# Preliminary Analysis: The Cost and Characteristics of Maine's Higher Performing Public Schools 

David L. Silvernail<br>Maine Education Policy Research Institute, University of Southern Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/mepri
Part of the Early Childhood Education Commons, Higher Education Commons, and the Teacher Education and Professional Development Commons

## Repository Citation

Silvernail, David L., "Preliminary Analysis: The Cost and Characteristics of Maine's Higher Performing Public Schools" (2006). Maine Education Policy Research Institute. 132.
https://digitalcommons.library.umaine.edu/mepri/132

This Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine Education Policy Research Institute by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

# Preliminary Analysis 

The Cost and Characteristics of Maine's Higher Performing Public Schools

Report Prepared for
Joint Standing Committee on Education and Cultural Affairs Maine State Legislature

Dr. David L. Silvernail
Director
Maine Education Policy Research Institute University of Southern Maine Office

## Table of Contents

Introduction ..... 1
Analyzing Maine's Public Schools by Size ..... 2
Identification of Higher Performing Maine Public Schools ..... 8
The Cost of Maine's Higher Performing Public Schools ..... 11
Characteristics of Higher Performing Maine Public Schools ..... 16
Conclusions ..... 20
Recommendations ..... 20
Appendices ..... 22
Appendix A: Isolated Small School Adjustment
Appendix B: Selected References
Appendix C: Calculating Cost of Four-Year High School GraduateAppendix D: Four-Year Cost Per Graduate for Maine Public HighSchools
Appendix E: MEA Score Analysis by Economically Disadvantagedand Advantaged YouthAppendix F: Characteristics of Middle and High Schools of Different SizesAppendix G: Criteria for Higher and Lower Performing Maine School

## Preliminary Analysis

# The Cost and Characteristics of Maine's Higher Performing Schools 

David L. Silvernail
Director

Maine Education Policy Research Institute University of Southern Maine Office

## Introduction

In Spring 2005 the Maine Legislature passed legislation establishing an isolated small school adjustment in the Essential Programs and Services (EPS) funding formula. The adjustment for isolated small high schools (i.e. under 200 pupils) was a reduction in student-teacher ratios in the formula calculations, and in the case of isolated elementary schools (i.e. fewer than 15 pupils per grade level), the adjustment amounted to a $10 \%$ transition adjustment for the 2005-06 EPS per pupil rate. Island schools received an additional adjustment for operating and maintenance costs, and transportation costs. A more complete description of the adjustments appears in Appendix A.

In approving these adjustments, the Legislature directed the Maine Education Policy Research Institute (MEPRI) to conduct a review of high performing, cost-effective small schools. Specifically the language in the legislation was as follows:
"The Maine Education Policy Research Institute within the University of Southern Maine shall conduct a review of highperforming and cost-effective small schools in the state. The steering committee of the Maine Education Policy Research Institute shall include a targeted research project to the fiscal year 2005-06 work plan to permit the principal investigators of the Maine Education Policy Research Institute to provide such technical assistance as may be required to complete this study. Based upon its analyses, the Maine Education Policy Research Institute shall develop models of small schools that are both high performing and cost-effective. The Maine Education Policy Research Institute shall report its findings and recommendations, including the characteristics of highperforming and cost-effective small schools and proposed adjustments to the cost components of the Essential Programs and Services Funding Act, to the Joint Standing Committee on Education and Cultural Affairs by November 30, 2005. The Joint Standing Committee on Education and Cultural Affairs may introduce a bill related to the report to the Second Regular Session of the $122^{\text {nd }}$ Legislature." (PL05, C.12, (LD468), Sec. UU-6)

A four phase study was conducted to fulfill this Legislative directive. These included:

1. An examination of the applicability to Maine of some fairly widely held assumptions about the benefits of small schools.
2. The identification of higher performing Maine schools, of all sizes.
3. A calculation of the cost of different size higher performing schools in Maine.
4. An analysis of characteristics of higher performing Maine schools. Based on the results of these analyses, a proposed adjustment to the cost components of EPS has been developed and is presented in the final section of this report.

The first phase of the study entailed examining Maine schools based on different average school sizes. But before presenting these analyses, a note about the extant literature on school size is in order. A partial listing of sources reviewed appears in Appendix B. A review of this literature did not prove very helpful in responding to the legislative directive. This was the case for three key reasons: (1) some of the literature consisted of opinion, and/or anecdotal accounts, and was not based on unbiased generalizable empirical evidence; (2) school sizes or school locations examined in many research studies were not applicable to Maine (e.g., small schools were defined as less than 750 or 1,000 students; or small urban city schools were studied, not small rural schools); or (3) the research was flawed and/or did not adhere to standard rigorous research procedures. Thus, the literature provided little guidance in analyzing small school efforts in Maine. Consequently, three different analyses were undertaken to explore the relationship between school sizes in Maine and several different school and performance related characteristics.

## Analyzing Maine's Public Schools by Size

The first phase of the study focused on exploring the applicability of some fairly widely held assumptions about the benefits of small schools to Maine schools. One analysis involved determining the cost per graduate. Two
research studies, one in New York (Stiedel, et al.; 1998) and one in Nebraska (Frank and Bailey; 1999), have concluded that the cost of obtaining a high school graduate is less in smaller high schools. That is to say, although the yearly costs of educating high school students are often higher in small schools, the average cost of graduating a student from small high schools is less. Unfortunately, a review of these two studies revealed the conclusions over-reach the empirical evidence found in the studies, and that the results are somewhat misleading. However, the premise of the studies (i.e., cost per graduate in different size high schools) warranted examination in Maine.

What are the costs associated with obtaining a high school graduate in different size schools in Maine? Is the cost lower in smaller schools? To answer these questions an average 2004 four-year cost per graduate was calculated for each of Maine's public high schools. The summary analysis of this information appears in Table 1, and a more technical description of the calculation appears in Appendix C. The costs for three island high schools

Table 1
Average 2004 Cost per Graduate for Maine High Schools

| School Size Enrollment | Number of SAUs | Average Graduation Rate | Range of Cost per Graduate | Average FourYear Cost per Graduate |
| :---: | :---: | :---: | :---: | :---: |
| < 200 | 23 | 91\% | \$26,000 - \$49,927 | \$32,994 |
| 200-400 | 33 | 86\% | \$21,745 - \$41,778 | \$30,767 |
| 400-600 | 20 | 90\% | \$22,802 - \$34,884 | \$29,473 |
| 600-800 | 17 | 89\% | \$23,546 - \$32,039 | \$27,509 |
| 800-1000 | 10 | 89\% | \$22,027 - \$29,435 | \$25,916 |
| 1000-1200 | 9 | 84\% | \$20,882 - \$30,366 | \$26,424 |
| 1200-1400 | 3 | 84\% | \$26,123 - \$33,104 | \$29,460 |
| State Average |  |  |  |  |
| 500 | 115 | 88\% | \$20,882 - \$49,927 | \$29,710 |

were excluded from the analysis because expenditures for these schools skewed the results for the smallest high school size category (i.e., these three schools all have unusually high per graduate costs compared to mainland high schools).

As may be gleaned from the information in the table and seen visually in Figure 1, the four year cost per graduate in Maine is highest for the smallest groups of Maine high schools, and lowest for Maine's high schools with

Figure 1

enrollments between 800-1,000 students, the third largest school size category. Further examination of this information reveals two additional observations. One is that the relationship between cost per graduate and school sizes is not linear, but in fact is curvilinear. That is to say, costs are highest in smaller schools, lowest in 800-1,000 student high schools, and higher again as the sizes of schools increase beyond 1,000 students. Second, there is a considerable range of costs per graduate within each school size category. For example, the range within the 23 smallest high schools is $\$ 26,000$ per graduate to $\$ 49,927$ per graduate. Likewise, the range within the 800-1,000 student schools is $\$ 22,027$ to $\$ 29,435$. Thus, the size of the high school alone does not insure lower or higher costs per graduate. Some small schools are more costly per graduate than others, and some small schools are less costly per graduate than larger schools. The same may be said about larger Maine
high schools (A complete list of cost per graduate for each high school appears in Appendix D).

A second analysis was undertaken to determine the relationships between school size and the performance of economically advantaged and disadvantaged pupils. Are some schools better for some students? Or do all students perform academically about the same regardless of school size?

This analysis was seen as particularly important for both philosophical and empirical reasons. Philosophically, the goal is for all children to excel academically, and consequently any barrier to achieve this goal should be eliminated. If school size is a barrier this needs to be known and addressed. And at first blush school size may appear empirically to be a barrier for some children. A 2005 report published by the Rural School and Community Trust (Rural Policy Matters; 2005) concluded that Maine's smaller schools reduce the negative influence of poverty; that the gap between the performance of economically advantaged and disadvantaged students is smaller. Small schools were defined as any school below the state average (median) school size and large schools were defined as any school larger than the median size.

However, a secondary analysis does not support this conclusion. The secondary analysis entailed using similar criteria to define "small" and "large" elementary schools as was used in the initial study, but student-level MEA scores were analyzed, instead of school level scores. The analysis was conducted for each MEA grade level and each of four core disciplines.

The complete results of these analyses appear in Appendix E, and one example is reported in Table 2. An examination of the information in Table 2 on the next page does indeed show a smaller gap between the performance of economically advantaged and disadvantaged students in smaller schools, but not necessarily for the right reasons. The performance of disadvantaged students is indeed slightly higher, but the performance of advantaged students is lower. Other profiles that appear in Appendix E are not in all cases as clearcut, but overall they do suggest that the decrease in the achievement gap related to poverty may not be due strictly to an increase in performance of the high-poverty students, but also a decrease in the performance of low-poverty
students. This suggests that a definitive conclusion regarding the relationship among school size, poverty, and achievement cannot be reached without further examination.

## Table 2

Fourth Grade Math
Percent Meeting or Exceeding Standards


School Size

| Economically | "Large" <br> Schools | "Small" <br> Schools |
| :--- | :---: | :---: |
| Disadvantaged | $19.29 \%$ | $23.62 \%$ |
| Advantaged | $38.31 \%$ | $34.68 \%$ |

A third analysis involved examining relationships between different school sizes in Maine and selected academic and school culture variables. For this analysis, Maine schools were divided into group sizes to reflect current Maine law for the 2005-06 funding formula (e.g., smallest grouping of high schools and elementary schools) and by dividing the school sizes into approximations of quintiles.

Tables 3 and 4 provide the results of this analysis for elementary schools (K-5 grade configuration schools). Similar information for middle and high schools appear in Appendix F. Variables that were examined were selected
because: (1) the literature suggested they are influenced by school size; and/or evidence was available for Maine schools.

As may be seen in these tables, the relationships of school size and various characteristics vary between school size groups, and vary considerably within any given school size group. For example, and as shown in Table 3,

Table 3
Elementary Schools Performance and Cost Information

| Average <br> Grade Size | MEA |  | Cost |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Average | Range | Average | Range |
| Less than 15 | 531.1 | $524.3-537.5$ | $\$ 6,841$ | $4,047-12,081$ |
| $15-26$ | 530.2 | $523.8-539.8$ | $\$ 5,960$ | $4,135-9,029$ |
| $27-39$ | 531.1 | $523.8-536.0$ | $\$ 5,682$ | $4,329-7,011$ |
| $40-56$ | 531.5 | $525.8-538.5$ | $\$ 5,763$ | $4,100-7,215$ |
| 57 or more | 532.0 | $527.0-538.3$ | $\$ 5,682$ | $4,369-7,804$ |
| All sizes | $\mathbf{5 3 1 . 2}$ |  | $\mathbf{\$ 5 , 9 3 0}$ |  |

average MEA performance is highest in larger schools, but also similar in different size groupings. Average MEA performance is lowest in school size with average grade sizes between 15-26, but whereas at least one school in this size grouping has an average MEA score below the state average (e.g., 524.3) at least one school has an average above the state average (e.g., 537.5). In the case of expenditures, the variance within the smallest group is much larger. One school is spending $32 \%$ less than the state average where another is spending over twice as much as the state average.

School culture data also varies considerably between various school size groups. Little statewide consistent information is available on school culture, but what is available comes from principals' responses to a school resource survey distributed statewide every two years. Principals are asked to what extent selected individual and school characteristics pose a problem in their school, and information in Table 4 on the next page reports the percentage of principals who indicated the characteristics as a major problem in elementary schools. As may be seen from an examination of the information, the messages are mixed. For example, student tardiness is not viewed as a problem in Maine's smallest grade size schools, but student absenteeism is a problem.

## Table 4 <br> Elementary School Culture

| Average <br> Grade <br> Size | Student <br> Tardiness | Student <br> Absenteeism | Student <br> Bullying | Fighting / <br> Violence | Students' <br> Motivation <br> to Learn | Lack of <br> parental <br> involvement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Less <br> than 15 | $0 \%$ | $16.7 \%$ | $8.3 \%$ | $8.3 \%$ | $25.0 \%$ | $16.7 \%$ |
| $15-26$ | $31.3 \%$ | $18.8 \%$ | $18.8 \%$ | $6.3 \%$ | $37.6 \%$ | $50.1 \%$ |
| $27-39$ | $18.8 \%$ | $12.5 \%$ | $12.5 \%$ | $0 \%$ | $23.0 \%$ | $25.1 \%$ |
| $40-56$ | $14.3 \%$ | $14.3 \%$ | $14.3 \%$ | $7.1 \%$ | $35.7 \%$ | $28.6 \%$ |
| 57 or <br> more | $6.7 \%$ | $14.3 \%$ | $6.7 \%$ | $0 \%$ | $20.0 \%$ | $26.7 \%$ |

Problems of student motivation to learn are at the lowest percentage in the largest schools, but vary considerably among the other size schools.

In summary, these three sets of analyses provide substantial evidence that some of the fairly widely help assumptions about the benefits of small schools do not hold true for Maine schools. The relationships between school size and various individual and school characteristics are mixed. In some cases the mixed results may be an indication of missing or less than precise data, but when these analyses are taken in the aggregate, it becomes apparent that school size is not the determinant of school benefits, and that the relationships between school characteristics such as size and deserved outcomes is multi-faceted and complex.

## Identification of Higher Performing Maine Public Schools

The fundamental goal of Maine's education system remains the same regardless of school size - to maximize performance for all children wherever they live in Maine. Thus, the second phase of this study to fulfill the Legislative directive involved identifying higher-performing Maine schools of all sizes throughout Maine.

In order to identify Maine's higher performing schools, "higher performance" must be defined. Historically, and nationally and internationally, "higher performance" has often been defined as any performance scores above some average score (e.g., school average scores above the state average score
on some type of standardized test). Definitions like these have proven to be problematic for several reasons, not the least of which is that some of the differences in school average scores may be attributable to community characteristics (e.g. community education and poverty levels). In fact, some studies have shown community characteristics may account for as much as $50 \%$ of the differences in average school scores between different communities. This has resulted in many researchers re-defining higher performance by what is sometimes called a "value-added" definition of higher performance. Using a value-added definition, a school is designated as higher performing only when its average performance score is higher than would be expected based on that community's characteristics. In essence, the school is defined as adding value beyond the community. In this study, then, a value-added definition was used, along with other criteria.

Four specific types of criteria were used in this study to identify higher performing schools. To qualify as a higher performing school, the school must:

1. have MEA performance substantially above the state average;
2. have MEA performance substantially higher for both economically advantaged and disadvantaged children
3. have MEA performance substantially higher than expected by community characteristics (value-added criteria); and
4. include sufficient grades for attributing MEA performance.

More specific information describing the selection criteria appears in Appendix G. Whenever possible, three-year average MEA scores were used for schools to avoid the performance data being skewed by any single year performance. Schools without MEA data, as well as private schools, were excluded from the analysis. The fourth criterion was included because it was important to be able to attribute MEA performance to the school. Thus, for example, 4-6 grade schools were excluded from the analysis because the MEA scores for these schools are more likely attributable to another school (e.g., K-3 schools) than to the 4-6 grade schools. The same four criteria, but in the opposite directions, was used in identifying lower performing schools (e.g., MEA scores substantially below the state average, etc.). It should be noted that the
application of these criteria and exclusions to identify higher performing
Maine schools was for research purposes only. The State of Maine has not officially established any set of criteria for defining higher and lower performing schools, nor has the State specifically endorsed the definitions and criteria used in this research study.

Approximately 500 Maine schools qualified for inclusion in this phase of the study, and the distribution of higher-performing and lower performing schools appears in Table 5. As shown in the data reported in the table, overall

Table 5
Higher and Lower Performing Maine Public Schools

| School Level | Schools <br> Evaluated | Higher <br> Performing | Range in <br> School <br> Size | Lower <br> Performing | Range in <br> School Size |
| :--- | :---: | :---: | :---: | :---: | :---: |
| High School (9-12) | 118 | $14(11.9 \%)$ | $99-1479$ | $22(18.6 \%)$ | $102-1136$ |
| Middle School (6-8) | 94 | $15(16.0 \%)$ | $165-794$ | $21(22.3 \%)$ | $28-718$ |
| Grade School (K-5) | 188 | $45(23.9 \%)$ | $59-697$ | $43(22.9 \%)$ | $48-642$ |
| K-8 School | 98 | $19(19.4 \%)$ | $65-522$ | $18(18.4 \%)$ | $85-474$ |
| Total | $\mathbf{4 9 8}$ | $\mathbf{9 3}(\mathbf{1 8 . 7 \% )}$ | $\mathbf{5 9 - 1 4 7 9}$ | $\mathbf{1 0 4}(\mathbf{2 0 . 9 \% )}$ | $\mathbf{2 8 - 1 1 3 6}$ |

approximately 19\% of Maine's schools were designated as higher performing using the criteria in this study, and about $21 \%$ were designated as lower performing. The school level with the highest percentage of higher performing schools are K-5 type grade schools, but this school level also has the highest percentage of lower performing schools. The lowest percent of higher performing schools was identified at the high school level. The analysis clearly reveals that higher performing, as well as lower performing schools come in all sizes. Some of each type are small and some of each type are among the largest schools in Maine. There are approximately 690 public schools in Maine, and because only 498 were analyzed in this study, other Maine schools may qualify as higher and lower performing schools. But for purposes of this study, the schools described in Table 5 were used in calculating costs and distinguishing characteristics of higher performing schools in subsequent phases of this study.

## The Cost of Maine's Higher Performing Public Schools

The third phase of this study involved determining the cost of Maine's higher performing schools, and determining if they varied by different grade configurations and school sizes. To do this, school level financial data was needed on all schools. At first blush this appears to be a fairly simple process - that is, conduct a review of the yearly financial information SAUs submit to the Maine Department of Education and calculate school level costs. However, while this process is possible at the secondary level, it is not readily feasible in the case of elementary schools. SAUs submit summary level financial expenditure information yearly to the Maine Department of Education, by two grade level groupings (by grade K-8 levels and grade 9-12 levels). Because only one Maine SAU has more than one high school, the financial expenditure data for secondary schools is, in essence, school level data. This is not the case at the K-8 level. If an SAU has more than one elementary school, the expenditure data the SAU submits no longer becomes school level, but rather SAU system level.

To overcome this data problem, an expenditure allocation process was created for this study. Since salaries and benefits account for $75 \%$ or more of a school's expenditures, these three year average costs were allocated to each school based on individual school level staff data submitted yearly by SAUs to the Maine Department of Education. These costs were then adjusted for teaching experience, education level, and regional salary differences. All other expenses (e.g., system office expenses, building and maintenance expenses, etc.) were allocated to schools on a per student basis using SAU level data. The result was expenditure amounts at the school level that were comparable across schools.

School size groupings were established following two different criteria. Current EPS law was used in establishing the smallest group size (smallest elementary group $=$ schools with less than 15 students per grade level; smallest high school group $=$ schools with less than 200 students). Larger school sizes were determined by an analysis of school size clusters. For purposes of describing the financial information four different grade level configurations
were used: (1) Grade schools = non-K-8 grade combinations; (2) Elementary Schools $=$ K-8 schools; (3) Middle Schools $=6-8$ grade combinations; and (4) High School $=9-12$ grades. Average grade size categories were created to mirror current EPS law, and reflect cluster patterns found among the schools included in this analysis.

Tables $6-10$ report the results of the expenditure analysis using the allocation process described above. Before discussing the results, three cautionary notes are in order. First, because these tables report allocated expenditures, the critical comparison is between relative amounts, not reported allocated amounts. Second, island schools were excluded from the analysis because their expenditures skewed results. Third, some school size groupings include very few schools, and thus, additional caution must be exercised in interpreting this data.

Given these caveats, the information in the tables still provides some important observations and findings. Table 6 reports the financial analysis for Grade Schools (non-K-8 grade configuration schools). Some major observations are:
> When all school size categories are considered, generally smaller school size categories are more costly, but not always (e.g., schools of $30-49$ students per grade level vs. school sizes of 50 or more grade level students).

Table 6
Cost Analysis of Grade Schools $\dagger$

| Average <br> Grade Size | Number of Schools |  |  | Mean 3-Year Per-Pupil Allocated <br> Expense, Adjusted for Teacher <br> Education \& Experience and Region |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools |
| Less than 15 | 9 | 7 | 28 | $\$ 6,699$ | $\$ 6,762$ | $\$ 6,694$ |
| $\mathbf{1 5 - 2 9}$ | 6 | 12 | 45 | $\$ 6,428$ | $\$ 5,744$ | $\$ 5,957$ |
| $\mathbf{3 0 - 4 9}$ | 13 | 11 | 53 | $\$ 5,650$ | $\$ 5,668$ | $\$ 5,653$ |
| $\mathbf{5 0}$ or more | 16 | 13 | 55 | $\$ 5,852$ | $\$ 5,805$ | $\$ 5,704$ |
| All Sizes | 44 | 43 | 181 | $\$ 6,044$ | $\$ 5,909$ | $\$ 5,905$ |

† Includes EK/K-4, EK/K-5, EK/K-6, EK/K-7, 1-4, 1-5, 1-6, 2-4, 2-5, 2-6, but not EK-8 or K-8 schools. Island schools are excluded.
> Overall, higher performing schools are slightly more expensive than lower performing schools (i.e., $\$ 6,044$ vs. $\$ 5,909 ; 2.3 \%$ difference),
but not in all school size categories (e.g., less than 15 students per grade level and 50 or more students per grade level).
> The smallest school size higher performing schools (less than 15 students per grade level) are approximately $13.4 \%$ more expensive than all school sizes (i.e., $\$ 6,699$ vs. $\$ 5,905$ )
> Higher performing schools with 15-29 students per grade level are $8.8 \%$ more expensive than all school sizes (i.e., $\$ 6,428$ vs. $\$ 5,905$ ).
Table 7 and 8 report the financial information for K-8 Elementary Schools. In this case, all K-8 schools with higher or lower performance at the $8^{\text {th }}$ grade level were included in the analysis. Some findings for these schools include:
> When all school size categories are considered, smaller school size categories are more costly.
> Overall, the cost of higher performing schools is similar to the cost of all schools (i.e., \$6,774 vs. \$6,617; 2.4\% difference).
> The smallest category of higher performing schools cost, relatively speaking, only $3.8 \%$ more than the average cost for all schools; and the next largest size grouping (15-29 students per grade) cost only $6.8 \%$ higher than the average cost of all schools.

## Table 7

Cost Analysis for Elementary K-8 Schools: $\mathbf{8}^{\text {th }}$ Grade Performance $\dagger$

| Average <br> Grade Size | Number of Schools |  |  | Mean 3-Year Per-Pupil Allocated <br> Expense, Adjusted for Teacher <br> Education \& Experience and Region |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Higher- <br> Performing <br> $\mathbf{8}^{\mathbf{t h}}$ Grade | Lower- <br> Performing <br> $\mathbf{8}^{\text {th }}$ <br> Grade | All Schools | Higher- <br> Performing <br> $\mathbf{8}^{\text {th }}$ Grade | Lower- <br> Performing <br> $\mathbf{8}^{\text {th }}$ Grade | All Schools |
|  | 7 | 8 | 36 | $\$ 6,870$ | $\$ 7,063$ | $\$ 7,162$ |
| $\mathbf{1 5 - 2 9}$ | 8 | 5 | 36 | $\$ 7,068$ | $\$ 5,986$ | $\$ 6,645$ |
| 30 or More | 4 | 2 | 22 | $\$ 6,017$ | $\$ 5,006$ | $\$ 5,678$ |
| All Sizes | 19 | 15 | 94 | $\$ 6,774$ | $\$ 6,430$ | $\$ 6,617$ |

$\dagger$ Also includes EK-8 schools. Island schools are excluded.
A secondary analysis of this data suggested that one type of higher performing schools (i.e., higher performing schools at the $4^{\text {th }}$ grade, but not at the $8^{\text {th }}$ grade, were skewing the results. Thus, the financial data were reanalyzed excluding this group of schools. Accordingly, Table 8 presents the
financial analysis for K-8 schools, which are higher performing (or lower performing) at both the $4^{\text {th }}$ and $8^{\text {th }}$ grade levels or only at the $8^{\text {th }}$ grade level. There are fewer schools in each category, but an examination of this data indicated:

Table 8
Cost Analysis for Elementary K-8 Schools: $4^{\text {th }}$ and 8 $^{\text {th }}$ Grade Performance $\dagger$

| Average Grade Size | Number of Schools |  |  | Mean 3-Year Per-Pupil Allocated Expense, Adjusted for Teacher Education \& Experience and Region |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HigherPerforming $4^{\text {th }}$ and $8^{\text {th }}$ Grade | LowerPerforming $4^{\text {th }}$ and $8^{\text {th }}$ Grade | All Schools | HigherPerforming $4^{\text {th }}$ and $8^{\text {th }}$ Grade | LowerPerforming $4^{\text {th }}$ and $8^{\text {th }}$ Grade | All Schools |
| Less than 15 | 3 | 3 | 36 | \$7,422 | \$7,357 | \$7,162 |
| 15-29 | 3 | 3 | 36 | \$6,426 | \$5,232 | \$6,645 |
| 30 or More | 2 | 1 | 22 | \$5,584 | \$5,364* | \$5,678 |
| All Sizes | 8 | 7 | 94 | \$6,589 | \$6,162 | \$6,617 |

† Also includes EK-8 schools. Island schools are excluded. *Single school
$>$ The cost of the smaller category of higher performing schools is $12.2 \%$ above the cost of all schools (i.e., $\$ 7,422$ vs. $\$ 6,617$ ).
$>$ The cost of higher performing schools with an average of 15-29 students per grade level is approximately $3 \%$ less than the cost of all schools (i.e., \$6,426 vs. \$6,6117).

Table 9 reports the results of the financial analysis for middle schools.
Table 9
Cost Analysis for Middle Schools $\dagger$

| Average <br> Grade Size | Number of Schools |  | Mean 3-Year Per-Pupil Allocated <br> Expense, Adjusted for Teacher Education <br> \& Experience and Region |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools |
| Less than 68 | 2 | 5 | 16 | $\$ 6,690$ | $\$ 6,357$ | $\$ 5,873$ |
| $\mathbf{6 8 - 9 6}$ | 2 | 4 | 16 | $\$ 5,146$ | $\$ 5,822$ | $\$ 5,703$ |
| $\mathbf{9 7 - \mathbf { 1 3 2 }}$ | 3 | 3 | 19 | $\$ 6,178$ | $\$ 6,006$ | $\$ 6,001$ |
| $\mathbf{1 3 3 - 1 9 9}$ | 5 | 4 | 17 | $\$ 5,810$ | $\$ 6,004$ | $\$ 6,103$ |
| $\mathbf{2 0 0}$ or More | 3 | 3 | 20 | $\$ 5,833$ | $\$ 5,206$ | $\$ 5,418$ |
| All Sizes | 15 | 19 | 88 | $\$ 5,917$ | $\$ 5,933$ | $\$ 5,811$ |

[^0]Observations included:
> All middle schools may be considered moderate in size.
> The average per pupil expenditure varies very little between school size categories.
> In some cases higher performing schools are more expensive (e.g. less than 68) and sometimes lower performing schools are more expensive (e.g., 68-96 students).
> There is no clear pattern of expenses between different school size categories.

In the case of high schools, the information in Table 10 reveals:
$>$ When all school size categories are considered, per pupil expenditures consistently increase with smaller size schools.
> Overall, lower performing schools are more expensive than higher performing schools (i.e., $\$ 7,636$ vs. $\$ 7,277 ; 4.9 \%$ difference).
$>$ For some school sizes, higher performing schools are more expensive than lower performing schools (e.g., sizes 350-599, 850 or more).
> Because there is only one higher performing school with less than 200 students, and because the cost of this school is skewed, it is difficult to determine the cost of the smallest high schools.

Table 10
Cost Analysis for High Schools $\dagger$

| School Size | Number of Schools |  |  | Mean 3-Year Per-Pupil Operating <br> Expense, Adjusted for Teacher <br> Education \& Experience and Region |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools | Higher- <br> Performing | Lower- <br> Performing | All <br> Schools |
|  | 1 | 4 | 9 | $\$ 12,456^{*}$ | $\$ 8,697$ | $\$ 8,861$ |
| $\mathbf{2 0 0} \mathbf{- 3 4 9}$ | 2 | 7 | 24 | $\$ 7,049$ | $\$ 8,698$ | $\$ 7,787$ |
| $\mathbf{3 5 0} \mathbf{- 5 9 9}$ | 4 | 5 | 27 | $\$ 7,494$ | $\$ 6,657$ | $\$ 7,201$ |
| $\mathbf{6 0 0} \mathbf{- 8 4 9}$ | 4 | 4 | 20 | $\$ 6,408$ | $\$ 6,380$ | $\$ 6,568$ |
| $\mathbf{8 5 0}$ or More | 2 | 1 | 23 | $\$ 6,219$ | $\$ 5,868^{*}$ | $\$ 6,086$ |
| All Sizes | 13 | 21 | 103 | $\$ 7,277$ | $\$ 7,636$ | $\$ 7,110$ |

† Includes 7-12, 8-12, 9-12 schools. Island and alternative schools are excluded.
*Single school

To summarize these findings on expenditures, some higher performing schools are more expensive, but not in all cases. Some higher performing small school sizes are more expensive at the Grade School and Elementary K-8 School levels, but a similar pattern is not found for middle or high schools. Even within school size groupings some are more expensive, some less expensive.

What then is the cost of higher performing, cost effective small schools in Maine? It is important to note that even within the higher performing school groups, expenditures may vary considerably. For example, within the smallest group of higher performing Grade Schools allocated costs range from \$9,037 per pupil to $\$ 4,449$ per pupil, a difference of 100 percent. In the case of Elementary K-8 Schools, the costs range from approximately $\$ 12,000$ per pupil to $\$ 6,400$ per pupil. Lower expenditures may or may not reflect cost effectiveness. Thus, more extensive audits would be needed to ascertain cost effectiveness. This would be a complicated process, but one most definitely needed in the future.

## Characteristics of Higher Performing Maine Public Schools

The fourth phase of this study involved an attempt to identify distinguishing characteristics of higher performing schools of all sizes. Some progress has been made in completing this analysis, but because only a limited amount of accurate information is available on many school characteristics, a comprehensive analysis could not be completed at this time. But even with the limited data, some distinguishing characteristics were apparent between schools.

Four data sources were used in the characteristics analysis:

1. Data submitted by SAUs to the Maine Department of Education in the areas of staffing, school demographics, and expenditures.
2. Survey data submitted by students and schools as part of the yearly Maine Education Assessment (MEA) program.
3. School resource survey data provided by Maine school principals (MEPRI).
4. Student Speak II survey data provided by middle and high school students to the National Center for Student Aspiration (University of Maine).
Because in some cases the amount of data was limited (e.g., small number of schools within school size grouping; survey data available only for a limited number of schools etc.), only patterns of differences could be identified using an Effect Size (ES) criteria wherever possible. Effect size (ES) is a statistical tool for measuring the magnitude of differences between two groups; in this case differences between higher performing and lower performing schools. An ES equal to or greater than .50 is considered a substantial difference.

Table 11 summarizes this analysis for three broad categories of characteristics: Context, Resource, and Outcome characteristics. An asterisk denotes a substantial difference between the two groups of schools (i.e., Effect size greater than .50 ). In the case of school context characteristics, there are no

## Table 11 <br> Distinguishing Characteristics of Higher Performing Schools Context Characteristics

| Characteristic* | K-5 Grade <br> Schools | K-8 Grade <br> Schools | Middle <br> Schools | High Schools |
| :--- | :---: | :---: | :---: | :---: |
| 1. Enrollment Size | N.D. | N.D. | *Larger | * Larger |
|  <br> Reduced Lunch | *Lower | N.D. | *Lower | *Lower |
| 3. Percent Special <br> Education | N.D. | *Lower | *Lower | N.D. |
| 4. Teacher Salaries |  |  |  | *Lower |
| 5. Average <br> Expenditures per <br> pupil | N.D. | N.D. | N.D. | N.D. |

*Effect size in favor of higher performing schools.
N.D. = No difference between higher and lower performing schools.

NA = Not applicable
differences in expenditure levels between higher and lower performing schools, at any level. School size does not differ for Grade and Elementary schools, but overall, higher performing Middle and High Schools are larger than their lower performing counterparts. The percent of students who qualify for free and reduced lunch programs, or for special education services are higher in lower
performing schools. However, like the larger size of higher performing Middle and High Schools, there is considerable variance within the two groups of schools. Some higher performing schools are smaller and have a higher percentage of students who qualify for free and reduced lunch or special education services. Reverse contexts may be found among lower performing schools.

In the case of resource characteristics, some patterns appear to surface. As shown in Table 12, pupil-teacher ratios are similar across higher and lower

Table 12
Distinguishing Characteristics of Higher Performing Schools Resource Characteristics

| Characteristic* | K-5 Grade Schools | K-8 Grade Schools | Middle Schools | High Schools |
| :---: | :---: | :---: | :---: | :---: |
| 1. Teacher Experience | *Longer | N.D. | N.D. | N.D. |
| 2. Teacher Education Level (MS or MS+) | N.D. | N.D. | *Higher | *Higher |
| 3. Percent High Qualified Teachers | N.D. | N.D. | *Higher | *Higher |
| 4. Pupil-Teacher Ratio | N.D. | N.D. | N.D. | N.D. |
| 5. AdministratorTeacher Ratio | N.D. | *Lower | N.D. | N.D. |
| 6. Total Instructional Time | *More | N.D. | N.D. | N.D. |
| 7. Instructional Time in Mathematics | N.D. | N.D. | N.D. | NA |
| 8. Instructional Time ELA | *More | *More | *More | NA |
| 9. Total Professional Development Time | *More | *More | N.D. | *Less |
| 10. Course Completion Patterns | NA | NA | *More <br> *Deeper | *More <br> *Deeper |
| 11. Amount of Homework | N.D. | N.D. | *More | *More |
| 12. Read at Home | *More | *More | *More | *More |
| 13. Curriculum Match MEA | *Greater | *Greater | *Greater | *Greater |
| 14. Academics are Important in School | NA | NA | *More Important | *More Important |
| 15. Arts are Important in School | NA | NA | N.D. | *More Important |
| 16. Sports are Important in School | NA | NA | N.D. | *Less <br> Important |

performing schools, but for higher performing Middle and High Schools, teachers are more highly educated and a higher percent of classes are taught by teachers with the federal designation of Highly Qualified Teachers. In higher performing lower grade schools, more instructional time is devoted to English/Language Arts, and at the Middle and High School level students are completing higher level courses, and completing more homework in the evenings. At all levels, the curriculum in higher performing schools matches more closely what is assessed on the MEA, and students in all levels of higher performing schools read more. And where information is available, more middle school and high school students report academics are considered important in their schools.

Table 13

## Distinguishing Characteristics of Higher Performing Schools Outcome Characteristics

| Characteristic* | K-5 Grade Schools | K-8 Grade Schools | Middle Schools | High Schools |
| :---: | :---: | :---: | :---: | :---: |
| 1. MEA Scale Score | *Higher | *Higher | *Higher | *Higher |
| 2. SAT Math Score | NA | NA | NA | *Higher |
| 3. SAT Verbal Score | NA | NA | NA | *Higher |
| 4. Percent Taking AP Courses | NA | NA | NA | *Higher |
| 5. Percent Passing AP Exam Scores | NA | NA | NA | *Higher |
| 6. Dropout Rate | NA | NA | NA | *Lower |
| 7. Graduation Rate | NA | NA | NA | *Higher |
| 8. Intend to go to College | NA | NA | NA | *Higher |

In terms of Outcome characteristics (Table 13), outside of the MEA, there are no statewide standardized performance results available. But at the high school level other outcome data exist, and in all cases, higher performing high schools outperform lower performing high schools. Dropout rates are lower, graduation rates are higher, more students are taking AP courses and passing AP examinations, and students score higher on the SAT. And finally, more students in higher performing schools indicate they intend to attend some type of post-secondary higher education institution.

## Conclusion

The results of this four phase study point to several conclusions. The sizes of Maine's public schools are not the key determinant of school success. Some smaller schools are more effective than others, and some larger schools are more effective. Regardless of school size, approximately one in five of Maine's public schools may be considered higher performing and performing beyond expectations. The cost of higher performing smaller schools is greater at the lower grades, but not in the case of middle schools, and it is unclear at the high school level. In terms of distinguishing characteristics of higher performing schools, the available data is limited, but what does exist suggests these schools are clearly focused on academics and support professional development activities for improving teachers and teaching. And this academic focus may be seen in performance; more students are taking higher level courses, scoring higher on national tests, and graduating from high school. But, overall, the information available about higher performing schools, particularly as it relates to the teaching and learning processes, and what goes on in these schools on a daily basis, is unknown. Clearly, obtaining this information, and helping others adopt these practices, approaches and dispositions, is important for providing all Maine students opportunities to academically excel.

## Recommendations

Finally, and as requested by the Joint Standing Committee on Education and Cultural Affairs, the findings and conclusions from this four phase study point to several recommendations. These are:

1. The State should develop a long-range policy and plan for addressing declining student population, declining school sizes, and school academic performance.
2. The State should endorse a short-term policy for ensuring equal educational opportunities for students in smaller Maine public schools. This policy should be:
A. Continuation of present policy governing small isolated high schools, and all island schools.
B. Increased allocation for smaller isolated lower grade level schools as follows:
3. $13.4 \%$ for non-K- 8 schools with less than 15 students per grade level.
4. $8.8 \%$ for non-K-8 schools with $15-29$ students per grade level.
5. $12.2 \%$ for $\mathrm{K}-8$ schools with less than 15 students per grade level.
C. Continuation of increased allocations for individual schools be contingent upon:
6. implementation of plans to achieve or maintain higher academic performance status,
7. making substantial yearly progress toward achieving or maintaining higher academic performance status.
8. The short-term policy should be enacted for a three year period beginning 2006-07.
9. The state should implement a plan for identifying distinguishing characteristics of higher performing Maine public schools and disseminating this information to all SAUs.

Implementing these recommendations should help Maine's policy makers and educators alike reach the goal of providing a high quality education for all the children of Maine.

## Appendices

## Appendix A <br> Isolated Small School Adjustment

| Isolated Mainland Small Elementary Schools |
| :--- |
| QUALIFICATIONS: |
| a. Fewer than 15 students per grade level |
| b. Number of school options available fewer than 5. |
| c. Nearest school is more than 8 miles away. |

ADJUSTMENT:
a. $10 \%$ transition adjustment to K-8 EPS rate.

## Isolated Mainland Small Secondary Schools

QUALIFICATIONS:
a. Fewer than 200 students per school.
b. Distance from furthest point in the district to nearest high school is at least 18.5 miles.
c. Distance between the high school and nearest high school is more than 10 miles.

ADJUSTMENT:
a. Student-teacher ratios reduced to $11: 1$ for schools with fewer than 100 students and 13:1 for schools with 100-199 students.

## Island Elementary and Secondary Schools

QUALIFICATIONS:
a. Islands operating schools or transporting students to mainland schools.

ADJUSTMENT:
a. Isolated small secondary schools student-teacher adjustment for high schools with fewer than 200 students.
b. $10 \%$ transition adjustment in K-8 EPS rate for elementary schools.
c. $13 \%-26 \%$ adjustment to EPS operating and maintenance costs, depending upon school level and size, for islands operating schools.
d. Transportation adjustment equal to approved transportation expenditures.

## Appendix B

## Selected References

Fairman, J. (2005). School Size Choices: Comparing small and large school strengths. Maine Policy Review, Vol. 21, No. 2 (140-153).

Funk, P., \& Bailey, J. (1999). Small schools, big results: Nebraska High School completion and postsecondary enrollment rates by size of school district. Lincoln, Nebraska: Nebraska Alliance for Rural Education.

Gaining Traction: Gaining Ground: How Some High Schools Accelerate Learning for Struggling Students (2005). New York: The Education Trust.

Gardner, P., Ritblatt, S., \& Beatty, J. (2000). Academic Achievement and parental involvement as a function of high school size. High School Journal, Vol. 83, No. 2 (21-27).

Jacobson, S., et al. (2005). Successful school leadership in high poverty schools: An examination of three urban elementary schools. New York: Wallace Foundation.

Jewell, R. (1989).School and district size relationships. Education and Urban Society. Vol. 21, No. 2 (140-153).

Johnson, J., Howley, C., \& Howley, A. (2002). Size, excellence and equity. A report on Arkansas schools and districts. Athens, Ohio: Ohio University, College of Education.

Kannapel, P., \& Clements, S. (2005). Inside the black box of high-performing high-poverty schools. Lexington, Kentucky: Prickard Committee for Academic Excellence.

Lawrence, R., et al. (2002). Dollars \& Sense: The cost effectiveness of small schools. Cincinnati, Ohio: KnowledgeWorks Foundation.

Lyson, T. (2002). What does a school mean to a community? Assessing the social and economic benefits of schools to rural villages in New York. Journal of Research in Rural Education, Vol. 17 (131-137).

McMillan, B. (2004). School sizes, achievement, and achievement gaps. Education Policy Analysis Archives, 121 (58).

Stiefel, L., Iatoiola, P., Frucheter, N., \& Berne, R. (1998). The effects of size of student body on school costs and performance in New York city high
schools. New York: New York University, Institute for Education and Social Policy.

The Power to Change: High Schools that Help All Students Achieve (2005). New York: The Education Trust.

The Rural School and Community Trust (2005). Maine's small schools cut poverty's power over student achievement. Rural Policy Matters, Vol. 7, No. 2.

## Appendix C Calculating Cost of Four-Year High School Graduate

To calculate the 2004 cost per graduate, the class of 2004 cohort was defined by taking all the 2004 graduates and adding in those students who dropped out in the previous four years who would have graduated in 2004 , (i.e., the $12^{\text {th }}$ grade dropouts from 2003-04, the $11^{\text {th }}$ grade dropouts from 2003-03, and so on). For each of the four years, the number of students in the cohort was multiplied by the secondary per-pupil cost in that year. This four-year total was divided by the number of 2004 graduates to yield the four-year cost per graduate.

Secondary per-pupil cost excludes transportation, leases, major capital outlay and debt service.

## Appendix D

## Four-Year Cost Per Graduate for Maine Public High Schools

 Class of 2004| School <br> Code | Location | School Name | Attending <br> Enrollment | Graduation <br> Rate | Post- <br> Secondary <br> Intentions | 4-Year <br> Cost Per <br> Graduate |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| State Average Cost Per Graduate (average of SAUs) | $\mathbf{4 8 8}$ | $\mathbf{8 8 \%}$ | $\mathbf{7 0 \%}$ | $\mathbf{\$ 3 0 , 5 8 0}$ |  |  |
| 211 | Islesboro | Islesboro Central School | 20 | $100 \%$ | $89 \%$ | $\$ 59,766$ |
| 507 | North Haven (SAD 7) | North Haven Community School | 21 | $92 \%$ | $75 \%$ | $\$ 76,086$ |
| 519 | Lubec (SAD 19) | Lubec Consolidated School | 52 | $75 \%$ | $67 \%$ | $\$ 44,504$ |
| 508 | Vinalhaven (SAD 8) | Lincoln Elem/Vinalhaven High School | 56 | $88 \%$ | $47 \%$ | $\$ 55,987$ |
| 514 | Danforth (SAD 14) | East Grand School | 62 | $94 \%$ | $71 \%$ | $\$ 31,204$ |
| 512 | Jackman (SAD 12) | Forest Hills Consolidated School | 63 | $90 \%$ | $72 \%$ | $\$ 34,708$ |
| 137 | Easton | Easton Jr.-Sr. High School | 64 | $100 \%$ | $100 \%$ | $\$ 49,927$ |
| 360 | Rangeley | Rangeley Lakes Regional School | 74 | $100 \%$ | $75 \%$ | $\$ 32,877$ |
| 533 | Saint Agatha (SAD 33) | Wisdom Middle/High School | 86 | $94 \%$ | $83 \%$ | $\$ 32,142$ |
| 236 | Limestone | Limestone Community School | 92 | $96 \%$ | $59 \%$ | $\$ 29,064$ |
| 917 | Jonesport (CSD 17) | Jonesport-Beals High School | 97 | $83 \%$ | $52 \%$ | $\$ 36,897$ |
| 513 | Bingham (SAD 13) | Upper Kennebec Valley Jr.-Sr. High | School | 106 | $86 \%$ | $52 \%$ |
| 180 | Greenville | Greenville Middle/High School | 107 | $97 \%$ | $88 \%$ | $\$ 32,459$ |
| 545 | Washburn (SAD 45) | Washburn District High School | 119 | $100 \%$ | $65 \%$ | $\$ 29,450$ |
| 253 | Machias | Machias Memorial High School | 126 | $92 \%$ | $81 \%$ | $\$ 30,158$ |
| 909 | Dyer Brook (CSD 9) | Southern Aroostook CSD School | 129 | $91 \%$ | $59 \%$ | $\$ 32,919$ |
| 532 | Ashland (SAD 32) | Ashland Community High School | 132 | $86 \%$ | $67 \%$ | $\$ 31,328$ |
| 525 | Stacyville (SAD 25) | Katahdin Middle/High School | 136 | $91 \%$ | $67 \%$ | $\$ 35,040$ |
| 524 | Van Buren (SAD 24) | Van Buren District Sec. High School | 145 | $94 \%$ | $77 \%$ | $\$ 35,297$ |
| 542 | Mars Hill (SAD 42) | Central Aroostook Jr.-Sr. High School | 157 | $93 \%$ | $86 \%$ | $\$ 27,222$ |


| 138 | Eastport | Shead Memorial High School | 159 | $79 \%$ | $50 \%$ | $\$ 28,480$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 365 | Richmond | Richmond High School | 170 | $91 \%$ | $74 \%$ | $\$ 26,000$ |
| 913 | Deer Isle (CSD 13) | Deer Isle-Stonington Jr.-Sr. High School | 178 | $85 \%$ | $53 \%$ | $\$ 33,075$ |
| 570 | Hodgdon (SAD 70) | Hodgdon High School | 191 | $93 \%$ | $58 \%$ | $\$ 29,521$ |
| 539 | Buckfield (SAD 39) | Buckfield Jr.-Sr. High School | 193 | $78 \%$ | $64 \%$ | $\$ 30,287$ |
| 136 | East Millinocket | Schenck High School | 198 | $95 \%$ | $73 \%$ | $\$ 33,624$ |
| 024 | Baileyville | Woodland Jr.-Sr. High School | 207 | $85 \%$ | $76 \%$ | $\$ 39,706$ |
| 531 | Howland (SAD 31) | Penobscot Valley High School | 216 | $98 \%$ | $46 \%$ | $\$ 27,433$ |
| 520 | Fort Fairfield (SAD 20) | Fort Fairfield Middle/High School | 218 | $80 \%$ | $71 \%$ | $\$ 33,489$ |
| 070 | Calais | Calais High School | 229 | $76 \%$ | $75 \%$ | $\$ 36,889$ |
| 556 | Searsport (SAD 56) | Searsport District High School | 240 | $70 \%$ | $65 \%$ | $\$ 41,778$ |
| 256 | Madawaska | Madawaska Middle/High School | 241 | $88 \%$ | $78 \%$ | $\$ 35,326$ |
| 281 | Monmouth | Monmouth Academy | 252 | $90 \%$ | $76 \%$ | $\$ 26,429$ |
| 537 | Harrington (SAD 37) | Narraguagus High School | 256 | $78 \%$ | $76 \%$ | $\$ 31,512$ |
| 277 | Millinocket | Stearns High School | 256 | $98 \%$ | $74 \%$ | $\$ 29,032$ |
| 504 | Guilford (SAD 4) | Piscataquis Community High School | 262 | $89 \%$ | $57 \%$ | $\$ 21,745$ |
| 541 | Milo (SAD 41) | Penquis Valley High School | 268 | $81 \%$ | $53 \%$ | $\$ 27,750$ |
| 574 | Anson (SAD 74) | Carrabec High School | 274 | $83 \%$ | $65 \%$ | $\$ 26,634$ |
| 536 | Livermore Falls (SAD | Liv) | 284 | $79 \%$ | $69 \%$ | $\$ 33,064$ |
| 558 | Kingfield (SAD 58) | Mount Abram Regional High School | 284 | $92 \%$ | $61 \%$ | $\$ 29,026$ |
| 559 | Madison (SAD 59) | Madison Area Memorial High School | 288 | $83 \%$ | $83 \%$ | $\$ 32,292$ |
| 903 | Boothbay Harbor (CSD <br> 3) | Boothbay Region High School | 289 | $92 \%$ | $66 \%$ | $\$ 29,310$ |
| 544 | Bethel (SAD 44) | Telstar High School | 295 | $78 \%$ | $80 \%$ | $\$ 40,299$ |
| 550 | Thomaston (SAD 50) | Georges Valley High School | 308 | $82 \%$ | $54 \%$ | $\$ 31,718$ |
| 529 | Houlton (SAD 29) | Houlton High School | 308 | $95 \%$ | $69 \%$ | $\$ 33,496$ |
| 904 | Sullivan (CSD 4) | Sumner Memorial High School | 313 | $70 \%$ | $63 \%$ | $\$ 33,951$ |
| 521 | Dixfield (SAD 21) | Dirigo High School | 315 | $94 \%$ | $80 \%$ | $\$ 24,185$ |
|  |  |  |  |  |  |  |


| 214 | Jay | Jay High School | 316 | $97 \%$ | $79 \%$ | $\$ 35,084$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 485 | Winthrop | Winthrop High School | 317 | $91 \%$ | $77 \%$ | $\$ 26,275$ |
| 223 | Kittery | Robert W. Traip Academy | 336 | $79 \%$ | $67 \%$ | $\$ 35,012$ |
| 546 | Dexter (SAD 46) | Dexter Regional High School | 340 | $77 \%$ | $53 \%$ | $\$ 29,401$ |
| 320 | Old Orchard Beach | Old Orchard Beach High School | 343 | $91 \%$ | $78 \%$ | $\$ 28,716$ |
| 486 | Wiscasset | Wiscasset High School | 346 | $86 \%$ | $66 \%$ | $\$ 33,875$ |
| 324 | Orono | Orono High School | 357 | $89 \%$ | $74 \%$ | $\$ 30,110$ |
| 527 | Fort Kent (SAD 27) | Fort Kent Community High School | 363 | $98 \%$ | $77 \%$ | $\$ 24,075$ |
| 564 | Corinth (SAD 64) | Central High School | 370 | $81 \%$ | $70 \%$ | $\$ 26,748$ |
| 555 | Hiram (SAD 55) | Sacopee Valley Jr.-Sr. High School | 371 | $91 \%$ | $54 \%$ | $\$ 28,018$ |
| 516 | Farmingdale (SAD 16) | Hall-Dale High School | 375 | $79 \%$ | $76 \%$ | $\$ 28,092$ |
| 567 | Lincoln (SAD 67) | Mattanawcook Academy | 377 | $95 \%$ | $69 \%$ | $\$ 24,843$ |
| 242 | Lisbon | Lisbon High School | 424 | $87 \%$ | $62 \%$ | $\$ 32,425$ |
| 160 | Freeport | Freeport High School | 426 | $87 \%$ | $69 \%$ | $\$ 33,641$ |
| 065 | Bucksport | Bucksport High School | 455 | $87 \%$ | $60 \%$ | $\$ 26,682$ |
| 503 | Thorndike (SAD 3) | Mount View High School | 457 | $81 \%$ | $48 \%$ | $\$ 26,409$ |
| 197 | Hermon | Hermon High School | 470 | $83 \%$ | $69 \%$ | $\$ 31,746$ |
| 491 | Yarmouth | Yarmouth High School | 476 | $98 \%$ | $85 \%$ | $\$ 34,884$ |
| 505 | Rockland (SAD 5) | Rockland District High School | 479 | $88 \%$ | $52 \%$ | $\$ 27,306$ |
| 501 | Presque Isle (SAD 1) | Presque Isle High School | 488 | $91 \%$ | $85 \%$ | $\$ 29,854$ |
| 910 | Readfield (CSD 10) | Maranacook Community School | 492 | $100 \%$ | $71 \%$ | $\$ 26,067$ |
| 918 | Wells (CSD 18) | Wells High School | 492 | $90 \%$ | $63 \%$ | $\$ 33,944$ |
| 077 | Caribou | Caribou High School | 493 | $93 \%$ | $82 \%$ | $\$ 28,281$ |
| 144 | Ellsworth | Ellsworth High School | 506 | $75 \%$ | $70 \%$ | $\$ 28,525$ |
| 915 | Wales (CSD 15) | Oak Hill High School | 535 | $87 \%$ | $64 \%$ | $\$ 27,879$ |
| 075 | Cape Elizabeth | Cape Elizabeth High School | 537 | $97 \%$ | $94 \%$ | $\$ 34,412$ |
| 543 | Rumford (SAD 43) | Mountain Valley High School | 548 | $92 \%$ | $66 \%$ | $\$ 24,352$ |
| 350 | Poland | Poland Regional High School | $94 \%$ | $85 \%$ | $\$ 34,006$ |  |


| 481 | Winslow | Winslow High School | 569 | 89\% | 75\% | \$22,802 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 151 | Falmouth | Falmouth High School | 587 | 99\% | 90\% | \$33,031 |
| 534 | Belfast (SAD 34) | Belfast Area High School | 591 | 92\% | 75\% | \$27,073 |
| 456 | Waterville | Waterville High School | 594 | 88\% | 73\% | \$26,135 |
| 515 | Gray (SAD 15) | Gray-New Gloucester High School | 649 | 90\% | 76\% | \$26,861 |
| 551 | Cumberland (SAD 51) | Greely High School | 651 | 95\% | 92\% | \$30,476 |
| 540 | Waldoboro (SAD 40) | Medomak Valley High School | 665 | 92\% | 57\% | \$23,546 |
| 919 | Rockport (CSD 19) | Camden Hills Regional High School | 675 | 90\% | 70\% | \$32,039 |
| 465 | Westbrook | Westbrook High School | 678 | 94\% | 81\% | \$29,281 |
| 492 | York | York High School | 686 | 91\% | 61\% | \$31,909 |
| 907 | Bar Harbor (CSD 7) | Mt. Desert Island High School | 691 | 88\% | 76\% | \$29,635 |
| 561 | Naples (SAD 61) | Lake Region High School | 699 | 94\% | 79\% | \$24,969 |
| 321 | Old Town | Old Town High School | 699 | 88\% | 53\% | \$25,239 |
| 030 | Bath | Morse High School | 709 | 76\% | 67\% | \$27,315 |
| 548 | Newport (SAD 48) | Nokomis Regional High School | 719 | 90\% | 66\% | \$24,289 |
| 552 | Turner (SAD 52) | Leavitt Area High School | 724 | 93\% | 66\% | \$25,362 |
| 511 | Gardiner (SAD 11) | Gardiner Area High School | 725 | 83\% | 59\% | \$28,382 |
| 522 | Hampden (SAD 22) | Hampden Academy | 749 | 93\% | 74\% | \$26,691 |
| 509 | Farmington (SAD 9) | Mount Blue High School | 759 | 86\% | 72\% | \$26,645 |
| 171 | Gorham | Gorham High School | 779 | 96\% | 78\% | \$25,896 |
| 053 | Brewer | Brewer High School | 787 | 79\% | 62\% | \$29,123 |
| 571 | Kennebunk (SAD 71) | Kennebunk High School | 805 | 94\% | 73\% | \$29,435 |
| 549 | Fairfield (SAD 49) | Lawrence High School | 820 | 86\% | 52\% | \$25,578 |
| 535 | $\begin{aligned} & \text { South Berwick (SAD } \\ & 35 \text { ) } \end{aligned}$ | Marshwood High School | 835 | 84\% | 76\% | \$23,526 |
| 040 | Biddeford | Biddeford High School | 836 | 86\% | 60\% | \$25,715 |
| 478 | Windham | Windham High School | 855 | 92\% | 79\% | \$23,723 |
| 021 | Augusta | Cony High School | 864 | 86\% | 71\% | \$27,616 |


| 554 | Skowhegan (SAD 54) | Skowhegan Area High School | 873 | $83 \%$ | $49 \%$ | $\$ 27,847$ |
| :--- | :--- | :--- | ---: | ---: | ---: | :--- |
| 547 | Oakland (SAD 47) | Messalonskee High School | 875 | $93 \%$ | $69 \%$ | $\$ 25,194$ |
| 383 | Scarborough | Scarborough High School | 903 | $99 \%$ | $82 \%$ | $\$ 22,027$ |
| 403 | South Portland | South Portland High School | 997 | $88 \%$ | $69 \%$ | $\$ 28,497$ |
| 517 | Paris (SAD 17) | Oxford Hills Comprehensive High School | 1,031 | $85 \%$ | $74 \%$ | $\$ 25,284$ |
| 575 | Topsham (SAD 75) | Mount Ararat High School | 1,039 | $85 \%$ | $51 \%$ | $\$ 27,462$ |
| 557 | Waterboro (SAD 57) | Massabesic High School | 1,070 | $93 \%$ | $74 \%$ | $\$ 20,882$ |
| 063 | Brunswick | Brunswick High School | 1,091 | $91 \%$ | $68 \%$ | $\$ 26,032$ |
| 353 | Portland | Portland High School | 1,143 | $82 \%$ | $60 \%$ | $\$ 30,366$ |
| 560 | North Berwick (SAD <br> 60) | Noble High School | 1,143 | $82 \%$ | $56 \%$ | $\$ 24,646$ |
| 381 | Sanford | Sanford High School | 1,154 | $80 \%$ | $65 \%$ | $\$ 25,720$ |
| 233 | Lewiston | Lewiston High School | 1,175 | $78 \%$ | $69 \%$ | $\$ 27,740$ |
| 020 | Auburn | Edward Little High School | 1,183 | $81 \%$ | $86 \%$ | $\$ 29,684$ |
| 506 | Standish (SAD 6) | Bonny Eagle High School | 1,205 | $86 \%$ | $71 \%$ | $\$ 26,123$ |
| 353 | Portland | Deering High School | 1,354 | $78 \%$ | $76 \%$ | $\$ 33,104$ |
| 027 | Bangor | Bangor High School | 1,385 | $88 \%$ | $82 \%$ | $\$ 29,153$ |

## Appendix E

MEA Score Analysis by Economically Disadvantaged and Advantaged Youth

## Fourth Grade <br> 2003-2004 MEA: Percent Meeting or Exceeding Standards

| Content Area | "Large" Schools (Students Per Grade > 30.4) |  | "Small" Schools (Students Per Grade < 30.4) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Not Disadvantaged* | Disadvantaged* | Not Disadvantaged* | Disadvantaged* |
| Reading | 59.20\% | 35.80\% | 51.38\% | 34.62\% |
| Writing | 12.14\% | 4.46\% | 10.09\% | 4.74\% |
| Math | 38.31\% | 19.29\% | 34.68\% | 23.62\% |
| Science and Technology | 7.47\% | 2.72\% | 7.14\% | 2.03\% |

* Disadvantaged is defined as students eligible for the National School Free Lunch Program.


## Eighth Grade 2003-2004 MEA: Percent Meeting or Exceeding Standards

| Content Area | "Large" Schools (Students Per Grade > 43.2) |  | "Small" Schools (Students Per Grade < 43.2) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Not Disadvantaged* | Disadvantaged* | Not Disadvantaged* | Disadvantaged* |
| Reading | 43.80\% | 20.71\% | 39.85\% | 23.87\% |
| Writing | 43.11\% | 23.57\% | 42.43\% | 30.11\% |
| Math | 26.37\% | 9.54\% | 22.19\% | 13.18\% |
| Science and Technology | 17.79\% | 6.60\% | 13.90\% | 7.76\% |

* Disadvantaged is defined as students eligible for the National School Free Lunch Program.

Eleventh Grade
2003-2004 MEA: Percent Meeting or Exceeding Standards

|  | "Large" Schools (Students Per <br> Grade > 101.25) |  | "Small" Schools (Students Per <br> Grade < 101.25) |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Not <br> Disadvantaged* | Disadvantaged* | Not <br> Disadvantaged* | Disadvantaged <br> $*$ |
|  | $52.11 \%$ | $28.26 \%$ | $48.00 \%$ | $32.91 \%$ |
|  | $38.60 \%$ | $20.13 \%$ | $35.76 \%$ | $23.85 \%$ |
| Math | $28.00 \%$ | $12.19 \%$ | $21.84 \%$ | $11.10 \%$ |
| Science and Technology | $13.48 \%$ | $5.70 \%$ | $10.35 \%$ | $4.72 \%$ |

* Disadvantaged is defined as students eligible for the National School Free Lunch Program.


## Appendix $\mathbf{F}$

## Characteristics of Middle and High Schools of Different Sizes

Middle Schools

| Average Grade <br> Size | Cost |  | MEA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\$ 5,873$ | $4,525-7,022$ | 531.2 | $527.3-536.8$ |
| $68-96$ | $\$ 5,750$ | $4,646-6,860$ | 531.5 | $526.0-535.8$ |
| $97-132$ | $\$ 6,001$ | $4,060-7,392$ | 532.8 | $528.8-541.0$ |
| $133-199$ | $\$ 6,053$ | $5,210-8,321$ | 533.6 | $528.0-541.3$ |
| 200 or more | $\$ 5,418$ | $4,420-6,833$ | 532.4 | $528.8-539.8$ |

Middle School Culture

| Average <br> Grade <br> Size | Student <br> Tardiness | Student <br> Absenteeism | Student <br> Bullying | Fighting / <br> Violence | Students' <br> Motivation <br> to Learn | Lack of <br> parental <br> involvement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Less <br> than 68 | $20.0 \%$ | $40.0 \%$ | $20.0 \%$ | $0 \%$ | $40.0 \%$ | $40.0 \%$ |
| $68-96$ | $12.5 \%$ | $37.5 \%$ | $87.5 \%$ | $0 \%$ | $100.0 \%$ | $62.5 \%$ |
| $97-132$ | $33.3 \%$ | $22.2 \%$ | $44.4 \%$ | $0 \%$ | $66.6 \%$ | $55.5 \%$ |
| $133-199$ | $57.1 \%$ | $57.2 \%$ | $28.6 \%$ | $0 \%$ | $57.2 \%$ | $42.9 \%$ |
| 200 or <br> more | $11.1 \%$ | $11.1 \%$ | $55.6 \%$ | $0 \%$ | $55.6 \%$ | $55.6 \%$ |

*Data from the 2005 Maine Public School Census Survey*
High Schools

| School Size | Cost |  | MEA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | sd |  | sd |
| Less than 200 | $\$ 7,545$ | $5,587-9,992$ | 531.2 | $527.8-537.0$ |
| $200-349$ | $\$ 6,505$ | $5,472-7,513$ | 531.2 | $527.3-538.5$ |
| $350-599$ | $\$ 6,259$ | $4,860-8,739$ | 533.4 | $528.5-544.8$ |
| $600-849$ | $\$ 6,000$ | $5,389-7,492$ | 533.3 | $529.3-540.3$ |
| 850 or more | $\$ 5,348$ | $4,189-6,458$ | 532.7 | $530.3-537.0$ |

High School Culture

| School Size | Student <br> Tardiness | Student <br> Absenteeism | Student <br> Bullying | Fighting/ <br> Violence | Students' <br> Motivation <br> to Learn | Lack of <br> parental <br> involvement |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Less than <br> 200 | $50.0 \%$ | $50.0 \%$ | $25.0 \%$ | $0 \%$ | $50.0 \%$ | $50.0 \%$ |
| $200-349$ | $50.0 \%$ | $41.7 \%$ | $50.0 \%$ | $0 \%$ | $83.3 \%$ | $83.8 \%$ |
| $350-599$ | $52.9 \%$ | $53.0 \%$ | $35.3 \%$ | $0 \%$ | $88.2 \%$ | $58.9 \%$ |
| $600-849$ | $80.0 \%$ | $80.0 \%$ | $50.0 \%$ | $0 \%$ | $100.0 \%$ | $80.0 \%$ |
| 850 or more | $57.1 \%$ | $57.1 \%$ | $35.7 \%$ | $28.6 \%$ | $85.7 \%$ | $85.7 \%$ |

*Data from the 2005 Maine Public School Census Survey*

## Appendix G

## Criteria for Higher and Lower Performing Maine Schools

There are two ways for a school to meet the criteria for being higherperforming. First, a school was considered higher performing if the following were true:
a) its school average combined MEA score is substantially better than the state average,
b) the school average combined MEA score is substantially better than would be predicted using regression analysis, a widely used statistical method, given the following:

1) the percentage of students in the school who receive free or reduced price lunches,
2) the percentage of households in the community with at least one member who holds a bachelors degree, and
3 ) for $11^{\text {th }}$ grade students, the average MEA score of the town or district's $8^{\text {th }}$ graders.
c) its economically-disadvantaged students are scoring substantially better on the MEA than economically disadvantaged students in the state, on average,
d) its non-economically-disadvantaged students are scoring substantially better on the MEA than non-economicallydisadvantaged students in the state, on average

Or, in place of c) and d),
e) the percentage of students achieving at least a "Meets" proficiency rating is substantially better than the state average,
f) the percentage of students achieving at least a "Partially Meets" proficiency rating is substantially better than the state average.

Similarly, there were two ways a school could meet the criteria for being considered lower-performing. Instead of the students in criteria a) through f) scoring substantially better, however, in lower performing schools the students score substantially worse.

Note: "Substantially better" was defined in the study as being at least a third of a standard deviation higher.


[^0]:    $\dagger$ Includes 4-8, 5-8, 6-8, 7-8 schools. Island schools are excluded.

