the Normal distri-
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bution with known mean and unknown variance. The full conditional distribution of the

ith diagonal element of the observation noise covariance is derived as follows

p(Vii|y1:N , θ0:N ,W ) = p(θ0)p(Vii)
N∏
t=1

p(yt|Vii, θt)p(θt|θt−1)

∝ V −α−1ii exp

(
− β

Vii

)
(2πVii)

−N/2 exp

{
−V −1ii

N∑
t=1

(yt − Ftθt)2i

}

= V
−(α+N/2)−1
ii exp

{
− 1

Vii

(
β +

1

2

N∑
t=1

(yt − Ftθt)2i

)}

= Inv-Gamma

(
α+

N

2
, β +

1

2

N∑
t=1

(yt − Ftθt)2i

)
. (4.17)

For the system covariance matrix, the Inverse Wishart distribution can be used as

the conjugate prior for the multivariate Normal transition kernel for θt with unknown

covariance, W and known mean Gtθt−1. The prior for W is written as p(W ) =W−1(Ψ, ν).

The PDF of the inverse Wishart distribution is given by

p(W ) =
|Ψ| ν2

2
νp
2 Γp(

ν
2 )
|W |−

ν+p+1
2 exp

{
−1

2
tr(ΨW−1)

}
.

Where p is the dimension of the matrix W . The full conditional distribution for the

parameter W given the values of the state, θ0:N , observation variance, V , and observations,

y1:N , can be written as

p(W |θ0:N , V, y1:N ) = p(θ0)p(W )
N∏
i=1

p(θi|θi−1,W )

= |W |−
ν+p+1

2 exp

{
−1

2
tr(ΨW−1)

}
× |W |−N2 exp

{
−1

2

N∑
i=1

(θi −Gθi−1)NW−1(θi −Gθi−1)
}

= |W | ν+N+2+1
2 exp

{
−1

2
tr(ΨW−1)− tr

(
1

2

N∑
i=1

(θi −Gθi−1)(θi −Gθi−1)TW−1
)}

The final line is possible since a matrix trace is invariant under cyclic permutations,

tr(ABC) = tr(CAB) = tr(BCA). The full conditional can be further simplified to
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p(W |θ1:N , V, y1:N ) ∝ |W | ν+N+2+1
2 exp

{
−1

2
tr((Ψ +

N∑
i=1

(θi −Gθi−1)(θi −Gθi−1)T )W−1)

}
,

since the sum of matrix traces is equal to the trace of the sum of the matrices, tr(A+B) =

tr(A) + tr(B) and tr(cA) = c tr(A) for a constant c. Then the posterior distribution for

the system noise covariance is recognised as the Inverse Wishart distribution

p(W |θ1:N , V, y1:N ) =W−1(ν +N,Ψ +
N∑
i=1

(θi −Gθi−1)(θi −Gθi−1)T ). (4.18)

It remains to derive the full conditional distribution for the state vector. This can be done

using Forward Filtering Backward Sampling (FFBS) [Frühwirth-Schnatter, 1994, Carter

and Kohn, 1994]. The joint full conditional distribution for the latent-state is written as:

p(θ0:N |W,V, y1:N ) = p(θ0)

N∏
t=1

p(yt|θt, V )p(θt|θt−1,W )

=
N∏
t=0

p(θt|θt+1:N , y1:N ,W, V ),

The final factor in the product is, p(θN |y1:N ,W, V ) which is the filtering distribution of θN

determined using the Kalman filter (see section 4.2) and given by N (mN , CN ). First draw

from the final distribution given by the Kalman filter, then proceed recursively by drawing

from p(θt|θt+1:N , y1:N ,W, V ) for t = N − 1, N − 2, . . . , 0, the form of this distribution was

presented in section 4.3 and is given by

γt = mt + CtG
T
t+1R

−1
t+1(θt+1 − at+1),

Γt = Ct − CtGTt+1R
−1
t+1Gt+1Ct. (4.19)

Then draw θt ∼ N (γt, Γt).

This defines a block Gibbs sampler, since the latent-state is sampled from the joint con-

ditional distribution, p(θ0:N |W,V, y1:N ) and not one state at a time from p(θt|W,V, y1:N , θ−t), t =

1, . . . , N . This defines a more efficient Markov chain. The block Gibbs scheme for pa-

rameter inference in a DLM with static observation and system covariance matrices is

summarised in algorithm 8.
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Algorithm 8: Block Gibbs sampler for the DLM

Result: Return ψ(i), θ
(i)
0:N , i = 1, . . . ,M

1 Given N p-dimensional time series observations y1:N ;
2 Initialise values of the static parameters by drawing from prior distributions,

ψ(0) = {W (0), V (0)}, W (0) ∼ W−1(psi, ν), V
(0)
ii ∼ Inv-Gamma(αv, βv);

3 for i in 1 : M do
4 Perform FFBS to sample a value of the latent state conditional on the other

random variables, ψ(i−1), y1:N using algorithm 7;

5 Sample W (i) from the full-conditional in equation (4.18);

6 Sample V (i) from the full-conditional in equation (4.17);

7 end

4.5 Computational Considerations

The Kalman filter implemented naively as in algorithm 6 is prone to numerical issues. The

naive implementation updates the covariance matrix at each time step using the following

equation

Ct+1 = Rt+1 −Rt+1F
T
t+1Q

−1
t+1Ft+1Rt+1 (4.20)

If the value of Vt is small then

Ct+1 = Rt+1 −Rt+1F
T
t+1Q

−1
t+1Ft+1Rt+1

= Rt+1 −Rt+1F
T
t+1(Rt+1 + Vt+1)

−1Ft+1Rt+1

≈ Rt+1 −Rt+1,

this can result in some of the diagonal entries of the covariance matrix, Ct+1 to be zero or

negative due to rounding errors. This means Ct+1 is no longer a valid covariance matrix,

since the diagonal entries represent the marginal variance and hence must be positive. This

section considers methods for improving the stability of filtering and backward sampling

algorithms for use in real-world time series problems.

4.5.1 Joseph Form

Covariance matrices are symmetric, positive semi-definite matrices. A matrix M is pos-

itive semi-definite if for any non-zero vector a, then aMaT ≥ 0. One way of ensuring

the covariance matrix Ct is positive semi-definite, thus ameliorating the numerical issues

which arise in the naive implementation of the Kalman filter, is to use the Joseph Form

update [Bucy and Joseph, 2005] presented below
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Ct = (I −KtFt)Rt(I −KtFt)
T +KtVtK

T
t (4.21)

This formula is the sum of two positive semi-definite matrices. This is true because for any

matrix A with real entries ATA is positive semi-definite and symmetric. The product of

symmetric positive semi-definite matrices is positive semi-definite if and only if the product

is symmetric [Meenakshi and Rajian, 1999]. The sum of two positive semi-definite matrices

must also be positive semi-definite. If M and U are positive semi-definite matrices then,

aMaT ≥ 0 and bUbT ≥ 0 and so obviously a(M + U)aT = aMaT + aUaT ≥ 0.

Lemma 4.1. The Joseph form update for the posterior covariance at time t in the Kalman

Filter is equivalent to the naive update:

Ct = Rt −RtFtQ−1t FtRt = (I −KtFt)Rt(I −KtFt)
T +KtVtK

T
t

Proof.

Ct = (I −KtFt)Rt(I −KtFt)
T +KtVtK

T
t ,

= (Rt −KtFtRt)(I −KTFt)
T +KtVtK

T
t ,

= Rt −KtFtRt −Rt(KtFt)
T +KtFtRtF

T
t K

T
t +KtVtK

T
t ,

= Rt +Kt(FtRtF
T
t + Vt)K

T
t −KtFtRt −RtF Tt KT

t ,

= Rt +KtQtK
T
t −KtFtRt −RtF Tt KT

t ,

= Rt +RtFtQ
−1
t Qt(Q

−1
t )TF Tt R

T
t −RtFtQ−1t FtRt −RtF Tt (RtFtQ

−1
t )T ,

= Rt −RtFtQ−1t FtRt.

Line 6 of the proof follows since for any invertible matrix, A, (AT )−1 = (A−1)T and

for any symmetric matrix B, BT = B. Hence Qt(Q
−1
t )T = Qt(Q

T
t )−1 = QtQ

−1
t = I. The

Joseph form update can also be used to sample the state in the backward sampler from

algorithm 7.

Lemma 4.2. The Joseph form update for the covariance at time t in the forward filtering

backward sampling algorithm is equivalent to the naive update:

Γt = (I −HtGt+1)Ct(I −HtGt+1)
T +HtWtH

T
t = Ct − CtGt+1R

−1
t+1Gt+1Ct,

where Ht = CtGt+1R
−1
t+1
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Proof.

Γt = (I −HtGt+1)Ct(I −HtGt+1)
T +HtWtH

T
t ,

= (Ct −HtGt+1Ct)(I −HTGt+1)
T +HtWtH

T
t ,

= Ct −HtGt+1Ct − Ct(HtGt+1)
T +HtGt+1CtG

T
t+1H

T
t +HtWtH

T
t ,

= Ct +Ht(Gt+1CtG
T
t+1 +Wt)H

T
t −HtGt+1Ct − CtGTt+1H

T
t ,

= Ct +HtRt+1H
T
t −HtGt+1Ct − CtGTt+1H

T
t ,

= Ct + CtGt+1R
−1
t+1Rt+1(R

−1
t+1)

TGTt+1C
T
t − CtGt+1R

−1
t+1Gt+1Ct − CtGTt+1(CtGt+1R

−1
t+1)

T ,

= Ct − CtGt+1R
−1
t+1Gt+1Ct.

The Joseph form update requires more calculations, but results in a more stable filter.

4.5.2 Square Root Filtering and Sampling

The Kalman filter is concerned with updating the mean and covariance of the latent state

recursively. The backward sampler uses the filtered values to sample a single trajectory of

the state for use in a Gibbs sampling algorithm. The states are sampled from multivariate

Normal distributions. One method of sampling from a multivariate Normal distribution

begins by first calculating the Cholesky decomposition of the covariance matrix. The

Cholesky decomposition of a symmetric, positive definite matrix, A with real entries is

A = LLT , where L is a lower triangular matrix. In order to simulate values from a p

dimensional multivariate Normal distribution with mean µ and covarianceΣ, first calculate

the Cholesky decomposition Σ = LLT , then simulate p standard Normal random variables

z then µ+Lz is a draw from a multivariate Normal distribution with mean µ and covariance

Σ:

E(µ+ Lz) = µ+ LE(z) = µ

Var(µ+ Lz) = LVar(z)LT ,

= LLT = Σ.

The Kalman filter can be implemented in terms of the Cholesky decomposition, this means

the lower triangular matrix L is updated and hence the product LLT is guaranteed to

be symmetric and positive semi-definite. Since the decomposition is already available,

it is straightforward to sample a state trajectory given the Cholesky factor, L. Other

square root filters have been proposed, using the Σ = UDUT decomposition [Thornton

and Bierman, 1980, Bierman, 2006]. In general square root filters will increase numerical
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precision of the calculated covariance by a factor two which is useful when numerical

precision is low.

The Kalman filter can also be implemented using the singular value decomposition [Wang

et al., 1992, Kulikova and Tsyganova, 2017]. The singular value decomposition is a fac-

torisation of a rectangular m × n real or complex matrix, A such that A = USB? where

B? denotes the conjugate transpose of B. U is an m ×m unitary matrix, S is a unique

diagonal matrix containing the singular values of the matrix A and B? is a unitary ma-

trix. A unitary matrix, U multiplied by its conjugate transpose is equal to the identity,

UU? = I. Hence the transpose of a unitary matrix it equal to its inverse.

Implementing the Kalman filter using the SVD has another computational advantage

when performing the backward sampler. The SVD can be updated and sampling from

the latent state is straightforward given the SVD of the covariance. In order to simulate

from a multivariate Normal distribution with a p × p covariance matrix Σ = USUT and

mean µ then sample p standard Normal random variables, z and transform them such

that µ+ US
1
2 z. Then Var(µ+ US

1
2 z) = USUT = Σ and E(µ+ USz) = µ.

The SVD filter starts by decomposing the covariance matrix at time t = 0, C0 =

UC0S
2
C0
UTC0

and updating the unitary matrix UCt and matrix of singular values SC0 at

each time point. To initialise the filter, the SVD of the system and observation noise

covariance matrices is calculated and the following transformations performed

W
1
2 = S

1
2
WU

T
W ,

V −
1
2 = S

− 1
2

V UTV .

In the first step of the main filtering recursions the state is advanced to the next time-point

at = Gtmt−1,

Rt = GtUCt−1S
2
Ct−1

UTCt−1
GTt +W (4.22)

Then the SVD of Rt is calculated. However it equivalent to first calculate the SVD of the

vertically concatenated 2n× n matrixDCt−1U
T
Ct−1

GTt

W
1
2

 = URtSRtB
T
Rt . (4.23)
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Then calculate Rt by pre-multiply each side by the transpose

GtUCt−1S
T
Ct−1

SCt−1U
T
Ct−1

GTt + (W
1
2 )TW

1
2 = BRtS

T
RtU

T
RtURtSRtB

T
Rt ,

GtUCt−1S
2
Ct−1

UTCt−1
GTt +W = BRtS

2
RtB

T
Rt

this follows since URt is a unitary matrix. Then Rt is given by BRtS
2
Rt
BT
Rt

and determined

by the SVD calculated in equation (4.23).

Next an observation is made at time t and the state update is calculated. The update

to the state covariance in the naive Kalman filter from equation (4.13) and substitute the

SVD of Ct and Rt

Ct = (R−1t + F Tt V
−1Ft)

−1,

(UCtS
2
CtU

T
Ct)
−1 = (URtS

2
RtU

T
Rt)
−1 + F Tt V

−1Ft,

= (UTRt)
−1S−2Rt U

−1
Rt

+ (U−1Rt )TUTRtF
T
t V
−1FtURtU

−1
Rt
,

= (UTRt)
−1(S−2Rt + UTRtF

T
t V
−1FtURt)U

−1
Rt
, (4.24)

Then consider the SVD of the value in brackets using the same method as used previously,

by first considering the SVD of the vertically concatenated matrixV − 1
2FtURt

S−1Rt

 = U?ΛB?T .

Then pre-multiply by the transpose to get

UTRtF
T
t (V −

1
2 )TV −

1
2FtURt + (S−1Rt )TS−1Rt = B?ΛTU?TU?ΛB?T .

UTRtF
T
t V
−1FtURt + S−2Rt = B?Λ2B?T

Then substituting the value into equation (4.24)

(UCtD
2
CtU

T
Ct)
−1 = (UTRt)

−1(B?Λ2B?T )U−1Rt ,

UTCtD
−2
Ct
UCt = UTRtB

?Λ2B?TU−1Rt .

It follows that UCt = URtB
? and DCt = Λ−1. The SVD Kalman filter is summarised in

Algorithm 9.

The singular value decomposition filter performs more operations per step than the

naive Kalman filter and hence is expected to be slower. In order to test this hypothesis

multiple runs of the SVD filter and Kalman Filter are compared. The Java Microbench-
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Algorithm 9: Kalman filter updating the singular value decomposition of the
covariance matrix.

Result: Return mean and variance of filtering distribution p(θ0:N |y1:N , ψ)
1 Given observations y1:N and parameters ψ = {m0, C0,W, V };
2 Calculate the SVD of the latent-state covariance matrix, C0 = UC0DC0U

T
C0

;

3 Calculate the SVD of W = UWDWU
T
W and V = UVDV U

T
V ;

4 Calculate W
1
2 = D

1
2
WU

T
W and V −

1
2 = D

− 1
2

V UTV ;
5 for t in 1:N do
6 Advance the state at = Gtmt−1;

7 Calculate the SVD of

(
DCt−1U

T
Ct−1

GTt

W
1
2

)
, which is Rt = URtDRtU

T
Rt

;

8 Calculate the one-step forecast ft = Ftat;

9 Calculate the SVD of

(
V −

1
2FtURt

D−1Rt

)
, which is U?ΛB?T ;

10 Calculate UCt = URtB
? and DCt = Λ−1;

11 Update the state covariance Ct = UCtDCtU
T
Ct

;

12 Calculate the Kalman gain as Kt = CtFtV
−1;

13 Update the state mean mt = at +Kt(yt − ft);
14 end

Method Mean (op/s) Lower 0.05% Upper 99.5%

Kalman filter 3389.50 3356.84 3422.15

SVD filter 2442.37 2387.70 2497.05

Table 4.1: Performance in operations per second for the Kalman filter and the SVD filter
with mean, and 99% probability interval assuming the independent runs of the algorithm
are Normally distributed

mark Harness1 (JMH) was used in order to determine the performance differences between

the two methods. 20 warmup iterations are performed for each JVM fork (a fork is a dis-

tinct JVM instance), 20 measurement iterations are performed for each fork, 10 forks were

used in total for each method.

The SVD filter and Kalman filter (using the Joseph form update) are both applied to

a time series of length 10 (contained in a Vector) simulated from a first order polynomial

DLM. The results are presented in number of operations per second, indicating how many

times the method could run in a single second, hence a higher number is better. The

results are presented in table 4.1.

1http://openjdk.java.net/projects/code-tools/jmh/
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4.6 Online Parameter Estimation

There are several algorithms for online simultaneous state and parameter estimation for

dynamic linear models. The first considered algorithm is an analytic solution for calcu-

lating the posterior distribution of the latent-state and observation variance. The other

solutions presented in this section are simulation based filters which produce approxima-

tions of the posterior distribution and can generalise to non-Gaussian, non-linear state

space models.

The Kalman filter is an online algorithm, since it only depends on the previous state

and the current observation, in addition any filtering algorithm which can be expressed as a

pure function in this way is an online algorithm. The general signature for a stepFunction

is:

def stepFunction[A, S](state: S, obs: A): S

Where the state and observation at time t is represented by the types S and A respectively.

The application of the filter is performed using a scanLeft or a foldLeft depending on

if all the states are of interest or only the final state. To apply the filter to a collection of

observations, ys: F[A] with an initial state init: S using a scan:

ys.scanLeft(init)(stepFunction)

This will produce a collection of states representing the filtering distribution. In some

cases, particle approximations are used in the filtering step. This means without proper

care, the step function is non-deterministic and hence not a pure function. The function

can be written using a random sampling probability monad, as seen in section 2.1.11.

foldM can be used to perform a fold using a binary function returning a monad as explained

in section 2.1.15.

4.6.1 Conjugate Filter for Unknown Observation Variance

There is an extension to the Kalman filter which permits an unknown observation variance

which can be learned online. This extension is exact and closed form. For simplicity, the

examples in this section consider a first order univariate Gaussian dynamic linear model

defined in equation (4.2).

Consider that the value of the system variance, W , is known. The value of the obser-

vation variance, V , assumed scalar, can be found using a conjugate update.

The inverse Gamma distribution is conjugate to the Normal distribution with an un-

known variance. The prior distribution for the precision τ = 1/V is Gamma(nt/2, dt/2),

where nt = nt−1 + 1 and dt = dt−1 + Vt−1e
2
t /Qt. Then the inverse of the mean of the

Gamma distribution gives the mean of the variance, Vt = dt/nt, at time t. The mean of
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the variance at time t is given by the recursive relationship:

Vt = Vt−1 +
vt−1
nt

(
e2t
Qt
− 1

)
. (4.25)

Where et = yt − F Tt at is the residual, where at = Gtmt−1 and Qt = F Tt RtFt + Vt is the

forecast variance where Rt = GTt Ct−1Gt + Wt. Figure 4.7 shows the expectation of the

observation variance and 95% posterior intervals, along with the value used to simulate

the data plotted as a dashed line.

This method can be extended to multivariate DLMs using the inverse Wishart distribu-

tion which is conjugate to the multivariate Normal distribution with unknown covariance.

Additionally, diagonal observation noise covariance matrices can be considered using n

univariate inverse Gamma distributions. Unfortunately, there is no analytic solution for

learning the value of the system covariance, W . However there are several simulation

based filters which aim to tackle this problem.

4.6.2 Liu and West

The Liu and West filter [Liu and West, 2001] uses kernel smoothing to approximate the

distribution of parameters using a mixture of Normals:

p(ψ|Y1:t−1) ≈
N∑
m=1

w
(m)
t−1N (ψ|m(m)

t−1, (1− a2)Λt−1).

Here a is a smoothing parameter and Λt−1 is the variance of the parameters given the

information at time t− 1, Var(ψ|Y1:t−1). m(i)
t−1 = aψ

(i)
t−1 + (1− a)ψ̄t−1.

The Liu and West filter uses a method from the auxiliary particle filter [Pitt and Shep-

hard, 1999b] for advancing the particle cloud. Assume that the distribution of the latent

state at time t is approximated by the weighted particle cloud, {θ(i)t , w
(i)
t |i = 1, . . . ,M}.

The transition density function p(θt|θt−1, ψ) can be used to advance the state particles,

θ
(i)
t = p(θt|θ(i)t−1, ψ), i = 1, . . . ,M . However, this naive transition density function can ad-

vance the particles to areas of low probability density when considering the observation at

time t. This means the weight, w
(i)
t = p(yt|θ(i)t , ψ), i = 1, . . . ,M , associated with the low

probability particles are low and hence these particles are unlikely to be selected during

the resampling stage. If the observation at time t is available, then the transition density

function can be improved using auxiliary variables.

Firstly, the mean (or mode) of the transition density is calculated, E(p(θt|θt−1 =

θ
(k)
t−1, ψ)) and given the observation at time t auxiliary variables are sampled from

Pr(k(i) = k) ∝ w(k)
t−1p(yt|µ

(k)
t , ψ),
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Figure 4.7: An application of the conjugate filter to learn the posterior distribution of the
observation variance for simulated observations from the first order DLM. The mean of
the observation variance parameter at each time point with ±2 standard deviations from
the mean. The actual value used to simulate the data is represented as a horizontal dashed
line, (top). The filtered state and 95% credible intervals, (bottom).

for i = 1, . . . ,M . Then for each auxiliary variable sample the next particle from the

transition density

θ
(i)
t ∼ p(θt|θ

k(i)
t−1 , ψ).

This has the effect of pre-selecting the particles which are likely to have a high probability

density (and weight) at time t. This method of advancing the particle cloud was first
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introduced for the auxiliary particle filter [Pitt and Shephard, 1999b]. The Liu and West

algorithm to determine the full-joint posterior of a general state space model is outlined

in algorithm 10.

Algorithm 10: Liu and West filter

Result: Return a weighted sample representing the joint posterior distribution

{θ(i)0:N , ψ
(i)
0:N , w

(i)
0:N |i = 1, . . . ,M}

1 Initialise the state particles by sampling from the state prior distribution

θ
(i)
0 ∼ p(θ0) for i = 1, . . . ,M ;

2 Sample the initial parameter particles from the parameter prior distribution

ψ
(i)
0 ∼ p(ψ) for i = 1, . . . ,M ;

3 Initialise the particle weights w
(i)
0 = 1/M for i = 1, . . . ,M ;

4 for t in 1:N do
5 for i in 1:M do
6 Calculate prior point estimates of the state and parameters
7

µ
(i)
t = E(θt|θ(i)t−1, ψ

(i)
t−1),

m
(i)
t−1 = aψ

(i)
t−1 − (1− a)ψ̄t−1.

8 Sample an auxiliary variable, k(i), with probabilities proportional to

9 Pr(k(i) = k) ∝ w(k)
t−1p(yt|µ

(k)
t ,m

(k)
t−1);

10 Sample a new parameter vector from the mixture of Normals

ψ
(i)
t ∼ N (mk(i)

t−1, (1− a2)Λt−1),

where Λt−1 =
M∑
i=1

w
(i)
t−1(ψ

(i)
t−1 − ψ̄t−1)(ψ

(i)
t−1 − ψ̄t−1)T .

11 Sample a value of the state vector, given the new set of parameter particles
and the auxiliary state

12 θ
(i)
t ∼ p(θt|θ

(k(i))
t−1 , ψ

(i)
t );

13 Compute importance weights: w
(i)
t ∝

p(yt|θ(i)t ,ψ
(i)
t )

p(yt|µ(k
(i))

t ,m
(k(i))
t−1 )

;

14 end

15 Resample {ψ(i)
0:t, θ

(i)
0:t|i = 1, . . . ,M} by sampling M times with replacement

with probability proportional to the importance weights;

16 end

The algorithm is applied to the first order DLM introduced in section 4.1. The number

of particles is chosen to be M = 500 and the smoothing parameter a = 3δ−1
2δ , with δ = 0.95

for the mixture of Gaussians. The parameter and state prior distributions are chosen to
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be:

p(V ) = Inv-Gamma(3, 3),

p(W ) = Inv-Gamma(3, 3),

p(θ0) = N (0, 10). (4.26)

Figure 4.8 shows the parameter estimates for simulated data from the first order Gaussian

DLM. The Liu and West algorithm is able to approximately identify the system and

observation variances of the first order model.

The Liu and West filter is very flexible and general, as it does not assume the form of

the observation distribution or the state transition kernel. This particle filter can be used

for non-linear, non-Gaussian state space models which are considered in chapters 5 and 6.

In the case of DLMs, the state is Gaussian, the observation is Gaussian and linear.

Hence certain simplifications can be made which avoids the computational complexity of

the Liu and West filter. The Storvik filter in section 4.6.4 relies on a tractable transition

kernel and observation distribution in order to perform a conditionally conjugate update

for the noise covariance matrices. The filtering distribution of a DLM can be found

analytically using the Kalman filter hence it is attractive to combine particle filtering for

the intractable parameters and the Kalman filter to marginalise the state exactly. This is

considered in section 4.6.3.

4.6.3 Rao-Blackwellised Particle Filter

The Rao-Blackwellised particle filter [Doucet et al., 2000] can be used to marginalise

the latent-state exactly using the Kalman filter, while sampling the parameters using a

particle filter. The latent-state and unknown parameters are represented by M particles,

the Kalman filter is applied to each particle quadruple {V (i)
t ,W

(i)
t ,m

(i)
t , C

(i)
t } representing

the latent-state and the value of the unknown parameters given the observed data so far.

This reduces the variance of the particle cloud and hence a smaller number of particles

can be used, reducing the computational cost.

The Rao-Blackwell filter is a perfect example where functional programming and

function composition can be used to simplify the implementation of algorithms. The

Rao-Blackwell filter consists of the application of the Kalman filter to the quadruple,

{V (i)
t ,W

(i)
t ,m

(i)
t , C

(i)
t }, hence the function implementing the Kalman filter can be re-used.

Once the new parameters have been proposed a single step of the Kalman filter,

kalmanStep is applied using a map function:

(ps zip state).map { case (p, x) => kalmanStep(p)(y, x) }

ps contains a collection of newly proposed system and observation variances and state
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Figure 4.8: Running mean and ±2 standard deviations of the online estimates of the
system and observation variances for simulated data from the first order univariate DLM
using the Liu and West filter. The true parameter values are plotted using dashed lines.

contains the particles representing the mean and variance of the state. Since two lists

must be combined and mapped over, parMapN can be is used which is a parallel map of

multiple collections

(ps, state).parMapN { case (p, x) => kalmanStep(p)(y, x) }

This performs the map in parallel on a CPU. This code-reuse is straightforward, since the

function kalmanStep does not have any side effects and depends only on its arguments

and returns a deterministic state update, it is simple to reason about and incorporate in
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Algorithm 11: The Rao-Blackwellised particle filter for a DLM

Result: Return a weighted sample representing the joint posterior distribution

{m(i)
0:N , C

(i)
0:N , ψ

(i)
0:N , w

(i)
0:N |i = 1, . . . ,M}

1 Given a set of observations y1:N Sample the initial parameter particles from the

parameter prior distribution V
(i)
0 ∼ p(V ), W

(i)
0 ∼ p(W ) for i = 1, . . . ,M ;

2 Initialise the particle weights w
(i)
0 = 1/M for i = 1, . . . ,M ;

3 for t in 1:N do
4 for i in 1:M do
5 Sample new parameters from a proposal distribution:

V
(i)
t ∼ q(Vt|V (i)

0:t−1, y1:t−1), W
(i)
t ∼ q(Wt|W (i)

0:t−1, y1:t−1);
6 Perform the a single step of the Kalman filter (algorithm 6):
7 Advance the state:

a
(i)
t = Gtm

(i)
t ,

R
(i)
t = GtC

(i)
t GTt +W

(i)
t

8 Calculate the one-step forecast:

f
(i)
t = F Tt a

(i)
t

Q
(i)
t = F Tt R

(i)
t Ft + V

(i)
t

9 Update to the state posterior:

m
(i)
t = m

(i)
t +R

(i)
t Ft(Q

−1
t )(i)(yt − f (i)t ),

C
(i)
t = R

(i)
t −R

(i)
t Ft(Q

−1
t )(i)FtR

(i)
t .

Calculate importance weights: w
(i)
t = N (yt; f

(i)
t , Q

(i)
t );

10 end

11 Resample {V (i)
1:t ,W

(i)
0:t ,m

(i)
0:t, C

(i)
0:t |i = 1, . . . ,M} by sampling M times with

replacement with probability proportional to the importance weights;

12 end

the implementation of the Rao-Blackwell filter.

Figure 4.9 shows an application of the Rao-Blackwell filter to the simulated first order

DLM introduced in section 4.1. The prior distributions for the parameters are chosen to

be the same as in the Liu and West Filter specified in equation (4.26).

In order to initialise the particle cloud, the M = 300 parameters are sampled from

the prior distributions and the weights are initialised to 1/M . In order to propose the

parameters, the mixture of Gaussians approximation from the Liu and West filter in

section 4.6.2 is used with δ = 0.95.
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Figure 4.9: Rao-Blackwellised particle filter applied to data simulated from the first order
DLM first cosidered in figure 4.2. Parameter estimates ±2 standard deviations by time
for the variance of the observation and system noise

4.6.4 Storvik Filter

The Storvik filter [Storvik, 2002] is another online algorithm which can be used to recur-

sively estimate the joint state and parameter posterior distribution for DLMs. The Storvik

filter requires a tractable transition kernel for the latent state, but is flexible in the ob-

servation distribution. Unlike the Liu and West particle filter, the parameter posterior

distributions are not approximated with a weighted particle cloud, instead the parameter

state is summarised by a set of sufficient statistics.

Consider a DLM with unknown diagonal observation and system noise covariance
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Algorithm 12: The Storvik filter.

Result: Return a weighted sample representing the joint posterior distribution

{θ(i)0:N , ψ
(i)
0:N , w

(i)
0:N |i = 1, . . . ,M}

1 Initialise the state particles by sampling from the state prior distribution

θ
(i)
0 ∼ p(θ0) for i = 1, . . . ,M ;

2 Initialise the particle weights w
(i)
0 = 1/M for i = 1, . . . ,M ;

3 for t in 1:N do
4 for i in 1:M do
5 Sample new parameter values using the sufficient statistics

ψ
(i)
t ∼ p(ψt|S

(i)
t−1);

6 Advance the state particles according to the state transition function

θ
(i)
t ∼ p(θt|θ

(i)
t−1, ψ

(i)
t );

7 Calculate the importance weights w
(i)
t ∝ p(yt|θ

(i)
t , ψ

(i)
t );

8 end

9 Resample, {θ(i)t , ψ
(i)
t , S

(i)
t−1, i = 1, . . . ,M}, by sampling M times with

replacement, ie. sample index j from a Multinomial distribution with

probabilities w
(i)
t , i = 1, . . . ,M , and selecting the jth particles;

10 Update the sufficient statistics, S
(i)
t = T (S

(i)
t−1, x

(i)
t , yt) for i = 1, . . . ,M ;

11 end

matrices. The inverse Gamma distribution is conjugate to a Gaussian distribution with

unknown variance. M state particles are initialised by sampling from the prior distribution

of the initial state, θ
(i)
0 ∼ N (m0, C0), i = 1, . . . ,M . Next specify the prior distributions

for the diagonal elements of the observation and system noise covariance matrices.

As each observation arrives, the sufficient statistics are updated recursively starting

from the values of the shape and scale specified a-priori. The sufficient statistics for the

kth diagonal element of the observation covariance, Vkk, k = 1, . . . , p at time t are the

shape and scale of the inverse Gamma distribution:

α
(k)
t = α

(k)
t−1 +

1

2
,

β
(k)
t = β

(k)
t−1 +

1

2
(yt − Ftθt)2k.

This represents the shape and scale of the posterior distribution p(Vkk|θt, yt) = Inv-Gamma(α
(k)
t , β

(k)
t )

at time t. This distribution is sampled from M times at each time step. The sufficient

statistics for the diagonal elements of the system covariance are:
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Figure 4.10: Observation and system variance of a first order DLM estimated using the
Storvik filter, the actual parameter values used to simulate the data is plotted using
horizontal dashed lines.

α
(j)
t = α

(j)
t−1 +

1

2
,

β
(j)
t = β

(j)
t−1 +

1

2
(θt −Gtθt−1)2(j).

The precision of the estimate will increase as each subsequent measurement, yt is observed.

Next, the state particles are advanced according to their corresponding state covariance

noise matrix particle, p(θ
(i)
t |θ

(i)
t−1,W

(i)) for i = 1, . . . ,M . The importance weights are

calculated using the conditional likelihood of the observation given each state particle

and observation variance, w
(i)
t = p(yt|θ(i)t−1, V (i)) for i = 1, . . . ,M . Finally the particles

representing the state, parameter and sufficient statistics are resampled with probability

proportional to the importance weights. Algorithm 12 summarises the Storvik filter. Fig-

ure 4.10 shows the estimated observation and system noise variance for the first order

DLM model using the Storvik filter with 500 particles. The prior distributions are the

same as in the Liu and West filter specified in equation (4.26).

There are other simultaneous online state and parameter learning algorithms such
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as Particle Learning [Carvalho et al., 2010b]. [Vieira and Wilkinson, 2016] surveys and

evaluates competing simultaneous online state and parameter estimation algorithms.

4.7 Continuous Time DLMs

When modelling real time streaming sensor data there are often transmission delays caused

by network outages or localised power outages. In this case, observations can arrive irreg-

ularly. It is useful then to be able to transition to modelling in continuous time. In order

to apply the DLM to an irregularly observed time series the latent-state transition func-

tion can be modelled using a stochastic differential equation (SDE) (see Oksendal [2013]

or Iacus [2009] for detailed treatments of stochastic differential equations) representing a

random walk in continuous time

dθ(t) =
√
WdB(t), (4.27)

To emphasise the continuous time nature of this process (and others in this thesis) a

random variable at time t is written as X(t). Equation (4.27) is shorthand for writing

θ(t+ δt)− θ(t) =

∫ s=t+δt

s=t
W

1
2dB(s) (4.28)

The integral is known as an Itô integral and produces a stochastic result (i.e a distribution),

B(t) is known as Brownian motion (sometimes referred to as Wiener process ). The

properties of the Brownian motion are

1. B(0) = 0

2. B(t)−B(s) = N (0, t− s) for all t > s

3. The increments of non-consecutive intervals are independent, ie. B(t) − B(s) is

independent of B(u)−B(v) for all t > s ≥ u > v

From the first and second properties, B(t) ∼ N (0, t). Then the integral in equation (4.28)

can be solved

∫ s=t+δt

s=t
W

1
2dB(s) = W

1
2

∫ s=t+δt

s=t
dB(s)

= W
1
2 (Bt+δt −Bt)

= N (0,W (t+ δt − t)).
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It follows that exact transition kernel for this process is Gaussian p(θ(ti)|θ(ti−1), σ) =

N (θ(ti−1),Wδti) where δti = ti − ti−1. This transition kernel can be used instead of the

discretised random walk in a standard DLM.

Special care must be taken for a seasonal model as the transition matrix now depends

on the time difference between observations. The angle needed in the rotation matrices

which make up the system transition matrix is ω = 2πh(δt%P )
P , where % represents the

modulus operation, h is the harmonic and P is the period of the seasonality.

4.7.1 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU) process [Doob, 1942] is the continuous time analogue to

the AR(1) process. The OU process can be written as

dα(t) = φ(µ− α(t))dt+ σdB(t), (4.29)

where φ > 0 and σ > 0. Where B(t) is Brownian motion as introduced in section 4.7.

The solution to this equation can be calculated using an integrating factor, eφt

dα(t) + φα(t)dt = φµdt+ σdB(t),

eφtdα(t) + eφtφα(t)dt = φµeφtdt+ σeφtdB(t).

Then applying Itô’s product rule which is given by

dX(t)Y (t) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

The equation becomes

deφtα(t) = φµeφtdt+ eφtσdB(t),∫ t

s=0
deφsα(s) =

∫ t

s=0
φµeφsds+

∫ t

s=0
eφsσdB(s),[

eφsα(t)
]t
s=0

=
φµ

φ

[
eφs
]t
s=0

+ σ

∫ t

s=0
eφsdB(s),

eφtα(t)− α(0) = µeφt − µ+ σ

∫ t

s=0
eφsdB(s),

α(t) = e−φtα(0) + µ(1− e−φt) + σe−φt
∫ t

s=0
eφsdB(s)

since dtφeφtdα(t) = 0. The integral of the deterministic function with respect to Brownian

motion is a Gaussian distribution and hence entirely specified by its mean and variance.
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The mean and variance can be calculated as

E(α(t)) = e−φtα(0) + µ(1− e−φt),

Var(α(t)) = E
[
(α(t)− E(α(t)))2

]
= E

[(
σe−φt

∫ t

s=0
eφsdB(s)

)2
]

= E
(
σ2e−2φt

∫ t

s=0
e2φsds

)
=
σ2

2φ

[
e2φ(s−t)

]t
s=0

=
σ2

2φ
(1− e−2φt)

The equation for the variance follows from Itô isometry. The transition kernel of the OU

process is

p(α(ti)|α(ti−1), φ, µ, σ) = N
(
α(ti)|µ+ e−φδti(α(ti−1)− µ),

σ2

2φ
(1− e−2φδti)

)
(4.30)

where α(ti) is the realisation of α at time ti and δti = ti−ti−1 represent the time difference

between realisations. Given the equation of the transition kernel, a DLM with an OU

latent-state can be written as:

Y (ti) = F (ti)α(ti) + v(ti), v(ti) ∼ N (0, V ),

α(ti) = µ+ e−φδti(α(ti−1)− µ) + σ(ti), σ(ti) ∼ N
(

0,
σ2

2φ
(1− e−2φδti)

)
Since the solution of the OU process is Gaussian, a modified Kalman filter can be used

to calculate the mean and variance of the latent-state. The necessary changes are in the

a-priori state estimate at time ti given the mean and variance of the state at time ti−1,

m(ti−1) and C(ti−1)):

a(ti) = µ+ e−φ(ti−ti−1)(α(ti−1)− µ)

R(ti) = e−2φ(ti−ti−1)C(ti−1) +
σ2

2φ
(1− e−2φ(ti−ti−1))
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Time Observation State

0.00 0.00 1.11

0.48 0.92 1.15

1.19 0.51 0.97

3.04 0.25 0.55

3.09 0.45 0.49

Table 4.2: The first five simulated values of the observation and state from the OU DLM
showing that there are irregular time differences between observations.

Figure 4.11 shows a simulation from the first order DLM with OU latent-state and the

result of filtering the latent-state using the Kalman filter. The values are observed at

irregular times, the first five observations are in table 4.2.

A Metropolis-within-Gibbs (see sections 1.3.2 and 1.3.3) scheme is developed to learn

the parameters in DLM with the latent OU process. An unrestricted symmetric random

walk proposal is used for the mean parameter µ, the proposal distribution is, q(µ?|µ) =

N (µ?|µ, δ), a Normal distribution centred at the previous value of the parameter. For σ

and φ, the strictly positive parameters are proposed on the log-scale using a symmetric

normal distribution. The final parameter of the OU DLM is the observation variance

which is sampled using a Gibbs-step. This requires using the FFBS algorithm for the OU

process. The backward sampling algorithm requires a change for the irregularly observed

OU process. Given the filtered state and initial state m(t0:N ), C(t0:N ), the backward

sampler first samples a value from the final state α(tN ) ∼ N (m(tN ), C(tN )) then proceeds

backward through the filtered state:

s(ti) = m(ti) +
C(ti) exp(−φdti)

R(ti+1)
(α(ti+1)− a(ti+1)),

S(ti) = C(ti)−
C(ti)

2 exp(−2φdti)

R(ti+1)
.

Then α(ti) is sampled from N (s(ti), S(ti)). The latent-state likelihood for the irregularly

observed OU DLM observed at times t = t0, . . . , tN can be written as

p(α(t0:N )|ψ) = p(α(t0))

N∏
i=1

p(α(ti)|α(ti−1), ψ)

= N
(
µ,
σ2

2φ

) N∏
i=1

N
(
µ+ e−φ(ti−ti−1)(α(ti−1)− µ),

σ2

2φ

(
1− e−2φ(ti−ti−1)

))
(4.31)
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Figure 4.11: Simulated values from a first order DLM with an Ornstein-Uhlenbeck latent
state with parameter values φ = 0.1, µ = 1.0, σ = 0.2, V = 0.5, (top). Mean and 95%
probability intervals of the filtered latent-state computed using the particle filter, (bottom).

The sampled state can be used to sample a new value of the observation variance using

a Gibbs step as outlined in section 4.4. The prior distributions for the static parameters

are chosen to be
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p(φ) = B(2, 5),

p(µ) = N (1, 1),

p(σ) = Inv-Gamma(5, 1),

p(V ) = Inv-Gamma(2, 2).

The proposal distribution for the OU parameters is a multivariate Normal distribution with

mean, ψ̄ = (log φ, µ, log σ) with diagonal covariance matrix ∆ = (0.05, 0.05, 0.05). Two

chains were run for 100,000 iterations with the first 10,000 iterations discarded then the

chain was thinned by a factor of 20. The Metropolis-within-Gibbs algorithm is summarised

in algorithm 13.

Algorithm 13: A Metropolis-within-Gibbs algorithm for the OU DLM

Result: Return M correlated samples from the posterior distribution
p(ψ, V |y(t0:N )), where ψ = {φ, µ, σ}

1 Initialise the values of the static parameters by sampling from the prior
distribution;

2 for i in 1:M do

3 Perform FFBS to sample the latent state conditional on ψ(i−1), V (i−1);

4 Sample V (i) using a Gibbs step from equation (4.17);

5 for ψ̃ in ψ(i−1) do

6 Calculate the likelihood, p(α(t0:N )|ψ(i−1)) using equation (4.31);

7 Propose a new value of the parameter ψ̃? ∼ q(ψ̃?|ψ̃);

8 Denote ψ? as the parameter vector, ψ(i−1), updated to include the

proposed value ψ̃?;
9 Calculate the likelihood, p(α(t0:N )|ψ?) using equation (4.31);

10 Calculate A = p(ψ̃?)p(α(t0:N )|ψ?)q(ψ̃|ψ̃?)
p(ψ̃)p(α(t0:N )|ψ(i−1))q(ψ̃?|ψ̃) ;

11 Sample u ∼ U [0, 1];
12 if u < A(ψ?|ψ) then

13 Set ψ(i) = ψ?;
14 else

15 Set ψ(i) = ψ(i−1);

16 end

17 end

Figure 4.12 shows the diagnostic plots for the static parameters.
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Figure 4.12: Diagnostic plots of the draws from the parameter posterior distribution of the
OU DLM using MCMC. The traceplots of the MCMC draws, (top). The Autocorrelation
for chain 1 (middle) The empirical marginal posterior densities, (bottom)

4.8 Modelling Language

The Gaussian state-space models and associated inference algorithms presented in this

chapter have been implemented in an open source Scala library which can be found on

the Sonatype central repository and developed on Github2. The API for model building

is straightforward and many common models are already implemented. The DLM is

implemented as a product type with time varying observation and system matrices, Ft

2https://git.io/dlm
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and Gt respectively, represented as functions from time to a matrix:

case class Dlm(

f: Time => DenseMatrix[Double],

g: Time => DenseMatrix[Double]

)

The companion object Dlm contains functions to build several common models, such as

polynomial and seasonal models introduced in section 4.1:

val linear = Dlm.polynomial(1)

val seasonal = Dlm.seasonal(period = 24, harmonics = 3)

The seasonal model has a period of 24, representing the number of hours in a day. This is

suitable if the time series has a daily periodicity and measured hourly. These models can

be composed using a binary operator, for instance a seasonal model with a linear trend:

val seasonalTrend = linear |+| seasonal

Multivariate models (introduced in section 4.1.2) can be specified by composing multiple

univariate DLMs:

val multivariateModel = List.fill(6)(seasonalTrend).reduce(_ |*| _)

This multivariate model is suitable for modelling 6 time series with the same seasonal

structure.

The library has support for missing and partially missing data as well as irregularly

observed data. All the algorithms described in this chapter are implemented in the library

and can be used for any model specification.

4.9 Modelling Multivariate Environment Sensors

Air pollution in urban areas is a major problem, it has been shown that urban air pol-

lution contributes to childhood respiratory problems [Calderon-Garciduenas et al., 2003],

is related to an increase in asthma and other allergic conditions [Cacciola et al., 2002]

and affects cariopulmonary health [Pope III and Dockery, 2006]. Prevalence of air quality

related diseases will increase if nothing is done to effectively monitor and decrease airborne

pollution. More people are choosing to live in heavily populated urban areas, (in 2016 54%

of the worlds population lived in urban areas [Bank, 2014]), and hence are at a greater

risk of developing the diseases associated with air pollution. Anthropogenic sources of

pollution include industrial processes, manufacturing and traffic related chemicals such as

nitrogen dioxide NO2, carbon monoxide CO and patriculate matter PM.

In order to tackle the growing problem of air-pollution, pollution levels and its effects
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Figure 4.13: (a) The location of ten Urban Observatory sensors measuring environmental
variables. (b) Normalised average value of the environmental processes across all sensors
by hour and weekday showing the seasonal patterns of each process.

must be monitored closely and reliably. A growing trend in smart cities is to record

and monitor air pollution at a local level with the use of remote and possibly wireless

sensors. One such smart city is Newcastle upon Tyne and its large open sensor network

the Urban Observatory [James et al., 2014a]. A class of environment sensors are positioned

in and around the city measuring NOx, CO and temperature among other weather and

environmental processes. These sensors are placed in convenient locations, for example

on lampposts and not necessarily in positions where researchers would like to record the

value of the environmental processes.

Sensors deployed in the urban environment are unreliable. Network outages can cause

missed observations and sensor placement can affect the quality and reliability of the col-

lected data. Without reliable data, it is difficult to perform experiments analysing this

data. Statistical modelling can ameliorate these problems, by interpolating, smoothing

and forecasting measured data and providing probability intervals for forecasts and inter-

polated data.

Ten environment sensors are chosen, the locations of the sensors are plotted in fig-

ure 4.13 (a).

Figure 4.13 (b) shows the average of the normalised values of each of the environmen-

tal processes by hour and week day. This reveals the seasonal structure of each of the

processes. The model is chosen to be a multivariate DLM with drift and seasonal compo-

nents. The number of harmonics is chosen to be three for each seasonal component with

the period T = 24, ω = 2π
T . The system and observation matrices are
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F =



1

1

0

1
...

1

0


, G =



1 0 . . . . . . 0

0 R(ω, 1) 0 . . . 0
... 0 R(ω, 2) . . . 0
... . . . . . .

. . . 0

0 . . . . . . 0 R(ω, 3)



Each model is then combined into a multivariate model using block-diagonal concatenation

as explained in section 4.1.2. The ten sensors are fit independently and model fit is assessed

using the residuals of the one-step forecasts.

Parameter inference is performed using Gibbs sampling and the observation and system

noise covariance matrices are assumed to be diagonal. Hence, the prior distributions for

the diagonal elements of the covariance matrices are Inverse Gamma:

Vii ∼ Inv-Gamma(2.0, 3.0), i = 1, . . . , 4,

Wjj ∼ Inv-Gamma(2.0, 3.0), j = 1, . . . , 7.

The raw sensor data consists of irregularly spaced measurements approximately every

minute. In order to simplify inference and reduce the computational cost the data is

thinned; the majority of the measurements are discarded and the measurement closest to

each hour is retained.

10,000 iterations of the Gibbs sampler are used with 1,000 discarded as burn-in and

every other iteration kept to get approximately independent samples from the parameter

posterior distributions. Figure 4.14 shows the parameter diagnostics for the observation

variances corresponding to CO, humidity, NO and temperature respectively.

The observation variance of NO (V3) is quite large, NO is measured in parts per million

and sometimes reaches values in excess of 600. However, the majority of the time, the

observations are in the 0-200 range. The Student’s-t distribution could be a better fit for

this type of data with a large amount of outliers, this is explored in section 5.7.

Figure 4.15 shows the diagnostics for the diagonal elements of the system matrix

relating to the NO process.

One step forecasts for each of the ten sensors are calculated by taking the mean of

the parameter posterior distribution from the MCMC output and performing the Kalman

filter. The results of the one-step forecasting for sensor 2603 are plotted in Figure 4.16 (a).
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Figure 4.14: The traceplots for the diagonal elements of the observation matrix for sensor
2603.

The one-step forecasts are fairly accurate for CO, Temperature and Humidity, however

the large observation variance for NO has resulted in large uncertainty. Normal qq-plots

of the residuals for the one-step forecasts at sensor 2603 are plotted in Figure 4.16 (b).

It is thought that a log transformation of the NO variable could improve the fit and

reduce the uncertainty of the one-step forecast intervals. Figure 4.17 (a) shows the forecast

using a log-transform of the NO variable, showing reduced uncertainty for the one-step

forecasts. Figure 4.17 (b) shows qq-plots for the residuals using the log-transformed data,

the NO residuals appear to be more normal and exhibit a good fit.

4.10 Summary

The time series models and inference methods presented in this chapter apply to Normally

distributed time series data. Many time series can be transformed or summarised (due

to the central limit theorem) in order to appear Normal. However, parameter posterior

distributions can be difficult to interpret for transformed time series. Sometimes data
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Figure 4.15: Posterior MCMC diagnostics for the diagonal elements of the system matrix
corresponding to the CO observations for sensor 2603. The traceplots of the MCMC draws,
(left). The empirical marginal posterior densities, (right).

can not be transformed to appear Normal, count valued time series are one such example

where it is challenging to transform the data appropriately. Chapter 5 considers a class of

non-Gaussian time series for modelling count data and data with outliers using the robust

Students-t distribution. This leads to improved model fit for the NO and temperature

data seen in example 4.9.

Section 4.6 considered several algorithms for online parameter estimation in dynamic

linear models. These online algorithms can be used to simultaneously perform inference

for the latent-state and unknown static parameters. Section 4.7 showed a straightforward

way to model DLMs in continuous time for irregularly observed data. This is useful for

sensor data which can go offline for periods due to sensor problems or network connectivity

issues.

Section 4.8 introduced the modelling language for building DLMs using the Scala

library Bayesian DLMs3. The models can be used with any of the inference algorithms

3https://git.io/dlm

135



Chapter 4. Dynamic Linear Models

−200

0

200

400

N
O

40

60

80

100

H
um

id
ity

0.00

0.25

0.50

0.75

1.00

10

15

20

25

Jun 04 Jun 11 Jun 18 Jun 04 Jun 11 Jun 18

Jun 04 Jun 11 Jun 18 Jun 04 Jun 11 Jun 18

Date Date

Date Date

C
O

Te
m

pe
ra

tu
re

key Observed Forecast

(a)

● ●

●●●●
●●
●●●●●●

●●●●
●●
●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●

●●●●
●●

● ●

●
●

●●

●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●
●●●●
●●
●●

●●
●
●

●
●

●

●

●

● ●●●
●●●●●●

●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●
●●
●●●●

●●

●●

● ●

● ●

●●●●

●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●

●●●●

●●

● ●

no temperature

co humidity

−4 −2 0 2 4 −4 −2 0 2 4

−30

0

30

60

−5

0

5

10

−1.0

−0.5

0.0

0.5

1.0

0

200

400

theoretical

sa
m

pl
e

(b)

Figure 4.16: (a) The one-step forecast mean and 50% probability intervals for sensor 2603
during the first three weeks of June 2018. The NO forecast uncertainty is unacceptably
large. (b) The residuals of the one-step forecast mean for sensor 2603 for the month of
June 2018.
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Figure 4.17: (a) One-step forecasts for sensor new new emote 2603 during June 2018,
using the logarithm of NO. (b) Normal Q-Q plot for the residuals of the multivariate
Urban Observatory DLM using a log-transform on the NO measurements.

136



Chapter 4. Dynamic Linear Models

introduced in this chapter for any user defined DLM and data. The filtering algorithms are

written using binary reduction functions and applied to collections of observations using

fold and scan. This implementation allows the same function to be re-used in multiple

contexts - such as an Akka stream for filtering live streaming data (see section 2.3.1) or a

built in collection such as Vector when using FFBS in offline inference algorithms.
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Chapter 5

Non Gaussian State Space Models

Time series observations arising in environmental science often are not distributed accord-

ing to a Gaussian distribution. If the data cannot be suitably transformed then it can

not be adequately modelled with the DLMs introduced in chapter 4. Non-Gaussian time

series include those which have a high proportion of outliers, measurements of proportions

or count time series. More suitable observation distributions for these time series could

include the Student’s t-distribution, the Beta distribution and the Poisson distribution

respectively. The DLM considered can be extended to have a non-Gaussian observation

distribution. This results in a more general class of models which can be used to model

non-transformed data. The downside to this generalisation is that filtering is not available

in closed form using the Kalman filter.

The class of non-Gaussian models with observations distributions which are from the

exponential family are referred to as dynamic generalised linear models (DGLMs) [West

et al., 1985]. West et al. proposed using conjugate prior distributions for the exponential

family observation distributions leading to approximate closed form predictive distribu-

tions. The class of DGLMs is a dynamic extension of generalised linear models [Nelder and

Wedderburn, 1972] in which independent observations are considered to follow a exponen-

tial family model and are related to covariates which do not evolve in time. Additionally,

there are useful observation distributions which are not included in the exponential family

for which filters can be developed such as for the Student’s t-distribution in section 5.4 and

the zero-inflated Poisson distribution 5.1.1. This chapter is focused upon simulation based

inference using particle filtering and pseudo-marginal methods [Andrieu et al., 2010] for

state space models with Gaussian latent-state and non-Gaussian observation distributions.

Forecasting is performed using simulation as described in section 5.5. Non-Gaussian state

space models have been used in a variety of fields, such as finance and economic time

series [Triantafyllopoulos, 2008].

Non-Gaussian state space models are useful for modelling heterogeneous data from
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distributed sensor-networks with a high data velocity. Just as the Kalman filter can be

performed online to determine the filtering distribution in a DLM, the particle filter can be

performed online to learn the posterior distribution of the latent-state in a non-Gaussian

state space model. The only requirement for the observation distribution is that the

probability density function can be evaluated. Unfortunately, particle filtering is more

computationally intensive than the Kalman filter and this motivates a new conditional

Kalman filter for Student’s t-distributed observations in section 5.4. The computational

considerations needed to implement an efficient particle filter are discussed in section 5.2.1.

This section presents a novel parallel implementation of the bootstrap particle filter using

functional programming idioms. This can be used to speed up advancing the state and

resampling steps when using the particle filter with large particle clouds.

In addition to the flexibility of choosing a non-Gaussian observation distribution, these

models can be easily composed like DLMs to create complex univariate and multivariate

models as described in sections 4.1.1 and 4.1.2. The models are implemented in a Scala

library published by the author 1.

A non-Gaussian state space model can be written hierarchically as follows:

Yt|ηt ∼ p(yt|ηt, ψ),

ηt|θt = g(F Tt θt),

θt|θt−1 = Gtθt + wt, wt ∼ MVNn(0,Wt),

θ0 ∼ N (m0, C0). (5.1)

The observations Yt are univariate random variables observed at discrete time points. As

in the DLM, the latent-state, θt ∈ Rn, t = 0, . . . , N , is Gaussian and the state evolution is

a first order Markov process parameterised by the system evolution matrix Gt ∈ Rn×n and

the covariance matrix Wt ∈ Rn×n. The latent-state is transformed using the observation

matrix Ft ∈ Rn and the link function g(·). ηt is the mean or location of the observation

distribution and ψ are additional static parameters required for the chosen observation

distribution. Figure 5.1 shows the structure of the non-Gaussian state-space model. The

joint posterior distribution of the state, θ0:N and parameters W and ψ can be learned

from the data using particle filtering and psuedo-marginal MCMC schemes [Andrieu et al.,

2010]. This chapter introduces useful inference algorithms for non-linear, non-Gaussian

state space models illustrated with examples using both simulated and real-world data.

1https://git.io/dlm
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. . . θt−1 θt θt+1 . . .

ηt−1 ηt ηt+1

Yt−1 Yt Yt+1

Figure 5.1: Directed a-cyclic graph showing the structure of the non-Gaussian state space
model. The latent-state is Markovian with the horizontal arrows representing state tran-
sitions. The vertical arrows to ηt represent the (deterministic) transformation of the
latent-state. The vertical arrows to Yt represent a draw from the observation distribu-
tion, the observations are conditionally independent given the corresponding value of the
latent-state.

5.1 Example Non-Gaussian Models

5.1.1 Count Data

Count data with low-counts or high prevalence of zero readings presents difficulties for

models with Gaussian observation distributions. The simplest distribution used to model

count data is the Poisson distribution. The Poisson distribution has one parameter, the

rate λ > 0, which is equal to the mean and variance the Poisson distribution has support

on the non-negative integers, Yt ∈ {0, 1, . . . }. The link function is g(x) = exp(x). The

latent-state is as in equation 5.1, with the observation equations

Yt|ηt ∼ Poisson(ηt),

ηt|θt = exp(F Tt θt).

Sometimes in count data there are many zeros, for instance a traffic sensor on a road

used for commuting to a business park may have no cars passing on weekends or overnight.

The Poisson distribution alone is not a good fit for this type of data. However a mixture

distribution can be used:

p(Yt|ηt, p) =

p+ (1− p)e−ηt if Yt = 0,

(1− p)η
Yt
t
Yt!
e−ηt if Yt > 0.

This states that the probability of observing a zero at time t is p plus the probability of

observing a zero from the Poisson distribution. This mixture distribution is commonly

known as a zero-inflated Poisson distribution. To show that this is a probability mass
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function, it must sum to one for all possible outcomes, Y ∈ {0, 1, 2, . . . }:

∑
Y ∈Z+

Pr(Y |η, p) = p+ (1− p)e−η + (1− p)
∞∑
Y=1

ηY

Y !
e−η

= p+ (1− p)
∞∑
Y=0

ηY

Y !
e−η

= p+ (1− p) · 1
= 1.

This observation distribution results in a non-Gaussian state space model which is

not in the exponential family - nevertheless the joint posterior distribution of the latent-

state and static parameters can be inferred using the pseudo-marginal Metropolis-Hastings

inference algorithm introduced in section 5.3.

Count data is often over-dispersed with respect to a Poisson distribution, meaning

that as the sample mean of the count increases so does the variability. An alternative pa-

rameterisation of the Negative Binomial distribution is often used to model over-dispersed

count data. The Negative Binomial arises as a Gamma mixture of Poisson distributions

where the rate of the Poisson distribution is distributed according to a Gamma distribution

with shape α = r and rate β = r
m , then

p(y|r,m) =

∫ ∞
0

Gamma
(
λ|r, r

m

)
Poisson(λ)dλ,

=

(
r
m

)r
Γ (r)y!

∫ ∞
0

λr−1 exp
(
− r

m
λ
) λy exp(−λ)

y!
dλ,

=

(
r
m

)r
Γ (r)y!

∫ ∞
0

λr+y−1 exp

(
−λ
(
m+ r

m

))
dλ,

=
Γ (r + y)

Γ (r)y!

(
m

m+ r

)y ( r

r +m

)r
(5.2)

The support of this distribution is Yt ∈ {0, 1, 2, . . . }, the parameters representing the scale

and mean are both non-negative quantities r,m ≥ 0. The variance of this distribution is

Var(Yt) = m+ m2

r which increases as the value of the mean increases and can be controlled

by the parameter r. In order to model a dynamic mean let m = ηt. To complete the

specification of the model the link function is g(x) = exp(x) and r is a static parameter.

Simulating from this distribution is straightforward, by first sampling the rate, λ from a

Gamma distribution then sampling from the Poisson distribution with rate λ.

A simulation from these three models for count time series is shown in Figure 5.2.

Each of the simulations share the same latent state, θt, t = 1, . . . , 500 which is then
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Figure 5.2: Simulated values from first order count time series models with W = 0.05.
Each model shares the same latent-state with a different observation distribution, the zero
inflated Poisson has probability of zero p = 0.2 and the negative Binomial distribution has
r = 1.0.

exponentiated to form the rate of the Poisson and zero-inflated Poisson (ZIP) and the

mean of the Negative Binomial. The ZIP clearly has a higher prevalence of zeros than the

Poisson observation distribution and both the Negative Binomial and ZIP produce higher

variance in the observations.
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5.1.2 Robust Time Series Modelling

The Student’s t-distribution is a location-scale family distribution which is useful for robust

time series modelling. The Student’s t-distribution has thicker tails than the normal

distribution for low values of the degrees of freedom, hence it is more forgiving of outliers

in the measurements. The scaled, shifted Student’s t-distribution is parameterised by the

location, `, scale s and degrees of freedom ν, the probability density function is:

p(x|`, s, ν) =
Γ
(
ν+1
2

)
√
πνsΓ (ν2 )

(
(x− `)2
νs2

+ 1

)− ν+1
2

(5.3)

Note that the Student’s t-distribution is not a member of the exponential family. The

state-space model, with a first order random walk latent-state can be written as:

Yt ∼ tν(θt, s
2),

θt = θt−1 + wt, wt ∼ N (0,W ),

θ0 ∼ N (m0, C0). (5.4)

Figure 5.3 shows 1,000 simulations from the model with ν = 3, s2 = 3,W = 0.1,m0 =

0, C0 = 1. This can be compared with the simulation from the first order polynomial DLM

in figure 4.2, the observations in the Student’s t state space model display more outliers

from the main trend.

5.2 Particle Filtering for State Estimation

The bootstrap particle filter [Gordon et al., 1993] was introduced in section 1.3.5 for a

general state space model with a Markov transition kernel which can be forward simulated

from and any observation distribution from which the conditional likelihood can be com-

puted. The non-Gaussian state space models considered in this chapter have a Markovian

(and Gaussian) transition kernel for the latent state which can be forward simulated from

and hence the bootstrap particle filter can be used to find the filtering distribution and an

estimate of the log-likelihood. The log-likelihood estimate can be used in pseudo-marginal

MCMC schemes to jointly estimate the posterior distribution of the latent-state and static

parameters of the models.

Section 5.2.1 considers the numerical stability of the bootstrap particle filter and in-

troduces implementation details which can be used to build a robust particle filter. One

strength of the particle filter is that it can be parallelised, section 5.2.2 illustrates a novel

implementation of a parallel particle filter with polymorphic functions, using higher kinded

types.
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Figure 5.3: Simulated observations, (top), and latent-state, (bottom), from the state space
model with Student’s-t distributed measurement error with parameter values ν = 3, s2 =
3,W = 0.1,m0 = 0, C0 = 1.

5.2.1 Numerical Stability

The bootstrap particle filter has a problem with sample degeneracy. Intuitively this means

that the distribution of weights associated with the particles is unbalanced with a few very-

large weights and the others very small. This is caused by many particles advancing to

areas of low probability. To combat this problem, a resampling step is employed whereby

particles are selected with probability proportional to their weight. This results in a sample

with more high-weighted particles and fewer low-weighted particles.

Resampling can lead to another problem, particle impoverishment, whereby particles
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collapse onto a small number of trajectories. A way of avoiding particle impoverishment is

to resample only when the effective sample size of the particle cloud falls below a predefined

value. The effective sample size can be calculated by

ESS =
1∑M

i=1(w̃
(i)
t )2

, (5.5)

where w̃
(i)
t represents the normalised weight of particle i. Then resampling occurs when

the ESS falls below a threshold value, M/2 for instance. This has the dual purpose of

speeding up the computation, as resampling is typically an expensive step which often

requires cross-processor communication in the case of a parallel particle filter.

Another consideration when implementing the particle filter is the arithmetic precision

of the computer. When calculating the weights, it is important to work with the log-

weights, ut to avoid arithmetic underflow. The exponentiated normalised weights, wt are

then needed in order to perform resampling. If values of the log-likelihood are small, then

their exponentiated values are approximately zero. This means the weights of each particle

will be identical. Since the weights are going to be normalised, take the maximum value

of the collection of the weights at time t away from each weight before exponentiating

at = max
i
u
(i)
t ,

w
(i)
t = exp(u

(i)
t − at) for i = 1, . . . ,M.

where u
(i)
t represents the log-weight of particle i at time step t. An estimate of the

likelihood can be found by calculating the average of the sum of the un-normalised weights:

p̂(y1:t) = p̂(y1)

t∏
k=2

p̂(yk|y1:k−1)

=
t∏

k=1

1

M

M∑
i=1

exp(u
(i)
k ) (5.6)

The marginal log-likelihood of the observation at time t given the previous observations

can then be calculated as

log p̂(yt|y1:t−1) = at + log
1

M

M∑
i=1

exp(u
(i)
t − at) (5.7)

using the following identity
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log

M∑
i=1

exp(u
(i)
t ) = at + log

1

M

M∑
i=1

exp(u
(i)
t − at) (5.8)

An estimate of the marginal log-likelihood can be calculated iteratively, using equa-

tion (5.8) while performing the particle filter

log p̂(y1:t) = at + log
1

M

M∑
i=1

exp(u
(i)
t − at),

= log p̂(y1:t−1) + at + log
1

M

M∑
i=1

exp(u
(i)
t − at).

5.2.2 Parallel Functional Particle Filter

A functional implementation of a simple bootstrap particle filter is considered in sec-

tion 2.1.14. This implementation is polymorphic in the collection type containing the

observations, using the Traverse type class. However, the Vector collection type is used

to hold the particle cloud representing the latent-state. Vector is a sequential collection

type which supports approximately constant time random access to elements, this is a

useful property for resampling, however due to it’s sequential nature cannot be used for a

parallel particle filter.

Typically the slowest step in a particle filter is sampling from the latent-state transition

kernel, θ
(i)
t ∼ p(θt|θ

(i)
t−1) for i = 1, . . . ,M . This step is straightforward to parallelise, since

each state is advanced independently. The higher order function map is used to apply a

function to each element of a collection independently and a Functor (see section 2.1.7)

represents a type constructor that can be mapped, therefore a generic function to advance

the state is:

def transitionKernel: State => State

def advanceState[F[_]: Functor](xs: F[State]): F[State] =

xs map transitionKernel

If the transition kernel for the latent-state is expensive to compute, or the number of

particles required in the particle filter is extremely large then parallelisation of this step is

often beneficial. In order to use this function for a parallel collection then a functor type

class instance must be defined for a parallel collection such as ParVector .

To use the function advanceState in parallel, first define the initial state to be a

parallel collection, then apply the function:

val x0: ParVector[State] = Vector.fill(100)(0.0).par

advanceState(x0)
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This creates a Vector containing 100 copies of 0.0 then converts it to a parallel collection

using the method .par. The function advanceState can be used with any type constructor

which has an instance of Functor in scope.

The next step of the bootstrap filter is to calculate the weights for each particle w
(i)
t ∼

p(yt|θ(i)t ). This step is also independent and can be performed in parallel using map:

def conditionalLikelihood: Observation => State => LogLikelihood

def calculateWeights[F[_]: Functor](

xs: F[State],

y: Observation): F[LogLikelihood] =

xs map conditionalLikelihood(y)

Next is the resampling step, this is more difficult to perform in parallel and is dependent

on the resampling scheme chosen, see Murray et al. [2016] for a detailed discussion of

parallel resampling in the particle filter. Metropolis resampling is one of the algorithms

considered by Murray et al. which produces biased samples, potentially causing a prob-

lem for parameter inference using PMMH introduced in section 5.3. However, Metropolis

resampling can be performed in parallel as only the ratio between pairs of weights is con-

sidered. Metropolis resampling is reproduced in algorithm 14. Systematic resampling is an

alternative resampling scheme which produces unbiased samples and is straightforward to

parallelise. Resampling schemes which produce unbiased samples such as Multinomial re-

sampling and systematic resampling are used in the particle filter to estimate the marginal

likelihood in the PMMH algorithm. For forecasting and interpolation conditional on the

static parameters, the parallel Metropolis-Hastings resampling algorithm can be used.

Algorithm 14: The metropolis resampling algorithm.

Result: Return the set of indices representing the ancestors of M particles a
1 Given w = {w(1), . . . , w(M)} and a preset number of iterations B;
2 for i in 1:M do
3 Set k = i;
4 for n in 1:B do
5 Sample u ∼ U(0, 1);
6 Sample j ∼ U(1,M);

7 if (u ≤ w(j)

w(k) ) Set k = j;

8 end

9 a(i) = k

10 end

First write the inner loop using a tail-recursive function, this depends on the value of

k, the vector of weights w and the number of iterations b.

def loop(b: Int, k: Int, n: Int, w: Vector[Double]): Int = {
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if (b == 0) {

k

} else {

val u = Uniform(0, 1).draw

val j = discreteUniform(0, n-1).draw

if (u <= w(j)/w(k)) {

loop(b-1, j)

} else {

loop(b-1, k)

}

}

}

The main function can then utilise this helper function, the outer for loop is implemented

as a map function on a parallel collection of the weights, ParVector[Double].

def metropolisResampling(b: Int, weights: ParVector[Double]) = {

val n = weights.size

weights.indicies.map {i => loop(b, i, n, weights) }

}

Note that the inner for loop is performed in parallel, using parallel collections, it does not

matter in which order the weights are compared. A single step of the parallel functional

particle filter can now be written as:

def stepPfParallel(x0: ParVector[Double], y: Int): ParVector[Double] = {

val advanced = x0 map stepState

val w = advanced map (x => conditionalLl(x, y))

metropolisResample(w, advanced).draw

}

stepPfParallel can now be applied to a collection of observations using scanLeft to pro-

vide an approximation for the filtering distribution. An application of the bootstrap par-

ticle filter with parallel Metropolis resampling was performed using the simulated Poisson

data from section 5.1.1, B = 10 iterations were used with M = 500 particles. Figure 5.4

shows the mean of the filtering distribution with ±2 standard deviations. A particle fil-

ter using Multinomial resampling (which is unbiased) was also used as a comparison for

filtering.

5.3 Pseudo-Marginal Metropolis-Hastings

In order to perform inference for the joint posterior distribution p(θ0:N , ψ|y1:N ) the particle-

marginal Metropolis-Hastings algorithm is used. This is a MH algorithm (see section 1.3.2)
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Figure 5.4: (Top) Simulated count observations from the Poisson model (Middle) Filtered
state mean, ±2 standard deviations and simulated state using the parallel bootstrap parti-
cle filter with Metropolis resampling (Bottom) Filtered state mean, ±2 standard deviations
using a serial particle filter with Multinomial resampling

where the marginal-likelihood is approximated using the bootstrap particle filter. The

marginal-likelihood, p(Y1:N |ψ) =
∫
θ p(Y1:N |θ0:N )dθ is required to perform the Metropolis-

Hastings algorithm. A particle filter can be used to find an unbiased, (see Del Moral

[2004]) estimate of the likelihood as in equation 5.6. The PMMH algorithm is summarised

in algorithm 15.

Examples of the Particle Marginal Metropolis-Hastings algorithm are presented in sec-

tions 5.4 and 5.9.

150



Chapter 5. Non Gaussian State Space Models

Algorithm 15: The particle marginal Metropolis-Hastings algorithm.

Result: Return (ψ(i), θ
(i)
0:N ) for i = 1, . . . ,M

1 Given observations y1:N ;
2 Initialise the parameters by sampling from the prior distribution ψ ∼ p(ψ);
3 for i in 1:M do
4 Propose a new value of the parameters ψ? ∼ q(ψ?|ψ);
5 Run the particle filter to calculate the pseudo-marginal likelihood p̂ψ?(y1:N )

and propose a new trajectory for the state θ?0:N ;

6 Calculate A =
p(ψ?)p̂ψ? (y1:N )q(ψ|ψ?)
p(ψ?)p̂ψ(Y1:N )q(ψ?|ψ) ;

7 Sample u ∼ U [0, 1];
8 if u < A then

9 Set ψ(i) = ψ?, θ
(i)
0:N = θ?0:N ;

10 else

11 Set ψ(i) = ψ(i−1), θ
(i)
0:N = θ

(i−1)
0:N ;

12 end

5.4 Student’s-t Filter

Although the particle filter (see section 1.3.5) can be used to determine the latent-state

of the non-Gaussian state space model with Student’s t-distributed observations, there is

a way to use the Kalman Filter to determine the state of a Student’s-t state space model.

The Kalman filter is more efficient to compute and does not suffer from problems such as

particle impoverishment or degeneracy.

The Student’s t-distribution arises as an Inverse-Gamma mixture of Normals. Consider

that X|V ∼ N (µ, V ), V ∼ Inv-Gamma(α, β) then the marginal distribution of X is:
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p(X) =

∫ ∞
0

p(X|V )p(V )dV,

=

∫ ∞
0

βα√
2πΓ (α)

V −
1
2 exp

(−(x− µ)2

2V

)
V −α−1 exp

(
− β
V

)
dV,

=
βα√

2πΓ (α)

∫ ∞
0

V −(α+
1
2
)−1 exp

{
− 1

V

(
(x− µ)2

2
+ β

)}
dV,

=
βαΓ

(
α+ 1

2

)
√

2πΓ (α)
(
(x−µ)2

2 + β
)α+ 1

2

=
βαΓ

(
α+ 1

2

)
√

2πΓ (α)βα+
1
2

(
(x−µ)2

2β + 1
)α+ 1

2

=
Γ
(
2α+1

2

)
√

2πβΓ (α)

(
(x− µ)2

2β
+ 1

)− 2α+1
2

. (5.9)

This is the PDF of a scaled, shifted Student’s t-distribution with ν = 2α, ` = µ and

s =
√
β/α.

Now a simulation from the scaled, shifted Student’s t-distribution can be obtained by

first simulating V from the Inverse Gamma distribution with parameters α = ν/2 and

β = νs2/2, then simulating from a Normal distribution with mean ` and variance V .

Further, this means that the Student’s t-distributed model is conditionally Gaussian and

a Kalman filter (see section 4.2) can be used to determine the filtering distribution.

In the state space model given in equation 5.4 the location of the Student’s t-distribution

is dynamic and given by ηt = F Tt θt, the scale and degrees-of-freedom are static parame-

ters. Consider the measurement update step of the Kalman filter with the new observation

distribution:

p(Yt|θt) =

∫ ∞
0
N (Yt;Ftθt, Vt) InverseGamma

(
Vt;

ν

2
,
νs2

2

)
dVt

using the result from equation 5.9. The joint distribution of all the random variables in

the model can be written as:

p(θ0:N , y1:N , s
2, ν,W ) = p(ν)p(s2)p(W )p(θ0)

N∏
t=1

p(Vt)p(Yt|θt, Vt)p(θt|θt−1,W )

= p(s2)p(ν)Inv-Gamma(Wj ;α, β)N (θ0;m0, C0)×
N∏
t=1

Inv-Gamma

(
Vt;

ν

2
,
νs2

2

)
N (Yt;Ftθt, Vt)N (θt;Gtθt−1,W ),
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using the Markov property of the latent-state and the conditional independence in the

model.

In order to learn the static parameters of the model, construct a Gibbs sampler, the

state can be sampled conditional on the observed data y1:N , the static parameters of the

model and the auxiliary variance parameters V1:N using FFBS (see section 4.4).

For the system noise matrix, assuming the matrix is diagonal then the conditionally

conjugate prior distribution for each diagonal element is the Inverse Gamma distribution

p(W |y1:N , θ0:N , ψ−W ) = p(W )

N∏
t=1

p(θt|θt−1,W )

= Inv-Gamma(α, β)

N∏
t=1

N (Gtθt−1,W )

= Inv-Gamma

(
α+

T

2
, β +

1

2

N∑
t=1

(θt −Gtθt−1)2
)
. (5.10)

Alternatively the system noise covariance matrix can be considered full-rank and be drawn

from an Inverse Wishart distribution as in equation (4.18). Then for each observation of

the time series y1:N , a value of the variance is sampled

p(Vt|y1:N , θ0:N , ψ) = p(Vt)p(Yt|θt, Vt),

= Inv-Gamma

(
ν

2
,
νs2

2

)
N (Ftθt, Vt),

= Inv-Gamma

(
ν + 1

2
,
νs2 + (yt − Ftθt)2

2

)
. (5.11)

The posterior distribution of the degrees of freedom, ν, and the scale, s2, can also be

learned from the data using a Metropolis-Hastings step. The Kalman filter must be

modified to sample the variance at each time-step. The one step update in the Kalman

filter conditional upon the sampled variances is

Prediction: draw Vt ∼ Inv-Gamma

(
ν + 1

2
,
νs2 + (yt − Ftθt)2

2

)
.

ft = Ftat

Qt = FtRtF
′
t + Vt

This is sufficient to learn the joint posterior distribution of the parameters and latent-state
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of a state space model with Student’s t-Distributed observation noise. The Gibbs sampler

for the Student’s t-distributed state space model is summarised in algorithm 16.

Algorithm 16: MCMC algorithm for the Student’s t-distributed state space
model.

Result: Return M samples of the static parameters ψ = {s2,W, ν} and latent
state θ0:N

1 Given N observations y1:N ;
2 Initialise the values of the parameters by sampling from the prior distribution

ψ0 ∼ p(ψ);
3 for i in 1:M do
4 Sample the state using FFBS, conditional on the auxiliary variances

p(θ0:N |ψi, y1:N , V1:N );
5 Perform a Metropolis-Hastings step to sample s2, ν;
6 Sample the state noise covariance from the full conditional:

p(W |y1:N , θ0:N , ψ−Wi ) = Inv-Gamma

(
α+

T

2
, β +

1

2

N∑
t=1

(θt −Gtθt−1)2
)
.

;
7 for t in 1:N do
8 Sample the auxiliary variances from

p(Vt|yt, θt, ψi) = Inv-Gamma

(
ν + 1

2
,
νs2 + (yt − Ftθt)2

2

)
.

;

9 end

10 end

The Gibbs algorithm is now compared to the PMMH algorithm for a simulated first

order Student-t Model as plotted in Figure 5.3. Both algorithms produce exact inferences

about the parameter posterior distributions however the Gibbs algorithm should be much

faster. The prior distributions for both inference algorithms were chosen to be:

p(W ) = Inv-Gamma(21.0, 2.0),

p(s2) = Inv-Gamma(4.0, 9.0),

p(ν) = Poisson(3) \ {0}.

The mean of the Inverse Gamma distributions for W and s2 are the same as the parameters

used to simulate the data. A truncated Poisson distribution is used for the prior of the

degrees of freedom, excluding values equal to zero. Figure 5.5 shows diagnostic plots for

154



Chapter 5. Non Gaussian State Space Models

scale

nu

0.09

0.10

0.11

0.12

0.13

2.5

3.0

3.5

scale

nu

scale

0

20

40

60

0

1

2

de
ns

ity

W
W

W

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

5

10

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

−1.0

−0.5

0.0

0.5

1.0

Iteration

Lag

va
lu

e
A

ut
oc

or
re

la
tio

n

0

100

200

300

400

2.5 3.0 3.5 0.09 0.10 0.11 0.12 0.130 2 4 6 8 10 12 14

valuevalue

co
un

t

Figure 5.5: Diagnostic plots for the MCMC draws using Gibbs sampling for the simulated
Student’s t-distributed model, the parameter values used to simulate the data are plotted
using the dashed line. The traceplots of the MCMC draws, (top). The autocorrelation
function for each parameter showing fast decay indicating low autocorrelation, (middle).
The empirical marginal posterior densities, (bottom).

the Gibbs algorithm. Two MCMC chains were run for 10,000 iterations with the first

1,000 iterations discarded as burn-in, thinned by a factor of 5 to reduce autocorrelation

in the chain. The algorithm has recovered the values of the parameters used to simulate

the data as expected.

For the PMMH algorithm, a symmetric Normal proposal distribution is used for log of

the static continuous parameters, s2 and W with a variance 0.012. A Negative Binomial
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Particles Var(log(p̂ψ(y1:N )))

50 5.28

100 2.47

200 1.15

Table 5.1: The variance of the pseudo-marginal log-likelihood using 1,000 repetitions of the
bootstrap particle filter for the Student-t distributed state space model. The parameter
values used to simulate the data were when computing the marginal log-likelihood.

distribution is used for the proposal distribution of the degrees of freedom of the obser-

vation distribution. A pilot run was used to determine the number of particles to use in

the bootstrap filter, a common rule of thumb is to use the minimum number of particles

which results in the variance of the log-likelihood estimate to be close to one at a central

parameter value (such as the posterior mean) [Doucet et al., 2015]. This results in an

efficient PMMH algorithm which accurately estimates the log-likelihood. The results from

the pilot run presented in table 5.1. 1,000 runs of the particle filter were performed with

50, 100 and 200 particles each.

A Bootstrap particle filter with 200 particles and systematic resampling at every itera-

tion is used to calculate the pseudo-marginal likelihood. The likelihood from the previous

iteration is stored such that the algorithm converges to the correct posterior. Two MCMC

chains were run in parallel with 100,000 iterations.

Figure 5.6 shows diagnostic plots for the PMMH algorithm. The PMMH algorithm

was ran for 10 times the length of the Gibbs sampler to achieve comparable results,

this could be because the parameters are proposed in one block since re-evaluating the

pseudo marginal likelihood multiple times at each time step is costly. Whereas using

Gibbs sampling and FFBS, the likelihood conditional on the sampled latent-state is cheap

to compute and hence the Metropolis-Hastings steps for the scale and degrees of freedom

can be performed independently conditional on the other parameters.

In order to compare the efficiency of each of the inference algorithms, the effective

sample size (ESS) per second for each of the parameters in the chain is calculated [Ripley,

1987]. The effective sample size of a chain of length n is calculated by:

ESS =
n

1 + 2
∑∞

i=1 ρ(i)
, (5.12)

where ρ(i) is the auto-correlation of the chain at lag i. Calculating iterations per second

is not a good measurement of the efficiency of an inference algorithm using Markov chain

Monte Carlo since the iterations from the Markov chain are correlated and not independent

draws from the posterior distribution. The ESS/s takes into account the auto-correlation
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Figure 5.6: Diagnostic plots for parameter inference using the PMMH algorithm for the
simulated Student’s t-distributed model. Traceplots (top), Autocorrelation plots (middle),
empirical marginal density plots (bottom).

of the parameters and hence rewards algorithms which are slower per-iteration, but more

effective at drawing independent samples. In a well mixing chain the auto-correlation

between successive iterations decays rapidly. An efficient MCMC has a higher ESS/s

which takes into account both auto-correlation and the speed of each iteration. Table 5.2

shows the ESS/s for the Gibbs algorithm and the PMMH algorithm for 10,000 iterations

of each inference algorithm.

The Gibbs sampling algorithm is clearly more efficient than the PMMH algorithm.

However, the PMMH algorithm is more general and can be applied to a wide array of
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Parameter ESS/s Gibbs ESS/s PMMH

s2 1.99 0.53

ν 1.67 0.35

W 15.24 3.39

Table 5.2: The efficiency measured in effective sample size per second for the PMMH
algorithm and the Gibbs algorithm for the Student-t distributed state space model.

state space models, not just the Student-t model.

5.5 Forecasting Non-linear State Space Models

Once the parameter posterior distributions have been estimated using MCMC given ob-

servations from the time series y1:N , it is of interest to forecast observations of the process

taking into account the uncertainty in the joint posterior distribution for the latent-state

and parameters. Suppose M independent samples are available from the parameter poste-

rior distribution, ψ(i), i = 1, . . . ,M and associated samples of the posterior distribution of

the latent-state at time N , θ
(i)
N , i = 1, . . . ,M for a model of interest. In order to produce

accurate forecast distributions with uncertainty, then first advance the state forward k

steps using each of these tuples (ψ(i), θ
(i)
N ):

p(θN+k|ψ, θ0:N ) ≈
N+k∏
t=N

(Gtθ
(i)
t + wt), wt ∼ N (0,W (i)), for i = 1, . . . ,M.

Call these samples at time N + k, θ̂
(i)
N+k, i = 1, . . . ,M , then transform the sample using

the observation matrix FN+k and the link function g:

ηN+k|ψ, θN+k ≈ g(FN+kθ̂
(i)
N+k), for i = 1, . . . ,M.

Finally, M samples are taken from the observation distribution

yN+k ≈ π(η̂
(i)
N+K , ψ

(i)), for i = 1, . . . ,M.

Summary statistics such as the mean and credible intervals can be calculated from this

sample.
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5.6 Non-Gaussian Modelling Language

The Non-Gaussian state-space models introduced in this chapter form part of the Bayesian

DLMs2 Scala library introduced in section 4.8.

A non-Gaussian state space model is referred to as a Dglm even though not all models

are exponential family models. The class Dglm has five associated functions:

case class Dglm(

observation: (State , Scale) => Rand[Observation],

f: Time => DenseMatrix[Double],

g: Time => DenseMatrix[Double],

link: State => State ,

conditionalLikelihood:

(Scale , State , Observation) => LogLikelihood

)

The observation function is a function from the latent state, State, and a scale

parameter for the observation distribution to a distribution over the possible observations.

f and g are the observation and system matrices from the DLM class introduced previously.

link is a link function required to transform the unbound latent-state into the parameter-

space of the observation distribution. Finally, conditionalLikelihood is a function from

the scale of the observation distribution, the latent state and observation to a log-likelihood

value.

Many built in models are provided, including the models introduced in this chapter.

To define a non-Gaussian state space model, first define a DLM using the API from

section 4.8, then choose an observation distribution:

val dlm = Dlm.polynomial(2) |+| Dlm.seasonal(24, 5)

val nonGaussian = Dglm.beta(dlm)

This defines a non-Gaussian state space model with a Beta observation distribution suit-

able for modelling proportions; the link function is logistic-function.

5.7 Modelling NO

Nitric oxide (NO) is an environmental pollutant which contributes to acid rain, smog and

is known to cause damage to the ozone layer. It is also known to cause symptoms of

respiratory diseases like emphysema. NO is commonly produced by car engines and so is

particularly prevalent in large cities with a high volume of motor traffic. NO is measured

in µgm−3.

2https://git.io/dlm
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Figure 5.7: NO readings by time showing many outlying values, (top). NO readings as a
density showing a long tail, (bottom).

The data is measured by a sensor known as “new new emote 1108” located at -1.625

E, 54.974 N (See Figure 5.8), this is just off Westgate Road in Newcastle upon Tyne. The

sensor measures humidity, NO, NO2, Sound, CO and Temperature. The data used to

learn the posterior distribution of the static parameters is recorded between 2016-08-04

and 2017-08-15 and data from the period 2017-08-16 to 2017-08-31 is used for evaluation of

the model. Figure 5.7 shows the NO readings by time and the density of the NO readings.

Since NO in the city centre is typically caused by emissions from motor vehicles it is

expected that there is seasonality in the data. Figure 5.9 shows the mean NO by hour of

weekday, indicating that 8am typically has the highest emissions, this corresponds to rush

hour and indicates that a seasonal model with a 24 hour period would be suitable for this

data. It is also noted that emissions are higher during waking hours and higher Monday

to Friday than on weekends.

The model is a composition of a first order polynomial and two seasonal models. The

model matrices are chosen to be:
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Leaflet | © OpenStreetMap contributors, CC-BY-SA

Figure 5.8: A map showing the location of sensor “new new emote 1108”.
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Figure 5.9: The average NO by hour of weekday recorded at “new new emote 1108”.
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F =



1

1

0

1
...

1

0


Gt =



1 0 . . . . . . 0

0 R(ω1, 1) 0 . . . 0
... 0 R(ω1, 2) . . . 0
... 0 . . .

. . . 0

0 . . . . . . 0 R(ω1, h)


(5.13)

R(ω, h) is a rotation matrix and ω = 2πh(δt%P )
P (see section 4.7 for a more detailed expla-

nation) and the period is P = 24.

Due to the large number of outliers present in the data, the Student’s t-distribution is

used as the observation distribution. The static parameters in the model are the system

noise covariance matrix W , the scale of the Student’s t-distribution s and the degrees

of freedom ν. The posterior distribution of the static parameters will be inferred using

the Gibbs sampling algorithm developed in section 5.4. If the mean of the posterior

distribution of the degrees of freedom is large this indicates that a Gaussian distribution

would be a suitable fit for the data. The prior distributions of the static parameters and

initial state were chosen to be:

p(s2) = Inv-Gamma(10, 3),

p(ν) = Poisson(3) \ {0},
p(Wii) = Inv-Gamma(3, 3),

p(θ0) = N (0, 10).

The proposal distribution for the degrees of freedom was chosen to be the Negative Bino-

mial distribution. The MCMC algorithm was run for 100,000 burn-in iterations with two

parallel chains, a further 100,000 iterations were monitored and then thinned by a factor

of 10 to reduce auto-correlation.

Figure 5.10 shows the diagnostic plots for the scale and the degrees of freedom of the

Student t-distributed model for NO. The posterior distribution of the degrees of freedom

indicates that the Student’s t-distribution is a suitable fit.

Figure 5.11 shows the posterior intervals and median for the diagonal components of

the system matrix.

In order to assess the model fit, one-step forecasts are calculated from the held-out

test data, starting from August 16th 2017. The particle filter is used to perform one-step
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Figure 5.10: Diagnostic plots for the scale and degrees of freedom of the Student t-
distributed model for NO pollution. The traceplots of the MCMC draws, (top). Autocor-
relation functions showing fast decay indication low autocorrelation, (middle). Empirical
marginal posterior densities, (bottom).

forecasts using 100 samples from the parameter posterior distribution. Figure 5.12 (a)

shows the forecast mean and 50% credible intervals calculated using M = 1, 000 particles

in the each of the particle filters.

The model appears to be a better fit for the non-transformed NO data than the Gaus-

sian model considered in section 4.9. The scale of the Student’s-t distribution is estimated

to be smaller than the corresponding variance of the Gaussian distribution resulting in

less uncertainty about the forecast values. Figure 5.12 (b) shows the residual Student Q-Q
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Figure 5.11: Posterior intervals for the diagonal elements of the system matrix for the NO
model, central intervals are 50%, outer intervals are 90% and the point estimate is the
median.
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Figure 5.12: (a) One step forecast mean and 50% probability intervals for the NO test
data for the Student-t DGLM (b) Student Q-Q Plot for the residuals of the one-step
forecast values, (top). The residuals and fitted values, showing no heteroskedasticity or
non-linearities, (bottom).

plot and residuals against fitted values indicating the Student’s-t distributed state space

model is a good fit for this data.

5.8 Temperature Student-t Model

A multivariate DLM featuring temperature, NO, CO and humidity in chapter 4 failed to

accurately capture the variation in the tails as shown by the normal Q-Q plot in figure 5.12

(b). A Student-t observation distribution may be more appropriate for this data. This

example explores the use of the Student-t observation distribution for the Temperature
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Figure 5.13: The final two months of the training set of temperature readings from “new
new emote 2603”, (top). The temperature readings in the held out test set, (bottom).

data. Hourly temperature readings were used with eight months of training data from

1st January 2018 up to the 1st August 2018, the month of August 2018 was used as the

test set. Figure 5.13 shows the final two months of training data and the month used for

the test set. Some data is missing in the test set, however this does not pose a problem

for the Kalman filtering algorithm proposed in section 5.4, the same technique is used as

described in section 4.2.

The Gibbs sampling algorithm developed in section 5.4 is used to determine the pos-

terior distribution of the Student-t Temperature model. The prior distributions for the

static parameters are chosen to be:

p(s2) = Inv-Gamma(3.0, 3.0),

p(ν) = Poisson(5) \ {0}
p(Wii) = Inv-Gamma(3.0, 3.0), i = 1, . . . , 7.
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Figure 5.14: Diagnostic plots for the degrees of freedom and scale of the Student’s-t
observation distribution for the temperature time series recorded at sensor 2603. The
traceplots of the MCMC draws, (top). The autocorrelation functions, (middle). The
empirical marginal posterior densities, (bottom).

Figure 5.14 shows diagnostic plots from two independent MCMC runs each with 100,000

burn-in iterations followed by 100,000 monitoring iterations and thinned by a factor of

10. The figure shows samples from the posterior distribution of the degrees of freedom

and scale of the student-t observation distribution. The degrees are freedom are rather

larger than the NO example, indicating the tails of the distribution are not as heavy

in this example and that perhaps the Gaussian distribution could be a good fit for this

time series. One step forecasts of the traffic data using the test data are presented in

figure 5.15 with the residuals for the one-step forecast, the top right plot is a student

QQ-plot comparing the quantiles of the residuals to theoretical quantiles of a Student t

distribution with degrees of freedom ν = 20. The empirical quantiles are closer to the

theoretical quantiles in this QQ-plot than the QQ-plot in chapter 4, figure 4.16 indicating

that although the degrees of freedom are large, a Student-t distribution appears to be a

better fit.

Figure 5.16 shows the interpolated measurements of the temperature, the interpolation
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Figure 5.15: (Left) One-step forecast for the test temperature data with 50% credible
intervals found by running a particle filter forward with 1,000 particles using the mean of
the parameter posterior distribution. (Top Right) Student QQ-plot for the residuals of
the Student’s-t temperature model, since all points lie close to the line this indicates the
model is a good fit for the data (Bottom Right) Residuals against fitted values displaying
no noticible patterns.

is performed by determining the joint posterior distribution of the latent-state at the final

observation of the training data and the parameters. 1,000 draws from this posterior dis-

tribution are used to initialise the backward smoothing algorithm which uses the filtering

distribution determined using the conditional Kalman filter determined in section 5.4. The

interpolated data is more smooth and less uncertain than the online forecast in figure 5.15.

5.9 Modelling Traffic Data

Traffic patterns can be used to predict emissions of anthropogenic pollutants such as NO2

and CO. In this example a non-Gaussian state-space model is used to model the total

number of vehicles passing through a road segment in a given hour. This can be used to

perform forecasting and inform pollution forecasts in the vicinity of the road.

The Urban Observatory [James et al., 2014b] has many sensors for monitoring traffic,

sourced from data provided by the North East Combined Authority [NECA, 2016]. Traffic

cameras provide information on traffic flow, average speed and congestion. The example

considers traffic flow, which is provided in passenger car units at approximately 5 minute

intervals. The data is assumed to arrive every five minutes and as a pre-processing step the

observations are rounded to the closest five minute interval. Passenger car units represents

the size of a vehicle, with larger values representing larger vehicles. In the data provided

by the NECA, the values are all integers. Sensor N05171T is the sensor considered in this
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Figure 5.16: The recorded temperature data displays a large period of missing data, this
period is interpolated, the mean of the smoothing distribution is plotted in red with the
observations plotted in blue. 50% probability intervals are plotted using the shaded grey.

analysis. It is located on Hollinside Road near the Metro Centre in Gateshead. Figure 5.17

(left) shows the sum of PCU by hour during May 2018, showing a strong seasonal trend.

It is thought that the traffic data could have a large amount of zero-readings. Hence

the zero inflated Poisson model could be useful for modelling this data. However, the

total number of zero-readings at this sensor is 88 (4%) during the month of May 2018.

On the other hand, it does appear as if the data is over-dispersed. This indicates that the

Negative Binomial distribution could be a good fit for the data

Yt|ηt ∼ NegBin(ηt, s
2),

ηt|θt = exp(F T θt)

θt|θt−1 = Gθt−1 + wt, wt ∼ MVN(0,W ),

θ0 ∼ MVN(m0, C0).
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Figure 5.17: The sum of passenger car units by hour for the month of May 2018, (left).
Average passenger car units by hour for each day of the week showing strong daily sea-
sonality, (right).

The system and observation matrices are given by

F =



1

1

0

1
...

1

0


G =



1 0 . . . . . . 0

0 R(ω, 1) 0 . . . 0
... 0 R(ω, 2) . . . 0
... . . . . . .

. . . 0

0 . . . . . . 0 R(ω, h)


(5.14)

where R(ω, h) is a rotation matrix through angle ω = 2πh/24, the total number of har-

monics chosen is h = 4. This is a composition of first order polynomial model and a daily

seasonal model. Figure 5.17 (Right) shows the average PCU by hour and day of week,

showing strong daily seasonality. Saturday and Sunday do appear to have slightly different

patterns, this could be accounted for by adding an additional model to the composition

with weekly periodicity.

The PMMH algorithm is used to determine the value of the parameters with M = 500

particles and a multivariate normal proposal distribution on the log of the diagonal entries

of the W matrix and the log of the scale of the Negative Binomial distribution, s2. The

prior distribution for each diagonal entry of W and the scale of the observation distribution

is chosen to be:
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Figure 5.18: One step forecast median and 50% probability intervals for the withheld traffic
test data using the Negative Binomial DGLM plotted with the actual measurements in
passenger car units per hour.

s2 ∼ Inv-Gamma(3.0, 3.0),

Wii ∼ Inv-Gamma(10.0, 2.0), i = 1, . . . , 9.

Figure 5.18 shows a one-step forecast using the Negative-Binomial DGLM. The solid red

line is the median of the forecast distribution with 50% probabilty intervals.

Figure 5.19 shows the residuals against time and residuals against fitted values. The

residuals against fitted values plot shows heteroskedasticity, the variance increases as the

values of the fitted values increases. The Negative binomial observation distribution is

intended to account for this over-dispersion. Heteroskedastic time series are considered in

chapter 7, however only for Gaussian observation models.
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Figure 5.19: Model diagnostics for the Negative binomial state space model. Residuals
against time showing some un-modelled seasonality which could be captured using higher-
order harmonics, (top). Residuals against fitted values showing heteroskedasticity, the
variance appears to increase over time, (bottom).

5.10 Summary

This chapter has introduced non-Gaussian state space models which can be used to model

count data with various observation distributions and data with outliers using the Student-

t distribution. Inference for the latent-state can be performed using the bootstrap particle

filter, pseudo-marginal MCMC can be used to determine the static parameters using an

unbiased estimate of the likelihood given by the particle filter.

All the inference methods which are applicable to non-Gaussian state space models

(such as particle filters, pseudo-marginal MCMC etc) are also applicable to DLMs, al-

though more efficient exact methods are available.

Numerical stability in the particle filter can be a problem, several strategies for ame-

liorating this are considered in section 5.2.1. A functional parallel implementation of the

particle filter is considered in section 5.2.2 using Metropolis resampling.

These non-Gaussian models are more computationally intensive to fit compared to
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the Gaussian state space models in chapter 4, especially when using pseudo-marginal

schemes to estimate the parameters. A current research avenue for non-Gaussian state

space models are fast approximate inference schemes such as integrated nested Laplace

approximation (INLA) [Ruiz-Cárdenas et al., 2012]. This inference scheme can quickly

determine approximate posterior distributions for static parameters for time series data

which is fully available.

Section 5.4 presents a conditionally Gaussian filter for the Student-t distribution using

the fact that a Student-t distribution is an Inverse-Gamma mixture of Normals. This

means the Kalman filter can be used to perform inference for the latent-state in a state

space model with a Student-t observation distribution. This is utilised to model NO and

Temperature in sections 5.8 and 5.7.
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Chapter 6

Composable Markov Process

Models

Observations across sensor networks are highly heterogeneous, such as weather and tem-

perature, counts of cars and bikes or tweets from Twitter. Dynamic Linear Models (DLMs)

(as introduced in chapter 4) are often applied to modelling time series data. They are

discrete time, latent variable models which can be applied to a wide variety of problems,

provided the data is Normally distributed and the model is linear. The Kalman filter is an

analytical solution to find the distribution of the latent variables of a DLM, which can be

used to perform forecasting [Kalman, 1960]. The closed form solution can be found in the

case of a linear-Gaussian model because of special properties of the Gaussian distribution;

the sum of two Gaussian distributions is a Gaussian distribution and a linear translation

of a Gaussian distribution is still Gaussian with predictable mean and variance. However,

data arising from sensor networks is highly heterogeneous and in order to model this data,

non-linear models with a wide variety of observation models are needed.

In order to perform inference for non-linear systems, the extended (EKF) and later

unscented Kalman filter (UKF) have been developed [Julier and Uhlmann, 1997]. The

extended Kalman filter linearises at the current time step, by calculating the Jacobian of

the transition and observation functions at the given time and using these in the Kalman

filter equations. The extended Kalman filter becomes unstable when applied to highly

non-linear problems, so the unscented transform was introduced.

Particle filters (first introduced in section 1.3.5 and expanded upon in sections 4.6

and 5.2) can explore the state space of a non-linear, non-Gaussian latent variable model,

with minimal modification between models. The unscented Kalman Filter is more com-

putationally efficient than the simulation based particle filter and can be more accurate

when models are near-linear [Bellotto and Hu, 2007]. However, particle filters allow more

flexibility of model choice and as such are considered when performing inference for the
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models presented in this chapter. As the number of particles in the particle filter is in-

creased, the estimation error tends to zero. The same is not true of the UKF, since a

limited number of sigma points are used [Simon, 2006]. So with access to more computing

power, the particle filter is preferred for accurate inference.

Gordon et al. [1993] developed the theory of the bootstrap particle filter and compared

the performance of the new filter to the Extended Kalman Filter (EKF). They found the

accuracy of the bootstrap filter to be greatly superior to the EKF using a highly non-

linear model. A target tracking model was also considered, where the bootstrap filter

again outperforms the EKF.

Partially observed Markov processes (POMP) [Ionides et al., 2006] are a type of state

space model. For a review of state space modelling and filtering see Doucet et al. [2001]. In

a POMP model, the evolution of the latent state is governed by a continuous-time Markov

process which allows modelling of irregularly spaced observations in a natural way. The

observations are conditionally independent given the current value of the state.

POMP models are flexible in the choice of state-transition and observation distri-

butions, hence they can be used to model a wide variety of processes, such as counts,

proportions or strictly positive time varying data. For a full Bayesian analysis of a POMP

model, the full-joint posterior distribution of the parameters and the latent state can be

determined using the Particle Marginal Metropolis Hastings algorithm (PMMH) [Andrieu

et al., 2010]. PMMH is an off-line algorithm which requires a batch of observations to

determine the parameters. On-line filtering and forecasting can be carried out using a

particle filter with pre-determined static parameters, and occasional re-training of the

model can be carried out as required. On-line learning of model parameters is an active

research area. On-line parameter learning [Carvalho et al., 2010a, Vieira and Wilkinson,

2016] can be used for the composable models considered in this chapter, but this is not

the main focus. Here we illustrate our approach in the context of on-line state estimation.

It is useful to reuse and combine existing models when exploring new data and building

more complex models. The POMP models considered in this chapter can be composed

together to create new models. A software package has been written in Scala which allows

users to build and compose models and perform inference using the composable particle

filter and the PMMH algorithm1. On-line filtering and forecasting of streaming data is

facilitated using Akka Streams2 (first introduced in section 2.3.1) for Scala. Akka streams

can be used to process unbounded streams of data with bounded resources, hence on-line

filtering can be applied to large, live streams of data from application endpoints, databases

and files.

There are other software packages for performing inference on POMP models: LibBi [Mur-

1https://git.io/statespace
2https://akka.io
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ray, 2015] implements inference for general state-space models using particle Markov chain

Monte Carlo methods and sequential Monte Carlo (SMC). It is optimised for parallel

hardware and utilises CUDA (a parallel programming platform by NVIDIA) for GPU

(Graphics Processing Unit) programming. There is also an R [R Core Team, 2015] pack-

age, POMP [King et al., 2015] which implements Frequentist and Bayesian methods of

parameter inference for POMP models. Biips [Todeschini et al., 2017] is a probabilistic

programming language written in C++ for SMC and particle MCMC using a similar input

language to BUGS [Lunn et al., 2000a]. However, none of these packages support on-line

filtering of live streaming data, or model composition.

A Hidden Markov Model (HMM) is a type of state space model with discrete time and

discrete state. Factorial HMMs [Ghahramani and Jordan, 1997] have a distributed state,

which can reduce the complexity of approximate parameter inference when the discrete

state space is large. As mentioned by Ghahramani and Jordan, if the model structure

is known to consist of loosely coupled states, then the models can be combined from

constituent parts. This is similar in spirit to the composable POMP models considered in

this chapter, however here the state is continuous and evolves in continuous time.

The composable POMP models presented in this chapter have been developed to anal-

yse data in the Urban Observatory [James et al., 2014b], a grid of sensors deployed around

the city of Newcastle Upon Tyne, UK. In order to demonstrate the utility of this class of

composable POMP models, there is a real world example presented in Section 6.4. The

example consists of irregularly observed (aggregated) Traffic Flow Data collected from the

North East Combined Authority Transport Open Data [NECA, 2016].

Section 6.1 introduces POMP models as a means to model a wide variety of time series

data. Section 6.2 describes the composition operator for POMP models, to enable complex

models to be developed by combining simple models. Section 6.3.1 presents the bootstrap

particle filter and how it can be applied to estimate the latent state of a composed model.

Futher, the composed particle filter can be used to calculate an estimate of the marginal

likelihood of the observations given a set of parameters. Section 6.3.2 explains how to

use PMMH to determine the full-joint posterior distribution of the static parameters and

latent state. The PMMH algorithm was first introduced in section 5.3.

6.1 Partially Observed Markov Processes

Streaming data arrives frequently and discretely as an observation, y, and a timestamp,

t. In order to describe this time series data, a parametric probabilistic model is proposed:
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Y (ti)|η(ti) ∼ π(y(ti)|η(ti), ψ),

η(ti)|θ(ti) = g(F Tti θ(ti)),

θ(ti)|θ(ti−1) ∼ p(θ(ti)|θ(ti−1), ψ),

θ(t0) ∼ p(θ(t0)|ψ). (6.1)

Y (ti) ∈ R is a scalar observation from the observation distribution, π(y(ti)|η(ti), ψ). θ(ti) is

the (possibly multidimensional) unobserved state of the process. The state is Markovian

and is governed by the transition kernel p(θ(ti)|θ(ti−1), ψ) that we assume realisations

can be generated from, but in general may not represent a tractable distribution, in the

sense that we do not assume that we can evaluate the transition kernel pointwise. The

prior distribution on the state is given by p(θ(t0)|ψ). Ft is a time dependent vector, the

application results in the linear predictor γ(t) = F Tt θ(t), where γ(t) ∈ R. The function

g is a link-function allowing a non-linear transformation as required by the observation

distribution. For example, the link-function for a Poisson distribution is g(x) = exp{x},
since the rate of a Poisson distribution is required to be positive. ψ represents the static

parameters of the model, some observation distributions have scale parameters, Markov

transition kernels require parameters and the initial state, θ(t0), requires parameters.

In order to specify the model, the observation distribution π(·), the state evolution

kernel p(·), the linking function g(·), and the linear transformation vector F Tt are assumed

known and aren’t learned from the data. The parameters of the observation distribution

and state evolution kernel are learned from the data. Models with different specifications

for the same data can be assesed using model selection techniques [Wasserman, 2000].

The model is expressed as a directed graph in Figure 6.1. Although the latent state

evolves continuously, it is indicated only when there is a corresponding observation of the

process.

6.1.1 Observation Model

There is a need for flexible observation distributions to model the variety of data recorded

by large heterogeneous sensor networks. The scaled Exponential family models can be

used for the observation model, which includes, Poisson, Bernoulli and the Gaussian dis-

tributions among others.

Following the notation of West and Harrison [1997], the exponential family of dynamic

models are parameterised by η(ti), V and three known functions b(Y (ti), V ), S(Y (ti)),

a(η(ti)), the density, p(Y (ti)|η(ti), V ) is given by
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x(ti−1) x(ti) x(ti+1)

η(ti−1) η(ti) η(ti+1)

y(ti−1) y(ti) y(ti+1)

p(x(ti)|x(ti−1)) p(x(ti+1)|x(ti))

g(FT
ti−1

x(ti−1)) g(FT
ti x(ti)) g(FT

ti+1
x(ti+1))

π(y(ti−1)|η(ti−1)) π(y(ti)|η(ti)) π(y(ti+1)|η(ti+1))

Figure 6.1: Representation of a POMP model as a Directed Acyclic Graph (DAG)

b(Y (ti), V ) exp

{
S(Y (ti))η(ti)− a(η(ti))

V

}
, (6.2)

η(ti) is called the natural parameter of the distribution, V > 0 is the scale parameter,

S(Y (ti)) is the sufficient statistic, b(Y (ti), V ) is the base measure and a(η(ti)) is known as

the log-partition. The model class is then a generalisation of dynamic generalised linear

models (DGLM) [West and Harrison, 1997].

An extension to the POMP model class is also considered, the Log-Gaussian Cox-

Process, for modelling time-to-event data. It should be noted that additional extensions

to non-exponential family observation models are possible with the methods for filtering

and inference presented in Section 6.3, but are not considered here.

6.1.2 Modelling Seasonal Data

Many natural phenomena feature predictable periodic changes in the rate of their process.

For instance, when monitoring urban traffic, traffic flow is higher around 9am and 5pm as

commuters make their way to and from the city. In order to model a periodic process, a

time-dependent linear transformation vector is used:

Fti =



cos(ωti)

sin(ωti)
...

cos(ωhti)

sin(ωhti)


,
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where ω = 2π
P is the frequency, P represents the period of the seasonality and h represents

the number of harmonics required. The phase and amplitude of the waves are controlled

by the value of the latent state, if the hth harmonic at time ti is given by

Sh =

cos(ωhti)

sin(ωhti)

 ·
x1(ti)
x2(ti)

 ,

the phase of the wave is ϕ = arctan(−x2(ti)/x1(ti)) and the amplitude is, A =
√
x2(ti)2 + x1(ti)2.

The first multiplicand of Sh is a component representing the hth harmonic of Ft. The ob-

servation model can be any appropriate distribution. The full specification of the seasonal

POMP model is given by (6.1) with an identity link-function, g(x) = x. The latent state

of the seasonal model is 2h-dimensional.

In DLMs seasonality is commonly represented using block diagonal matrices to trans-

form the state, the blocks contain rotation matrices which are time homogeneous [West and

Harrison, 1997]. This is not convenient with continuous-time models where observations

can arrive irregularly.

Figure 6.2 shows a simulation from a Normal seasonal model, with a latent state

evolution governed by Brownian Motion as introduced in Section 6.1.5.

6.1.3 Time to Event Data: The Log-Gaussian Cox-Process

The Log-Gaussian Cox-Process (LGCP) is an inhomogeneous Poisson process whose rate

is driven by a log-Gaussian process. In an inhomogeneous Poisson process the hazard,

λ(t), varies in time according to a log-Gaussian process. For an inhomogeneous Poisson

process, the total number of events in the interval (t0, tn] is distributed as:

N(tn) ∼ Poisson

(∫ tn

t0

λ(s)ds

)
,

where the the cumulative hazard can be written as Λ(tn) =
∫ tn
t0
λ(s)ds. The cumulative

distribution function of the Log-Gaussian Cox-Process is 1−exp{−Λ(tn)}. The conditional

density is then,

π(tn|λ(tn), Λ(tn)) = λ(tn) exp{−Λ(tn)}.

The general form of the LGCP POMP model is given by,

179



Chapter 6. Composable Markov Process Models

State1

State2

−15

−10

−5

0

5

10

−10

−5

0

5

−4

−3

−2

−1

0

0 25 50 75 100

0 25 50 75 100

0 25 50 75 100

Time

Time

Time

O
bs

er
va

tio
n

E
ta

va
lu

e

Figure 6.2: (Top) Simulated values from a seasonal model with Normal observations,
with observation variance V = 1.0, observed discretely at integer time points. (Middle)
Transformed State, mean of the Normal observations. (Bottom) The Ornstein-Uhlenbeck
latent state with parameter values φ = 0.1, µ = 0.1 and σ = 0.3 and the initial state
drawn from N (0.0, 1.0).

ti|λ(ti) ∼ π(t|λ(ti), Λ(ti)), λ(ti)

dΛ(ti)

 =

exp{x(ti)}
λ(ti)dt

 ,

X(ti)|x(ti−1) ∼ p(x(ti)|x(ti−1), ψ),

x(t0) ∼ p(x(t0)|ψ),

where p(x(ti)|x(ti−1), ψ) is the transition kernel of a continuous time Gaussian Markov

process. Figure 6.3 shows a simulation from the Log-Gaussian Cox-Process, using an

approximate simulation algorithm presented in 17.
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Algorithm 17: Algorithm to simulate the Log-Gaussian Cox-Process.

Result: Return the set of events ek = {ts, . . . , tk} in the interval [t0, tN ]
1 Given the rate λ(t) = exp(ψ(t)) has been simulated on a fine grid on the interval

[t0, tN ];
2 Set Uλ = max

t∈[t0,tn]
λ(t);

3 while tk < tN do
4 Set k = 1;
5 Sample t′ ∼ Exponential(Uλ);
6 Set tk = tk−1 + t′;
7 Sample u ∼ U [0, 1];
8 if u ≤ λ(tk)/Uλ then
9 Add the event time to the set of events ek = {ek−1, tk};

10 end
11 Set k = k + 1;

12 end
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Figure 6.3: (Top) Simulated event times from the Log-Gaussian Cox-Process. (Mid-
dle) The unobserved hazard. (Bottom) The unobserved state evolving according to the
Ornstein-Uhlenbeck Process with mean µ = 0.1, autoregressive parameter φ = 0.4 and
volatility σ = 0.5, the initial distribution is N (µ, 1.0)
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6.1.4 Simulating synthetic data from a POMP model

In order to perform forecasting and interpolation, a method must be developed to forward

simulate from POMP models. After determining the parameters for the model, as in

section 6.3.2, forward simulation of the model beyond observed values can be used to

predict future observations along with the uncertainty of the predictions. In the case of

the traffic data in section 6.4, forecasting can help with route planning and diversions. In

addition, forward simulation can also be useful to generate synthetic data to test inferential

algorithms. Algorithm 18 illustrates how to simulate from a POMP model.

Algorithm 18: Algorithm to simulate from a POMP model.

Result: Return the pairs of observations and latent-state
{(θ(t1), y(t1)), . . . , (θ(tN ), y(tN ))}

1 Given a list of times to observe the process t0, t1, . . . , tN ;
2 Sample θ(t0) ∼ p(θ(t0)|ψ);
3 for i in 1 : N do
4 Calculate δt = ti − ti−1;
5 Sample θ(ti) ∼ p(θ(ti)|θ(ti−1), ψ);
6 Calculate γ(ti) = F Tti θ(ti);
7 Calculate η(ti) = g(γ(ti));
8 Sample y(ti) ∼ π(y(ti)|η(ti), ψ);

9 end

6.1.5 The Latent State: Diffusion Processes

The latent state evolves according to a continuous time Markov process. Any Markov

process can be used to represent the state; however in this chapter, the focus is on Itô

diffusion processes (introduced in section 4.7). Diffusion processes are represented by

solutions to stochastic differential equations (SDE), (see Oksendal [2013] for a detailed

treatment). The continuous-time evolution of the latent space is governed by a time

homogeneous SDE of the form.

dθ(t) = µ(θ(t))dt+ σ(θ(t))dB(t). (6.3)

Generally, θ ∈ Rn and µ(·) : Rn → Rn is referred to as the drift coefficient, σ(·) : Rn →
Rn×m is the diffusion coefficient and B(t) is an m× 1 Brownian motion.

If an SDE doesn’t have an analytic solution, it can be simulated approximately us-

ing the Euler-Maruyama approximation or higher-order schemes such as the Milstein

method [Kloeden and Platen, 1992]. The Euler-Maruyama approximation gives an ap-

proximate solution to an SDE, as a Markov chain. Start with a general SDE for a diffusion

process as in Equation 6.3.
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The interval of interest, [t0, tN ] is partitioned into N even sized sub-intervals, of size

∆t = tN−t0
N . A value is defined for θ0, the initial value of the Markov chain, then for

i = 1, . . . , N

θi = θi−1 + µ(θi−1)∆t+ σ(θi−1)∆Wi−1, (6.4)

where ∆Wn ∼ MVN(0, Im∆t), are independent and identically distributed Multi-

variate Normal random variables with mean zero and variance Im∆t, where Im is the

m-dimensional identity matrix. The approximate transition density for any diffusion pro-

cess, for sufficiently small ∆t, can then be written as:

θi|θi−1 ∼ MVN
(
θi−1 + µ(θi−1)∆t, σ(θi−1)σ(θi−1)

T∆t
)
.

Equation 6.4 is the Euler-Maruyama discretisation. The transition to the next state

only depends on the current value, hence the Euler-Maruyama approximation scheme

for stochastic differential equations is a Markov Process. Analytic solutions of diffusion

processes are also Markovian, necessarily. Figure 6.4 shows eight independent simulations

from the Ornstein-Uhlenbeck process using the exact transition kernel and the same fixed

parameter values.

6.2 Composing Models

In order to model real-world data, it is convenient to compose simple model components to

form a more complex model, representative of the real-world measurements. Consider the

traffic data example presented in Section 6.4. The data consists of readings of passenger

car units (PCU) in a given time interval, PCUs are positive integer values representing the

size of a vehicle, the observation model is chosen to be the Negative Binomial distribution.

The traffic data displays daily and weekly seasonal cycles, so the transformed latent state,

η(t) must vary periodically with time. In order to account for the two periods of seasonality

with a Poisson observation model, a seasonal-Poisson model with drift is formed by the

composition of a Poisson model with a one-dimensional latent state and two seasonal

models. One seasonal model has a weekly period and the other has a daily period.

The composable POMP model can be thought of as a partially observed (uncoupled)

multivariate SDE, however model specification has been simplified using model composi-

tion.

Consider a POMP model, with its associated functions, distributions and latent state

indexed by j, where j represents the model number in the composition indexing from the

left. Where ψ(j) represents the parameters of the jth model; we have that

183



Chapter 6. Composable Markov Process Models

0

1

2

0 1000 2000 3000 4000 5000

time

va
lu

e

Figure 6.4: Eight simulations from the Ornstein-Uhlenbeck process with parameters φ =
0.4, µ = 2.0, σ = 0.1 with initial state N (0, 1)

Y (ti)|η(j)(ti) ∼ πj(y(ti)|η(j)(ti), ψ(j)),

η(j)(ti)|θ(j)(ti) = gj(F
(j)T
ti

θ(j)(ti)),

θ(j)(ti)|θ(j)(ti−1) ∼ pj(θ(j)(ti)|θ(j)(ti−1), ψ(j)),

θ(j)(t0) ∼ pj(θ(j)(t0)|ψ(j)). (6.5)

Now define the composition of modelM1 andM2 asM3 =M1 ?M2. By convention,

the observation model will be that of the left-hand model,M1 and the observation model

of the right-hand model will be discarded. As such, the non-linear linking-function must

be that of the left-hand model, g1 : R → R. The linking-function ensures the state is

correctly transformed into the parameter space of the observation distribution.
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In order to compose the latent state, the initial state vectors are concatenated:

θ(3)(to) ∼

p(θ(1)(t0)|ψ(1))

p(θ(2)(t0)|ψ(2))

 .

The composed model’s transition density for the state is given by

p3(θ(ti)|θ(ti−1), ψ) = p3(θ
(1)(ti), θ

(2)(ti)|θ(1)(ti−1), θ(2)(ti−1), ψ(1), ψ(2))

= p1(θ
(1)(ti)|θ(1)(ti−1), ψ(1))p2(θ

(2)(ti)|θ(2)(ti−1), ψ(2)),

the joint transition density is a product of the marginal densities since the latent state

θ(ti)
(1) is independent of θ(ti)

(2) for all i = 1, . . . , N . The linear deterministic transformation-

vectors, F (j)(t), j = {1, 2}, are vertically concatenated

F (3)(t) =

F (1)(t)

F (2)(t)

 .
The vector dot-product with the composed latent state is then computed, such that

F
(3)T
t θ(t) ≡ F

(1)T
t θ(1)(t) + F

(2)T
t θ(2)(t). The dot product, γ(t) = F Tt θ(t) results in a one-

dimensional state, γ(t) ∈ R. The full composed model, M3 can then be expressed as

follows

Y (ti)|η(ti) ∼ π1(y(ti)|η(ti)),

η(ti)|θ(ti) = g1(F
(3)T
ti

θ(ti))

θ(ti)|θ(ti−1) ∼ p(θ(1)(ti)|θ(1)(ti−1), ψ(1))p(θ(2)(ti)|θ(2)(ti−1), ψ(2)),

θ(t0) ∼

p(θ(1)(t0)|ψ(1))

p(θ(2)(t0)|ψ(2))

 .

The POMP models, along with the closed, associative binary composition operator, form

a semigroup. In order to compose three or more models the binary operator is applied

pairwise, remembering that it is not commutative:

M5 = (M1 ?M2) ?M4,

=M3 ?M4,

=M1 ? (M2 ?M4). (6.6)

In the first line of Equation 6.6, we compose M1 and M2 to form M3 as in the example
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x(2)(ti−1) x(2)(ti) x(2)(ti+1)

η(ti−1) η(ti) η(ti+1)

y(ti−1) y(ti) y(ti+1)

x(1)(ti−1) x(1)(ti) x(1)(ti+1)

p2 p2

p1 p1

g1(F
(3)T
ti−1

x(3)(ti−1)) g1(F
(3)T
ti x(3)(ti)) g1(F

(3)T
ti+1

x
(3)
ti+1

)
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Figure 6.5: A directed acyclic graph representing the composition of two models, the
latent state is represented as separate, and advancing according to each model components
transition kernel: pi

above, then we proceed to compose M3 and M4 to form M5.

The semigroup structure exhibited by the composable model class is the most basic

of algebraic properties, but it is nevertheless very powerful. In particular, it allows the

creation of very large, complex models from simpler components in a recursive, hierarchical

fashion. Many functional programming languages provide support for datatypes with

semigroup structure, and provide convenient syntax for composition. Figure 6.5 shows a

directed acyclic graph of a composed model.

6.2.1 Computing With Composed Models

A model is defined in the Scala language using:

1. A stochastic observation function:

val observation : Eta => Rand[ Observation ]

2. A deterministic, non-linear linking function:

val link: Gamma => Eta

3. A deterministic linear transformation function:

val f: (State, Time) => Gamma

4. A stochastic differential equation representing the latent state:

val sde: SDE

186



Chapter 6. Composable Markov Process Models

5. A likelihood function:

val dataLikelihood : (Eta, Observation ) =>

LogLikelihood

observation is a function from the transformed latent state η(t) to a distribution over

the observations, π(y(t)|η(t)). The distribution, Rand[ Observation ] can be sampled from

by calling the method draw.

The linking function ensures the value of η(t) is appropriate for the observation distri-

bution. The function f is used to perform a linear transformation of the latent state. The

latent state is represented by an SDE object, sde contains stepFunction , a function from

State and TimeIncrement to the next Rand[State] and initialState which returns a

distribution over states, which can be sampled from.

6.2.2 A Binary Operation for Composing Models

In order to compose models, define an associative binary operation called combine which

combines two models at a time. combine accepts two un-parameterised models, (pa-

rameterisation is described in Section 6.2.3) mod1 and mod2 and returns a third model

representing the composition of the two models. Along with the combine operator, the

models form a semigroup, since the combine operation is associative and closed.

Further, an identity model, e, can be defined such that for any model Ma, e ?Ma =

Ma =Ma ? e. Un-parameterised models now form a monoid.

In order to define the combine operation, firstly consider combining the stochastic

differential equations representing the evolution of the latent-state of two models: A binary

tree is used in order to represent the latent state of a model, this is depicted in Figure 6.6.

For a single sde Sde, the latent-state is a Leaf. In order to represent the state of two

models, the state of each model is combined into a Branch where the left and right branches

correspond to the latent state of each model in the composition. A binary tree is defined

as a generalised algebraic data type in Scala as:

sealed trait Tree[A]

case class Leaf[A](value: A) extends Tree[A]

case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]

case object EmptyLeaf extends Tree[Nothing]

Leaf and Branch both extend the Tree trait, when a function accepts a parameter

of type Tree it can be either a Leaf or a Branch . Pattern matching is used in order to

decompose the tree and perform functions on the values contained in the leaf nodes. The

value A is a placeholder value, stating that the values at the Leaf of the Tree can be

anything. In the case of the state tree, it is represented as a DenseVector [Double]. The

state tree is defined as a type alias type State = Tree[ DenseVector [Double]].
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x(1)(t) x(2)(t)

x(3)(t)

Figure 6.6: Illustration of the latent state as a binary tree. This composed model state
consists of the combined states of three models.

Consider advancing the state space of a composed SDE consisting of sde1 and sde2, by

drawing from the transition kernel conditional on the current state using the stepFunction .

Each SDE in the combined SDE has a corresponding Leaf state and stepFunction , each

model’s stepFunction must act on the corresponding state. To advance the state of a com-

posed model, the left-hand (correspondingly right-hand) model’s stepFunction is applied

to the left-hand (right-hand) model’s state space:

def stepFunction(dt: TimeIncrement , s: State): Rand[State] = s match {

case Branch(l, r) => for {

ls <- sde1.stepFunction(dt)(l)

rs <- sde2.stepFunction(dt)(r)

} yield Tree.branch(ls, rs)

In order to simulate from an SDE, there must be an initial distribution for the state,

this is given by the initialState function. Adding two models will result in a Branch for

the initial state:

val initialState = for {

l <- sde1.initialState

r <- sde2.initialState

} yield Tree.branch(l, r)

Now that the SDE representing the latent-state can be composed, the model class

which contains a definition of an SDE must be composed. The application of the vector

Ft is performed using the function def f: (State, Time) => Gamma. For two models,

this function expects a Branch , which can be decomposed using pattern matching:

def f(s: State , t: Time) = s match {

case Branch(ls, rs) =>

mod1.f(ls, t) + mod2.f(rs, t)

}

The observation distribution is taken to be that of the left-hand model in the composition,
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val observation = mod1. observation , hence the linking function must also be that of

the left-hand model val link = mod1.link.

6.2.3 Parameterising the Model

The parameters of a model given in Equation 6.1 are that of the Markov transition for the

state space, p(θ(ti)|θ(ti−1), ψ), the parameters of the initial system state θ(t0) ∼ p(θ(t0)|ψ)

and any additional parameters for the observation distribution. An un-parameterised

model is a function from Parameters => Model, which can then be supplied with appro-

priate parameters to form a Model.

When composing two models, a set of parameters for each model must be combined

into a new set of parameters for the new model. As with the state-space, it is natural to

represent the parameters of a composed model as a binary tree. A single model is param-

eterised by a Leaf containing a ParamNode . A ParamNode contains the sdeParameters and

optional scale parameter for the observation distribution, scale: Option[Double]. When

composing parameters, the two Leafs will be combined into a single Branch just like when

composing models.

Parameters must be combined in the same order as models are combined, ie. combining

parameters is not commutative.

In order to combine parameter trees, an instance of the Monoid type class is defined.

A monoid is a set with an associative, closed combine operation and an empty which is

an identity element with respect to the combine operator. Listing 6.2.3 explains how to

define a new monoid for the binary Tree.

val treeMonoid = new Monoid[Tree] {

def combine[A](x: Tree[A], y: Tree[A]): Tree[A] = Tree.branch(x, y)

def empty: Tree[Nothing] = Tree.empty

}

Upon defining a type class with the combine operator, cats provides an infix operator,

|+|, which is an alias for combine .

val (p, p1, p2) = (Leaf(.), Leaf(.), Leaf(.))

val combParams = p |+| p1 |+| p2

This is equivalent to constructing the parameters as nested Branchs:

val combParams = Branch(Branch(p, p1), p2)

Similar methods are used to parameterise the observation distribution, the likelihood

function and the initial state distribution. Once a monoid is defined for the unparame-

terised models, the infix notation, |+|, is available to use.
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Once the un-parameterised model and the parameters have been composed, the un-

parameterised model can be applied as a function to the parameters as illustrated in the

example in section 6.2.4.

6.2.4 Example: A Seasonal-Poisson Model

To illustrate model composition, consider a Poisson model with a seasonally-varying time-

dependent rate parameter, λ(t). This model is the composition of two models, a single

Poisson model, M1, and a single seasonal model, M2, to make M3 = M1 ?M2. This

model could represent the flow of traffic through a city, as in the example in Section 6.4.

The Poisson model, M1, has a 1-dimensional latent state, which evolves according to

generalised Brownian motion. The linking function is the exponential function, g(x) =

exp(x), and the linear transformation vector is one, F
(1)
ti

= 1. The Poisson model is given

by:

N(ti) ∼ Poisson(λ(ti)),

λ(ti)|x(ti) = exp{x(ti)},
dX(ti) = µ(1)dt+ σdW (1)(ti).

The latent state of the seasonal model,M2, has a dimension of 2h, where h represents the

number of harmonics. Generalised Brownian motion is used to represent the time evolution

of the 2h-dimensional latent state, hence the drift coefficient µ(2) is 2h× 1 vector and the

diffusion coefficient, Σ, is a 2h × 2h diagonal matrix. The standard seasonal model has

the Normal distribution as the observation distribution, and the linking function is the

identity function:

N(ti)|η(ti) ∼ N (η(ti), σ
2),

η(ti)|θ(ti) = F
(2)T
ti

θ(ti),

dθ(ti) = µµµ(2)dt+ΣdB(2)(ti)
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The vector F
(2)
ti

is a 2h× 1 vector of fourier components:

F
(2)
ti

=



cosωt

sinωt

cos 2ωt

sin 2ωt
...

coshωt

sinhωt


, (6.7)

ω = 2π/P is the frequency and P is the period of the seasonality. In order to model a

daily seasonality, P = 24, if the observation timestamps are in hour units.

In the composed model, the observation model ofM1 is chosen, in this case the Poisson

distribution. This necessitates the left-hand linking function (g(x) = exp(x)) since the rate

parameter of the Poisson distribution is greater than zero, λ(t) > 0. The full composed

model can be expressed as

N(ti)|λ(ti) ∼ Poisson(λ(ti)),

λ(ti)|θ(t) = exp{F (3)T
ti

θ(ti)},

dθ(ti) = µµµdt+

σ 0

0 Σ

dW(ti).

The system state is n = 2h + 1 dimensional, hence the drift coefficient µµµ is an n × 1

dimensional vector and the diffusion coefficient is an n×n diagonal matrix. Components of

B(1) and B(2) are independent. The linear transformation vector F
(3)
ti

is a time-dependent,

n× 1 vector, which is the concatenation of the two F
(j)
ti
, j = 1, 2, vectors:

F
(3)
ti

=



1

cosωt

sinωt
...

coshωt

sinhωt


. (6.8)
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Composed Model in Scala

In order to model complex phenomena, the models can be composed. This section pro-

poses a seasonal model with a Negative binomial observation distribution. Define a

model with an sde, an object which contains a stochastic differential equation includ-

ing a stepFunction : ( TimeIncrement , State) => Rand[State] and the definition of the

initial state initialState : Rand[State].

val sde = Sde.brownianMotion(1)

val negbinMod = Model.negativeBinomial(sde)

val sdeParameters = SdeParameter.

brownianParameter (0.0)(1.0)(0.01)

val negbinParam = Parameters(Some(2.0, sdeParameters))

Each model is parameterised by the latent-state, allowing flexibility in the choice of

SDE controlling the evolution of the latent state. The Sde accepts one parameter - the

dimension. If a dimension is specified which is different to that of the parameters then the

parameter values will be cycled for each dimension required. In the following listing an

8-dimensional OU latent-state is specified each with eight different values for the mean,

µ. The other parameters, m0, C0, σ and φ are replicated until the dimension is satisfied.

Parameter defines a Leaf containing a ParamNode and contains the scale parameter for the

Negative Binomial distribution and the parameters for the diffusion process representing

the latent state. Now define a single seasonal model:

val sde2 = Sde.ouProcess(8)

val seasonalMod = Model.seasonal(period = 24, harmonics = 3, sde2)

val sde2Parameters = SdeParameter.

ouParameter(0.0)(1.0)(0.3)(1.5, 1.5, 1.0, 1.0, 1.5, 1.5, 0.1, 0.1)(0.1)

val seasonalParam = Parameters(None, sde2Parameters)

The seasonal model has a Gaussian observation distribution. In order to use the seasonal

model by itself the observation noise (standard deviation) for the Gaussian observation

model must be specified in the scale parameter (currently set as None). The infix notation

|+| is available on the unparameterised model and the parameters because both define a

semigroup and hence have a binary combine function (described in detail in section 6.2.1).

Note that parameters are stored unconstrained, for strictly positive parameters the loga-

rithm is stored and the logistic function is used to transform bounded parameters. Now

the parameters and model can be composed

val combinedParams = negbinParam |+| seasonalParam

val combinedModel = negbinMod |+| seasonalMod

val parameterisedModel = combinedModel(combinedParams)
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Figure 6.7: Simulation from a composed negative Binomial model with scale parameter
r = 2.0 and composed state space with a Brownian motion state space with σ = 0.01 and
Ornstein-Uhlenbeck process with parameters φ = 0.3, µ = (1.5, 1.5, 1, 1, 1.5, 1.5, 0.1, 0.1)
and σ = 0.1. Transformed latent state η(t) representing the mean of the Negative Binomial
Observation distribution, (top). Observations from the seasonal Negative Binomial POMP
model, (bottom).

The parameterisedModel can be simulated from, it can be fit to observed data using the

PMMH algorithm, and a particle filter and can used for on-line filtering as described in

Section 6.3. Figure 6.7 shows a simulation from the composed Negative Binomial model

developed in this section, the observation distribution is identical to that presented in

section 5.1.1.
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6.3 Statistical Inference

Consider a POMP model of the form in Equation 6.1, observed at discrete times, {t1, t2, . . . , tN}.
The joint distribution of all the random variables in the model can be written as:

p(θ(t0:N ), y(t1:N ), ψ)

= p(θ(t0:N ), ψ)π(y(t1:N )|g(F Tt0:N θ(t0:N )), ψ)

= p(ψ)p(θ(t0)|ψ)

[
N∏
i=1

p(θ(ti)|θ(ti−1), ψ)π(y(ti)|η(ti), ψ)

]
.

Since the latent state is a Markov process and the observations y(t1:N ) are conditionally

independent given the latent state, the joint distribution can be written as the product

of the distribution over the parameters, p(ψ), the initial distribution of the latent state

p(θ(t0)|ψ), the transition density, p(θ(ti)|θ(ti−1), ψ) and the conditional density for the

observations π(y(ti)|η(ti), ψ).

In general the full-joint posterior distribution of the parameters and state is ana-

lytically intractable. The particle marginal Metropolis-Hastings algorithm, presented in

Section 5.3, can be used to determine the joint-posterior of the parameters and state,

p(θ(t0:N ), ψ|y(t1:N )). The PMMH utilises the pseudo-marginal likelihood estimated using

the composable particle filter presented in Section 6.3.1.

6.3.1 On-line State Estimation using the Composable Particle Filter

The bootstrap particle filter [Gordon et al., 1993] can be used to estimate the latent

state of a POMP model. The latent state is a Markov process with an associated transi-

tion kernel θ(ti)|θ(ti−1) ∼ p(θ(ti)|θ(ti−1)), from which realisations can be sampled. The

transition kernel can be any continuous time Markov process, but in this chapter only

diffusion processes represented by SDEs are considered. The transition kernel can ei-

ther be an exact solution of an SDE or simulated on a fine grid using the Euler-Maruyama

method, presented in Section 6.1.5. The process is observed through an observation model

Y (ti)|η(ti) ∼ π(y(ti)|η(ti)).

A particle filter is used to estimate the unobserved system state by approximating

the filtering distribution, p(θ(ti)|y(t1:i)). The algorithm to determine an empirical ap-

proximation of the latent state of a composable POMP model at each observation time is

summarised in algorithm 19

The average of the un-normalised weights at each time point gives an estimate of the

marginal likelihood of the current data point given the data observed so far:
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Algorithm 19: Bootstrap particle filter for composable POMP models.

Result: Return {θ(j)(ti) : j = 1, . . . ,M}, i = 1 : N and the pseudo log-likelihood
1 Given observations y(t1:N );

2 Simulate from the prior distribution θ(j)(t0) ∼ p(θ(t0)), for j = 1, . . . ,M ;
3 Initialise the log-likelihood `(t0) = 0;
4 for i in 1:N do
5 for j in 1:M do
6 Advance the state particles to the time of the next observation

θ(j)(ti) ∼ p(θ(ti)|θ(j)(ti−1));
7 Transform each particle appropriately as required by the observation

model, η(ti)
(j) = g(F Tti θ(ti)

(j));
8 Calculate the conditional likelihood for each particle

w∗(j)(ti) ∼ p(y(ti)|η(j)(ti));
9 end

10 Increment the log-likelihood `(ti) = `(ti−1) + 1
M

∑M
k=1w

∗(j)(ti);

11 Normalise the weights, w(ti)
(k) = w∗(ti)(k)∑N

j=1 w
∗(ti)(j)

;

12 Resample the particles with replacement such that the probability of including

particle j is proportional to w(j)(ti);

13 end

p̂ψ(y(ti)|y(t1:i−1)) =
1

N

N∑
j=1

w∗(ti)
j .

The estimate of the likelihood of the full path is given by:

p̂ψ(y(t1:M )) = p̂(y(t1))
M∏
i=2

p̂(y(ti)|y(t1:i−1)).

The estimated marginal likelihood is consistent, meaning that as the number of particles

are increased, N →∞, then the estimate converges in probability to the true value. The

estimate is also unbiased, meaning that the expectation of the estimate is equal to the true

value, E(p̂ψ∗(y(t1:M ))) = pψ∗(y(t1:M )) where the expectation is taken over all the random

variables generated in the particle filter; see Del Moral [2004] for a proof. This marginal

likelihood is used in the PMMH algorithm discussed in Section 5.3.

In practice, the bootstrap particle filter can be easily parallelised, advancing the state

and calculating the likelihood are naturally parallel. Multinomial resampling (as described

above) requires communication between multiple threads of execution, in order to sum the

value of the weights. Other resampling schemes, such as stratified and systematic resam-

pling are more amenable to parallelisation, see section 5.2.2 for a parallel implementation

of the particle filter. Figure 6.8 shows the latent-state, η(t), of a simulation from the com-
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Figure 6.8: Simulated state and filtering distribution with 50% probability intervals for the
simulated seasonal Negative Binomial POMP model. The actual parameter values used
to simulate the data were used for the particle filter with 1,000 particles and systematic
resampling

posed Negative Binomial model. The filtering distribution of the latent-state is determined

using the particle filter.

Implementation (Fold and Scan)

The composable models and inference algorithms described in this chapter have been

implemented using functional reactive programming in Scala. Observations arrive as a

stream (introduced in Section 2.3). A stream is a pair, where the first element is a

computed value and the second element is a thunk (an un-evaluated computation). In

practice, when considering live streaming data, the function in the second element of the

pair might be one which polls a web service for the next observation. The approach taken

in this chapter is similar to Beckman’s series of papers on Kalman folding, implementing

the Kalman filter on streams in the Wolfram language [Beckman, 2016].

Since a stream is a Foldable collection, the previous functional implementations of the
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particle filter in section 2.1.14 and section 5.2.2 can be used when performing inference

for the filtering state - however there are a few details omitted which are relevant when

fitting composable POMP models. The POMP models feature irregularly observed data,

hence the time difference between observations is required and the log-likelihood must be

accumulated in order to perform inference for the static parameters.

In the application of the composable particle filter there is an internal state which

propagates as the stream of data arrives. The internal state includes the particle cloud, the

time of the most recent observation and the log-likelihood. Implementations of the particle

filter have been considered in sections 2.1.15 and 5.2.2. However these implementations

used discrete time state transition functions. The POMP models considered in this chapter

have a continuous time latent-state and hence the transition function depends on the time

difference between each pair of observations

def transition: (TimeIncrement) => (State) => State

Then, a single step of the particle filter which calculates the running pseudo-marginal

log-likelihood and determines the filtering distribution using a particle approximation can

be written using the transition function:

0 def filterStep(s: FilterState , y: Data) = {

1 val dt = y.t - s.t

2 val x1 = s.particles map (transition(dt))

3 val logWeights = x1 map (dataLikelihood(y.observation))

4 val ll = s.ll + log(mean(logWeights map exp))

5 FilterState(y.t, resample(s.particles , logWeights), ll)

6 }

FilterState and Data are case classes defined as

case class FilterState(

t: Time,

particles: Vector[State],

ll: LogLikelihood)

case class Data(

t: Time,

observation: Observation)

Firstly the time difference between subsequent observations val dt = y.t - s.t is cal-

culated. The time difference is used in the transition function to advance the state.

The new weights are calculated, given a new observation, using the dataLikelihood func-

tion. The states are resampled to get an approximate unweighted random sample from

the filtering distribution p(θ(ti)|y(t1:i)). As mentioned in section 5.2.1, in practice the

log-likelihood is computed to avoid arithmetic underflow from multiplying many small
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values. The value of the log-likelihood, log p̂ψ(y(t1:M )), is updated by adding the log of

the mean of the unnormalised-weights to the previous value. Note that the log-sum-exp

trick [Murphy, 2012] should be used when updating the value of the log likelihood in line 4

val max = logWeights.max

val w = logWeights map { a => exp(a - max) }

val ll = s.ll + max + log(mean(w))

This rescaling of the weights ensures that large numbers aren’t exponentiated, hence

preventing overflow. It also ensures that not all weights will underflow. The largest weight

is rescaled to exp(0) = 1, but since

log
N∑
i=1

exp(wi) = a+ log
N∑
i=1

exp(wi − a),

the value of the log-likelhood should remain the same.

In order to calculate the pseudo-marginal log-likelihood of a composable POMP model

mod of a path, given observations, data, the function foldLeft is used:

val initState = FilterState(

mod.sde.initialState.sample(1000), 0.0, 0.0)

foldLeft(data, initState)(filterStep).ll

Listing 6.1: Scala code to calculate the log-likelihood of a set of observations

The value initState is implemented by sampling 1,000 times (equivalent to 1,000 par-

ticles) from the initial state distribution of the model. The initial time t0 is 0.0 and

the initial value of the log-likelihood is set to zero. The log-likelihood is extracted by

appending .ll on the call to foldLeft . To retrieve the approximate filtering distribu-

tion represented by the unweighted particles at each time step, then scanLeft can be

used to apply filterStep and retain all intermediate values in the binary reduction as in

section 2.1.14.

Filtering for the Log-Gaussian Cox-Process

When considering observations from the LGCP, the filtering needs to be performed slightly

differently. The likelihood for the LGCP is given by

π(tn|λ(tn), Λ(tn)) = λ(tn) exp(−Λ(tn)),

which depends on the instantaneous hazard, λ(tn) and the cumulative hazard, Λ(tn) =∫ tn
t0
λ(s)ds. The log-likelihood is calculated to avoid arithmetic underflow and to simplify

calculations, the log-likelihood is given by; ` = log(λ(t)) − Λ(t). The state must be
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augmented to include the cumulative hazard, Λ(t) in addition to λ(t). In practice the

value of Λ(t) is calculated approximately, using numerical integration.

6.3.2 Parameter Estimation in POMP models

In order to perform on-line filtering to learn the posterior distribution of the dynamic

latent-state of the composable models, the static parameters of the model must be de-

termined. PMMH provides an offline method of parameter inference in situations where

an unbiased estimate of the likelihood can be determined using a particle filter. On-

line parameter inference can be performed for the composable models using some of the

algorithms introduced in section 4.6.

The particle marginal Metropolis-Hastings algorithm (PMMH) [Andrieu et al., 2010]

is an offline Markov chain Monte Carlo (MCMC) algorithm which targets the full joint

posterior p(θ(t0:M ), ψ|y(t1:M )) of a POMP model. The PMMH algorithm was introduced

in section 5.3. The parameters of a POMP model as in Equation 6.1 include the measure-

ment noise in the observation distribution, the parameters of the Markov transition kernel

for the system state and the parameters of the initial state distribution.

Implementation (MCMC as a stream)

The particle marginal Metropolis-Hastings algorithm must be applied to a batch of data.

Window functions, such as grouped , can be applied to a stream of data to aggregate

observations into a batch. grouped accepts an integer, n, and groups each observation

into another (finite) stream of size n.

The PMMH algorithm can then be applied to the aggregated group using map. Iter-

ations from the PMMH algorithm are naturally implemented as a stream. In the Scala

standard library there is a method for producing infinite streams from an initial seed:

def iterate[A](start: A)(f: A => A): Stream[A]

iterate , applies the function f to the starting value, then passes on the result to the next

evaluation of f. The generates a Markov chain, where each iteration is dependent on the

previous simulated value. iterate is an anamorphism, it is the categorical dual to the

catamorphism which are generalisations of folds [Meijer et al., 1991].

Iterations of an MCMC algorithm can be generated using iterate , by starting with

an initial value of the state (usually the likelihood evaluated at the last accepted value of

the parameters (initialised at a large negative number) and the initial value of parameters)

and applying the Metropolis-Hastings update at each iteration. Inside of each application

of f, a new value of the parameters is proposed, the marginal likelihood is calculated using

the proposed parameters (using the bootstrap particle filter) and the Metropolis-Hastings

update is applied.
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An example of a single step in the PMMH algorithm can be seen in Listing 6.2. The

functions important

val prior: Parameters => LogLikelihood

val proposal: Parameters => Rand[Parameters]

val logLikelihood: Parameters => LogLikelihood

The function logLikelihood is a particle filter, with the observed data and number of

particles fixed, which outputs an estimate of the log-likelihood for a given value of the

parameters. prior represents the prior distribution over the static parameters and initial

distribution of the latent state. This implementation is similar to the implementation in

listing 3.3 in section 3.3, but in this case, MetropState stores the previous value of the

log-likelihood. This is especially important when implementing pseudo-marginal MCMC

methods in order to avoid running the particle filter twice using the same set of parameters

to get an estimate of the log-likelihood.

val stepMetrop: MetropState => Rand[MetropState] = s => {

for {

propParams <- proposal(s.params)

propll = logLikelihood(propParams)

a = propll + prior(propParams) - s.ll - prior(s.params)

u <- Uniform(0, 1)

next = if (log(u) < a)

MetropState(propll , propParams)

else s

} yield next

}

Listing 6.2: Metropolis-Hastings implementation without re-evaluating the pseudo-

marginal log-likelihood for the previously accepted parameter value in the Markov chain

The Breeze library provides a class called, MarkovChain which can be used to gener-

ate a sequence dependent draws from a Markov chain given a transition kernel of type

A => Rand[A]:

val initState = MetropState(-1e99, initParams)

val iters = MarkovChain(initState)(stepMetrop)

initParams are drawn from the prior distribution and the initial value of the log-likelihood

is chosen to be very small so the first iteration of the PMMH is accepted.

Keeping the state of the PMMH algorithm inside of the Rand monad until the program

is run and results are required, preserves referential transparency until the main method of

the program, which is expected to have side effects, such as printing to the screen, writing

to a file or database or generating pseudo-random numbers. The particle filter can also
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Figure 6.9: (Top) Measurements of passenger car units from sensor N05171T for the first
three weeks of January 2017, (Bottom) Passenger car units for the second week of January
2017.

be written using monadic style to preserve referential transparency and is considered in

section 2.1.14.

Built in stream operations can be used to discard burn-in iterations and thin the

iterations to reduce auto-correlation between samples. The stream can be written to a

file or database at each iteration, so the PMMH algorithm implemented as a stream uses

constant memory as the chain size increases.

6.4 Example: Traffic Monitoring

This example is concerned with the traffic data introduced in section 5.9. Figure 6.9

(top) shows readings from the first three weeks of January. There are two strong trends

appearing, a daily trend where most traffic is observed to be during the day and a weekly

trend where most traffic is on the weekend with an exception for the bank holiday on

Monday 2nd January.

The time difference between observations is typically five minutes or multiples of five

minutes, however on the 9th January there is a time gap of 356 seconds. This means all of

the following observations are out of sync with observations made before the 9th January

as shown in table 6.1. This is not problematic for the class of composable models, as these

models have a continuous time latent state, but this could cause difficulties for a discrete

time analysis.

In Figure 6.9 (bottom), starting Wed 11th January the measurements are received at

sporadic intervals, again this poses no problems for the class of composable POMP models,

and is typical of sensor data.
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Timestamp Value ∆t (secs)

2017-01-09
07:59:17

21 300

2017-01-09
08:04:17

21 300

2017-01-09
08:09:17

31 356

2017-01-09
08:15:13

10 300

2017-01-09
08:20:13

19 300

Table 6.1: Five readings from sensor N05171T, with varying time difference (∆t)

The timestamp is translated to an hourly scale, ie. five minutes is represented as 5/60 ≈
0.083. A sensible choice of observation model is the Poisson distribution. However it was

found that the Poisson model is not a good fit for this data as the data is overdispersed,

meaning the sample variance of the count data is greater than the sample mean. The

Negative Binomial distribution is commonly used for overdispersed count data, and is

chosen as the observation model. The data shows a clear daily seasonal trend, and a

slightly less pronounced weekly trend. A sensible model is therefore a composition of a

Negative Binomial model and two seasonal models, one with daily seasonality, the other

with weekly seasonality.

Y (ti)|η(ti) ∼ NegBin(η(ti), r),

η(ti)|θ(ti) = exp{F Tti θ(ti)},
θ(t)|(θ(ti−1) = θ(ti−1)) ∼ p(θ(ti)|θ(ti−1), ψ),

θ(t0)|ψ ∼ MVN(m0|C0).

The Negative Binomial model is the leftmost model in the composition, M1 and has

a scalar latent state which evolves according to Brownian motion. This will account for

drift in the observed data not modelled by the seasonal components. η(t) is the mean of

the Negative Binomial which is positive, therefore the link function is the log-link. The

parameter r is the size parameter which controls the overdispersion of the data. The

probability mass function for the Negative Binomial distribution with mean η(ti) and size

φ is:
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NegBin(y(ti)|η(ti), r) ∼y(ti) + r − 1

y(ti)

( η(ti)

η(ti) + r

)y(ti)( r

η(ti) + r

)r
.

The mean is η(ti) and the variance is η(ti) + η(ti)
2/r, so η(ti)

2/r represents the addi-

tional variance above that of the Poisson distribution.

The second model in the composition is a daily seasonal model,M2. The daily seasonal

model is chosen to have four harmonics, and period, P = 24, which means the frequency

is ω = 2π
24 , the vector Ft is:

Ft =



sin(ωt)

cos(ωt)
...

sin(4ωt)

cos(4ωt)


.

The daily seasonal model is chosen to have an Ornstein-Uhlenbeck latent state with a

non-zero mean, µ:

dθt = φ~18(µ− θt)dt+ σI8, dWt

The rate, φ, variance σ were chosen to be the same for each state component. ~1n is a

vector of ones of dimension n and In is the identity matrix of dimension n.

The weekly seasonal model,M3 is the same as the daily seasonal model, but with the

period of the seasonality, P = 24×7 and the number of harmonics, h = 2, hence the latent

state is 4-dimensional. The fully composed model is given by M =M1 ?M2 ?M3.

6.4.1 Tuning the PMMH

The PMMH (as described in Section 5.3) is used to determine the joint posterior dis-

tribution of the parameters and latent state, p(x, ψ|y(t)), given the training data. The

likelihood in the particle Metropolis Hastings algorithm is estimated using the bootstrap

particle filter. The accuracy of the estimated marginal likelihood can be improved by

increasing the number of particles in the filter, however this results in more computational

time required for each MCMC iteration.

The PMMH algorithm requires the particle filter to run once per iteration (re-using

the likelihood estimate from the previous iteration) and hence deciding on the optimum
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number of particles is a non-trivial task. Several pilot runs with different numbers of

particles are performed to ensure the variance of the log of the likelihood estimate is close

to one [Doucet et al., 2015]. This is difficult to achieve as the variance of the estimate can

vary at different parameter values, not only with the number of particles. From several

pilot runs at different values of the parameters, it was decided that 500 particles provided

the best compromise between accuracy and computational time.

6.4.2 Parameter Estimates

In order to estimate the value of the parameters, 500 particles were used in the particle

filter estimating the value of the marginal likelihood p̂ψ(y(t1:M )), 100,000 iterations of

the PMMH algorithm were taken with 10,000 iterations discarded as burn-in. The prior

distributions on the parameters were chosen to be weakly informative. The initial state

of the local-level model follows a Gaussian distribution, the prior on the each seasonal

model initial state is a Multivariate Normal distribution with diagonal covariance matrices,

C
(i)
0 I2hi where i is the model number and hi is the number of harmonics in model i. The

prior distributions for the parameters of the initial state distributions were chosen to be

the same for each model component: m
(i)
0 , C

(i)
0 , i = 1, 2, 3, where i represents the model

number:

m
(i)
0 ∼ N (0.5, 32),

C
(i)
0 ∼ InverseGamma(2, 0.4),

the mean of the initial state was chosen to have a Gaussian prior, and the standard

deviation a Gamma prior. The Gamma distribution is parameterised by shape, α and

rate β so that the expectation is α/β and the variance is α/β2. Next, the diffusion

parameter of the Brownian motion controlling the evolution of the latent state in the

Negative Binomial model component:

σ ∼ Inv-Gamma(2, 7).

The scale parameter, r, of the Negative Binomial observation distribution which con-

trols the overdispersion is chosen to have an Inverse Gamma prior:

r ∼ Inv-Gamma(10, 2).

The Ornstein-Uhlenbeck process controls the evolution of the latent state of the daily

and weekly model components, the parameters of the OU process in model components 2

and 3 were given the following prior distributions:
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µ
(i)
j ∼ N (0.5, 32),

φ(i) ∼ Gamma(0.1, 0.3),

σ(i) ∼ Inv-Gamma(2, 0.4).

The parameters are indexed by their model number, i, for i = {2, 3}, additionally the

mean µ
(i)
j is indexed by j as there is a different value for each harmonic in the model. The

mean of the Ornstein-Uhlenbeck process, µ(i) is assigned a Gaussian prior, φ(i) is given a

bounded Beta prior distribution and σ(i) is given an Inverse-Gamma prior.

The proposal distribution was chosen to be a random walk centered at the previous

values of the parameters, the bounded parameters, such as the strictly positive variance

parameters were proposed on the log-scale.

A sample from the parameter prior distribution is used to initialise the PMMH algo-

rithm. The mean of the parameters and associated 95% posterior intervals are presented

in table 6.2. The mean value of the size parameter, r in the Negative Binomial observation

distribution was 3.23.

6.4.3 On-Line Filtering

The joint posterior of the state and parameters, p(x, ψ|y) can be used to perform filtering

and forecasting on-line. The data used for on-line filtering is the last week of January,

these observations have not been considered when estimating the posterior distribution.

In order to take into account uncertainty in the posterior distribution, a pair (x∗, ψ∗) is

sampled from the posterior distribution and used to initialise 100 particle filters each with

1,000 particles. In order to get a precise representation of the filtering distribution, many

more particles can be used than in the PMMH algorithm. Once an approximation to

the filtering distribution is determined at time t, it is then advanced to the time of the

next expected measurement (t + 5 minutes in this case) and the associated observation is

simulated for each particle, giving a predictive distribution for the observations which can

be summarised.

Figure 6.10 shows the actual measurements on 25th and 26th January and the associated

one-step forecast mean with 90% prediction intervals. It is clear that the variance of the

one-step-predictive distribution is larger when the expected value of passenger car units

is larger.

205



Chapter 6. Composable Markov Process Models

Parameter 2.5% mean 97.5%

r 1.50 3.23 4.74

m
(1)
0 -2.57 -0.73 1.07

C
(1)
0 0.06 0.35 1.07

σ(1) 0.01 0.01 0.02

φ(2) 0.18 0.45 0.94

σ(2) 0.51 0.84 1.41

µ
(2)
1 -5.03 -3.92 -1.82

µ
(2)
2 -0.19 -0.05 0.18

µ
(2)
3 -0.19 -0.01 0.19

µ
(2)
4 -0.17 0.02 0.19

µ
(2)
5 -2.03 -1.42 -0.82

µ
(2)
6 -2.5 -1.05 1.18

µ
(2)
7 -0.19 -0.01 0.19

µ
(2)
8 -0.40 0.02 0.33

m
(2)
0 -0.44 -0.01 0.40

C
(2)
0 0.83 1.02 1.21

φ(3) 0.19 1.60 11.54

σ(3) 0.49 2.00 10.04

µ
(3)
1 -4.71 -2.60 -0.75

µ
(3)
2 -0.99 -0.09 0.59

µ
(2)
3 -0.5 -0.10 0.3

µ
(2)
4 -0.65 -0.20 0.26

m
(3)
0 -1.02 -0.16 1.11

C
(3)
0 0.11 0.93 3.40

Table 6.2: Posterior mean and 95% posterior intervals for the parameters in the Negative
Binomial Traffic Model

6.5 Conclusion

Composable Markov process models are a flexible class of models which can be used

to model a variety of real world data. The class of composable models together with

the composition operator form a semigroup, making it easy to build complex models by

combining simple models components. The use of the particle filter for simulation based

inference allows for a flexible choice of observation model and SDE governing the latent

state. Further, by using a continuous time Markov process to represent the latent state,

the requirement to simulate the state on a regular grid is relaxed. If there is an exact

solution to the Markov process, then the latent state can be simulated forward to the next
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Figure 6.10: On-Line filtering with mean of the one-step forecast and 90% prediction
intervals

time of interest using the time increment and the previous realisation of the state. This

allows for faster computation when using real world data and is important since many

sensors sample at an adaptive rate, or consumption must be slowed down due to limited

computing resources for inference and forecasting.

Incoming observations are represented as streams, which can represent live observations

from a webservice or other source. This allows for flexible and scalable analysis. The

composable model framework can be easily tested on simulated data and the same code

deployed for real world applications. The particle filter is implemented as a functional

fold, a higher-order function allowing recursive data structures (such as the cons-list

or cons-stream) to be reduced pairwise without side-effecting. The PMMH algorithm is

expressed as a stream using, MarkovChain , defined in the Breeze numerical library for

Scala. These functions are often called unfold operations and start with a seed value and

first apply a function to the seed, the each subsequent value to create an infinite stream

of values which can be manipulated using built-in stream processing functions. In the

accompanying software, the streams are implemented using Akka Streams, this allows

for easy implementation of parallel chains, online monitoring and constant-time memory

usage, when used with asynchronous-IO.

The Scala implementation is typically faster than dynamic langauges such as R and

Python, but slightly slower than C or C++. Algorithms such as the particle filter can be

written in a functional way, using higher order functions (map, fold etc.) which allows

one implementation of the algorithm to be parametric over different collection types. This

simplifies development and testing, since the algorithm can be tested and debugged using

sequential collections and deployed in production using parallel collections, or distributed

collections, for example RDDs (Resilient Distributed Datasets) in Apache Spark [Zaharia

et al., 2010].
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Chapter 7

Heteroscedastic Time Series

Streaming data from large sensor fields arrives continuously and is often non-stationary.

The time series models and offline inference methods considered so far have assumed the

sensor data is stationary and the variance does not change with time. However, this is

typically not a valid assumption and models for which both the variance and the mean

evolves in time are considered in this chapter.

Similar to the specification of state-space models with a dynamic mean term, the

log-variance is assumed to evolve in time according to a stochastic process. A naive

construction of the model can lead to the size of the latent-state increasing according to

the length of the time series under consideration and the size of the covariance matrix

which is considered to be time inhomogeneous. This large latent-space is a challenge for

inference algorithms. An approach to reduce the size of the latent-state using a factor

structure for the covariance matrix is considered. Another approach commonly used to

model large covariance matrices is using a covariance (or kernel) function; this is common

in spatial modelling and is considered in chapter 8. In this chapter a factor structure is

used to model multiple non-stationary, correlated time series.

7.1 Univariate Stochastic Volatility

In order to model a time series with non-constant variance, the variance can be considered

a latent-state modelled using a stochastic process. Stochastic volatility (SV) models are a

well studied class of models with non-constant variance. SV models are used extensively

in finance applications, representing the uncertainty in the return on an investment or

stock. High volatility refers to a stock that has high variance and is unpredictable.

The model in equation (7.1) is a discrete time stochastic volatility model with an AR(1)

latent state.

209



Chapter 7. Heteroscedastic Time Series

Yt = εt exp(αt/2), εt ∼ N (0, 1),

αt = µ+ φ(αt−1 − µ) + ηt, ηt ∼ N (0, σ2η). (7.1)

Yt, t = 1, . . . , N are discrete observations of a mean-zero time series process. The latent

state represents the log-volatility and αt follows an AR(1) process with mean µ.

Figure 7.1 shows a simulation from this model with fixed values of the parameters,

φ = 0.8, µ = 1, ση = 0.1, the initial state of the log-volatility is the stationary solution of

the AR(1) process: α0 ∼ N
(
µ,

σ2
η

1−φ2

)
.

7.1.1 Parameter Inference

The posterior distributions of the parameters in the model, ψ = {φ, µ, ση} and the latent

state α0:N can be learned by constructing a Markov Chain whose stationary distribution

is equivalent to the joint posterior distribution p(ψ, α0:N |y1:N ) as in Shephard and Pitt

[1997]. The steps are summarised below. First consider the log of the square of the

observations to get the model:

log(y2t ) = αt + log(ε2t ), εt ∼ N (0, 1),

αt = µ+ φ(αt−1 − µ) + ηt, ηt ∼ N (0, σ2η). (7.2)

This is a linear system, but the quantity log(ε2t ) is not Gaussian. Now calculate the mean

and variance of this quantity and use a Gaussian approximation to sample the state using

FFBS (see section 4.4). To calculate the mean and variance, note that the mean and

variance of ε is 0 and 1 respectively then transform the probability density of ε:

p(log(ε2)) = f(g−1(ε))

∣∣∣∣ ddεg−1(ε)
∣∣∣∣

= f
(

exp
{ε

2

}) 1

2
exp

{ε
2

}
= (2π)−1/2 exp

{
−1

2
exp

{ε
2

}2
}

1

2
exp

{ε
2

}
=

1

2
√

2π
exp

{
ε

2
− 1

2
exp {ε}

}
.

g(ε) = log(ε2), then g−1(ε) = exp(ε/2). Since the function g is not monotonic and has two

solutions in x for g(x) = y this needs to be doubled. This is the log-chi-squared distribution

with ν = 1, the probability density function of the log-chi-squared distribution is
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Figure 7.1: Simulated latent state representing the log-volatility of the series, (top). Sim-
ulated observations from the univariate stochastic volatility model, (bottom).

p(X) =
1

2ν/2Γ
(
ν
2

) exp

{
νX

2
− 1

2
exp(X)

}
, (7.3)

since 21/2Γ
(
1
2

)
=
√

2π. Now calculate the moment generating function for this distribu-

tion:
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E(etX) =

∫ ∞
−∞

(2π)−1/2 exp

{
x

2
− 1

2
exp(x) + tx

}
dx

=
1√
2π

∫ ∞
−∞

exp

{
x(1 + 2t)

2
− 1

2
exp(x)

}
dx

M(t) =
21/2+tΓ

(
1
2 + t

)
√

2π

The nth derivative of the moment generating function with respect to t evaluated at t = 0

corresponds to the nth moment. For the first moment (the mean) calculate the first

derivative:

M ′(t) = ψ(t+ 1/2) + log(2),

where ψ is the digamma function. The mean of the log-Chi-Squared distribution with

ν = 1 is found by setting t = 0 in the moment generating function: ψ(1/2) + log(2) =

−1.27. The second moment, the variance, is M ′′(t = 0) = ψ′(1/2) = π2/2 where ψ′ is

the trigamma function. FFBS is used to sample the latent log-volatility with the trans-

formed observations, ỹt = log(y2t ), the system evolution density is p(αt|αt−1, µ, φ, ση) =

N (αt|µ+φ(αt−1−µ), σ2η). Suppose the mean and variance of the posterior of the filtering

distribution at time t − 1, are mt−1, Ct−1, then the update to the posterior distribution

at time t are given by the Kalman filtering equations for the AR(1) process:

Prior: at = µ+ φ(mt−1 − µ)

Rt = φ2Ct−1 + σ2η

Update: mt = at +Atet

Ct = AtV,

where At = Rt/(Rt + V ), et = ỹt − at,

and the observation variance is, V = π2

2 .

To perform backward sampling start by sampling from the posterior of the filtering

distribution at time t = N , αN ∼ N (mN , CN ) then proceed backwards through the

filtering distribution:
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γt = mt +
Ctφ

Rt+1
(αt+1 − at+1),

Γt = Ct −
C2
t φ

2

Rt+1
,

then sample αt from the distribution N (γt, Γt). This is sufficient to sample the approxi-

mate latent-state where the innovations are considered approximately Gaussian. In order

to correct the approximate samples to target the correct posterior a Metropolis correction

must be applied to the samples of the state. The state is divided into blocks, each block

starts and ends with a knot. Each block is accepted according to a Metropolis-step with

A = `(α?i )`G(αi)/`G(α?i )(`(αi) where `G is the likelihood of the approximate Gaussian

latent-state and ` is the likelihood of the exact latent-state. The size of the blocks to sam-

ple is a tuning parameter for the MCMC. Shephard and Pitt suggests sampling the size of

the blocks from a discrete uniform distribution with upper and lower bounds, k ∼ U(a, b),

note that the final block is allowed to be smaller than a. If the block size is chosen to

be small, then it is more likely to be accepted, however mixing will be slow. Addition-

ally, the positions of the knots which are conditioned upon change with each iteration of

the MCMC, hence sampling can be performed in parallel as each block is conditionally

independent from the others given the knots.

The log-likelihood for a block of size n starting at t = k for the Gaussian approximation

is written as

`G(αi) = log

(
k+n∏
t=k

(2π3/2)−
1
2 exp

{
− 2

2π2
(log(y2t ) + 1.27− αt)2

})
,

= −3n

2
log(π)− 1

π2

k+n∑
t=k

(log(y2t ) + 1.27− αt)2.

The conditional likelihood (given a value of the volatility αt) of an observation under the

true model is

p(yt|αt) = N (0, eαt)

= (2πeαt)−1/2 exp

{
− y2t

2eαt

}
= (2π)−1/2 exp

{
− y2t

2eαt
− αt

2

}
.
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The log-likelihood for a block of size n starting at t = k can be written as:

`(αi) = −n
2

log(2π)− 1

2

k+n∑
t=k

(αt + y2t exp(−αt)) (7.4)

Then a Metropolis correction can be performed in order to sample the latent log-volatility

from the correct posterior distribution. Each proposed block α?i is accepted with proba-

bility min(1, A) where log(A) = (`(α?i )− `G(α?i ))− (`(αi)− `G(αi)).

7.1.2 Mixture Model Approximation

An alternative inference scheme for the stochastic volatility model has been proposed

where the the quantity εt ∼ logχ2
1 is approximated using a mixture model [Kim et al.,

1998]. The distribution of εt can be approximated by

p(εt) ≈
7∑
i=1

πiN (µi, v
2
i ),

where

π =
(

0.0073 0.1056 0.00002 0.044 0.34 0.2457 0.2575

)
,

µ =
(
−11.4 −5.24 −9.84 1.51 −0.65 0.53 −2.36

)
,

v2 =
(

5.8 2.61 5.18 0.17 0.64 0.34 1.26

)
.

These parameters and the number of components (k = 7) were determined in Kim et al.

[1998] by matching the first four moments of the approximating distribution to the actual

error distribution using non-linear least squares.

Then, writing zt = log(y2t )− µst the state space model is conditionally Gaussian:

zt|αt, st = αt + vt, vt ∼ N (0, v2st),

αt = µ+ φ(αt−1 − µ) + ηt, ηt ∼ N (0, σ2η).

Here, st is an indicator variable of length N sampled with probability P (st = i) ∝
πiN (zt|αt, v2i ). A Gibbs sampling scheme to sample from the posterior distribution p(ψ, α0:T , st|zt)
can then be constructed as described in algorithm 20. The auxiliary variables, st can be

marginalised out leaving the correct joint-posterior distribution.
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Algorithm 20: Gibbs Sampler for the mixture model approximation of the
stochastic volatility model

Result: Return ψi, α
(i)
0:N for i = 1, . . . ,M

1 Given observation Yt, t = 1, . . . , N ;
2 Sample an initial trajectory of the state using the Gaussian approximation in

equation (7.2);
3 Initialise the indicator variables st, t = 1, . . . , N conditional on the approximate

state;
4 Sample initial values of the parameters from the prior, ψ0 ∼ p(ψ);
5 for i in 1 : M do
6 Sample from the full conditional distribution of the latent-state using FFBS;
7 Sample each indicator si, i = 1, . . . , t from a multinomial distribution with

probabilities proportional to πjN (zt|αt, v2j ), j = 1, . . . , 7;

8 Sample the parameters from the full conditional distributions according to
eqs. (1.11) and (1.13);

9 end

Sampling the Autoregression Parameter

An AR(1) process is stationary if and only if |φ| < 1. in order to sample φ values which

admit a stationary AR(1) process a Beta prior distribution, p(φ) ∼ B(αφ, βφ) is chosen.

The support of the Beta distribution is (0, 1), any of these values are suitable for the value

of the autoregressive parameter φ and all admit a stationary AR(1) process. A Metropolis-

Hastings step is used to update the value of φ using a beta proposal distribution centred

at the previous value of φ. The proposal distribution is:

q(φ?|φ) = B(λφ+ τ, λ(1− φ) + τ), (7.5)

where λ and τ are tuning parameters, τ is very small and prevents the sampler becoming

stuck near zero. The mean is E(φ?) = α
α+β = λφ+τ

λ+2τ ≈ φ. The likelihood of the AR(1)

process can be written as:

pψ(α0:N ) = p(α0)
N∏
t=1

p(αt|µ, ση, φ, αt−1),

= N
(
µ,

σ2η
1− φ2

)
N∏
t=1

N (at;µ+ φ(αt−1 − µ), σ2η),

≈ (2πσ2η)
−N

2 exp

{
− 1

2σ2η

N∑
t=1

(αt − µ− φ(αt−1 − µ))2

}
.
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Ignoring the small contribution from α0. The Metropolis-Hastings acceptance ratio is

then:

A =
pψ?(α1:N )p(φ?)q(φ|φ?)
pψ(α1:N )p(φ)q(φ?|φ)

(7.6)

Where ψ? represents the parameters of the AR(1) process with a newly proposed value of

φ.

Example: Stochastic Volatility with AR(1) latent state

This section compares the two inference algorithms for the latent-state and static param-

eters of the stochastic volatility model using the simulated data in Figure 7.1. Firstly, the

mixture model approximation is used with the semi-conjugate prior distributions

p(φ) = N (0.8, 0.1),

p(µ) = N (2.0, 1.0),

p(ση) = Inv-Gamma(2, 2).

The static parameters are initialised by drawing from the independent prior distributions,

the state is initialised using the FFBS algorithm on the Gaussian approximation without a

correction. The indicators st can then be initialised conditional on the initial approximate

state. In the second inference algorithm the Beta prior for the autoregressive parameter φ

is used. The tuning parameters of the proposal distribution for φ are selected to be λ = 100

and τ = 0.05. The values of the tuning parameters were determined by monitoring runs

of the MCMC and aiming for one third of the proposals for the Metropolis-Hastings step

for φ to be accepted. The prior distribution for φ is B(5, 2). 100,000 iterations from

each MCMC algorithm is used, the first 10,000 iterations are discarded as burn-in and

every 20th iteration is kept, reducing the autocorrelation of the Markov chains. Figure 7.2

shows the diagnostic plots for the mixture approximation using the Normal prior (a) and

Beta prior (b). In addition, Figure 7.3 shows the prior and posterior distributions for the

mixture model approximation using the Normal prior distribution for the autoregressive

parameter.

Figure 7.4 shows the mean and 99% credible intervals of the log-volatility from 1,000

MCMC samples using the mixture model approximation described in this section and the

block updating described in section 7.1.1. The mean latent-state for each algorithm is

very similar.

216



Chapter 7. Heteroscedastic Time Series

phi

m
u

0.30

0.35

0.40

0.45

0.6

0.7

0.8

phi

m
u

0

5

10

15

0

3

6

9

sigm
a_eta

mu phi sigma_eta

sigm
a_eta

0 1000200030004000 0 1000200030004000 0 1000200030004000

1.8

1.9

2.0

2.1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0

1.8 1.9 2.0 2.1 0.6 0.7 0.8 0.30 0.35 0.40 0.45
0.0

2.5

5.0

7.5

Iteration

Lag

value

va
lu

e
A

ut
oc

or
re

la
tio

n
de

ns
ity

(a)

phi

m
u

0.30

0.35

0.40

0.45

0.65

0.70

0.75

0.80

phi

m
u

0

5

10

15

0

5

10

sigm
a_eta

mu phi sigma_eta

sigm
a_eta

0 1000200030004000 0 1000200030004000 0 1000200030004000

1.9

2.0

2.1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0

1.9 2.0 2.1 0.650.700.750.80 0.30 0.35 0.40 0.45
0.0

2.5

5.0

7.5

Iteration

Lag

value

va
lu

e
A

ut
oc

or
re

la
tio

n
de

ns
ity

(b)

Figure 7.2: (a) Normal prior for φ (b) Beta prior for φ (a and b) Diagnostic plots for
parameters of the SV model using the mixture model approximation (Top) Traceplot for
latent-state parameters (Middle) Autocorrelation plots of the MCMC draws (Bottom)
Empirical marginal posterior density for latent-state parameters

7.1.3 Continuous Time Stochastic Volatility Model

In order to model irregularly observed time series, Y (ti), i = 1, . . . , N with a time varying

variance, a stochastic volatility model with continuous time latent log-volatility can be

used. The Ornstein-Uhlenbeck process (see section 4.7.1) is a continuous time analogue

to the autoregressive process:

Y (ti) = ε(ti) exp(α(ti)/2), ε(ti) ∼ N (0, 1),

dαt = φ(αt − µ)dt+ σdWt. (7.7)

Using the analytical solution [Doob, 1942], the state space model can be written as:

Y (ti) = ε(ti) exp(α(ti)/2), ε(ti) ∼ N (0, 1),

α(ti) = µ+ e−φ(ti−ti−1)(α(ti−1)− µ) + σ(ti), σ(ti) ∼ N
(

0,
σ2

2φ
(1− e−2φ(ti−ti−1))

)
A simulation from the process is presented in Figure 7.5.

Inference can be performed using either the mixture model approximation or the block

update method. The posterior distributions for the static parameters, φ, µ, σ can be de-
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Figure 7.3: Prior and posterior distributions for the parameters of the stochastic volatility
model using the mixture model approximation with Normal prior for the autoregressive
parameter φ.

termined using Metropolis-Hastings as detailed in section 4.7.1 conditional on the sampled

state, α(t0:N ).

7.2 Factor Stochastic Volatility

Factor analysis is used to express dependence among random variables

Y − µ = βf + v. (7.8)

The observed values form a matrix Y with dimension p × n, each column is a single

observation and µ is a p× n matrix of mean values. β is the p× k factor loading matrix

which is shared among all the observations, f is a k × n matrix of common factors. v is

a p× n matrix with each column a p-dimensional random vector distributed according to

MVN(0, Σy) where Σy = diag(σ1, . . . , σp) is a diagonal matrix representing the variance
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Figure 7.4: Sampled state of the stochastic volatility model using the mixture model ap-
proximation and the Gaussian approximation with the simulated state and 99% intervals.
Gaussian approximation, (top). Mixture model approximation, (middle). The posterior
mean of the latent state using both the mixture model and Gaussian approximation, (bot-
tom).

not explained by the common factors and factor loading matrix. Typically k < p which

means the model has fewer free parameters than a model using a full covariance matrix.

Factor analysis has been extensively studied, see for example Kaufman and Press [1973]

for a Bayesian analysis of factor models.

Factor analysis can be extended to modelling time series with time dependent vari-

ance [Pitt and Shephard, 1999a]. The p×k factor loading matrix β provides a relationship
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Figure 7.5: Simulated Observations from the univariate stochastic volatility model with
Ornstein-Uhlenbeck latent state, (top). Simulated Latent State, representing the log-
volatility of the series, (bottom),

between k dimensional common factors, ft and the p-dimensional observation, Yt. The

factors, ft evolve in time according to a stochastic volatility model where the log-volatility

is modelled using a stochastic process. The measurement error vt is Multivariate Normal

with mean zero and diagonal variance Σy = diag(σ
2(1)
y , . . . , σ

2(p)
y ). The model is com-

pletely specified in equation (7.9) with an AR(1) model representing the log-volatility of

the latent common factors
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Yt = βft + vt, vt ∼ MVNp(0, Σy)

f
(j)
t = ε

(j)
t σ exp(α

(j)
t /2), ε

(j)
t ∼ N (0, 1)

α
(j)
t = µ(j) + φ(j)(α

(j)
t−1 − µ(j)) + η

(j)
t , η

(j)
t ∼ N (0, σ(j)η ),

α
(j)
0 ∼ N

(
µ(j),

σ
(j)2
η

1− φ(j)2

)
, j = 1, . . . , k. (7.9)

The factors follow an independent stochastic volatility model centred at σ, called the

modal volatility. The centred model, with σ = 1 is written as f ∼ ISVN (φ;ση;µ).

The parameters of the log-volatility φ, µ, ση can be either scalar values or k×1 vectors.

In the latter case the product φ◦αt−1 is the Hadamard product. The factor loading matrix

β must be a lower-triangular matrix in order to be identifiable ie the upper triangle of β

must be zero and the leading diagonal must be 1s [Kaufman and Press, 1973].

A simulation from the factor stochastic volatility model is presented in figure 7.6, with

factor loading matrix as in Equation (7.10). The number of factors is chosen to be k = 2

and the factors are not correlated, but follow independent AR(1) processes with the same

static parameters, φ(j) = 0.8, µ(j) = 2.0 and σ
(j)
η = 0.1, j = 1, 2.

β =



1.0 0.0

0.3 1.0

0.07 0.25

0.23 0.23

0.4 0.25

0.2 0.23


(7.10)

7.2.1 Parameter Inference in the Factor-SV Model

The unknown parameters consist of ψ = {σy, β, φ(j), µ(j), σ(j)η , j = 1, . . . , k} and the latent-

states, f1:N , α0:N . The joint distribution of all the random variables in the model is

p(y1:N , f0:N , ψ, α0:N ) = p(ψ)

N∏
t=1

p(yt|ft, Σy, β)p(ft|αt, σ)p(αt|αt−1, φ, µ, ση),

= p(β)p(σy)p(φ)p(µ)p(ση)
N∏
t=1

p(yt|ft, Σy, β)p(ft|αt)p(αt|αt−1, φ, µ, ση).
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Figure 7.6: (Left) First 500 simulated observations from the factor stochastic volatility
model (Right) Simulated factors

This decomposition is possible since the observations are conditionally independent of

each other given the corresponding latent factor. The latent log-volatility is Marko-

vian so p(αt|α1:t−1) = p(αt|αt−1). Finally, the common factors are conditionally in-

dependent given the latent log-volatility. To determine the joint posterior distribution

p(ψ, α0:N , f1:N |y1:N ) construct a block Gibbs sampler. First choose prior distributions for

the static parameters of the latent-log volatility AR(1) process
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p(φ(j)) = B(αφ, βφ),

p(σ(j)η ) = Inv-Gamma(ασ, βσ),

p(µ(j)) = N (µµ, σ
2
µ), j = 1, . . . , k.

Then choose a prior distribution for the diagonal entries of the observation variance:

p(σy) = Inv-Gamma(ασ, βσ).

Independent, element-wise Normal prior distributions are applied to the lower triangle of

the factor loading matrix, βij ∼ N (0, σ2β), j < i.

The common factors, ft are sampled conditionally on the factor loading matrix, β

and observations y1:N . Conditional on the common factors, the posterior distribution for

the factor loading matrix and the variance, σy is identical to multiple linear regression.

Consider sampling from the rows of the factor loading matrix βi, i = 1, . . . , p, for the first

i = 1, . . . , k rows, where only i−1 elements are non-zero, denote Σ
(i)
β = diag(σ

(1)
β , . . . , σ

(i)
β )

then,

p(βi|β−i, ft) = p(βi)

N∏
t=1

p(yt|ft, σy, β),

= det(2πΣ
(i)
β )−

1
2 exp

{
−1

2
βTi Σ

−1(i)
β βi

} N∏
t=1

(2πσy)
− 1

2

× exp

{
− 1

2σ2y
(yt − βft)T (yt − βft)

}
,

∝ exp

{
−1

2
βTi Σ

−1(i)
β βi −

1

2σ2y

N∑
t=1

(yt − βft)T (yt − βft)
}
,

= MVNk(µt,Σt).

β is split into two sets, for the non-zero elements of the rows i = 1, . . . , k

Σ
(i)
t =

(
1

σ2y

N∑
t=1

ftif
T
ti +Σ

−1(i)
β

)−1
,

µ
(i)
t = Σ

(i)
t

(
1

σ2y

N∑
t=1

ftiyti

)
. (7.11)

Where yti is the tth observation of the ith time series, fti contains the first i elements of
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the tth latent factor.

Then for the rows i = k + 1, . . . , p

Σ
(i)
t =

(
1

σ2y

N∑
t=1

ftf
T
t +Σ−1β

)−1
,

µ
(i)
t = Σ

(i)
t

(
1

σ2y

N∑
t=1

ftyti

)
. (7.12)

The full conditional for the factors can be derived as follows

p(ft|β, σy, yt, αt) = p(yt|ft, σy, β)p(ft|αt),
= MVNp(yt;βft, Ipσ

2
y)MVNk(ft; 0, Ik exp(αt))

∝ exp

{
−1

2
(yt − βft)T Ipσ−2y (yt − βft)−

1

2
fTt Ike

−αtft

}
∝ exp

{
−1

2

(
fTt β

T Ipσ
−2
y βft − 2fTt β

T Ipσ
−2
y yt + fTt Ike

−αtft + yTt Ipσ
−2
y yt

)}
= MVNk((Ik exp(−αt) + βTσ−2y β)−1βTσ−2y yt, (Ik exp(−αt) + βTσ−2y β)−1).

(7.13)

Then the full conditional for a single variance parameter σ2yi is

p(σ2yi|yti, ft, βi) = p(σ2yi)

N∏
t=1

p(yti|ft, βi),

= Inv-Gamma

(
ασ +

N

2
, βσ +

1

2

N∑
t=1

(yti − βift)2
)
. (7.14)

If it is decided that each series shares the same variance, σ2y then the full conditional can

be written as:
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p(σy|y1:N , f0:N , β) = p(σy)

N∏
t=1

p(yt|ft, β, σy)

= Inv-Gamma(σy;ασ, βσ)

N∏
t=1

N (yt;βft, σ
2
y)

= (σ2y)
−ασ−1 exp

{−βσ
σ2y

}
det(2πIpσy)

−N
2 exp

{
1

2σ2y

N∑
t=1

(yt − βft)T Ip(yt − βft)
}

= (σ2y)
−ασ−1 exp

{−βσ
σ2y

}
(2πpσy)

−N
2 exp

{
1

2σ2y

N∑
t=1

(yt − βft)T (yt − βft)
}

∝ (σ2y)
−(ασ+N

2
)−1 exp

{
− 1

σ2y

(
βσ +

1

2

N∑
t=1

(yt − βft)T (yt − βft)
)}

= Inv-Gamma

(
ασ +

N

2
, βσ +

1

2

N∑
t=1

(yt − βft)T (yt − βft)
)
.

Algorithm 21 summarised the block Gibbs sampler for a factor stochastic volatility

model using the mixture model approximation to sample the latent log-volatility. Equiv-

alently the block sampling method can be used.

7.2.2 Example: Simulated Factor Stochastic Volatility Model

This example shows parameter inference for the simulated data plotted in figure 7.6. The

prior distributions for the static parameters of the factor stochastic volatility model are

chosen to be:

p(βij) = N (0.0, 5.0),

p(σy) = Inv-Gamma(2.0, 3.0),

p(µ) = N (2.0, 1.0),

p(φ) = N (0.8, 0.1),

p(ση) = Inv-Gamma(2.0, 3.0).

Table 7.1 shows summary statistics for the AR(1) latent state. Figure 7.7 shows

diagnostic plots for the AR(1) latent state parameters.

Figure 7.8 (a) shows the traceplots for the factor loading matrix (b) shows the sample

mean and 99% credible intervals of the first factor f
(1)
0:N calculated from 1,000 draws of

the MCMC algorithm. The posterior distribution of the factors very closely matches the

simulated factors in the example.
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Figure 7.7: (a) Diagnostic plots for the factor stochastic volatility model for the latent
log-volatility parameters (Top) Traceplots (Middle) Autocorrelation (Bottom) Marginal
posterior densities (b) Prior and posterior distributions
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Figure 7.8: (a) Traceplots of the parameters in the factor loading matrix (b) Sampled
mean of the first factor and 99% credible intervals calculated from 1,000 MCMC draws,
overlayed with the actual simulated state in dashed red
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Algorithm 21: Gibbs sampling algorithm for the factor stochastic volatility
model

Result: Return ψi, i = 1, . . . ,M
1 Given observations Yt, t = 1, . . . , N ;
2 Initialise the static parameters by drawing from the prior ψ0 ∼ p(ψ);
3 Draw the log-volatilities, α0:N from the prior conditional on ψ0;
4 for i in 1 to M do
5 for t in 1 to N do
6 Sample the k-dimensional factors from p(ft|β, σy, yt, αt) using

equation (7.13);

7 end
8 for j in 1 to k do
9 Sample the jth log-volatility conditional on the factors and state

parameters, using FFBS and the Gaussian mixture approximation;
10 Sample the state parameters conditional on the latent log-volatility,

µ(j), φ(j), σ(j) using eqs. (1.11) and (1.13) ;

11 end
12 for j in 1 to p do
13 Sample βi,· using eqs. (7.11) and (7.12);
14 end
15 Sample σ2y from full conditional in equation (7.14);

16 end

Parameter Mean Median Upper (95%) Lower (5%) ESS Actual Value

mu 1 1.95 1.95 2.03 1.86 2761 2.0

mu 2 1.95 1.95 2.03 1.88 3148 2.0

phi 1 0.78 0.78 0.83 0.72 1490 0.8

phi 2 0.75 0.75 0.81 0.69 1280 0.8

sigma eta 1 0.36 0.36 0.40 0.32 931 0.3

sigma eta 2 0.36 0.36 0.41 0.33 778 0.3

Table 7.1: Summary statistics of the posterior distribution for the volatility parameters
in the simulated factor stochastic volatility model and the value used to simulate the data
labelled using “Actual Value”

7.3 Factor Stochastic Volatility with Dynamic Mean

A factor stochastic volatility model with a dynamic mean can be used to model multiple

correlated time series with different mean functions [Simpson, 2002]. The dynamic mean

can be represented by a dynamic latent state, θθθt, transformed using the observation matrix

Ft.
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Table 7.2: Summary Statistics of the posterior distribution of the factor loading matrix
and the value used to simulate the data labelled “Actual Value”

Parameter Mean Median Upper (95%) Lower (5%) ESS Actual Value

beta 10 0.23 0.23 0.23 0.23 2802 0.23

beta 11 0.25 0.25 0.25 0.25 2913 0.25

beta 12 0.23 0.23 0.23 0.23 2957 0.23

beta 2 0.31 0.31 0.31 0.31 2940 0.30

beta 3 0.07 0.07 0.07 0.07 2884 0.07

beta 4 0.23 0.23 0.23 0.23 3038 0.23

beta 5 0.41 0.41 0.41 0.41 3093 0.40

beta 6 0.20 0.20 0.20 0.20 3005 0.20

beta 9 0.25 0.25 0.25 0.25 2979 0.25

Yt = F Tt θθθt + vt, vt ∼ FSVN (β, σ, ft),

θθθt = Gtθθθt−1 + wt, wt ∼ MVNm(0,W ),

θθθ0 ∼ MVNm(m0, C0). (7.15)

Y1:N is a time series of N observations of p-dimensional vectors. vt is drawn from a factor

stochastic volatility model with a p × k factor loading matrix β and error variance Ipσ.

The model has k factors f
(i)
t , i = 1, . . . , k and vt = βft + εt, εt ∼ MVNp(0, Ipσ) where:

ft =


f
(1)
t
...

f
(k)
t

 .
The factors are driven by a stochastic volatility process with an AR(1) latent state rep-

resenting the log-volatility: f
(i)
t ∼ ISVN (φ(i);µ(i);σ

(i)
η ). The observation matrix, Ft is

m× p. The latent-state is m-dimensional and wt is the system error at time t drawn from

a multivariate Normal distribution with zero mean and covariance W = diag(w1, . . . , wm).

The multivariate non-centered model written out in full is
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Yt = F Tt θθθt + βft + εt, εt ∼ MVNp(0, Ipσ
2
y),

θθθt = Gtθθθt−1 + wt, wt ∼ MVNm(0,W ),

f
(i)
t = σ

(i)
t exp

{
α
(i)
t

2

}
, σ

(i)
t ∼ N (0, 1),

α
(i)
t = µ(i) + φ(i)(α

(i)
t−1 − µ(i)) + η(i), η(i) ∼ N (0, σ2(i)η )

α
(i)
0 ∼ N

(
µ(i),

σ
(i)2
η

1− φ(i)2

)
, i = 1, . . . , k,

θθθ0 ∼ MVNm(m0, C0).

Figure 7.9 shows a simulation from a model with a first order DLM representing the

mean of the process.

7.3.1 Parameter inference in the non-centered model

In order to learn the posterior distribution of the parameters in the DLM-FSV model first

write the joint distribution of all the random variables in the model

p(ψ,θθθ0:N , α0:N , f1:N , y1:N ) = p(ψ)p(θθθ0)p(α0)

N∏
t=1

p(yt|ft, θθθt, Ipσy)p(θθθt|θθθt−1,W )p(ft|αt)

× p(αt|αt−1, φ, µ, ση)

= p(ψ)N (m0, C0)N
(
µ,

σ2η
1− φ2

)
N∏
t=1

N (yt;F
T
t θθθt + βft, Ipσ

2
y)N (θt+1;Gtθt,W )

×N (ft; 0, exp(αt))N (αt;µ+ φ(αt−1 − µ), σ2η)

A block Gibbs sampler is used to learn the joint posterior distribution of the latent states

and associated static parameters, p(ψ,θθθ0:N , α0:N , f1:N |y1:N ). First consider determining

the factors conditional on the observations and the mean latent state, y1:N and θθθ0:N

respectively. Then the observation equation can be re-written as

yt − Ftθθθt = βft + vt, vt ∼ MVNp(0, Ipσ
2
y). (7.16)

This is a factor stochastic volatility model and inference for the factor loading matrix, log-

volatility, common factors and unexplained variance (β, α0:N , f1:N , σy) can be performed

as detailed in section 7.2.1.

It remains to determine the filtering distribution p(θθθ0:N |y1:N , ψ) and the system co-
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Figure 7.9: Simulated non centered factor stochastic volatility model (DLM FSV) (Top)
Simulated observations (Bottom) Mean state

variance matrix. The full conditional distributions for the remaining static parameter,

the system noise covariance matrix, W can be derived as detailed in equation (5.10) by

specifying an inverse Gamma semi-conjugate prior distribution.

To sample the mean latent-state (θθθ0:N ) conditional on the other parameters re-write

the model equations as:
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Yt − βft = Ftθθθt + vt, vt ∼ MVNp(0, Ipσ
2
y),

θθθt = Gtθθθt−1 + wt, wt ∼ MVNm(0,W ),

θθθ0 ∼ MVNm(m0, C0).

Then the full conditional of the latent-state can be sampled from using FFBS. The MCMC

algorithm for the DLM FSV is summarised in algorithm 22.

Algorithm 22: Gibbs sampling algorithm to determine the marginal posterior
distribution of the static parameters of the factor stochastic volatility model with
dynamic mean

Result: Return ψi, i = 1, . . . ,M
1 Initialise the static parameters by sampling from the prior ψ0 ∼ p(ψ);
2 Initialise the latent state θθθ0:N by sampling from the prior;
3 Initialise the latent log-volatility α0:N by sampling from the prior;
4 for i in 1 to M do
5 Calculate the centred observations, yt − Ftθt = βft + vt to recognise an FSV

model;
6 Perform parameter inference as in the FSV model, algorithm 21;
7 Calculate the residuals Yt − βft = Ftθθθt + vt to recognise a DLM;
8 Sample the state, θθθ0:N using FFBS;
9 Sample system covariance matrix W from the full conditional in

equation (5.10);

10 end

Alternatively (or additionally) a factor structure can be used when modelling the

system matrix, an extension to the model considered in Simpson [2002]. The system

matrix, W , can grow very large when modelling complex univariate or multivariate time

series. Learning a non-diagonal W matrix using a Gibbs step with an inverse Wishart

prior can be challenging. The state-space model with a factor structure proposed for the

system matrix can be written as:

Yt = F Tt θθθt + vt, vt ∼ MVNp(0, Ipσ
2
y),

θθθt = Gtθθθt−1 + βf
(i)
t + τt, τt ∼ MVNm(0, Imσ

2
x),

θθθt ∼ MVNm(m0, C0),

f
(i)
t ∼ ISVN (φ(i);σ(i)η ;µ(i)), i = 1, . . . , k.

As before, Yt, t = 1, . . . , N is a time series of N observations, each Yt is a p-dimensional

vector. The observation and system matrices, Ft and Gt respectively are created by com-
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posing models as described in section 4.1.1 and 4.1.2. The latent-state is m-dimensional

with k dynamic factors, ft and a m × k factor loading matrix β, together representing

the time dependent variance of the latent-state. Figure 7.10 shows a simulation from a

univariate state space model with seasonal structure. The parameters of the latent log-

volatility are φ(i) = 0.8, µ(i) = 0.0, σ
(i)
η = 0.2, the observation variance is V = 0.5 and the

unexplained variance is I13σx where σx = 0.1, finally the factor loading matrix is

β =



1.00 0.00

4.94 1.00

3.38 2.74

5.00 0.95

−4.57 −7.40

−0.12 8.20

1.35 −2.80

−10.61 −2.20

−1.39 −0.75

2.15 0.31

−1.16 1.46

2.07 2.18

12.52 −4.00



(7.17)

Again, a Gibbs sampling algorithm is used to determine the joint posterior distri-

bution p(ψ,θθθ0:N , α0:N , f1:N |y1:N ) of the non-centered model with dynamic system noise

covariance. The joint distribution of the random variables in the model can be written as:

p(y1:N ,θθθ0:N , α0:N , f1:N , ψ) = p(ψ)p(θθθ0)p(α0)
N∏
t=1

p(yt|θθθt, σy)p(θθθt|θθθt−1, β, σx, ft)

× p(ft|αt)p(αt|αt−1, φ, µ, ση)

= p(ψ)N (m0, C0)N
(
µ,

σ2η
1− φ2

)
N∏
t=1

N (yt;F
T
t θθθt, Ipσ

2
y)N (θθθt+1;Gtθθθt + βft, Imσx)

×N (ft; 0, exp(αt))N (αt;µ+ φ(αt−1 − µ), σ2η).

Consider deriving the full conditional distributions for the static parameters in the model,

ψ = {σy, φ(i), µ(i), σ(i)η , β, σx}, i = 1, . . . , k conditional on the observations, y1:N , latent-
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Figure 7.10: Simulated data from a state space model with a dynamic system noise co-
variance matrix.

states, α0:N , θ0:N and common factors f1:N .

The full condition of the observation variance is equivalent to the DLM and derived

in equation 4.17. The full conditionals for the parameters of the latent log-volatility can

be written as in section 1.3.3 for the AR(1) model. The full conditional distributions for

the factor loading matrix, β, common factors f1:N and the unexplained variance σx are

identical to the factor stochastic volatility model presented in section 7.2.1.

It remains to consider how to sample the latent states, α0:N and θ0:N . The full condi-

tional distribution for the mean latent-state is

p(θθθ0:N |y1:N , α0:N , f1:N , ψ) = p(θ0)
N∏
t=1

p(yt|θt, σy)p(θt|θt−1, β, ft, σx), n

which can be written as:

p(θθθ0:N |y1:N , α0:N , f1:N , ψ) =

N∏
t=0

p(θt|θt+1:N , y1:N , β, ft, σx).

The final factor in the product is, p(θN |y1:N , β, σx, fN ) which is the filtering distribution

of θN , which is determined using the Kalman filter (see section 4.2). The posterior at time

t − 1 is Gaussian and specified by mean and variance mt−1 and Ct−1 then the Kalman
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filter equations, conditional on the values of the factor loading matrix, common factors

and unexplained variance, required to calculate the posterior at time t for the non-centered

FSV model are

Prior: at = Gtmt−1 + βft

Rt = GtCt−1G
T
t + σ2x

Update: mt = at +Atet

Ct = AtV,

where At = Rt/(Rt + V ), et = ỹt − at.

The backward sampler can then be performed by first simulating θN ∼ N (mN , CN ) and

then simulating recursively for t = N − 1, N − 2, . . . , 0 according to equation (4.19).

The latent log-volatility is sampled conditional on the value of the common factors,

mean latent-state and other static parameters using either the mixture model approxima-

tion from section 7.1.2 or the blocking described in section 7.1.1. The centered state is

calculated in order to recognise an FSV model

et = θθθt −Gtθθθt−1 = βft + Imσx

The remaining static parameters, ψ = {σx, β, φ(j), σ(j)η , µ(j)}, j = 1, . . . , k can be sampled

using the full-conditional distributions derived for the factor stochastic volatility model in

section 7.2.1 the full block Gibbs sampler is summarised in algorithm 23.

Algorithm 23: MCMC algorithm for the DLM with factor structure for the
system noise covariance matrix.

Result: Return ψi, i = 1, . . . ,M
1 Initialise the static parameters, ψ0 ∼ p(ψ);
2 Initialise the latent state θθθ0:N by sampling from the prior;
3 Initialise the latent log-volatility by sampling from the prior;
4 for i in 1 to M do
5 Use FFBS to sample the state p(θθθ0:N |ψ, V );
6 Calculate the centered state et = θθθt −Gtθθθt−1;
7 Sample the log-volatility and static parameters from the FSV model

et = βft + τt, τt ∼ MVNd(0, Imσx) using algorithm 21;
8 Sample the observation variance σy from the full conditional distribution in

equation (4.17);

9 end
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7.4 Example: Environment Sensor

This example considers sensor readings at a single sensor, “new new emote 2604” using the

FSV with dynamic mean model. The sensor is located in Newcastle upon Tyne near the

Urban Sciences Building and records NO, CO, humidity and temperature approximately

every five minutes. The system matrix is considered to follow a factor stochastic volatility

model. The discretely observed hourly sensor data introduced in section 4.9 is used, the

training data is from January 2018 until August 2018. The factor loading matrix is now

28× k matrix, where k = 2 is the number of factors.

In order to jointly model the measurements made using sensor 2604 a model for each

dynamic mean process is defined. The specification of the model matrices, F and G is the

same as the multivariate DLM example considered in section 4.9. The model equation is:

Yt = F Txt + vt, vt ∼ N (0, V ),

xt = Gxt−1 + wt, wt ∼ FSV(β, σ, ft),

x0 ∼ N (m0, C0).

The prior distributions for the static parameters are:

p(βij) = N (0, 3),

p(φi) = N (0.8, 0.1),

p(µi) = N (0, 1),

p(σηi) = Inv-Gamma(2.5, 3),

p(σj) = Inv-Gamma(2.5, 3),

p(diag(V )) = Inv-Gamma(2.5, 3),

j = 1, . . . ,mi = 1, . . . , k.

Here, m = 28 is the dimension of the latent-state and k = 2 is the number of factors.

40,000 iterations of the MCMC were run, with 10,000 dropped as burn-in with a

thinning of 20 before plotting the diagnostics for posterior distributions of the parameters.

Figure 7.11 (a) shows the trace-plots and empirical density for the posterior distribution

of the latent-factor parameters and (b) shows the prior and posterior distributions for the

static parameters of the log-volatility process. Figure 7.13 shows the diagnostics for the

factor loading matrix, β.

Figure 7.12 shows interpolated values and 90% probability intervals for the four mea-

surements made at sensor 2604 during the month of September 2018. The mean of the

interpolated values appear to be plausible for all the values the sensor records. The uncer-
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Figure 7.11: (a) Diagnostic plots for log-volatility parameters (Top) Trace-plots (Middle)
Autocorrelation plots (Bottom) Empirical posterior Density (b) Prior and posterior dis-
tributions for the parameters of the stochastic volatility latent state for the non-centered
factor stochastic volatility model with factor structure system matrix.

tainty for the CO data is large, a log-transform on the data could result in an improved

fit as shown in example 4.9.

7.5 Summary

This chapter has considered a class of models with time dependent variance modelled using

a latent log-Gaussian process. The class was extended and combined with the dynamic

models considered in chapters 4 to 6. The algorithms described in this chapter have been

implemented in the Bayesian DLMs scala package1.

The mean models introduced are Gaussian and can take advantage of exact filtering

using the Kalman Filter. However this prevents modelling of heteroscedastic time series

with non-linear and non-Gaussian dynamics. It would be straightforward to extend the

observation distribution to a Student-t using the Gamma mixture of Normal distributions

presented in section 5.4.

The non-centered models could be further extended to non-linear, non-Gaussian models

using particle Gibbs sampling, by sampling the latent-state of the mean process θ0:T using

a particle filter and sampling the latent log-volatility conditional on the mean latent-state

using one of the methods described in this chapter.

1https://git.io/dlms
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Chapter 8

Spatial Modelling with Gaussian

Processes

Sensors in the Urban Observatory are deployed in a dense network across the north east of

England. So far, time series models have been considered for individual sensors however

sometimes an individual sensor can fail to record observations for a prolonged period due

to hardware defects or network connectivity issues. In this scenario similar sensors in the

vicinity can be used to interpolate the missing measurements. In addition, sensors are

often placed at convenient locations rather than locations of interest, hence interpolation

is required to understand how the process behaves across the whole space.

One method of modelling spatial dependence is using a Gaussian process. A Gaussian

process (GP) is an infinite collection of points, of which finitely many points are distributed

according to a multivariate Normal distribution. Gaussian processes can be used to learn

non-linear relationships of the form y = f(x), where the Gaussian process can approximate

the latent function f and the corresponding uncertainty given the observations. Gaussian

processes are a non-parametric method, so minimal model specification is required to learn

the latent function.

Gaussian processes have been used successfully in regression and classification prob-

lems, including modelling spatial data [Cressie, 1992]. Optimal positioning of sensors is

a problem which can be tackled using GPs; by positioning sensors in areas which have

high posterior variance or by maximising the mutual information between sensors [Krause

et al., 2008]. GPs have been successfully applied in epidemiology to assess the global

burden of disease, to spatially interpolate missing covariates [Murray et al., 2012]. GPs

have also been used to model climate and weather data [Osborne and Roberts, 2007].

This chapter focuses on how to fit Gaussian process regression models efficiently to a

small number of data points and considers how to model spatial differences in a sensor

array in the Urban Observatory in section 8.3. For an in depth text on Gaussian Process
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models for classification and regression consult Williams and Rasmussen [2006].

8.1 Gaussian Process

Consider a set of pairs of independent and dependent variables (Xi, Yi), i = 1, . . . , N

then Xi is assumed to be related to Yi by a latent function f and the observations of the

dependent variables, Yi, are corrupted by Gaussian noise

Yi = f(Xi) + εi, εi ∼ N (0, σy). (8.1)

where Yi ∈ Rp and Xi ∈ Rm. The function f is considered to be drawn from a Gaus-

sian process with a mean function µµµ(X) and covariance function, k(X,X?). The mean

and covariance functions have associated hyper-parameters which control the function f ,

the posterior distribution of these hyper-parameters can be determined conditional upon

observed data using appropriate inference algorithms.

An example of a covariance function is the squared exponential covariance function

which is parameterised by a length scale σ, signal variance h and a distance metric d(xi, xj):

k(xi, xj) = h exp

(
−d(xi, xj)

2σ2

)
.

The length scale σ determines how much the observations change at different values of

the independent variables, i.e. how different y1 is from y2 given a fixed distance d(x1, x2)

between the two observations. Intuitively, in a spatial model where each xi represents a

location in space, if σ is large then the observations, y1 and y2 change slowly as the distance

between x1 and x2 increases (as d(x1, x2)→∞) however if σ is small then a small change

in distance (in any direction) results in a noticable change in the observation. In spatial

analysis strong prior opinions can be formed for σ. The signal variance, h, controls the

amount the dependent variables change. The squared exponential covariance function

is isotropic, this means the covariance between two points depends only on the distance

between them. Weather effects such as the wind are directional and hence the squared

exponential covariance function is not appropriate.

A covariance function is used to build a covariance matrix which then represents the

measurements y(x), the observation y at each location in the vector x, as a draw from a

multivariate Normal distribution
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Figure 8.1: (a) 300 simulated values from a Gaussian process with parameter values σy =
0.09, h = 1.0 and σ = 2.0. (b) Posterior mean of the fitted function with 95% probability
intervals in shaded grey, the observed values are large round circles with other unobserved
draws from the same Gaussian process plotted as small crosses.

K(x,x) =


k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) . . . k(xn, xn)



p(y(x)) = MVN(m(x),K(x,x) + Iσ2y)

The distance metric d is problem dependent and should be chosen appropriately. For

small scale spatial modelling Euclidean distance is approximately correct, however for

large distances on the globe great circle distance is more appropriate.

m(x) is the mean function of the multivariate Normal distribution. A small amount of

noise, Ipσ
2
y is added to the covariance of the multivariate Normal distribution to represent

the measurement error of y(x). Figure 8.1 shows a single draw from a Gaussian process

with a squared exponential covariance function, with h = 1.0 and length scale σ = 2.0,

the variance of the observations is σy = 0.5, the mean function is zero.

Properties of the multivariate Normal distribution can be used in order to calculate

the posterior prediction at an unobserved value of the independent variable, x?. The joint
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density of y(x) and f(x?) is

p

 y(x)

f(x?)

 = MVN

m(x)

m(x?)

 ,
K(x,x) + Ipσ

2
y K(x, x?)

K(x?,x) k(x?, x?)

 . (8.2)

Then the posterior p(f(x?)|f(x),y, x?) is Gaussian and hence completely specified by its

mean and covariance

E(f(x?)) = m(x?) +K(x?,x)(K(x,x) + Ipσ
2
y)
−1(y−m(x)),

Var(f(x?)) = k(x?, x?)−K(x?,x)(K(x,x) + Ipσ
2
y)
−1K(x?,x).

which can be extended to learning the posterior distribution at many points. To calculate

the predictive distribution of the observed point y(x?) then add σ2 to the covariance.

Figure 8.1 (b) summarises the posterior distribution of the function f(x), the mean is

plotted with a solid line and 95% probability intervals are represented by the shaded grey

area. The observed data consists of every 10th observation from the simulated Gaussian

process in figure 8.1 (a). The observed data is highlighted using larger points with the

unobserved draws from the Gaussian process plotted as smaller crosses.

8.2 Parameter Inference

Different values of the hyper-parameters affect the smoothness of the latent function f(x).

This section considers how to determine the posterior distribution of the hyper-parameters

of the covariance and mean functions. This allows posterior predictions to be drawn from

the Gaussian process representing the latent function f(x), accounting for hyper-parameter

uncertainty.

Consider observations y(x) ∈ R at locations x = (x1, . . . , xn), corrupted with inde-

pendent Gaussian noise with covariance Ipσ
2
y as in equation 8.1. A GP prior is placed on

the function f with a squared exponential covariance function and a linear mean function,

m(x) = Xβ where β ∈ R2×1 and X ∈ Rn×2 is a design matrix

X =


1 x1
...

...

1 xn

 .

Then the model can be specified as

243



Chapter 8. Spatial Modelling with Gaussian Processes

y(x) = m(x) + f(x) + Ipσ
2
y ,

f(x) ∼ GP(0,K(x,x)),

and in matrix form


Y1
...

Yn

 =


1 x1
...

...

1 xn

β + f(x) + εy, εy ∼ N (0, Inσ
2
y)

f(x) ∼ GP(0,Ky).

An MCMC algorithm (see section 1.3.2) can be used to determine the posterior dis-

tribution of the hyper-parameters, ψ in the covariance and mean of the Gaussian process

representing the latent function, f . The following is an Metropolis-Hastings algorithm to

determine the posterior distribution of the hyper-parameters with a linear mean function.

The parameters of the model are ψ = {σy, σ, h,βββ}, then the joint distribution of the

random variables in the model can be written as

p(y(x), ψ, f(x)) = p(ψ)p(f(x)|h, σ)p(y(x)|f(x), β, σy),

= p(ψ)MVNp(f(x)|0,K(x,x))MVNp(y(x)|Xβ + f(x), Ipσ
2
y)).

The prior and proposal distributions for the mean coefficient vector, β and covariance

hyper-parameters, and the marginal likelihood of the data p(y(x)|ψ,x) must be specified.

A symmetric Normal proposal distribution for the log-hyper-parameters and the uncon-

strained coefficient matrix β is chosen. The hyper-parameters of the squared exponential

covariance function are all strictly positive values. The marginal log-likelihood of the

process can be written as

log p(y(x)|X,ψ) = −1

2
(y−Xβ)TK−1y (y−Xβ)− 1

2
log |Ky| −

n

2
log(2π) (8.3)

where Ky = K(x,x)+Inσ
2
y is the covariance at the known points plus measurement noise.

The un-normalised log-posterior is calculated by taking the log-pdf of the hyper-parameter

prior distributions and adding the value of the marginal log-likelihood from equation 8.3.

The Metropolis algorithm used to determine the posterior distribution of the hyper-

parameters is summarised in algorithm 24.
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Algorithm 24: Metropolis algorithm for the Gaussian process model with a
linear mean function.

Result: Return ψi = {β(i), σ(i)y , σ(i), h(i)}, i = 1, . . . ,M
1 Given pairs of locations and observations (xi, yi), i = 1, . . . , N ;
2 Initialise the parameters by sampling from the prior ψ0 ∼ p(ψ);
3 for i in 1 to M do
4 Propose a new parameter ψ? ∼ q(ψ?|ψi−1);
5 Calculate logA = log p(ψ?|Y,X)− log p(ψi−1|Y,X);
6 Sample u ∼ U [0, 1];
7 if log u < logA then
8 Set ψi = ψ?;
9 else

10 Set ψi = ψi−1;

11 end

The data simulated to produce Figure 8.1 is used to demonstrate parameter inference

using the Metropolis algorithm. The following weakly informative prior distributions were

chosen

p(h) = Inv-Gamma(3, 6),

p(σ) = Inv-Gamma(3, 6),

p(σy) = Inv-Gamma(10, 6),

p(βi) = N (0, 5).

100,000 iterations of the MCMC scheme was performed, 10,000 iterations were discarded

as burn-in and the chain was thinned by a factor of 20 to reduce autocorrelation. Figure 8.2

(a) shows the diagnostic plots for the hyper-parameter posterior distributions.

Since the data size is small, the space of functions which fit this data is quite large.

Additionally the length scale, σ and marginal variance h interact and are challenging to

identify. As such the posterior predictive distribution for previously unseen points can be

informative for assessing model fit. With a conjugate Normal prior on the β parameters

the posterior predictive distribution can be calculated in closed form [O’Hagan, 1978].

However, the approach taken here is to take draws from the hyper-parameter posterior

then draw from the predictive distribution with mean and covariance as follows

E(y(x?)) = x?β +K(x?,x)(K(x,x) + Ipσ
2
y)
−1(y −Xβ),

Var(y(x?)) = K(x?, x?)−K(x?,x)(K(x,x) + Ipσ
2
y)
−1K(x?,x) + Ipσ

2
y .
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Figure 8.2: (a) Diagnostic plots of the MCMC draws from the posterior distribution of the
parameters using the simulated Gaussian Process data, the actual values used to simulate
the data are represented as dashed lines. Traceplots, (top). Autocorrelation, (middle).
Marginal posterior densities, (bottom). (b) 100 draws from the posterior distribution of
the latent function using 100 independent draws from the hyper-parameter posterior, the
observed values are plotted as large circles

This accounts for the uncertainty in the mean parameter, β and the hyper-parameters

ψ. Figure 8.2 (b) shows 100 draws from the posterior predictive distribution, created

by sampling from the hyper-parameter posterior distribution 100 times and determining

the conditional distribution of the unobserved data given the observed data. Since the

length scale did not have an informative prior distribution and the mean of the posterior

distribution of the length scale is approximately one-quarter of the size of the actual value

used to simulate the data, the draws from the posterior predictive distribution change

more between observations than the actual simulated function.

Hamiltonian Monte Carlo (HMC) (see section 1.3.4) can be used as a more efficient

alternative to Metropolis-Hastings to determine the posterior distribution the kernel hyper-

parameters. Alternatively, there are fast approximate methods for computing the poste-

rior distribution of parameters in latent-Gaussian models using integrated nested Laplace

approximations [Rue et al., 2009].

8.3 Example: Spatial Modelling of Environment Data

This example utilises the sensors under consideration in the multivariate DLM example

in section 4.9. Figure 8.3 shows the daily average temperature from January to July
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2018 at eight sensor locations. The temperature displays seasonality on a weekly level

which is common in urban environments. A similar model is presented by [Lai et al.,

2018] where several (more widely separated) temperature and humidity sensors are jointly

modelled using a dynamic linear model with seasonal components. The spatial relationship

is accounted for using a Gaussian process in the state equation rather than the observation

equation as presented in this example.

Eight of the sensors are used as training data with one sensor held-out in order to

examine the model fit, “new new emote 2604” is chosen. The locations of the sensors are

plotted in figure 8.4 (Left). Figure 8.4 (Right) shows the monthly average temperature at

each location, notice that May has the highest spatial variability of temperature with the

sensors located in the North East (top right of the figure) reporting the highest temperature

readings. The maximum number of readings for each sensor is n = 244, however some

readings are missing if an entire day had no temperature readings.

Figure 8.5 (left) shows the within-sample residuals of the DLM from section 4.9 plot-

ted against time. This shows some structure for sensors 1171 and 1172 which could be

accounted for by spatial structure in the model. Figure 8.5 (right) shows the mean of the

residuals and that the two sensors are co-located in the north east, further reinforcing the

need for a spatial model.

The temperature time series is observed at times t = 1, . . . , 244 and p = 8 locations

xj , j = 1, . . . , p. It is believed that the time series of temperatures have local spatial de-

pendence, and the dependence between measurements decreases as the distance between

the sensors increases. A Dynamic linear model (DLM) is used to model the time depen-

dence of the process. It is assumed the latent-state θ0:N of the DLM evolves stochastically

in discrete time and is Markovian, the measurements Y1:N are conditionally independent

given the latent state. Since the DLM is linear and Gaussian, the Kalman filter can be

used to perform inference for the latent state.

A Gaussian process is used to model the spatial dependence between locations. The

Gaussian process is considered to be have a zero mean function and a covariance function,

k(x, x?) which depends on the Euclidean distance between the sensors and the kernel

hyper-parameters ψ. The observations of the process are p-dimensional, however some

observations are missing.

Yt = F̃ Tθθθt + f + vt, f ∼ MVNp(0,K(x,x)), vt ∼ MVNp(0, V ),

θθθt = Gθθθt−1 + wt, wt ∼ MVNm(0,W ), (8.4)

θθθ0 ∼ MVNm(m0, C0).

The DLM is chosen to share the same latent state and parameters, except the value of
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Figure 8.3: Daily average temperature at eight of the sensors used to determine the
posterior distribution of the space-time model.

the observation variance is unique at each sensor location. The observation matrix is

p×m where p is the dimension of the observations and m is the dimension of the common

latent-state. F̃ is constructed by horizontally concatenating p model matrices:

F̃ =
(
F F . . . F

)
= 1⊗ F

By sharing the same latent-state and noise covariance parameters, the DLM is assumed to

account for the time variation of the measured temperature and the remaining differences

are accounted for by the location of the sensor using a Gaussian process. Equivalently,
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Figure 8.4: Locations of each temperature sensor, (left). Average temperature reading by
month for each of the sensor locations, (right).

this model can be thought of as a Gaussian Process with a time dependent mean-function

represented by a dynamic linear model:

Yt = GP(F̃ Tθθθt,K(x,x) + V ),

θθθt = Gθθθt−1 + wt, wt ∼ MVNm(0,W ),

θθθ0 ∼ MVNm(m0, C0).

The static parameters of the DLM GP model include the hyper-parameters of the chosen
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Figure 8.5: Residuals yt − Ftθt for each sensor, showing that sensors 171 and 172 have an
unusual pattern which could be explained by a spatial model, (left). Mean of the residuals
at each sensor for all time, showing that sensors 171 and 172 are positioned away from
the other sensors and near each other. They also have a higher than average residual for
the period under consideration, indicating that it may be warmer in this region, (right).

covariance function, in this case ξ = {h, σ} and the observation and system noise covari-

ance matrices V and W , hence ψ = {ξ, V,W}. The joint distribution of all the random

variables in the model can be written as

p(y1:N ,θθθ0:N , f, σ, h, V,W ) = p(ψ)p(θθθ0)p(f(x)|ξ)
N∏
t=1

p(yt(x)|θθθt, f(x), V )p(θθθt|θθθt−1,W )

= p(ψ)MVNm(θθθ0|m0, C0)MVNp(f|0,K(x,x))

×
N∏
t=1

MVNp(yt(x)|F̃ Tθθθt + f)V )MVNm(θθθt|Gθθθt−1,W ).

In order to determine the joint posterior distribution a block Metropolis-within-Gibbs

sampler is used whose stationary distribution is the posterior distribution

p(θθθ0:N , ψ|y1:N (x)) =

∫
p(f |ξ)p(θθθ0:N , f, ψ|y1:N (x)))df,

=

∫
p(ψ)MVNp(f |0,K(x,x))p(ψ)

N∏
t=1

MVNp(yt|F̃ Tθθθt + f, V )df,

= p(ψ)
N∏
t=1

MVNm(θθθt|Gθθθt−1,W )

∫
MVNp(f |0,K(x,x))MVNp(yt|F̃ Tθθθt + f, V )

= p(ψ)
N∏
t=1

MVNm(θθθt|Gθθθt−1,W )MVNp(yt|F̃ Tθθθt,K(x,x) + V )
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First the latent-state θθθ0:N is sampled conditional on the other parameters using FFBS

(see section 4.4), to do this write the observation equation as

yt(x) = F̃ Tθθθt + ṽt, ṽt ∼ MVNp(0,K(x,x) + V ). (8.5)

Then the model is in the form of a DLM and conditional on the other random variables

in the model, FFBS can be used to jointly sample from the full conditional distribution

of the latent-state.

The system and observation noise covariance matrices are considered to be diagonal

(V = diag(v1, . . . vp), W = diag(w1, . . . wm)). The system matrix is sampled conditional

on the latent-state using a Gibbs step. The full conditional distribution of the jth diagonal

element of the system noise covariance matrix is written as

p(Wjj |θθθ0:N , ψ(−Wjj)) = Inv-Gamma

(
α+

N

2
, β +

1

2

N∑
i=1

(θt −Gtθt−1)T (θt −Gtθt−1)jj
)
.

(8.6)

Where the subscript jj on the sum in the scale term represents the jth diagonal element

of the matrix created from the product (θt −Gtθt−1)T (θt −Gtθt−1).
To sample the values of the hyper-parameters and the diagonal elements of the obser-

vation matrix, Vii, i = 1, . . . , p write the log of the marginal likelihood as

log p(y1:N |θθθ0:N , ψ) = log

(
N∏
t=1

MVNp(yt(x)|F̃ Tθθθt,K(x,x) + V )

)

= −Np
2

log(2π)− N

2
log |Σ| − 1

2

N∑
t=1

(yt(x)− F̃ Tθθθt)TΣ−1(yt(x)− F̃ Tθθθt)

(8.7)

where Σ = K(x,x)+V . The diagonal elements of the observation variance and the hyper-

parameters of the Gaussian process covariance function are determined using independent

Metropolis-Hastings steps using the marginal log-likelihood in equation (8.7).

The prior distributions for the static parameters and hyper-parameters are

p(h) = Inv-Gamma(3, 3),

p(σ) = Inv-Gamma(3, 3),

p(Vii) = Inv-Gamma(3.0, 3.0), i = 1, . . . , p,

p(Wjj) = Inv-Gamma(3.0, 3.0), i = 1, . . . ,m.
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Algorithm ?? shows the steps required for the MCMC scheme used to determine the

posterior distribution of the parameters in the temperature DLM GP.

Algorithm 25: Metropolis-within-Gibbs sampling algorithm for the Gaussian
process model with a dynamic linear mean function.

Result: Return ψi = {σ(i), h(i), V (i),W (i)}, i = 1, . . . ,M
1 Given pairs of locations and observations (xi, yi), i = 1, . . . , N ;
2 Initialise the parameters by sampling from the prior ψ0 ∼ p(ψ);
3 Define the covariance hyper-parameters to be the set ξ, hence ψ = {ξ, V,W};
4 for i in 1 to M do
5 Sample from the full conditional for the latent state p(θθθ0:N |ψ, y1:N ) using

FFBS and equation (8.5);
6 Sample from the full conditional for the system noise covariance matrix from

equation (8.6);
7 for x ∈ {ξ, V } do
8 Propose a new log-parameter x? ∼ N (x?|x, δ);
9 Update ψ? with the parameter x?;

10 Calculate p(ψ?|Y, θ) using equation (8.7);
11 Calculate logA = log p(ψ?|Y, θ)− log p(ψi−1|Y, θ);
12 Sample u ∼ U [0, 1];
13 if log u < logA then
14 Set ψi = ψ?;
15 else
16 Set ψi = ψi−1;

17 end

18 end

Figure 8.6 shows the diagnostic plots for the diagonal elements of the observation

covariance matrix for the training sensors. The diagonal elements corresponding to the

sensors located in the north-east (V11 and V22) are noticeably larger, indicating the mea-

surements from these sensors are less reliable. Figure 8.7 shows the diagnostic plots for

the diagonal elements of the common system covariance matrices.

To evaluate the fit of this spatial model the one-step posterior predictive distribution

at the test location can be calculated. This model has unique observation variances for

each sensor, hence a value of the observation variance for the new sensor must be known

in order to learn the posterior predictive distribution.

The value of the observation variance at the test-location is unknown, the model as-

sumptions could be updated to assume all sensors behave similarly and hence share the

same observation variance, which could be plausible since the sensors are all from the same

manufacturer. However, when looking at the posterior distribution of the observation

noise covariance matrix it, two sensors have a higher posterior variance, possibly indicat-

ing that measurements from these sensors are less reliable The conjugate Kalman Filter
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Figure 8.6: Diagnostic Plots for the diagonal components of the observation variance
matrix V . Traceplots, (top). Autocorrelation of chain 1, (middle). Marginal density
plots, (bottom).

from section 4.6.1 can be used to learn the joint posterior distribution of the latent-state

and measurement noise covariance simultaneously. Figure 8.9 shows the posterior predic-

tive distribution at the test-location, along with the one-step prediction residuals. The

one-step forecast distribution for the conjugate filter is Student-t distribution [Murphy,

2007]. Alternatively, a random effects model could be considered here. In a random effects

model the observation variances could be drawn from a common Inverse-Gamma distri-

bution which is conjugate to the Gaussian observation distribution. The Inverse-Gamma

distribution is in turn parameterised by hyper-parameters which allow the sensors to share
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Figure 8.7: Diagnostic Plots for the diagonal components of the system variance matrix W .
Traceplots, (top). Autocorrelation of chain 1, (middle). Marginal density plots, (bottom).

information for the variance between them. This hierarchical approach is appropriate since

the temperature sensors are produced by the same manufacturer.

Sensors are typically placed in convenient locations, such as mounted to lampposts

along roadways in areas which are accessible to those fitting the sensors. However, these

are not the only areas of interest but merely convenient locations to place sensors. The

dynamic Gaussian process developed in this section can be used to interpolate the tem-

perature at areas which currently do not have any sensors. Since each sensor is assumed

to have its own measurement variance, the sensors which are less accurate will tend to

contribute less to the shared latent-state of the DLM and hence less to the prediction at
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Figure 8.8: Diagnostic plots of the covariance function hyper-parameters σy, h, v. Trace-
plots, (top). Autocorrelation of chain 1, (middle). Marginal density plots, (bottom).

the test site.

Figure 8.10 (a) shows the mean interpolated temperature for a single day in January

2018, 2018-01-31. On this day, some spurious measurements were made at the two sensors

located in the north-east on Jesmond Road. Temperature values recorded at sensor 1171

and 1172 were around 21 degrees, whereas recordings at the other sensors ranged in value

from 5.4 to 5.8 degrees. The smoothing provided by the model have provided realistic

values for the actual temperature. The posterior variance of the Gaussian process on the

right of the figure shows the Gaussian process is most uncertain around the two sensors

on Jesmond Road where the spurious readings were recorded.
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Figure 8.9: Mean prediction and 50% probability intervals at the test location, (top).
QQ-Plot of residuals, (bottom left). Residuals against time, (bottom right).

8.4 Summary

Urban sensor arrays such as those in the Urban Observatory often have sensors positioned

in convenient locations, rather than locations of interest. Hence it is vital to perform

accurate spatial modelling in order to understand the process of interest across the entire

environment. In addition, joint spatial modelling allows sensors which are potentially

reading incorrect measurements to be corrected by nearby sensors.

Modelling observed pollution data would require a more complex spatial process with

an anisotropic covariance function depending on the wind direction and speed, since air-
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Figure 8.10: (a) Posterior mean of temperature on January 31st 2018. (b) Posterior
variance of the Gaussian process.

borne urban pollution is distributed according to the wind. The squared exponential

covariance function considered in this chapter is isotropic and smooth which might not be

the most appropriate choice of covariance function for sensors in an urban environment.

A novel spatial model for several nearby temperature sensors has been proposed with

a dynamic mean specified using the building blocks of the DLM and a spatial component

using a Gaussian process has been presented in this chapter. It has been shown that

the Gaussian process is able to “correct” the values of sensors on Jesmond road which

were reporting extremely high values of temperature which are assumed to be incorrect

readings. In addition, the uncertainty in these estimates is accurately reflected indicating

a higher posterior variance in the locations where the temperature readings were furthest

from the global mean.

For future work it may be interesting to consider a similar model considered here for

a larger array of sensors. The Urban Observatory has many more sensors available.
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Chapter 9

Conclusion

This thesis has introduced a variety of dynamic models for the variety of environmental

sensors found in the Urban Observatory. The inference algorithms and model building

has been implemented in the functional programming language, Scala, which has fea-

tures which allow for scalable implementations of inference algorithms. These features

include straightforward parallelisation of statistical algorithms such as the particle filter

in section 5.2.2 and MCMC algorithms such as sampling blocks in the stochastic volatility

model in section 7.1.1. Chapter 2 introduces functional programming principles with an

emphasis on statistical programming for time series data. Several Scala libraries have been

developed implementing the models and inference schemes in this thesis, the first is a for

dynamic linear models1 the second2 is for the composable models introduces in chapter 6.

The third is a library for spatial modelling using Gaussian Processes3 used in chapter 8.

The Akka library, introduced in section 2.3.1 allows data to be ingested from a variety

of sources, such as web services, databases and files. Akka is an implementation of reactive

streams, which are a natural way to model unbounded time series data. Once this data

is ingested and parsed, it can be processed identically, independently of the source. The

features implemented by Akka streams include sophisticated logging to identify problems

with data or processing stages and monitor the progress of inference algorithms asyn-

chronously. Akka has built-in flexible schemes for controlling the rate of data arriving in

the stream - for instance a dynamically sampling sensor can drastically increase the rate

of sampling when an important event occurs. An example of this is a river-level sensor

used for flood prediction beginning to sample more frequently during heavy rain. The user

can choose to buffer these measurements and wait for rate of incoming data reduce and

hence the consumer (most likely an inference algorithm) can catch up. The time series

algorithms developed in chapters 4 to 7 are implemented using Akka streams.

1https://git.io/dlm
2https://git.io/statespace
3https://git.io/gaussianprocesses
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Chapter 3 presents the probability monad, and this allows all of the features of pro-

gramming in a well developed functional programming language with higher kinded types

to be used when specifying probabilistic models. This means it is straightforward to build

complex probabilistic programs representing hierarchical models by combining other prob-

abilistic programs using features implemented in the host language. This is illustrated in

the example in section 3.6.3 where a hierarchical model is implemented by writing the

linear model in section 3.6.1 as a Scala function and utilising it for each group in the hi-

erarchical model. This implementation decouples the inference implementation from the

model specification, which can allow quicker model prototyping.

Chapter 4 introduces dynamic linear models which can be used to model discrete time

Gaussian time series (DLMs can be generalised to modelling continuous time using dif-

fusion processes to represent the latent state as described in section 4.7). DLMs were

used in an example to interpolate data from an environment sensor measuring four dif-

ferent processes, CO, NO, humidity and temperature. A block Gibbs sampler was used

to determine the joint posterior distribution of the latent-state and covariance parame-

ters. Various numerical problems with the Kalman filter (and hence FFBS) forced the

research and implementation of numerically stable filters such as the Joseph form filter

in section 4.5.1 and the SVD filter in section 4.5.2. These filters were implemented using

the functional programming principles outlined in chapter 2 and described in the section

on the functional particle filter 2.1.15 end of the section on the naive Kalman filter 4.2.

Immutable data and higher order functions such as foldLeft allow us to determine which

algorithms are online, requiring only information from the previous step. The pattern of

defining a single binary function (X, Y) => X where X represents the latent-state at time

t− 1 and Y represents the observation at time t is a straightforward pattern, not prone to

off-by-one errors of typical imperative, looping based approaches. These binary functions

can be re-used for different collection types, including streams of live data.

Chapter 5 introduces non-Gaussian state space models by relaxing the form of the

observation distribution of the models introduced in chapter 4. The Kalman filter can

no longer be used for these non-Gaussian models. In this case the particle filter can be

used to produce a weighted approximation of the filtering distribution and the marginal

log-likelihood to perform pseudo marginal Metropolis-Hastings algorithm. A model for

data with a large amount of outliers using the Student’s-t distribution is developed which

works well for the temperature data considered in section 5.8. A Gibbs sampler using a

conditionally Gaussian Student’s-t model by considering the Student’s-t distribution as an

Inverse-Gamma mixture of Normals, this MCMC scheme was found to be more efficient

than a PMMH scheme.

Chapter 6 considers a class of composable models for irregularly observed time series

data. This chapter emphasizes the streaming nature of modern time series data. Akka
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streams are used to implement model composition, particle filtering and the PMMH in-

ference algorithm. The class of composable models forms a monoid with an associative

composition operator, this allows the specification of complex state space models with

built in seasonality and drift. The inference algorithm is chosen to be flexible and de-

coupled from the model specification, this allows users to explore a wide range of models

without having to develop bespoke inference algorithms.

Chapter 7 considers adding an additional latent-state to model the evolution of the

covariance of a Gaussian state space model using a factor stochastic volatility model. A

novel dynamic model with a time dependent system matrix evolving according to a factor

stochastic volatility model is proposed. This allows us to model non-stationary time series.

Chapter 8 considers modelling several nearby temperature sensors using a Gaussian

process with a dynamic mean function represented by a DLM. The DLM is able to capture

the temporal seasonality present in the temperature data, however when examining the

difference between the posterior fitted values and the observed data, two sensors located

in the north-east appeared to read higher than the other sensors. This discrepancy was

considered to be a result of their location and hence modelling a spatial relationship

between the sensors was natural. Some readings at these two sensors were four times as

large as the other nearby sensors. These measurements were considered to be anomalous.

This resulted in a high measurement variance at these temperature sensors. It was found

that the model was able to smooth the forecasts at these locations providing a more

accurate representation of the temperature.

9.1 Further Work

This section highlights some possible future directions for the field of time series modelling

and probabilistic programming highlighted and developed upon in this thesis.

In a probabilistic program, although inference algorithms are decoupled from the statis-

tical model, they still have to be chosen by the programmer. A program which chooses the

most efficient inference algorithm using the graph representation of the statistical model

could be an interesting research direction. This graph representation is usually already

computed when calculating the gradient of the un-normalised log-posterior in HMC. In

addition, this graph structure could assist with selecting the optimal inference algorithm

by identifying sub-models which can be fit independently in parallel. Or, if a hierarchical

model is specified using conditionally conjugate structure, then an efficient Gibbs sampler

could be used.

Straightforward model implementations and fast inference schemes are required for

exploration both in research and industrial applications. The flexibility and power which

come with specifying models using embedded monadic domain specific languages are typ-
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ically worth the time investment of learning functional programming.

This thesis has focused on a subset of the sensors deployed in the Urban Observatory.

Although the inference methods are computationally intensive, the size of the datasets is

not a challenge and they typically fit comfortably in memory of a single compute node.

The Urban Observatory has many more deployed sensors and new sensors measuring

the same things are being added regularly. An interesting challenge would be to fit a

multivariate space-time model to all the sensors measuring specific variables in order to

determine the smoothed value of CO or NO for example. This could result in the amount

of data being processed being too large, hence new strategies could be developed such as

developing faster inference algorithms. Another, more straightforward strategy, could be

to simply drop all readings until the inference algorithm catches up and determine how

this affects the accuracy of the inferences. Model coupling could be used in order to fit

simple univariate models for each sensor which are re-coupled at a later date [Berry and

West, 2018].

Two examples of Student’s-t distributed state space models were considered in sec-

tions 5.7 and 5.8. The model residuals for the one-step forecasts indicated that the more

robust distribution provided a better fit. A multivariate Student’s-t state-space model

could be used for the sensor measuring temperature, NO, CO and humidity. A multivari-

ate DLM which uses a Student’s-t distribution for selected time series can be implemented

by only sampling the auxiliary variance parameters (described in section 5.4) for the re-

quired observations. An extension to choose which time series ought to be modelled using

a Student’s-t distribution could be considered by sampling the value of the degrees of

freedom in a preliminary MCMC run, if a summary value (for instance the median) is

greater than a threshold value then the observations can be considered to be Gaussian.

In this thesis, several competing models are considered for the same sensor. Model

selection is performed by analysing the model diagnostics, such as the residuals of the

one-step forecasts. Model selection could be automated by incorporating an indicator

variable into the MCMC algorithms, or some other Bayesian model selection criteria.

This was not performed as it was considered to be too computationally intensive.

The dynamic Gaussian process model for ten temperature sensors considered in chap-

ter 8 could be improved upon by using a more suitable covariance function and not the

infinitely smooth squared exponential function. In addition, expanding the model to

include more sensors over a greater area could be used to inform future positioning of

sensors.
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E L Ionides, C Bretó, and A A King. Inference for nonlinear dynamical systems. Pro-

ceedings of the National Academy of Sciences of the United States of America, 103(49):

18438–43, 2006.

PM James, RJ Dawson, N Harris, and J Joncyzk. Urban Observatory Environment.

Newcastle University, 2014a. URL http://dx.doi.org/10.17634/154300-19.

PM James, RJ Dawson, N Harris, and J Joncyzk. Urban Observatory Transport. New-

castle University., 2014b.

Mark P Jones and Luc Duponcheel. Composing monads. Technical report, Technical

Report YALEU/DCS/RR-1004, Department of Computer Science. Yale, 1993.

Simon J Julier and Jeffrey K Uhlmann. New extension of the Kalman filter to nonlinear

systems. In AeroSense’97, pages 182–193. International Society for Optics and Photon-

ics, 1997.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Jour-

nal of basic Engineering, 82(1):35–45, 1960.

Gordon M Kaufman and S James Press. Bayesian factor analysis. 1973. URL http:

//hdl.handle.net/1721.1/1870.

Bohdan B Khomtchouk, Edmund Weitz, Peter D Karp, and Claes Wahlestedt. How the

strengths of Lisp-family languages facilitate building complex and flexible bioinformatics

applications. Briefings in bioinformatics, 19(3):537–543, 2016.

Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood

inference and comparison with ARCH models. The review of economic studies, 65(3):

361–393, 1998.

Aaron A. King, Dao Nguyen, and Edward L. Ionides. Statistical Inference for Partially

Observed Markov Processes via the R Package pomp. Journal of Statistical Software,

69(12):1–43, 2015.

Oleg Kiselyov and Chung-Chieh Shan. Embedded probabilistic programming. In Domain-

Specific Languages, pages 360–384. Springer, 2009.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to

monad transformers. In ACM SIGPLAN Notices, volume 48, pages 59–70. ACM, 2013.

Peter E Kloeden and Eckhard Platen. Higher-order implicit strong numerical schemes for

stochastic differential equations. Journal of statistical physics, 66(1-2):283–314, 1992.

267

http://dx.doi.org/10.17634/154300-19
http://hdl.handle.net/1721.1/1870
http://hdl.handle.net/1721.1/1870


Bibliography

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in

Gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Ma-

chine Learning Research, 9(Feb):235–284, 2008.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei.

Automatic differentiation variational inference. The Journal of Machine Learning Re-

search, 18(1):430–474, 2017.

Maria V Kulikova and Julia V Tsyganova. Improved discrete-time Kalman filtering within

singular value decomposition. IET Control Theory & Applications, 11(15):2412–2418,

2017.

Yingying Lai, Andrew Golightly, and Richard Boys. Sequential bayesian inference

for spatio-temporal models of temperature and humidity data. arXiv preprint

arXiv:1806.05424, 2018.

Jonathan Law and Darren J Wilkinson. Composable models for online Bayesian analysis

of streaming data. Statistics and Computing, pages 1–19, 2017.

F William Lawvere. The category of probabilistic mappings. preprint, 1962.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular inter-

preters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 333–343. ACM, 1995.

Jane Liu and Mike West. Combined parameter and state estimation in simulation-based

filtering. In Sequential Monte Carlo methods in practice, pages 197–223. Springer, 2001.

David J. Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS - A

Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and

Computing, 10(4):325–337, 2000a. ISSN 1573-1375.

David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS-a

Bayesian modelling framework: concepts, structure, and extensibility. Statistics and

computing, 10(4):325–337, 2000b.

Oleksandr Manzyuk. A simply typed λ-calculus of forward automatic differentiation.

Electronic Notes in Theoretical Computer Science, 286:257–272, 2012.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling

and Computer Simulation (TOMACS), 8(1):3–30, 1998.

268



Bibliography

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of

functional programming, 18(1):1–13, 2008.

AR Meenakshi and C Rajian. On a product of positive semidefinite matrices. Linear

algebra and its applications, 295(1-3):3–6, 1999.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with ba-

nanas, lenses, envelopes and barbed wire. In Functional Programming Languages and

Computer Architecture, pages 124–144. Springer, 1991.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,

and Edward Teller. Equation of state calculations by fast computing machines. The

journal of chemical physics, 21(6):1087–1092, 1953.

Bartosz Milewski. Category theory for programmers,

2018. URL https://bartoszmilewski.com/2014/10/28/

category-theory-for-programmers-the-preface/. Accessed: 2018-10-25.

Gordon E Moore. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82–85, 1998.

Kevin P Murphy. Conjugate Bayesian analysis of the Gaussian distribution. Decisions in

Economics and Finance, 1:16, 2007. ISSN 1593-8883.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Christopher JL Murray, Majid Ezzati, Abraham D Flaxman, Stephen Lim, Rafael Lozano,

Catherine Michaud, Mohsen Naghavi, Joshua A Salomon, Kenji Shibuya, Theo Vos,

et al. Gbd 2010: design, definitions, and metrics. The Lancet, 380(9859):2063–2066,

2012.

Lawrence M. Murray. Bayesian State-Space Modelling on High-Performance Hardware

Using LibBi. Journal of Statistical Software, 67(10):1–36, 2015.

Lawrence M Murray, Anthony Lee, and Pierre E Jacob. Parallel resampling in the particle

filter. Journal of Computational and Graphical Statistics, 25(3):789–805, 2016.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert

Zinkov. Probabilistic inference by program transformation in Hakaru (system de-

scription). In International Symposium on Functional and Logic Programming - 13th

International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceed-

ings, pages 62–79. Springer, 2016. doi: 10.1007/978-3-319-29604-3 5. URL http:

//dx.doi.org/10.1007/978-3-319-29604-3_5.

269

https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1007/978-3-319-29604-3_5


Bibliography

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain

Monte Carlo, 2(11), 2011.

NECA. Open Data Service — North East Combined Authority, 2016. URL https:

//www.netraveldata.co.uk/.

J. A. Nelder and R. W. M. Wedderburn. Generalized Linear Models. Journal of the Royal

Statistical Society. Series A (General), 135(3):370–384, 1972. ISSN 00359238. URL

http://www.jstor.org/stable/2344614.

Christopher Nemeth, Paul Fearnhead, and Lyudmila Mihaylova. Particle approximations

of the score and observed information matrix for parameter estimation in state–space

models with linear computational cost. Journal of Computational and Graphical Statis-

tics, 25(4):1138–1157, 2016.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical

programming, 120(1):221–259, 2009.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
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