A Reorganization in the Continuity of Subject Matter in Mathematics

Beryl E. Warner

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd
Part of the Mathematics Commons

Recommended Citation

Warner, Beryl E., "A Reorganization in the Continuity of Subject Matter in Mathematics" (1940). Electronic Theses and Dissertations. 3384.
https://digitalcommons.library.umaine.edu/etd/3384

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

A RBORGAIITZARION IN THE
CONT INUTMY OF SUBJECT MATHER
IN MATHEMATICS

By
BaRYE B. WARNER
B. A., University of Maine, 1935

A THESIS
Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts (in Mathematics)

$$
\begin{gathered}
\text { Division of Graduate Study } \\
\text { University of Maine } \\
\text { Orono } \\
\text { June, } 1940
\end{gathered}
$$

ABSTRAOT

A REORGANIZATION IN THE CONTINUITY OF THE SUBJECT MATTER IN

MATHEMATICS

This thesis considers a reorganization in the order of arrangement of certain topics in elementary and undergraduate mathematicsp i.e., arithmetic, algebra, plane geometry, solid geometry, trigonometry, analytic geometry, and calculus. Two terms important in the discussion are reorganization, the process of changing the relative position of topics or proofs in mathematics to an earlier or later place in the development of subject matter, and continuity, the logical order of topics arranged according to the need of one to explain the other.

The purpose of the thesis is two-fold: First, to show what arrangement of topics may be desirable; and, Second, to justify the proposed changes by showing that such a reorganization will make it possible to give a simpler and more complete presentation of mathematics without affecting the logical sequence of topics.

The discussion reviews the recent changes in elementary mathematics during the past forty years. These changes, in
general, may be thought of as either of a general character indicating a trend or of a special character indicating a rearrangement in the order of particular topics.

The general arrangement of the thesis is somewhat as follows. It is observed that propositions in elementary mathematics have been proved by methods of analytic geometry and calculus. Proofs of certain propositions in plane geometry are possible by coordinate methods. When they are presented in algebra, these proofs are not only simple but provide further understanding of topics in algebra, such as graphs, ratio and proportion, and the operations of algebra. Proofs of certain propositions, or formulas, from elementary mathematics are possible by means of integration. Such proofs by calculus are too difficult to be presented in algebra. These proofs should be postponed to calculus where the simple method of integration justifies the omission of any earlier tupe of proof of these propositions in elementary mathematics.

In the conclusion of this discussion a rearrangement of topics in elementary mathematics (seventh year mathematics, eighth year mathematics, first year algebra, second course in
algebra, and plane geometry) with special attention to the continuity of subject matter is given. Such a rearrangement, of necessity, implies changes in the order of some of the tonics in later mathematics.

TABLE OP CONTMMTS

FageI. INTRODUCTION1
A. Definition of lems

1. Continuity
2. Reorganization
B. Statement of the Problem
C. Scope or the Thesis
II. RECENT CHANGBS IN BLMODNMARY MATHEMATICS 5
A. Changes in the Order of subjects
I. Arithmetic and Igebra
3. Plane Geometry and Solia Geometry
4. Trigonometry
B. Special Popics Showing Changes
5. Punction Concept
6. Order of Topics in Two Textbooks in Algebra
7. Statistics
III. PROORS BY MHPHODS OT COORDIHATE GROITERYY 29

A. The Theory of Numbers
B. Proofs by Methods of Integration
C. Curve Tracing
V. REORGANIGATION IN THE COMITHITY OR TUPIOS 49
A. Sumnary of Recent Changes aria suggestea Reorganization
B. Conciusion
APP ZIIDIX 66
BIB. IOGAPAY 70

CHAPTER I

Although in recent years there has been a tendency to reorganize the subject matter in mathematics accoraing to its value to the pupil, this study will be a discussion of a reorganization in the order of arrangement of topics and not a résumé of the teaching practices involved in adapting the subject matter of mathematics to the individual.

Since the study makes use of the ideas of continuity and reorganization, it is desirable to give some explanation of the meaning of these terms as they are used in this thesis. Continuity in subject matter in mathematics is the logical order of topics arranged according to the need of one to explain the other. For example, in geometry the proposition ${ }^{1}$ that the areas of two similar polygons have the same ratios as the squares of their radii depends upon the proofs of preceding propositions, definitions, and assumptions. Such preceding propositions in logical order are:
a. Regular polygons of the same number of sides are similar.
b. The perimeters of two regular polygons of the same number of sides have the same ratio as their radii.
c. The surn of the interior angles of a polygon having n sides is (n - 2) straight angles.
a. Gach angle of a regular polygon having n sides is ($n-2$)/n straight angles.

It is seen that the foregoing propositions include such topics

1 W. Wells and W.W. Hart, Modern Plane Geometry, p. 244 .
as perimeters, radii of circles, areas of polygons, ratio and proportion, and the measurement of angles.

The term reorganization as used in this discussion means the process of changing the relative positions of topics or proofs in mathematics in order of arrangement either to an earlier or to a later place in the aevelopment of the subject matter. Some changes have already been made. 2 Eor example, in geometry the proposition that the ratio of the circumference of a circle to its diameter is a constant, π, formerly depended upon a more difficult proof, a proof which is now postponed to a later time. A statement oi the dependent proposition and a brief explanation of the proof follow. ${ }^{3}$

Given p, the perimeter of a regular inscribed polygon of a certain number of sides, and P, the perimeter of a regular circumscribed polygon of the same number of sides, to find p^{\prime} and P^{\prime}, the perimeters of the regular inscribed and circumscribed polygons having double the number of sides.

Then $\quad p^{\prime}=\sqrt{p \times P^{\prime}} \quad$ and $\quad P^{\prime}=\frac{2 P \times p}{P+p}$
In the proof of this proposition it is found that the limit approachea through increasing the number of sides of both inscribed and circunscribed polygons is a circle. If the diameter of the circle is l, both p^{\prime} and p^{\prime} would be equal approximately to the circumference of the circle. Since the proof involves the idea of limits, it is probably too difficult for beginners. This proof is now presented in geometry

[^0]as an optional topic ${ }^{4}$ or is omitted entirely. 5 In a geometry omitting the proof, the only required explanation is an illustion to show that the relation between the perimeter and the diameter of an inscribed polygon changes as the number of sides in the polygon is increased. The perimeter approaches the circumference of the circle, and in the limit the circumerence is equal to a certain number times the diameter. This number is called pi, π.

The purpose of this thesis is two-fold: First, to show what arrangement of topics may be desirable; and, Second, to justify the proposed changes by showing that such a reorganization will make it possible to give a simpler and more complete presentation of mathematics without affecting the logical sequence of topics.

In Chapter II we shall point out some of the outstanding changes that have been made in subject matter in recent years. Chapter III consists of proofs by coordinate geometry of certain propositions in plane geometry which may be introduced into the algebra. Chapter IV is in three parts which show the applications of calculus to elementary mathematics: first, the value of the theory of limits in algebra and geometry; second, proois from the calculus which are more simple than proofs of corresponding topics in Buclidean geometry; and third,

4 Wells and Hart, op. cit., pp. 262-264.
5 A.M. Welchons and .R. Trickenberger, Plane Geometry, p. 315; D. Reichgott and L.R. Spiller, Today's Geometry, p. 235.
an illustration of the value of curve tracing in algebra. Ghapter V, as a sumary, sets forth places in the study of mathematics where the suggested reorganization is possible and shows that in such a reorganization, making a simpler and more complete presentation of mathematics, a logical order of topics is still maintained.

CHAPIP II

Mathematics has two general divisions: elementary mathematics and higher mathematics. Wlementary mathematics includes subjects in the following order: aritnmetic, algebra, plane geometry, solia geometry, and trigonometry. Higher mathematics includes analytic geometry, calculus, and more advanced theories.

In the past forty years certain changes have taken place in the order and content of some of these subjects. Although many books and articles have been written about these changes, it is not our purpose to present an exhaustive study. An efー fort has been made to select compents of writers and illustrations in textbooks to indicate outstanding changes.

In algebra it was considered important to include topics from the arithmetic. Barly writers of algebras, more familiar with textbooks in arithmetic, followed the order of topics in the arithmetic. Phus the simple processes in arithmetic, addition, subtraction, multiplication, division, ana the like, were discussed in the first few chapters of algebra before the simple equation was given. In 1908 W. J. lifilne pointed out in the introduction to his algebra that the "basis of algebra is found in arithmetic". 1 In the list of topics on page 23, it is readily seen that he more or less followed the order of arithmetic in arranging his material. The topics which precede the

[^1]the simple equation are addition, subtraction, multiplication, division, factoring, highest common factor, lowest common multiple, and fractions. Lilne's purpose was to show the relation of algebra to arithmetic rather than the dependence of algebra upon arithmetic. For example, after explaining the procedure in finding the square root of a polynomial, he reviews the similar process of finding the square root of a number. ${ }^{2}$

On the other hand today several other topics of algebra precede the four fundamental operations in algebra. An algebra written in 1936 by U.G. Mitchell and H. M. Walker shows this change. ${ }^{3}$ A list of topics as given in this bookH shows the equation at the beginning of the book.

1. The Shorthand of Algebra
2. Use of Equations
3. Equations in Iwo Unknowns
4. Graphs
5. Directed Numbers
6. The rormula
7. Linear iquations Involving Negative Iumbers
8. Multiplication of Binomials; Quadratic Bquations
9. Fundamental Operations with Practions
10. Exponents and Radicals
11. Eractional Equations 4

Since square root and logarithms are first explained by numbers, another suggestion for elementary mathematics was an advanced course in special numerical computations. In 1916 David Zugene Smith discussed the desirability of a separate

[^2]course in arithmetic for the high school. ${ }^{5}$ His comrent was that topics from the arithmetic should be studied simultaneously with the related topics or algebra and geometry. Today the algebra includes not only the four fundamental perations but also approximate computation in measurement, numerical operations such as square root, fractions, etc., and the numerical computations of trigonometry. 6

An explanation of approximation in compatation is necessary. Since many computations involve large decimals, it is desirable to determine the number of places beyond the decimal point to be retained in a result. This recuires an understanding of siginificant figures. Upon agreeing that all the digits in a number including 0 , except in special instances, are significant, we can show by simple rules the number of figures to retain in an approximate quotient, approximate sum, or approximate product.

The importance of approximate measurement in elementary mathematics has already been justified. The above ideas are also used in elementary statistics, another topic recently introduced into elementary mathematics. A further discussion of statistics will be found on page 26. In the algebra, topics in statistics include the possible error of a measurement and the

[^3]percentage of error in a measurement. 7 , We shall now discuss other fundmental ideas of statistics which might very well be given in elementary mathematics.

Although the possible erfor of a measurement is important, the computations of statistics are more concerned with relative errors. ${ }^{8}$ The relative error in any measurement is the ratio of the possible error to the measured value. Three simple theorems about possible and relative errors follow.

Theorem I. The possible error in the sum or difference of two measurements is equal to the sum of the possible errors in the individual measucements.

Theorem II. The relative ercor in the product of two measurements is equal approximately to the sum of the reiative errors of the measurements.

Theorem III. The relative error in the quotient of two measurements is equal approximately to the sum of the relative errors of the measucements.

The proofs of the above theorems depend upon certain elementary operations in algebra and require a knowledge of signed numbers, the laws of equations, fractional equations, multiplication of binomials, and the division of a binomial by a binomial. We assume that the above topics have been presented. Then in each of the three theorems the letters a and b will be taken as two measurements, and the letters el and e_{2} as their respective errors. The three theorems may be expressed as follows:

[^4]Wheorem I. $\quad\left(a+e_{1}\right)+\left(b+e_{2}\right)=(a+b)+\left(e_{1}+e_{2}\right)$

$$
\left(a-e_{1}\right)-\left(b+e_{2}\right)=(a-b)-\left(e_{1}+e_{2}\right)
$$

where $\left(e_{1}+e_{2}\right)$ is the sum of the possible errors.

Theorem II. $\quad\left(a+e_{1}\right)\left(b+e_{2}\right)=a b+a e_{2}+b e_{1}+e_{1} e_{2}$ $\left(a-e_{1}\right)\left(b-e_{2}\right)=a b-a e_{2}-b e_{1}+e_{1} e_{2}$
where $e_{1} e_{2}$ is a very small decimal. Then the possible error is ($a e_{2} b e_{1}$) and the relative error is $\left(a e_{2}+b e_{1}\right) / a b=$ $e_{1} / a+e_{2} / b$ approximatcly.

Theorem III. $\left.\left(a+e_{1}\right) /\left(b-e_{2}\right)=a / b+\left(a e_{2} \rightarrow b e_{1}\right) /(b)\left(b-e_{2}\right)\right]$ in which $\left(b-e_{2}\right)$ is approximately b, and the absolute error is $\left(a e_{2}+b e_{1}\right) / b^{2}$, and the relative ercor $\frac{a e_{2}+b e_{1}}{b^{2}} / \frac{a}{b}$ $\mathrm{e}_{1} / a+\mathrm{e}_{2} / \mathrm{b}$ appcoximately

These theorems and the simple algebraic proofs could very well. be presented in elementary mathematics in a second course in algeora.

Another change in elementary inebre hus been to include Etopias from higher mathematics. The theory of aeterminants was one of these. In "The Peaching and History of mathematics in the United States" Florian Cajori makes the following suggestion. ${ }^{9}$ "It seems quite plain that the elements of determinants should form a part of algebra and should be taught early in

9 H. Cajori, "The History and Teaching of Hathematics in the uniteu States", Circular No. 3, (1890), p. 293.
the course in order that they may be used in the study of coordinate geometry." Today determinants are a part of advanced algebra, being used to solve equations with two, three, four, and five unknowns. 10 other attempts have been made to place this topic in elementary mathematics. A second year algebra written in 1929 by F. Engelhardt and I.D. Haertter included determinants as a supplementary topic as an additional method of solving simultanecus equations in two unknowns. 11 A recent thesis demonstrated the simplicity of the use of determinants from the eighth year throughout elementary mathematics. ${ }^{12}$ It was shown that determinants readily followed operations with signed numbers and proved to be a simple method in solving problems. The use of determinants still remains a supplementary topic in elementary mathematics and may easily be postponed to advanced algebra. In the advanced algebra it has a definite use as an introduction to the solution of complicated systems of equations in advanced analytic geometry.

The presentation and the inclusion of geometry with algebra have also been considered; both Auclidean geometry and analytic geometry have been attempted in elementary algebra. The comparative value of the two geometries I Duclidean and analytic) will now be discussed in relation to many of the

[^5]changes that have been suggested. As early as 1890 fIlarian extended Cajori recommended that the new idea of the study of geometry be throughout all the courses in mathematics. ${ }^{13}$ This seemed to be desirable because the Euclidean geometry contained too large a number of new concepts, definitions, and propositions to be covered in a single course. If more time could be spent on them, they would be better understood. An attempt was then made to present geometry with the course in algebra through quadratics. There still remained, however, a wide difference between the algera and plane geometry. Propositions by Euclid's method were proved by spatial magnitudes without the use of numbers. Algebra consisted of operations with numbers and letters. The earfly correlation of algebra with such a geometry was not evident. The purpose of presenting Euclidean geometry with algebra had no other reason or value, therefore, than that of extending the length of time in which to study geometry.

The appearance of Rene Descartes' coordinate, or analystic geometry in 1637 led to a great change in mathematics. ${ }^{14}$ It was Descartes' idea to explain algebra by means of concepts and intuition in geometry. In other words he conceived an explantaction of the equation by means of a graph. Showing first that any point in a plane is determined by two coordinates, x and y, he designated the equation $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$ as an expression true of every point on a curve which the equation represented. Se-

13
14 F. Cajori, on. cit., p. 293. D. A. Smith, History of Mathematics, vol. i, p. 375 . B. Russell, Principles of Mathematics, p. is .
lecting values for x and y, he could by the principle of one-to-one correspondence transfer numerical values to the curve. Analytic geometry was not immediately accepted in Bu clidean geometry. The method of simp $j_{i}^{i f}$ ing the ancient geometry by numbers and algebra only began to appear in textbooks forty years ago. In the preface of Plane and Solid Geometry, published in 1899, by W.T. Beman and D.I. Smith, there was this sentence: ${ }^{15}$

There is a growing belief among many teachers that such of the notions of modern geometry as naturally simplify the ancient should find a place in elementary textbooks. Accordingly they (the autiors) have not hesitated to introduce the ideas of one-to-one correspondence, of negative magnitudes ...

The authors explained these two "notions" within the text.
Whe principle of one-to-one correspondence showed that one symbol, one operation, one result., of algebra was related to one symbol, one operation, one result, etc., of geometry. for example, a number in algebra corresponas to a line-segment in geometry. A more complete discussion of one-to-one correpondence shows that integers, fractions, and irrational numbers of the number system may be transferred to points on a line. The second "notion", negative magnitudes, shows that the authors recognized negative direction of a line-segment. Thus negative values of integers, fractions, and irrational numbers may also be transferred to a line.

[^6]The ideas of Descartes indicate a true relation between algebra and geometry through transferring the equation to points on a plane. Today by means of analytic geometry the illustrations of equations whose graphs are straight lines, circles, parabolas, hyperbolas, and ellipses are possible. Sometimes the work in algebra also includes the graphic representation of the cubic equation. The methods of analytic geometry, therefore, have a logical place in the algebra.

Other changes have taken place in the geometry. It was considered desirable to study plane geometry and solid geometry simultaneously. By the traditional arrangement, geometry was studied in nine books: five books of plane geometry and four of solid geometry. Since plane geometry was concerned with lines on a plane and solid geometry was concemed with planes in space, the relation of the subjects was obvious. Poday there are two ways of correlating these two geometries: first, by dividing the whole geometry into informal intuitive geometry and formal demonstrative geometry; and second, by alternating propositions of plane geometry with the related propositions of solid geometry.

Intuitive geometry includes concepts and definitions of geometry that can be presented informally. shese concepts and definitions include angles, planes, solids, measurement of plane figures, and simple constructions of plane figures. This type of geometry has been placed in seventh and eighth year mathematics. Topics of intuitive geometry include the follow-
the circle,
the right triangle, drawing perpendiculars,
constructing pectangles, squares, and parallelograms, bisecting a Iine and diviaing a ine into equal parts, bisecting an magle,
constructing regular ootagons, equilateral triangles, and regulur hexagons,
definitions of similar and congruent triangles, symmetry,
formulas for the circumference of a circle, area of a circle; areas of a squace, cectancle, and traperoid; volmes of a cube, prism, cone, crinder, and sphere; surlaces of a cylinder, sphere, and prism.

Demonstrative geomet. includes formal prools of frolositions of geometny. The content of demonstrative geometry has had several changes. By actual count, the number of propositions requiring actual formal proof has decreased over a feriod of Jears. The Tells' Plane and solid Geometro of 1894 included about 275 propositions. In 1927 the combined number of propositions in Jells and Hart's Modem Plame Geometiv and Modern Solid Geometry was 20\%. One of the reaent geomety textbooks, goday's Geomet: by Reichgott and Suiller, published in 1938 , contains 32 theorems requiring proof. Lne first reduction of the number occureu with the omiseion of the ninth book of zuclid on conic sections. Juclid found the conic sections by ressing a plane through a cone of two narpes. The cutting plane in various positions maue with the surface of the cone certain curves of intersection. Fuclid then proved that the curves were a parabola, an ellipse, a ciccle, of hyperboza according to the position of the cutuling plane. After it was discoveced that conics could be represented on a simle ormph by means of coordinates, e uations of conies vere discussed in the alpebra. The geome-
tric proof of the properties of conics was postponed to higher mathematics.

Other proofs have also been eliminated from the geometry. Proofs from Buclidean geometry of the mensuration of figures have been replaced by explanations depending upon the theory of limits. Such proofs include the areas, volumes, and surfaces which contain the incommensurable value pi. It has already been seen that the ciroumference of a circle is the limit of the perimeter of an inscribed polygon of an increasing number of sides. Similarly it has been demonstrated that the area of a sphere is a limit. If a semi-polygon is inscribed in a semicircle, the figure generatea by the semi-polygon about its diameter would be inscribed in a sphere formed by revolving the semicircle about the diameter of a circle. As the number of sides of the polygon is increased, the limit of the area of the resulting solid would be the area of a sphere.

As a result of the decrease in the number of propositions to be proved in geometry, there is a corresponding increase in the number of postulates. A postulate is a statement that is accepted as true without any form of proof. (In advanced mathematics, a postulate may be a statement accepted as a basis for discussion and proof. The statement need not be accepted as true.) In many textboois propositions that formerly were given formal proof treated as postulates. In a comparison of propositions in a textbook published in 1899, New Elane and Solid Geometry by W.W. Beman and D. E. Smith, with
the propositions in several more recent textbooks shows that the following propositions are considered as postulates:

Postulates

Wells and Hart, Modern Plane Geometry, (1926)

Post. 4. A straight linesegment has one and only one midpoint.

Post. 6. An angle has one and only one bisector.

Post. 7. All right angles are equal.

Welchons and Trickenberger, Plane Geometry, (1933)

Post. 10. At any point in a straight line one perpendicular, and oniy one, can be drawn to the line.

Post. lô. A straight line cannot intersect a circle in more than two pointis.

Post. 24. The locus of points at a given distance from a given point is a circle with the given point as the center and the given distance as radius.

Clark, Smith, and Schorling, Modern-school Geometry, (1938)

Post. 1. If two triangles have two sicies and the included angle of one equal respectively to two sides and the included angle of the other, they are congruent.

Propositions

Corresponding reference in Beman and Smith (1899)

Prop. VII, F . 17.

Prop. VIII, p. 17.
Prop. I, p. 15.

Prop. II, p. 14.

Prop. VI, Corollary, p. 122

Frop. 过, p. 81.

Prop. I, p. 25.

Clark, Smith, Schorling, Modern-School Geometry, (1938)

Post. 2. If two triangles have two angles and the incluaed side of one equal respectively to two angles and the included side of the other, they are congruent.

Post. 3. If two triangles have three sides of one equal respectively to three sides of the other, they are congruent.

Reichgott and Spiller, Today's Geometry, (1938)

Postulates 1-5. The areas of a rectangle, parallelogram, triangle, rhombus, and trapezoid.

Postulates 1-13. The measurement of solids: the lateral areas of a right prism, regular pyramid, frustum of a regular pyramia;
the lateral area of a cylinder of revolution;
the lateral areas of a cone of revolution, frustum of a cone of revolution;
the area of a sphere;
the volumes of a prism and pyramid;
the volume of the frustum
of a pyramid;
the volumes of a calinder
of revolution, cone of revolution, frustum of a cone of revolution.

Corresponding reference in Beman and Smith (1899)

Prop. II, p. 26.

Prop. XII, p. 40.

Prop. II, Corollaries, pp. 201 and 202.

Frop. VII, Cor., p. 298.
Prop. XIV, Cor. p. 309.
Frop. XIV, p. 309.
omitted
Prop. III, Cor., p. 324. Prop. III, p. 324.

Frop. XXV, p. 355.
Prop. XIII, Cor., p. 30%. Prop. XVI, Cor., p. 313.
omitted
Prop. IV, Cor., 1 . 325. Prop. IV, D. 325.

There are three justifications for considering some propositions as postulates. first, proofs of some propositions
formerly depended upon a reductio ad absurdum method. For example, the proof of the proposition that "a straight linesegment has one and only one midpoirt" leads only to an absurd proof. By definition, the midpoint of a line could not be any other point on a line. Second, proofs of other propositions are evident by definition. The proof of the proposition that "if two triangles have two sides and the included angle of one equal respectively to two sides and the included angle of the other, they are congruent" depends upon the definition of congruence. Third, proofs of propositions may depend upon an interpretation of the word postulate. In Today's Geometry by Reichgott and Spiller a postulate is explained as a statement which must be accepted as true. "Phese statements may be compared to the rules of a game" which one must follow. The first justification of accepting a proposition as a postulate is adequate. Obvious truths in geometry are needlessly proved. In the second reason, the proofs of theorems concerning congruent triangles cannot satisfactorily be considered as postulates. Many other propositions and original exercises in geometry depend upon these theorems. Proving other propositions requires a thorough understanding of the method of proof of the fundamental theorems. The third justification or reason concerns the measurement of plane figures and solids. The formulas of measurement become familiar enough by intuitive geometry in the seventh and eighth year mathematics and first year algebra to be easily accepted as postulates in plane geometry or
solid geometry. Moreover, proofs of some of these formulas by Euclidean geometry are difficult. ${ }^{16}$ Froofs of some of these propositions by other methods have been discovered; for example, the method of integration in the calculus for finding the area of a circle. The value of proofs by other methods will be further discussed in Chapters III and IV.

In elementary mathematics the place of trigonometry has also been changed. Like the geometry, the concepts and definitions of trigonometry are now spread over a longer period of time. The informal ideas of the right triangle, the tangent, and similar triangles have been included in seventh and eighth year mathematics. As a topic in algebra, trigonometry serves a purpose by showing the use of formulas. In plane geometry the proof of the Pythagorean theorem and further discussions of

16 In the discussion of changes in geometry the following articles and textbooks have been used. The articles are in indicated volumes of The Mathematics Teacher.
J.B. Reynolds, "Finding Plane Areas by Algebra", Vol. xxi, (1928), pp. 197-203.
A.S. Wannemacher, "Geometry aids for mementary Algebra", vol. xxii, (1929), pp. 49-57.
D. E. Ziegler, "Concerning Orientation and Application in Geometry", vol. xxii, (1929),
5. Blank, "Punctions of intuitive Geometry and Demonstrative Geometryi, vol. xxii, (1929), pp. 31-37.
W.P. Good and H.H. Chapman, "The leaching of Proportion in Flane Geometry", vol. xxi, (1928), pp. 462 and 463.
d.C. Stone, "One Year course in Flane and solid Geometry", vol. xxiii, (1930), pp. 236-242.
-D. Reeves and His Students, "Tenth Year Mathematics Uutline", vol. xxiii, (1930), pp. 343-357.
H. A. Slaught and N.J. Lennes, Solid Geometry, (1911).

Other textbooks are mentioned within the study.
similar triangies lay the foundations for the formulas of trigonometry. ${ }^{17}$

The most outstanding change was the introduction of the function concept in all the subjects of elementary mathematics. In 1920 E.R. Hedrick prepared a disoussion of the function concept in secondary school mathematics for the National Comaittee on Mathematical Requirements. He pointed out that the function concept is not to be considered as a theory or new idea of mathematics. It emphasizes the idea that many topics in mathematics are concerned with the relation and dependence of variables and quantities. ${ }^{18}$ ropics already in elementary mathematics in which the function concept is implicit were the familiar terms ratio, proportion, variation, formula, graph, and congruence. por example, in a catio the relation between two quantities is considered. The importance of the function concept is that it shows that many topics of mathematics are unified by this idea of dependence. The function idea came from calculus and led to the suggestions that more calculus could be included in elementary mathematics. 19

17 In the discussion of changes in trigonometry the following articles from The Hathematics Teacher, vol. xxiii, (1930), were used: A. Hans, "Geometric Proofs for Prigonometric Formulas", pp. 321-326; J.B. Orleans, "Experiment with Mathematics of the Eleventh Year", pp. 447-488. Also R. Schorling, J.R. Olark, and R.R. Smith, Modern-School Mathematics,Boois I and II.
18 "méReorganization of Mathematics in Secondary macation", Bulletin, 1921, no. 32, (Bureau of adacation, washington).
19 In The Mathematics Reacher, vol. xxii, (1929): J.0. Hassler, "Deaching Geometrointo Its Rigntrui Place", p. 155; e.A. Swenson, "Newer spe of liathematics", pp. 337-338.

A further discussion of the value of calculus in elementary mathematics will be found in Chapter IV.

The function concept and other changes already mentioned in this thesis were part of a general reorganization of mathematics between the jears 1912 and 1920 as the following statements and comments show:

The traditional round of mathematics in high school, to wit: elementary algebra, plane and solid geometry, trigonometry, and advanced algebra, must be revised both as to organization and content. 20

Suggestions for changes: 21
a. Ornission of some of the more difficult techniques from algebra.
b. Informal, intuitive approach to plane geometry with perhaps some abbreviation of the subject omitting unnecessary propositions and difficult originals.
c. Introduction of elementary trigonometry into required courses.
d. Introduction of the function concept near the beginning of a required course and its use in the sequel both for its own sake and as a basis of unification.
e. Unification of a required course around the function concept and a notion of the coordinate system including elements of analytic geometry and calculus.

In all of these changes it should be noticed that the traditional order of subjects is maintained. The study of topics from arithmetic, solid geometry, trigonometry, algebra, and calculus, for example, in the plane geometry, merely contributes to the understanding of that one subject and does not minimize or eliminate later value, or earlier value, in the study

20 H.C. Morrison, "Reconstructed Mathematics in the High School", The Mathematics Teacher, vol. vii, (1914-1915), pp. 141-152. Z1 A.D. Pitcher, "The Reorganization of the Mathematics Curriculum in Secondary Schools", The Mathematics Teacher, vol. viii, (1916), p. 15.
of these topics.
That the order of topics in high school textbooks has changed in the past forty years will be indicated by comparison of two textbooiss in algebra. The first of these books is Standard Algebra published by W.J. Milne in 1908. The other is Algebra for foday written in 1929 by . Betz. Although Milne prepared his textbook for the study of elementary and intermediate algebra, i.e., a more advanced algebra, we have selected the two books because each represents an elementary approach to the subject. In examining the topics of the two textbooks the procedure will be as follows: first, to list the topics in both textbooks in the order that they are presented; second, to compare the relative order of topics in the places Where there is definite change; and third, to point out the noticeable omissions in the discussions of some topics and important additions to other topics. The list of topics will be found on page 23 and the remainder of the discussion on the following pages.

1. List of topics in two textbooks in algebra.

Standard Algebra, Milne (1908)

1. Definitions and notations
2. Positive and negative numbers
3. Addition
4. Subtraction
5. Multiplication
6. Division
7. Factoring
8. Highest comnon factor
9. Lowest common multiple
10. Irractions
11. simple equation
12. Simultaneous simple equations
13. Graphic solutions
14. Involution
15. Dvolution
16. Theory of exponents
17. Radicals
18. Imaginary numbers
19. Quadratic equations
20. Graphic solution of quadratic equations in x.
21. Properties of quadratic equations
22. Inequalities
23. Zatio and proportion
24. Variation
25. Progressions
20.. Interpretations of results:
$0 / 0, a \cdot 0$, $/ 0$
26. Binomial theorem
27. Logarithms
28. Fermutations and combinations
29. Complex numbers
$\frac{\text { Algebra }}{(1929)}$ for Today, Betz
30. How letters are used in algebra
31. Use of formulas
32. Making of formulas
33. Bquation
34. Problems solved by equations
35. Graphs
36. Signed numbers
37. Fundamental operations
38. Equations of the first degree in one unknown
39. Bquations of the first degree in two unknowns
40. Special products and fractions
41. Fractions
42. Practional equations
43. How quantities change together
44. Numerical trigonometry
45. Square root and radicals
46. Rquation of the second degree in one unknown
2.a. Relative position of topics in two textbooks in algebra

Name of Topic	Order of lopic in Betz, Algebra for Today (l929)
Simple equation	Precedes discussion of positive and neg-
	ative numbers and the four fundamen- tal operations,
	Topic 4.

Name of topic

Special products and factoring
iractions

How quantities change together

Ireatment of ropic in Betz, Algebra for Poday, (1929)

Topic 8.

A special product alternated with a case in factoring, Lopic 11.

Topic 12.

Ratio, proportion, and variation, Lopic 14.

Order of Mopic in Milne, Standard Algebra (1908)

Hollows the four fundamental operations, factoring, highest common factor, lowest common multiple, and fractions, Topic ll.
follows factoring and fractions, lopic ll.

Topic 13.

Treatment of Mopic in Milne, Standard Algebra, (1908)

Adaition, Subtraction, Multiplication, and Division, Topics 3-6.

Multiplication of binomials, Topic5; Eactoring, Topic 7.

Highest common factor, Lowest common multiple, fractions, Topics 8-10.

Ratio and proportion, Topic $23 ;$ Variation, Iopic 24.

2.b. Uniting topics in a recent algebra (continued)

Name of Lopic	Ireatment of Topic in Betz, Al gebra for Today (1929)
Square root and radicals	Topic 16.

3.a. Topics defined, briefly discussed, or omitted in a recent algebra

Name of Topic

Cube root

Factor theorem

Theory of exponents

Finding roots higher than the third root

Graphic solutions Omitted
of conies and gen-
eral equations of
the conics

Treatment of Tropic in Betz, Algebra for Hoday (1929)

Definition

Treatment of Topic in Milne, Standard Algebra (1908)

Method of extracting the cube root of polynomials and arithmetic numbers

Proof of the theorem

Advanced theory

Several methods

General equations of the parabola, ellipse, and hyperbola
3.b. Topics added in a recent algebra

Both Hilne and Betz point out the relation of algebra to arithmetic particularld in the square root, the four fundamental operations, and signed numers. Betz adds trigonometry to his algebra. Prigonometry combines topics from arithmetic and algebra in numerical solutions of the triangle.

The final change to be considered is the introduction of theories from statistics into elementary mathematics. Statistics is the science of the collection and classification of facts on the basis of relative number or occurrence as a ground for induction. At least two kinds of facts are related in such a collection or classification. the facts are usually assembled on a graph by a one-to-one correspondence of values. Induction is then the process of reasoning from this graph about the relation of one set of facts to the other. Statistical graphs are seen to be another example of apendence.
the place of statistics in mathematics has been gradually accepted. Some of the first statistical graphs were published by William Playfair in 1801. By simple line graphs he illustrated exports, imports, and the national debt of ingland. Whe methods of representing facts by graphs were new at that time, but William llayfair's graphs are easily read in the first year algebra today. Whe place of statistical graphs in elementary mathematics today depends upon the earlier use of graphs for illustrating formulas. Later numerous forms of representing facts by picture diagrams, circle graphs, and bar graphs were added. Ihese had no particular matnematical significance. In recent textbooks some of the definitions and concepts of advanced theory of statistics have been added; for example, the mean, median, mode, frequency, the symbol Σ, random sampling, normal curve, and the coefficient of corfelation by the rank
order method. Wach of these terms is explained in the algebra in a very simple way. The mean, median, and mode are called averages, \& term from the arithmetic. Ihe mean is sometimes explained by the formula, $M=\Sigma X / N$ where if is the mean; ΣX, the sum of all the values; and I, the number of values. The median is defined as the midale score of a group of scores. The mode is the most frequent score of a group of scores. Wither the derivations or the definitions of the most difficult formulas for the mean, median, and mode are not possible or necessary in elementary mathematics. Trequency, random sampling, and the normal curve are easily illustrated. The coefficient of correlation by the rank order method is presented as a formula in which values are substituted. It is readily seen that statistics has a place in elementary mathematics. Pollowing graphic representation and the idea of dependence, it contributes to the fundamental concepts of mathematics. 22

[^7]Webster's New International Dictionary, second edition Bngelhardt and Haertter, op cit., "statistical graph", pp. 9-19;

Mitchell and Walker, op. cit., "Statistics", pp. 211-282. Schorling, Clark, and Smitn, op• cit.,"Statistics and Their Use", pp. 145-172.

Summary

There have been many changes in elementary mathematics during the past forty years. General changes in the order of subjects include:

1. the subordination of arithmetic to algebra in seventh and eighth year mathematics and in algebra;
2. emphasis of the importance of arithmetic in approximate measurement in algebra;
3. introduction of the theory of determinants and calculus in elementary mathematics;
```
4. correlation of algebra and geometry by graphic methods;
```

5. extenaing the concepts of geometry throughout the course in elementary mathematics by means of intuitive and demonstrative geometry;
6. correlation of topics in flane and solid geometry;
7. extending trigonometry throughout the courses in elementary mathenatics and eliminating the separate course. Special changes in the order of topics include:
l. in algebra, the combining of some topics, the elimination of others, and the addition of still others;
8. in geometry, the elimination of the section on conics, the reduction of the number of propositions proved by formal demonstration;
9. the centering of topics about the idea of dependence:
10. the addition of elementary statistics to algebra.

CHAP'RR III

From the study of analytic geometry we have noticed that certain simple proofs of propositions from plane geometry are possible by coordinate methods. It will be the purpose of this section of the thesis to point out their relation and aid to elementary algebra and their value to plane geometry.

From any standard algebra the following concepts, definitions, and procedures may be studied: ${ }^{1}$
definition of horizontal and vertical axes,
the zero point,
location of points on the graph of a formula,
dependence (relative) and the change of quantities particularly in ratio and proportion,
use of graphs in the solution of problems,
signed numbers and the direction of line-segments,
x-axis, y-axis, and the origin,
location of points as abstract numbers,
graph of a straight line,
parallel lines,
perpendicular lines,
similar triangles.
From a preceding discussion on changes in elementary mathematics it is seen that these topics are taken from elementary analytic geometry and plane geometry.

Another fundamental topic from analytic geometry is the division of a line-segment into any ratio. A discussion of this topic follows.

1 Among the textbooks used in this discussion are
7. Betz, Algebra for Today, (1929);
F. Ingelhardt and L.D. Haertter, Second Course in Alpebra, (1929);
U. G. Mitchell and H.M. Walker, Algebra: A Way of Thinking, (1936).

In the graphic representation of a line-segment, the scale of signed numbers and the corresponding directions are combined.

In \ddagger ig. 1 a line is divided by means of a point called a zero point. The points at distances of equal units to the right are the positive values, $+1,+2,+3$, etc. The points at distances of equal units to the left are the negative values, $-1,-2,-3$, etc.

In Fig. 2 the direction of the line-segment $A B$ is taken as positive; the direction of the line-segment BA, as negative. Combining Fig. 1 and Fig. 2 in Fig. 3, we can show that the following line-segments have these directions: DB positive, DA negative, AD positive, BD negative. Assigning numerical values to $D B$ and $D A, D B=2$ and $D A=-1$, we show that

$$
B A=B D+D A=-2-1 ; \quad A B=A D+D B=1+2
$$

Fig. 1

Fig. ${ }^{2}$

By locating the points A and B ss (r, s) and (m, n) respectively, we can show that in Fig. $4 \quad B A=r+m$ where r is negative. In Fig. $5 \quad \mathrm{Bd}=\mathrm{s}+\mathrm{n}$ where s is negative.

In Fig. $4 A B$ is parallel to the x-axis. In Fig. 5 $A B$ is parallel to the y-axis. Suppose we take line-segments $A B$ that are not parallel to either axis. In Fig. $6 C$ is any point (x, y) on any line AB not parallel to, but above, the $x-$ axis. Points $D(r, 0), \mathbb{E}(x, 0)$, and $F(m, 0)$ correspond on the x-axis to $A(r, s), C(x, y)$, and $B(m, n)$ respectively. $D E=x-r$ and $D P=m-r$. If $A B$ is extended to meet the x-axis, the quadrilateral $A B P D$ is seen to be part of a right triangle $A Q D$. Then by ratio, proportion, and similar triangles

$$
\frac{A C}{A B}=\frac{D E}{D F}=\frac{X-r}{m-r}, \quad \text { or }
$$

Fis. 6

$$
\frac{A C}{A B}=\frac{x-r}{m-r} \quad \text { directly. }
$$

The midpoint formulas from analytic geometry may be explained in algebra. In this case we wish to find the coordinates of the midpoint of a line AB. Let $C(x, y)$ be the midpoint of the line. The ratio of $A C: A B$ is 1:2. By propoction, as before, we have in sig. 8

$$
\frac{A C}{A B}=\frac{D P}{D F}=\frac{x-r}{m-r}=\frac{1}{2}
$$

Fig 8.

Then by simple algebra

$$
x-r=\frac{1}{2}(m-r) \quad \text { or } \quad x=\frac{m+r}{2}
$$

Similarly in Pig. 9 we can show

$$
\frac{A C}{A B}=\frac{D E}{D T}=\frac{Y-S}{n-S}=\frac{1}{2}
$$

Hence

$$
y-s=\frac{1}{2}(n-s) \quad \text { or } y=\frac{n+s}{2}
$$

From the above illustration it may be statea that the x-coordinate of the midpoint is equal to one half the sum of the x-coorainates of the Iine. The y-coordinate of the miapoint is equal to one half the sum of the y-coordinates of the endes of the line.

The formula for the distance between two points may also be presented in algebra. It closely follows the formala for the Pythagorean theorem and, lime it, is valuable in
showing the dependence of one value (distance) upon others (the location of points). The distance formula briefly stated is $d=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$, where $\left(x_{2}, y_{2}\right)$ and $\left(x_{1}, J_{2}\right)$ are the ends of the line segment.

In harmony with the above iaeas we shall now indicate by methods of analytic geometry the proofs of several propositions from plane geometry that may be introduced into the algebra.
A. Prove that the diagonals of a rectangle are equal. ${ }^{2}$

In rectangle $A B C D$ with points $(0, a),(b, a),(b, 0)$,
and $(0,0)$ respectively sis vertices, we mad prove that the diagonals $A C$ and $B D$ are equal. Then by the distance Pormula $A C=\sqrt{b^{2}+a^{2}}$ and $B D=\sqrt{b^{2}+a^{2}}$.

Hence, $A C=3 D$.

Proposition A. shows the relation of geonetry to algebra by representation of a rectangle by letters and points in a plane. It uses the simple laws of equations in arriving at the proor. B. Prove that the midpoint of the hypotenuse of a right triangle is equidistant from all the vertices. $P_{p(0, c)}$

In the right triangle located by the points $P(0, b), Q(a, 0)$, and $O(0,0)$, the midpoint, , in, of the hypotenuse by the mianoint Pormulas is seen to be ($\frac{a}{2}, \frac{b}{2}$). It is necessary to prove that $O M=P M=1 / 2$.

2 statements of the propositions are from original exercises in (note continued on following page)

Then by the distance formula
and $Q H=\sqrt{(a / 2-a)^{2}(b / 2)^{2}}$. Therefore $O M=M M=M Q$.

that it furnishes

A special value of Proposition B. is, practice ing fractions and factional equations.
C. Prove that the line joining the midpoints of any two sides of a triangle whose vertices are $(0,8),(-2,-1)$, and $(5,7)$ is equal in length to halt the third side. 5

In the given triangle $A B C$, the midpoint, M, of tine side $A B$ is $\left(-1, \frac{7}{2}\right)$, since

$$
x=(0-2) / 2=-1 \text { and } y=(8-1) / 2=7 / 2
$$

The midpoint, N, is $\left(\frac{1}{2}, 3\right)$, since

$$
x=(3-2) / 2=1 / 2 \text { ana } y=(7-1) / 2=3
$$

It is necessary to prove that $\quad 1 I N=\frac{1}{2} A C$.

Proposition \underline{C} combines arithmetic ana geometry. Although arithmetic numbers are used to locate the eve points of the triangle, the generality of a proposition concerning midpointer may also be proved.
Then $M \mathbb{N}=\sqrt{(1 / 2-(-1))^{2}+(3-7 / 2)^{2}}=\sqrt{9 / 4+1 / 4}$,

$$
\text { and } A C=\sqrt{(3)^{2}+(7-8)^{2}}=\sqrt{9+1} .
$$

Hence, $\quad M N=\frac{1}{2} \mathrm{AC}$.

[^8]D.Prove that the distance between tne midale points of the non-parallel sides of a trapezoid is equal to one hale the sum of the parallel sides. 6

In the traperoia ABCD with points $(0,0),(a, 0),(a, c)$, and (b, c) respectiveId, the midpoint, in, is easily seen to be ($\frac{b}{Z}, \frac{c}{2}$), and the midpoint, N, $\left(\frac{a+a}{2}, \frac{c}{2}\right)$. Then, since DC and MN are parallel to the x-axis, it is necessary to prove that $M N=\frac{I}{2}(D C+A B)$. By the distance formula $M N=\frac{a+d}{2}-\frac{b}{2} ; D C=a-b ;$ and $A B=a$.
 Hence, $\quad \mathrm{MN}=\frac{1}{2}\left(\mathrm{a}+\frac{a-b}{1}=\frac{1}{2}(A B+D C)\right.$.
E. In a parallelogram $P_{1}(2,1), P_{2}(6,5), P_{3}(0,0)$, and $P_{A}(4,4)$ prove that the Iine which joins the midale point, \mathbb{M}, f the side $P_{1} P_{2}$ to the vertex P_{3}, and the diagonal $P_{1} P_{4}$ trisect each other. ${ }^{7}$ In the given parallelogram the midpoint and point of trisection are seen to be as follows:

$$
\begin{aligned}
\text { midpoint }(4,3) \text { where } & x=\frac{2+0}{2}=4 \\
\text { and } & y=\frac{1+5}{2}=3 ;
\end{aligned}
$$ point in $\left(\frac{8}{3}, 2\right)$ where by the woint of $x=\frac{0-4}{3}+4$ and

$$
y=\frac{0-3}{3}+3 \cdot \text { It is seen that }
$$

$\bar{\eta}$ Ibid., Ex. 20, E. 28.
$\mathbb{M N}=\sqrt{\left(4-\frac{8}{3}\right)^{2}+(3-2)^{2}}=\sqrt{\frac{16}{9}+1}=\frac{5}{3}$
and $M \mathbb{P}_{3}=\sqrt{16+9}=5$. Therefore $\quad M T=\frac{1 M P_{3}}{3}$
Similariy $P_{1}=\sqrt{\left(2-\frac{8}{3}\right)^{2}+(1-2) 2}=\sqrt{\frac{4}{9}+1}=\frac{\sqrt{13}}{3}$ and

$$
P_{1} P_{4}=\sqrt{(2-4)^{2}+(1-4)^{2}}=\sqrt{4+9}=\sqrt{13} .
$$

Therefore $P_{1} N=\frac{1}{3} P_{1} P_{4}$.
Although arithretic numbers are used here, as in Proposition D., the generality or the rroposition may also be proved. Propositions D. and E. provide further exereises in literal and fractional equations.

In some present day algebras ${ }^{8}$ the equation of a line and an explanation of the slope of a line are presented. Purther geometric propositions could be added by means of the slope Pormulas: $\quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}, \quad m_{1}=m_{2}$ (test for parallel lines),

$$
m_{1} m_{2}=-1 \quad \text { (test for perpendicular lines). }
$$

Some of these propositions are:
The diagonals of a square are perpendicular to each other. 9

Tre diagonals of a rhombus are perpenaioular to each
Both of these propositions can be proved by showing that the product of the slopes of the two diagonals equals -1 .

The lines joining the midpoints of the adjcent sides of a quadrilateral form a parallelogran.
 lines having equal slopes are parallel.

Ir a list of propositions that may be proved in algebra as an introduction to geometry, it will be necessary to exclude those propositions in geometry winch are needed to establish the proof of the forty-seventh problem of euclid; ie., "In a right triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides". Proving these propositions by the distance formula which in turn depends upon the above forty-seventh problem would result in reasoning in a circle. The propositions which must be excluded from the proofs by coordinate methods are as follows: ${ }^{12}$

1. The area of a rectangle is equal to the product of its base and altitude.
2. The area of a parallelogram is equal to the product of its base and altitude.
3. The area of a triangle is equal to one hall the product of its base and altitude.
4. A triangle is half a farallelomam having the same base and latitude.
5. Two triangles are congruent if three sides of one are equal respectively to three sides of the other.
6. Two triangles are congruent if two sides and in ineluded angle of one are equal to two sides ana an included an gie us the other.
7. Construct a perpendicular to a line for a point not in the line.
8. At a point in a line, construct a perpendicular to the Line.

Notes m. 36 and 37.
8 U.G. Mitchell and H.M. Walker, Algebra: A Way of thinking, PD. 294-29\%. "Analytic Geometry in the High School", The Mathematics Teacher, vol. xxxiii, (1940), p. 60.
H. Goutschalk, "Analytic Geometry man Trigonometry in Second Year Algebra", The Mathematics Teacher, vol. Xxxiii, (1940), pI. 82-83.
9 I.A. Barnett, Analytic Geometry, IX. I, p. 25.
10 Ibid., $\operatorname{tr} \cdot 24, \mathrm{p} \cdot \mathrm{S} \cdot$
11 Ibid., Bx. 15, p. 28.
12 T. Wells and W.V. Hart, Modern Plane Geometry, p. 216.

A summary of this discussion brings out several points. Some proofis from analytic geometra are not too difficult to present in algebra. Thed mpoviae fuxther understanding of graphs, ratio and proportion, and the operations of algebra. They present a simple introduction to propositions in geometry. Such an introduction to geometry is valuable because by making use of algebraic methods and by involving geonetric ideas, we bring into closes relation these two subjects in mathematics.

CHAPMR IV

As we have already mentioned, the emphasis of the function concept in explaining the topios of algebra showed that calculus might have a place in elementary. In this section we shall point out three examples of the relation of calculus to algebra; namely, theory of limits, formulas by integration, and curve tracing. Theory of Iimits

By actual definition, differential calculus is a method of "analysis dealing with the rate of change of a variable function". 1 One of the first ideas introduced into the differential calculus is the theory of limits. "A limit is a fixed value or form which a varying value or Porm may approach indefinitely but cannot reach."I or, in gertain cases the variable may reach its limit. In algebra the theory of Iimits appears in a definition of infinite series. An infinite series is contrasted with a finite series, where a finite series is an enmeration of figures that has a definite end.

In geometry the theory of limits may be brought out in several propositions. H. S. Slaugnt and N.J. Lemes in Solid Geometry, pubiisheá in 1911, followed the method of approach, or limit, carefully in proving the formulas for the areas and volumes of the cylinder, cone, and sphere. Certain geonetric axions were used as bases of prools. some of these axioms are: I Vebster's New Internationel Dictionary

Axion VII. The lateal surface of a convex cone has a definite area, and the cone incloses a definite volume, which are less respectively than those of any circumscribed pyramid and greater than those oi any inscribed pyramid.

In the proor of the proposition that the area of the lateral surface of a right circular cone is eyual to one half the product of its slant height and the circumference of the base, it was shown that

If (lateral area) can be neither less nor greater than I/a sc, wheres is the slant height and c is the circumference of the bise. Therefore the lateral area must be equal to $1 / 2 \mathrm{sc}$.

Axiom IX. A sphere has a definite area and incloses a definite volume which are less respectively than the sucface and volume of any circumscribed figure and greater than those of any inscribed convex figuce. 3

One of the theorens proved by the latter axion was the formula For the area of a sphere, $A=4 \pi r^{2}$. In a rocedure similar to that in the preceding proposition, the authors proved the formula by showing thet the area of a sphere is neither less nor greater than $4 \pi r^{2}$.

The above explanations of limits appeared to be both awkward in expression and in the method of proof. In recent textbooks theorems on Iimits are also used, but the manmer of expressing them is more simple. Two of the theorems are ${ }^{4}$

1. If a variable x approaches a limit k and if c is a constant, then ex approaches ck as a limit, and x / c approanes k/c as a limit.
2. If two variablas are always equal while approaching their respective limits, their limits are equal.

These theorems on limits are accepted as true without proof.

[^9]Propositions depenäng upon these theorems involve equalities; for example, "the circumference of two circles have the same ratio as their radii", and "two reiangular paramids having equal altitudes and equivalent bases are equivalent". 5

Plementary Pormulas by Interration

A second relation of caleulus to elemantary mathematies is through integral calculus. Integral calculus is a method of analysis concerned with "the theory and application of integrals, their evaluation, etc. ${ }^{\text {g }}$ The proofs of several simple formulas of algebra or intuitive geometry are found in integral calculus. Proofs of these formulas follow.
4. Show 7 a
A. Show that the circumference of a circle is $2 \pi r$. By interration and the formula for the arc-length along a curve $y=f(x)$, the proof may be developea ais follows. From the equation of a circle, $x^{2}+y^{2}=x^{2}$, the curve is $y=\sqrt{r^{2}-x^{2}}$. Then

$$
S=\int_{a}^{b} \sqrt{1+(d y / d x)^{2}} d x=\int_{-x}^{r} \sqrt{1+x^{2} /\left(r^{2}-x^{2}\right)} d x=r \int_{-r}^{r} d x / \sqrt{r^{2}-x^{2}}
$$

and $s=r \arcsin x / r]_{-r}^{r}=r \operatorname{arc} \sin (1)-r \arcsin (-1)$.
Hence $s=r(\pi / 2)-r(-\pi / 2)=\pi r, o r$ half the circumperence.
B. Show that the area of a circle of radius r is $\pi r^{?}$. Similarly by integration and the formula for the area of a curve $y=\sqrt{r^{2}-x^{2}}$, the pool may be developed as follows. $A=\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x=\left[(1 / 2) x \sqrt{r^{2}-x^{2}} d x+1 / 2 \arcsin (x / r)\right]_{-r}^{r}$

Hence $A=\left(r^{2} / 2\right)(\pi / 2)-\left(r^{2} / 2\right)(-\pi / 2)=\pi r^{2}$.
C. Show that the volume of a sphere generated by revolving the circle $x^{2}+y^{26}=r^{2}$, is $(1 / 3) \pi r^{3}$. From the use of the formula for the volume generated by revolving a circle about its diameter, it is seen that

$$
V=\pi \int_{a}^{b} y^{2} d x=\pi \int_{-r}^{r}\left(x^{2}-x^{2}\right) d x=\pi\left[\left(r^{2} 2 x-\left(x^{3} / 3\right)\right]_{-x}^{x}\right.
$$

When $V=\pi\left\{\left[r^{3}-\left(r^{3} / 3\right)\right]-\left[-r^{3}+\left(r^{3} / 3\right)\right\}=(4 / 3) \pi r^{3}\right.$.
D. Find by integration the area of the surface of the sphere generated by revolving the circle $x^{2}+y^{2}=r^{2}$ about its diameter. ${ }^{8 \mathrm{~b}}$
Similarly by integration and the use of the formula for the surface generated, we may show that

$$
S=2 \pi \int_{a}^{b} y \sqrt{1+(d y / d x)^{2}} d x=2 \pi \int_{-x}^{r} \sqrt{r^{2}-x^{2}} \sqrt{1+x^{2} /\left(r^{2}-x^{2}\right)} d x .
$$

Hence $S=2 \pi r x \int_{-r}^{r}=2 \pi r^{2}-\left(-2 \pi r^{2}\right)=4 \pi r^{2}$.
The proofs of the preceding propositions, or formulas, are seen to be clear and simple by means of integration. As proofs to be presented in algebra they would be difficult without a thorough course in elementary calculus. Such a reversal of subjects is not feasible. A possible suggestion that the formulas of integration used in these problems might
83. Ford, on e cit., Bx. 2, 2 270; Bb Bx. 1, p. 275.
be introduced in algebra also fails. The best conclusions to the discussion, therefore, are: first, that the proofs of these propositions should be postponed to the calculus, and second, that the simplicity of these proofs in calculus justifies the omission of any other type of proof of these propositions in elementary mathematies. The formulas for the ciriference, area, and volume of plane figures and solids involving the incommensurable value pi, , should be presented as definitions or rules in algebra ana as postulates in geometry.

Curve Tracing

"A curve is said to be traced when the general form of its several parts or branches is determined and the position of those (partss or branches) which are unlimited in extent is indicated." ${ }^{9}$ Itementary analytic geometry and calculus have simple conethods which combinea enable one to trace a curve quickly. Steps whion might be used in tieacing eq curve quiakly. Steps which might be used in tracing a curve of the thira, or higner, degree in first or second year algebra are tnese: ${ }^{10}$

1. Determine if possible the quadrants, within which the curve must lie.
2. Detemine if possible the points, if any, at which the ourve intersects the x-axis and the y-axis.
3. Determine whether the curve is symnetrical with eespect to the x-axis, to the y-axis, or to the origin.
4. Determine the maximum and minimum points, if any.
5. Determine the goints of inflection, if any.

Solve the following equation graphically:ll $x^{3}-x^{2}-6 x=0$.
In algebra the process of solving such an equation would be the two steps of forming a table and plotting all points in the table on a graph, as Pollows:

Step I. Pable.
In finding the values
for the table, we set the

Fig. 1
equation equal to y and substitate values for x.
9 N. W. Johnson, Curve Iracing in Cartesian Coordinates, p. 1. 10 \%. B. Pord, A Pirst Course iñ itferential man Integral Calculus, p. 1 A0-147.
11. Betz, Algebra for Moday, Birst Course, Bx. 22, 1. 459.

Step 2. Graph.
In plotting the values from the table on a granh, we can show that the curve looks something like this (Pig. 2) :

There are several weak pointis in this solution. Before the table is constructed there is no way of guessing where the curve will lie. Substituting values for x consumes a great deal of time. The resulting curve is not known to be accurate. It is merely assumed that the curve takes the indicsted directions. Some method should be used that would be more accurate.
on a

By the method of curve tracing in calculus, the determining of the curve would be as follows:

1. Determine the quadrants within which the curve must lie. $y=x^{3}-x^{2}-6 x$. By obser-
 made in the next step.

2. Determine the points at which the

 the curve intersects the x-axis; the X-axis. At the point where the curve intersects thex-axis, the value of y must be 0 . Then by simple algebra $x^{3}-x^{2}-6 x=0 ; x\left(x^{2}-x-6\right)=0 ; \quad x=0, x=3$, and $x=-2$. The curve crosses the $x-a x i s$ at $\theta, 3$, and -2 . Values of $x=0$ are used to determine where the curve crosses the x-axis. In this ease, substituting 0 por x, y has one value, 0. Taking a value between $x=0$ and $x=-2$, we may show that a derinite segment of the curve lies in the second quadrant. Sinilarly a value between $x=0$ and $x=3$ shows us that there is another definite segrnent in the Pourth quadrant. Beyond $x=-2$ the curve recedes in the third quadrant towards $-\infty$. To the right of $x=3$ the curve proceeas in the first quadrant toward $+\infty$. (See Fig. 3)
3. Determine whether the curve is symmetrical to the x-axis or the y-axis. The symmetry of a curve is determined by substituing $-x$ for x and $-y$ for y to determine whether the curve is unchanged. In this case if substitutea for x, the form of the equation is changed:

$$
y=(-x)^{3}-(-x)^{2}-6(-x)=-x^{3}-x^{2}+6 x
$$

If $-y$ is substituted for y, the form of the equation is changed: $\quad-y=x^{3}-x^{2}-6 x$.

Therefore the curve is not smmetriosl to either axis. 4. Determine the maximum and minimun noints, if any.

Steps 4. and 5. involve the use of the finst and second derivative which are easily exlained by rule.

Let $I(x)=x^{3}-x^{2}-6 x$. Then the first derivative of the equation will be $f^{\prime}(x)=3 x^{2}-2 x-5$. Por the value of x that will make $f^{\prime}(x)=0$, there may be a maximum value, a minimum value, both, or neither, where the maximum value, i the high point of the curve and the minimum value io, the low point of the curve. By simole algebra

$$
3 x^{2}-2 x-6=0 . \quad \operatorname{Tn} \operatorname{con} x=1.8 \text { and }-1.2
$$

Substituting in the original equational equation, the corresponaing values of y are -8.8 and 6.8. Hence the maximurn point is $(-1.2,6.8)$ and the minimurn point is (1.8,-8.8). 5. Determine the points of inflection, if eny. We find the second derivative of the equation to be $f^{\prime \prime}(x)=6 x-2$. The value of x that will maze $f^{\prime \prime}(x)=0$ will give the point of inflection of the curve. Then $x=1 / 3$. Substituting this value in the original equation, the corresponding value of y is -z.l. Pherefore there is a point of inflection at the point (.3,-2.1). The resulting curve is Shown in $\begin{aligned} & \text { Fig. } 4 .\end{aligned}$

The above exercise may easily be presented in elementary mathematics. It involves a knowledge of algebra including the solution of the quadravic equation. There is exercise in computation. The resulting curve is sufficiently aif-
 ferent from the first solution to illustrate the accuracy of
the last method. In elementary mathematics maximum point, miniman point, and point of inflection, may be ex lained as high point, low point, and point where the curve ahruses direction, respectively.

CHAFMER V

Certain changes in the content of elementary mathematics have been taring place over a period of forty years. These changes are bringing about a reorganization of the continuity of subsect matter.

In this chapter we shall summarize the changes mentioned in the preceding pages. In adaition we shell point out places in the subject matber where the reorguniadtion should be made. The proceduce will be as folloms:

1. to list the topics in elementary mathematics;
2. to indicate in some cases the special content of thene subjects;
3. to show reorganization in the contimuity of subject matter;
4. to show that such a reorganization makes the presentation or the subject nore simple and complete without ar゙fecting the logical order of the torics.

里opies dith Specific Content

Sevento Year Matnematics

1. Fundanentals of Arithretic
a. Addition
b. Subtraction
c. Nulviplication
d. Division
e. Table and line graph
2. Practions and Decimals
a. Practions
b. Ratio
c. Decimsis
d. Eercent
e. Average
3. Measurement
a. Distances

Ferimeter and Iine-segmerit
b. Angles

Acute, obtuse, right
and straight angie, Sum of the angles of a triangle
$x^{0}+y^{0}+z^{0}=1800$
4. Constructions in geometry a. The circle

Center, diameter, anà cadus
b. Are, isosceles triangle, and equilateral taiangle
c. Ferpendicular lines Perpenaionlar bisector, right triangle, recsmgle, and squace

Reasons for Placement in Order

Thorough wreatment of the fundamental operations in arithmetic is necessary Algebra, geometry, and twigonometry contain topics involving these operations. Simple relation of a table to a greaph gives a foundation for a point system.

Knowledge of the simple laws of Ifactions, multiplying with Practions, and aividing by Eractions is also essential to algebra. A ratio is recognized as a fraction. Decimals, percent, and average are a basis for numerical computations in statistics.

Introduction to both plane and analytic geometry through the measurement of lines and angles. The sum of the angles of a triangle is expressed and designated as an equation.

Since construetions are based on the aircle and the arc these are presented first.

Towics with Specific content Reasons for Elacement in Order Seventh Year Mathematics (continued)
5. Measurement with simple Eormulas
a. Areas of ciccie, triangle, rectangle, aind square
b. Volume of sphere, pyramid, rectangular solida, ana cube

This topic not only is an introduction to equations but also shows the measurement of figures constructed in Topic 4. The volumes selected correspond to the plane figures.
6. - 7. Since the study of elementary arithmetic is continued in the seventh year, it is expected that other topics of arithmetic, such as, interest, banking, taxes, insurance, investuments, and other social applications will be incluaed. The social apmications, except lor some computation and simple substitution in fomulas, are more or less outsiae the field of mathematics. Since this study deals with the mathematical content of these courses, no further comment on social applications will be made except in relation to statistics. The discuesion of statistics, however, will also reman within the limits of mathematics.

Topics with Specific Content

Eighth Year liatnematics
8. Fundamentals of arithmetic a. Fundamental operations of aritametic
b. Practions and approzimate numbers
9. Simple áependence
a. Use of table and formula
b. Graph

Point system, direction of a line, locating points in a plane
c. Transferring a formula to agraph
10. Simple equation
a. Four principles of equations
b. Algebraic adaition and subtraction
c. Practional equations
11. Measurement
a. Angles, triangles, lines
b. Adaitional formulas: volumes of pyramid, cylinder, and cone
c. Construction of plene figures and location of partis of section a. above asa section e. on a grayh

Reasons for Placement in Order

Athough this is a review of arithmetic, there should be special redauion to algebra. There should be ureatment of each of the fundamental opertions as a numerical equation. Operations have heretofore been carried on in vertical colums of numbers. Positive and negative numbers should be mentioned without a nunber scale. Study of fractions should include percentage of increase and decrease. Approximate numbers shoula indicate the inaccuracy of measurement.

Pundamentals of thalytic for the relation of algebra to geometry. Interaependence of table, formula, and graph.

Point out the removal of the \div sign in division, use of () parentheses, both small points fundamental in operations of algebra.

Topics of intuitive geometry are interpreted on a graph. Positions os acute, obtuse, and right angles with vertex at $(0,0)$ comparea. Comparison of parallel anã perpendicular lines, bisector of a line on a graph. Discover midpoint formla Por lines parailel to axes.

Ropics with Specific Content Reasons for Placement in Order
Eighth Year Mathematics (continued)
12. Indirect measurement
a. Similar triangles (proposition stated)
b. Congruent triangles
(prowosition stated)
c. Symmetry

Axis of symuetry

In similar and congruent triangies several propositions are stated: similarity is observed in relation to angles, in relation to sides, and in relation to ratios of two corresponding sides and the included angle. congrueney is observed both by two sides and the inoluded angle and by two angles and the included side. Representation of fig' ures on a graph with reference purticularIy the axis of symmetry.
13. Introduction to taigonometry
a. Hight triangite Taingent ratio, table of elevation and depression
b. Indirect measurement ingles and triangles, Eythagoras' rule, square root

Sarly intsoduction to trigonometry follows knowledge of angles and triangles.

In the mathematics of the seventh and eignth year
four purposes are evident:

1. A foundation of arithmetic is maintained.
2. The simplest com of the equation is introduced.
3. The fundamentals of geonetry and tsigonometry are presented.
4. There is special attention to elementary anslytic
geometry in which a connection is made in every instance between plane geometry and algebra by means of the graph.

Topics with Specific Content
Algebra, Iirst Course
14. The Bquation
a. Numerical equation
b. Simple equations of letters
c. Review of four principles of equations
d. Practional and decimal equations
e. Review of algebraic adition and subtraction
15. Directed numbers
a. Review of graph including graphs of four quadrants
b. Rour fundamental operations and directed numbers including signed polynomisis, brackets, braces
c. iquations
16. Aquations with two unknowns
a. Single equation with two unknowns plotted on a graph
Tariables, constant, intersection of x and y-axes
b. Algebraic solution os simultaneous equations by several methods
c. Graphic solutions of pairs of equations Simultaneous equations, parallel lines, equivalent equations
17. Nultiplication of binomials ana factoring
a. Multiplication of binomials
b. Shorter methoa by rule
c. Special proaucts ((our)

Simple forms of equations continue facility in numerical and algebraic operations. Alpebraic addivion and subtraction leads both to more complicatea equations and to directed numbers.

Early understanding of directed numbers in not dificicult with numerical and graphical foundation. This is the second simple step with the equation.

There is emphasis both on dependence and on graphic representation. The equivalent equation compares the process of algebraic solution with graphic soIation.

The simpler processes of algebra continue with four special products, namely, product of a sum, proauct of a difference, product of sum and difference, proauct of the type

$$
(a+b)(a+c)
$$

Algebra, Pirst Course (continued)
18. Quadratic Equation
a. Graphic solution Symmetry, intersection with axes
b. Rquation of condition
c. Solution by factoring
a. Solution by completing the square (formula)
e. Simple treatment of exponents and radicals
Laws of exponents including fractional exponents Reading squares from a graph Square root of a protuct
Square root of a fraction
19. Hundamental operations with fractions
a. Laws concerning fractions
b. Review of ratio and proportion
20. Fractional equations
a. Least common denominator
b. Equations in onle unknown
c. Fquations in two unlmowns, simultaneous equations
21. Introduction to riane geometry by graphic methods
a. Division of a line into any ratio
b. Midpoint formulas
c. Propositions by coorainate methods
i. The diagonals of a rectangle are equal.

Observation of algebraic processes is continued by use of a graph.

More aifficult problems in the second course will show further use of exponents and radicals.

Fossibility of placing fractions near the beginning of the course defeated in two ways: necessity of a foundation in algebraic operations; commection with the following toric involving fractional equations entire1_{J} 。

This topic makes for a better correlation of algebra and geometry.

Algebra, Pirst Course (continued)
21. Introauction to plane geometry by graphic metnods (continued) ii. The line joining the midpoints
of any two sides or a triangle is equal in length to hale the third side.
iif. The distance between the midale points of the nonparallel sides of a traperoid is equal to hali the sum of the parallel sides.
d. Slope of a line

Slope formala, parallel lines, perpendioular lines, equation of a line
e. Propositions by coordinate methods
iv. Diagonals of a square are perpendicular.
V. Diagonals of a inombus are perpendicular.
Vi. Whe line joining the midale points of the adjacent sides of a quadrilateral form a parallelogram.
f. Finding simple loci by graph
vii. The locus or points at a gicen distance from a given line is a pair of lines that are parallel to the given distance from the given line.

These loci are merely observation of parallel lines and perpendicular lines in another way.

Topics with Specific Content Reasons Por Placement in Oraer
Algebra, Birst Course, (contimuea)
21. Introduction to plane geometfy by graphic methods (continued)
viii. The locus of points equidistant from two insecting lines is the bisector of the angles formed by the lines.
ix. The locus of points equidistant from
two given points
is the perpendicular bisector of the Iine joining the points.

The purpose of the order of topics in the first course in algebra is to present thoroughly the fundamentals of algebra. Constant reference to graphic solutions of equations leads finally to an introduction to plane geometry by simple graphic, or coordinate, methods.

Touics with Soecific Content

Plane Geometry

1. Constructions and review
of intuitive geometry
a. Circle, bisecting a line
b. Perpendioulars
c. Parallels
a. Angles
e. Mriangles
f゙. Quadrilaterals, polygons
g. Relstred geometry of theee aimensions Perpendicular to a plane, parallel lines in s plane
h. Coordinate system related to plane geometry Suggestion of coordinate syster in solid geometry
i. Axioms and general
postulates
Axiomis expressed algebraically
2. Priangles
a. Propositions: angles of a triangie
b. Propositions: congruence of triangles by informal and formal p:001
c. Pythagorean theorem
d. Distance formula (graph)
e. 300-60 triang Ie, 45° triangle
f. Proposition: right triengle
3. Parallel lines and quadrilaterals
a. Iropositions: parallel lines
b. Sum of the angles of a polygon
c. Propositions: parallelograms

Reasons for Placement in Order

Simple constructions and observation of lines and figures preceats fomma proof. Plane and solid geometry compared. Flane and solid geometry inberpreted by graph. Since many proof will contain algebsa, algebraic expression of axioms is used.

The propositions related to congruent triangles are not considered as postulates in order
that the method of Muclidean
proof may be illustrated.
Graphic representation is comtinued briefly to show the relation of plane and analytic geometry. Introduction to trig onometry is continued early in the course.

Topics with Specific Content
Plane Geometry (continued)
3. Parallel lines ana quadrilaterals (continued) d. Parallel planes
4. Areas
a.-e. Rectangle, parallelogram, triangle, rhombus, trapezoia. Unit proof: rectangle Propositions: other areas
Recall that"the diagonals of a chombus are perpendicular to each other" from the proof by coordinate geometry
f. Surface of a rectangular solid, prism, and pyramid by analogy
g. Area of any triancle, s-formula through the Pythagorean theorem
h. Area of equilateral triangle by Eythagorean theorem and the relations of the $30^{\circ}-60^{\circ}$ triangle
5. Circles
a. Postulates of the cirele
b. Propositions of the circle: arcs, chords, tangents, secants
c. Measurement of the circle Circumference, area (without prool)
a. Measurement of solias related to the circle Area of sphere, lateral areas of cone and cylinder
6. Propositions: regular polygons and the circie

Reasons for Placement in Order

Correlation of plane and solid geonetry continued.

Areas of quadrilaterals and triangles follow propositions concerning these figures. Relation of malytic geometry to plane geometry pointed out. Informal proof of measurement of surfaces of related solids continues introduction to solia geometry.

Measurement of the circle and related solids continued by definitions and illustrations.

Propositions of inscribed and circumscribed polygons readily Follow stuay of the circie.

Nonic witn Sneciric content
Plane Geometry (continuea)
7. Loci by informal proof a. Plane figures

Circle, parallel
lines, perpendicular
bisector, intersection of lines, angle bisector
b. Solids

Sphere, parallel planes, perpendicular planes, intersection of planes, cylinder
8. Relationships
a. Ratio and proportion
b. Propositions: similar polygons
c. Propositions: inequalities
9. Numerical trigonometry a. Ratios of the general right triangle
b. Ratios of $30^{\circ}-60^{\circ}$ and 45° triangles
c. Interpolation and use of tables of trigonometric functions

Reasons for Placement in Order

It is important that loci by graphic representation be reviewed and related to loci by plane geometry.

Relationships are analyzed through the use of similar figures.

Rxcept for the study of solutions of the right triangle by logarithms in the second course in algebra, the study of trigonometry is concluded here.

In the course in plane geometry there were severāl purposes in reorganizing the continuity of topics:

1. presenting the Iundamental theorems both informally and formally for proof;
2. introducing solid geometry by informal proois at the places where it corresponds to plane geometry;
\%. Contimaing the study of algebra through axioms, proofs, and numerical trigonometsy;
3. representing the application of the Pythagorean theorem to analytic geometry with plane geometry;
4. omitting proois of formulas involving pi;
5. enumerating formulas in solid geometry related to the circle;
6. introducing elements of trigonometry wherever it is possible in the study of triangles before the short course in trigonometry is given.

The courses in trigonometry and solid geometry are not included in this thesis except as these courses have been incorporated into other courses in elementary mathematics.

Topics with Specific Content

Algebra, Second Course

1. Heasurement and computation
a. Measurement Accuracy of measurement, significant figures, rounding off a number
b. Decors

Possible error, Theorem I: Possible error of a sum
Percent of error Relative error, Theorems II and II: Relative errors of product and quotient
2. Statistics (mathematical significance only in this thesis)
a. Statisticul graphs Line graph, ratio ohart, percentage graphs
b. Prequency distribution
c. Averages

Mean, median, mode
d. Simple formulas
3. Solution of equations by graphs
4. Special products and
factoring
a. All prouncts including the sum and di:ference of cubes
5. Solutions of equations by methods other than the graph, quadratic equations
a. Linear equtions Simultaneous
b. Quadratic equations Simultaneous

Reasons for Placement in Order

This topic include a review of numerical compatation and introductory iaeas for the following topic, statistics.

This includes a brief review of algebraic operstions.

Fundamentals of statistical representation and computation are introduced.

> Qreatment of the topic is by simple definitions and illus trations, no formal proofs.

Tacility with the graph leads to equations of the conic sections.

This is a basis for the topic directly following.

Topics with Specific Content
Reasons for Placement in Order
Algebra, Second Course (continued)
6. Theory and graph of quad-
ratic equations, cubic
equation
a. Circle at the origin and otherwise
b. Bllipse
c. Parabola
d. Hyperbola
e. General conic
£. Cubic equation
Solution by tracing the curve
7. Bxyonents and radicais
a. Lavis of exponenús Zero and negative exponent
b. Punamental operations with radic:ls
c. Radical equation
d. Introduction to
imaginary nurabers
Graphic representation
8. Logarithms and numerical trizonometry
a. Pundanentals of logasithms
b. Logariunmic solution
of the right triangle

Representation of conics on a graph emphasized.

Inaginary numbers inciuded in elementary mathematics to complete the number system.

Study of trigonometry continued from plane geometry. Pacility of computations by logarithms emphasized.

The purpose of this course is to continue the stady of algebra to more advanced topies. The introductory work in statisties serves as a revieg of the fundamentals of arithmetic and algebra at the same tine that elementary statistics is presented. Special correlation of arithmetic, algebra, Ilane geometry, and trigonometry brought in the last toric serves to unite the courses in olementary mathematies.

Conclusion

In this section we have listed the topics of the following subjects of elementany mathematics: seventh grade mathematics, eighth grade mathematics, first course in algebra, second course in algebra, and plane geometry. We have made this list for two purposes: first, to give a sumnary of recent changes in mathematics; second, to present a suggested reorganization of topies in mathematics. Recent changes in clude such ideas as:

1. an intercelation of the topics of arithnetic with algebra;
2. elementary statistios in algebra;
3. the use of the function concept and relationships to unite the ideas of elementary mathematics;
4. geometry in the seventh and eighth grades as a result of the division of the course into intuitive and demonstrative geometry;
5. informal proofs from solid geometry in plane geometry;
6. graphic representation in elementary mathematics;
7. applications of calculus in elementary mathematics. Suggestions for reorganization incluae:
8. proofs of propositions from plane geometry by methods of analytic geometry to correlate algebra and plane geometry;
9. postponing to the calculus proofs of propositions concerning areas of plane and solid figures involving pi;
10. including a simpler way or plotting the curve of a third degree equation by a method of calculus.

It has been pointed out that the proposed changes in the reorganiaation of the subject matter of mathematics will furnish both a more satisfactory continuity of topics and a simpler and more complete presentation of subject matter. Moreover, the logical order of the branches of mathematics indicated at the beginning of the stady is still maintained.

APF ENDIX

Further Propositions Prom Plane and Solid Geometry Proved by Methods of Analytic Geonetry and Caloulus

In addition to the proofs of propositions in plane geometry suggested in Chapter III by methods of analytic geometry and in Chapter IV by methods of calculus, there are many others. Without consiaering the exact place that they may be presented in the subjects of elementary mathematics, we sinall list these proofs here. Since most of the statements are taken from textbooks in analytic geometny and calculus, it is assumed that the proofs of the propositions are very easily show. Because of the limitations of this thesis they will not be presented here.

It has already been stated that there are certain prerequisites in analytic geometry necessary for proofs by coordinate methods. The rollowing proofs, then, will be listed under the headings of the prerequisite concepts, definitions, and formulas of analytic geometry.
A. Prerequisite: explanation of the point system, projections of a directed segment on the coordinate axes, point of division formulas, distance fromula.

1. The opposite sides of a parallelogram are equal.
2. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.
3. Whe diagonals of a parallelogram bisect each other.
4. The diagonals of a chombus bisect each other.
B. Prerequisite: the midpoint formula.
5. The medians of a triangle intersect at a point two thirds of the distance from the vertex to the midpoint of the opposite side.
C. Precequisite: slope of a line, tests for paralielism and perpendicularity, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad m_{1}=m_{2}, m_{1} m_{2}=-1$, respectively.
6. If a line diviaés two siaes of a triangle proportionally, it is paralle to the third side.
7. Two straight lines perpendicular to the same straight line are parallel.
8. The Ines joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
9. If in a triangle the line joining any vertex to the midale point of the opposite side is equal in length to half that side, the figure is a right triangle with the right angle at the vertex.
10. A line perpendicular to one of two parallel lines is perpendioular to the other also.
11. The diagonals of a square are equal.
12. The lines joining the midpoints of the adjacent sides of a rectangel focm a rhombus.
D. Prerequisite: the point slope formala; y-yn $\left.m(x-x)^{\prime}\right)$.
13. The bisectors of the interior angles of a triangle meat in a point.
14. The bisectors of two exterior angles of any triangle and of the third interior angle meet in a point.
15. The bisectors of the angles formea by any two lines are perpendicular.
16. The perpendicular bisectors of the sides of a triangle meet in a point.
17. The medians of a triangle meet in a point.
18. The altitudes of a triangle meet in a point.
19. The line joining the points of intersection of the pe perpendicular bisectors of the sides of a triangle, the altitudes, of a triangle, and the medians of a triangle is a straight line.
E. Proof Irom solid geometry using the above fundamentals in analytic geometry.
20. A line parallelto one of two parallel planes is parallel to the other.

2l. A line perpendicular to one of two parallel planes is perpendicular to the other.
22. Bisector planes are perpendicular.
23. Three planes intersect in a straignt line.
E. Proofe from solid geometry using the above fundamentals in analutic geometry (continued).
24. The lines joining the miapoints of a tetrahearon biseot each other and hence meet in a common point.
25. If a straight line is perpendicular to one plane, any plane which contains the Ine is perpendioular to the plane. 1
I Sources of statements of the propositions that may be proved by methods of analytic geometry are as follows:
I.A. Barnett, Analytio Geometry,

Propositions 16, 17, 18, 12x. 11, p. 54. Proposition 2, Bx. 28, p. 29.
T.T. Osgooa and W.C. Grausten, PIane and Solid Anaivtic Geometry, Proposition 24, 2x. 20, p. 419.
P.I. Smith and A.S. Gale, Analytic Geometry, Proposition 3, Bx. 11, 2. 34, Proposition 11, Dx. 10, p. 90. Propositions 13 and 14, Ex. 15, p. 114.
N.A. Wilson and J. W. Iracey, Analytic Geometry, Proposition 8, Ex. 16c, P. 21. Proposition 12, Ax. 16a, p. 21. Proposition 19, 2x. 14, p. 63.
"The Reorganization of Mathematics in Secondary
Bducation", Bulletin, 1921, No. 32,
Propositions $1,3-8, \frac{10-13}{10}, \frac{1}{2}-\frac{13}{23}, 16-18, ~ 55$. (list of theorems in plane and solid geometay pp.48-52).

Several interesting proofs may be found in J. S. Stewart, Zlementary Geometry Fropositions Eroved by Coordinate Nethods.

In Chapter IV proofs of Iomulas from elementary mathematics by integration in calculus were seen to be possible. Several other proois may be added. Ne shall list statementis of these formulas and indicate the preqequisite formalas of integration in each case. ${ }^{2}$
A. Prerequisite: volume of solids of revolution, where $\quad V=\pi \int_{a}^{b} y^{2} d x$.

1. The volume of a cylinder generated by revolving about the x-axis the line-segment joining a point ($0, h$) to the point (r, h) is $\pi r^{2} h$.
2. The volume of a right cone generated by revolving about the x-axis the line-segment joining the origin to the point (p, q) is $(1 / 3) \pi p q^{2}$.
3. The volume of the frustum of a cone gencrated by revolving about the x-axis the line-segment joining a point $(0, b)$ to the point (h, r), where $b<r$ is $(1 / 3) \pi h\left(x^{2}+b^{2}+r b\right)$.
B. Prerequisite: ares of surfaces of revolution, where $S=2 \pi \int_{a}^{b} y\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{2}} d x$
4. The lateral area of a right circular cylinder of radus r and altitude h is $2 r h$.
5. The lateral area of a right cone generated by reVolving about the x-axis, In joining the origin to the point (a, b) is $\pi b\left(a^{2}+b^{2}\right)^{\frac{1}{2}}$.
6. The Iateral area of the frustum of a cone generated by revolving the Iine from the point $(0, b)$ to treq. point (h, r) about the x-axis is $\pi(r+b)\left(h^{2}+(r-b)^{2}\right)^{2}$.
[^10]
BIBEIOGRAPHY

History and Theory of mathematics
Cajori, Wlorian, "The Teaching and History of Mathematics in the United States", Circular of Information Mo. 3, 1890, Bureau of Education, ashinguon.
 Columbia Jniversity, New York, 1934.

Russell, Bertrana, Principles of Matnenatics, N. W. Norton and Company, Incoriooratea, New Yori, 1938.

Smith, David Iugene, History of Mathematies, vol. i, Ginn and Company, Wew Yors, 1983.

"Rne Reorganiation oP Hathematies in Secondary
 cation, washington.

Eextbouns

Barnett, I.A., Analytic Geomet, John Wiley and Sons, Incorporatea, New York, I928.

Clark, J.R., and Otis, A.S., Modern Solid Geometre,
thgelhardt, w., and Haertuer, I. D., Second Course
bra, John C. Winston Compang
Chioaso, 1929 . bra, John G. Winston Company, Chicago, 1929.

Mitchell, U.G., and Walker, H.M., Alcebra: A Was of Thinding, hareourt, Brace, and Compañy, New Yoris, 1936.

Schorling, R., Clark, J.R., Smith, R.R•, Modern School

Slaught, H. T., and Lemas, N. J., Solid Geometcy, Allyn and Bacon, Boston, 1921.

Smith, P.P., anā Gale, A.s., Malytie Grometre, Ginn and Company, 1905.

Smith, P•F., anā Granville, Blementary inalysis, Ginn and Company, Jew York, İ10.

Welchons, A.II., and Krickenberger, W. R., Blane Geometre, Ginn and Company, New York, 1935.

Wells, W., Plane Geometry, Leach, Shewell, and Sanborn, Boston, 1894.

Wells, $\quad .$, and Hart, W. W., Modern Plane Geometr., D. S. Heath and Company, New Yorn, 1925.

Willara, H.R., and Bryan, N.R., College Algebra, planograph reprint, Spaulding-1hoss company, Boston, 1935.

Articles

The following articles are feom indicated volumes of The Mathematios Meacher.

Blanik, F., "Punctions of Intuitive and Demonstsative Geometij, vol. सrii, (1929), pp•31-37.

Good, T.P., and Chapman, H.H., "The Teaching of Eroportion in Plane Geometry", VoI. xxi, (1928), pp. 462-403.

Gootschalin, M. M., "Analytic Geometry and Pcigonometay in Second Year Alpebra", vol. xaili, (1940), pp. 82-83.

Hans, 4., "Geometric Proots for Irigonometric Pormulas", Vol. xxaiii, (I930), pp•321-300.

Hassler, J.O., "Peaching Geometry into Its Rightiul Place", Vol. Nxii, (1929), pp. 337-388.

Leary, A. F., "Analytic Geometmy in the High Scnool", VOL. Xaxili, (1940), PR •70-72.

Orleans, さ. B., "Experiment with Mathematics of the Eleventh Year", vol. Xeriii, (1930), pp. 447-488.

Reeves, W.D., and His students, "Tenth Year Mathematies Outline ${ }^{7}$, vol. xxiii, (1930), pf • 34:357.

Reynolas, J.B., "Pinding Plane Areas by Algebra", vol. xxi, (1928)

Stone, J.O., "One Year Course in Plane and Solid Geometry", Vol. Pxili, (1930), 2p. 230-242.

Smith, D. \#., "Arithmetic in the High SchooI", Vol. viji, (1916), p. 115.

Swenson, J.A., "Newer Type of Mathematics", vol. xxii,
$(1929), \mathrm{p}$. 250.
Nannemacher, A.S., "Geometry Aids Por Hlementary Algebra", vol. Xxis, (1829), 11. 49-57.

Zeigler, D.G., "Concerning Orientation and Application in Geometie", vol. x.ji, (1229), pp. 109-116.

BIOGRAPHICAL BRETCH

Beryl 2. Warner was born May 23, 1913, in Bangor, Haine, of American Negro parentage. Sne attended the public schools of Bangor and graduated from Bangor Eish School in 1931. She then attended the University of Maine and received the degree of bachelor of arts with a major in mathematics in 1935.

Misc Warner served as a teacher in Gilbert Academy in New Orleans, Louisiana, in 1936, and as instructor in the high school and colleqe departments of Claflin Collese, Orangeburg, South Carolina. She has spent the surmers of 1937 and 1938 and the spring semester of 1940 in graduate study at the University of Maine.

[^0]: 2 There will be further discussion of recent changes in Chapter II.
 3 W. Wells, Plane Geometry, pp. 208-209.

[^1]: 1 W.J. Milne, Standard Algebra, p. iii.

[^2]: 2
 H.J. Milne, Ibid., pp. 218-233.

 3 U.G. mitchei and H. walker, Algebra: A Way of thinkimg.
 4 Hunamental opera乞ions discussed with various topies.

[^3]: 5 D. S. Smith, "Arithmetic in the High school", The Hathematics Teacher, vol. viii, (1916), p. 155.
 6 .f. Betz, Algebra for Poday, pp. 402-404; Mitchell and walker, 01. cit., pp. 190-209; R. Schorling, J.R. Slark, and R.r. Smith, "Measurement and Approximate Numbers", Modern-School Mathematics, Book III, pp. 129-138.

[^4]: 7 Schorling, Slark, and Smith, ibid.
 8 c.H. Richardson, An Introduction to Statistical Analysis, pp. 11-13.

[^5]: 10
 11 H.R. Willard and N.R. Bryan, College Aleebra, pp. 184-202. 11 H. Ingelhardt and I.D. Haertter, Second Course in Algebra, pp. 101-104.
 12 m. B. Wilburn, Determinents, History, and Developments in aramitional Matheratios.

[^6]: 15 W.W. Beman and D.A. Smith, Plane and Solid Geometry, p. iii.

[^7]: 22 In the discussion of statistics in elementary mathematice the following sources were used:

[^8]: 2(contimued) in I.A. Barnett, Analytic geometry. Corresponding statements may be found in any plane aemetny.
 3 Ibid., Ex•1己, 日. 28.
 4 Ibid., $\frac{\operatorname{Ex} \cdot 14, \mathrm{P} \cdot 28 .}{\text { Ibid., } \operatorname{Rx} \cdot 9, \mathrm{p} \cdot 14 .}$

[^9]: 3 Ibia. pp. 148-149.
 4. A. Welchons and T.R. Mricaenberger, IIne Geometre, p. 310.

[^10]: " Sources of statements of the propositions that may be proved bj methods of integration in caloulus are as follows:
 W. B. Ford, a Pirst Course in Differential and Integral Calculus, Proposition 2, Ex. 1, p. 270. Proposition 4, 2x. 5, p. 275. Proposition 5, Nx. 3, p. 275.

