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Abstract 
 

Ammonium is a preferred source of nitrogen utilised by fungi.  In some fungi ammonium 

availability is sensed by ammonium transporters belonging to the Amt/Mep/Rh 

superfamily.  During ammonium limiting conditions these transporters trigger a 

signalling cascade to induce a morphological change.  The molecular basis for 

signalling and the extent to which these transporters are conserved are important 

questions within the field.  We have investigated morphological change in response to 

ammonium availability in two divergent fungi.  The wheat pathogen Zymoseptoria tritici 

and the human pathogen Cryptococcus neoformans serotype D JEC20 (MATa) and 

JEC21 (MATa).  We show that low ammonium dependent filamentation is ZtMep2 

independent and that mutants lacking ZtMep3 acquire a severe growth defect during 

ammonium sufficient conditions.  Moreover, Ztmep3D mutants display a different type 

of filamentation which may be as a result of ammonium starvation as opposed to 

ammonium signalling.  ZtMep3 does however act as an ammonium sensor when 

expressed in yeast, to regulate pseudohyphal growth, despite lacking the conserved 

twin-histidine motif previously believed to be essential for signalling.  Furthermore, the 

dual loss of ZtMep2 and ZtMep3 renders Z. tritici hypervirulent in the wheat infection 

assay suggesting that a lack of internal ammonium is the trigger for virulence.  In C. 

neoformans, we show that hyphal growth, induced during ammonium limiting 

conditions, is CnAmt2 dependent and that the expression of the CnAmt2N241A mutant 

in yeast uncouples transport from signalling.  Therefore, signalling by CnAmt2 is not 

the consequence of internal ammonium metabolism and is due to the physical act of 

transport.  Fundamental questions now exist as to why these two diverse fungi have 

adopted different modes of ammonium signalling and about how prevalent these 

starvation responses are throughout fungi. 
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1 
 

1.  Introduction 
 

1.1 Ammonium as a nutrient 
 

In everchanging environments, fungal pathogens must sense and adapt to their 

respective niches to aid survival.  Despite some pathogens being evolutionarily very 

distinct the elements which require careful monitoring are conserved and include 

pheromones, stress and nutrients.  Nitrogen is a vital nutrient for many organisms as 

it serves as a building block for the biosynthesis of amino acids and, therefore, acts as 

a limiting factor for growth. 

 

Along with glutamine and glutamate, the precursors for all nitrogenous compounds, 

ammonia, ammonium, and asparagine are the preferred sources of nitrogen utilised 

by plants, fungi and bacteria.  These sources yield relatively high growth rates (Boer 

et al., 2007).  In mammals, ammonium serves as the regulator of blood pH and is toxic 

to cells (Ludewig et al., 2001).  When the preferred nitrogenous compounds are not 

readily available, fungi will utilise poorer sources of nitrogen which include leucine, 

phenylalanine, proline, urea and methionine, which yield lower growth rates (Boer et 

al., 2007).  With regards to the preferred sources of nitrogen, ammonia exists as an 

uncharged gas molecule (NH3), when at high concentration, which can readily 

permeate the membrane.  However, in aqueous solutions ammonia becomes 

protonated resulting in the formation of ammonium (NH4+) which requires 

transmembrane transporters to facilitate its passage through the membrane.  At 25 °C 

ammonium has a pKa ≈ 9.25, therefore, at pH ≤	7, > 99 % of the ammonium available 

is in the protonated form (NH4+) (Antonenko et al., 1997) (Cueto-Rojas et al., 2017) 

(Figure 1). On the other hand, too much ammonium can be cytotoxic, therefore, 

ammonium levels are tightly regulated (Hess et al., 2006).  In the model yeast 

Saccharomyces cerevisiae, ammonia is incorporated into the amide groups of 

glutamate and glutamine which are the source of 80 % and 20 % of cellular nitrogen 

respectively (Magasanik, 2003).   

 

Conversion of ammonia and 2-ketoglutarate (source of carbon) to glutamate is 

catalysed by glutamate dehydrogenase (GDH) which is dependent on NADPH 

(Nagasu and Hall, 1985) (Huergo and Dixon, 2015). 
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Figure 1: The ratios of NH3 and NH4+ in aqueous solution at 25 °C.  The percentages of charged and uncharged 

ammonia from pH 7.2 – 10.2 are depicted.  The orange line represents charged ammonia (NH4
+), while the blue 

line represents uncharged ammonia (NH3).  The dashed line indicates the pH at which both species are in 

equilibrium.  Values for the graph were taken from (Emerson et al., 1975). 
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Biosynthesis of glutamine is catalysed by glutamine synthetase (GS); glutamate is also 

required for this reaction (Mitchell and Magasanik, 1984). 

 

𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 + 𝑁𝐻! + 𝐴𝑇𝑃	
"&
46 𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒 + 𝐴𝐷𝑃 + 𝑃𝑖 

 

1.2 Ammonium transporters 
 

Methylammonium permeases belong to the evolutionarily conserved Amt/Mep/Rh 

protein superfamily, which have been identified in plants, bacteria, fungi and humans 

(Andrade and Einsle, 2007).  These proteins facilitate the transport of ammonium 

across the membrane by utilising the negative membrane potential (Ullmann et al., 

2012).  All fungi contain at least two of these transporters in their proteome.  S. 

cerevisiae possesses three ammonium transporters (Mep1, Mep2, and Mep3).  A 

strain lacking all three ammonium transporters is unable to grow on media where the 

sole nitrogen source is <5 mM NH4+.  On the contrary, at concentrations >20 mM, 

ammonium transporters are dispensable for transport.  Mep2 is the high affinity, low 

capacity transporter (Km, 1 to 2 µM) with an additional role in ammonium signalling, 

while Mep1 (Km, 5 to 10 µM) and Mep3 (Km, ~1.4 to 2.1 mM) are high capacity 

transporters which possess lower affinities for ammonium (Marini et al., 1997).  

Moreover, Mep1 and Mep3 possess the highest sequence identity to each other (79 

%).  On non-preferred nitrogenous compounds, such as proline, Mep1 and Mep2 are 

additionally required to re-import ammonium which has leaked from the cell to maintain 

ammonium homeostasis (Boeckstaens et al., 2007).  

 

1.2.1 Ammonium transporter structure 
 

Expansion in the library of solved Amt/Mep/Rh structures has broadened our 

knowledge in how these proteins transport their substrate.  Despite differences in 

function, all ammonium transporters have a similar architecture.  They are trimeric 

complexes with each monomer composed of 11 or 12 (in human Rhesus proteins) 

transmembrane domains (TMDs).  The N-terminus dwells on the extracellular, or 

periplasmic, side and the C-terminus resides on the intracellular side.  Furthermore, 
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each monomer possess an extracellular ammonium binding site, two conserved 

phenylalanine residues, and a narrow hydrophobic pore which is lined by two 

conserved histidine residues.  The latter is referred to as the twin-histidine motif; in 

some homologues the first histidine is replaced by glutamate.  The phenylalanine pair 

are located at the entrance to the hydrophobic pore and are, hence, designated as the 

Phe gate (Andrade et al., 2005) (Zheng et al., 2004) (van den Berg et al., 2016) 

(Gruswitz et al., 2010). 

 

Monomer pseudo-symmetry 

In Escherichia coli EcAmtB the first five alpha helical TMDs, of each monomer, show 

structural duplication to TMDs six to ten and have opposite polarity with respect to the 

membrane (Khademi et al., 2004).  Archaeoglobus fulgidus AfAmt-1,  Candida albicans 

CaMep2, S. cerevisiae ScMep2 and human RhCG similarly exhibit this quasi-twofold 

symmetry, however, there are differences in how these structures are maintained 

(Andrade et al., 2005) (van den Berg et al., 2016) (Gruswitz et al., 2010).  Antiparallel 

halves are ‘clamped’ together in AfAmt-1 and RhCG by TMD 11, with the latter 

additionally requiring TMD 0 (Andrade et al., 2005) (Gruswitz et al., 2010).  In ScMep2 

and CaMep2, the pseudo-symmetrical halves are connected by intracellular loop (ICL) 

3 (van den Berg et al., 2016).  The region between the two halves in each protein forms 

the substrate conducting pore (Andrade et al., 2005) (Zheng et al., 2004) (van den 

Berg et al., 2016) (Gruswitz et al., 2010), therefore pseudo-symmetry serves functional 

importance (Figure 2a). 

 

Trimeric stability 

Maintenance of the trimeric architecture varies between different members of the 

Mep/Amt/Rh family.  In Arabidopsis thaliana AtAmt1;1, the C-terminus of one monomer 

interacts with the ICLs of another (Figure 2b).  In addition to stabilising the trimer, 

these interactions also regulate allosteric activation of the protein (Loque et al., 2007).  

The tomato plant, Lycopersicon esculentum, encodes three ammonium transporters, 

LeAMT1;1, LeAmt1;2 and LeAmt1;3.  The N-terminus of LeAmt1;3 is relatively shorter 

than its two other homologues and is separated by SDS-PAGE in dimeric and 

monomeric forms under both reducing and non-reducing conditions.  LeAmt1;1 and 

LeAmt1;2 are detected in the trimeric form under non-reducing conditions.  Substitution 

of the N-terminus of LeAmt1;1 with the N-terminus of LeAmt1;3 resulted in a loss of  
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Figure 2: Summary of ammonium transporter features.  a) Cartoon image representative of monomer pseudo-

symmetry.  TMDs one to five (blue and cyan) show structural duplication to TMDs six to ten (red, orange and 

yellow).  TMD 11 (green) clamps the symmetrical halves together in AfAmt-1.  The black dashed line indicates the 

interface between the two symmetrical halves and identifies the conducting pore.  b) Cartoon image of the trimeric 

complex.  Each monomer (green, blue, or red) contains a conducting pore (white).  c) Cartoon image of the 

conducting pore.  A tryptophan residue (purple), conserved within the ammonium binding site is depicted.  The Phe 

gate (orange), at the foot of the extracellular vestibule, blocks the entrance to the hydrophobic pore.  Movement of 

the conserved phenylalanine residues permit ammonium conductance through the pore.  Hydrophobic residues line 

the hydrophobic pore, as do two conserved histidine residues (green).  The orientation of the residues depicted 

may vary between different ammonium transporter orthologues. 
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the trimeric form.  Equally, the opposite experiment resulted in detection of an 

LeAmt1;3 trimer suggesting that the N-terminus is important for trimer stability.  Site-

directed mutagenesis identified two cysteine residues within the N-terminus of 

LeAmt1;1 which form disulphide bridges between the monomers to stabilise the 

trimeric complex (Graff et al., 2010).  The N-termini of CaMep2 and ScMep2 are also 

believed to be important in trimer stabilisation.  As their N-termini are comparatively 

longer, than their bacterial orthologues, their extracellular domains are larger.  

Extracellular loop (ECL) 5 of one monomer interacts with the N-terminus of another 

monomer.  Counterintuitively, the growth of an N-terminal ScMep2 deletion mutant is 

alike to WT (van den Berg et al., 2016), but the equivalent LeAmt1;1 mutant is non-

functional.  Therefore, the significance of the N-terminus is unclear (Graff et al., 2010). 

 

N-glycosylation 

In RhCG, a hydrophobic region which dwells within ICL1 (loop between TMD0 and 

TMD1) is concealed by polysaccharide.  In non-glycosylated Rh proteins this region is 

shorter.  It is hypothesised that glycosylation may be necessary to defend the longer 

ICL1 from proteolytic degradation (Gruswitz et al., 2010).  ScMep2, but not ScMep1 or 

ScMep3, is also a glycosylated ammonium transporter.  However, mutation to the N4 

glycosylation site, to prevent glycosylation, does not impact on any known Mep2 

functions (Marini and André, 2000).  Hence, the importance of N-glycosylation is 

ambiguous. 

 

Ammonium binding site 

Electron density peaks observed at the foot of the periplasmic vestibule of EcAmtB 

suggested that this site was occupied by ammonium and/or water and could, thus, be 

a putative substrate binding site.  Aromatic side chains of two phenylalanine residues 

(F103 and F107), where F107 is a member of the Phe gate, and a tryptophan residue 

(W148), which is conserved between the fungal Meps and Amts, surround this site.  

Furthermore, the hydroxyl group of serine 219 was found to be in close enough 

proximity to form a hydrogen bond with the recruited NH4+ (Zheng et al., 2004).  Similar 

structural studies and molecular simulation studies are consistent with this being the 

NH4+ binding site.  π-cation interactions are proposed between the charged ion and 

the aromatic side chains of F107 and W148 and less frequently with F103 (Khademi 

et al., 2004) (Wang et al., 2012).  Structural studies into the fungal Meps are also 

consistent with the ammonium binding site being located at the equivalent position.  
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However, minimal differences between the bacterial Amt ECLs and the ECLs in 

ScMep2 and CaMep2 cause the ammonium binding site to be more prominent in the 

fungal Meps (van den Berg et al., 2016).  Dissimilar to the Meps and Amts, RhCG lacks 

this conserved tryptophan in the equivalent location but instead possesses an acidic 

glutamate (E166) residue that is alternatively postulated to bind NH4+.  In addition to a 

putative NH4+ recruitment site on the extracellular side of the transporter, other acidic 

residues, D218, D27 and E329, on the intracellular side are hypothesised to serve the 

same purpose to provide a different path for NH4+ entry.  Specifically, these acidic 

residues are located on the shunt.  This is a region which is conserved throughout 

human Rh glycoproteins but not with other Mep/Amt proteins.  The shunt leads from 

the cytosolic vestibule, which is polar and hydrated, to the horizontal peripheral 

surface.  This region of the shunt, which makes contact with lipid hydrocarbons, is 

highly hydrophobic and lacking water.  In Amt proteins the equivalent space is a closed 

cavity.  It has been hypothesised that the shunt may provide a different pathway for 

NH4+ to enter or for the transported substrate to be delivered (Gruswitz et al., 2010).  

Nonetheless, ammonium binding sites located on the extracellular side are common 

to all members of the Mep/Amt/Rh family and this is consistent with NH4+, as opposed 

to NH3, being the recruited molecule (Figure 2c). 

 

The Phe gate 

The Phe gate is composed of two conserved phenylalanine residues at the interface 

of the extracellular vestibule and the hydrophobic pore.  In EcAmtB, the phenyl ring of 

F107 is stacked above F215 which occludes the pore blocking subsequent substrate 

transport (Zheng et al., 2004).  As this region is 1.2 Å in diameter it is postulated that 

the side chains of the Phe gate move dynamically to allow ammonium conductance 

through the pore (Khademi et al., 2004).  The same mechanism is projected for the 

side chains of F96 and F204 in AfAmt-1 which are similarly stacked.  Elevated B 

factors, the extent to which electron density is dispersed, at this location is indicative 

of possible movement by the Phe gate alike with EcAmtB (Andrade et al., 2005).  In 

RhCG, the upper F130 does not block the pore and is positioned perpendicular to 

F235.  This F130 conformation is likely favoured because a neighbouring submerged 

aspartate residue (D129) is hydrogen bonded to adjacent residues in the adjoining 

monomer.  The restricted movement in D129 is hypothesised to hamper F130 mobility 

preventing obstruction of the pore at this location.  However, F235 does block the pore.  

Small gaps on either side of the F235 side chain could provide the freedom for F235 
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motion which is required for ammonium to transverse the pore (Gruswitz et al., 2010).  

Translocation through the pore has been found to be relatively slow, therefore, 

transient alterations in the Phe gate may be important in limiting the entry rate into the 

pore (Zheng et al., 2004) (Figure 2c). 

 

The hydrophobic pore 

The pore of AfAmt-1 is highly hydrophobic as identified by pressurising crystals with 

the noble gas xenon.  Xenon binding sites, within the channel, are located at the Phe 

gate, near the twin histidine motif and at the interface between two monomers of the 

trimer (Figure 2c).  Furthermore, xenon was found to bind to a large hydrophobic 

pocket residing on the cytoplasmic side of a membrane spanning zone of the protein 

(Andrade et al., 2005).  Similar regions are documented in EcAmtB (Khademi et al., 

2004) (Zheng et al., 2004).  Large internal hydrophobic regions are typically associated 

with active transporters, to allow for conformational change, rather than passive 

transporters or channels.  Therefore, this region may be required for AfAmt-1 to 

undergo conformational change.  In support of this notion, the amino acid sequence is 

12.9 % glycine.  Glycine residues increase flexibility within a protein and, thus, favour 

a motile structure (Andrade et al., 2005).  An important question within the field is 

whether these proteins are more like channels rather than transporters. 

 

The twin-histidine motif 

Within the hydrophobic pore is the twin-histidine motif (Figure 2c).  In EcAmtB, the 

imidazole rings of the adjacent H168 and H315 are orientated towards the interior of 

the pore.  Their alignment suggests that their d nitrogen atoms form a bond with one 

another.  Their e nitrogen atoms have additionally been proposed to be important for 

their transport function.  Moreover, mutation of the first conserved histidine in ScMep2 

to alanine abolishes transport function (Rutherford et al., 2008a) (Javelle et al., 2006).  

In human RhD and RhCE, both histidines are substituted and do not transport 

(Westhoff and Wylie, 2006).  A distinguishing feature between ScMep2 and its two 

other homologues is the twin-histidine motif.  The first conserved histidine is replaced 

with glutamate in ScMep1 and ScMep3, however, unlike in RhD and RhCE, this does 

not abolish transport.  These homologues instead possess a higher capacity for 

transport but lower affinity for ammonium than ScMep2 (Marini et al., 1997).  Thus, the 

presence of the twin-histidine motif, as opposed to the glutamate-histidine motif, may 

be crucial in determining the affinity and capacity of the transporter. 
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Interestingly, dissimilar to bacterial AmtB, which was crystallised in an open 

conformation, eukaryotic Mep2 was crystallised in a closed conformation.  The closed 

conformation is the result of a two-tier channel block (Figure 3).  Firstly, the hydroxyl 

group of a conserved tyrosine residue (Y53) is hydrogen bonded to the latter histidine 

of the twin-histidine motif as a result of the ICL1 being moved inwards.  In addition to 

this inward position of ICL1 this loop is longer than the bacterial versions due to the 

unwinding of TMD2 at the cytoplasmic end.  This is not the consequence of amino acid 

insertions within ICL1 (van den Berg et al., 2016).  The equivalent tyrosine residue in 

the bacterial orthologues is rotated approximately 4 Å away resulting in the open 

conformation of the transporters (Wang et al., 2012).  Secondly, the position of the 

region responsible for linking the pseudo-symmetrical halves of Mep2, ICL3, is altered 

by approximately 10 Å, with respect to the bacterial orthologues, resulting in the 

closure of the channel on the cytoplasmic side.  In support of the closed structure, no 

density corresponding to ammonium, or water, was identified near to the twin-histidine 

motif within the hydrophobic conducting pore.  Additionally, the C-terminal region 

(CTR) in ScMep2 and CaMep2 is distanced with respect to the bacterial Amts.  This 

incurs fewer connections between the CTR with the rest of the transporter (van den 

Berg et al., 2016).  In the bacterial transporters the CTR is tightly docked onto TMDs 

one to five (Severi et al., 2007).  Specifically in AfAmt-1, D381 interacts with the 

oppositely charged N-terminal end of TMD2.  D381 is the terminal residue of the 

ExxGxD motif which is located within the CTR (van den Berg et al., 2016).  Mutations 

to residues within the ExxGxD motif, which is conserved, have been found to generate 

inactive transporters (Severi et al., 2007) (Loque et al., 2007). Being in the centre of 

the transporter this interaction is proposed to maintain the open conformation of the 

trimer.  Furthermore, tyrosine 390 in AfAmt-1, located after the conserved ExxGxD 

motif, is hydrogen bonded to the first conserved histidine of the twin-histidine motif 

which dwells at the latter end of ICL3.  Arginine 370, residing at the start of the CTR is 

hydrogen bonded to other residues at the opposite end of the ICL3 in AfAmt-1.  AtAmt-

1;1 modelling studies have also identified similar interactions, thus, interactions 

between the CTR and ICL3 appear to be conserved throughout Amt proteins, which 

are open (Loque et al., 2007), but not in the purified Meps, which are closed.  Thus, 

ICL3-CTR interactions could be the distinguishing feature between open and closed 

transporters.  
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Figure 3: Two tier channel block in Mep2.  a) Archaeoglobus fulgidus Amt-1 and Candida albicans Mep2 are 

superimposed.  The Phe gate is depicted above the conserved twin-histidine motif and conserved tyrosine residue.  

The latter residue forms a hydrogen bond with the e2 nitrogen atom on the second histidine in Mep2.  b) The two 

tier channel block in CaMep2 is indicated by the arrows.  Surface views of the channel are shown for both CaMep2 

(left) and AfAmt1-1 (right).  Figure adapted from (van den Berg et al., 2016). 
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In most prokaryotic organisms AmtB is found in an operon with GlnK which is a cellular 

nitrogen sensor belonging to the PII protein family (Thomas et al., 2000).  GlnK is a 

trimeric complex which possesses a disordered loop (T-loop) projecting from the upper 

surface (Xu et al., 1998).  During nitrogen starvation, a tyrosine residue (Y51), located 

at the summit of the T-loop, is uridylated (Atkinson and Ninfa, 1998) (Atkinson and 

Ninfa, 1999).  A mutation to this residue, which inhibits uridylation, results in AmtB and 

GlnK being permanently bound together.  This mutation mimics the situation during 

ammonium sufficient conditions when the intracellular glutamine pool increases 

leading to GlnK becoming deuridylated (Javelle et al., 2004).  Glutamine is an inhibitor 

of uridyltransferase activity (Jiang et al., 1998).  Binding of GlnK to AmtB prevents the 

transport activity of AmtB.  Therefore, Glnk, in its deuridylated state, is a negative 

regulator of AmtB transport activity (Javelle et al., 2004).  Using a homology model of 

GlnB-1 (GlnK homologue in A. fulgidus), based on the EcGlnK crystal structure, GlnB-

1 is predicted to insert its T loops into the cytoplasmic side of AfAmt-1 to form a tight 

complex.  Both interacting surfaces are complimentary to one another; as is the 

positive charge on the cytoplasmic side of AfAmt-1 and the negative electrostatic 

surface potential of GlnB-1.  Notably, the main region of AfAmt-1 which is docked to 

GlnB-1 is disordered in EcAmtB but not in AfAmt-1 (Andrade et al., 2005).  Although 

Amts have been crystallised in an open conformation they do not freely allow 

ammonium conductance. 

 

Eukaryotes do not possess an orthologue to GlnK and hence recruit different 

mechanisms to regulate activity.  In A. thaliana, phosphorylation of threonine 460, in 

the CTR of one AtAmt1;1 monomer, is proposed to induce a conformational change 

which evokes a simultaneous closure of the trimer.  This closure reduces ammonium 

uptake by the roots of the plant (Lanquar and Frommer, 2010).  On the contrary, 

phosphorylation of serine 457 in the CTR of ScMep2, by Npr1 (Nitrogen Permease 

Reactivator) kinase, is critical for ScMep2 transport activity.  Interestingly, this residue 

is located far from the channel exit and is the last residue which possesses electron 

density; the rest of the CTR is disordered.  The hydroxyl group of serine 453 is 3-4 Å 

away from the carbonyl atoms of three other negatively charged residues in CaMep2, 

hence, forming an electronegative pocket within the structure.  Mutation of this crucial 

serine to glutamate, to mimic the phosphorylation event, and mutation of the preceding 

arginine residue to glutamate, to increase the negative charge, resulted in a large 

conformational change in the CTR, supposedly as a consequence of electrostatic 
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repulsion.  Moreover, glutamic acid residues 420 and 421, which were in close 

proximity to the serine, became disordered.  During molecular dynamic simulations 

these residues persistently interacted with serine 453 in the WT protein, however, in 

the phospho-mimicking (DD) mutant the sides chains of R452D and S453D become 

distanced throughout the simulation abolishing the interaction observed in the WT 

version.  Glu421 is within the conserved ExxGxD motif (van den Berg et al., 2016).  

Mutation of the glycine residue within the ExxGxD motif in either EcAmtB or AtAmt-1;1 

generates an inactive transporter.  This may be because the CTR in these transporters 

is tightly docked onto their N-terminal half (Severi et al., 2007) (Loque et al., 2007).  

Mutation of the glycine residue in EcAmtB and AfAmt1-;1 may prevent the tight 

interactions between the CTR and the N-terminal side of the transporter and, hence, 

lock the trimers in a closed conformation.  As the CTR has moved away in the WT 

Mep2 transporters, in comparison to the bacterial orthologues, the CTR makes fewer 

connections with the rest of the transporter, therefore, potentially resulting in their 

closed conformation (van den Berg et al., 2016). 

 

Comparison of the positions of the CTR and ICL1/ICL3 between the open and closed 

structures and consideration of the conformational changes observed within the DD 

mutant directed van den Berg et al., (2016) to propose the phosphorylation based 

model of Mep2 opening.  In its inactive, non-phosphorylated and closed state, the CTR 

and ICL3 are distant from one another.  Upon phosphorylation, the region around the 

ExxGxD motif undergoes a conformational change to overcome the electrostatic 

repulsion.  However, the conserved tyrosine and latter histidine, of the twin-histidine 

motif are still hydrogen bonded together.  Thus, the transporter is still in a closed 

conformation.  It is proposed that the CTR undergoes a subsequent conformational 

change, which is predicted to allow the CTR to interact with the ICL3, resulting in Mep2 

being in an open state (Figure 4) (van den Berg et al., 2016) similar to the open 

bacterial Amts.  This may disrupt the hydrogen bond between the second conserved 

histidine and conserved tyrosine.  As conformational change would not be required by 

the bacterial Amts, it may be that these transporters are more like channels, whereas 

the fungal Meps are more characteristic of active transporters.  However, it is equally 

possible that all members of the Mep/Amt/Rh family are indeed open or closed, but the 

crystallisation procedure may favour one conformation more than the other.  
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Figure 4: Model for phosphorylation based regulation of Mep2.  Mep2 is not phosphorylated (first panel).  ICL3 

(green) is blocking the channel exit (dashed circle).  Mep2 phosphorylation in the CTR (magenta) (second panel) 

causes a conformational change around the ExxGxD motif.  This is hypothesised to cause the CTR to interact with 

the inward-moving ICL3 opening the channel (sold circle) (third panel).  Figure adapted from (van den Berg et al., 

2016). 
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Transport activity by ScMep1 and ScMep3 is regulated by Npr1 kinase.  This may 

mirror the regulation provided by the PII protein family in prokaryotes.  Additional 

deletion of Amu1 (Ammonium Uptake), also known as Par32 (Phosphorylated After 

Rapamycin), to a strain lacking Npr1 kinase, complements the growth defect, of the 

strain, on low ammonium but makes the strains susceptible to toxic concentrations of 

methylammonium.  Moreover, when npr1Δ cells are only expressing MEP1 or MEP3, 

but not MEP2, the additional loss of AMU1 restores the ability of the proteins to 

transport while reconstitution of Amu1 does not.  Amu1 is phosphorylated by Npr1 

kinase during poor nitrogen supply, such as proline, or during limiting ammonium 

conditions and is primarily cytosolic.  When Npr1 kinase is lacking, Amu1 is primarily 

localised to the plasma membrane which is characteristic of its location during 

ammonium sufficient conditions or after glutamine supplementation.  Amu1phos, a 

mutant in which its nine putative phosphorylation sites have been substituted with 

alanine, was partially directed to the plasma membrane despite the mutant being less 

phosphorylated that WT Amu1 in the presence of Npr1 kinase.  This suggested that 

the phosphorylation state of Amu1 could be linked to its cellular location.  In co-

immunoprecipitation experiments, Mep1 and Mep3 were co-immunoprecipitated with 

Amu1 suggesting that Amu1 forms a complex with Mep1 and Mep3 to inhibit 

ammonium flux.  Thus, Amu1 was hypothesised to act as a plug, much alike with GlnK,  

or to act as a scaffold to direct another, as yet unidentified, negative regulatory protein 

of Mep1 and Mep3 (Boeckstaens et al., 2015).  If analogous to GlnK, Amu1 could be 

physically interacting with the C-terminal end of Mep1 and Mep3 to regulate their 

transport activity.  Interactions between the CTR and the rest of the transporter appear 

to be important for an open structure (Andrade et al., 2005) (Severi et al., 2007) (Loque 

et al., 2007) (van den Berg et al., 2016).  The structure of ScMep1 and ScMep3 has 

thus far not been solved, but if Amu1 is acting as a plug, perhaps ScMep1 and ScMep3 

would be crystallised in the open conformation similar to the Amt proteins. 

 

1.2.2 The transported substrate 
 

The identity of the transported molecule is still under debate.  The following species 

have been proposed: NH3, NH3/H+ cotransport, or NH4+, where the latter two and 

former species represent electrogenic and electroneutral transport respectively (Wang 

et al., 2012).  It was originally accepted that EcAmtB transported NH3 and, hence, 

transport was regarded as electroneutral.  This conclusion was made because the 
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investigators observed no conformational change in the transporter upon conductance 

of ammonium, or the non-metabolisable analogue methylammonium, and they 

identified the conducting pore as being highly narrow, and hydrophobic, consistent with 

NH3 being the substrate.  Furthermore, in an assay which quantified the influx of 

ammonia into 5-carboxy fluorescein ((CF), pH-sensitive dye) loaded AmtB 

proteoliposomes, or protein free liposomes, a rise in internal pH was observed when 

the AmtB proteoliposomes were mixed with 5 mM ammonium chloride (NH4Cl).  This 

rise was 10-fold quicker than the liposomes which lacked AmtB.  This initial pH rise 

reflected the influx of NH3 which acquired a proton from the water in the cytosol to 

generate NH4+ (Khademi et al., 2004).  In CF loaded RhCG proteoliposomes a rise in 

internal pH was also observed indicating that NH3 and not NH4+ was being transported 

(Gruswitz et al., 2010).  When AmtB proteoliposomes were placed in 250 mM sucrose 

water efflux by the AmtB proteoliposomes and liposomes were equivalent leading to 

the conclusion that AmtB is not a water conductor.  Conductance of NH3 over NH4+ 

was discussed to be the more favourable substrate as NH4+ is similar in size to 

potassium ions.  If AmtB was a conductor of NH4+ it would likely additionally leak 

potassium ions which would impact on the membrane potential.  Although Khademi et 

al., (2004) concluded that NH3 was the transported substrate, NH4+ was accepted as 

the molecule initially recruited to the transporter (Khademi et al., 2004) as did Zheng 

et al., (2004).  At the conserved twin-histidine motif the adiabatic free energy profile 

identified an electrostatic barrier.  Therefore, it was suggested that diffusion of NH3 

would be favoured over the passage of NH4+ and, hence, NH4+ deprotonation would 

be required with the proton leaving on the periplasmic side (Zheng et al., 2004).   

 

Several years later, Wang et al, contradicted this idea of electroneutral transport and 

suggested that this was an electrogenic process.  Molecular simulation studies 

confirmed that NH4+ was stable in the putative ammonium binding site.  The authors 

designated this site as S1.  A site designated as S2 is composed of F215, W212 and 

H168 (the first histidine of the twin histidine motif) and directly proceeds the S1 site.  

The side chains of F107 and F215, the Phe gate, were motile during simulations which 

were postulated to bind NH4+ to direct the molecule from S1 to S2.  During the 

molecular simulation studies water molecules were present below S2 and NH4+ was 

stably hydrogen bonded to H163.  Quantum mechanics (QM) simulations identified 

H168 hydrogen bonded to NH4+ or NH3 (as a result of NH4+ deprotonation) hydrogen 

bonded to protonated H168.  Furthermore, water molecules were more distanced from 
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the twin histidine motif compared to in the molecular simulations.  Protonated H168 

was observed to relay the proton, acquired from NH4+ deprotonation at the S2 site, to 

H318 resulting in a charge-delocalised construct.  Adaptive biasing force simulations 

identified a low energy barrier which would favour NH3 diffusion, potentially aided by 

one water molecule through S3, the region between S2 and S4, to the next site S4.  

Upon NH3 reaching the S4 site, composed of H318, NH3 accepted the relayed proton 

to reconstitute NH4+.  The protonation states of the conserved histidine motifs are 

proposed to be reset by a water chain composed of four to five water molecules (Wang 

et al., 2012) (Figure 5).  Utilisation of solid-supported membrane (SSM)-based 

electrophysiology, where proteoliposomes containing AfAmt-1 covered a 

phosphatidylcholine monolayer coating a gold electrode, confirmed that transport by 

AfAmt-1 is indeed electrogenic.  Perfusion of the sensor with 300 mM ammonium 

initiated a rapid increase in current to a maximum of 2.2 nA followed by a slower 

decrease in current to baseline.  The initial increase in current is consistent with the 

membrane potential being more positive inside the vesicles than outside.  The 

subsequent decrease is consistent with a decrease in the initial driving force which 

incurs a decrease in the transport rate (Wacker et al., 2014).  Furthermore, 

deprotonation was subsequently confirmed by exploiting N isotope discrimination 

experiments using Mep/Amt/Rh proteins expressed in yeast.  Cells expressing these 

proteins exhibit internal 15N rather than 14N depletion, relative to the external 

ammonium medium, which is consistent with cells transporting NH3.  NH4+ containing 
14N is favoured for deprotonation over an NH4+ containing 15N (Ariz et al., 2018).  Thus, 

Amt proteins recruit NH4+ which is deprotonated to NH3.  NH3 gas, along with the 

excess proton, transverse the pore before reconstituting NH4+ on the cytoplasmic side. 

 

In a homology model of the tomato ammonium transporter, LeAmt1;1, the equivalent 

residues which are predicted to recruit incoming NH4+ have been predicted to serve 

the same purpose.  Xenupus oocyctes expressing LeAmt1;1, which have a resting 

membrane potential of +4±1 mM, were incubated with 1 mM carbon 14 labelled 

methylammonium ([14C]-MeA which can exist as H314C-NH3+/H314C-NH2).  According 

to Avogadro’s constant each H314C-NH3+ molecule transported would generate a 

current of -14.4±2.4 nA.  The recorded inward current recorded by the LeAmt1;1 

expressing oocytes was -12.5 nA.  This current was LeAmt1;1 dependent, hence, the 

authors suggested that approximately 100 % of the [14C]-MeA transported was in the  
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Figure 5: Diagram of ammonia transport through AmtB.  The twin histidine motif is depicted on the left hand 

side of the pore (grey tube).  NH4
+ is deprotonated at the S2 site.  NH3 gas diffuses through the pore to the S4 site, 

while the proton is relayed from the first conserved histidine to the second conserved histidine.  NH3 gas is re-

protonated using the relayed proton at the S4 site.  Proton transfer through a water chain resets the protonation 

state of the twin histidine motif.  Straight and curved red arrows represent diffusion and proton transfer respectively.   

Figure adapted from (Wang et al., 2012). 

  



18 
 

charged form.  However, when considering the errors associated with each value they 

could not reject the possibility that some H314C-NH2 could transverse the pore.  In 

support of NH4+ being the transported substrate, inwards currents of -150 nA, and 

maintained acidification of the cytosol was observed when the BCECF-loaded 

LeAmt1;1 expressing oocytes (BCECF is a pH sensitive due) were voltage clamped at 

-80 mV and exposed to 500 µM ammonium (Mayer et al., 2006).   

 

Dissimilar to the Amts, transport through human Rh proteins is deemed electroneutral.  

Potential mean force (PMF), calculated from QM and molecular mechanics (MM) 

simulations, show that a NH4+ deprotonation event at the first histidine of the twin 

histidine motif (H185), where the excess proton is transferred to H185, is likely.  

Classical simulation studies showed that following deprotonation the excess proton is 

relocated back to the extracellular space.  This involves indirect hydrogen bonding 

between H185 and an above aspartate residue (D177).  This hydrogen bond 

connection is dependent on adjacent water molecules and a separating serine residue 

(S181) and could plausibly facilitate the transfer of the excess proton to the 

extracellular side.  QM and MM simulations showed that the excess proton is either 

relayed from H185 to a water molecule to S181 and finally to D177, or the excess 

proton is relayed from H185 to a water chain and finally to D177.  In the latter scenario, 

S181 is proposed to maintain D177 in the correct position allowing the formation of the 

bridging water chain.  A similar proton route to the one confirmed in AmtB was rejected 

in RhCG because no water chain was found to form in the pore during simulation 

studies.  If the proton was relayed from H185 to H344, which forms a charge 

delocalised structure, a water chain would be required in the pore to reset the 

protonation states of the histidine-dyad.  Free energy perturbation (FEB) calculations 

showed that release of the excess proton from D177 to the extracellular solution was 

favourable.  Moreover, the authors hypothesised that the excess proton may react with 

NH3 in the extracellular solution to form NH4+.  Diffusion of NH3 gas through the pore 

is more favourable than back-diffusion to the extracellular space.  Thus, transport 

through RhCG is overall electroneutral (Baday et al., 2015). 

 

As recruitment of NH4+ followed by deprotonation appears to be a preserved 

mechanism the pathway the proton follows may be the distinguishing factor in whether 

transport by the Mep/Amt/Rh protein family is electrogenic (as discussed for AmtB) or 

electroneutral (as described for RhCG).  Moreover, RhCG does not possess the 
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conserved tryptophan, associated with NH4+ recruitment by Mep/Amt proteins, and the 

Phe gate is orientated differently creating less obstruction at the entry to the pore 

(Gruswitz et al., 2010).  Perhaps these features are characteristic of electroneutral 

transport and can distinguish between channels and transporters within the 

Mep/Amt/Rh protein family.  Transport through the fungal Mep2 proteins has not been 

confirmed as being electrogenic or electroneutral.  However, as the position of the 

residues lining the sites, in Amt proteins, important for NH4+ recruitment, deprotonation 

and re-protonation are similar to the position of the residues in eukaryotic Mep2 

proteins, the same electrogenic mechanism, which couples NH3 and proton symport, 

may occur in fungal Mep2 (van den Berg et al., 2016) (Wang et al., 2012) (Wacker et 

al., 2014) (Ariz et al., 2018).  Despite similarities between the positions of the functional 

residues, Mep2 proteins were crystallised in a closed conformation suggesting that 

conformational changes are required to open the channel (van den Berg et al., 2016) 

and, thus, are more characteristic of active transporters rather than channels.  Amt 

proteins were originally regarded as gas channels (Zheng et al., 2004) (Khademi et al., 

2004).  Conversely, the Amt proteins may be more characteristic of active transporters 

as small conformational changes may be required to allow passage of NH4+ through 

the Phe gate, to the S2 site for deprotonation, and as the excess proton is 

simultaneously transported through the pore in an electrogenic process (Wacker et al., 

2014) (Wang et al., 2012) (Ariz et al., 2018).  The discrimination between ammonium 

transporters as channels or transporters is still a topic of debate. 

 

1.3 Regulation of fungal Meps 
 

In order for nitrogen to be utilised from different sources, but not become cytotoxic, 

different uptake mechanisms are recruited.  This is referred to as nitrogen catabolite 

repression (NCR).  When nitrogen levels are limiting, whether this be due to low levels 

of ammonium or the presence of non-preferred nitrogen sources, the NCR target 

genes are upregulated (Magasanik and Kaiser, 2002).  These encompass 

approximately 90 target genes in the budding yeast Saccharomyces cerevisiae, 

including the Meps (Methylammonium Permeases), and Gap1 (General Amino Acid 

Permease), which facilitate the transport of ammonium and amino acids across the 

membrane respectively (Broach, 2012).  When sufficient levels of the preferred 

sources of nitrogen become available these target genes are repressed.  The master 
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regulator of cell growth (TORC1) is responsible for relaying this nutrient availability 

signal (Cardenas et al., 1999).   

 

1.3.1 Regulation by TOR 
 

TORC1 is a member of the TOR (Target Of Rapamycin) pathway (Loewith et al., 2002). 

TOR is a conserved serine/threonine kinase which combines the energy status of the 

cell with the availability of nutrients to regulate cell growth (Heitman et al., 1991).  In 

mammalian systems, mTOR controls protein synthesis and autophagy (Kim et al., 

2011) and is additionally associated with dysregulation, including cancers (Bar-Peled 

et al., 2013), neurodegeneration and type 2 diabetes (Khamzina et al., 2005).  In S. 

cerevisiae, TORC1 is composed of TOR1 or TOR2, Kog1, Lst8 and non-essential 

Tco89 (Loewith et al., 2002).  Supplementation of amino acids activates TORC1 which 

promotes anabolic processes, such as ribosome biogenesis, but represses catabolic 

processes, such as autophagy and nitrogen assimilation (Barbet et al., 1996) (Noda 

and Ohsumi, 1998) (Loewith and Hall, 2011).  TORC1 inactivity occurs during nitrogen 

or amino acid starvation.  Moreover, treatment with rapamycin renders TORC1 inactive 

(Cardenas et al., 1999); rapamycin somewhat mimics nitrogen starvation (Barbet et 

al., 1996).  TORC1 activity is dependent on the GTP/GDP status of the Rag GTPase 

heterodimer Gtr1/Gtr2 which is regulated by guanine exchange factors (GEFs) and 

GTPase-activating proteins (GAP).  Gtr1/Gtr2 is anchored to the vacuolar membrane 

by the EGO complex which is composed of Ego1, Ego2 and Ego3 (Zhang et al., 2012).  

Ego1 and Ego2 form a weak interaction with the C-terminal roadblock domain of Gtr1 

but not Gtr2 (Kira et al., 2016).  Dissimilar to mTORC1, which is recruited to the 

lysosome for activation when the RAG heterodimer is in its active state (Sancak et al., 

2010), yeast TORC1 is constantly maintained at the membrane of the vacuole 

independent of the GTP/GDP status of Gtr1/Gtr2 (Kira et al., 2016).  In the presence 

of amino acids, Gtr1 is bound to GTP and Gtr2 is loaded with GDP to form the active 

heterodimer which binds via Kog1 to activate TORC1 (Sancak et al., 2008).  Vam6 has 

been proposed to be the GEF which exchanges GDP for GTP on Gtr1 (Binda et al., 

2009).  During amino acid and nitrogen starvation, the SEACIT complex (Seh1-

associated sub complex inhibiting TORC1), composed of Npr2, Npr3 and Iml1, binds 

to Gtr1, via the catalytic Iml1 subunit, to activate its GTPase activity hydrolysing GTP 

to GDP.  The SEACIT complex is, thus, the GAP of Gtr1.  When Gtr1 is bound by GDP, 

and Gtr2 is loaded with GTP, a conformational change occurs in the heterodimer which 
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weakens its interaction with TORC1 and hence inactivates TORC1.  SEACIT is itself 

negatively regulated by the SEACAT complex (Seh1-associated sub complex 

activating TORC1), composed of Sec13, Seh1, Sea2, Sea3 and Sea4 (Panchaud et 

al., 2013) (Figure 6). 

 

The type of TORC1 activation is dependent on the distinct amino acids available.  In 

response to poor nitrogen sources, such as leucine, TORC1 activation is transient and 

Gtr1 dependent; a lack of growth is observed in a gtr1Δ mutant on leucine.  On the 

contrary, the gtr1Δ mutant, and the vam6Δ mutant, grow on preferred nitrogen sources 

such as glutamine.  Furthermore, TORC1 activation is maintained in response to 

accumulation of internal glutamine (Stracka et al., 2014).  Therefore, it was concluded 

that a Rag GTPase independent mechanism must exist to sustain TORC1 activity.  

Recently, Pib2 has been found to interact with TORC1 via its E motif.  This interaction 

is mutually exclusive to TORC1’s interaction with Gtr1/Gtr2 as identified by pull-down 

experiments.  As radioactively labelled glutamine has been found to bind directly to 

Pib2, and because the TORC1/Pib2 complex increases with rising glutamine 

concentration, Pib2 has been proposed to be an internal glutamine sensor (Ukai et al., 

2018). 

 

TORC1 exerts its signalling effect by phosphorylating downstream effectors (Gonzalez 

and Hall, 2017).  One target is Sch9 kinase which contains six TORC1 phosphorylation 

sites in its C terminus.  Through Sch9, TORC1 exerts its regulation of several 

processes including entry into G0 of the cell cycle (Urban et al., 2007).  Another target 

for TORC1 is the Tap42-PP2A phosphatase which promotes stress resistance, 

autophagy and nitrogen transport and utilisation.  Tap42-PP2A is inhibited by active 

TORC1 (Loewith and Hall, 2011).  A downstream target of Tap42-PP2A is the Npr1 

kinase.  Upon TORC1 inactivity, Npr1 kinase is weakly phosphorylated and in its active 

state.  Npr1 kinase is responsible for the trafficking and stabilisation of certain 

transporters at the plasma membrane (Schmidt et al., 1998), including Gap1.  Npr1 

indirectly prevents the recruitment of Rsp5 to the membrane via the phosphorylation 

of arrestin-like proteins, which are responsible for the endocytic removal of some 

transporters (De Craene et al., 2001).  In the presence of preferred nitrogen sources 

both Sch9 and Npr1 kinase are hyperphosphorylated, thus, the phosphorylation status 

of both proteins can been utilised as a readout for TORC1 activity (Urban et al., 2007)  
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Figure 6:  Rag GTPase regulation of TORC1. a)  In the presence of amino acids SEACAT (top blue complex) 

inhibits the GAP activity of SEACIT (red complex below).  The Rag GTPase Gtr1/Gtr2 is in its active state, bound 

to TORC1 (aqua blue bottom complex) via Kog1.  This interaction stimulates TORC1 activity.  b) During amino acid 

or nitrogen starvation SEACIT is not inhibited by SEACAT therefore the Rag GTPase Gtr1/Gtr2 is in its inactive 

state.  This inactive state causes a conformational change which loosens the interaction with TORC1 and therefore 

inactivates TORC1.  In both a) and b) the Roadblock domain of Gtr1 is bound to EGO1 of the EGO complex (yellow 

complex) which anchors the Rag GTPases to the vacuolar membrane.  c). Vam6 acts as the Gtr1 GEF substituting 

GDP for GTP.  SEACIT acts as the Gtr1 GAP.  Based on figure by (Panchaud et al., 2013). 
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(Schmidt et al., 1998).  Specifically for Gap1, when TORC1 activity is sustained, by the 

uptake of NH4+, Gap1 is ubiquitinated before being removed and degraded.  However, 

a Gap1 mutant, which is insensitive to ubiquitination by TORC1, can trigger its own 

ubiquitination and removal from the membrane following uptake of its substrate.  

Furthermore, transport of the Gap1 non-metabolisable substrate, b-alanine (b-ala), in 

proline grown cells triggers ubiquitination of Gap1 and activates TORC1 in a Gtr1/Gtr2 

dependent manner as evidenced by phosphorylated Npr1 kinase and Sch9.  Hence, 

TORC1 activation is not dependent on the internal pool of amino acids.  Gap1, along 

with other amino acid permeases, couples amino acid transport with H+ influx and, 

thus, relies on the plasma membrane H+ gradient to function.  b-ala uptake by Gap1 is 

hindered in cells exposed to the protonophore FCCP or when grown in glucose free 

media, (Saliba et al., 2018), which inhibits the H+ ATPase Pma1 (Kane, 2016), because 

both conditions disrupt the plasma membrane H+ gradient.  Fsy1 and Hxt1 are both 

hexose transporters with only the former coupling hexose transport with H+ symport.  

Interestingly, Sch9 phosphorylation is observed with Fsy1 transport but not Hxt 

transport, suggesting that H+ influx is the stimulus for TORC1 activation.  Equally, H+ 

influx elicited solely by the FCCP protonophore is sufficient to activate TORC1 in cells 

grown in proline medium with limited glucose as evidenced by Npr1 kinase 

phosphorylation but not Sch9 phosphorylation.  A lack of Sch9 phosphorylation was 

proposed to be attributable to the acidic cytosolic pH, elicited by the protonophore.  

Although this TORC1 activation was found to be Rag GTPase dependent, sustained 

FCCP stimulation in seh1Δ (SEACAT component) was sufficient to phosphorylate 

Npr1 kinase, however, this was Pib2 independent.  Furthermore, TORC1 activation in 

response to H+ influx was found to be Pma1 dependent (Saliba et al., 2018).  Under 

acidic conditions Pma1 is known to be more active (Eraso and Gancedo, 1987) and 

optimal Pma1 activity requires TORC1 (Mahmoud et al., 2017).  Expression of 

endogenous PMA1, but not a truncated orthologue from the tobacco plant (Nicotiana 

plumbarginifolia), PMA4822ochre, in a pma1Δ/pma2Δ double mutant activated TORC1 

despite both transporters coupling H+ and b-ala uptake and hence having a more acidic 

cytosol.  The authors, therefore, proposed that Pma1 may stimulate a signalling 

cascade which targets TORC1 upon the cytosol increasing in acidity (Saliba et al., 

2018). 

 

TORC1 exerts its regulation on Mep2 via Npr1 kinase.  Visualisation of Mep2 by 

western blot reveals two bands where the slower running, higher molecular weight, 
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band is sensitive to lambda (l) phosphatase treatment.  In cells lacking Npr1 kinase, 

or Npr2, only a single faster running, lower molecular weight, band is detected.  Hence 

the higher molecular weight band is the result of phosphorylation by active Npr1 

kinase.  Activation of Npr1 kinase occurs after inactivation of TORC1 via Npr2, a 

component of the SEACIT complex, which hydrolyses GTP to GDP on Gtr1.  Dissimilar 

to other permeases, Mep2 localisation, nor its removal from the membrane, are 

dependent on Npr1.  GFP tagged Mep2 correctly localises to the plasma membrane in 

proline grown cells lacking Nrp1 kinase and remains at this location after glutamine 

induced Npr1 kinase inactivation in WT cells.  Site-directed mutagenesis studies 

identified serine 457, located within the CTR, to be the Npr1 phosphorylation site.  

Expression of Mep2S457A in a strain lacking all three ammonium transporters, and Npr1 

kinase, fails to restore growth on low ammonium, however, Mep2S457D, a 

phosphomimic mutant, does restore growth (Boeckstaens et al., 2014).   

  

Ethyl methanesulphonate mutagenesis treatment identified mutations which render 

Mep2 Npr1 kinase independent.  Three quarters of the identified suppressor mutations 

were mapped to ICL3 and the C-terminus tail.  A mutant lacking the entire C-terminus 

(MepS246stop) partially complemented the growth defect of a strain lacking all three 

ammonium transporters and this was comparable in a strain additionally lacking Npr1 

kinase.  Thus, the region before the C-terminal tail possesses a basal level of transport 

which is optimised by the C-terminal tail.  The region spanning from the YIPEPIRS 

motif (residues 450-457 conserved in several Mep2 orthologues), which contains the 

Npr1 kinase phosphorylation site, to residue T485 forms the autoinhibitory (AI) domain.  

The Mep2CΔ450-485 mutant is hyperactive in mep123Δ/npr1Δ cells in comparison to 

mep123Δ.  Residues 442-449 forms the linker domain.  A mutant lacking this linker 

domain does not fully complement the growth defect of the mep123Δ strain but is 

greater than two fold more active in the mep123Δ/npr1Δ strain.  The region before the 

linker domain, designated as the enhancer domain, is required for optimal Mep2 

activity in the absence of Npr1.  Hence, active Npr1 kinase alleviates Mep2 

autoinhibition by phospho-silencing S457 within the AI domain.  Npr1 suppressor 

mutations were highly localised to ICL3 (Boeckstaens et al., 2014) and a single 

nucleotide polymorphism (SNP) within ICL3 of RhCG has been found to reduce the 

proteins transport activity.  The SNP is postulated to hinder the interaction between 

ICL3 and the C-terminal tail (Deschuyteneer et al., 2013).  Analysis of bacterial Amt 

protein structures have equally verified that interactions between the C-terminal tail 
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and the intracellular loops are important for their activation (Neuhauser et al., 2007) 

(Severi et al., 2007).  Thus, the authors proposed that phosphorylation within the AI 

domain frees the enhancer domain allowing it to interact with ICL3 (Boeckstaens et al., 

2014).   

 

Mep2 is highly expressed and active in proline grown cells.  However, addition of 

glutamine to proline grown cells causes Mep2 dephosphorylation and, hence, 

inactivation.  Deletion of PSR1 or PSR2, phosphatase encoding genes, partially protect 

against Mep2 inactivation while deletion of both provides full protection.  Regardless 

of whether Npr1 kinase is active or not, the Psr1 and Psr2 phosphatases are always 

effective.  The equilibrium between phosphorylation and dephosphorylation is, 

therefore, imperative for the activity status of Mep2.  In times of poor nitrogen supply, 

the equilibrium is shifted in favour of phosphorylation by the Npr1 kinase.  When 

glutamine is readily available, the equilibrium shifts in favour of dephosphorylation by 

the Psr1 and Psr2 phosphatases as Npr1 kinase is hyperphosphorylated and in an 

inactive state (Figure 7).  How Npr1 switches from its hyperphosphorylated (inactive) 

state to its weakly phosphorylated (active) state is still unclear (Boeckstaens et al., 

2014).  Although deletion of the Sit4 phosphatase, a target of Tap42 (Jacinto et al., 

2001), is correlated with Npr1 kinase hyperphosphorylation (Di Como and Arndt, 1996) 

Mep2 is still identified as a doublet by western blot.  Furthermore, Mep2 accumulates 

[14C]-methylammonium similar to WT cells confirming that the transporter is still active 

suggesting that Sit4 and Npr1 can act in separate pathways (Boeckstaens et al., 2014). 

 

For Mep1 and Mep3, the transport activity is believed to be dependent on the 

downstream effector Par32 (Phosphorylated After Rapamycin).  Originally, Par32 (also 

known as Amu1) was believed to inhibit the flux of ammonium ions through Mep1 and 

Mep3 by physically interacting with the proteins to block transport at the plasma 

membrane (Boeckstaens et al., 2015).  This concept has recently been questioned as 

Par32 function, to reactivate TORC1 after rapamycin treatment, is not impeded when 

unable to localise to the membrane, suggesting that another mechanism, other than 

physical interaction with the ammonium permeases, is preventing the conductance of 

ammonium (Varlakhanova et al., 2018). 
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Figure 7: Model of Mep2 activation by Npr1 kinase.  a) During poor nitrogen supply TORC1 is inactivated by 

Npr2, therefore Npr1 kinase is weakly phosphorylated and free to activate Mep2 via phosphorylation.  Upon 

glutamine supplementation, TORC1 is activated leading to the inactivation of Npr1 kinase.  Inactivation of Npr1 

kinase may occur via the phosphorylation of Tap42, which inhibits Sit4 dephosphorylation of npr1 kinase, but 

another additional mechanism likely exists.  Mep2 is dephosphorylated by the Psr1 and Psr2 phosphatases.  b) 

Phosphorylation of the Mep2 CTR autoinhibitory domain (red) by Npr1 kinase during poor nitrogen supply allows 

the enhancer domain (green) to activate the transporter.  Upon glutamine supplementation Mep2 is only 

dephosphorylated by the phosphatases, therefore, the enhancer domain cannot activate the transporter.  Based on 

the figure by (Boeckstaens et al., 2014). 
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1.3.2 Transcriptional regulation of Mep2 
 

In nitrogen replete conditions transcription of MEP2 is repressed by NCR.  MEP2 is 

transcriptionally induced by Gln3 and Gat1 (Scherens et al., 2006) which are TORC1 

regulated (Georis et al., 2011) GATA transcription factors specific for NCR genes 

(Dabas and Morschhauser, 2007).  Until most recently the following paradigm for Gln3 

regulation was accepted.  When nitrogen is readily available Tap42-Sit and Tap42-

PP2A are complexed to active TORC1.  TORC1, hence, inactivates both phosphatase 

complexes (Di Como and Arndt, 1996) (Yan et al., 2006).  Active TORC1 additionally 

phosphorylates Gln3 (Bertram et al., 2000), which is bound in a complex to Ure2, to 

restrict the transcription factor to the cytoplasm (Courchesne and Magasanik, 1988). 

During nitrogen limiting conditions Tap42-Sit4 and Taqp42-PP2A dissociate from 

TORC1 (Wang et al., 2003), as TORC1 is inactive, and dephosphorylate Gln3.  Gln3 

is then freed from the cytoplasmic Gln3-Ure2 complex and re-localises to the nucleus 

(Beck and Hall, 1999).  In the nucleus Gln3 and Gat1 recognise the upstream nitrogen 

regulated activation sequence (UASNTR) 5’-GATAAG-3’ to activate NCR-sensitive 

gene expression (Cunningham et al., 1996) (Coffman et al., 1996).  Other members of 

the GATA transcription factor family recognise 5’-WGATAR-3’ (W = A/T, R = A/G) (Ko 

and Engel, 1993).  However, in contrast to this model, Sit4 and PP2A have been found 

to be active in nitrogen replete conditions and Gln3 is more phosphorylated in the 

nucleus than in the cytoplasm (Tate et al., 2019).  Interestingly, <5 % of Sit4 and <2 % 

of Pph21 (catalytic subunit of PP2A) are documented to be bound to Tap42 

respectively (Di Como and Arndt, 1996).  Therefore it has been proposed that it is the 

unbound Sit4 and PP2A that result in Gln3 dephosphorylation under conditions when 

TORC1 is active (Tate et al., 2019). 

 

1.4 Sensing of ammonium 
 

Unlike Mep1 and Mep3, Mep2 exhibits receptor like properties which allow the 

transporter to relay the availability of extracellular ammonium into a scavenging, or 

foraging, response.  Hence Mep2 is referred to as a transceptor.  In times of limiting 

ammonium, S. cerevisiae cells become elongated and remain physically attached to 

one another and extend in a polarised fashion.  This morphology is designated as 

pseudohyphal growth and is specifically restricted to ammonium limitation.  During 
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nitrogen starvation, the cells enter the G0 phase of the cell cycle and arrest growth 

(Lorenz and Heitman, 1998).  Notably, mutations can be made in Mep2 which sustain 

transport of ammonium but block signalling for the induction of pseudohyphal growth.  

This uncoupling of functions demonstrates that the physical act of transport by Mep2, 

rather than internal metabolism of ammonium, is responsible for signalling for 

pseudohyphal growth.  Where Mep2 possesses a conserved twin-histidine motif, 

proposed to be important for proton relay, a glutamate residue resides at histidine 

position one in Mep1 and Mep3.  In a study where the first histidine in ScMep2 was 

substituted to glutamate (H191E), to mimic ScMep1, ScMep2 behaved more like 

ScMep1 as pseudohyphal growth was abolished (Boeckstaens et al., 2008).  

Interestingly, all the ammonium sensors identified to date possess this conserved twin-

histidine motif, suggesting that this is a vital motif for signalling. 

 

1.4.1 Transceptor regulated morphology 
 

Dimorphic fungi make the morphological transition from yeast-like growth, where cells 

divide by budding, to a filamentous growth form (Roberts and Fink, 1994).  The 

filamentous growth form can be split into two modes: the pseudohyphal growth mode 

and the filamentous growth mode.  Pseudohyphal growth, displayed by S. cerevisiae, 

corresponds to cells which do not abscise after cytokinesis and, thus, are non-

multinucleate.  On the contrary, in the filamentous mode, true-hyphae are 

multinucleate as they are formed of continuous cells which have extended from the 

polar tip with each septate containing nuclei.  For pathogenic fungi this dimorphic 

switch can change the growth from saprophytic to pathogenic and, therefore, precedes 

infection of the target host. 

 

Diploid S. cerevisiae cells undergo pseudohyphal growth upon nitrogen limitation, 

while haploid cells undergo invasive growth under the same conditions (Cullen and 

Sprague, 2012).  Both phenotypes are Mep2 dependent.  The MAPK and cAMP-PKA 

pathways have been implemented in this filamentous mode, where one can 

compensate for the other, however, the MAPK pathway appears to be most linked to 

Mep2 (Rutherford et al., 2008a) (Smith et al., 2003).  Overexpression of Mep2 in diploid 

mutants lacking Tpk2, Gpa2, Gpr1 and Ras2, members of the cAMP-PKA pathway, 

restored pseudohyphal growth.  On the contrary, pseudohyphal growth was not 

restored in the ste12Δ mutant.  However, expression of RAS2Val19 or STE11-4, alleles 
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which constitutively activate the cAMP-PKA and MAPK pathways respectively, or 

overexpression of STE12, restored pseudohyphal growth in a diploid mep2Δ mutant.  

This demonstrated that Mep2 acts above Ste12 in the MAPK pathway or that they 

operate in analogous mutually dependent pathways (Rutherford et al., 2008a). 

 

The opportunistic fungus, Candida albicans, contains two ammonium transporters 

within its proteome, Mep1 and Mep2 (Biswas and Morschhauser, 2005).  In 

neutral/alkaline pH, C. albicans makes the dimorphic switch to form elongated hyphae, 

an indispensable virulence trait (Biswas et al., 2007).  Ustilago maydis, the fungal 

pathogen of maize, also contains two ammonium transporters within its proteome, 

Ump1 and Ump2 (Smith et al., 2003).  Unlike C. albicans, U. maydis requires acidic 

pH to transition from budding yeast to a filamentous growth form (Gold et al., 1994), 

which is formed when yeast-like cells of opposite mating type form a dikaryon (Day 

and Anagnostakis, 1971).  However, despite this discrepancy, both Mep2 and Ump2 

complement the growth and pseudohyphal growth defects of mep123D and 

mep2D/mep2D S. cerevisiae strains respectively.  Mep1 and Ump1 can only 

complement the growth defect.  For both organisms, mep2D and ump2D mutants do 

not undergo filamentation in response to limiting ammonium, indicating that they are 

sensors of ammonium (Neuhauser et al., 2011) (Smith et al., 2003).  

 

Ammonium transporters have previously been characterised in the Cryptococcus 

neoformans serotype A H99/KN99 strain.  The H99 genome encodes two ammonium 

transporters, AMT1 and AMT2, which are low and high affinity ammonium transporters 

respectively.  AMT2 is expressed under ammonium limiting conditions whereas AMT1 

is constitutively expressed, to a lower level, under both ammonium limiting and 

ammonium sufficient concentrations.  AMT2 expression is, therefore, regulated by 

NCR.  Amt2, but not Amt1, is important for haploid cells to undergo invasive growth 

and mating on low ammonium.  Unlike Ump2, in U. maydis, Amt2 is not important for 

virulence (Rutherford et al., 2008b).  Similar to S. cerevisiae, C. neoformans can 

undergo pseudohyphal growth and this is both Amt1 and Amt2 dependent under 

ammonium limiting conditions.  Mutants lacking only one ammonium transporter 

produce pseudohyphae on low ammonium but mutants lacking both do not (Lee et al., 

2012).  Furthermore, ammonium transporters have been identified which complement 

pseudohyphal growth in S. cerevisiae, thereby acting as ammonium sensors, but show 

no phenotype in their native organism, or have not yet been tested in their native 
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organism.  Examples include MepA from Fusarium fujikuroi (Teichert et al., 2008) and 

Amt1 from Hebeloma cylindrosporum (Javelle et al., 2003).  Notably, all the ammonium 

sensors identified to date possess the conserved twin-histidine motif. 

 

1.4.2 Mechanism of action for ammonium transceptors 
 

Multiple transceptors which facilitate transport of different nutrients, and regulate other 

pathways, have been identified.  For example, there are an array of nutrient permeases 

in yeast which regulate the PKA pathway (Steyfkens et al., 2018) and a nitrate 

transporter in plants which is proposed to be important for nitrate signalling (Krouk et 

al., 2006).  However, ammonium transceptors are the only transceptors to regulate 

morphology.  To date, the signalling mechanism adopted by these transceptors is 

unknown.  With regards to Mep2, two theories have been proposed.  The 

conformational change model and the pH model.   

 

Conformational change model 

 

The conformational change model hypothesises that Mep2 may act like a G-protein 

coupled receptor (GPRC) which undergoes a conformational change, during transport, 

allowing Mep2 to interact or cease interacting with a downstream signalling partner 

(Lorenz and Heitman, 1998) (Rutherford et al., 2008a).  It is believed that receptors 

evolved from transporters which gained a receptor function and subsequently lost their 

ability to transport, as opposed to the other way round.  This is favoured because both 

transporting transceptors and non-transporting transceptors have been identified.  It is 

also conceivable that before receptors existed nutrients were exploited as signalling 

ligands (Thevelein and Voordeckers, 2009); neurotransmitters appear to be modestly 

altered nutrients (Boyd, 1979).  Therefore transporting transceptors, such as Mep2, 

are evolutionary intermediates.   

 

Examples of transporting transceptors are Gap1, Mep2, Pho84 for phosphate and 

Sul1,2 for sulphate (Donaton et al., 2003) (Van Nuland et al., 2006) (Giots et al., 2003) 

(Kankipati et al., 2015).  In the presence of a fermentable carbon source, such as 

glucose, the protein kinase A (PKA) pathway is highly active in S. cerevisiae cells.  This 

is resultant of cAMP synthesis and its role as a second messenger (Thevelein and de 

Winde, 1999).  Removal of just one essential nutrient from the growth media 



31 
 

downregulates the PKA pathway and causes the cells to arrest growth.  Re-addition of 

the starved nutrient is sensed by the respective transporting transceptor to trigger the 

PKA pathway (Holsbeeks et al., 2004).  The use of cAMP temperature sensitive 

mutants has confirmed that this reactivation is cAMP independent (Hirimburegama et 

al., 1992).  It is important to note that the role Mep2 plays as a transceptor in regulating 

the PKA pathway is independent to its role in pseudohyphal growth.  The N246A 

mutation in ScMep2 uncouples signalling from transport but still triggers trehalase 

activation.  Trehalase is a target of the PKA pathway and is, thus, used as a readout 

for PKA activity (Van Nuland et al., 2006).  Mutations to Pho84 and Sul1/2, at putative 

proton binding sites supports signalling but not transport (Samyn et al., 2012) 

(Kankipati et al., 2015).  Moreover, transport of non-metabolisable analogues can 

reactivate the PKA pathway.  Signalling and transport functions can, therefore, be 

uncoupled (Van Zeebroeck et al., 2014).  With regards to Gap1, substituted cysteine 

accessibility method (SCAM) analysis confirmed that the same binding site is utilised 

for both transport and signalling (Van Zeebroeck et al., 2009).  However, binding of a 

competitive inhibitor to Gap1 is not sufficient to induce signalling.  The authors propose 

that binding of the substrate changes the conformation of outwards facing Gap1 to a 

signalling specific intermediate conformation while the substrate is in transit.  A switch 

to an inward facing conformation, to release the substrate inside the cell, ceases 

signalling (Figure 8).  Thus, the physical act of transport, as opposed to internal 

nutrient metabolism, triggers the signalling cascade (Van Zeebroeck et al., 2014).  

Support for this model can be provided by considering the non-transporting 

transceptors that resemble typical transporters. 

 

Three non-transporting transceptors have been discovered in yeast.  Ssy1, an amino 

acid transceptor (Didion et al., 1998), and Snf3 and Rgt2 which are glucose 

transceptors; the latter exhibits a lower affinity for glucose (Ozcan et al., 1998).  All 

three induce transcription of their respective nutrient transporters but do not exhibit any 

detectable transport activity themselves (Poulsen et al., 2005) (Ozcan et al., 1996) 

(Forsberg and Ljungdahl, 2001), thus, suggesting that conformational change is the 

mechanism of action.  Although non-transporting, Ssy1 is assumed to switch between 

an outward and inward conformation.  However, as non-transporting, the inward facing 

conformation is not possible when loaded with substrate.  An increase in intracellular 

leucine incurred a reduction in signalling by Ssy1.  This was postulated to favour the  
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Figure 8: A model for Gap1 transceptor signalling.  A substrate binds to Gap1 which is in the outward facing 

conformation.  This induces the intermediate signalling conformation.  The transceptor releases the substrate on 

the cytoplasmic side of the cell and signalling ceases.  Figure based on (Van Zeebroeck et al., 2009). 
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inward facing conformation (Wu et al., 2006).  Therefore, the outward facing 

conformation was proposed to be the signalling conformation (Poulsen et al., 2008).  

However, this model did provide limitations.  Ssy1 is a sensor specific for amino acids.  

If mere binding to the transceptor is enough to trigger signalling then any competitive 

inhibitor could stabilise the outward facing conformation.  Hence the model 

hypothesised for Gap1, where an intermediate signalling conformation is formed which 

does not change to inwards facing when loaded with substrate, seems much more 

plausible (Thevelein and Voordeckers, 2009). 

 

The fact that Mep2 was crystallised in a closed conformation, dissimilar to the bacterial 

versions, provides support for the conformational change model.  Ammonium 

conductance is blocked by GlnK in bacteria, but no homologue is present in S. 

cerevisiae, suggesting that a different mechanism exists.  Interestingly, phospho-

mimicking mutations, at the Npr1 kinase phosphorylation site in Mep2, nonetheless 

resulted in the transporter being in a closed state.  However, large conformational 

changes were observed in the CTR.  This finding lead to the phosphorylation based 

model which results in the opening of Mep2.  It is proposed that the CTR interacts with 

ICL3, by undergoing a further conformational change, resulting in Mep2 acquiring an 

open state.  This subsequent conformational change could allow Mep2 to interact with 

another protein and thereby induce pseudohyphal differentiation (van den Berg et al., 

2016). 

 

Regulation of transport activity by conformational change has also been reported in 

other Mep2 orthologues.  Mutation of a putative threonine phosphorylation site (T472) 

or a neighbouring glycine residue (G468) in AtAmt1;2, the low affinity Amt in A. 

thaliana, to aspartate results in a non-functional transporter with reduced 14[C]-

methylammonium transport rates.  On the contrary, T472A only partially reduces 

transport function.  A homology model of AtAmt1;2 shows high structural conservation 

in the C-terminus.  Homology modelling involves aligning the primary sequences of the 

protein of interest with the primary sequences of one or more known protein structures.  

In the case of AtAmt1;2 EcAmtB and AfAmt-1 were used.  Based on the alignment, 

and the structures of the known proteins, modelling software is used to generate a 

putative structure of the protein of interest (AtAmt1;2) (Neuhauser et al., 2007); protein 

structure has been found to be more conserved than protein sequence (Chothia and 

Lesk, 1986).  The C-terminus of the AtAmt1;2 homology model forms a helix-loop-helix 
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structure (CH1-CH2) and makes interactions with other monomers of the trimer.  The 

side chain of T472 is firmly packed within the C-terminus but is approachable from the 

cytoplasmic side, thus, making way for a putative phosphorylation event.  The adjacent 

G468 is located within the loop between CH1 and CH2.  From the homology structure, 

it is apparent that any side chain larger than glycine could not inhabit location 468 

without disrupting the CH1-CH2 motif and hence its interactions with neighbouring 

residues.  Co-expression of AtAmt1;2G468D or AtAmt1;2T472D monomers, with WT 

AtAmt1;2 monomers resulted in reduced NH4+ currents in Xenupus oocytes.  However, 

co-expression of AtAmt1;2T472A monomers with WT AtAmt1;2 monomers incurred 

higher transport rates than the other mutants suggesting that the disruption of the C-

terminal tail in one monomer by phosphorylation is sufficient to inactivate the residual 

monomers of the trimer (Neuhauser et al., 2007).  Similar findings were documented 

for LeAmt1;1 (Ludewig et al., 2003).  Thus, conformational rearrangements within other 

Amt proteins appear to be conserved.  However,  AtAmt1;2 and LeAmt1;1 are not 

ammonium sensors, so although conformational change may be necessary in Mep2 

for its transport function this may not be important for signalling for pseudohyphal 

growth. 

 

Interaction with a downstream signalling partner has been documented for the Mep2 

orthologue in U. maydis.  Ump2, has been found to physically interact with the GTPase 

Rho1 (Paul et al., 2014).  An interaction between the two proteins was first identified 

in a split-ubiquitin yeast two-hybrid experiment and confirmed by co-

immunoprecipitation (Pham et al., 2009).  Genetic interaction was subsequently 

confirmed.  Overexpression of Ump2 or Rac1 (G protein negatively regulated by Rho1 

and a controller of polarised growth) increases filamentation of U. maydis single 

colonies on both low and high ammonium.  On the contrary, overexpression of Rho1 

on low ammonium reduces filamentation.  In a mutant lacking Ump2, neither Rac1 nor 

Rho1 overexpression restores the filamentation defect of the strain.  In an ump2D 

mutant Rho1 will not be sequestered by Ump2 and is, thus, available to negatively 

regulate Rac1 and inhibit filamentation (Paul et al., 2014).  A split-ubiquitin yeast two-

hybrid screen for Mep2 has been conducted which identified an array of putative 

interacting partners.  To verify these interactions GST (Glutathione S-transferase) pull-

down assays were performed in E.coli.  These assays revealed no, or very weak, 

interactions with the Mep2 C-terminal tail.  The authors discussed that the lack of 

interaction could be due to another region of Mep2 interacting with the protein(s) or 
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due to the Mep2 C-terminal tail not exhibiting the correct conformation.  Lack of post-

translational modifications in the C-terminal tail, as a result of being expressed in non-

native E. coli, or separation of the C-terminal tail from the rest of the transporter, 

incurred by inclusion of GST, could equally alter the C-terminal tail conformation.  

However, deletion of one putative interacting partner, Vma4 which did produce a weak 

band in the pull-down assay, resulted in reduced transport but increased signalling.  

Reduced transport was likely due to lowered MEP2 expression and plasma membrane 

localisation (Van Zeebroeck et al., 2011).  As Vma4 is a component of the vacuolar 

H+-ATPase (Ho et al., 1993), its deletion would impact on intracellular pH.  The 

vacuolar H+-ATPase is implicated in activating the PKA pathway which is dependent 

on cytosolic pH (Dechant et al., 2010).  It is important to note that with regards to 

signalling only trehalase activation and not pseudohyphal growth were investigated 

(Van Zeebroeck et al., 2011).  Both signalling pathways are independent, as evidenced 

by the ScMep2N246A mutant (Van Nuland et al., 2006), therefore, a protein which signals 

in one may not in the other.  

 

pH model 

 

The pH model hypothesises that the pathway the proton follows, following 

deprotonation of NH4+, may impact on internal pH which in turn triggers a signalling 

cascade.  If the transport mechanism is electroneutral, following deprotonation the 

excess proton would leave ScMep2 on the extracellular side leaving only NH3 to 

transverse the pore.  However, due to the PKA of ammonium, NH3 would reconstitute 

NH4+ on the cytosolic side by acquiring a proton from the cytosol.  This would cause a 

decrease in the concentration of protons in the cytoplasm and, thus, an increase in 

cytosolic pH.  If the transport mechanism is electrogenic, the excess proton would 

simultaneously transverse the pore, aided by the twin-histidine motif, before 

recombining with NH3 to reconstitute NH4+.  As no cytosolic protons would be used to 

reconstitute NH4+ no change in pH would occur (Figure 9).  Whether the proton is 

released into the extracellular space, or whether the proton enters the cell is unknown 

(Boeckstaens et al., 2008).  However, a diversion in the route the proton follows would 

impact on internal pH which could subsequently be sensed by a pH responsive 

pathway.  As ScMep1 and ScMep3 are non-signalling homologues perhaps the route 

the proton follows is different in these transporters as opposed to in ScMep2.  As the  
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Figure 9: Diagrammatic representation of electroneutral ad electrogenic transport.  NH4

+ is recruited to the 

pore of Mep2 and deprotonated.  a) In Electroneutral transport NH3 transverses the pore while the excess proton 

leaves on the extracellular side.  NH3 acquires a proton from the cytosol incurring an increase in cytosolic pH.  b). 

In Electrogenic transport NH3 and the excess proton transverse the pore together; proton movement is facilitated 

by the twin-histidine motif.  NH3 and the excess proton recombine on the extracellular side to reconstitute NH4
+.  As 

NH3 does not aquire a proton from the cytosol the cytosolic pH remains unchanged. 
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expression of Mep/Amt proteins, from evolutionarily divergent organisms, can 

complement the pseudohyphal growth defect of a diploid yeast strain lacking Mep2 

(Neuhauser et al., 2011) (Smith et al., 2003) (Javelle et al., 2003) (Teichert et al., 2008) 

it is more plausible that changes in pH, as opposed to interaction with a downstream 

signalling partner, are triggering pseudohyphal growth.  Orthologues of the interacting 

partners may not be preserved between organisms.   

 

Sensing of pH and induction of filamentation is associated with the Rim101 pathway.  

Rim101 is a CysHis2 zinc-finger transcription factor which is proteolytically cleaved 

and activated by the calpain-like protease Rim13 in response to alkaline pH.  Rim21 is 

the pH sensor, located at the plasma membrane, which responds to external 

alkalisation.  External alkalisation results in depolarisation of the plasma membrane, 

which can additionally be induced by CCCP protonophore treatment in the absence of 

extracellular alkalisation (Obara et al., 2012).  Rim101 is one of an array of transcription 

factors which regulates the cell surface flocculin, Flo11, which is required for 

pseudohyphal and invasive growth (Barwell et al., 2005) (Ryan et al., 2012). 

 

Links between the H+ ATPase Pma1 and polarised growth have also been established.  

In the fission yeast,  Schizosaccharomyces pombe, a mutant which exhibits decreased 

plasma membrane Pma1 activity (Ulaszewski et al., 1986) displays defects in cell 

polarity and altered morphology.  Mutant cells are fatter and rounder than WT cells and 

possess ectopic protrusions.  In WT cells, GFP tagged Pma1 is two-fold more 

concentrated on the sides of the cells as opposed to within the growing tip.  This 

distribution of Pma1 is proposed to generate a pH gradient which acidifies the growing 

tip (Minc and Chang, 2010) (Figure 10).  An analogous pH gradient, as result of 

asymmetric Pma1 distribution, has similarly been documented in C. albicans.  In C. 

albicans, increasing Pma1 truncation incurs decreasing hyphal length.  Furthermore, 

cytosolic pH is more acidic in these mutants.  For hyphal formation to occur in C. 

albicans cytosolic alkalisation is required.  As the function of Pma1 is to remove protons 

from the cell this would result in the required cytosolic pH (Rane et al., 2019).  Thus, 

pH, regulated by Pma1, is critical in both organisms for cell polarity and hyphal 

formation.  Pseudohyphal growth in S. cerevisiae is a polarised growth form (Cullen 

and Sprague, 2012), therefore, Pma1 could be important in Mep2 signalling.  

Moreover, Pma1 promotes TORC1 activation in response to proton import by Gap1 

(Saliba et al., 2018).  When TORC1 is active Npr1 kinase is hyperphosphorylated,  
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Figure 10:  Distribution of Pma1 in S. Pombe.  Pma1 is distributed on the sides of the cell but excluded from the 

growing tip.  This creates a pH gradient which acidifies the tip.  Figure based on Minc and Chang, (2010). 
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inactive, and unable to activate ScMep2 (Boeckstaens et al., 2014).  Perhaps Pma1 

responds to changes in internal pH to repress signalling for pseudohyphal growth.  In 

support of this theory, a global screen has identified that S. cerevisiae strains lacking 

Vma4 or Vma6, components of the vacuolar H+ATPase, exhibit hypoactive 

pseudohyphal growth (Ryan et al., 2012).  Without a functioning H+ATPase, the cytosol 

will inevitably be more acidic.  If acidity is the repressive signal this would activate 

TORC1 to repress pseudohyphal growth.  This would also favour NH3 (electroneutral) 

transport as this would make the cytosol more alkaline.  In ScMep2, mutations to the 

twin histidine motif (H194E and H348A), and asparagine residue adjacent to the 

putative deprotonation site (N246A), uncouple transport from signalling suggesting that 

these residues are critical for inducing pseudohyphal growth (Rutherford et al., 2008a) 

(Van Nuland et al., 2006).  The position of these residues is comparable to the position 

of the equivalent residues in other electrogenic Amts, therefore, the same electrogenic 

mechanism could be occurring in ScMep2 (van den Berg et al., 2016).  In support of 

electrogenic transport, differences in optimal pH (pHopt) for transport between the non-

signalling Meps, ScMep1 and ScMep3, and the signalling Mep, ScMep2, have been 

identified.  Transport by ScMep1 and ScMep3 is favoured at pHopt 6 while transport by 

ScMep2 is most efficient at the more acidic pHopt 4.  Furthermore, substitution of the 

first conserved histidine in ScMep2 to glutamate (H194E) results in a shift in the pHopt 

to that of the non-signalling Meps.  Additionally, the ScMep2H194E mutant fails to induce 

pseudohyphal growth (Boeckstaens et al., 2008).  At pH ~6.2, or lower, yeast cells 

produce an inward proton gradient.  This proton gradient is reversed at higher pH 

(Cimprich et al., 1995).  As a shift in external pH from 6 to 7 drastically reduces ScMep2 

activity, it has been hypothesised that an inward proton gradient is critical for 

ammonium to transverse the ScMep2 pore (Boeckstaens et al., 2008), and thus 

favours proton influx coupled to substrate import.  Understanding the signalling 

mechanism and to what extent this is conserved is an important question in the field.  

Diagrams of each model are depicted in (Figure 11). 
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Figure 11: Models of Mep2 signaling.  a) Conformational change model: Under ammonium starvation, Mep2 is 

present in the membrane in its inactive state.  When the environment becomes ammonium limiting Mep2 undergoes 

a conformational change to interact with a downstream signaling partner which induces pseudohyphal growth.  b) 

The ammonium ion (NH4
+) is deprotonated to NH3 and H+.  NH3 defuses through the pore while the proton exits the 

pore or enters the cytosol.  The change in pH is sensed by a pH sensing pathway to induce pseudohyphal growth.  

Figure based on (Boeckstaens et al., 2008) and (Rutherford et al., 2008a). 
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1.5 Zymoseptoria tritici 
 

Zymoseptoria tritici is a filamentous fungus and the causative agent of Septoria tritici 

leaf blotch (STB) on wheat.  This disease is responsible for vast wheat crop losses 

globally (Dean et al., 2012). In some cases this has reduced yields by 50 % (Duba et 

al., 2018).  With resistance to fungicides of this pathogen on the rise, understanding 

the triggers of virulence is all the more important. 

 

1.5.1 Cell biology of Z. tritici 
 

Z. tritici exhibits several morphologies, the most common being ‘yeast-like’ growth.  In 

this morphology Z. tritici forms asexual macropycnidiospores, which dissimilar to yeast 

cells, are multi-cellular, being composed of four to eight cells.  These cells are wide 

(~1.5 – 3.5 µm) and long (~40 – 100 µm).  Budding off the macropycnidiospores are 

the unicellular micropycnidiospores which are considerably thinner (~1 µm) and shorter 

(~5 – 10 µm) (Sanderson, 1985).  Another morphology is hyphae which are formed 

when macropycnidiospores germinate into exceedingly narrow and elongated cells 

(Wiese R.A, 1987).  This morphology can be triggered in the laboratory upon nutrient 

starvation and in response to increased temperature (Mehrabi et al., 2006) (Motteram 

et al., 2011).  Hyphae extend in a polarised fashion (Wiese R.A, 1987) and this is a 

prerequisite for infection of the host (Yemelin et al., 2017).  Asexual 

micropycnidiospores are also observed budding off these vegetative structures.  In 

addition to the asexual spores, which are formed in asexual fruiting bodies (pycnidia) 

during infection, Z. tritici  forms sexual ascospores which are formed in asexual fruiting 

bodies (perithecia).  Ascospores are much wider (~2 – 3 µm) and shorter (~10 – 15 

µm) than asexual pycnidiospores (Wiese R.A, 1987) and are produced upon the 

engagement of cells of the opposite mating type (Kema et al., 1996).  Ascospores have 

an advantage over pycnidiospores in that they can be disseminated by air, as opposed 

to rain splash, meaning that ascospores can be spread over further distances to cause 

disease (Sanderson, 1985). Therefore, development of different morphologies 

throughout the infection cycle is vital. 
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1.5.2 Z. tritici infection cycle 
 

The infection cycle can be split into four distinct phases: entry into the host, 

colonisation, formation of pycnidia and release of spores (Figure 12). 

 

Phase 1 

Pycnidiospores and ascospores are dispersed by rain splash and air respectively.  

Upon contact with the leaf epidermis, the spores germinate into hyphae which enter 

the wheat leaf through the stomata (Duncan and Howard, 2000). ZtHog1, a MAPK 

protein, is important for this spore to hyphae transition and, thus, entry into the host 

(Mehrabi et al., 2006).  A debatable subject is whether a stimulus exists to direct the 

hyphae to the stomata or whether this is a stochastic phenomenon.  ZtFus3 mutants 

do not recognise the stomata and hence do not infect the wheat leaf, suggesting that 

attraction to the stomata may be targeted (Cousin et al., 2006).  ZtFus3 is an 

orthologue to ScFus3 in S. cerevisiae, which is a MAP kinase involved in mating (Elion 

et al., 1990).  Pmk1 is a Fus3-like protein in the rice blast fungus M. oryzae which is 

essential for appressorium formation.  Appressoria are hyphal structures required by 

some phytopathogens to enable them to infect their respective plant through the 

stomata (Xu and Hamer, 1996) (Deising et al., 2000).  Despite other studies reporting 

on appressorium-like structures, at the tip of invading hyphae (Cohen and Eyal, 1993) 

(Duncan and Howard, 2000) (Kema et al., 1996), the Z. tritici genome lacks many of 

genes associated with appressoria formation (Goodwin et al., 2011), therefore, it is 

unclear how ZtFus3 directs Z. tritici to the stomata. 

 

Phase 2 

12- 24 hr after entry into the host, colonisation by Z. tritici hyphae is observed in the 

substomatal cavity.  Hyphae are visible spreading into the substomatal space of the 

mesophyll layer 3-11 days post infection (DPI) (Cohen and Eyal, 1993) (Duncan and 

Howard, 2000) (Kema et al., 1996).  This stage is dependent on another member of 

the MAPK pathway, ZtSlt2.  Despite colonisation, the biomass of Z. tritici does not 

significantly increase, which suggests that Z. tritici utilises internal nutrient stores to 

survive rather than releasing enzymes to degrade host nutrients, as was previously 

postulated (Keon et al., 2007).  As a result, this stage is asymptomatic, as the wheat 

leaf shows no visible signs of infection.  In a laboratory this stage generally lasts 9-14 

days, but lasts 6-36 days in nature (Hilu and Bevee, 1957) (Shearer, 1971).  During  
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Figure 12: Z. tritici infection cycle.  Top panel: Host entry by hyphae through the stomata.  Second panel: 

colonisation of the substomatal cavity.  Third panel: pycnidia begin to develop in the substomatal cavity and the 

infection switches to being symptomatic.  Bottom panel: pycnidia mature and the spores are released.  Figure taken 

form (Steinberg, 2015). 
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this latent phase, Z. tritici secretes Zt3Lysm to evade host immune defences.  Chitin is 

present in fungal cell walls but absent in plant cell walls (Sanchez-Vallet et al., 2015).  

Chitin is, therefore, identified as foreign to the plant and acts as a pathogen associated 

molecular pattern (PAMP) which induces PAMP-triggered immunity (PTI).  Zt3Lysm 

competes with host chitin receptors, which would otherwise interact with chitin 

fragments, thereby promoting Z.tritici’s evasion from the host (Mentlak et al., 2012) 

(Sanchez-Vallet et al., 2015). 

 

Phase 3 

5-9 DPI, pycnidia begin to develop into fruiting bodies in the substomatal cavity (Hilu 

and Bevee, 1957) (Kema et al., 1996).  Z. tritici begin to proliferate more rapidly and 

form branching structures (Shetty et al., 2007) (Keon et al., 2007).  The significant 

increase in growth was initially believed to be due to the high expression of cell wall 

degrading enzymes (CWDEs) which degrade the host cell wall (Kema et al., 2008).  

Disintegration of the cell wall would release nutrients such as sugars and amino acids 

which would then be available for utilisation by Z. tritici (Shetty et al., 2007) (Keon et 

al., 2007).  However, very few CWDEs have been annotated within the IPO323 

genome compared to other phytopathogenic fungi such as Fusarium graminearum or 

M. oryzae.  Instead, proteases, lipases and amylases have been found to be 

transcriptionally upregulated and proteins related to protein degradation have been 

found to be expanded by genetic mapping analysis (Yang et al., 2013) (Morais do 

Amaral et al., 2012).   At the onset of necrotrophy, infection is no longer asymptomatic 

as identified by necrotic areas (black spots) on the wheat leaf (Duncan and Howard, 

2000).  In other organisms, the necrosis and ethylene-inducing peptide 1 (Nep1)-like 

protein (NLP) family induce cell death and hyperactive defence signalling in the host.  

ZtNLP expression is optimal just before the onset of the symptomatic phase yet its 

deletion does not hinder virulence.  This suggests that other effectors exist to elicit the 

roles usually displayed by the NLP family (Motteram et al., 2009). 

 

Phase 4 

The pycnidia mature allowing the release of pycnidiospores to infect new plants (Hilu 

and Bevee, 1957) (Kema et al., 1996).  As well as being important in penetration, 

ZtFus3 is also proposed to be important for the development of asexual fruiting bodies; 

ZtFus3 mutants fail to produce pycnidia on plant-derived medium in vitro.  Moreover, 

ZtFus3 mutants do not melanise or produce aerial mycelia (Cousin et al., 2006).  
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Melanin is a trait associated with pycnidia (Duncan and Howard, 2000).  Subunits of 

protein kinase A have also been associated with this stage of the infection cycle.  

ZtTpk2 and ZtBcy1 mutants are hypo-virulent compared to WT cells.  Cytological 

analysis confirmed this was due to the inability of these mutants to form asexual fruiting 

bodies and not due to a reduction in penetration or subsequent colonisation (Mehrabi 

and Kema, 2006). 

 

1.5.3 Z. tritici genome 
 

The Z. tritici genome comprises 21 chromosomes equating to 39.7 Mb DNA which 

encodes 10,952 putative genes.  While 13 of these are classified as core 

chromosomes the eight smallest chromosomes (14 -21) are dispensable and are 

classified as accessory chromosomes.  Accessory chromosomes form the 

dispensome (Goodwin et al., 2011).  Their loss during meiosis appears to have no 

visible effects on the pathogen and, therefore, are not essential for survival (Wittenberg 

et al., 2009).  The dispensome accounts for 12 % of the Z. tritici genome yet only 

encodes 6 % of the genes.  However, most dispensome genes are redundant as they 

are copies of the core chromosome genes.  Whether genes were transferred from core 

to accessory chromosomes or in the opposite direction remains elusive.  Furthermore, 

the dispensome exhibits different codon usage to the rest of the genome and is less 

G+C rich.  The dispensome mainly encodes putative transcription factors, and fewer 

pathogenicity factors than the core chromosomes.  Interestingly, in comparison to other 

fungal plant pathogens, the Z. tritici genome contains far fewer genes involved in cell 

wall degradation, despite this being observed during phase 3 of the infection cycle 

(Goodwin et al., 2011).  Metabolic profiling studies identified that more than 1000 

genes were differentially expressed upon Z. tritici spores making contact with the 

wheat leaf surface suggesting that the pathogen adapts to the changing environment.  

Sustained from 1 DPI to 4 DPI is the metabolism of lipids and fatty acids, suggesting 

that Z. tritici remains in a starved state; consistent with the limited increase in biomass.  

At the switch to necrotrophic growth protease secretion is upregulated.  This is believed 

to provide energy to Z. tritici (Rudd et al., 2015). 

 

The Z. tritici genome is at least 17 % repetitive with transposable elements accounting 

for the majority of this repetitive fraction (Dhillon et al., 2014).  Transposable elements 

were first discovered in the 1940s (McClintock., 1950) and are now believed to be 
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important in genome evolution (Kazazian, 2004) as their insertion can promote or 

restrict transcription, alter chromatin, and affect neighbouring areas (Girard and 

Freeling, 1999).  Their distribution can be both random or clustered (Chen and 

Manuelidis, 1989) (Acosta et al., 2008).  Transposons are classified based on their 

mode of replication.  Class I TEs (transposable elements) are flanked by long terminal 

repeats (LTRs) and auto-encode a reverse transcriptase.  The reverse transcriptase 

transcribes RNA to cDNA which is subsequently integrated into the genome.  Class II 

TEs are identified by terminal inverted repeats (TIRs) and auto-encode a transposase 

domain.  The transposase excises the DNA at the TIRs and integrates this excised 

DNA into a new genomic location.  Class I TEs therefore follow a copy and paste 

mechanism of integration while Class II TEs deploy a cut and paste mechanism 

(Wicker et al., 2007) (Figure 13).  The insertion of a transposable element upstream 

of the ZMR1 promoter in Z. tritici, a transcription factor which regulates melanin 

biosynthesis, has been found to modulate melanin accumulation, to aid its survival 

upon exposure to stress (Krishnan et al., 2018).  Insertion of an LTR into the promoter 

of MFS1, major facilitator gene, increases fungicide efflux (Omrane et al., 2017).  Thus, 

transposable elements promote genetic variation in the Z. tritici population permitting 

adaptation to varying climates and natural or manmade stresses (Prentis et al., 2008). 

 

1.5.4 Management of Z. tritici disease 
 

Z. tritici is a global problem, however this pathogen appears to be most clustered in 

Western Europe, especially in Germany, France and the United Kingdom.  In these 

countries alone $1.3 bn is spent on wheat fungicides.  Intensive farming practices and 

sufficient rainfall is highly favourable for Z. tritici in these regions.  In addition to 

fungicides, several practices are in place to combat the spread of STB. 

 

In Western Europe, before the first recorded outbreak of STB, wheat crops were 

hypothesised to naturally bear resistance to Z. tritici at minimal levels.  Selective 

breeding of wheat has generated greater crop yields, nevertheless, this has come at 

the expense of greater vulnerability to Z. tritici (Torriani et al., 2015).  Instead, efforts 

are now being made to selectively breed for wheat resistance.  Resistance genes 

exploited include STB6.  This gene is found naturally in several wheat cultivars, 

including Chinese Spring (CS), where expression is upregulated two-fold during 

infection with IPO323.  Transformation of the STB6 gene into susceptible wheat  
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Figure 13: Mechanism of integration by Class I and Class II TEs.  Class I (left panel) depicts the transcription 

of genomic DNA to RNA, followed by reverse transcription to cDNA, which is integrated into the genome.  Class II 

(right panel) depicts excision of a region of genomic DNA, marked by TIRs, and integration into the genome by the 

transposase.  Integration is not just restricted to the same chromosome. 
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varieties, Courtot and Bobwhite, rendered these strains resistant to IPO323, while 

knockdown of STB6 in CS abolished resistance (Saintenac et al., 2018).  Together 

with selective breeding is crop rotation which allows the spread of new resistance 

genes throughout the wheat population (McDonald and Mundt, 2016). 

 

Areas that could be exploited are stubble management.  When the wheat is harvested, 

the wheat stubble is often left to preserve the soil.  Nonetheless, reduced tillage results 

in a nutrient store for Z. tritici to aid overwintering.  The Z. tritici population multiplies,  

resulting in more variation within the population and the spread of ascospores to 

neighbouring fields (Schuh, 1990).  Increased tillage could reduce the spread, but in 

order to have any impact this practice would need to be deployed by farmers nationally 

(McDonald and Mundt, 2016).  Another strategy currently being considered is to 

biologically control Z. tritici (Kildea et al., 2008) (Analía Edith Perelló, 2009).  McDonald 

& Mundt propose using a cocktail of microbes on wheat stubble to combat Z. tritici 

during its saprophytic stage (McDonald and Mundt, 2016). 

 

In terms of fungicides, quinone outside inhibitors (QoIs) were previously utilised.  QoIs 

elicited their effect by blocking the electron transport chain during respiration (Grasso 

et al., 2006) (Sierotzki et al., 2007).  However, widespread resistance rendered the 

fungicide inadequate at combating the spread of STB disease.  Resistance was linked 

to a G143A mutation in CYTB (Gisi et al., 2002), which had been acquired 

autonomously at least four times in different areas across Europe (Torriani et al., 

2009).  As a result, QoIs are no longer exploited.  Common fungicides deployed to 

overcome Z. tritici today are succinate dehydrogenase inhibitors (SDIs), demethylation 

inhibitors (DMIs) and multi-site fungicides (MSFs) e.g. chlorothalonil.  The Fungicide 

Resistance Action Committee have ranked these drug classes, in terms of their risk to 

developing resistance, from high/medium to low (Figure 14) (Torriani et al., 2015).  

SDIs are more than 40 years old, however they have become increasingly popular 

since 2003, when broad spectrum versions became available.  SDIs block succinate 

dehydrogenase (SDH), the enzyme important during respiration, by binding to three of 

its four subunits (Keon et al., 1991).  Resistance by Z. tritici to SDIs has been evolving, 

and is characterised by isolates carrying the T79N and W80S mutations in SDH.  In 

2014 a new mutation was identified in France, N225T (Sierotzki and Scalliet, 2013).  

DMIs have been in use since the 1970s and work by inhibiting 14-a-sterol demethylase 

(encoded by CYP51), a component of sterol biosynthesis (Siegel, 1981), however,  
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Figure 14: Diagrammatic representation of the risk of evolving fungicide resistance.  The commonly used 

fungicides are ranked from medium/high risk to low risk, according to the Fungicide Resistance Action Committee 

(FRAC).  Multi-site fungicide (MSF).  Demethylation inhibitor (DMI). Succinate dehydrogenase inhibitor (SDI). 
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similar to the SDIs, resistance has prevailed.  Resistance is a result of amino acid 

changes (Leroux et al., 2007), however, overexpression of CYP51 and use of the ATP-

binding cassette and major facility subfamily (MFS) transporters by Z. tritici, to pump 

out the drug, has been hypothesised as a possible mechanism.  MSFs, which target 

multiple biochemical processes, to date, have not developed resistance (Torriani et al., 

2015) (Hobbelen et al., 2014).  However, renewal of chlorothalonil use, an MFS around 

since the 1960s, has not been approved by the European Union Standing Committee 

due to their concern over its effect on fish, amphibians and groundwater (Amara et al., 

2018).  Deployment of chlorothalonil will, therefore, soon be prohibited.  Thus, the 

urgency to develop new fungicides, which will not promote resistance in the Z. tritici 

population, is greater.   

 

1.6 Cryptococcus neoformans 
 

Cryptococcus neoformans is a human fungal pathogen which was first documented in 

1894 (Zhao et al., 2019).  Belonging to the Basidiomycota division Serotype A (C. 

neoformans var. grubii) and serotype D (C. neoformans var. neoformans) are the two 

presently accepted serotypes with the latter being less virulent.  Serotypes B and C 

are classifications of Cryptococcus gatti which are regarded as discrete species (Lin 

and Heitman, 2006).  C. neoformans is globally distributed (Khayhan et al., 2013) 

(Cogliati et al., 2016) (Spina-Tensini et al., 2017) and infects immunocompromised 

individuals; most commonly HIV/AIDS sufferers (Lui et al., 2006). 

 

1.6.1 Cell biology of C. neoformans 
 

C. neoformans is a dimorphic fungus which exists as a budding yeast (typically 5 to 10 

µM in diameter) (Okagaki et al., 2010) during vegetative growth and as hyphae during 

sexual growth (Shadomy and Utz, 1966).  Moreover, pseudohyphal growth is possible 

during asexual growth but has infrequently been identified in clinical samples (Gazzoni 

et al., 2009).  Mating is heterothallic and occurs between haploid cells of the opposite 

mating type, MATa and MATa, and between cells of the same mating type.  Same-sex 

mating is classified as monokaryotic fruiting, however this has been shown to be a 

developmental process which can occur in the absence of sexual reproduction (Fu et 

al., 2013).  During opposite-sex mating the fusion of two yeast cells, of opposite mating 
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type, is induced by the secretion of pheromones by each partner.  The fused cells 

develop into a dikaryon consisting of separate (un-fused) nuclei.  Characteristic fused 

clamp connections develop between each cellular compartment to aid the migration of 

nuclei, which have simultaneously divided by mitosis, into neighbouring compartments.  

Nuclei are maintained in their new sections by the formation of septa at the clamp 

connections.  Nuclei in the basidium, a developmental structure in the terminal 

compartment, fuse and undergo meiosis and mitosis to generate basidiospores which 

form four chains.  Finally, the spores germinate into new yeast cells which are mature 

enough to enter the sexual cycle (Kwon-Chung, 1975).  During same-sex mating 

cellular and nuclear fusion occurs between cells of the same mating type (most 

commonly MATa) to produce a monokaryon.  Monokaryons are identified by unfused 

clamp connections.  Similar to dikaryons, a basidium forms in the terminal cellular 

compartment of monokaryons.  Meiosis occurs in the basidium which produces four 

chains of haploid basidiospores (Lin et al., 2006) (Figure 15).  Monokaryotic hyphae, 

independent of same-sex mating, are produced by high temperature induced enlarged 

cells in G2 arrest (Fu et al., 2013).  Other growth morphologies associated with 

dikaryotic and monokaryotic hyphae are blastopores and chlamydospores.  

Blastopores are yeast cells which bud from the periphery of hyphae or from 

chlamydospores.  Chlamydospores are yeast cells which form within the hyphae and 

are enriched in glycogen which may act as an energy store (Lin and Heitman, 2005). 

 

1.6.2 C. neoformans genome 
 

The C. neoformans genome is approximately 20 Mb in length and projected to 

encompass 6500 genes.  Unlike other fungal organisms, the C. neoformans genome 

is highly repetitive leading to genome plasticity.  In contrast to the S. cerevisiae and C. 

albicans genomes, which contain 24 and 27 amino acid permease encoding genes 

respectively (Martho et al., 2016), the C. neoformans genome only contains 10 

suggesting differences in nitrogen assimilation.  As the threonine and tryptophan 

biosynthetic pathways are essential it has been proposed that C. neoformans is more 

dependent on biosynthesis rather than uptake (Fernandes et al., 2015) (Kingsbury and 

McCusker, 2008).  Furthermore, genes are intron-rich and predicted to exhibit 

enhanced alternative splicing (Loftus et al., 2005) (Goodwin and Poulter, 2001).  The 

Cryptococcus genome is also able to undergo microevolution during human infection, 

as identified by comparing samples isolated from patients at the onset of infection and  
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Figure 15: The mating and monokaryotic fruiting lifecycles of C. neoformans.  Top panel: haploid cells of 

opposite mating type fuse to form a dikaryon.  A basidium forms in the terminal cellular compartment and then 

nuclei fuse.  After meiosis and mitosis four chains or basidiospores  branch off the apical edge of the basidium.  

These spores are released to enter the cycle.  Bottom panel: haploid cells of the same mating type fuse to form a 

monokaryon.  Meiosis and mitosis occurs in the basidium to form four chains of basidiospores which are released 

to enter the cycle.  Figure taken from from Lin and Heitman, (2006) . 
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during relapse, to create an enhanced virulence phenotype (Ormerod et al., 2013).  In 

addition, microevolution has been associated with drug resistance (Chen et al., 2017).  

A bipolar mating system in C. neoformans, governed by the multiallelic mating-type 

locus, controls sexual development.  The mating-type locus is greater than 100 kb 

which makes it distinctively large in comparison to other fungi with analogous mating 

systems.  For both serotypes A and D, the a alleles are shorter than the a alleles.  

Despite genetic variation being common in the genome the mating-type locus remains 

immune to genetic recombination to prevent the production of sterile offspring.  The 

MAT encoded transcriptome includes pheromones and pheromone receptors which 

are components of the MAP kinase pathway in addition to other genes not associated 

with mating (Lengeler et al., 2002). 

 

1.6.3 C. neoformans infection cycle 
 
Although C. neoformans is a human pathogen this fungus is ubiquitous in the 

environment.  C. neoformans is most commonly isolated from pigeon guano 

contaminated soil (Nosanchuk et al., 1999) but has also been associated with 

eucalyptus trees (Gugnani et al., 2005), decaying wood (Randhawa et al., 2001) and 

an array of plant species.  Interestingly, specific plant hormones have been 

documented to enhance mating on plant surfaces in a laboratory setting (Xue et al., 

2007).  Primary human infection of the host occurs through inhalation of airborne 

spores or desiccated yeast cells from environmental sources (Velagapudi et al., 2009).  

These spores colonise the respiratory tract where they are cleared or lie dormant in 

the resident macrophages yielding an asymptomatic infection.  Acute infection in the 

lungs, resulting in meningococcal pneumonia, is also possible, however, it is unclear 

whether this could be due to the reactivation of dormant cells (Brizendine et al., 2011).  

Upon the host immune system becoming compromised the dormant cells are 

reactivated.  This causes systemic infection by hematogenous dissemination (Figure 
16).  C. neoformans can transverse the blood brain barrier to cause 

meningoencephalitis, the most common clinical presentation, which can be fatal if 

untreated.  However, the mechanism by which this pathogen enters this site remains 

elusive (Liu et al., 2012), but its entrapment within a macrophage is vital, as the 

depletion of these immune cells prevents dissemination into the mouse brain (Charlier 

et al., 2009) (Kechichian et al., 2007). 
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Figure 16: Infection cycle of Cryptococcus.  Pigeons may serve as carriers rather than sufferers of Cryptococcus 

to distribute the fungus.  Cryptococcus has been isolated from eucalyptus trees and pigeon guano and serves as a 

location for the production of spores.  The lungs serve as the port of entry for airborne spores or desiccated yeast 

cells sourced from the environment.  Upon primary infection of the lungs, the infection is typically asymptomatic 

with the infection being cleared or lying dormant.   Acute pneumonia may develop but this could be triggered by 

reactivated dormant cells.  Upon reactivation of dormant cells, Cryptococcus is disseminated by the blood to cause 

systemic disease. 
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1.6.4 The host immune response to C. neoformans 
 
Upon entry into the alveoli of the lungs C. neoformans cells are immediately recognised 

by the innate phagocytic immune cells including the resident macrophages (Lohmann-

Matthes et al., 1994).  Depending on the activation status of the macrophage, two types 

of responses can occur: M1 or M2.  The cytokine microenvironment is key in 

orchestrating the macrophage activation status (McQuiston and Williamson, 2012).  

M1 macrophage activation is stimulated by IFN-g, which is associated with C. 

neoformans clearance via the production of reactive oxygen species (ROS), while M2 

macrophage activation is promoted by IL-4 and/or IL-3, which favours C. neoformans 

survival.  IFN-g is a cytokine produced by Th1-type CD4+ T cells whereas IL-4 and IL-

3 are produced by Th2-type CD4+ T cells (Arora et al., 2011).  Mice infected with 

Cryptococcus, that cannot produce Th1-type cytokines, are more susceptible to the 

pathogen than mice that can produce Th1-type cytokines, highlighting the importance 

of a Th1 response in the clearance of Cryptococcus (Decken et al., 1998) (Rayhane et 

al., 1999) (Kawakami et al., 2000).  IFN-g is also key in the maturation of dendritic cells 

(DCs).  Localised in the airways DCs phagocytose inhaled Cryptococcus, degrade and 

process the fungus.  The DCs then mature and present processed Cryptococcal 

antigen to naïve T cells thereby bridging innate and adaptive immune responses 

(Syme et al., 2000).  Mature DCs also have a role in positive feedback to stimulate the 

Th1-type response (Vieira et al., 2000). 
 

1.6.5 C. neoformans virulence factors 
 

C. neoformans has serval virulence factors to aid its infection of humans and survival 

in non-human hosts.  Upon entry into the host, the production of a polysaccharide 

capsule is induced.  The stimuli for capsule production are iron deprivation (Vartivarian 

et al., 1993), neutral/basic pH (Meara and Alspaugh, 2012) and increased CO2 

concentration (Granger et al., 1985).  It is speculated that the capsule protects the 

fungus in the environment from predators and dehydration (Chrisman et al., 2011).  In 

the human host, the capsule downregulates both adaptive and innate immune 

responses (Retini et al., 1998) (Vecchiarelli et al., 1995) (Macher et al., 1978), and 

guards the cell from ROS after engulfment in a macrophage (Zaragoza et al., 2008).  

Strains with reduced capsule production exhibit reduced virulence.  Mucicarmine 

staining of the capsule is used by clinicians to diagnose cryptococcal infections (Meara 
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and Alspaugh, 2012).  Moreover, the capsule has been proposed to conceal 

components of the fungal cell wall from immune PRRs which induce phagocytosis 

(Giles et al., 2007).  Antibodies and complement are instead required to opsonise the 

pathogen for phagocytosis (Cross and Bancroft, 1995). 

 

Melanin is a pigment which has a protective role against heat and cold shock (Rosas 

and Casadevall, 1997) and acts as an antioxidant (Wang and Casadevall, 1994).  

Moreover, melanin can prevent susceptibility to certain antifungal drugs (van Duin et 

al., 2002).  Laccase enzymes oxidise exogenous diphenolic compounds such as L-

DOPA to produce melanin (Zhu et al., 2001).  A lac1Δ mutant (LAC1 encodes one of 

two laccase enzymes) displays attenuated virulence (Salas et al., 1996).  Hence, 

melanin is an important virulence factor. 

 

An array of enzymes secreted by the fungus also act as virulence factors.  Urease is 

an enzyme which catalyses the breakdown of urea to ammonia and carbon dioxide.  

The production of ammonia raises phagolysosome pH which promotes non-lytic 

exocytosis and replication by C. neoformans.  In turn, this limits permeation of the 

phagolysosome membrane which is believed to facilitate C. neoformans passage 

across the blood brain barrier.  Additionally, a C. neoformans strain lacking urease is 

unable to grow on urea as a sole nitrogen source.  Together with the fact that pigeon 

guano is rich in uric acid, uric acid can be degraded by other catabolic enzymes to 

form urea (Figure 17) (Lee et al., 2013), it has been hypothesized that urease aids C. 

neoformans survival in the environment (Fu et al., 2018).  Phospholipases, cell 

membrane degrading enzymes, aid host infection by promoting attachment to host 

cells (Barrett-Bee et al., 1985) and by inducing invasive growth (Santangelo et al., 

2004).  Phosphatases and proteases have also been implicated in promoting the 

attachment to host cells and invasion of host cells respectively (Collopy-Junior et al., 

2006) (Chen et al., 1997).   

 

A morphological related virulence factor is the production of titan cells which have been 

isolated from the lungs of patients (Zaragoza et al., 2010).  Titan cells are enlarged 

cryptococcal cells which measure 50 to 100 µM in diameter (Okagaki et al., 2010) and 

are, therefore, too large to be phagocytosed (Okagaki and Nielsen, 2012).  Muramyl 

dipeptide, a bacterial peptidoglycan subunit found in serum, and bronchial alveolar 

lavage fluid has recently been identified as an agent which promotes the yeast to titan  



57 
 

 
Figure 17: Uric acid degradation pathway in C. neoformans.  Uric acid is degraded by a series of catabolic 

enzymes to the end product ammonia. 
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cell transition in the lungs (Dambuza et al., 2018).  In addition to their enlarged sized, 

titan cells are characterised by their highly cross linked capsule, thicker cell wall, 

reduced susceptibility to oxidative stress (Okagaki et al., 2010) and increased 

polyploidy (Gerstein et al., 2015).  A mutant harbouring a mutation that reduces titan 

cell formation exhibits weakened virulence and diminished dissemination (Crabtree et 

al., 2012). 

 

1.7 Aims and context 
 

Distinct members of the Amt/Mep/Rh superfamily (ammonium transceptors) in fungi 

regulate morphological change in response to ammonium availability.  However, the 

underlying signalling mechanisms are unknown.  Two models have been proposed: 

the conformational change model, whereby Mep2 acts like a G-protein coupled 

receptor to interact with a downstream signalling partner, and the pH model, which is 

dependent on the pathway the proton follows after NH4+ deprotonation.  This study 

aims to enhance current knowledge on how ammonium signalling is generally 

conserved throughout fungi.  To address this aim two divergent fungi will be 

investigated.  The wheat pathogen, Zymoseptoria tritici, and the human pathogen, 

Cryptococcus neoformans serotype D JEC20/JEC21.  Both are dimorphic fungi which 

are ubiquitous in the environment but belong to different phyla.  First, phenotypic 

studies on different levels of ammonium will be conducted to see if morphological 

change is induced by ammonium availability.  Specifically, established C. neoformans 

phenotypes will be investigated.  Next, homology searches will be conducted to identify 

putative ammonium transporters.  These homologues will subsequently be tested for 

both transport and signalling functions in yeast through complementation studies.  Any 

transporters which are found to have a signalling role will be assayed for separation of 

function to confirm if they are transceptors.  These findings will additionally help 

increase our understanding of the molecular basis of ammonium signalling.  Moreover, 

the roles of these proteins in their own organism will be explored by generating mutants 

and undertaking phenotypic studies.  In Z. tritici, we are also interested in establishing 

if the ammonium transporters are required for Z. tritici’s pathogenicity of wheat.  The 

location of these permeases makes them accessible drug targets.  Therefore, if any of 

the Z. tritici ammonium transporters are found to be important for virulence fungal 

drugs could be developed against these transporters. 
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2 Materials and Methods 
 

2.1 Reagents and chemicals 
 

The chemicals for the media used in this study are listed in Table 1.  For media 

containing dextrose, the dextrose was added after autoclaving unless otherwise 

stated.  For solid media, 20 g/l agar was added unless otherwise stated. 

 

Media Chemicals Supplier 
   
Luria Bertani (LB) Tryptone 10 g/l, NaCl 10 g/l, yeast 

extract 5 g/l 

 

Formedium 

2XL Yeast extract 10 g/l, tryptone 20 g/l, 

NaCl 1 g/l 

 

Formedium 

Calcium/Manganese 

Medium – pH 5.5 

100 mM CaCl2, 70 mM MnCl2, 40 mM 

sodium acetate 

 

Sigma Aldrich 

Yeast Peptone 

Dextrose (YPD) 

Yeast extract 10 g/l, peptone 20 g/l, 2 

% dextrose 

 

Formedium 

Synthetic Dextrose 

– Uracil (SD-URA) 

Complete synthetic medium – uracil 

(CSM-URA) 0.77 g/l, yeast nitrogen 

base (YNB) without amino acids* 6.9 

g/l, 2 % dextrose 

 

Formedium, 

*Melford 

0.1 % Proline 0.1 % L-Proline, YNB without amino 

acids and ammonium sulphate* 1.7 g/l , 

2 % dextrose 

 

Ducehfa 

Biochemie, 

*Melford 

SLAD 

(low ammonium) 
50 µM ammonium sulphate, YNB 

without amino acids and ammonium 

sulphate* 1.7 g/l, 2 % dextrose 

Sigma Aldrich, 

*Melford 
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SHAD 

(high ammonium) 

5 mM ammonium sulphate, YNB 

without amino acids and ammonium 

sulphate* 1.7 g/l, 2 % dextrose 

 

Sigma Aldrich, 

*Melford 

SD-URA + 0.1 % 

Glutamate 

CSM-URA 0.77 g/l, YNB without amino 

acids and ammonium sulphate* 1.7 g/l, 

0.1 % glutamic acid*, 2 % dextrose 

 

Formedium, 

*Sigma Aldrich 

SD + 1 mM 

Ammonium 

Sulphate 

1 mM ammonium sulphate, YNB 

without amino acids and ammonium 

sulphate* 1.7 g/l, 2 % dextrose 

 

Sigma Aldrich, 

*Melford 

LB Mannitol Tryptone 10 g/l, yeast extract 5 g/l, 

NaCl 2.5 g/l, mannitol* 10 g/l 

 

Formedium, 

*Sigma Aldrich 

Stock A MgSO4 10 g/l, KH2PO4 29 g/l, NaCl 3 

g/l (not autoclaved) 

 

Sigma Aldrich 

Stock B K2HPO4 40.5 g/l, (NH4)SO4 10 g/l (not 

autoclaved) 

 

Sigma Aldrich 

Stock C CaCl2 2 g/l (not autoclaved) 

 

Sigma Aldrich 

Completed stock 

 

5 % stock A, 5 % stock B, 5 % stock C, 

2.5 g/l FeSO4 (not autoclaved, kept for 

one week) 

 

Sigma Aldrich 

1 M MES (pH 5.3) 1M MES (pH adjusted with 5M KOH, 

filter sterilised and stored at 4 °C) 

 

Sigma Aldrich 

Induction Medium 

(IM) 

10 mM glucose (added before 

autoclaving), 40 mM MES (pH 5.3), 0.5 

% glycerol*, agar 13 g/l 

 

Formedium, 

*Sigma Aldrich 
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20x Salts NaNO3 120 g/l, KCl 10.4 g/l, 

MgSO4.7H2O 10.4 g/l, KH2PO4 30.4 g/l 

 

Sigma Aldrich 

Trace elements ZnSO4.7H2O 22 g/l, H3BO3 11 g/l, 

MnCl2.4H2O 5 g/l, FeSO4.7H2O 5 g/l, 

CoCl2.5H2O 1.6 g/l, CuSO4.5H2O 1.6 

g/l, (NH4)6Mo7O24.4H2O 1.1 g/l, 

Na4EDTA 50 g/l (heat to boiling and 

cool to 60 °C before adjusting pH to 6.5 

with 5M KOH, then autoclave and store 

in the dark) 

 

Sigma Aldrich 

Aspergillus nidulans 

Minimal Medium 

(MM) 

5 % 20x salts, 0.1 % trace elements, 

glucose 10 g/l (added before 

autoclaving), agar 10 g/l 

 

Formedium 

 

 

Table 1: Media used in this study. 

 

The buffers used for DNA gel electrophoresis, SDS-PAGE and western blotting are 

listed in Table 2.  All buffers were not autoclaved and were kept at room temperature 

unless otherwise stated. 
 

Buffers Chemicals Supplier 
   

5x TBE Tris base 54 g/l, boric acid 27.5 g/l, 20 

mM EDTA pH 8.0 

 

Sigma Aldrich 

5x Running Buffer Tris base 16 g/l, glycine 94 g/l  

(kept at 4 °C) 

 

Sigma Aldrich 

1x SDS Running 

Buffer 

 

20 % 5x Running buffer, 1 % SDS  Melford 
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Western Transfer 

Buffer 

Tris base 3.03 g/l, glycine 14.4 g/l, 20 % 

methanol* 

 

Melford, *Fisher 

Scientific 

10x PBS Na2HPO4 11.6 g/l, KH2PO4 2 g/l, NaCl* 

80 g/l, KCl 2.23 g/l (autoclaved) 

 

Sigma Aldrich, 

*Formedium 

1x PBS Tween 10 % 10x PBS, 0.1 % tween 

 

Fisher Scientific 

EB Buffer 10 mM Tris pH 7.5, 1 mM MgCl2, 270 

mM sucrose 

 

 

Melford, *Sigma 

Aldrich, **Fisher 

Scientific 

10x TBS (pH 7.6) Tris base 24 g/l, NaCl* 80 g/l 

(autoclaved) 

 

Melford, 

*Formedium 

1x TBST 10 % 10x TBS, 0.1 % tween Fisher Scientific 

 
Table 2: Buffers used in this study. 

 

The component chemicals of the reagents used in this study are listed in Table 3.  All 

reagents were filter sterilised unless otherwise stated. 

 

Reagents Chemicals Supplier 
   
Lysis Buffer 100 mM Tris-HCl* pH 7.5, 0.15 M 

NaCl, 5 mM EDTA*, 0.5 mM PMSF 

 

Sigma Aldrich, 

*Melford 

Sample Loading 

Buffer 

100 mM Tris-HCl* pH 6.8, 4 mM 

EDTA*, 4 % SDS, 20 % glycerol, 0.02 

% bromophenol blue, 2 % 2-

mercaptoethanol (added fresh on day 

of use) 

Sigma Aldrich, 

*Melford 
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Chemiluminescent 

Solution A 

100 mM glycine PH 10, 0.4 mM 

luminol*, 8 mM 4-iodophenol**, (store 

at 4 °C in dark) 

 

Melford, Fluka 

analytical, **Sigma 

Aldrich 

Chemiluminescent 

Solution B 

 

0.12 % hydrogen peroxide, (store at 4 

°C) 

Fisher 

Bioreagents 

ECL Solution 50 % chemiluminescent solution A, 50 

% chemiluminescent solution B, (mix 

immediately prior to use) 

 

 

STET Buffer 8 % sucrose*, 50 mM Tris pH 8.0, 50 

mM EDTA, 5 % Triton X-100** 

 

Melford, *Fisher 

Scientific, **USB 

TE Buffer 10 mM Tris-HCl pH 8.0, 1 mM EDTA Melford 

 
Table 3: Reagents used in this study. 
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2.2 Strains list 
 

All the strains used in this study are listed in Table 4 - Table 7. 

 

2.2.1 Bacterial strains 
 

Strain Genotype Reference 
   
SURE E.coli cells e14-(McrA-) Δ(mcrCB-hsdSMR-

mrr)171 endA1 gyrA96 thi-1 supE44 

relA1 lac recB recJ sbcC umuC::Tn5 

(Kanr) uvrC [F´ proAB lacIqZΔM15 

Tn10 (Tetr)] 

 

Stratagene 

AGL1 C58 RecA (rif R/carbR) Ti 

pTiBo542DT-DNA (strepR) 

Succinamopine 

 

Lazo et al., (1991) 

LBA4404 Ach5 (RIF R) Ti pAL4404 (strepr) 

Octopine 

Hoekema et al., 

(1983) 

 
Table 4: Bacterial strains used in this study. 

 

2.2.2 Fungal strains 
 

Strain Genotype Reference 
   
MLY61a/a MATa/α ura3-52/ura3-52  Lorenz and 

Heitman., (1997) 

 

MLY108a/a MATa/a mep2::LEU2/mep2::LEU2 

ura3-52/ura3-52 leu2::hisG/leu2::hisG 

 

Lorenz and 

Heitman, (1998) 
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31019b MATa mep1Δ mep2Δ::LEU2 

mep3Δ::KanMX2 ura3  

 

Marini et al., 

(1997) 

31021c MATa mep1Δ mep2Δ::LEU2 ura3  

 

Marini et al., 

(1997) 

 

mep2ΔKan MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

mep2Δ::KanMX4  

Sacchromyces 

Genome Deletion 

Project 

 
Table 5: Saccharomyces cerevisiae strains used in this study. 

 

Strain Genotype Reference 
   
IPO323 MAT1-1 Goodwin et al., 

(2011) 

 

IPO323 Ztmep2D 1 MAT1-1 Ztmep2::HYG  This study 

IPO323 Ztmep2D 2* MAT1-1 Ztmep2::HYG  This study 

IPO323 Ztmep2D 3* 

 

MAT1-1 Ztmep2::HYG  This study 

IPO323 Ztmep3D 1 MAT1-1 Ztmep3::HYG  This study 

IPO323 Ztmep3D 2 MAT1-1 Ztmep3::HYG  This study 

IPO323 Ztmep3D 3 

 

MAT1-1 Ztmep3::HYG  This study 

IPO323 

Ztmep2D/Ztmep3D 1* 

MAT1-1 Ztmep2::HYG 

Ztmep3::GEN  

This study 

IPO323 

Ztmep2D/Ztmep3D 2* 

MAT1-1 Ztmep2::HYG 

Ztmep3::GEN  

This study 

IPO323 

Ztmep2DZztmep3D 3* 

 

MAT1-1 Ztmep2::HYG 

Ztmep3::GEN  

This study 

Table 6: Zymoseptoria tritici strains used in this study.  *ZtMEP2 is disrupted. 
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Strain Genotype Reference 
   
JEC20 MATa Kwon-Chung et 

al., (1992) 

 

JEC21 MATa Kwon-Chung et 

al., (1992) 

 

JEC20 amt2Δ MATa amt2::GEN  This study 

JEC21 amt2Δ MATa amt2::GEN  This study 

 

JEC20 amt2Δ + AMT2 MATa amt2::GEN AMT2::HYG  This study 

JEC21 amt2Δ + AMT2 MATa amt2::GEN AMT2::HYG  This study 

 
Table 7: Cryptococcus neoformans strains. 

 

2.3 Manipulation of bacterial strains 
 

All the bacterial strains used in this study are listed in Table 4. 

 

2.3.1 Preparation of Escherichia coli competent cells 
 

SURE competent cells were used as the starting culture for the production of 

competent cells.  Previously prepared competent cells were streaked for single 

colonies on a Luria-Bertani (LB) agar plate and incubated at 37 °C overnight.  A single 

colony was inoculated into 2 ml of LB medium and incubated overnight with shaking 

(37 °C, 180 rpm).  The 2 ml culture was inoculated into a flask containing 200 ml of 

2XL medium and incubated with shaking (30 °C, 180 rpm).  At OD595 0.2, sterile 

magnesium chloride (20 mM) was added to the culture.  At OD595 0.5, the flask was 

placed in an ice-water bath on the bench.  After 2 hours, the cells were transferred to 

four 50 ml falcon tubes and pelleted in a Hermle Z 326 K centrifuge (3000 rpm, 5 min, 

4 °C).  The supernatant was removed and the cells were gently resuspended in 100 

ml of ice cold calcium/manganese medium in a 4 °C cold room using sterile filter tips.  

The cells were left overnight in the cold room before being pelleted as previously 
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described.  In the cold room, the supernatant was discarded and the cells were 

resuspended in 10 ml of calcium/manganese medium with glycerol (15 % v/v).  The 

competent cells were finally aliquoted into 50 1.5 ml micro centrifuge tubes, flash 

frozen in liquid nitrogen and stored in a -80 °C freezer. 

 

2.3.2 Transformation of E.coli competent cells by the heat shock method 
 

Competent cells were removed from the -80 °C freezer and thawed on ice.  50 µl of 

thawed cells were incubated with 1 µl of plasmid DNA (usually produced by ‘Miniprep’ 

section 2.4.11) on ice for 30 min.  The mixture was then heat shocked in a 42 °C heat 

block for 45 seconds.  Following a 2 min cool on ice, 800 µl of LB medium was added, 

and the mixture was incubated in a 37 °C water bath for 60 min.  Cells were pelleted 

in a Progen GenFuge 24D microfuge (10,000 rpm, 1 min) and the supernatant was 

removed.  The pellet was resuspended in 200 µl of LB medium before being inoculated 

onto an LB agar plate supplemented with the appropriate antibiotic (generally 100 µg 

ml-1 Carbenicillin or 50 µg ml -1 Kanamycin) and incubated overnight at 37 °C. 

 

2.3.3 Preparation of Agrobacterium tumefaciens competent cells 
 

A. tumefaciens cells were streaked for single colonies on LB agar plates.  The AGL-1 

and LBA4404 strains were used for subsequent work in Zymoseptoria tritici and 

Cryptococcus neoformans respectively.  For LBA4404, LB medium was supplemented 

with Rifampicin (100 µg ml-1) and Tetracycline (5 µg ml-1) to reduce bacterial 

contamination.  A single colony of A. tumefaciens was inoculated into 5 ml LB and 

incubated overnight with shaking (28 °C, 250 rpm).  2 ml of this overnight culture was 

used to inoculate a 250 ml flask with 50 ml of LB medium which was incubated with 

shaking (28 °C, 250 rpm) grown to OD600nm 0.6.  Cells were chilled on ice for 5 min, 

pelleted by centrifugation (3,000 rpm, 5 min, 4 °C), and resuspended in 1 ml of 20 mM 

CaCl2.  Resuspended cells were divided into 100 µl aliquots, flash frozen in liquid 

nitrogen and stored long term at -80 °C. 
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2.3.4 Transformation of A. tumefaciens competent cells by the freeze 
thaw method 

 

A. tumefaciens competent cells were removed from the -80 °C freezer and thawed on 

ice.  50 µl of thawed competent cells were mixed with 10 µl of plasmid DNA (usually 

produced by ‘Miniprep’ section 2.4.11) in a 1.5 ml micro centrifuge tube by gentle 

tapping.  10 µl of double deionised water (ddH2O) was mixed with cells for a negative 

control.  The tubes were flash frozen in liquid nitrogen until the bubbling subsided.  

Tubes were immediately thawed at 37 °C for 5 min.  500 µl of LB medium was added 

to each tube and the cells were incubated with shaking (28 °C, 250 rpm) for 2 – 3 

hours.  Cells were then pelleted by centrifugation (10,000 rpm, 2 min), resuspended in 

150 µl of LB medium and plated onto LB plates supplemented with kanamycin (50 µg 

ml -1).  For LBA4404, LB plates were also supplemented with rifampicin (100 µg ml-1) 

and tetracycline (5 µg ml-1).  After 2 days incubation at 28 °C, a single transformant 

was used to inoculate 5 ml of LB medium, supplemented with the appropriate 

antibiotic(s).  Cultures were incubated overnight with shaking (28 °C, 250 rpm).  The 

overnight culture was used to make 15 % glycerol stocks; one 1 ml master stock, and 

five 75 µl working stocks, which were flash frozen in liquid nitrogen and stored long 

term at -80 °C (An et al., 1988). 

 

2.4 DNA cloning procedures 
 

All primers and plasmids used in this study are listed in Table 8 - Table 17. 

 

2.4.1 High fidelity amplification of DNA by polymerase chain reaction for 
plasmid preparation 

 

The following reagents were mixed in 0.2 ml polymerase chain reaction (PCR) tubes 

and ddH2Owas added to bring the total volume to 50 µl: 5 µl of NEBioLabs ThermoPol 

Reaction Buffer (10X), 1 µl of Promega PCR Nucleotide Mix (10 mM), 10 µM of each 

primer (forward and reverse), template DNA (typically 1 µl of plasmid ‘miniprep’ section 

2.4.11), and 1 unit of NEBiolab vent polymerase.  PCR reactions were performed in a 

TaKara PCR Thermal Cycler or a Labnet MultigeneTM Mini under the following 

conditions: initial denaturation (95 °C, 10 min), denaturation (95 °C, 1 min), annealing 
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(55 - 65 °C, 1 min), extension (72 °C, 1 min kb-1) and final extension (72 °C, 10 min).  

Apart from the initial and final conditions, all conditions were cycled 35 times.  PCR 

tubes were then left in the PCR machine at 4 °C until being removed for analysis, short 

term storage at 4 °C, or long term storage at -20 °C.  All primers were purchased from 

Sigma-Aldrich. 

 

2.4.2 Low fidelity amplification of DNA by polymerase chain reaction for 
diagnostic purposes 

 

Reagents were mixed in 0.2 ml PCR tubes as stated in section 2.4.1 with the following 

exceptions: 10 µl of Promega GoTaq Reaction Buffer (5X) and 2.5 units of Promega 

GoTaq DNA Polymerase were used instead of the NEBioLabs ThermoPol Reaction 

Buffer (10X) and NEBiolab vent polymerase respectively, and part of a colony (E. coli, 

C. neoformans, Z. tritici or S. cerevisiae) was used as template. 

 

2.4.3 Generation of codon optimised plasmids 
 

Genes of interest were codon optimised to S. cerevisiae using Eurofins Genomics 

GENEius optimisation software.  The resulting sequence was cloned into a plasmid by 

Eurofins Genomics and dispatched in a lyophilised format.  Lyophilised DNA pellets 

were resuspended in TE buffer at a concentration of 100 ng ml-1.  1 µl of resuspended 

DNA was transformed into E. coli to amplify the plasmid (section 2.3.2). 

 

2.4.4 Restriction digestion of PCR products and plasmid DNA 
 

Promega restriction enzymes with their respective buffers were used according to the 

manufacturer’s instructions to digest PCR products and plasmid DNA.  For DNA 

requiring digestion at two sites, a double digest was performed if an appropriate buffer 

for both enzymes was available; the Promega Restriction Enzyme Tool was used to 

determine this.  Where an appropriate buffer was not available, sequential digests were 

performed.  Typically, a double digest in pCHYG was performed sequentially unless 

the restriction sites were greater than 10 base pairs apart.  The Sigma-Aldrich 

GenElute™ PCR Clean-Up Kit was used to purify digested DNA after each digest, 

according to manufacturer’s instructions.  For plasmid DNA (typically pRS316) being 
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linearised for subsequent yeast homologous recombination, this purification step was 

eliminated (section 2.4.9). 

 

2.4.5 Visualisation of DNA by agarose gel electrophoresis 
 

PCR products and plasmid DNA were separated according to size and charge on a 1 

% agarose, Tris/Borate/EDTA (TBE) gel supplemented with 0.5 µg ml-1 ethidium 

bromide, in TBE buffer.  DNA was separated at 120 V and visualised using ultraviolet 

light (BioRad Gel DocTM  XR+ Gel Documentation System, and Image Lab TM software). 

 

2.4.6 Extraction of DNA from an agarose gel 
 

DNA separated by size and charge in section 2.4.5, where appropriate, was extracted 

from the agarose gel using the Sigma-Aldrich GenElute™ Gel Extraction Kit according 

to the manufacturer’s instructions. 

 

2.4.7 Ligation of restriction digested insert DNA into linearised vector 
DNA 

 

Promega T4 DNA ligase reagents were used to ligate restriction digested PCR 

fragments (section 2.4.4) or DNA excised from a plasmid into the linearised vector 

(sections 2.4.4 - 2.4.6).  DNA concentrations of insert and vector were quantified using 

a NanoDrop spectrophotometer (ND-1000, NanoDrop).  Approximately 75 ng of vector 

DNA was used for ligation reactions.  The quantity of insert DNA was calculated using 

the insillico online ligation calculator, with parameters set at a 3:1 insert to vector ratio.  

Insert and vector DNA were mixed in a 1.5 ml micro centrifuge tube with 1 µl of Ligase 

10X Buffer and 1 µl of T4 DNA Ligase.  ddH2O was used to bring the total reaction 

volume to 10 µl.  Additionally, a no insert DNA control reaction was made.  Typically, 

ligation reactions were incubated at 4 °C overnight, according to the manufacturer’s 

instructions.  E. coli competent cells were transformed with 5 µl of each mixture 

(section 2.3.2).  Where multiple ligations were required, plasmids were sequenced 

after each ligation reaction. 
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2.4.8 Gibson assembly of DNA fragments into pCGEN 
 

The NEBiolabs Gibson Assembly® Cloning system was used to ligate PCR fragments 

(section 2.4.1) purified using the Sigma-Aldrich GenElute™ PCR Clean-Up Kit, and 

gel extracted GEN (antibiotic resistance marker excised from pCGEN) into linear 

pCGEN (lacking GEN) (sections 2.4.4 – 2.4.6).  The NEBioCalculator was used to 

determine the fentimolar (fmol) concentrations of each DNA reagent.  Approximately 

23.5 fmol of vector DNA was mixed with 94 fmol (4X excess) of each DNA fragment, 

ddH2O was used to bring the total volume to 10 µl.  2 µl of the DNA mixture was 

combined with 2 µl of Gibson Assembly Master Mix (2X) in a 0.2 ml PCR tube, 

incubated in a Labnet MultigeneTM Mini thermal cycler (50 °C, 60 min), and chilled at 4 

°C overnight.  E. coli competent cells were transformed with 2 µl of the chilled assembly 

mixture (section 2.3.2). 

 

2.4.9 Yeast homologous recombination 
 

The haploid mep2DKan (Table 5) was transformed (section 2.5.1) with 10 µl of each 

PCR product (section 2.4.1) and 10 µl of linearised plasmid DNA (2.4.4) to generate a 

novel plasmid. 

 

2.4.10 Plasmid DNA recovery from yeast 
 

Single yeast transformants (section 2.4.9) were inoculated into 5 ml of SD-URA 

medium and incubated overnight at 30 °C on a rotary wheel.  Cells were pelleted in a 

non-sterile 2 ml ribolyser tube (10,000 rpm, 1 min).  The supernatant was removed and 

the cells were resuspended in 200 µl of STET buffer.  Following the addition of an 

equal volume of glass beads, cells were disrupted (Biospec Products Mini-Beadbeater 

16) for 30 seconds.  The tubes were immediately chilled on ice for 2 min before 

undergoing more disruption for a further 30 seconds.  Cell lysates were collected into 

1.5 ml micro centrifuge tubes by centrifugation (3000 rpm, 1 min).  The ribolyser tubes 

were discarded and the cell lysates were incubated at 100 °C for 3 min before being 

cooled on ice for 2 min.  After centrifugation (13,000 rpm, 10 min), the supernatant was 

added to a fresh micro centrifuge tube containing 100 µl of 7.5 M ammonium acetate, 

vortexed and freeze precipitated in a -20 °C freezer for 2 hours.  The tubes were then 
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centrifuged (13,000 rpm, 10 min), the top layer was transferred to a fresh micro 

centrifuge tube and vortexed with 500 µl of ice cold 100 % ethanol.  Plasmid DNA was 

then pelleted by centrifugation (13,000 rpm, 10 min), the supernatant was discarded 

and the DNA was washed with 500 µl of ice cold 70 % ethanol.  DNA was again pelleted 

by centrifugation (13,000 rpm, 10 min) and the supernatant was discarded.  The 

plasmid DNA pellet was air dried at 65 °C and then resuspended in 30 µl of ddH2O.  E. 

coli were transformed with 15 µl of recovered plasmid DNA (section 2.3.2) (Robzyk 

and Kassir, 1992). 

 

2.4.11 Isolation of plasmid DNA from E. coli by ‘Miniprep’ 
 

A single colony from the E. coli transformation (section 2.3.2) plate was inoculated into 

5 ml of LB medium, supplemented with the appropriate antibiotic, and incubated 

overnight with shaking (30 °C, 180 rpm).  Plasmid DNA was isolated from 2 ml of 

overnight culture using the Sigma-Aldrich GenElute™ Plasmid Miniprep Kit according 

to the manufacturer’s instructions.  100 µl of ddH2O was used to elute plasmid DNA. 

 

2.4.12 Sequencing of DNA 
 

Novel plasmids prepared in section 2.4.11 or PCR products purified using the Sigma-

Aldrich GenElute™ PCR Clean-Up Kit were sequenced by GATC at Eurofins 

Genomics, using their Supreme Run Tube option. 

 

2.5 Fungal genetic modification 
 

All the fungal strains used in this study are listed in Table 5, Table 6 and Table 7. 

 

2.5.1 Saccharomyces cerevisiae yeast transformation 
 

Yeast cells from a Yeast Peptone Dextrose (YPD) agar plate were inoculated into 5 ml 

YPD medium and incubated on a rotary wheel at 30 °C.  The overnight culture was 

used to inoculate 50 ml of YPD medium in a 250 ml flask to an OD595nm 0.15 – 0.35.   

Yeast cells were grown to mid log phase (OD595nm 0.50 – 0.85) with orbital shaking (30 

°C , 180 rpm).   Mid log phase cells were pelleted by centrifugation in a MSE Mistral 
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2000 centrifuge (3,000 rpm, 3 min) and washed with dH2O three times before being 

resuspended in 100 mM Lithium Acetate (300 µl for OD595nm 0.7).  50 µl of cells were 

mixed in a 1.5 ml micro centrifuge tube with 240 µl of 50 % Poly(ethylene)glycol 4000, 

3 µl of plasmid DNA (typically prepared by ‘mini-prep’ section 2.4.11), 10 µl of salmon 

sperm DNA and 32 µl of 1 M Lithium Acetate, before being incubated at the following 

temperatures (30 °C, 20 min) (42 °C, 15 min).  Transformed cells were pelleted by 

centrifugation (10,000 rpm, 30 seconds) and washed once in dH2O before being 

resuspended in 1 ml of dH2O.  200 µl of resuspended cells were spread onto SD-URA 

agar plates.  Transformed colonies appeared after 2 days incubation at 30 °C (Schiestl 

and Gietz, 1989). 

 

2.5.2 Agrobacterium mediated transformation of Zymoseptoria tritici 
 

Genes in IPO323 were deleted or disrupted using AGL-1 A. tumefaciens transformed 

with a deletion cassette (sections 2.4.7 and 2.4.8) as previously described (Motteram 

et al., 2009).  To achieve gene deletion approximately 1 kb of DNA flanking the gene 

of interest was ligated either side of the resistance cassette.  For gene disruption 

approximately 1 kb of flanking DNA before the start codon of the gene of interest and 

1 kb of DNA after transmembrane domain three of the protein of interest were ligated 

either side of the resistance cassette.  50 µl of transformed AGL-1 (section 2.3.4) were 

removed from the -80 °C freezer and plated onto an LB agar plate supplemented with 

kanamycin (50 µg ml-1) and incubated at 28 °C.  After three nights, one 5 µl loop of 

cells were inoculated into a 250 ml flask containing 40 ml of LB mannitol medium 

supplemented with kanamycin (50 µg ml-1) and shaken for one night (28 °C, 250 rpm).  

The following morning 2 ml of cell culture was pelleted in a sterile ribolyser tube by 

centrifugation (2 min, 13,000 rpm) and washed with 400 µl of IM medium (made one 

day before transformation) supplemented with acetosyringone (AS) (200 µM).  Cells 

were pelleted by centrifugation and resuspended in 1 ml IM medium + AS 

supplemented with kanamycin (50 µg ml-1).  The resuspended cells were used to 

inoculate 10 ml IM + AS + kanamycin in a fresh 250 ml flask to 0D660nm 0.15, 

approximately 270 µl of culture was required to achieve this starting optical density.  

After approximately 3 hours incubation (28 °C, 250 rpm), at 0D660nm 0.19 - 0.26, five 

large 5 µl loops of six day old Z. tritici, from a YPD agar plate grown at 16 °C, was 

resuspended in 30 ml IM + AS + kanamycin medium.  600 µl of Z. tritici was mixed with 



74 
 

600 µl of A. tumefaciens and supplemented with 6 µl of AS.  200 µl of mixed cells were 

spread onto a cellophane disc (325 P Cellulose 80 mm. diameter disc produced by 

A.A. Packaging Limited) on an IM agar (made fresh on day of transformation) plate 

supplemented with AS.  This was repeated on four additional plates.  100 µl of Z. tritici 

was plated as a control.  The plates were taped together and left in the dark at room 

temperature for two nights.  Cellophane discs were subsequently transferred to 

Aspergillus MM agar (made fresh on day of use) plates supplemented with timentin 

(100 µg ml-1) and hygromycin (100 µg ml-1) or G418 (200 µg ml-1) for pCHYG and 

pCGEN based transformations respectively, and left under the same conditions until 

small white colonies appeared, approximately after three weeks.  Five to ten colonies 

from each plate were selected using a sterile cocktail stick, stabbed six times into YPD 

agar supplemented with timentin and hygromycin or G418 and incubated for six nights 

at 16 °C.  Surviving colonies were then tested by colony PCR for integration of the 

resistance cassette at the correct locus (section 2.4.2).  Positive colonies were 

streaked for single colonies twice on YPD agar plates supplemented with timentin and 

hygromycin or G418 before being re-tested by PCR for integration of the resistance 

cassette and absence of the target gene.  Primers used in PCR reactions are listed in 

Table 12.  Correct transformants were spread onto YPD hygromycin or G418 plates 

and incubated for 6 nights at 16 °C.  Cells were scraped into 2 ml ribolyser tubes 

containing 50 % glycerol, flash frozen in liquid nitrogen and stored at -80 °C. 

 

2.5.3 Transformation of Cryptococcus neoformans through 
electroporation 

 

Electroporation was used to transform C. neoformans as previously described (Lin et 

al., 2015).  C. neoformans yeast cells were inoculated into 30 ml of YPD medium and 

incubated overnight (30 °C, 180 rpm).  The overnight culture was diluted to OD600nm 

0.3 in a 100 ml total volume and grown for an additional three hours, until the density 

was OD600nm 0.6 to 1.0.  Cells were pelleted by centrifugation (3,000 rpm, 5 min) and 

washed twice with 50 ml of EB buffer.  Cells were then resuspended in 50 ml of EB 

buffer, supplemented with 1 mM DTT, and chilled on ice for 30 – 60 min.  Chilled cells 

were then pelleted by centrifugation and washed with 50 ml of EB buffer before being 

resuspended in 300 µl of EB buffer.  45 µl of resuspended cells were mixed with 5 µl 

of DNA (100 – 400 ng) in a 0.2 cm electroporation cuvette and electroporated (BTX 

ECM 630 Electroporation System).  DNA used for the transformation included the 
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neomycin resistance cassette flanked by the genomic DNA either side of the Amt2 

gene.  This was initially cloned into pRS316 by yeast homologous recombination 

(section 2.4.9) and then gel extracted after restriction digestion (section 2.4.4 - 2.4.6).  
5 µl of ddH2O was used as a control.  Cells were electroporated (0.45 kV, 125 µF, 400 

– 600 Ω) and then immediately resuspended in 1 ml of YPD medium before being 

incubated at 30 °C for 90 min.  Incubated cells were pelleted by centrifugation (10,000 

rpm, 1 min) and resuspended in 200 µl of YPD medium before being plated onto YPD 

agar plates supplemented with G418 (200 µg ml-1).  After 2 nights incubation at 30 °C, 

transformed colonies appeared.  Transformants were tested by colony PCR for 

integration of the neomycin resistance cassette (provides resistance to G418) at the 

correct locus.  Colonies identified as having integrated the resistance cassette at the 

correct locus were streaked for single colonies twice.  New colonies were re-tested for 

integration of the neomycin resistance cassette and tested for absence of the WT allele 

by colony PCR.  Primers used in PCR reactions are listed in Table 12.  Positive 

colonies were inoculated into 5 ml of YPD medium and grown overnight at 30 °C on a 

rotary wheel.  The overnight culture was used to make 15 % glycerol stocks in 2 ml 

ribolyser tubes which were flash frozen in liquid nitrogen and stored at -80 °C. 

 

2.5.4 Agrobacterium mediated transformation of C. neoformans 
 

Reconstituted strains were generated by reintegrating AMT2 into C. neoformans using 

the LBA4404 A. tumefaciens strain transformed with the Amt2 R- pPZPHYG construct 

(section 2.3.4) as previously described (McClelland et al., 2005).  Transformed 

LBA4404 cells were inoculated into 40 ml of LB mannitol medium and incubated 

overnight with shaking (28 °C, 250 rpm).  LBA4404 cells were pelleted by centrifugation 

(2 min, 13,000 rpm) and washed twice in dH2O before being resuspended in IM 

medium (made one day before transformation) supplemented with acetosyringone 

(100 µM) at OD600nm 0.15 in a total volume of 8 -12 ml.  Resuspended LBA4404 cells 

were incubated for 6 hrs with shaking (28 °C, 250 rpm).  C. neoformans cells from a 5 

ml overnight YPD culture were washed and diluted to 107 cells ml-1 in IM medium; a 

haemocytometer was used to determine cell numbers.  LBA4404 and C. neoformans 

were mixed in a micro centrifuge tube at a 1:1 ratio.  200 µl of mixed cells were plated 

onto IM agar (made fresh on day of transformation) plates supplemented with 

acetosyringone (100 µM) and left at room temperature for 3 days.  100 µl of C. 

neoformans cells were plated as a control.  After 3 days, dH2O was pipetted on the 



76 
 

plates and the cells were dislodged from the surface using a spreader.  The cells were 

washed three times with  dH2O and transferred onto YPD agar plates supplemented 

with hygromycin (100 µg ml-1) and cefotaxime (100 µg ml-1) and incubated at 30 °C 

until colonies appeared.  Colonies were streaked for single colonies onto YPD + 

hygromycin + cefotaxime agar plates and inoculated into 5 ml of YPD medium and 

grown overnight on a rotary wheel at 30 °C.  The overnight culture was used to make 

15 % glycerol stocks which were flash frozen in liquid nitrogen and stored at -80 °C. 

 

2.6 Experimental procedures 
 

2.6.1 S. cerevisiae growth assays 
 

The haploid strains 31019b and 31052c were transformed with the plasmids of interest 

(section 2.5.1) (Table 17).  A single colony from each transformation plate was 

inoculated into 5 ml of SD-URA medium and rotated overnight at 30 °C.  Cell densities 

were measured at OD 595nm.  An equivalent number of cells were pelleted by 

centrifugation (10,000 rpm, 0.5 min) and washed three times in dH2O.  Cells were 

resuspended in 500 µl of dH2O before being serially diluted 10 fold four times.  10 µl 

of cells were then spotted onto SD – URA + 0.1 % glutamate agar plates and 1 mM 

ammonium sulphate agar plates at each dilution. 

 

2.6.2 S. cerevisiae pseudohyphal growth assays 
 

The diploid strain MLY108 was transformed with the plasmids of interest (section 2.5.1) 

(Table 17).  Single colonies were streaked for single colonies onto SLAD agar plates.  

Plates were incubated at 30 °C for five to six nights before being visualised and 

photographed using a Euromex Oxion optical microscope.  Single colonies were 

visualised at 40 X magnification, whereas the edge of a streak of cells was visualised 

at 100 X magnification. 

 

2.6.3 Preparation of membrane proteins and western blotting 
 

MLY108 was transformed with the plasmids of interest (section 2.5.1) (Table 17).  

Single colonies were inoculated into 5 ml of SD + 0.1 % proline medium and rotated 
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overnight at 30 °C.  The overnight culture was used to inoculate a 250 ml flask with 50 

ml of SD + 0.1 % proline medium at OD595nm 0.1 – 0.15.  Cells were incubated with 

shaking (30 °C, 180 rpm) until OD595nm 0.5, when cells were pelleted by centrifugation 

(3 min, 3,000 rpm) in 50 ml falcon tubes.  The supernatant was discarded and the pellet 

was flash frozen in liquid nitrogen before being stored in a -20 °C freezer.  Cell pellets 

were removed from the freezer and thawed on ice.  Thawed cells were washed with 1 

ml of dH2O and transferred to a 1.5 ml micro centrifuge tube.  Washed cells were 

pelleted by centrifugation (1 min, 12,000 rpm), the supernatant was removed and the 

cells were resuspended in 200 µl of lysis buffer.  An equal volume of glass beads (0.45 

µM in diameter) were added and the cells were vortexed vigorously for 5 min, with brief 

interruptions to be chilled on ice.  An additional 500 µl of lysis buffer was added to the 

lysed cells which were then pelleted by centrifugation (3 min, 3,000 rpm).  The 

supernatant was transferred to a clean 1.5 ml micro centrifuge tube and the plasma-

membrane enriched fraction was collected by centrifugation (45 min, 13,000 rpm, 4 

°C).  The supernatant was discarded and the pelleted plasma-membrane was 

resuspended in 100 µl of 10 % tricholroacetic acid and 900 µl of lysis buffer and chilled 

on ice for 5 min.  The plasma-membrane was precipitated by centrifugation (10 min, 

13,000 rpm, 4 °C) and then neutralised with 20 µl of 1 M Tris Base and 80 µl of sample 

loading dye and incubated (37 °C, 15 min).  For Z. tritici proteins expressed in S. 

cerevisiae, precipitates were incubated at room temperature for 20 min.  After 

centrifugation (30 seconds, 10,000 rpm), the supernatant was transferred to a fresh 

1.5 ml micro centrifuge tube; 5 -10 µl of each sample were loaded onto a 10 % SDS-

polyacrylamide gel (Rutherford et al., 2008a).  Proteins were run at 120 V for 135 min.  

Proteins were transferred onto a methanol activated Immobilon-P PVDF membrane 

using a semi-dry transfer system (21 V, 60 min).  The membrane was subsequently 

blocked with 10 % BSA/TBST for 30 min (if FLAG or Myc tagged proteins or Pma1 

were being detected), or 5 % milk/PBST for 60 min (if HIS tagged proteins or Pma1 

were being the detected) and cut at the 80 kDa mark to separate the proteins of interest 

from the loading control (Pma1).   Membranes were then incubated overnight at 4 °C 

with their appropriate antibody (1:5000 Anti-His6-Peroxidase (Roche), 1:2500 Anti-

FLAG (Sigma Aldrich), 1:2500 Anti-Myc (Sigma Aldrich), 1:2500 Anti-Pma1(Thermo 

Fisher Scientific)) suspended in either 5 % milk/PBST or 5 % BSA/TBST.  The following 

morning the membranes were washed three times with either PBST or TBST (the 

same as used previously).  For FLAG or Myc tagged proteins and Pma1, membranes 

were incubated for an additional 1 hour at room temperature with an Anti-Mouse IgG 
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monoclonal horseradish peroxidase conjugated secondary antibody (Sigma Aldrich) 

(1:5000 suspended in either 5 % milk/PBST or 5 % BSA/TBST), before being washed 

three times as previously described.  Membranes were then incubated at room 

temperature with ECL solution for 5 min before being exposed to X-ray film and 

developed using an automatic developer (Xography Imaging Systems Compact X4). 

 

2.6.4 Z. tritici pre-growth procedure 
 

Z. tritici cells taken from a -80 °C glycerol stock were streaked onto a YPD plate and 

incubated for five to six days at 16 °C.  Using a pipette tip, a small scraping of cells 

were inoculated into 5 ml of YPD medium and incubated over three nights with orbital 

shaking (18 °C, 180 rpm).   

 

2.6.5 Z .tritici growth assays 
 

Z. tritici was pre-grown as previously described (section 2.6.4).  Cell densities of each 

strain were measured at OD595nm.  An equivalent number of cells, were pelleted by 

centrifugation (10,000 rpm, 1 min).  Cells were washed three times in dH2O and 

resuspended in 500 µl of dH2O.  Each strain was serially diluted tenfold four times.  10 

µl of each dilution was pipetted onto an agar plate and incubated at 18 °C for 1 week 

before being photographed with a Nikon camera using Robosoft Software. 
 

2.6.6 Z. tritici phenotypic analysis 
 

Z. tritici was pre-grown as previously described (section 2.6.4).  Cell densities of each 

strain were measured at OD595nm.  An equivalent number of cells were pelleted by 

centrifugation (10,000 rpm, 1 min).  Cells were washed three times in dH2O and 

resuspended in 500 µl of dH2O.  5 µl of each strain was pipetted into the centre of an 

agar plate and incubated at 18 °C for at least 1 week before being photographed with 

a Nikon camera using Robosoft Software and photographed at higher magnification 

using a microscope.  For single colony analysis, cells from YPD plates were streaked 

onto agar plates using flat tooth picks and then incubated at 18 °C for at least 1 week 

before being photographed using a microscope. 
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2.6.7 Gene expression analysis in Z. tritici 
 

2.6.7.1 Culturing of cells 
 

Z .tritici was pre-grown as previously described (section 2.6.4).  2 ml of culture was 

inoculated into 25 ml of YPD medium in a 250 ml flask and incubated for an additional 

2 nights (18 °C, 250 rpm).  Cells were then pelleted by centrifugation (3,000 rpm, 5 

min), washed three times in 25 ml dH2O and resuspended in 5 ml dH2O.  Cells were 

inoculated into 50 ml of the medium of interest at OD595nm 2 and incubated with shaking 

(18 °C, 180 rpm).  For analysis of virulence genes, cells were incubated for 2 hours.  

For analysis of MEP genes, cells were incubated for 8 hours.  After the appropriate 

incubation time, cells were harvested by centrifugation (3,000 rpm, 5 min) in 50 ml 

falcon tubes.  The supernatant was removed and the cells were washed in dH2O before 

being flash frozen in liquid nitrogen and stored at -20 °C. 

 

2.6.7.2 Extraction of RNA 
 

A pestle and mortar were pre cooled with liquid nitrogen.  Frozen cell pellets (prepared 

in section 2.6.7.1) were ground to a fine powder in the mortar with the pestle.  The 

mortar was constantly replenished with liquid nitrogen to prevent the cells thawing.  

Ground cells were poured into a fresh 50 ml falcon tube, pre chilled in liquid nitrogen, 

and placed on ice.  After the liquid nitrogen had evaporated off, the lid was tightly 

screwed onto the tube and the tube was placed in liquid nitrogen.  RNA was extracted 

from the ground cells by the addition of 2 ml of trizol (Sigma Aldrich).  After 5 min, 400 

µl of chloroform was added and the whole mixture was hand shaken for 30 seconds.  

After dividing the mixture between two 1.5 ml micro centrifuge tubes and leaving to 

settle for 3 min, the tubes were centrifuged (10,000 rpm, 15 min).  The upper aqueous 

phase was pipetted evenly into two new 1.5 ml micro centrifuge tubes; care was taken 

to not disrupt the interphase. 500 µl of isopropanol was added to each tube,  and the 

tubes were inverted gently three times to mix before being incubated for 10 min at 

room temperature.  After centrifugation (10,000 rpm, 10 min), the supernatant was 

poured onto absorbent paper.  The RNA pellets were combined into one tube and 

washed with 500 µl of 70 % ethanol and centrifuged (10,000 rpm, 10 min).  The 

supernatant was discarded onto absorbent paper and the RNA pellets were air dried 
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and resuspended in 50 µl of ddH2O.  RNA concentration was determined using a 

NanoDrop spectrophotometer. 

 

2.6.7.3 DNAse treatment of RNA 
 

The Primer Design Precision DNase kit was used to remove genomic DNA from the 

RNA (section 2.6.7.2).  For 50 µl of RNA, 5 µl of 10 X buffer and 0.6 µl of DNase were 

added.  The RNA DNase mixture was incubated at 30 °C for 30 min to remove DNA, 

and 55 °C for 5 min to inactive the DNase. 

 

2.6.7.4 Preparation of cDNA 
 

DNase treated RNA (section 2.6.7.3) was converted to cDNA using the Promega 

GoScriptTM Reverse Transcription System according to the manufacturer’s 

instructions.  Up to 5 µg of RNA was incubated with 1 µl of random primer and 1 µl of 

oligo(dT)15 primer in a 5 µL total volume at 70 °C for 5 min and then chilled on ice for 

5 min.  On ice, 4 µl of GoScriptTM 5X reaction buffer, 3.8 µl of MgCl2, 1 µl of dNTP, and 

1 µl of GoScriptTM reverse transcriptase were mixed in a 1.5 ml micro centrifuge tube, 

ddH2O was used to bring the final volume to 15 µl.  15 µl of the reverse transcription 

mix were combined with the RNA primer mix and heated at 25 °C for 5 min and then 

42 °C for 1 hour.  The reverse transcriptase was heat inactivated at 70 °C for 15 min.  

cDNA was diluted 1 in 20 (if 5 µg of RNA was converted to cDNA) and stored at -20 

°C. 

 

2.6.7.5 qPCR 
 

The Sigma-Aldrich KAPA SYBR® FAST Universal kit was used to carry out qPCR 

reactions.  The following reagents were added to Qiagen 0.1 ml strip tubes on ice: 5 µl 

of 2 X KAPA SYBR® FAST mix, 2.8 µl of ddH2O, 2 µl of diluted cDNA (section 2.6.7.4) 

and 0.2 µl of 10 µM primer mix.  The primer mix consisted of a forward and reverse 

primer for the gene of interest and are listed in Table 14.  Primer pairs were designed 

to have an equivalent annealing temperature of approximately 60 °C.  qPCR reactions 

were run for 50 cycles in triplicate in a Corbett Rotor Gene 6000 real-time rotary 

analyser, using a 2 step programme with melt.  The Ct threshold was set at the half 



81 
 

way point on the exponential phase of the graph and the Ct values were normalised to 

the housekeeping gene actin.  Microsoft Excel was used to analyse Ct values, 

calculate error bars and perform a 2 tailed Student T test. 

 

2.6.8 Wheat infection assay 
 

Wheat infection assays were carried out by Dr Jason Rudd at Rothamsted Research.  

Three independent isolates for each Z. tritici mutant were spread onto YPD agar plates 

from -80 °C glycerol stocks.  Plates were immediately dispatched for testing.  Upon 

arrival at Rothamsted Research, YPD agar plates were incubated at 16 °C for four to 

five days.  Fungal spores were harvested and resuspended in water containing 0.1 % 

(v/v) Tween-20 at a density of 107 spores ml-1.  Wheat leaves were inoculated with 

spores using a swab stick attached to a cotton sterile tip.  Control wheat leaves were 

inoculated with water containing 0.1 % (v/v) Tween-20 without fungal spores.  

Inoculated plants were incubated in the dark and at high relative humidity for 48 hr in 

plastic trays with plastic lids.  Conditions were achieved by covering the plants with 

black plastic sheeting.  Plants were then incubated in the light and at high humidity for 

up to 21 days (Keon et al., 2007) (Orton et al., 2017). 

 

2.6.9 C. neoformans confrontation assay 
 

C. neoformans cells of opposite mating type were patched onto low ammonium (50 

µM) and high ammonium (5 mM) agar 1 mm apart from each other, using flat toothpicks 

and incubated in the dark for 3 weeks.  Cells were observed for hyphal growth visually 

with the naked eye and under the microscope. 

 

2.6.10 C. neoformans fruiting assay 
 

Both C. neoformans mating types were patched onto low ammonium and high 

ammonium agar in the absence of their opposite mating type using flat toothpicks and 

incubated in the dark for 3 weeks.  Cells were observed for hyphal growth visually with 

the naked eye and under the microscope. 
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2.6.11 C. neoformans invasive growth assay 
 

Surface cells from the confrontation assay (section 2.6.9) and fruiting assay (section 

2.6.10) were washed off with dH2O and gentle rubbing.  The plates were left to air dry 

before being photographed and observed under the microscope.  For microscopy, a 

cover slip was placed onto the agar and a 1000 X oil immersion lens was used. 

 

2.7 Bioinformatics 
 

2.7.1 Retrieval of fungal sequences 
 

Sequences were retrieved from the Z. tritici and C. neoformans (JEC21) EnsemblFungi 

websites using the BLAST search tool.  The protein sequence of the homologue in S. 

cerevisiae was inputted into the protein sequence data box.  S. cerevisiae protein 

sequences were initially downloaded from the Saccharomyces Genome Database.  

The parameters were set to Protein database and BLASTP.  

 

2.7.2 Sequence alignment 
 

DNA was sequenced by GATC Biotech (a Eurofins Genomics company) using their 

Supreme Run tube service.  Returned sequences were inputted into the online 

EMBOSS Needle tool along with the expected sequences.  The abi traces were 

analysed using the GATCViewer software. 

 

https://www.ebi.ac.uk/Tools/psa/emboss_needle/ 

 

2.7.3 Transmembrane domain prediction 
 

Protein sequences in the FASTA format were inputted into the TMHMM Server v. 2.0 

online software tool to predict the transmembrane domains present.  

 

http://www.cbs.dtu.dk/services/TMHMM/ 
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2.8 Plasmids and primers list 
 

Plasmids and primers used this study are listed in Table 8 - Table 17 
 

2.8.1 Primers 
 

Plasmid Primer Primer Sequence 5’-3’ 
   
ZtMep2 pCHYG ZtMep2 -1kb SacI 

F 

GCATCGGAGCTCCATCAAGTAGATCC

ATCATG 

 

ZtMep2 -1kb KpnI 

R 

GATCAGGGTACC 

CTGCCTTGGTCGGTCGACAT 

 

ZtMep2 +1kb Xba1 

F 

GTCGAGTCTAGAGAGAGGTCGGAGG

TGCAGAC 

 

ZtMep2 +1kb Hpa1 

R 

GTATCGGTTAACGGCTTCGACCTTGT

GATCGAC 

   

   

ZtMep2 Dis - 

pCHYG 

ZtMep2 -1kb SacI 

F 

GCATCGGAGCTCCATCAAGTAGATCC

ATCATG 

 

ZtMep2 -1kb KpnI 

R 

GATCAGGGTACC 

CTGCCTTGGTCGGTCGACAT 

 

ZtMep2 D +750 

SpeI F 

GTCGAGACTAGTGAACGAGGTAAACT

CCTC 

 

 

ZtMep2 D +750 

HpaI R 

 

GGATCGGTTAACCCATTCCAGTAACG

CTATCG 
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ZtMep3 pCHYG ZtMep3 -1kb ApaI 

F 

GTCGAAGGGCCCGATAGCCGTGGTC

AGAATGC 

 

ZtMep3 -1kb KpnI 

R 

CACCGTGGTACCCCGACGAAGAAGT

ATGACAT 

 

ZtMep3 +1kb XbaI 

F 

CAGTCATCTAGAGAGAAGCGCAAGCT

GGTGG 

 

ZtMep3 +1kb HpaI 

R 

GCGTACGTTAACGAGGCAAAGTCAGT

CGAAAGG 

 
Table 8: Primers used to clone DNA to be ligated into pCHYG. 

 

Plasmid Primer Primer Sequence 5’-3’ 
   
ZtMep3 pCGEN ZtMep3-GEN -1KB 

F 

 

AGGCCACCATGTTGGGCCCGGCGCG

CCGAATTCGATAGCCGTGGTCAGAAT

GC 

 

ZtMep3-GEN -1KB 

R 

TGGTGGAGTGAGGGGTACCGAGCTC

CCGACGAAGAAGTATGACAT 

 

ZtMep3-GEN+1KB 

F 

GTCTACTGCTGGCGTCGACCTAGGG

GAGAAGCGCAAGCTGGTGG 

 

ZtMep3-GEN+1KB 

R 

 

GCATGCCTGCAGGTCGACTCTAGAG

GATCCGAGGCAAAGTCAGTCGAAAG

G 

 
Table 9: Primers used to clone DNA for Gibson Assembly. 
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Plasmid Primer Primer Sequence 5’-3’ 
   
Amt2 Dis NEO 

pRS316 

Amt2 KO -1kb 

KpnI 

 

GCTGCAGGAATTCGATATCAAGCTTA

TCGATACCGGTACCGAGGCTGGAGA

TGGAAGGTGTATCC 

 

Amt2 KO -1kb GGGCGAATTCCAGCACACTGGCGCA

TTAGAATAAGTATTGGGCCTGG 

 

Amt2 KO NEO -

1kb 

CCAGGCCCAATACTTATTCTAATGCG

CCAGTGTGCTGGAATTCGCCC 

 

Amt2 D NEO +1kb CCGATACGAGACCGTTCAGCGGGAT

ATCTGCAGAATTCGC 

 

Amt2 D +1Kb GCGAATTCTGCAGATATCCCGCTGAA

CGGTCTCGTATCGG 

 

Amt2 D XbaI GGAACAAAAGCTGGGTACCGGGCCC

CCCCTCGAGTCTAGAGAAAAGTCAGT

GGGAACGTTC 

 
Table 10: Primers used to make Amt2 disruption vector using yeast homologous recombination. 

 
Primer Primer Sequence 5’-3’ 
  

pCHYG -1kb F GGCAGGATATATTGTGGTG 

pCHYG -1kb R GAACCATCTTGTCAAACGACAC 

pCGEN -1kb R GGCAGAGAAATCGCAACCTCGGCC 

 

pCHYG +1kb F GCGGCCGTCTGGACCGATGG 

pCGEN +1kb F GCGGAGGAGTTCTTCGTTGCGGG 

pCHYG +1kb R GACCGGCAACAGGATTCAATC 

 
Table 11: Primers used to diagnose and sequence deletion cassette vectors. 
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Diagnose Primer Primer Sequence 5’-3’ 
   
IPO323 

Ztmep2D 

(Left) 

ZtMep2 Diag F CAAGCGGATCATCGCGAAG 

 

HygTrpC R CCACTAGCTCCAGCCAAGCC 

 

   

IPO323 

Ztmep2D (Right) 

PCHYG +1KB 

Diag 1F 

GACCAACTCTATCAGAGCTTG 

 

ZtMep2 DiagR R GGCTTGGCTGGAGCTAGTGG 

 

*ZtMep2 DiagR Dis 

R 

GAACCTTCTTGGACGGAAGATTC 

 

   

IPO323 

Ztmep2D (WT 

allele) 

IPO323 MEP2 F 

 

 

CGTCTTCTACAATGCCGGAG 

 

IPO323 MEP2 R 

 

GACAGCATACATCAAATCCGG 

 

   

IPO323 

Ztmep3D (Left) 

ZtMep3 diag F CTCCGCTGTCAACGATCGAG 

 

HygTrpC R CCACTAGCTCCAGCCAAGCC 

 

   

IPO323 

Ztmep3D (Right) 

PCHYG +1KB 

Diag 1F 

GACCAACTCTATCAGAGCTTG 

 

ZtMep3 DiagR R GATCAGCAGGCATGGTCTTG 

 

   

ZtMep3 exon 2 F 

 

GACTACGGTGGTGATTCTGCCACCGA

GAACGTCAACGG 
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IPO323 

Ztmep3D (WT 

allele) 

ZtMep3 exon 2 R 

 

GTGACAGCGCAGAATTGCATCTGGTA

GAAAGCGTAGAG 

 

   

IPO323 

Ztmep2D/ 

Ztmep3D (Left) 

ZtMep3 Diag 2 F GTATGGATCTAGCTCAATGC 

 

pCGEN -1kb R GGCAGAGAAATCGCAACCTCGGCC 

 

   

IPO323 

Ztmep2D/ 

Ztmep3D (Right) 

PCGEN +1KB 2 F CCTGTCAGACACTCTAGTTG 

 

ZtMep3 DiagR R CAAGACCATGCCTGCTGATC 

 

   

IPO323 

Ztmep2D/ 

Ztmep3D (WT 

allele) 

ZtMep3 exon 2 F 

 

ZtMep3 exon 2 R 

 

GACTACGGTGGTGATTCTGCCACCGAGAACGT

CAACGG 

 

GTGACAGCGCAGAATTGCATCTGGTAGAAAGC

GTAGAG 

 

   

Jec21 amt2D  

(Left) 

AMT2 Diag F GGGTCCGATGTTGTTCGATG 

 

NEO Diag R 

primer 

GTCTCTGAAACCAGGAAGC 

 

   

Jec21 amt2D  

(WT allele) 

Amt2 Dis Diag 1F CCGTCTCGCACTACAACAAC 

 

Amt2 Dis Diag 1R CACTGGAAAGACCCGACGGC 

 

 
Table 12: Diagnostic primers to confirm integration of the antibiotic resistance cassette and absence of the 
WT allele in mutants.  *Primer used for disruption mutant. 
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Plasmid Primer Primer Sequence 5’-3’ 
   
ZtMep1 CO 

pRS316 

M13 F GTAAAACGACGGCCAGTG 

 

ZtMep1 CO 1R CTTCTGCCGGAGAGGACATTGTTGAT

ATTGTATTG 

 

ZtMep1 CO 1F CAATACAATATCAACAATGTCCTCTCC

GGCAGAAG 

 

ZtMep1 CO 2R CAGAACACCAGTGGAAGCAGC 

  

ZtMep1 CO 2F GCTGCTTCCACTGGTGTTCTG 

 

ZtMep1 CO 3R CATTAGTGATGGTGATGGTGATGCAC

CATTGCTCTGCCTGG 

 

ZtMep1 CO 3F CCAGGCAGAGCAATGGTGCATCACC

ATCACCATCACTAATG 

 

M13 R CAGGAAACAGCTATGACC 

 

   

ZtMep2 CO 

pRS316 

M13 F GTAAAACGACGGCCAGTG 

 

ZtMep2 CO 

ScMep2 prom R 

CGGCAAACTTCCTTGATCCGTTGACA

TTGTTGATATTGTATTGTAATATATTAA

G 

 

ZtMep2 CO 

ScMep2 prom F 

CTTAATATATTACAATACAATATCAAC

AATGTCAACGGATCAAGGAAGTTTGC

CG 

 

ZTMep2 CO M R GGTTATGCATACCAATCCGG 
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ZtMep2 CO M F CC GGA TTG GTA TGC ATA ACC 

 

ZtMep2 CO His 

tag R 

TTAGTGATGGTGATGGTGATGCATGG

CATACCCAGTTTG 

 

ZTMep2 CO His 

tag F 

CAA ACT GGG TAT GCC 

ATGCATCACCATCACCATCACTAA 

 

M13 R CAGGAAACAGCTATGACC 

 

   

ZtMep3 CO 

pRS316 

M13 F GTAAAACGACGGCCAGTG 

 

ZtMep3 CO 1R CCAACAAAGAAGTAGCTCATTGTTGA

TATTGTATTG 

 

ZtMep3 CO 1F CAATACAATATCAACAATGAGCTACTT

CTTTGTTGG 

 

ZtMep3 CO 2R GCCATTACAGCTCTCAGATTAGCTCC 

 

ZtMep3 CO 2F GGAGCTAATCTGAGAGCTGTAATGGC 

 

ZtMep3 CO 3R TTAGTGATGGTGATGGTGATGATGCC

CACCAGCTTGAGCTTC 

 

ZtMep3 CO 3F GAAGCTCAAGCTGGTGGGCAT 

CATCACCATCACCATCACTAA 

 

M13 R CAGGAAACAGCTATGACC 

 

   

Amt2 CO 

pRS316 

M13 F GTAAAACGACGGCCAGTG 
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 Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATG GTCAATGTCACATATACC 

 

Amt2 CO 2R GCGGAAAGAGCGGAACCACC 

 

Amt2 CO 2F GGTGGTTCCGCTCTTTCCGC 

 

Amt2 CO FLG ScT 

3R 

CGTCGTCATCCTTGTAATCTACGTCA

ACTCTGCCTCC 

 

Amt2 CO FLG ScT 

3F 

GGAGGCAGAGTTGACGTAGATTACAA

GGATGACGACG 

 

M13 R CAGGAAACAGCTATGACC 

 

   

H191A M13 F GTAAAACGACGGCCAGTG 

 

Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATGGTCAATGTCACATATACC 

 

Amt2 CO H191A R CTGAACTAATAGCAACAGGTGTAC 

 

Amt2 CO H191A F GTACACCTGTTGCTATTAGTTCAG 

 

Amt2 CO FLG ScT 

3R 

CGTCGTCATCCTTGTAATCTACGTCA

ACTCTGCCTCC 
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Amt2 CO FLG ScT 

3F 

GGAGGCAGAGTTGACGTAGATTACAA

GGATGACGACG 

 

M13 F CAGGAAACAGCTATGACC 

 

   

H191E M13 F GTAAAACGACGGCCAGTG 

 

Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATGGTCAATGTCACATATACC 

 

Amt2 CO H191E R CTGAACTAATTTCAACAGGTGTAC 

 

Amt2 CO H191E F GTACACCTGTTGAAATTAGTTCAG 

 

Amt2 CO FLG ScT 

3R 

CGTCGTCATCCTTGTAATCTACGTCA

ACTCTGCCTCC 

 

Amt2 CO FLG ScT 

3F 

GGAGGCAGAGTTGACGTAGATTACAA

GGATGACGACG 

 

M13 R CAGGAAACAGCTATGACC 

 

   

N241A M13 F GTAAAACGACGGCCAGTG 

 

Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATGGTCAATGTCACATATACC 
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Amt2 CO N241A R CGGAACCACCAGCAAAACCAAAC 

 

Amt2 CO N241A F GTTTGGTTTTGCTGGTGGTTCCG 

 

M13 R CAGGAAACAGCTATGACC 

 

   

H342A M13 F GTAAAACGACGGCCAGTG 

 

Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATGGTCAATGTCACATATACC 

 

Amt2 CO 2R GCGGAAAGAGCGGAACCACC 

 

Amt2 CO 2F GGTGGTTCCGCTCTTTCCGC 

 

Amt2 CO H342A R CACCAATACCAGCAGAGGC 

 

Amt2 CO H342A F GCCTCTGCTGGTATTGGTG 

 

M13 R CAGGAAACAGCTATGACC 

 

   

G343C M13 F GTAAAACGACGGCCAGTG 

 

Amt2 CO ScProm 

1R 

GGTATATGTGACATTGACCATTGTTG

ATATTGTATTGTAATATATTAAG 

 

Amt2 CO ScProm 

1F 

CTTAATATATTACAATACAATATCAAC

AATGGTCAATGTCACATATACC 

 

Amt2 CO 2R GCGGAAAGAGCGGAACCACC 
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Amt2 CO 2F GGTGGTTCCGCTCTTTCCGC 

 

Amt2 CO G343C 

2R 

CATACCACCAATACAATGAGAGGCAA

ATAC 

 

Amt2 CO G343C 

2F 

GTATTTGCCTCTCATTGTATTGGTGGT

ATG 

 

M13 R CAGGAAACAGCTATGACC 

 
Table 13: Primers used to create codon optimised plasmids using yeast homologous recombination. 

 

Primer Primer Sequence 5’-3’ 
  
ACT1 F TCGTGATTTGACCGACTAC 

ACT1 R GGATCTCCTGCTCAAAGTC 

 

3LYSM F GGCATCGATAACCCAGAC 

3LYSM R GGTGTTCGTAATCACTGGG 

 

IPO323 MEP2 F CGTCTTCTACAATGCCGGAG 

IPO323 MEP2 R GACAGCATACATCAAATCCGG 

 

IPO323 MEP3 4F GTCATACTTCTTCGTCGGGC 

IPO323 MEP3 4R GGTTGTTCGTAGCGTATCGAG 

 
Table 14: Primers used for qPCR. 
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Primer Primer Sequence 5’-3’ 
  
H99/KN99 ACTIN F* CCTGACGGTCAGGTCATCAC 

H99/KN99 ACTIN R* GAACCACCGATCCAGACACTG 

  

JEC21 AMT2 F CCTGTCTATGGCTGGTGTTGC 

JEC21 AMT2 R CAAAGTCGAGACCGCCCATG 

  
Table 15: Primers used for reverse transcription PCR.  *The same actin primers can be used for both H99/KN99 

and JEC20/JEC21 strains 

 

Primer Primer Sequence 5’-3’ 
  
ZtMep1 Mep1 F GTTCAGCGTCACTGGGGCTTG 

ZtMep1 transposon R GGACTCGAAGTTTAATGTGGCG 

 

ZtMep1 transposon F CCTCTTAGAGCACACCGTC 

ZtMep1 Mep1 R CGTGGAGCTTGAAGACATCG 

 
Table 16: Primers to identify ZtMep1 transposon. 

 

2.8.2 Plasmids list 
 

The plasmids used in this study are listed in Table 17 while the plasmid maps of 

plasmids generated in this study, along with their codon optimised sequence, where 

appropriate, are depicted in Figure 18 - Figure 30. 
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Plasmid Construct Reference 
   
pRS316 URA3-CEN (Sikorski and Hieter, 

1989) 

 

pJRH7 Mep2-N4Q-FLAG URA3-

CEN 

 

Rutherford et al., (2008) 

 

ScMep2 WT HIS Mep2-N4Q-HIS URA3-

CEN 

 

Rutherford lab 

 

pCHYG TrpC–Hph Motteram et al., (2009) 

 

pCGEN Pgpd1-Gen Motteram et al., (2011) 

 

ZtMep2-pCHYG DZtmep2::TrpC–Hph This study 

 

ZtMep2-pCHYG 

(disruption) 

 

DZtmep2::TrpC–Hph This study 

 

ZtMep3-pCHYG DZtmep3::TrpC–Hph This study 

 

ZtMep3-pCGEN DZtmep3::Pgpd1-Gen Rutherford lab 

 

pJAF1 

 

Neor Fraser et al. (2003) 

Amt2-NEO-pRS316 

 
Damt2::Neor This study 

pPZP-Hyg Hygr Walton et al. (2005) 

 

Amt2 R–pPZP-Hyg AMT2::Hygr Rutherford lab 

 

ZtMep1-pRS316 ZtMep1-HIS URA3-CEN This study 

 

ZtMep2-pRS316 ZtMep2-HIS URA3-CEN This study 
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ZtMep3-pRS316 ZtMep3-HIS URA3-CEN This study 

 

Amt2-pRS316 Amt2-FLAG URA3-CEN This study 

 

Amt2H191A-pRS316 Amt2-H191A-FLAG 

URA3-CEN 

This study 

 

 

Amt2H191E-pRS316 Amt2-H191E-FLAG 

URA3-CEN 

This study 

 

 

Amt2N241A-pRS316 Amt2-N241A-FLAG 

URA3-CEN 

 

This study 

Amt2H342A-pRS316 Amt2-H342A-FLAG 

URA3-CEN 

 

This study 

Amt2G343C-pRS316 Amt2-G343C-FLAG 

URA3-CEN 

 

This study 

Amt2S282A-pRS316 Amt2-S282A-FLAG 

URA3-CEN 

 

This study 

Amt2S282D-pRS316 Amt2-S282D-FLAG 

URA3-CEN 

 

This study 

Table 17: Plasmids used in this study. 
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Figure 18: ZtMEP1 codon optimised sequence.  Sequence generated by Eurofins Genomic GENEius software. 
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Figure 19: ZtMep1 codon optimised plasmid map.  A plasmid containing the 1E4 ZtMEP1 open reading frame 

(ORF) codon optimised to S. cerevisiae was generated by Eurofins Genomics.  Yeast homologous recombination 

was used to clone the ORF and the ScMEP2 promoter and terminator into pRS316.  A His tag was introduced for 

western analysis.  The plasmid map was created in SnapGene. 
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Figure 20: ZtMEP2 codon optimised sequence.  Sequence generated by Eurofins Genomic GENEius software. 

  



100 
 

 

Figure 21: ZtMep2 codon optimised plasmid map.  A plasmid containing the IPO323 ZtMEP2 open reading 

frame (ORF) codon optimised to S. cerevisiae was generated by Eurofins Genomics.  Yeast homologous 

recombination was used to clone the ORF and the ScMEP2 promoter and terminator into pRS316.  A His tag was 

introduced for western analysis.  The plasmid map was created in SnapGene. 
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Figure 22: ZtMEP3 codon optimised sequence.  Sequence generated by Eurofins Genomic GENEius software. 
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Figure 23: ZtMep3 codon optimised plasmid map.  A plasmid containing the IPO323 ZtMEP3 open reading 

frame (ORF) codon optimised to S. cerevisiae was generated by Eurofins Genomics.  Yeast homologous 

recombination was used to clone the ORF and the ScMEP2 promoter and terminator into pRS316.  A His tag was 

introduced for western analysis.  The plasmid map was created in SnapGene. 
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Figure 24: C. neoformans serotype D (JEC21) AMT2 codon optimized sequence.  The codon optimised 

sequence was generated using Eurofins GENEius software.  Codons highlighted in cyan, green and yellow 

correspond to the twin histidine motif, the asparagine reside adjacent to the proposed deprotonation site and a 

glycine residue next to the second histidine of the twin histidine motif respectively.  Highlighted codons were point 

mutated to generate mutant Amt2 plasmids.  The nucleotides underlined correspond to the nucleotide switches 

made. 
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Figure 25: Amt2 codon optimised plasmid map.  A plasmid containing the JEC21 AMT2 open reading frame 

(ORF) codon optimised to S. cerevisiae was generated by Eurofins Genomics.  Yeast homologous recombination 

was used to clone the ORF and the ScMEP2 promoter and terminator into pRS316.  A FLAG tag was introduced 

for western analysis.  The plasmid map was created in SnapGene. 

  



105 
 

 

Figure 26: ZtMep2 deletion vector map.  Flanking DNA was amplified by PCR and ligated into the pCHYG binary 

vector.  Restriction sites highlighted in orange indicate the sites used for ligation.  Vector map was created using 

SnapGene.  Sequencing results of left flank and right flank shown. 
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Figure 27: ZtMep2 disruption vector map.  Flanking DNA was amplified by PCR and ligated into the pCHYG 

binary vector.  Restriction sites highlighted in orange indicate the sites used for ligation.  Vector map was created 

using SnapGene.  Sequencing results of left flank and right flank shown. 
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Figure 28: ZtMep3 deletion vector map.  Flanking DNA was amplified by PCR and ligated into the pCHYG binary 

vector.  Restriction sites highlighted in orange indicate the sites used for ligation.  The vector map was created in 

SnapGene. 
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Figure 29: ZtMep3 deletion vector map to generate double mutant.  Flanking DNA was amplified by PCR and 

ligated into the pCGEN binary vector using the Gibson Assembly kit.  GEN was initially excised from pCGEN using 

the EcoRI and BamHI restriction enzymes before being used in the assembly reaction. The vector map was created 

in SnapGene.  The DNA sequencing results are shown below.  Red and yellow highlighting correspond to point and 

insertion mutations respectively. 
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Figure 30: Generation of Amt2 disruption mutant.  DNA flanking the first 3 transmembrane domains of the AMT2 

gene and the neomycin resistance cassette from pJAF1 were cloned into pRS316 at the SalI restriction site by 

yeast homologous recombination (left).  The Amt2 – NEO DNA segment (right) was excised from Amt2 – NEO – 

pRS316 using the restriction enzymes highlighted in orange (KpnI and XbaI) and used to disrupt the AMT2 gene in 

JEC21 by electroporation.  DNA maps were created in SnapGene.  Sequencing results are shown below for flanking 

DNA.  The region of sequencing highlighted in yellow indicates the loss of two T nucleotides. 
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3 Ammonium Signalling in Zymoseptoria tritici  
 

3.1 Z. tritici introduction 
 

Z. tritici can transition from yeast-like growth to filamentous growth and is therefore a 

dimorphic fungus.  In several fungi, members of the Amt/Mep/Rh superfamily have 

been identified as ammonium sensors (transceptors) which are responsible for this 

dimorphic switch in limiting ammonium conditions (Lorenz and Heitman, 1998).  For 

some pathogenic fungi this dimorphic switch is critical for infection.  As Z. tritici is 

responsible for devastating crop losses globally, and anti-fungal resistance is on the 

rise (Hayes et al., 2016), new fungicides need to be developed.  Proteins on the plasma 

membrane serve as very good targets for anti-fungal drugs as their location makes 

them easily accessible.  If Z. tritici possesses an ammonium sensor, the crystal 

structure of the transceptor could be solved and used for the development of new anti-

fungal drugs.  However, the main aim is to address the conservation of ammonium 

signalling.  The identification of an ammonium sensor in Z. tritici could help in 

understanding the signalling mechanism of transceptors, which is currently unknown. 

 

3.2 Z. tritici displays an ammonium dependent phenotype 
 

Several fungi undergo a morphological switch in response to changes in ammonium 

levels.  To determine if Z. tritici exhibits this switch, filamentation was assayed when 

cells were spotted onto low (50 µM) and high (5 mM) ammonium medium (Figure 31).  

On high ammonium, Z. tritici remained pink with minimal filamentation, whereas on low 

ammonium Z. tritici became melanised and displayed extensive filamentation around 

the edge of the colony.  Furthermore, scavenging morphologies consisting of aerial 

hyphae (which have a ‘white fluffy’ appearance on the top of the cell spot), and cell 

invasion (visible on the underside of the agar plate) were observed.  In liquid media, 

S. cerevisiae arrests growth in low ammonium, but grows in high ammonium or 0.1 % 

proline (a poor nitrogen source which also induces pseudohyphal growth).  Identical 

growth phenotypes were observed when Z. tritici was inoculated into the same liquid 

media (Figure 32).  In liquid high ammonium medium, yeast-like cells consisting of  
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Figure 31: Z. tritici phenotypic analysis.  Z. tritici was grown in YPD for 3 days at 18 ⁰C before being washed and 

spotted onto high (5 mM) (left) and low (50 µM) (right) ammonium agar plates.  After 5 weeks, the plates were 

photographed from above (top panel), on the underside of the agar plate (middle panel) and the edge of the colony 

was photographed under the microscope at 40 x magnification.. 
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Figure 32: IPO323 liquid culture growth.  Cells were inoculated from 6 day old YPD agar plates into high 

ammonium, low ammonium, and 0.1 % proline liquid medium and incubated at 18 °C at 250 rpm for 6 nights, before 

being photographed. 
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micropycnidiospores budding off the multicellular macropycnidiospores were visible 

under the microscope.  In 0.1 % proline medium, hyphae were present (Figure 33).  

This is a vegetative growth morphology formed when the macropycnidiospores extend 

in a polarised fashion from the tip into very elongated, narrow cells.  Thus, Z. tritici 

switches from yeast-like growth to filamentous growth in limiting nitrogen conditions 

and is unable to grow in liquid low ammonium.  

 

3.3 Identification of putative ammonium transporters in Z. tritici 
 

Ammonium is an important source of nitrogen for may organisms, therefore, 

ammonium transporters, which are part of the Amt/Mep/Rh superfamily, are found in 

both eukaryotes and prokaryotes.  All fungi contain at least two of these proteins, with 

S. cerevisiae containing three where ScMep2 possesses an additional role as an 

ammonium sensor (transceptor) (Lorenz and Heitman, 1998).   

 

3.3.1 Retrieval of sequences 
 

To determine how many ammonium transporters Z. tritici contains in its genome a 

homology search using ScMep2 was conducted in the IPO323 genome database.  17 

results were returned containing four different genes.  Mycgr3G91450, Mycgr3G35079 

and Mycgr3G73144 were recorded by the database to contain domains associated 

with ammonium transporters.  Mycgr3G32616 was recorded to be a putative 

uncharacterised protein containing major facilitator superfamily (MFS) domains  and a 

sugar transporter conserved site.  All ammonium sensors to date contain the 

conserved twin histidine motif, whereas non signalling versions possess a glutamate 

residue in the equivalent position of the first histidine (Boeckstaens et al., 2008).  

Mycgr3G91450 and Mycgr3G35079 protein sequences, when aligned with ScMep2, 

contain the twin histidine motif, whereas Mycgr3G73144 contains the glutamate 

histidine motif.  Moreover, Mycgr3G35079 exhibits the highest identity and similarity 

percentages and score value when aligned with ScMep2, as stated in (Table 18).  

These genes were, therefore, selected as putative ammonium transporters and were 

designated as ZtMep1, ZtMep2 and ZtMep3 as identified in (Table 18).  The sequence 

alignment between ScMep2 and all the Z. tritici putative ammonium transporters  
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Figure 33: 1000 x microscope images of IPO323 grown in liquid media.  a)  Cells inoculated into high 

ammonium (5 mM) medium.  Black arrow indicates macropycnidiospores and white arrow indicates 

micropycnidiospores.  b) Cells inoculated into 0.1 % proline medium display hyphal growth. 
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highlighted that the ExxGxD motif was conserved as were functional residues, 

including two phenylalanine residues which form the Phe gate, and an asparagine 

residue adjacent to the second phenylalanine.  As ZtMep1 and ZtMep2 possess the 

conserved twin histidine motif they are the most likely candidates for being ammonium 

sensors (Figure 34).  However, the ZtMep3 transcript has previously been found to be 

highly expressed at day 13 of the infection cycle, suggesting that ZtMep3 plays an 

important role in virulence (Yang et al., 2013). 

 

Name Z.tritici Gene 
ID 

UniProtKB/TrEMBL 
Accession Number 

Identity 
% 

Similarity 
% 

Score 

      

ZtMep1 Mycgr3G91450 F9X7M3_ZYMTI 37.5 52.7 869.5 

 

ZtMep2 Mycgr3G35079 F9X1I0_ZYMTI 44.6 58.9 1219.0 

 

ZtMep3 Mycgr3G73144 F9XDE7_ZYMTI 42.9 58.2 1139.0 

 
Table 18: Z. tritici MEP genes 

 

3.3.2 IPO323 is a ZtMep1 null strain 
 

Alignment between ScMep2 and all three Z. tiritici ammonium transporters revealed a 

large gap of 46 amino acids after glutamate 303 (E303) in ZtMep1 (Figure 34).  Firstly, 

to investigate this difference the protein sequences were analysed by a 

transmembrane domain (TMD) prediction site.  ScMep2 is predicted to contain 11 

TMDs, which is consistent with the published structure (van den Berg et al., 2016).  

Equally, ZtMep2 and ZtMep3 are predicted to contain 11 TMDs, however, ZtMep1 is 

predicted to contain merely 9 TMDs (Figure 35).  The ZtMEP1 genomic sequence, 

according to the IPO323 genome database, is forecast to contain four exons and three 

introns with intron three containing 4219 bp.  However, the ZtMEP1 gene has 

additionally been annotated by Rothamsted Research (RRes) which anticipates that 

ZtMEP1 contains 11 exons and 10 introns (Figure 36).  Exons one and two, in the 

RRes annotation, are identical to the original prediction.  Whereas exons three and 11, 

according to the RRes annotation, are 82 bp and 223 bp longer than exons three and 

four from the original projection respectively.  The RRes annotation envisages that  
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Figure 34: CLUSTAL O protein sequence alignment of ScMep2, ZtMep1, ZtMep2 and ZtMep3.  The conserved 

ExxGxD motif is boxed in red.  The AI region found in ScMep2 is boxed in yellow, with the Npr1 kinase 

phosphorylation site highlighted in orange. Red highlighted residues correspond to the Phe gate, while blue 

highlighted residues correspond to the twin – His motif, or Glu – His motif.  A conserved asparagine residue adjacent 

to the proposed deprotonation site is highlighted in green. The secondary structure elements are based on the 

figure in(van den Berg et al., 2016) and are indicative of ScMep2.  The centre of the transmembrane domain is 

indicated with the number. 
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Figure 35: TMD predictions.  Protein sequences for ScMep2 and ZtMep1, ZtMep2 and ZtMep3 from IPO323 were 

analysed by the TMHMM Server v. 2.0 online software tool.  The returned graphs depict the predicted 

transmembrane domains (TMDs).  Pink and blue lines indicate extracellular and intracellular loops respectively, 

while red boxes indicate TMDs.   
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Figure 36: Schematic of ZtMEP1.  Image imported from the IPO323 genome database.  Red indicates the original 

intron exon prediction.   Orange indicates the Rothamsted Research (RRes) exon intron prediction. 



119 
 

ZtMep1 contains 1168 amino acids; 716 bp more than the original prediction.  To see 

if ZtMEP1 was conserved within the Z. tritici population, a ZtMEP1 homology search 

was conducted in three other Z. tritici strains, ST99CH_3D7 (3D7), ST99CH_1A5 

(1A5) and ST99CH_1E4 (1E4).  A 46 amino acid gap is not observed when ZtMep1 

from 3D7, 1A5 or 1E4 are aligned with ScMep2.  This demonstrates that ZtMep1 in 

IPO323 is predicted to be different to the homologues in the other Z. tritici strains 

inspected.  Comparison between IPO323, 3D7, 1A5, and 1E4 ZtMEP1 revealed repeat 

sequences in IPO323 ZtMEP1 which are consistent with the insertion of a transposable 

element (Kazazian, 2004).  Flanking direct repeats, composed of 8 nucleotides with 

the sequence CGGCTGGC, and terminal inverted repeats, composed of 21 

nucleotides, were identified within intron three of the original (not annotated by RRes) 

IPO323 ZtMEP1 sequence (Figure 37).  The newly predicted IPO323 ZtMEP1 

sequence, lacking the transposon, was translated into a protein sequence and aligned 

with ZtMep1 from the 3D7, 1A5 and 1E4 Z. tritici strains (Figure 38).  Apart from five 

resides, all the ZtMep1 sequences are identical.  However, the newly forecast IPO323 

ZtMep1 protein sequence, along with ZtMep1 from 1E4, are projected to contain one 

TMD less than ScMep2 according to the TMD prediction site (Figure 39).  To confirm 

that the IPO323 strain used in our lab contained this transposon, regions overlapping 

the ZtMEP1 transposon borders were amplified by high fidelity PCR and sequenced.  

Sequencing results verified that ZtMEP1, in the IPO323 strain used in our lab, was 

disrupted by a transposon.  Therefore, IPO323 is essentially a Ztmep1D null strain 

(Figure 40).   

 

3.4 Ammonium dependent expression of ZtMEP2 and ZtMEP3 
 

Ammonium transporter expression is under the control of nitrogen catabolite 

repression in several fungi.  Limiting ammonium enhances their expression while high 

levels of ammonium represses them (Rutherford et al., 2008a).  To determine if 

ZtMEP2 and ZtMEP3 exhibit ammonium dependent expression, mRNA, extracted 

from IPO323 WT cells grown in low and high ammonium, was analysed by qPCR.  

ZtMEP2 and ZtMEP3 were expressed 4.06 and 6.26 fold more in low ammonium 

compared to high ammonium media respectively.  A 2 tailed student T test confirmed 

that both results were statistically significant, as indicated by p-value 0.0002  
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Figure 37: Schematic of transposable element integrated into ZtMEP1.  The IPO323 ZtMEP1 sequence was 

analysed for flanking direct repeats and terminal inverted repeats, coloured in purple and brown respectively.  The 

middle grey nucleotides correspond to 4001 bp within the transposable element.  ZtMEP1 is present on the reverse 

strand, however the sequence is shown in the forward direction for ease, as indicated by the arrow below.  The 

location of the transposable element is depicted on the arrow.  Adapted from Pierce, Benjamin. Genetics: A 

Conceptual Approach, 2nd ed. 
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Figure 38: ZtMep1 alignment between Z. tritici strains.  ZtMep1 from IPO323 (new sequence generated from 

factoring in the transposon), 3D7, 1A5 and 1E4 were aligned.  The sequence highlighted in yellow corresponds to 

the 46 amino acids missing from the original IPO323 ZtMep1 sequence. 

  



122 
 

 

Figure 39: TMD predictions.  Protein sequences for ScMep2 and ZtMep1 from the IPO323 and ED4 strains were 

analysed by the TMHMM Server v. 2.0 online software tool.  The returned graphs depict the predicted 

transmembrane domains (TMDs).  Pink and blue lines indicate extracellular and intracellular loops respectively, 

while red boxes indicate TMDs.  The original sequence is the protein sequence available from the IPO323 genome 

database, which was not based on the RRes annotation.  The new sequence is the sequence created by factoring 

in the transposon. 
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Figure 40: ZtMEP1 contains a transposon.  a)  Schematic of the ZtMEP1 gene downloaded from the Z. tritici 

genome database including the annotation from RRes.  The black lines labelled A and B indicate the regions 

amplified by PCR.  b)  DNA gel of PCR product A and the returned sequencing result.  c) DNA gel of PCR product 

B and the returned sequencing result.  Red annotation in the sequencing indicates the region is part of ZtMEP1, 

whereas blue and grey indicate exon and intron regions (according to the RRes annotation) within the transposon 

respectively.  The sequences highlighted in orange and yellow correspond to the direct flanking repeats and the 

inverted terminal repeats respectively. 
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and p-value 0.0000007 for ZtMEP2 and ZtMEP3 results respectively (Figure 41).  This 

data confirms that the ZtMEP2 and ZtMEP3 expression is induced in response to 

limiting ammonium conditions which is consistent with nitrogen catabolite repression. 
 

3.5 Expression of Z. tritici ammonium transporters in S. cerevisiae 
 

A diploid S. cerevisiae strain lacking ScMep2 (mep2D/mep2D) is unable to undergo 

pseudohyphal growth in response to limiting ammonium (Lorenz and Heitman, 1998) , 

whereas lack of all three ammonium transporters (mep123D) renders the yeast unable 

to grow on medium with ammonium as the sole nitrogen source (Marini et al., 1997).  

S. cerevisiae can therefore be utilised as a model for testing putative ammonium 

transporters for growth and signalling functions.  Z. tritici ammonium transporters were 

hence codon optimised to S. cerevisiae and expressed in the appropriate S. cerevisiae 

strains to verify that they are ammonium transporters and to test if they act as 

ammonium sensors.  ZtMEP2 and ZtMEP3 were cloned from the IPO323 strain 

whereas ZtMEP1 was cloned from the 1E4 strain as ZtMEP1 in IPO323 is disrupted 

by a transposon.  All codon optimised genes were cloned into the low copy shuttle 

plasmid pRS316 (Sikorski and Hieter, 1989). 

 

3.5.1 ZtMep1, ZtMep2, and ZtMep3 are ammonium transporters 
 

Transformation of mep123D with all three ammonium transporters supported growth 

on 0.1 % glutamate.  Glutamate is a positive control as this is a preferred source of 

nitrogen.  On 1 mM ammonium sulphate, a limiting concentration of ammonium, 

ZtMep2 and ZtMep3 restored growth to the same level as the ScMep2 positive control.  

The amount of restored growth achieved by ZtMep1 was more than the negative vector 

control, but considerably less than the ScMep2 (Figure 42).  These findings confirm 

that ZtMep1, ZtMep2 and ZtMep3 are ammonium transporters, but suggest that 

ZtMep2 and ZtMep3 are more efficient transporters than ZtMep1.  ScMep2 transport 

activity is regulated by the TOR regulated kinase Npr1 in S. cerevisiae by 

phosphorylation.  Therefore, in a strain lacking all three ammonium transporters, and 

Npr1 (mep123D/npr1D), ScMep2 is not activated and the strain cannot grow on low 

ammonium (Boeckstaens et al., 2014).  To test if the Z. tritici ammonium transporters 

were regulated by Npr1 in yeast, the mep123D/npr1D strain was transformed with the  
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Figure 41: Expression analysis of ZtMEP2 and ZtMEP3.  IPO323 cells pre-grown in YPD were washed and 

inoculated into low and high NH4
+ liquid medium at OD595nm 2.  Cells were harvested after 8 hours growth at 18 °C.  

RNA extracted from the cells was converted to cDNA to be used as template for qPCR.  The 2-∆Ct method was used 

to calculate relative expression to cultures grown in high NH4
+.  Actin was used as a reference gene.  A 2 tailed 

Student T test was used to calculate significance.  *** p-value <0.001 
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Figure 42: Growth analysis of Z. tritici ammonium transporters expressed in yeast .  Haploid mep123∆ and 

mep123∆/npr1∆ S. cerevisiae cells containing the plasmids of interest were grown in SD-URA medium overnight, 

washed, and 10 fold serially diluted before being spotted onto 0.1 % glutamate or 1 mM ammonium sulphate agar. 
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same codon optimised plasmids and the growth assay was repeated.  Interestingly, in 

contrast to ScMep2, which does not restore growth to WT levels in mep123D/npr1D, 

ZtMep2 and ZtMep3 do complement the growth defect on low ammonium.  Moreover, 

there was no difference in the level of restored growth by ZtMep1 between mep123D 

and mep123D/npr1D (Figure 42).  This data confirms that the transport activity of 

ZtMep1, ZtMep2 and ZtMep3 is not regulated by Npr1 when expressed in yeast.   
 

3.5.2 ZtMep3 acts as an ammonium sensor in S. cerevisiae 
 

Transformation of mep2D/mep2D with ZtMep1 or ZtMep2 did not restore the 

pseudohyphal growth defect as the edge of their colonies were smooth and not 

dissimilar to the negative vector control.  On the contrary, ZtMep3 did complement the 

pseudohyphal growth defect of the mep2D/mep2D strain.  Both invasive and surface 

pseudohyphae were observed on the edge of ZtMep3 single colonies and streaked 

cells.  (Figure 43).  When analysing the pseudohyphae on the edge of the single 

colonies, the ZtMep3 filaments did not extend as far as the ScMep2 positive control 

filaments, however no discrepancy was observed between ScMep2 and ZtMep3 when 

comparing the pseudohyphae on the edge of the streaks of cells.  Thus, ZtMep3 acts 

as an ammonium sensor when expressed in yeast.  

 

3.5.3 ZtMep3 is expressed to a lower level than ZtMep1 and ZtMep2 in S. 
cerevisiae 

 

The pseudohyphal growth assays suggest that only ZtMep3, and not ZtMep1 nor 

ZtMep2 are ammonium sensors in S. cerevisiae.  However, a reduction in the protein 

expression of Mep2 can impact on pseudohyphal growth.  Protein expression of each 

Z. tritici transporter was therefore analysed by western blotting.  The expected 

molecular weights of each protein were 53616 Da, 56218 Da, and 57617 Da for 

ZtMep1, ZtMep2, and ZtMep3 respectively.  ZtMep1 and ZtMep2 were expressed to 

similar levels to each other, however, ZtMep3 expression was substantially lower 

(Figure 44).  Therefore, the lack of pseudohyphal growth by ZtMep1 and ZtMep2 

cannot be attributable to reduced expression, as their expression was higher than 

ZtMep3.   
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Figure 43: Pseudohyphal growth analysis of Z. tritici ammonium transporters expressed in yeast .  Diploid 

mep2∆/mep2∆ S. cerevisiae cells containing the plasmids of interested were streaked for single colonies on low 

ammonium sulphate medium (50 µM).  After 6 days growth, cells were photographed under the microscope at 100 

x (top panel) and 40 x (bottom panel) respectively. 
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Figure 44: Western analysis of Z. tritici ammonium transporters expressed in yeast.  Diploid mep2∆/mep2∆ 

S. cerevisiae cells containing the plasmids of interested were grown to mid-log phase in 0.1 % proline medium.  

Membrane proteins were extracted and assayed by western blotting.  Pma1 was used as a loading control to 

compare protein expression levels. 
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3.6 Generation of Z. tritici mutants 
 

Ammonium dependent filamentation in several fungal species is dependent on 

members of the Mep/Amt/Rh family.  To determine if the ammonium dependent 

filamentation exhibited by Z. tritici (section 3.2) is dependent on ammonium 

transporters, ZtMEP2 and ZtMEP3 were deleted from the IPO323 genome by 

agrobacterium mediated transformation, before being analysed in later experiments 

for filamentation.  ZtMEP1 was not selected for deletion as the gene has already been 

disrupted in IPO323 by a transposable element (section 3.3.2).  As the 3’ end of 

ZtMEP2 is very close to the 3’ UTR of another gene (Mycgr3T67486).  ZtMEP2 was 

therefore disrupted in addition to being deleted.  For the deletion Ztmep2D mutant, the 

left side flanking DNA was chosen so that the adjacent gene would not be disrupted.  

ZtMEP3 is not in close proximity to its adjacent genes, therefore ZtMEP3 was deleted 

rather than disrupted (Figure 45). 
 

3.6.1 Deletion and disruption of ZtMEP2 
 

Upon agrobacterium mediated transformation, the Hygromycin-trpC resistance 

cassette was successfully integrated into the IPO323 genome at the ZtMEP2 locus 

(Figure 46).  The deletion construct exhibited 10 % targeting efficiency (4 out of 40 

mutants tested), whereas the disruption construct displayed 40 % targeting efficiency 

(23 out of 49 mutants tested) as confirmed by diagnostic colony PCR.  PCR primers 

annealing to genomic DNA adjacent to the deletion and disruption cassette and 

primers targeted to the hygromycin-trpC cassette were used to confirm successful 

integration at the correct locus.  Absence of the WT allele verified that the mutants had 

been generated (Figure 47).  One deletion mutant and two disruption mutants were 

used for further investigation. 

 

3.6.2 Deletion of ZtMEP3 
 

The hygromycin-trpC resistance cassette was integrated into the IPO323 genome at 

the ZtMEP3 locus by agrobacterium mediated transformation with a 47 % targeting 

efficiency (18 out of 45 mutants tested) (Figure 48).  Colony PCR was used to 

diagnose successful integration, as previously described (section 3.6.1) (Figure 49).  

Three independent isolates were used for subsequent experiments. 
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Figure 45: Schematic of ZtMEP2 and ZtMEP3 genomic locations.  Images exported from the IPO323 genome 

database depict a) ZtMEP2 and b) ZtMEP3 location.  Regions highlighted in green indicate the genes of interest.  

Red boxes and lines correspond to exons and introns respectively, while red outlines white boxes indicate 5’ or 3’ 

UTRs. 
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Figure 46: Schematic of homologous recombination to delete and disrupt ZtMEP2.  a) Homologous 

recombination event to delete ZtMEP2.  b) Homologous recombination event to disrupt ZtMEP2.  PCR1, PCR2 and 

PCR3 correspond to diagnostic PCRs 
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Figure 47: Diagnostic Z. tritici colony PCRs to confirm Ztmep2Δ mutants.  The WT colony along with three 

independent mutant isolates were tested for targeted integration of the resistance cassette and for the presence of 

the WT allele.  a) PCR1: results from the left hand side HYG integration.  b) PCR 2: results from the right hand side 

HYG integration (* primers to detect HYG in the deletion mutant were used).  c) PCR 3: results from the WT allele 

PCR.  Lanes labelled 1, 2 and 3 identify which Ztmep2Δ independent isolate is being tested. 
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Figure 48: Schematic of homologous recombination to delete ZtMEP3.  a) Homologous recombination event 

to delete ZtMEP3.  PCR1, PCR2 and PCR3 correspond to diagnostic PCRs 
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Figure 49: Diagnostic Z. tritici colony PCRs to confirm Ztmep3Δ mutants.  The WT colony along with three 

independent mutant isolates were tested for targeted integration of the resistance cassette and for the presence of 

the WT allele.  a) PCR1: results from the left hand side HYG integration.  b) PCR2: results from the right hand side 

HYG integration. c) PCR3: results from the WT allele PCR.  Lanes labelled 1, 2 and 3 identify which Ztmep3Δ 

independent isolate is being tested. 
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3.6.3 Generation of ZtMep2/ZtMep3 double mutant 
 
To test if both ZtMep2 and ZtMep3 were required for the ammonium dependent switch, 

yeast to filamentous growth, ZtMEP3 was deleted from the Ztmep2D #2 strain and 

assayed for filamentation.  The GEN resistance cassette was integrated into the 

IPO323 Ztmep2D #2 genome at the ZtMEP3 locus by agrobacterium mediated 

transformation with a 13 % targeting efficiency (9 out of 70 mutants tested) (Figure 
50).  Colony PCR was used to diagnose successful integration, as previously 

described (section 3.6.1) (Figure 51).  Three independent isolates were used for 

subsequent experiments. 

 

3.7 Phenotypic analysis of mutants 
 

3.7.1 IPO323 Ztmep3D and Ztmep2D/Ztmep3D mutants display a growth 

defect on high ammonium 
 

As ammonium is such an important source of nitrogen for many fungi, the loss of an 

ammonium transporter has the potential to impact on growth (Marini et al., 1997), 

therefore, a growth assay was performed with the mutants on different solid media.  

On rich YPD medium, there was no difference between the WT cells and the mutants.  

On high ammonium, the Ztmep2D single mutants grew like WT cells, whereas the 

Ztmep3D single mutants and Ztmep2D/Ztmep3D double mutants barely grew.  

Interestingly the growth defect of the double mutants was slightly less severe than the 

growth defect of the Ztmep3D single mutants.  Both WT cells and the mutants displayed 

a growth defect on low ammonium compared to high ammonium, however, the growth 

defects were slightly more severe with the Ztmep3D single mutants and 

Ztmep2D/Ztmep3D double mutants.  On 0.1 % proline medium (a non-preferred source 

of nitrogen), the Ztmep2D and Ztmep3D single mutants grew like the WT cells, however 

although growth was not impaired in the double mutants, they were melanised, 

whereas the WT cells and single mutants remained pink (Figure 52).  Hence, Ztmep3D 

single mutants and Ztmep2D/Ztmep3D double mutants show a growth defect at levels 

of ammonium sufficient for growth for WT cells, while Ztmep2D single mutants show 

no difference to WT cells. 
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Figure 50: Schematic of homologous recombination to delete ZtMEP3 in Ztmep2D #2.  a) Homologous 

recombination event to delete ZtMEP3.  PCR1, PCR2 and PCR3 correspond to diagnostic PCRs 
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Figure 51: Diagnostic Z. tritici colony PCRs to confirm Ztmep2Δ/ Ztmep3Δ mutants.  The WT colony along 

with three independent mutant isolates were tested for targeted integration of the resistance cassette and for the 

presence of the WT allele.  a) PCR1: results from the left hand side GEN integration.  b) PCR2: results from the 

right hand side GEN integration. c) PCR3: results from the WT allele PCR.  Lanes labelled 1, 2 and 3 identify which 

Ztmep2Δ/Ztmep3Δ  independent isolate is being tested. 
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Figure 52: Growth analysis of IPO323 mutants.  Cells were grown in YPD medium over three nights, washed, 

and 10 fold serially diluted before being spotted onto YPD, high ammonium (5 mM), low ammonium (50 µM) and 

0.1 % proline agar.  Cells were photographed after 1 week incubation at 18 °C. 
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The growth defects on solid media were consistent with growth in liquid media.  WT 

and Ztmep2D single mutants grew in high ammonium, however the Ztmep3D single 

mutants and Ztmep2D/Ztmep3D double mutants did not grow.  All strains did, however, 

grow in 0.1 % proline medium (Figure 53).  Together, these findings are consistent 

with the possibility that ZtMep3 is a high capacity transporter.   

 

3.7.2 IPO323 Ztmep3D and Ztmep2D/Ztmep3D mutants display interesting 

filamentation on high ammonium 
 

Certain fungal species possess one ammonium transporter that senses ammonium 

availability in addition to their role as a transporter, hence, acting as a transceptor 

(Lorenz and Heitman, 1998).  This sensing function triggers a signalling cascade to 

allow the cells to change morphology if required.  To test if ZtMep2 and/or ZtMep3 are 

ammonium sensors in Z. tritici, WT and mutant strains were streaked for single 

colonies on different solid media and observed for filamentation by microscopy.  On 

YPD, very few filaments emanated from their central colonies, however, some mutants 

had substantially more, especially Ztmep2D/Ztmep3D #3 and Ztmep2D #2.  On high 

ammonium medium all the strains displayed more filamentation compared to on YPD.  

However, the appearance of the Ztmep3D and Ztmep2D/Ztmep3D filaments differed 

from the WT and Ztmep2D filaments.  Firstly, WT and Ztmep2D filaments emanated 

evenly around the whole circumference of their colonies, while Ztmep3D and 

Ztmep2D/Ztmep3D filaments emanated sporadically around the centre of their 

colonies.  Secondly, the WT and Ztmep2D filaments had a ‘wispy’ appearance and did 

not extend out of the photographed frame, whereas the Ztmep3D and 

Ztmep2D/Ztmep3D filaments had a thicker ‘barbed wire-like’ appearance with some 

filaments extending out of the photographed frame.  On low ammonium medium, the 

WT and Ztmep2D mutants filamented more than on high ammonium, and thicker 

filaments were present within the ‘wispy’ filaments.  Both types of filaments extended 

out of the photographed frame and were evenly distributed around the centre of their 

colonies.  Again, the Ztmep3D and Ztmep2D/Ztmep3D filaments were sporadically 

distributed around the centre of their colonies, and although thicker than the WT and 

Ztmep2D filaments, they were thinner than when extending on high ammonium  
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Figure 53: Analysis of IPO323 mutants in liquid culture.  Cells were inoculated into high ammonium (5 mM) (top 

panel) and 0.1 % proline medium (bottom panel).  Tubes were photographed after 3 nights incubation at 18 °C. 
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medium.  Furthermore, Ztmep3D and Ztmep2D/Ztmep3D central colonies were barely 

visible; the filaments extended from a central point, like a pin wheel, rather than from 

a mass of cells.  This phenotype is consistent with the growth defect of Ztmep3D and 

Ztmep2D/Ztmep3D being more severe on low ammonium as opposed to high 

ammonium medium.  On 0.1 % proline medium all the strains exhibited the ‘wispy’ 

filaments evenly distributed around their central colonies, however the filaments 

extended slightly further from the Ztmep3D and Ztmep2D/Ztmep3D colonies compared 

to the other strains.  No difference in size or shape of the central colonies was visible 

(Figure 54).  The yeast to filamentous switch under ammonium limiting conditions is, 

therefore, ZtMep2 and ZtMep3 independent.  To further analyse filamentation WT and 

mutant cells were spotted onto different solid media.  After one weeks growth on YPD 

there was no difference in the size of the colonies between all the strains.  The double 

mutants and Ztmep2D #2 did, however, display minimal filamentation around their 

colony giving a ‘halo-like’ appearance.  On high and low ammonium medium, after two 

weeks growth, a difference in spot size was clearly visible; the Ztmep3D and 

Ztmep2D/Ztmep3D central colonies were smaller in diameter.  While the filaments were 

evenly distributed around the WT and Ztmep2D mutant colonies, forming ‘halos’, this 

morphology was absent in the Ztmep3D and Ztmep2D/Ztmep3D mutants.  Instead ‘hair-

like’ filaments were visible emanating sporadically from the edge of the colonies; 

consistent with the growth assay and single colony analysis.  The loss of the ‘halo’ in 

these mutants could be indicative that ZtMep3 is required for filamentation.  The colour 

of the central spots were also different for Ztmep3D and Ztmep2D/Ztmep3D.  While the 

WT and Ztmep2D mutants remained pink, the Ztmep3D and Ztmep2D/Ztmep3D 

mutants displayed a ‘rusty’ colour.  Analysis of the spots on a white background, as 

opposed to a black background, revealed another colour discrepancy.  Some of the 

filaments extending from the Ztmep3D and Ztmep2D/Ztmep3D mutants appeared 

green, indicating that they were melanised, while the ‘halo’ of filaments around the WT 

and Ztmep2D mutants were white.  After five weeks growth on 0.1 % proline medium 

all the spots appeared a similar size in diameter to each other and were melanised.  

Most of the mutants also displayed some degree of aerial hyphae which appeared as 

a smooth ‘cotton wool-like” structure on the surface of the spot.  The most aerial 

hyphae was present on the surface of the Ztmep2D/Ztmep3D mutants and Ztmep2D 

#2.  Nevertheless, the aerial hyphae present on the Ztmep2D/Ztmep3D mutants did not 

have a smooth surface.  Instead, the aerial hyphae was clumped (Figure 55).   
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Figure 54: Analysis of morphology by the IPO323 mutant single colonies.  Cells were streaked for single 

colonies onto YPD, high ammonium (5 mM), low ammonium (50 µM) and 0.1 % proline agar.  Cells were 

photographed after 1 week under the microscope at 40 x magnification. 
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Figure 55: 5 µl spot assay.  WT and mutant cells were grown in YPD medium over three nights, washed, and 

spotted onto YPD, high ammonium (5 mM), low ammonium (50 µM) and 0.1 % proline agar.  Cells grown on a) 

YPD were photographed after 1 weeks growth, cells grown on b) high and low ammonium were photographed after 

2 weeks growth, and cells grown on c) proline were photographed after 5 weeks growth.  For high ammonium 

colonies cells were photographed twice on black (top panel) and white (bottom panel) backgrounds. 



145 
 

Consistent with the previous filamentation assay, ZtMep2 is not responsible for the 

yeast to filamentous dimorphic switch under ammonium limiting conditions.  However, 

ZtMep3 may be required for some degree of filamentation, as indicated by the loss of 

the ‘halo’. 

3.8 IPO323 Ztmep2D/Ztmep3D double mutants are hypervirulent 
 

In order for the smut fungus Ustilago maydis to infect maize, the fungus must first 

switch to a filamentous growth form.  Under limiting ammonium conditions, U. maydis 

switches from budding to filamentous growth, and this switch is Ump2 dependent;  

Ump2 is the high affinity ammonium transporter in U. maydis.  Ump2 is, hence, 

important for pathogenicity (Smith et al., 2003).  We were, therefore, interested to 

assess if the Z. tritici ammonium transporters are important for pathogenicity. 

 

3.8.1 IPO323 Ztmep2D and Ztmep3D single mutants show do difference 

in virulence compared to WT IPO323 
 

To test if ZtMep2 or ZtMep3 are important for the pathogenicity of Z. tritici, the single 

mutants were tested in a wheat infection assay by our collaborators at RRes.  No 

differences between the infectivity of the WT or the mutants were visible 14 days post 

infection (DPI) (Figure 56).  From images of the wheat leaves photographed 21 DPI, 

pycnidia were counted from sample areas.  No significant difference between the WT 

and single mutants was calculated (Figure 57).  These findings confirm that a lack of 

ZtMep2 or ZtMep3 does not impact on Z. tritici’s ability to infect wheat. 

 

3.8.2 IPO323 Ztmep2D/Ztmep3D double mutants infect wheat sooner than 

WT IPO323 
 

To assess if ZtMep2 and ZtMep3 together are important for virulence, the double 

mutants were tested in the wheat infected assay.  14 DPI, the wheat leaves infected 

with the Ztmep2D/Ztmep3D double mutants showed visible signs of disease, whereas 

the leaves infected with the WT strain barely showed any disease symptoms.  17 DPI 

the leaves infected with the Ztmep2D/Ztmep3D double mutants were dead, whereas 

the leaves infected with the WT strain were alive but showing greater signs of disease.  

21 DPI the leaves inoculated with the WT strain were almost dead (Figure 58).  The  
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Figure 56: IPO323 Ztmep2Δ and Ztmep3Δ mutants what infection assay.  WT and mutant cells were assayed 

for their ability to infect wheat by Rothamsted Research.  Wheat leaves were photographed 14 days post infection 

(DPI). 
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Figure 57: Analysis of pycnidia on wheat leaves 21 days post infection.  a) Images of wheat leaves 21 DPI.  

Black spots are pycnidia.  b) Pycnidia were counted from sample areas on each leaf and a mean was calculated 

for each strain.  Error bars represent standard error of the mean (SEM).  
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Figure 58: IPO323 Ztmep2Δ/Ztmep3Δ double mutants wheat infection assay.  WT and mutant cells were 

assayed for their ability to infect wheat by Rothamsted Research.  Wheat leaves were photographed 14 days post 

infection (DPI), 17 DPI and 21 DPI.  X indicates leaves not infected with WT or mutant IPO323. 
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Ztmep2D/Ztmep3D double mutants infected the leaves sooner than the WT strain, thus, 

the Ztmep2D/Ztmep3D double mutants are hypervirulent. 

 

3.8.3 Analysis of virulence gene expression by the double mutants 
 

As the Ztmep2D/Ztmep3D double mutants are hypervirulent, in comparison to the WT 

strain, qPCR of a known virulence gene was carried out on both strains grown in high 

ammonium medium.  Zt3LYSM gene expression was enhanced 2.83 fold in the 

Ztmep2D/Ztmep3D double mutant compared to the WT strain.  This result was 

statistically significant (p-value 0.0046) (Figure 59).  Consistent with the wheat 

infection assay, the expression of the Zt3LYSM virulence gene is upregulated in the 

Ztmep2D/Ztmep3D double mutant.   

 

3.9 Z. tritici discussion 
 

Z. tritici undergoes a morphological switch in response to ammonium availability.  

During ammonium limiting conditions, this pathogenic fungus melanises and displays 

extensive filamentation.  A Mep2 homology search identified three putative ammonium 

transporters which were designated as ZtMep1, ZtMep2 and ZtMep3.  The twin-

histidine motif, believed to be critical in signalling ammonium availability, is conserved 

in ZtMep1 and ZtMep2.  ZtMep3 contains the glutamate-histidine motif, which is 

associated with non-signalling ammonium transporters. 

 

Mep/Amt proteins contain 11 TMDs while the human Rh protein contains 12 TMDS 

(Andrade et al., 2005) (Zheng et al., 2004) (van den Berg et al., 2016) (Gruswitz et al., 

2010).  Analysis of ZtMep1 highlighted a 46 amino acid gap compared to ScMep2, 

ZtMep2 and ZtMep3.  This could be due to an incorrect assignment of intron/exon 

borders by the software used to predict the coding sequence.  Nonetheless, this  
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Figure 59: Expression of Zt3LSYM.  IPO323 WT and Ztmep2D/Ztmep3D cells  pre-grown in YPD were washed 

and inoculated into high NH4+ liquid medium at OD595nm 2.  Cells were harvested after 2 hours growth at 18 °C.  RNA 

extracted from the cells was converted to cDNA to be used as template for qPCR.  The 2-∆Ct method was used to 

calculate relative expression to WT.  Actin was used as a reference gene.  A 2 tailed Student T test was used to 

calculate significance.  *p-value <0.005 
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predicted coding sequence, when analysed by a TMD prediction tool, projects ZtMep1 

to contain two fewer TMDs than ScMep2.  Further investigation revealed the presence 

of a transposable element within a large intron of ZtMep1.  Removal of the 

transposable element provides a sequence with high identity and similarity to ZtMep1 

orthologues, in other Z. tritici strains, while excluding the 46 amino acid gap.  However, 

the new IPO323 ZtMep1 sequence is still predicted to contain fewer TMDs than 

ScMep2, albeit, one more than the original prediction.  Analysis of the graph, produced 

by the TMD prediction software, does show lower probability scores for TMD8 and 

TMD9 within the new sequence and 1E4 ZtMep1 sequence.  Moreover, double peaks 

are depicted for TMD8 which could be indicative of two TMDs.  ZtMep1 may, therefore, 

have the same number of TMDs as other ammonium transporters.  To confirm how 

many TMDs ZtMep1 contains cDNA, generated from 3D7, 1AS or 1E4 RNA, would 

need to be sequenced to verify the coding sequence.  This sequence could then be 

cloned into a yeast expression vector for crystal studies.  If ZtMep1 does indeed 

contain one less TMD than the other Z. tritici ammonium transporters, this could 

explain why ZtMep1, from 1E4, does not restore growth, in yeast lacking all three 

ammonium transporters, to the same level as ZtMep2 and ZtMep3.  The loss of just 

one TMD could be crucial in its ability to transport ammonium and, hence, restore 

growth in the growth assay. 

 

All Z. tritici ammonium transporter sequences were codon optimised to achieve optimal 

expression in S. cerevisiae.  Eukaryotic and prokaryotic genomes exhibit codon usage 

bias.  Condon usage bias is the non-proportionate use of synonymous codons.  There 

are more tRNAs for preferred codons, thus, highly expressed genes are encoded by 

the preferred codons (Akashi, 1994) (Sharp et al., 1986).  However, the type of codon 

used, preferred or non-preferred, has been correlated with secondary structures.  

Preferred codons promote simple b-sheets, and a-helixes, while non-preferred codons 

promote more complex coiled structures; a-helixes are also associated with non-

preferred codons (Pechmann and Frydman, 2013).  Linked with the finding that non-

preferred codons and preferred codons increase and decrease elongation rates 

respectively, complex structures require longer time periods than simpler structures to 

co-translationally fold (Yu et al., 2015).  The protein expression level of ZtMep1 in yeast 

was higher than ZtMep3, which was found to signal for pseudohyphal growth, 

suggesting that ZtMep1 was expressed to sufficient levels to function.  The significant 

reduction in ZtMep1 transport activity could be attributable to incorrect folding as a 
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result of the use of preferred codons in regions where non-preferred codons would be 

favoured.  For example within the TMDs.  As all three ammonium transporters show 

reasonable identity and similarity to each other it would be expected that a significant 

reduction in growth would have been observed in ZtMep2 and ZtMep3 expressing cells 

if the introduction of preferred codons, into regions where non-preferred codons are 

more appropriate, was responsible.  Methylammonium uptake studies should be 

carried out in IPO323 Ztmep2D/Ztmep3D reconstituted with ZtMEP1 from 1E4, and 

ZtMEP2 and ZtMEP3 from IP0323; the codon usage by both species should be similar.  

This would rule out the possibility that codon optimised residues have been introduced 

into regions where non-preferred codons are more appropriate, thus, allowing extra 

time for co-translational folding of more complex structures.  If methylammonium 

uptake levels by ZtMep1 are significantly less, than ZtMep2 and ZtMep3, this would 

confirm that ZtMep1 is a less efficient transporter.  It is not inconceivable that ZtMep1 

could be a very efficient ammonium transporter per se and codon optimisation lead to 

expression levels higher than in nature giving rise to ammonium toxicity.  Nonetheless, 

if ZtMep1 is a poor transporter of ammonium it may be that ZtMep1 is a non-

transporting transceptor on the evolutionary journey from transporter to receptor.  

ZtMep1 could be analogous to the non-transporting transceptors, Ssy1, Snf3 and Rgt2, 

which induce the transcriptional expression of their respective binding nutrient 

transporters (Poulsen et al., 2005) (Ozcan et al., 1996).  To test this hypothesis ZtMep1 

would need to be deleted from 1E4, 3D7 or 1A5 and screened for changes in many 

different phenotypes, including the expression of ZtMEP2 and ZtMEP3.  

Complementation of pseudohyphal growth was not achieved with ZtMep1 in diploid 

yeast lacking Mep2.  Although transport is not sufficient for signalling, by ammonium 

sensors, no mutation to date has been identified which supports signalling but not 

transport (Boeckstaens et al., 2008).  This favours the hypothesis that if ZtMep1 is a 

non-transporting transceptor it may be signalling for something other than 

filamentation. 

 

All identified ammonium sensors, to date, possess the conserved twin-histidine motif 

believed to be important for their signalling function.  Moreover, a reduction in Mep2 

expression is correlated with a reduction in filamentation (Biswas and Morschhauser, 

2005).  The observation that ZtMep3 acts as an ammonium sensor in yeast was, 

therefore, an intriguing finding on two parts.  Firstly, ZtMep3 does not possess the 

conserved twin-histidine motif, thus, this is not a defining feature of an ammonium 
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transceptor.  Interestingly, minimal filamentation was induced in S. cerevisiae cells 

lacking Mep2 which expressed FfMepC which does not possess the twin-histidine motif 

(Teichert et al., 2008).  Secondly, ZtMep3 was expressed to considerably lower levels 

than ZtMep1 and ZtMep2; ZtMep1 nor ZtMep2 complemented the pseudohyphal 

growth defect of a diploid yeast strain lacking Mep2.  It may be that any ammonium 

transporter has the ability to complement the pseudohyphal growth defect of the 

mep2D/mep2D strain if the protein expression and activity levels are balanced.  This 

would favour the pH model of signalling.  If ZtMep3 is highly active this could 

compensate for it being expressed to a low level in yeast.   

 

Deletion of ZtMEP3 in IPO323 did not completely abolish filamentation.  Instead a 

different type of filamentation was displayed.  As the filament ‘halo’, exhibited by the 

WT and Ztmep2D strains under high and low ammonium conditions in the spot assay, 

was absent when Ztmep3 was lacking, this could suggest that ZtMep3 is a transceptor 

regulating ammonium dependent filamentation natively.  However, a significant growth 

defect was displayed by these mutants, therefore, the lack of the filament ‘halo’ could 

be due to ammonium starvation rather than a lack of transceptor mediated ammonium 

signalling.  ZtMep3 did act as a transceptor when expressed in yeast, thus, if 

filamentation is not regulated by ZtMep3 in IPO323, ZtMep3 could signal for something 

other than filamentation natively.  An array of transceptors, including Mep2, reactivate 

the PKA pathway upon re-addition of their respective starved nutrient in yeast 

(Holsbeeks et al., 2004).  For example, supplementation of ammonium to nitrogen 

staved fermenting yeast cells reverses the PKA activity to high; this is a Mep2 

dependent phenotype.  A readout of PKA activity is phosphorylation of trehalase (Van 

Nuland et al., 2006).  Thus, comparing the phosphorylation statuses of putative 

trehalase in IPO323, during and after nitrogen starvation, would be an ideal preliminary 

experiment to identify a potential signalling role for ZtMep3 in Z. tritici.  However, if 

ZtMep3 is not a transceptor then using S. cerevisiae as a model for testing ammonium 

transceptors is not an appropriate strategy.  Instead, all further experiments into 

putative ammonium permeases should be carried out in their native organism.  The 

affinity and capacity of ZtMep3 should be determined in Z. tritici by expressing ZtMEP3 

in IPO323 Ztmep2D/Ztmep3D and measuring methylammonium uptake.  The H194E 

separation of function allele renders ScMep2 hyperactive for transport (Boeckstaens 

et al., 2008).  It would be beneficial to reconstitute IPO323 Ztmep2D/Ztmep3D with 

ZtMep3E201H to test if the introduction of histidine limits transport activity.  Equally, 
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methylammonium uptake by IPO323 Ztmep2D/Ztmep3D reconstituted with all three 

ammonium transporters should be assayed to test if their capacities and affinities are 

comparable.  Moreover, optimum pH (pHopt) could simultaneously be determined to 

address the dependence of pH on transport activity.  The signalling transporter in S. 

cerevisiae has a substantially lower pHopt than the non-signalling homologues 

(Boeckstaens et al., 2008) which would suggest that ZtMep3 would have a lower pHopt 

than ZtMep2.  However, when considering the twin-histidine motif it could equally be 

argued to be the opposite.  ZtMep3 does not possess the twin-histidine motif and is, 

thus, genetically more similar to the non-signalling homologues which have a higher 

pHopt. 

 

ScMep2 transport activity is regulated by Npr1 kinase phosphorylation.  Each Z. tritici 

Mep is immunodetected as a doublet by western blotting in S. cerevisiae.  The higher 

molecular weight band could be indictive of a phosphorylated version of the protein.  

In ScMep2, the higher molecular weight band is due to phosphorylation by Npr1 kinase 

and is sensitive to lambda (l) phosphatase but not alkaline phosphatase treatment 

(Boeckstaens et al., 2014).  As a preliminary experiment protein extracts should be 

treated with l phosphatase, and alkaline phosphatase, to confirm if the higher 

molecular weight band is phosphorylated.  If so, phosphatase treatment should lead to 

loss of the higher molecular weight band.  None of the ZtMeps lost their ability to 

restore growth on limiting ammonium when Npr1 kinase was lacking from the strain.  

This suggests that Npr1 kinase is not responsible for the higher molecular weight band 

and is not required for the ZtMeps to function in S. cerevisiae.  However, Z. tritici is an 

organism which is typically grown at 18 ºC in the laboratory (Zhan et al., 2016) (Yemelin 

et al., 2017) whereas S. cerevisiae’s optimal growth temperature is 30 ºC.  All the 

growth assays were performed at 30 ºC.  Neuhäuser et al., (2011) observed that at 

higher temperatures CaMep2 activity is rendered Npr1 kinase independent 

(Neuhauser et al., 2011).  At higher temperatures, bonds which maintain ZtMep3’s 

quaternary structure may be disrupted generating a constitutively open transporter or 

fashioning a dynamically fluid protein.  Therefore, the growth assays should be 

performed at a range of lower temperatures to test their dependence on Npr1 kinase 

in yeast.  Moreover, to aid with immunodetection a 6X His tag was introduced to the 

C-terminal tail.  This could equally have created interactions between the C-terminal 

tail with the rest of the transporter, thereby, rendering ZtMep3 Npr1 kinase 

independent.  These interactions are believed to be vital for Mep/Amt proteins to 
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transport their substrate (van den Berg et al., 2016) (Neuhauser et al., 2007) (Ludewig 

et al., 2003).  An Npr1 kinase homology search in the IPO323 genome database does 

identify a putative Npr1 kinase orthologue.  Notably, a database which predicts 

interactions between proteins predicts an interaction between putative Npr1 kinase 

and ZtMep3 but not ZtMep2 (Figure 60).  Additionally, there is a putative 

phosphorylation site in the CTR of ZtMep3 as identified by a phosphorylation site 

prediction tool.  Serine 531, within the EMEKSRREA motif, is positioned nine residues 

from the C-terminus, which is considerably closer to the C-terminal end than in 

ScMep2.  If transport activity by ZtMep3 is found to be regulated by Npr1 kinase, at 18 

ºC in yeast, then the S531A and S531D mutations should be made.  These mutants 

should be tested in mep123D strain possessing and lacking Npr1 kinase respectively 

to verify, if like the equivalent mutation in ScMep2, abolishes and restore growth 

respectively.  As the putative phosphorylation site is considerably closer to the C-

terminus in ZtMep3, than it is in ScMep2, the His tag may prevent Npr1 kinase from 

interacting with ZtMep3.  This would abolish transport in both growth assay strains at 

18 ºC if transport activity is Npr1 kinase dependent at this lower temperature.  

Furthermore, the putative Npr1 kinase in IPO323 should be deleted from the IPO323 

Ztmep2D/Ztmep3D double mutant and ZtMEP1, ZtMEP2 and ZtMEP3 should be 

reconstituted into this triple mutant strain independently.  Methylammonium uptake 

assays should then be performed to compare the transport activity of each ammonium 

permease with and without Npr1 kinase.  If methylammonium uptake is inhibited, or 

significantly reduced, in the strain lacking Npr1 kinase this would indicate that the 

ammonium permeases are regulated by Npr1 kinase in IPO323.  As this finding would 

contradict the result in S. cerevisiae, this would strengthen the argument for only using 

native organisms to test ammonium permease function.   

 

Pseudohyphal growth in S. cerevisiae, during limiting ammonium conditions, is a Mep2 

regulated process.  Despite ZtMep3 acting as an ammonium sensor in yeast, to induce 

pseudohyphal growth, a loss of ZtMep3 did not abolish filamentation on low ammonium 

in Z tritici nor did a loss of ZtMep2.  A dramatic growth defect was, however, observed 

in the Ztmep3D single mutants and the Ztmep2D/Ztmep3D double mutants on high 

ammonium.  Reconstitution of the Ztmep2D/Ztmep3D double mutants and Ztmep3D 

single mutants should complement this growth defect.  This is a future experiment to 

verify that the growth defects are due to the loss of ZtMep3.  Interestingly, the growth 

defect appeared to be more severe for the Ztmep3D single mutants than the  
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Figure 60: Protein-Protein interactions for NPR1.  Predicted protein interaction network for NPR1according  to 

the STRING database.  Mycgr3P73144 represents ZtMep3. Image imported from the STRING database: 

https://string-db.org/network/1047171.Mycgr3P75925. 
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Ztmep2D/Ztmep3D double mutants.  It is possible that ZtMep2 is overexpressed in the 

Ztmep3D single mutants to compensate for the lack of ZtMep3.  If ZtMep2 is analogous 

to ScMep2, and is a high affinity transporter, overexpression would lead to a higher 

volume of ammonium entering the cell.  Too much ammonium can be cytotoxic, 

therefore, this could explain why the growth defect is less severe in the 

Ztmep2D/Ztmep3D double mutants.  qPCR experiments should be undertaken to 

confirm this hypothesis.  The Ztmep3D single mutants and Ztmep2D/Ztmep3D double 

mutants produced filaments that were not evenly distributed around the centre of their 

colonies on both low and high ammonium medium.  Additionally, these mutants were 

melanised on high ammonium while the WT and ztmep2D single mutant colonies 

remained pink.  These findings suggest a starvation response rather than a signalling 

response and are consistent with ZtMep3 being the low affinity, high capacity 

transporter.  Methylammonium uptake assays using the IPO323 Ztmep2D/Ztmep3D 

double mutants reconstituted with all three ZtMeps independently would confirm this.  

Thus, filamentation during ammonium limitation is not an ammonium transceptor 

regulated morphology in Z. tritici. 

 

Proline grown S. cerevisiae cells import proline through the high affinity proline 

permease Put4 (Jauniaux et al., 1987) but simultaneously leak ammonium.  To 

maintain ammonium homeostasis, ScMep1, and ScMep2 re-import the excreted 

ammonium; ammonium import through ScMep2 induces pseudohyphal growth 

(Boeckstaens et al., 2007).  On proline medium the Ztmep2D/Ztmep3D double mutant 

cells were melanised in the growth assay while the other strains were not.  

Furthermore, the Ztmep2D/Ztmep3D double mutants displayed the most aerial hyphae, 

when spotted onto proline, which is additionally clumped.  As there are no ammonium 

transporters in the double mutant strain, Ztmep2D/Ztmep3D will be more starved of 

ammonium, than the single mutants and WT cells, which could explain why 

Ztmep2D/Ztmep3D is melanised on proline medium.  Consistent with the 

Ztmep2D/Ztmep3D double mutants being more starved than the single mutants, the 

Ztmep2DZtmep3D double mutants caused disease symptoms sooner in the wheat 

infection assay than the WT cells suggesting that nitrogen starvation is the signal for 

virulence.  Moreover, the expression of the Zt3LYSM virulence gene was more highly 

induced in the Ztmep2D/Ztmep3D double mutants as opposed to in the WT cells grown 

in high ammonium medium. 
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In S. cerevisiae, ScMep2 is transcriptionally regulated by Gln3 and Gat1 (Scherens et 

al., 2006).  These are zinc finger transcription factors which bind to GATA upstream 

activation sequences (5’-GATAAG-3’) (Cunningham et al., 1996) (Coffman et al., 

1996).  Both ZtMep2 and ZtMep3 possess one of these GATA upstream activation 

sequences (Figure 61Figure 62).  Putative Gln3 has already been assigned by the 

IPO323 genome database.  It would be beneficial to see the impact of ZtGLN3 deletion 

on the expression of ZtMEP2 and ZtMEP3.  If similar to ScMep2, another transcription 

factor may compensate for ZtMEP2 and/or ZtMEP3 expression, therefore, a double 

mutant may be required to abolish ZtMEP2 and/or ZtMEP3 gene expression.  If this is 

the case, it would be anticipated that this mutant could behave like the 

Ztmep2D/Ztmep3D double mutants in all experiments tested.  Furthermore, point 

mutations should be made in the putative UAS sequence to confirm if these are the 

transcription factor binding sites. 
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Figure 61: GATA UAS sequence in ZtMEP2 promoter.  1000 bp of genomic DNA  before the START codon 

(ATG) OF ZtMEP2 is depicted.  The GATA sequence in highlighted in yellow and the START codon is listed in bold. 
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Figure 62: GATA UAS sequence in ZtMEP3 promoter.  1000 bp of genomic DNA  before the START codon 

(ATG) OF ZtMEP3 is depicted.  The GATA sequence in highlighted in yellow,  the 5’ UTR is represented in red, and 

the START codon is listed in bold. 
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4 Ammonium Signalling in Cryptococcus neoformans 
 

4.1  C. neoformans introduction 
 

C. neoformans is a fungal pathogen which primarily infects immunocompromised 

patients but is ubiquitous in the environment.  The fungus exists as haploid yeast cells 

of opposite mating type: MATa and MATa with the latter being immensely more 

prevalent (Kwon-Chung and Bennett, 1978).  Under nitrogen limiting conditions, the 

fungus undergoes a morphological switch from yeast to hyphae to allow the fusion of 

two cells of opposite mating type and the formation of a dikaryon (Kozubowski and 

Heitman, 2012).  Moreover, the same conditions induce fruiting and haploid invasive 

growth.  The H99/KN99 strain (serotype A) possesses two ammonium permeases: 

Amt1 and Amt2 which are low and high affinity transporters respectively.  AMT2, but 

not AMT1, is transcriptionally induced during limiting nitrogen conditions, consistent 

with nitrogen catabolite repression, whereas the latter is constitutively expressed.  

Although a double amtD mutant is unable to grow on low ammonium medium both 

single and double amtD mutants remain virulent.  However, haploid invasive growth 

and mating, during nitrogen limitation, are Amt2 dependent processes.  Thus, Amt2 is 

an ammonium sensor in the H99/KN99 strain (Rutherford et al., 2008b). 

 

4.2 C. neoformans displays an ammonium dependent phenotype 
 

Haploid cells of the H99/KN99 strain mate, undergo invasive growth, and produce 

dikaryon and basidiospores from basidium (fruiting body) in response to limiting 

ammonium (Rutherford et al., 2008b).  The JEC21/JEC20 strain is known to produce 

hyphae in a confrontation assay on filament agar (Wang et al., 2000).  To determine if 

hyphal growth by JEC20 (MATa) and JEC21 (MATa) is ammonium dependent, JEC20 

and JEC21 were patched in close proximity to one another on high and low ammonium 

medium and assayed for hyphal growth.  On low ammonium medium, extensive hyphal 

growth was observed around the edge of the patched cells of both mating types, with 

the filaments extending further from MATa in comparison to MATa.  Hyphal growth 

was also observed in the region between the cells, but this was at a much lower 

frequency compared to the hyphal filaments extending away from the outer edges.  No 



162 
 

hyphal growth from either mating type was established on high ammonium medium, 

however the density of growth was greater.  Therefore, hyphal growth is induced by 

limiting ammonium (Figure 63a).  In addition to dikaryotic hyphae, produced during 

sexual growth, C. neoformans is documented to produce monokaryotic hyphae 

(fruiting-like structures) in the absence of the opposite mating type; this is most 

associated with MATa rather than MATa.  Hence, this is referred to as monokaryotic 

fruiting (Wickes et al., 1996).  To test if this phenotype is dependent on limiting 

ammonium, JEC20 and JEC21 cells were patched onto low and high ammonium 

medium in the absence of their opposite mating partner in fruiting assays.  MATa but 

not MATa formed hyphal filaments on low ammonium medium, however this was at a 

much lower frequency than when MATa was present.  As with the confrontation 

assays, no hyphal growth was established in the fruiting assays when patched onto 

high ammonium medium, but the density of growth was again greater.  Therefore, 

hyphal growth is induced in JEC21 under limiting ammonium conditions in a fruiting 

assay, but not in JEC20 (Figure 63b). 

 

Invasive growth by JEC21 has been documented under low ammonium (Rutherford et 

al., 2008b).  To determine if cell invasion is exhibited during the confrontation and 

fruiting assays, the surface cells, from both assays, were washed away and assayed 

for invasive growth.  For the confrontation assays, cell invasion was established on 

both low and high ammonium, however, microscopic inspection revealed that the 

appearance of embedded cells was different.  In addition to yeast cells, enlarged cells 

were visible within the low ammonium agar; only yeast cells were observed within the 

high ammonium agar (Figure 64).  In the fruiting assays, despite WT MATa not 

displaying hyphal growth or producing enlarged cells on low ammonium, the cells 

succeeded in invading the agar, as did the MATa cells.  Invasive growth is therefore 

independent on the presence of the opposite mating type.  However, invasive enlarged 

cells are dependent on the presence of the opposite mating type.  Furthermore, in 

addition to the presence of yeast cells in the MATa fruiting assay, hyphal filaments 

were observed embedded within the agar (Figure 65).  Similar to the confrontation 

assays, both mating types displayed invasive growth on high ammonium, 

nevertheless, only yeast cells were present.  JEC20 and JEC21, therefore, display 

invasive growth during confrontation and fruiting assays, but this is independent on 

ammonium levels.  Moreover, the presence of enlarged cells, embedded within the  
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Figure 63: Ammonium dependent hyphal growth.  a) C. neoformans serotype D (JEC20/JEC21) cells of opposite 

mating type were confronted on low (50 µM) and high (5 mM) ammonium medium.  b) Cells were patched in the 

absence of their mating partner onto low and high ammonium medium in fruiting assays.  Images were taken after 

3 weeks growth in the dark at room temperature. 
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Figure 64: Images of invasive cells.  The surface cells were washed off the confrontation assays (top panel).  

Embedded cells were observed under the microscope at 1000 x magnification using an oil emersion lens. 
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Figure 65:  Images of invasive cells.  The surface cells were washed off the fruiting assays (top panel).  Embedded 

cells were observed under the microscope at 1000 x magnification using an oil emersion lens. 
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agar, is stimulated by limiting ammonium and is dependent on the presence of the 

opposite mating type. 

 

4.3 Identification of putative ammonium transporters in C. neoformans 
serotype D (JEC20/JEC21) 

 

In some fungi, members of the Amt/Mep/Rh family are responsible for an ammonium 

dependent dimorphic switch.  For example, Mep2 in S. cerevisiae is responsible for 

the induction of pseudohyphal growth during ammonium limitation (Lorenz and 

Heitman, 1998).  To identify ammonium transporters in JEC20 and JEC21 a Mep2  

homology search was conducted.  10 search results were returned containing two 

different genes (CNJ01880 and CNA02250).  Both genes were described as encoding 

putative ammonium transporters in the database used for the search.  The presence 

of only two ammonium transporters in the genome is consistent with the C. neoformans 

H99/KN99 strain (Rutherford et al., 2008b).  Previously identified ammonium sensors 

possess the conserved twin histidine motif, believed to be important for ammonium 

transceptor function, whereas non signalling versions contain a glutamate residue at 

the equivalent position of the first histidine.  Alignment between both protein sequences 

with ScMep2 revealed that CNJ01880 contains the conserved twin histidine motif while 

CNA02250 contains a glutamate histidine motif similar to Mep1 in S. cerevisiae 

(Boeckstaens et al., 2008).  Furthermore, CNJ01880 was calculated to have the higher 

identity, similarity and score values compared to CNA02250 (Table 19).  CNA02250 

and CNJ01880 were therefore designated as Amt1 and Amt2 respectively.   

 

Name JEC21 
Gene ID 

UniProtKB/TrEMBL 
Accession Number 

Identity  
% 

Similarity 
% 

Score 

      
Amt1 CNA02250 Q5KPM5 

(Q5KPM5_CRYNJ) 

36.6 53.1 998.0 

 

Amt2 CNJ01880 Q5KAF6 

(Q5KAF6_CRYNJ) 

45.2 60.9 1121.0 

 
Table 19: C. neoformans serotype D AMT genes 
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The sequence alignment between ScMep2 and both putative C. neoformans 

ammonium transporters highlighted that the ExxGxD motif was conserved but the 

autoinhibitory (AI) region, containing the Npr1 kinase phosphorylation site in ScMep2, 

was not.  However, functional residues including the Phe gate, and an asparagine 

residue adjacent to the proposed deprotonation site were preserved (Figure 66).  

When Amt1 and Amt2 protein sequences were analysed by a TMD prediction site, both 

putative ammonium transporters were predicted to be composed of 11 TMDs (Figure 
67), the same as ScMep2.  Amt2 was therefore chosen for future analysis as this was 

the most likely candidate to be responsible for the ammonium dependent phenotypes. 

 

4.4 Ammonium dependent expression of AMT2 
 

AMT2 expression is induced under limiting ammonium and repressed under 

ammonium sufficient conditions in the C. neoformans H99/KN99 strain (Rutherford et 

al., 2008b).  We were, therefore, interested to assess if AMT2 expression is ammonium 

dependent in the JEC20/JEC21 strain.  Cells of both mating type were grown to mid 

log phase in high and low ammonium medium.  Reverse transcriptase PCR revealed 

that under low ammonium AMT2 is expressed in both mating types to similar levels.  

Conversely, under high ammonium AMT2 is not expressed.  (Figure 68).  Consistent 

with AMT2 expression in C. neoformans H99/KN99, AMT2 expression in 

JEC20/JEC21 is regulated by ammonium availability as the gene is induced under 

limiting ammonium but repressed under sufficient ammonium conditions. 

 

4.5 Analysis of Amt2 expressed in yeast 
 

Growth and pseudohyphal growth assays in S. cerevisiae are a useful model to test 

putative ammonium permeases for transport and signalling function respectively.  

Codon optimised CnAmt2, from C. neoformans JEC21, was therefore tested for both 

functions.  Codon optimised CnAMT2 was cloned into the low copy shuttle plasmid 

pRS316 (Sikorski and Hieter, 1989). 
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Figure 66: CLUSTAL O protein sequence alignment between ScMep2, CnAmt1 and CnAmt2. Secondary 

structure elements are based on the figure published in (van den Berg et al., 2016), and correspond to ScMep2.  

The conserved ExxGxD motif is boxed in red.  The AI region found in ScMep2 is boxed in yellow, with the Npr1 

kinase phosphorylation site highlighted in orange.  The twin – His motif is highlighted in blue and the Phe gate is 

highlighted in red.  The conserved asparagine residue adjacent to the proposed deprotonation site is highlighted in 

green.  The centre of each transmembrane domain is indicated with a number. 
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Figure 67: TMD predictions.  Protein sequences for ScMep2 and CnAmt1 and CnAmt2 from  JEC21 were 

analysed by the TMHMM Server v. 2.0 online software tool.  The returned graphs depict the predicted 

transmembrane domains (TMDs).  Pink and blue lines indicate extracellular and intracellular loops respectively, 

while red boxes indicate TMDs.   
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Figure 68: AMT2 expression is ammonium dependent.  Cells of opposite mating type were grown in high 

ammonium (5 mM) medium to OD595nm 0.3.  Cells were then switched to fresh high ammonium medium or low (50 

µM) ammonium medium and grown until OD595nm 0.5.  RNA was extracted and converted to cDNA to be used as 

template to amplify AMT2 by PCR.  The housekeeping gene ACT1 was used to confirm equal loading. 
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4.5.1 Amt2 is an ammonium transporter in yeast 
 

A S. cerevisiae strain lacking all three ammonium transporters is unable to grow on 

media containing ammonium as the sole nitrogen source (Marini et al., 1997).  To 

assess if CnAmt2 transports ammonium, the haploid mep123D S. cerevisiae strain was 

transformed with CnAmt2 and assayed for growth.  All the transformed cells grew on 

0.1 % glutamate which is a good source of nitrogen for fungi.  On 1 mM ammonium 

sulphate, a limiting concentration of ammonium, CnAmt2 restored growth as well as 

the positive control ScMep2.  Hence, CnAmt2 is an ammonium transporter.  

Furthermore, the mep123D strain was transformed with the CnAmt2 mutants.  In S. 

cerevisiae, mutation of the first histidine (H194), of the twin histidine motif, to alanine 

abolishes the ability of Mep2 to transport ammonium while mutation of the same reside 

to glutamate does not.  Equally, mutation of the second histidine of the twin histidine 

motif (H348), or the asparagine residue adjacent to the proposed deprotonation site 

(N246), to alanine, in ScMep2, has no impact on transport proficiency.  Nor does 

mutation of the glycine residue neighbouring the second histidine (G349) to cysteine.  

Analogous to ScMep2, transformation of the mep123D strain with the CnAmt2 mutants 

resulted in the same phenotypes respectively.  Specifically, CnAmt2H191A did not 

restore growth, while CnAmt2H191E, CnAmt2H342A, CnAmt2N241A and CnAmt2G343C did. 

(Figure 69).  Thus, residues important for transport in ScMep2 are conserved in 

CnAmt2. 

 

4.5.2 Amt2 is an ammonium sensor in yeast 
 

A diploid S. cerevisiae strain lacking Mep2 (mep2D/mep2D) will not undergo 

pseudohyphal growth during ammonium limiting conditions (Lorenz and Heitman, 

1998).  Expression of CnAmt2 in the mep2D/mep2D strain complemented the 

pseudohyphal growth defect as well as ScMep2.  Invasive and surface pseudohyphae 

were observed on the edge of the single colonies and streaked cells.  Thus, CnAmt2 

acts as a signalling molecule in S. cerevisiae.  On the contrary, expression of 

CnAmt2H191A, CnAmt2H191E, CnAmt2H342A and CnAmt2N241A did not restore 

pseudohyphal growth, while CnAmt2G343C did (Figure 70), which is consistent with the 

equivalent mutations in ScMep2.  Together with the growth assay findings,  transport 

and signalling function can be separated in CnAmt2 confirming that CnAmt2 is a 

transceptor.   
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Figure 69: Growth analysis of Amt2 mutants expressed in yeast.  Haploid mep123∆ S. cerevisiae cells 

containing the plasmids of interest were grown in SD-URA medium overnight, washed, and 10 fold serially diluted 

before being spotted onto 0.1 % glutamate or 1 mM ammonium sulphate agar. 
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Figure 70: Pseudohyphal growth analysis of Amt2 mutants expressed in yeast.  Diploid mep2∆/mep2∆ S. 

cerevisiae cells containing the plasmids of interest were streaked for single colonies on low ammonium sulphate 

medium (50 µM).  After 6 days growth, cells were photographed under the microscope at 100 x (top panel) and 40 

x (bottom panel) magnification respectively. 
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4.5.3 Reduced protein expression is displayed by some CnAmt2 
mutants 

 

A reduction in the protein expression level of ScMep2 is known to impact on 

filamentous growth (Biswas and Morschhauser, 2005).  To confirm that the separation 

of function observed by CnAmt2 is due to the mutations and not reduced protein 

expression, protein levels were assayed by western blotting in the mep2D/mep2D 

strain.  CnAmt2 was expressed to a similar level as ScMep2.  CnAmt2N241A and 

CnAmt2G343C were expressed to a slightly lower level than CnAmt2, but to the same 

level as each other.  As CnAmt2G343C still complemented the pseudohyphal growth 

defect of the strain, the expression level of this mutant could be used as a threshold to 

assess the protein levels of other mutants.  A faint band was detected for the  

CnAmt2H191A and no bands were detected for CnAmt2H191E and CnAmt2H342A mutants 

(Figure 71).  Thus, as the CnAmt2H191A and CnAmt2H342A mutants are expressed to 

lower levels than the CnAmt2G343C mutant the lack of pseudohyphal growth cannot be 

confirmed to be attributable to the mutations.  However, as CnAmt2N241A was 

expressed to a similar level as CnAmt2G343C, N241A is regarded as a mutation which 

can uncouple transport from signalling. 

 

4.5.4 Amt2 is not regulated by Npr1 in yeast 
 

ScMep2 transport activity is regulated by Npr1 kinase (Boeckstaens et al., 2014).  

Therefore, ScMep2 cannot restore growth in a haploid strain lacking all three 

ammonium transporters and Npr1 kinase (mep123D/npr1D) on low ammonium.  To 

determine if CnAmt2 activity is regulated by Npr1 kinase when expressed in yeast, 

growth assays using the mep123D and mep123D/npr1D strains were performed.  

CnAmt2 restored growth on 1 mM ammonium sulphate regardless of whether Npr1 

kinase was present or not.  Hence, CnAmt2 activity is Npr1 kinase independent when 

expressed in yeast (Figure 72).  In cells containing Npr1 kinase, ScMep2 is detected 

as a doublet, with each band being of equivocal intensity and detached by a ~6-8 kDa 

shift.  In contrast, in cells lacking Npr1 kinase, ScMep2 appears as a single band with 

a greater intensity and at the lower molecular weight position.  To test if Npr1 kinase 

phosphorylates CnAmt2 in yeast for a purpose other than transport CnAmt2 was 

expressed in mep123D and mep123D/npr1D and band intensity and position were 

analysed by western blotting.  CnAmt2 did not appear as a doublet in cells possessing  



175 
 

 

Figure 71: Western analysis of Amt2 mutants expressed in yeast.  Diploid mep2∆/mep2∆ S. cerevisiae cells 

containing the plasmids of interest were grown to mid-log phase in 0.1 % proline medium.  Membrane proteins were 

extracted and assayed by western blotting and detected with an a-FLAG antibody.  Pma1 was used as a loading 

control to compare levels. 
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Figure 72: Effect of Npr1 kinase on growth of Amt2 expressed in yeast.  Haploid mep123∆ and mep123∆/npr1∆ 

S. cerevisiae cells containing the plasmids of interest were grown in SD-URA medium overnight, washed, and 10 

fold serially diluted before being spotted onto 0.1 % glutamate or 1 mM ammonium sulphate agar. 
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Npr1 kinase, nor was a shift in the position of the band detected when Npr1 kinase 

was lacking from the strain.  The band intensity was, however, greater despite less 

protein being loaded, as indicated by the levels of Pma1 (Figure 73).  Therefore, when 

CnAmt2 is expressed in yeast Npr1 kinase does not phosphorylate CnAmt2 for any 

purpose.   

4.6 Generation of C. neoformans MATa amt2D mutant  
 

The 3’ UTR of another gene on the forward strand overlaps with the 3’ UTR of AMT2 

which resides on the reverse strand.  To avoid altering the 3’ UTR of the other gene 

(CNJ01870), only the first three transmembrane domains of Amt2 were deleted.  

Disruption of Amt2 in the MATa strain, with the GEN resistance cassette, was achieved 

via electroporation (Figure 74).  Out of more than 50 mutants tested only one mutant 

was confirmed by PCR resulting in a targeting efficiency of < 2 %.  PCR primers 

annealing to genomic DNA adjacent to the integrated disruption cassette and primers 

targeted to the neomycin resistance cassette were used to confirm successful 

integration at the correct locus.  Absence of the WT Amt2 allele verified that the 

mutants had been generated.  The MATa strain was also subjected to electroporation 

mediated transformation, however, no MATa amt2D mutants were confirmed (Figure 

75).  The MATa amt2D mutant was subsequently generated by genetic backcross, 

using the MATa amt2D mutant, by another lab member and gifted for future 

experiments.  To confirm that Amt2 was no longer present in the MATa amt2D strain, 

AMT2 expression under limiting ammonium conditions was tested by reverse 

transcriptase PCR.  In contrast to the WT cells,  AMT2 was not expressed in both 

amt2D mutant mating types verifying that AMT2 was disrupted (Figure 76). 

 

4.7 C. neoformans hyphal growth under limiting ammonium is Amt2 
dependent 

 

To determine if Amt2 is responsible for the ammonium dependent hyphal growth 

previously described, confrontation assays and fruiting assays were performed with 

the WT and amt2D mutant strains.  When observing the region between the patches, 

under the microscope, amt2D mutants of opposite mating type patched in a bilateral  
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Figure 73: Western analysis of Amt2 expressed in yeast possessing and lacking Npr1 kinase. Haploid 

mep123∆ and mep123∆/npr1∆ S. cerevisiae cells containing the plasmids of interest were grown to mid-log phase 

in 0.1 % proline medium.  Membrane proteins were extracted and assayed by western blotting.  Pma1 was used 

as a loading control to compare levels. 



179 
 

  
Figure 74: Schematic of homologous recombination to disrupt AMT2.  Homologous recombination event to 

disrupt AMT2.  PCR1 and PCR2 correspond to diagnostic PCRs shown in the next figure. 
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Figure 75: Diagnostic PCRs to confirm generation of MATa amt2D mutant.  The WT colony along with five 

MATa and 6 MATa  independent mutant isolates were tested for targeted integration of the resistance cassette and 

for the presence of the WT allele.  PCR 1 corresponds to left hand side GEN integration, whereas PCR 2 

corresponds to the WT allele PCR.  Numbers listed below MATa or MATa correspond to the independent isolate 

being tested. 
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Figure 76: Amt2 disruption mutant diagnostic reverse transcriptase-PCR.  RNA extracted from the amt2∆ 

mutants was converted to cDNA and used as template to amplify AMT2 by reverse transcriptase-PCR.  WT but not 

amt2∆ mutants transcribe AMT2. 
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confrontation assay showed a complete loss of hyphal growth on low ammonium.  

Hyphal growth under these conditions is therefore Amt2 dependent.  When the mutants 

were analysed with the WT version of their opposite mating type, in unilateral 

confrontation assays, the WT strain was not defective in hyphal growth despite its 

mating partner being unable to produce hyphal filaments.  Therefore, hyphal growth in 

a confrontation assay, under ammonium limiting conditions, is not dependent on the 

opposite mating type possessing Amt2.  Regardless of whether MATa was confronted 

with a WT or amt2D mutant mating partner, MATa still produced substantially longer 

hyphal filaments than MATa and produced chlamydospores.  Hence, the lack of Amt2 

in MATa is not required to induce longer hyphal filaments in MATa, nor is it required to 

promote chlamydospore formation.  Moreover, the enlarged cells on the outer edge of 

MATa, which were observed previously in the WT confrontations assay, were observed 

on the edge of the MATa patch when analysed with WT or amt2D MATa.  Thus, Amt2 

does not need to be present in MATa to promote the formation of enlarged cells in 

MATa.  On high ammonium, WT cells do not produce hyphal filaments and the same 

was observed for the amt2D mutants (Figure 77).  In the fruiting assays, on low 

ammonium medium, no difference between the WT MATa and the MATa amt2D 

mutant was observed, which was expected, as the hyphal growth phenotype and 

production of enlarged cells was missing when the opposite mating type was not 

present.  The MATa amt2D mutant was defective in displaying hyphal growth which 

was exhibited by WT MATa.  Therefore, the induction of hyphal growth by MATa, in a 

fruiting assay under ammonium limiting conditions, is Amt2 dependent.  No difference 

was observed between the WT strains and amt2D mutants when patched onto high 

ammonium medium (Figure 78) further verifying that hyphal growth is promoted by 

limiting ammonium. 

 

4.8 Invasive growth is promoted by Amt2 on low ammonium 
 

Amt2 in C. neoformans serotype H99/KN99 is responsible for invasive growth on low 

ammonium (Rutherford et al., 2008b).  To test if Amt2 controls the same phenotype in 

JEC20/JEC21, the surface cells on the confrontation assays and fruiting assays were 

washed away and assayed for invasive growth.  On the low ammonium bilateral WT 

confrontation assay cells were embedded within the agar for both mating types.  

However, the volume of embedded cells was substantially greater on the outside edge  



183 
 

 
Figure 77:  Ammonium and AMT2 dependent hyphal growth.  C. neoformans serotype D cells of opposite 

mating type were confronted on a) low (50 µM) and b) high (5 mM) ammonium medium.  Images were taken of the 

region between the cells under the microscope at 40 x magnification after 3 weeks growth in the dark at room 

temperature.  White arrows indicate chlamydospores. 
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Figure 78:  Ammonium and AMT2 dependent MATa  hyphal growth. Microscopic images of the edge of the 

fruiting assays at 40 x magnification on a) low (50 µM) and b) high (5 mM) ammonium medium. 
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of each patch as opposed to the centre of the patches, as was observed previously.  

On the unilateral confrontation assays, invasive growth was displayed by the WT 

strains and to a much lesser extent by the amt2D mutants.  When the amt2D mutants 

were confronted in a bilateral assay, embedded cells were barely visible (Figure 79).  

Out of the cells that did invade, enlarged cells were still present in the bilateral mutant 

confrontation assay (Figure 80).  Thus, Amt2 is required to achieve a WT level of 

invasive growth under low ammonium, however, the production of enlarged embedded 

cells is promoted by cell invasion which is Amt2 independent.  Interestingly, on high 

ammonium, regardless of whether cells possessed Amt2 or not, yeast cells invaded 

the agar in both confrontation and fruiting assays (Figure 79 & Figure 81).  Hence, 

invasive growth on high ammonium is Amt2 independent.  On the low ammonium 

fruiting assays a lack of Amt2 resulted in a reduction in invasive growth in both mating 

types (Figure 81).  Therefore, in the absence of the opposite mating type, Amt2 is 

required to achieve a WT level of invasive growth under limiting ammonium conditions.  

Microscopic inspection revealed no difference between the size of the MATa WT or 

amt2D mutant embedded cells.  However, embedded hyphal filaments, which are 

characteristic of the WT MATa cells, were lacking in the MATa amt2D cells; only yeast 

cells were observed (Figure 82).  Thus, Amt2 is required for the presence of MATa 

hyphal filaments embedded within the agar. 
 

4.9 Complementation of amt2D strains 
 
To confirm that the hyphal growth and invasive growth defects exhibited by the amt2D 

mutants were due to the disruption of Amt2, AMT2 was re-integrated randomly into the 

genome of each mating type by agrobacterium mediated transformation and assayed 

for hyphal and invasive growth.  Reconstitution of Amt2 complemented the hyphal 

growth defect exhibited by each mating type in the confrontation assay (Figure 83).  

Notably, the extent of hyphal growth was greater in the reconstituted strains as 

opposed to the WT strains.  Microscopic inspection confirmed that chlamydospores 

and enlarged cells were also visible on the reconstituted strain bilateral confrontation 

assay.  Hence, hyphal growth along with chlamydospores and enlarged cells, observed 

on a low ammonium confrontation assay, are Amt2 dependent phenotypes.  

Reconstitution of Amt2 into the MATa amt2D strain complemented the hyphal growth 

defect displayed by the MATa amt2D mutant during the fruiting assay (Figure 84).   
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Figure 79:  Confrontation assays invasive growth.  Surface cells from the confrontation assays on both low and 

high ammonium medium were washed away and the invasive cells were photographed.  Top panel is before 

washing and bottom panel is after washing. 
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Figure 80:  Confrontation assay invasive cells.  The surface cells were washed off the low ammonium 

confrontation assays (top panel).  Embedded cells were observed under the microscope at 1000 x magnification 

using an oil emersion lens.  Left panel corresponds to WT bilateral assay and right panel corresponds amt2∆ mutant 

bilateral assay. 
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Figure 81: Fruiting assay invasive growth.  Surface cells from the fruiting assays on both low and high ammonium 

medium were washed away and the invasive cells were photographed. Top panel is before washing and bottom 

panel is after washing 
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Figure 82: Fruiting assay invasive cells.  The embedded cells of both mating types a) MATa and b) MATa from 

the low ammonium fruiting assays were photographed under the microscope at 1000 x magnification. 
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Figure 83: Reconstituted strains confrontation assays.  C. neoformans serotype D cells of opposite mating type 

were confronted on low (50 µM) ammonium medium.  Images were taken of the region between the cells under the 

microscope at 40 x magnification after 3 weeks growth in the dark at room temperature.  White arrows indicate 

chlamydospores. 
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Figure 84: Reconstituted MATa fruiting assays. Microscopic images of the edge of the fruiting assays on low 

ammonium (50 µM) medium at 40 x magnification. 

  



192 
 

Thus, Amt2 regulates the hyphal growth displayed by MATa cells on a low ammonium 

fruiting assay.  Washing away the surface cells on the confrontation assays and the 

MATa fruiting assays revealed that reintroduction of Amt2 complemented the invasive 

growth defect displayed by the MATa amt2D mutants (Figure 85 & Figure 86).  

Markedly, the level of invasive growth was greater in the reconstituted strains than the 

WT strains.  This difference was most striking for the fruiting assays where a 

substantial amount of invasive growth was visible in the centre of the patch.  Invasive 

growth on low ammonium is dependent on Amt2 in both confrontation and fruiting 

assays. 
 

4.10 C. neoformans discussion 
 
C. neoformans undergoes a morphological switch in response to ammonium 

availability.  During ammonium limiting conditions, JEC20 (MATa) and JEC21 (MATa) 

produced hyphal filaments in a confrontation assay.  Hyphal filaments grew mostly 

away from the opposite mating type but some filaments were observed between the 

patched cells.  In S. cerevisiae, growth is arrested in times of nitrogen starvation 

(Lorenz and Heitman, 1998).  Hyphal growth is likely more repressed between the 

patched cells as there is a larger cell to nutrient ratio leading to greater ammonium 

limitation.  It is presumed that where the filaments of opposite mating type meet mating 

occurs.  Filaments produced by mating are functionally distinct to those produced by 

haploid cells.  During nitrogen limitation C. neoformans must adapt to survive.  If the 

opposite mating type is present two haploid cells can mate to form a dikaryon.  In 

addition to foraging for nutrients (Phadke et al., 2013), spores are produced in the 

terminal compartment of the dikaryon, the basidium.  Spores are more resistant to 

starvation conditions and can be dispersed faraway by wind and rain (Botts et al., 

2009).  In the absence of the opposite mating type, haploid cells can produce hyphal 

filaments to move away from the limiting environment, however, this phenotype is most 

associated with MATa (Wickes et al., 1996).  In this study, MATa but not MATa 

required its opposite mating type to undergo hyphal growth as only MATa produced 

hyphal filaments in the fruiting assay.  This is consistent with Shen et al’s., (2002) 

findings.  Shen et al., (2002) found that MATa cells, grown on filament agar, will not 

produce hyphal filaments or enlarged cells when confronted with the congenic MATa 

strain lacking all three pheromone genes (mfa123D).  However, reconstitution of just 

one pheromone gene complements both defects.  Moreover, the authors observed that   
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Figure 85: Reconstituted strains invasive growth.  Confrontation assays were photographed before and after 

washing after 3 weeks incubation in the dark at room temperature.  Washing revealed invasive cells. 
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Figure 86: Reconstituted MATa invasive growth. Fruiting assays were photographed before and after washing 

after 3 weeks incubation in the dark at room temperature.  Washing revealed invasive cells. 
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the mfa123D mutant strain fails to produce hyphal filaments in a fruiting assay on 

filament agar but will produce fewer filaments than the WT strain after prolonged 

incubation.  Thus, Shen et al., (2002) concluded than MATa cells rely on paracrine 

pheromone signalling to produce hyphal filaments, and enlarged cells, whereas MATa 

cells can support hyphal growth via autocrine pheromone signalling (Shen et al., 2002).  

The hyphal growth exhibited by MATa in the fruiting assay is likely a scavenging 

response, analogous to pseudohyphal growth, allowing the strain to explore its 

environment in times of ammonium limitation.  A Mep2 homology search identified two 

putative ammonium transporters.  The H99/KN99 strain similarly contains two 

ammonium transporters in its genome (Rutherford et al., 2008b).  The twin-histidine 

motif, previously believed to be important for signalling, is conserved in Amt2 but not 

in Amt1.  Amt1 contains the glutamate-histidine motif associated with the non-

signalling members of the Mep/Amt/Rh superfamily.  AMT2 in both mating types is 

expressed under ammonium limiting conditions but repressed under ammonium 

sufficient conditions.  This is consistent with AMT2 expression being regulated by NCR 

and is equivalent to AMT2 in the H99/KN99 strain.  AMT1 expression was not tested 

but this would be a future experiment to ascertain if, similar to the H99/KN99 strain, 

AMT1 is constitutively expressed under ammonium limiting and sufficient conditions 

(Rutherford et al., 2008b). 

 

Amt2 was codon optimised and cloned into the yeast expression vector pRS316.  

Similar to ScMep2, CnAmt2 restored the growth defect of the mep123D strain verifying 

that CnAmt2 is an ammonium transporter.  CnAmt2 additionally complemented the 

pseudohyphal growth defect of the mep2D/mep2D strain and, thus, acted as an 

ammonium sensor.  To test if CnAmt2 acted, mechanistically, in the same way as 

ScMep2, the equivalent mutations which uncouple transport from signalling in ScMep2 

were made in CnAmt2.  Mutation of the first histidine of the twin-histidine motif to 

alanine abolished transport and signalling while mutation to glutamate only blocked the 

latter.  Mutation of the second conserved histidine, or asparagine residue adjacent to 

the proposed deprotonation site, equally uncoupled transport from signalling as 

pseudohyphal growth was abolished.  However, as the protein expression levels of the 

CnAmt2H194E and CnAmt2H348A mutants were less than the CnAmt2G343C mutant, which 

induced pseudohyphal growth to WT levels, it could not be concluded that the lack of 

pseudohyphal growth was attributable to the mutations.  A reduction in Mep2 protein 

expression is known to result in a reduction in filamentation (Biswas and 
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Morschhauser, 2005), therefore, the lack of pseudohyphal growth could be due to 

insufficient CnAmt2 expression.  Despite no or very little CnAmt2H194E and 

CnAmt2H348A protein being immunodetected both mutants supported optimal growth in 

the mep123D strain, hence, they must have been expressed but to levels below the 

limit of detection by western blotting.  It is possible that all the mutant proteins are 

expressed to the same level but the H194E and H348A mutations render the proteins 

less stable and sensitive to degradation during the membrane protein preparation 

procedure.  The CnAmt2H194A was expressed to a higher level than CnAmt2H194E and 

CnAmt2H348A but less than CnAmt2G343C, thus, the H191A mutation could equally make 

the protein less stable.  The CnAmt2N241A mutant was expressed to equivalent levels 

to the CnAmt2G343C mutant, therefore, the lack of pseudohyphal growth is due to the 

mutation.  N241 is adjacent to the proposed deprotonation site which includes the first 

conserved histidine.  It is plausible that NH4+ deprotonation occurs in CnAmt2N241A,  as 

the mutant supports growth and, thus, possesses transport activity.  However, the 

route the proton follows, after deprotonation, may be altered.  Alanine is a hydrophobic 

amino acid (Nilsson et al., 2003) whereas asparagine is a larger polar residue (Thanki 

et al., 1988).  The N241A mutation could alter intermolecular interactions within this 

region of the pore, which could lead to conformational changes in the protein which in 

turn could impact on the pathway the proton follows.  The fact that the same mutation 

uncouples transport from signalling suggests that the signalling mechanism is 

conserved between ScMep2 and CnAmt2. 

 

The equivalent mutation to G343C in ScMep2 is hyperactive for transport and 

pseudohyphal growth.  On the contrary, in C. albicans this mutation slightly reduces 

transport activity and abolishes filamentation (Van Nuland et al., 2006) (Boeckstaens 

et al., 2007) (Neuhauser et al., 2011).  Methylammonium uptake studies have not been 

performed to determine the affinity and capacity of CnAmt2.  This would be a 

noteworthy study to undertake to confirm if the G343C mutation increases CnAmt2 

transport activity.  In parallel to this experiment the pHopt could also be determined to 

address the pH model of ammonium sensing.  If analogous to ScMep2 it would be 

expected that the pHopt would be around 4.  Non-signalling ammonium permeases, in 

S. cerevisiae, possessed higher optimum pHs than ScMep2.  If signalling is dependent 

on pH it would be hypothesised that the pHopt would be higher for the CnAmt2N241A 

mutant as seen for the separation of function ScMep2H194E mutant (Boeckstaens et al., 

2008).  However, these experiments should be performed in C. neoformans rather than 
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in S. cerevisiae.  AMT1 would first need to be deleted from MATa amt2D and MATa 

amt2D to generate the double mutants with no functional ammonium transporters.  The 

double mutants should then be reconstituted with the different tagged Amt2 mutants 

individually.  Confrontation assays, between the mutant reconstituted strains, and 

growth assays should additionally be performed to test if separation of function occurs 

when the mutants are expressed natively.  It could be possible that the mutants are all 

expressed to similar levels when expressed in C. neoformans.  Moreover, GFP tagging 

of the mutants would allow localisation studies to be performed.  Another reason for 

the low expression of certain mutants could be due to a lack of localisation to the 

membrane.   

 

ScMep2 is immunodetected as a smear by western blotting.  This is because an 

asparagine residue in native ScMep2 is glycosylated at the N-terminus.  Mutation to 

this residue, N4Q, does not impact on ScMep2 function but does allow the protein to 

be visualised as a distinct band (Marini and André, 2000).  Although CnAmt2 was not 

immunodetected as a smear, when expressed in yeast, this cannot rule out the 

possibility that CnAmt2 is indeed N-glycosylated in C. neoformans.  Similar to ScMep2, 

RhCG is glycosylated, however, non-glycosylated Rh proteins also exist.  In RhCG, 

the polysaccharide is proposed to protect a hydrophobic region within ICL1 from 

proteolytic degradation; ICL1 in the non-glycosylated versions is much shorter and 

postulated to be less prone to degradation (Gruswitz et al., 2010).  Native 

immunodetection of CnAmt2 would verify whether CnAmt2 is N-glycosylated in C. 

neoformans.  If so, perhaps the mutations, which resulted in little or no 

immunodetection of CnAmt2, impacted on the conformation of ICL1, in CnAmt2, 

making the protein sensitive to proteolytic degradation.  CnAmt2 possesses an 

asparagine residue near the start of its N-terminal end.  This residue, N3, could be the 

glycosylation site if the protein is natively glycosylated. 

 

Similar to the ZtMeps, CnAmt2 transport activity is not regulated by Npr1 kinase when 

expressed in yeast.  An Npr1 kinase homology search identified several 

serine/threonine protein kinases but with low similarity to Npr1 kinase suggesting that 

there may not be an Npr1 orthologue in C. neoformans.  Thus, if CnAmt2 is regulated 

by phosphorylation in C. neoformans it could to be by a protein kinase other than Npr1.  

There is a potential phosphorylation site in the CTR of CnAmt2, however, this is closer 

to the C-terminus than it is in ScMep2.  Without a crystal structure of CnAmt2 we do 
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not know how the CTR is ordered.  An interaction between the CTR and ICL3, as a 

result of phosphorylation, has been proposed to be important for the opening of 

ScMep2 (van den Berg et al., 2016).  Similar interactions between the CTR and ICL3 

are believed to be important in other Amt orthologues to function (Loque et al., 2007) 

(Severi et al., 2007).  With the CTR sequence of CnAmt2 being different to the ScMep2 

CTR the same proposed mechanism, interaction between the CTR with ICL3 following 

phosphorylation and ammonium ion binding, may not occur.  Perhaps these regions 

are already interacting and, thus, do not require phosphorylation for activation.  

Furthermore, although C. neoformans grows well at 30 °C, the temperature the growth 

assays were performed at, the fungus is ubiquitous in the environment which will 

inevitably be much cooler.  C. neoformans is frequently associated with eucalyptus 

trees (Gugnani et al., 2005).  It is likely that ammonium would be limiting on the surface 

of the leaves and, thus, Amt2 would be highly expressed.  In CaMep2, a shift from 30 

°C to 37 °C made the transport activity Npr1 kinase independent (Neuhauser et al., 

2011).  Perhaps at lower temperatures, CnAmt2 activity is dependent on Npr1 kinase 

in yeast.  It is possible that at higher temperatures the intermolecular bonds holding 

the quaternary structure together denature slightly locking the transporter in a 

constitutively active conformation or render the pore more fluid.  

 

In the western blots comparing band migration between CnAmt2 expressed in strains 

containing and lacking Npr1 kinase no difference was observed.  This supports the 

conclusion that CnAmt2 is not phosphorylated by Npr1 kinase when expressed in 

yeast.  The band intensity was, however, significantly greater in the strain lacking Npr1 

kinase.  The ScMEP2 promoter and terminator were cloned before and after CnAMT2 

respectively.  ScMEP2 is transcribed by the Gln3 and Gat1 transcription factors which 

bind to the UAS in the ScMEP2 promoter.  Phosphorylated Npr1 kinase (inactive) is a 

negative regulator of Gln3 nuclear localisation as evidenced by the nuclear localisation 

in npr1D cells growing in ammonium replete conditions (Crespo et al., 2004).  Hence, 

in the mep123D cells lacking Npr1 kinase, Gln3 will be more active and upregulate 

transcription of CnAmt2.  More CnAmt2 transcripts will lead to an increase in 

transcribed protein as observed.  Two 5’-GATAAG-3’ sequences, the sequences 

identified by Gln3 and Gat1 (Cunningham et al., 1996) (Coffman et al., 1996), are 

present in the region upstream of CnAmt2 (Figure 87).  Moreover, there are three 

putative Gln3 or Gat1 transcription factors in the JEC20/JEC21 genome, hence, 

transcriptional regulation may be conserved in CnAmt2.  To verify this, AMT2 gene  
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Figure 87: GATA  UAS sequence in CnAMT2 promoter.  1000 bp of genomic DNA  before the START codon 

(ATG) OF CnAMT2 is depicted.  The GATA sequences are highlighted in yellow,  the 5’ UTR is represented in red, 

and the START codon is listed in bold 
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expression should be assayed in mutants lacking the putative transcription factors.  As 

Gln3 and Gat1 carry redundant functions, in S. cerevisiae (Scherens et al., 2006), it is 

likely that double mutants may need to be generated to incur an effect on gene 

expression.  Additionally, the UAS could be verified by making point mutations in the 

putative UAS sequences.  Mutation to the UAS should prevent the transcription factors 

binding and, thus, inhibit AMT2 expression under ammonium limiting conditions. 

 

Disruption of AMT2 in both MATa and MATa abolished hyphal growth under 

ammonium limiting conditions.  Likewise, invasive growth was drastically reduced.  

Although Amt2 promotes invasive growth, during ammonium limiting conditions, 

enlarged cells were still observed suggesting these phenotypes can occur in a 

stochastic fashion which is not Amt2 dependent.  The enlarged cells are speculated to 

be titan cells but this has not been confirmed.  To confirm this the enlarged cells should 

be extracted from the agar and assayed for cell ploidy by fluorescence-activated cell 

sorting (FACS).  Titan cells are known to exhibit increased ploidy (Gerstein et al., 2015) 

in addition to a thicker cell wall and cross linked capsule (Okagaki et al., 2010).  On 

high ammonium C. neoformans invaded the agar in an Amt2 independent manner.  

This is consistent with S. cerevisiae haploid cells invading the agar of rich media 

(Roberts and Fink, 1994).  However, enlarged cells were lacking in the pool of 

embedded cells.  Moreover, the volume of growth was greater than on low ammonium.  

It is likely that another nutrient became limiting which could be responsible for the Amt2 

independent growth; this nutrient could be carbon.  Equally, on both high and low 

ammonium, the volume of invasive growth was greater on the outer edges of the 

patched cells as opposed to within the centre.  Invasive growth is a scavenging 

response so will only occur when there are sufficient nutrients worth scavenging for.  

Cells will be more starved in the centre of the patch due to a higher cell to nutrient ratio, 

therefore, invasive growth may be partially repressed. 

 

To confirm that the loss of hyphal growth and reduction in invasive growth were Amt2 

dependent Amt2 was reconstituted into the amt2D mutant strains.  Both invasive and 

hyphal growth were complemented by Amt2 to levels greater than the WT strains.  The 

greatest increase in invasive growth was observed with the MATa reconstituted strain 

in the fruiting assay; the images taken before and after washing look very similar.  As 

AMT2 was reconstituted randomly into the genome it is possible that AMT2 disrupted 

another gene which may be a negative regulator of both developmental processes.  
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After generating the reconstituted strains it was noticed that another gene (CNJ01885), 

residing on the forward strand, had been recently annotated on the database.  This 

gene overlaps with most of the AMT2 gene, however, CNJ01885 is only annotated as 

being a hypothetical protein, so may not code for a functional protein.  If CNJ01885 

does encode a functional protein it may not have any involvement in regulating 

morphology (Figure 88).  To verify that the phenotypes are Amt2 dependent the amt2D 

mutant strains should be reconstituted with the AMT2 upstream and downstream 

regions along with the AMT2 open reading frame (ORF) sequence lacking introns.  

This would prevent the overlapping gene from simultaneously being reconstituted into 

the genome.  If the new reconstituted strains undergo hyphal and invasive growth then 

it can be confirmed that they are Amt2 dependent processes and not dependent on 

the protein encoded by the overlapping gene. 

 

The amt2D mutants have not been tested in a virulence assay, however, this would be 

a future experiment to undertake.  Virulence assays include the murine nasal inhalation 

test (Nielsen et al., 2003) and the wax moth assay (Mylonakis et al., 2005).  DME 

medium and Niger seed medium could additionally be utilised to test for the 

competency to produce capsule and melanin, respectively, which are both virulence 

traits.  In the H99/KN99 strain, single and double Amt1/Amt2 mutants behaved like WT 

in all virulence assays, thus, the Amt permeases are not virulence factors in this strain.  

However, this does not rule out the possibility that Amt2 is a virulence factor in the 

JEC20/JEC21 strain.  Ump2 is the ammonium transceptor in U. maydis.  For U. maydis 

to infect its host, maize, the fungus must first mate to form a dikaryon.  The dikaryon 

is the morphology which allows U. maydis to infect (Smith et al., 2003).  Thus, an 

ammonium transceptor is important for virulence in this fungus.  In the confrontation 

assays, mating presumably occurs when the cells of opposite mating type meet.  

Mating by C. neoformans produces dikaryons (Kwon-Chung, 1975), similar to U. 

maydis, therefore CnAmt2 could also be important for virulence in JEC20/JEC21.  If 

CnAmt2 is important for virulence this would provide a new target for antifungal drugs 

to treat cryptococcal infections.  If the structure of Amt2 is solved this could be used to 

screen for potential drugs.  Due to the similarity between Amt2 in H99/KN99 and 

JEC20/JEC21, it seems unlikely that Amt2 in the latter strain would be important for 

virulence.  However, the crystal structure could aid in providing more breadth into the 

underlying signalling mechanism and molecular simulation studies could provide 

insight into the transported molecule. 
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Figure 88: Location of AMT2 and overlapping genes.  The diagram was exported from the EnsembleFungi 

website.  The red filled boxes and redlines indicate exons and introns respectively.  The red outlined white boxes 

indicate UTR’s.  The gene highlighted in green depicts AMT2 on the reverse strand.  The overlapping gene, on the 

forward strand, was added after the reconstituted strains were generated. 
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5 Final discussion 
 

5.1  Project summary 
 
Nitrogen is an essential nutrient for many organisms and ammonium is a preferred 

source of nitrogen for fungi (Boer et al., 2007).  All fungal genomes encode at least 

two functional ammonium permeases which facilitate the transport of ammonium 

across the plasma membrane (Marini et al., 1997).  In four distinct fungi one of the 

encoded proteins serves an additional role as an ammonium sensor.  ScMep2 and 

CaMep2 induce pseudohyphal growth and filamentation in S. cerevisiae and C. 

albicans (Lorenz and Heitman, 1998) (Biswas and Morschhauser, 2005) respectively, 

whereas, CnAmt2 and Ump2 regulate mating between haploid C. neoformans 

H99/KN99 and U. maydis cells respectively to generate a dikaryon and disperse 

spores (Smith et al., 2003) (Rutherford et al., 2008b).  The ammonium sensors control 

these processes during ammonium limitation.  Although these two developmental 

processes are distinct, they are both starvation responses which aid survival in times 

of limitation.  Pseudohyphal growth and filamentation are non-motile morphologies 

which allow the yeast cells to forage for limiting ammonium.  Hyphae production, 

following mating of two haploid cells, equally allows C. neoformans and U. maydis to 

explore their environments and scavenge for nutrients (Phadke et al., 2013).  Spores, 

which can withstand harsher conditions, are dispersed further afield by wind and water 

to potentially more favourable environments (Botts et al., 2009).  Furthermore, the 

production of spores involves recombination events which generate genetic variation 

and diversity which may introduce favourable traits to aid survival in shifting conditions 

(Lin et al., 2005).  Mutations that uncouple transport from signalling demonstrate that 

the physical act of transport triggers signalling as opposed to internal nutrient 

metabolism.  Hence, these permeases are classified as transceptors; transporters 

which act like receptors (Van Zeebroeck et al., 2014).  However, the underlying 

molecular signalling mechanisms adopted by these ammonium transceptors is 

unknown.  As sensing the environment is critical for all fungi, to adapt to changing 

niches, the aims of this study were to enhance current knowledge in how ammonium 

signalling is conserved.  Investigation into ammonium signalling in two divergent fungi 

has identified that in C. neoformans JEC20/JEC21 an ammonium transceptor, Amt2, 

is important for the induction of hyphal growth during ammonium limitation.  However, 
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ammonium permeases do not play the same role in regulating morphology in Z. tritici, 

instead ammonium starvation triggers a hypervirulent phenotype.   

 

5.1.1 Nitrogen starvation induces virulence in Zymoseptoria tritici 
 
In the wheat pathogen Z. tritici, a lack of ZtMep2 and ZtMep3 renders the fungus 

hypervirulent suggesting that nitrogen starvation is the stimulus for virulence.  Nitrogen 

starvation as a trigger for virulence has previously been proposed for other pathogenic 

fungi including the vascular wilt fungus Fusarium oxysporum, the wheat head blight 

fungus Fusarium graminearum, and the rice blast fungus Magnaporthe oryzae (López-

Berges et al., 2010).  An early study found a correlation between starvation induced 

genes and the expression of genes in planta (Coleman et al., 1997).  In this study, both 

ZtMEP2 and ZtMEP3 were expressed to higher levels during ammonium limitation as 

opposed to ammonium replete conditions.  Moreover, Yang et al., (2013) found 

ZtMEP3 and the virulence gene Zt3LYSM to be highly expressed during the wheat 

infection cycle when the fungus switches to the necrotrophic phase (Yang et al., 2013).  

Thus, the expression of ZtMEP3 is correlated between starvation and infection.  After 

penetration of the wheat leaf, through the stomata, Z. tritici colonises the substomatal 

space (Duncan and Howard, 2000).  Despite colonisation, the biomass of Z. tritici does 

not significantly increase and Z. tritici is believed to rely on internal nutrient stores as 

well as soluble nutrients in the apoplast (Keon et al., 2007) (Rohel et al., 2001).  

However, upon the switch from biotrophy to necrotrophy, when pycnidia appear on the 

wheat leaves, Z. tritici proliferates more rapidly increasing its biomass (Duncan and 

Howard, 2000).  Perhaps once Z. tritici has exhausted the internal nutrient stores, and 

hence become starved of nitrogen, high expression of Zt3LYSM and ZtMEP3 are 

induced.  An increase in virulence will provide plentiful nitrogen for Z. tritici, from wheat 

cell death, to be imported through ZtMep3 to support the rapid growth. 

 

In F. oxysporum, a virulence associated phenotype is cellophane membrane 

penetration in the presence of sodium nitrate containing minimal medium (MM).  The 

same phenotype is repressed in the presence of ammonium nitrate or ammonium 

tartrate.  Repression of cellophane penetration was also observed with F. 

graminearium and M. oryzae, which like F. oxysporum are ascomycetes (López-

Berges et al., 2010).  Ascomycetes form the Ascomycota phylum of the fungal kingdom 

and are defined by their production of spores in sac-like structures known as asci 
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during the sexual cycle (Bennett and Turgeon, 2016).  Supplementation of the amino 

acid glutamine, which is a preferred source of nitrogen, to the growth media partially 

repressed cellophane penetration by F. oxysporum.  Moreover, addition of l-methionine 

sulfoximine (MSX), a glutamine synthetase (Gln1) inhibitor, to ammonium nitrate 

containing medium, fully restored cellophane penetration.  As glutamine synthetase 

converts ammonia to glutamine this suggested that glutamine was the repressing 

stimulus as opposed to ammonium (López-Berges et al., 2010).  The partial cellophane 

penetration observed, when MM medium was supplemented with glutamine, could be 

attributable to the instability of glutamine, which has a relatively short half-life in 

solution (Coster et al., 2004), or due to inefficient uptake.  Glutamine uptake is 

mediated by Gnp1, the high affinity glutamine permease capable of importing other 

amino acids: leucine, serine, threonine, cysteine, methionine and asparagine (Zhu et 

al., 1996) (Regenberg et al., 1999), Agp1, the low affinity amino acid permease 

(Schreve et al., 1998) and Gap1 in S. cerevisiae.  In S. cerevisiae, glutamine is a key 

regulator of the TOR pathway (Stracka et al., 2014).  Supplementation of rapamycin to 

ammonium containing medium reversed the repressive cellophane penetration 

phenotype establishing an involvement of the TOR pathway in regulating virulence in 

F. oxysporum (López-Berges et al., 2010).  Similar to F. oxysporum, Z. tritici is an 

ascomycete (Steinberg, 2015), therefore, the hypervirulence phenotype associated 

with the Ztmep2D/Ztmep3D double mutants could be due to glutamine starvation which 

inhibits the TOR pathway.  If this theory is correct it would be hypothesised that 

treatment of high ammonium grown WT cells with rapamycin, or MSX, would mimic 

the starvation associated phenotypes displayed by the Ztmep2D/Ztmep3D double 

mutants on high ammonium.  These phenotypes would include melanisation and 

sporadic distribution of ‘barbed wire-like’ filaments around the centre of the colony in 

the 5 µl spot and single colony analysis assays, and a lack of growth in high ammonium 

liquid medium and reduced growth on high ammonium solid medium.  Furthermore, it 

would be postulated that the expression of Zt3LYSM by WT cells, grown in high 

ammonium medium supplemented with rapamycin or MSX, would be comparable to 

the expression of the virulence gene in the Ztmep2D/Ztmep3D double mutants.  

Treatment of WT cells with MSX and rapamycin should, therefore, be tested to 

investigate the underlying signalling mechanisms governing virulence in Z. tritici.  

Interestingly, a protein interaction prediction site does forecast an interaction between 

ZtMep3 and a putative glutamine synthetase.  If glutamine starvation is found to the be 



206 
 

the trigger for virulence, putative Gln1 should be deleted from the WT strain to assay 

if this mutant also mimics the Ztmep2D/Ztmep3D double mutant phenotypes. 

 

AreA is a GATA binding transcription factor that mediates NCR in ascomycetes by 

activating the transcription of genes which encode proteins that enable uptake and 

assimilation of less preferred nitrogen sources (Wong et al., 2008) (Caddick et al., 

1986) (Fu and Marzluf, 1990).  Thus, non-functional areaD mutants cannot utilise 

secondary nitrogen sources, other than ammonium and glutamine, for growth (Marzluf, 

1997).  AreA is an orthologue of Gln3/Gat1 in S. cerevisiae which transcriptionally 

induce MEP2 during nitrogen limitation (Scherens et al., 2006).  In Fusarium fujikuroi, 

AreA induces the expression of all three ammonium permease genes (Teichert et al., 

2008) and glutamine synthetase (gln1D).  Interestingly AREA expression is repressed 

by glutamine and ammonium, but expression is derepressed in a gln1D mutant 

regardless of the nitrogen source.  This suggested that the gln1D mutant does not 

sense the repressive nitrogen sources to inhibit the expression of AREA and, thus, 

Gln1 regulates the expression of AREA (Wagner et al., 2013) (Tudzynski, 2014).  In 

some pathogenic fungi, Colletotrichum lindemuthianum and F. oxysporum, AreA has 

been found to be important for virulence (Pellier et al., 2003) (Divon et al., 2006).  

ZtMEP3 and Zt3LYSM are highly expressed at day 14 of the infection cycle (Yang et 

al., 2013), and in this study ZtMEP3 is greater than six-fold more expressed during 

nitrogen limiting conditions as opposed to ammonium replete conditions; AreA could 

be the transcriptional regulator of both genes.  To test this hypothesis areaD mutants 

and complemented strains should be generated.  The areaD mutants should be tested 

in the wheat infection assay for their impact on virulence.  Moreover, the expression 

levels of  ZtMEP2, ZtMEP3, and Zt3LSYM between the strains containing and lacking 

AreA should be determined by qPCR.  If the areaD mutants mimic the hypervirulent 

phenotype of the Ztmep2D/Ztmep3D double mutants on wheat, and show a lack of 

ZtMEP2 and ZtMEP3 expression during ammonium limitation, but an induction of  

Zt3LSYM, this would suggest that the Meps are transcriptionally induced by AreA but 

AreA does not regulate the virulence pathway.  If virulence is AreA dependent, RNAseq 

should be performed to assay which genes are regulated by AreA under low and high 

ammonium conditions.  A model for the link between nitrogen availability, Gln1, TOR 

and AreA is depicted in (Figure 89). 
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Figure 89: Model of nitrogen starvation induced virulence in Z. tritici.  a) During nitrogen limiting conditions 

low levels of NH4
+ are imported through Mep2 and Mep3 in WT cells.  NH4

+ is converted to glutamine (Gln) by 

glutamine synthetase (GS).  Limiting glutamine induces expression of AREA, GLN1, MEP2, MEP3 and 3LSYM.  Or 

low glutamine induces 3LSYM expression by another route.  3LysM induces virulence.  b) During nitrogen replete 

conditions high levels of NH4
+ are converted to glutamine by GS in WT cells.  Sufficient glutamine levels activate 

the TOR pathway and inhibit AREA expression.  GLN1, MEP2, MEP3 AND 3LSYM are not transcriptionally induced.  

Virulence is not induced in Z. tritici.  c) During nitrogen limiting or replete conditions Ztmep2D/Ztmep3D cells are 

starved of NH4
+, thus, glutamine levels are very (v) low.  Low levels of glutamine induce transcription of AREA which 

induces transcription of GLN1 and 3LSYM.  Or low glutamine induces 3LSYM expression by another route.  3LysM 

induces hypervirulence.  Lines with arrow heads indicate a positive relationship whereas T-lines represent inhibition. 
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5.1.2 Cryptococcus neoformans hyphal growth is transceptor regulated 
 

Amt2 is a transceptor in the H99/KN99 strain which controls mating and invasive 

growth in response to limiting ammonium (Rutherford et al., 2008b).  In this study we 

have identified an new phenotype governed by Amt2 in the JEC20/JEC21 strain.  

Hyphal growth exhibited by C. neoformans JEC20/JEC21, during a confrontation 

assay under ammonium limiting conditions, is dependent on the ammonium permease 

Amt2.  Moreover, Amt2 controls hyphal growth exhibited by JEC21 in the absence of 

JEC20 in a low ammonium fruiting assay and Amt2 promotes invasive growth in both 

assays under the same conditions.  Consistent with the H99/KN99 strain, AMT2 

expression is under the control of NCR.  A mutation in Amt2, N241A, which uncouples 

transport from signalling, when expressed in S. cerevisiae, is consistent with the 

equivalent mutation, N246A in ScMep2 (Van Nuland et al., 2006).  This suggests that 

CnAmt2 and ScMep2 may be working mechanistically in the same way. 

 

The underlying signalling mechanisms adopted by the ammonium transceptors is 

currently unknown, however, two models have been proposed.  The conformational 

change model hypothesises that transport of ammonium induces a conformational 

change in the transporter, analogous to a G-protein coupled receptor, allowing the 

transporter to interact, or disengage interaction, with a downstream signalling partner 

(Rutherford et al., 2008a).  The pH model proposes that following NH4+ deprotonation,  

to NH3 gas, the route the proton follows may impact on internal pH triggering a pH 

sensitive, filamentation inducing, signalling cascade (Wacker et al., 2014) 

(Boeckstaens et al., 2008).  The N241A separation of function allele identified in 

CnAmt2 is located at an equivalent position to the proposed deprotonation site.  N246A 

in ScMep2 likewise uncouples transport from signalling, thus, this is a conserved 

signalling residue (Van Nuland et al., 2006).  The transport mechanism adopted by 

ammonium transceptors is also unknown.  The transported substrate could be NH3, 

NH4+ or NH3/H+ symport, where the latter two would establish an electrogenic transport 

mechanism.  Asparagine 241 in CnAmt2 could be essential in directing the pathway 

the proton follows succeeding deprotonation.  If the transport mechanism is 

electroneutral, as has been confirmed for human RhCG (Baday et al., 2015), the proton 

would leave CnAmt2 on the extracellular side.  This would result in the NH3 gas being 

solely imported into the cytosol where it would acquire a proton to form NH4+.  This 

acquisition of a proton would, therefore, raise the cytosolic pH which could activate or 
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deactivate a pH responsive pathway.  If transport is electroneutral, the N241A allele 

may direct the excess proton through the pore to combine with NH3 to reconstitute 

NH4+.  This would not result in a change in internal pH as the necessity to acquire a 

proton from the cytosol would be lacking.  Another possibility is that the N241A 

mutation causes the NH4+ deprotonation event to be bypassed completely.  In support 

of the conformational change model, perhaps the deprotonation event leads to a 

conformational change in the transporter or maybe relay of the excess proton, by the 

twin-histidine motif, induces a conformational change.  The twin-histidine motif forms 

a charge delocalised structure (Wang et al., 2012).  During proton relay, the charge 

across the twin-histidine motif alters and could, thus, alter interactions with 

neighbouring residues which may incur a conformational change.  If ammonium 

signalling occurs via the conformational change model, perhaps the N241A mutation 

prevents the relay of the excess proton by the twin-histidine motif resulting in no 

conformational change.  Whichever signalling model is correct, the proposed 

deprotonation site is likely crucial for signalling by ScMep2 and CnAmt2. 

 

5.2   Comparison between ammonium signalling in Z. tritici and C. 
neoformans 

 

Deletion of ZtMep3 in Z. tritici does not abolish filamentation, however, ZtMep3 does 

complement the pseudohyphal growth defect of a S. cerevisiae strain lacking Mep2; 

as does CnAmt2.  CnAmt2, alike with ScMep2, and all other identified ammonium 

sensors, to date, possesses the conserved twin-histidine motif; ZtMep3 does not.  

Glutamate is instead found at the equivalent position, in ZtMep3, to the first conserved 

histidine, which is comparable to the non-signalling homologues, ScMep1 and 

ScMep3.  In ScMep2, substitution of the first histidine to glutamate blocks 

pseudohyphal growth but sustains transport which would suggest that the first histidine 

is functionally important for signalling (Boeckstaens et al., 2008).  The ability of ZtMep3 

to work as an ammonium sensor, therefore, contradicts this theory.  Furthermore, the 

expression level of CnAmt2 is comparable to the expression level of ScMep2, whereas, 

ZtMep3 is poorly expressed.  A reduction in Mep2 protein expression is correlated with 

a reduction in filamentous growth (Biswas and Morschhauser, 2005).  This poses the 

question how can ZtMep3 complement pseudohyphal growth when it does not possess 

the twin-histidine motif and is expressed to a low level?  Pseudohyphal growth is a 
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process which occurs exclusively during ammonium limitation and not during 

ammonium starvation or ammonium replete conditions (Lorenz and Heitman, 1998) 

(Marini et al., 1997) (Rutherford et al., 2008a).  Notably, the G349C allele is hyperactive 

in ScMep2 but slightly less active in CaMep2.  ScMep2G349C results in enhanced 

pseudohyphal growth in S. cerevisiae but CaMep2G349C abolishes filamentation in C. 

albicans (Boeckstaens et al., 2007) (Neuhauser et al., 2011) suggesting that there 

could be a fine balance between too much or not enough ammonium entering the cell.  

Although not determined, the glutamate-histidine motif, together with the growth defect 

of the single ztmep3D mutants, suggest that ZtMep3 is the high capacity, low affinity 

transporter.  If the balance between transport activity and expression is crucial in 

signalling for pseudohyphal growth, the high transport activity of ZtMep3 may 

compensate for its low protein expression resulting in the import of an inducing 

concentration of ammonium. This is consistent with minimal filamentation being 

induced in C. albicans by CaMep1 when placed under the control of the CaMEP2 

promoter; CaMEP1 contains the glutamate-histidine motif.  Northern analysis of 

CaMEP1 and CaMEP2 found CaMEP2 to be highly expressed when grown in ≤10 mM 

ammonium, whereas CaMEP1 was expressed to levels below the limit of detection.  

As CaMep1 could support growth of a strain lacking both functional ammonium 

transporters it was concluded that CaMEP1 must have been expressed in these 

conditions to support growth.  Thus, the CaMEP2 promoter is more strongly induced 

during ammonium limitation.  It was, therefore, anticipated that the expression of 

CaMEP1, under the control of the CaMEP2 promoter, would be increased resulting in 

increased protein expression (Biswas and Morschhauser, 2005).  Equally, substitution 

of the first histidine to glutamate in ScMep2 (H194E), to mimic ScMep1, incurred higher 

transport rates than WT ScMep2 but failed to induce pseudohyphal growth.  ScMep1 

was expressed to lower levels than ScMep2 but was more active (Boeckstaens et al., 

2008) (Marini et al., 1997).  The increase in expression of CaMEP1, incurred by being 

controlled by the CaMEP2 promoter, could lead to more ammonium being imported 

bringing the concentration of ammonium into a range which supports pseudohyphal 

growth.  Whereas, an increase in the activity of ScMep2, incurred by the H194E 

mutation, may push the concentration of imported ammonium above the optimum 

threshold for pseudohyphal growth to occur.  The reason that ScMep2G349C induced 

pseudohyphal growth, despite being hyperactive, may be because it has a lower Vmax 

than ScMep2H194E and is, thus, a lower capacity transporter (Boeckstaens et al., 2007) 

(Marini and André, 2000).  Perhaps the extra imported ammonium by ScMep2G349C 
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does not push the concentration of imported ammonium above the optimum threshold.  

The Km and Vmax values published in other literature, which indicate affinity and 

capacity respectively, are listed in (Table 20).   

 

Plasmid Vmax  
nmol min-1 mg-1  protein 

Km 
mM 

YCp Mep2N4Q 18.1a 0.6a 

YCp Mep2 N4Q,G349C 55.8 ± 0.8b 1.12 ± 0.04b 

YCp Mep2H194E 64.0 ± 1.7c 3.46 ± 0.44c 

 
Table 20: Kinetic parameters of Mep2 variants.  The mep123Δ strain was transformed with the Mep2 variant 

plasmids listed.  [14C]-methylammonium uptakes rates, ranging from 0.1 – 5 mM were measured.  Experiments 

were performed in duplicate.  The measured values from both experiments were averaged to calculate Vmax and 

Km.  All values listed are taken from the following literature.  a values from (Marini and André, 2000), b values from 

(Boeckstaens et al., 2007), and c values from (Boeckstaens et al., 2008). 

Our findings, along with previously published results, allow us to propose that if the 

expression and transport activity levels of an ammonium permease are correctly 

balanced, so that an inducing concentration of ammonium is imported, any ammonium 

permease, from any organism, has the potential to function as an ammonium sensor.  

This theory favours the pH model of signalling.  Moreover, the twin-histidine motif does 

not appear to be a defining feature of an ammonium sensor.  A graphical 

representation of this model, where CnAmt2 and ZtMep3 are used as examples, is 

depicted in (Figure 90).   

 

The transport activity of ZtMep3 and CnAmt2 is Npr1 kinase independent when 

expressed in yeast.  As Z. tritici and C. neoformans are ubiquitous in the environment 

(Steinberg, 2015) (Gugnani et al., 2005), they will frequently experience temperatures 

lower than 30 °C, the temperature the growth assays were incubated at.  Npr1 kinase 

is indispensable for CaMep2 transport activity at 30 °C, but dispensable for transport 

at the higher temperature of 37 °C (Neuhauser et al., 2011).  As temperature impacts 

on the dependence on Npr1 kinase in CaMep2, the same may be occurring in ZtMep3 

and CnAmt2 at 30 °C.  In ScMep2, phosphorylation by Npr1 kinase causes 

conformational changes in the CTR which alleviates the autoinhibition of the AI domain 

(Boeckstaens et al., 2014) (van den Berg et al., 2016).  The higher temperature, 30 

°C, may impact on the conformation of ZtMep3 and CnAmt2 and/or the fluidity of their  
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Figure 90: Graphical representation of ammonium signalling model based on the balance between 
transport activity and expression.  a) Increased expression of an ammonium transporter could compensate for 

its low activity, for example CnAmt2.  b) Increased activity of an ammonium transporter could compensate for its 

low expression, for example ZtMep3.  Transport activity is coloured blue and protein expression is coloured red.  

The colour of the line on the graph indicates the factor which is changing.  Right slanted grey lines represent growth 

arrest (G0) as a result of too little ammonium entering the cell.  Left slanted grey lines represent replete ammonium 

conditions which induces budding replication.  No grey lines represents ammonium limitation which induces 

pseudohyphal growth (PG).  c) Concentration of imported ammonium based on the graphs above.  The 

concentration of imported ammonium dictates the type of growth or lack of growth.  
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transporting pores.  If so, this could potentially prevent signalling; especially if signalling 

is dependent on the amount of ammonium entering the cell as this could alter transport 

rates.  Thus, ammonium permeases could be rejected as ammonium sensors solely 

on experiments in yeast.  This strengthens the notion that investigating ammonium 

permeases in S. cerevisiae may not be an appropriate strategy, or at least that 

experiments should additionally be performed natively. 
 

5.3  Conclusion 
 
In this study ammonium signalling has been investigated in two divergent fungi.  We 

have identified a new phenotype regulated by CnAmt2 and discovered a new 

ammonium sensor ZtMep3.  ZtMep3 regulates pseudohyphal growth in yeast but we 

cannot conclude that this regulates filamentation in Z. tritici; it is possible that ZtMep3 

regulates a different process natively.  In C. neoformans JEC20/JEC21, CnAmt2 is 

responsible for inducing the hyphal growth exhibited in the confrontation and fruiting 

assays on low ammonium.  Moreover, CnAmt2 promotes invasive growth under the 

same conditions.  In Z. tritici, nitrogen starvation, acquired by the lack of both functional 

ammonium permeases, induces hypervirulence.  Virulence in the phytopathogen F. 

oxysporum, is also triggered by nitrogen starvation, however, glutamine, the product 

of ammonium metabolism catalysed by glutamine synthetase, is the sensed molecule 

(López-Berges et al., 2010).  Thus, we propose that a lack of internal ammonium 

metabolism may be the signal for virulence in Z. tritici.  All identified ammonium 

transceptors, to date, contain the twin-histidine motif and, thus, this histidine pair was 

believed to be essential for signalling ammonium permeases (Boeckstaens et al., 

2008).  As ZtMep3 can complement the pseudohyphal growth defect of a diploid S. 

cerevisiae strain lacking Mep2 (mep2D/mep2D), despite lacking the conserved twin-

histidine motif, the twin-histidine motif is not a distinguishing feature of an ammonium 

sensor.  Furthermore, we propose that any ammonium permease has the potential to 

complement the pseudohyphal growth defect of the mep2D/mep2D strain if the 

transport activity and expression levels are correctly balanced so that an inducing 

concentration of ammonium is imported into the cell to trigger a signalling cascade.  

Thus, studying ammonium permeases in S. cerevisiae may not be an appropriate 

strategy.  Instead, research into these proteins should be performed natively.  No 

investigations have been undertaken to establish whether transport by either 

transceptor is electroneutral or electrogenic.  Crystal structures of both proteins, along 
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with molecular simulation studies, voltage clamp electrophysiology studies and N 

isotope discrimination experiments, would aid in determining the transported 

substrates and in establishing the underlying signalling mechanisms.  The reasons 

why C. neoformans chooses to regulate filamentation, during nitrogen limitation, via a 

transceptor mediated process, while Z. tritici responds to nitrogen starvation by 

inducing virulence is unknown.  However, whether ammonium availability is sensed by 

a transceptor on the surface of the cell or sensed internally, after ammonium 

metabolism, ammonium availability directs important developmental processes in both 

organisms.  By investigating ammonium signalling in other fungi we will gain an 

understanding in how prevalent and conserved these starvation responses are and 

why different organisms adopt different modes of ammonium signalling. 
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