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Climate change is expected to lead to novel drought conditions in the Northeastern 

United States. Therefore, experimental studies that mimic these conditions are crucial to 

understand the potential impact on forests. Further, recent large scale dendrochronological 

studies suggest that spring and summer droughts may immediately impact tree growth while fall 

droughts may cause delayed impacts on growth the following growing season. Therefore, in this 

study, we investigated the impacts of six-week-long spring, summer, and fall droughts on the 

physiology and intra-annual growth on 288 saplings of six tree species native to the Northeastern 

United States. These species (deciduous broadleaf angiosperms, hereafter “broadleaf”: Acer 

rubrum L., Betula papyrifera Marsh., Prunus serotina Ehrh.; and coniferous evergreen 

gymnosperms, hereafter “conifer”: Juniperus virginiana L., Pinus strobus L., and Thuja 

occidentalis L.) represent different anticipated drought tolerances and projected abundances with 



 

 

 

climate change according to previous studies. Additionally, we used experimental dry-downs of 

seventy-one leafy shoots and seventeen xylem segments to assess how structural and 

physiological adaptations of each species relate to water use during an extreme drought.  

We observed marked differences in how the growth patterns of these six species 

responded to seasonal droughts. Spring and summer droughts generally caused height growth 

rate reductions for all species. Negative impacts on height growth were stronger for trees that had 

higher water-use and therefore experienced drought sooner. Importantly, some species such as A. 

rubrum, Pr. serotina, and T. occidentalis were able to compensate for these height growth 

reductions during spring and summer droughts with more rapid post-drought height growth. We 

also found that spring and summer droughts for Pr. serotina, Pi. strobus, and T. occidentalis 

resulted in reductions in diameter growth rates but only post-drought. Interestingly, these three 

species were not able to compensate for this decrease in diameter growth, which remained low 

throughout the rest of the growing season. These high-resolution data on intra-annual growth 

rates of trees in response to seasonal droughts reveal details about the growth phenology that 

supports and extends our understanding of annual resolution tree ring studies at larger scales. 

In the benchtop dry-down experiment that simulated an extreme drought, we found that 

leafy shoots of conifer species dried more slowly than leafy shoots of broadleaf species. In 

general, conifer species lost water at equal rates between leaves and stems. In contrast, deciduous 

species lost water very quickly and experienced larger reductions in leaf water content compared 

to stem water content. We saw evidence of drought-deciduousness in our greenhouse experiment 

where B. papyrifera was the fastest to dry-down, and in two instances, its cambia remained 

hydrated enough to re-flush an additional cohort of leaves post-drought. On the other hand, 

conifers were slow to dry-down in the greenhouse experiment, only experiencing moderate 



 

 

 

drought by the end of each drought period. The clear division in response between fast-drying 

broadleaved deciduous angiosperm species and slow-drying needle-leaved evergreen conifers 

may be partly driven by lower leaf area per shoot of conifer species, which we observed in the 

simulated extreme drought experiment.  

In the mixed wood forests common in the northeastern United States, stands may respond 

to drought in different ways depending on the species present. For example, we observed very 

different responses to growth and to some extent, recovery, in our species, and in a stand with 

species showing different responses, competitive dynamics may be altered among these species 

as the climate continues to change. Acknowledging that tree responses to drought as individuals 

and as communities may not align will be important moving forward from studies like these, 

which define drought responses of individual species, to studies which observe drought 

responses of entire forests. 
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CHAPTER 1: DROUGHT TIMING IMPACTS ON INTRA-ANNUAL GROWTH RATES 

OF SIX NORTHEASTERN UNITED STATES FOREST TREE SPECIES  

 

Study logo designed by Douglas A. van Kampen 

1.1 ABSTRACT 

 Recent large-scale dendrochronological studies suggest that spring and summer droughts 

may impact tree growth in the current year while fall droughts may cause delayed impacts on 

growth the following growing season. Although this information is critical to better anticipate 

climate change impacts on trees, we lack a mechanistic understanding of how plant water 

relations drive these impacts on growth. Therefore, in this study, we investigated the impacts of 

spring, summer, and fall droughts on the physiology and intra-annual growth on 288 saplings of 

six tree species native to the Northeastern United States. These species (deciduous broadleaf 

angiosperms (hereafter “broadleaf”: Acer rubrum, Betula papyrifera, Prunus serotina; and 

coniferous evergreen gymnosperms (hereafter “conifer”: Juniperus virginiana, Pinus strobus, 

and Thuja occidentalis) have a variety of drought tolerances, predicted abundances, and wood 
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types. Soil moisture levels reached similarly low levels during all droughts, and led to marked 

differences in how the growth patterns of these six species responded to seasonal droughts. 

Spring and summer droughts generally caused height growth reductions for all species; 

importantly, some species such as A. rubrum, Pr. serotina, and T. occidentalis were able to 

compensate for these growth reductions later in the growing season. We did see temporary 

diameter growth reductions in Pr. serotina, Pi. strobus, and T. occidentalis following spring and 

summer drought. Interestingly, these species were not able to compensate for this decrease and 

growth, and their diameter growth remained lower than the controls through the growing season. 

The results of this study define the seasonal growth patterns of the six study species and provide 

not only detailed diameter measurements, but also high-resolution height measurements during 

seasonal drought.  

1.2 INTRODUCTION 

 In the Northeastern United States (hereafter NE US), average summer temperatures and 

the likelihood of summer drought are expected to increase (Vose et al. 2019), and short- and 

long-term drought events are expected to increase in frequency by two to three times (Wake et 

al. 2014) partly due to declines in summer rainfall, increased heat, and an increase in 

evapotranspiration (Hayhoe et al. 2007, Vose et al. 2019). Drought can lead to decreased gross 

primary productivity and carbon storage (Allen et al. 2010, McDowell and Allen 2015, 

D’Orangeville et al. 2018). Importantly, many tree species in this region may lack adaptations to 

withstand the expected novel future drought conditions (Liénard et al. 2016). As the climate 

continues to change, the likelihood of extreme drought is expected to increase. Therefore, there 

is a need for experimental research that simulates novel future climate conditions to better 

predict tree responses. 
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Studies of recent droughts suggest that the timing of drought relative to species 

phenology is key for predicting diameter growth responses in current and subsequent years 

(Noormets et al. 2008, Huang et al. 2018, Kannenberg, Maxwell, et al. 2019). Early in the 

growing season, trees primarily allocate resources to diameter growth. Therefore, diameter 

growth is often sensitive to spring droughts (D’Orangeville et al. 2018). In contrast, later in the 

growing season when less diameter growth tends to occur, diameter growth is less sensitive to 

droughts of the same length (D’Orangeville et al. 2018). Further, studies conducted on lagged (or 

“legacy”) effects of droughts reveal that immediate effects of drought may be greatest for early 

summer droughts, while late-summer droughts have greater effects the following year (Foster et 

al. 2014, Kannenberg, Maxwell, et al. 2019, Au et al. 2020). These studies have been 

retrospective studies of tree rings, without focusing on the physiology behind the impacts of 

drought timing and other aspects of growth like height, biomass, and allocation to roots and 

shoots. Therefore, the physiology explaining these widespread patterns and how they differ by 

key functional types is not clear.  

The impacts of drought timing are likely to vary between functional groups due to 

variation in tree phenology. Bud break and the initiation of vertical growth occurs in the spring, 

and is usually later for conifer species than deciduous species (Richardson et al. 2009, Osada 

2017). Therefore, droughts in the spring may impact the growth of conifer and deciduous species 

differently. Further, in some conifer species, the maximum diameter growth rate occurs in early 

June (balsam fir; Duchesne et al. 2012), and seasonal variation in peak diameter growth rate is 

largely driven by water availability (Delpierre et al. 2016, Oberhuber 2017). Therefore, seasonal 

water use differences may drive differential responses of trees to droughts occurring at different 
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points in the growing season and either stall or delay those effects depending on their functional 

group and species-specific phenology.  

Much of the NE US is covered by mixed-wood forests of both conifer coniferous and 

broadleaved deciduous species. Therefore, understanding how conifers and deciduous tree 

species will respond to novel drought conditions is important to consider for the future 

management of these forests. Importantly, most studies of drought timing have focused only on 

the radial growth of large canopy trees. Therefore, there is limited knowledge on how drought 

timing impacts other aspects of growth like height and biomass allocation to roots and shoots. 

Additionally, small size classes of trees like saplings may be even more sensitive to the timing of 

drought since they usually have shallower roots and less carbon storage. To investigate the 

effects of drought timing on northeastern United States tree species, we conducted a greenhouse 

study to estimate at what time of year saplings of six species, Acer rubrum, Betula papyrifera, 

Prunus serotina, Juniperus virginiana, Pinus strobus, and Thuja occidentalis (Table 1) are most 

vulnerable to moderate droughts. Our objectives were to 1) discern how droughts occurring in 

the spring, summer, and fall may impact height and diameter growth, and 2) determine the 

differences in severity between droughts in the spring, summer, or fall.  

1.3 MATERIALS & METHODS 

1.3.1 Experimental Design 

To determine the effects of drought timing on the hydraulics and growth of tree species 

native to the NE US, we studied six species with a range of drought tolerances to include species 

with low, moderate, and high drought resistance (Table 1). Additionally, some of these species 

are expected to gain, lose, or maintain suitable habitat in the northeast as climatic conditions shift 
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and as habitats in Maine become more or less suitable for their survival (Prasad et al. 2007, 

Janowiak et al. 2018). This study used a balanced design of species with each of these traits.  

Table 1.1. Study species, degree of drought tolerance (Peters et al. 2015), predicted change in New 

England (Janowiak et al. 2018), leaf longevity, tree type, and relative position within each species’ range 

found in central Maine (Burns & Honkala, 1990; Matthews et al., 2018).   

Species Drought 

tolerance 

Projected change 

in habitat 

suitability 

Leaf 

longevity 

Tree type  Maine’s location 

within native 

range 

Acer rubrum Moderate Stable Deciduous Angiosperm Central 

Betula papyrifera Low Decrease Deciduous Angiosperm Southern 

Prunus serotina High Increase Deciduous Angiosperm Northern 

Juniperus virginana High Increase Conifer Gymnosperm Northern 

Pinus strobus Moderate Stable Conifer Gymnosperm Central 

Thuja occidentalis Low Decrease Conifer Gymnosperm Southern 

 

A 6m × 11m high-tunnel greenhouse was constructed on the University of Maine campus 

in Orono, Maine in May 2019, in which 288 individually irrigated saplings were planted in 

individual 19-liter containers with seven 1-inch drainage holes. The saplings were arranged in a 

randomized complete block design with 12 experimental blocks of 24 saplings each (288 

saplings in total; Fig. 1.1A). Thirty- to sixty-cm tall saplings (Cold Stream Farm, Free Soil, MI) 

were planted on May 29, 2019 in a nursery mix consisting of fine aged pine bark and sphagnum 

peat (Jolly Gardener, Poland Spring, ME) with fertilizer (5.9 g/L Osmocote 18-6-12). For the 

first year of growth in the greenhouse, the greenhouse cover was left open, and saplings 

experienced ambient rainfall and climatic conditions and were each irrigated 7.6 L three times 

per week. 

To avoid freezing damage to roots of containerized plants, individual blocks were 

insulated with straw in between the containers and a thin layer on top of the soil surface, and 1”-

thick foam insulation boards surrounding the block when nighttime temperatures were 
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consistently below freezing (November-May). Soil temperature was monitored over winter using 

iButtons (iButtonLink LLC., DS1921G Thermochron, Whitewater, WI) buried in the center of 

six randomly chosen containers. iButtons were deployed on November 4, 2019 and set to log 

every 180 minutes beginning at 19:00 and suggested that soil temperatures reached below -5 °C 

only five times throughout the winter (Fig. A1.1). Soil temperatures down to -5 °C have been 

shown to not directly damage cold-hardened fine roots in a northern hardwood forest (Tierney et 

al. 2001), and we did not observe obvious mortality of any of our trees from freezing damage to 

roots. 

Prior to initiating the drought treatments, 98% of the A. rubrum, 71% of Pr. serotina, and 

2% of T. occidentalis experienced either frost damage, browse, or vole damage to above ground 

shoots. The remaining species were unaffected. Therefore, in all the following analyses, cross-

species comparisons including these species are interpreted with this potential confounding 

effect in mind. However, due to the regrowth of most damaged trees, treatment comparisons 

within species are still possible. Trees that were dead at the start of the drought experiment (4.5% 

across all species) were removed and not included in the analysis, as well as their experimental 

block. 

1.3.2 EXPERIMENTAL TREATMENTS 

To understand tree responses to drought at different points in the growing season, three 

different 6-week droughts were imposed starting on June 2 (spring), July 14 (summer), and 

August 25, 2020 (fall). We chose six-week droughts since we aimed to impose extreme droughts 

on the saplings. Each experimental block (Fig. 1.1B) contained all six species and four 

individuals of each species, such that each block only had one individual replicate of each unique 

species and treatment combination. Species and treatment combinations were randomly arranged 
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within each block. To occlude precipitation and impose the drought, a polyvinyl greenhouse 

covering was installed over the structure in the spring of 2020, and 1.2 m sidewalls were left 

open to limit heating and facilitate air circulation (Fig. 1.1C). Weeds growing in containers with 

saplings were removed weekly by cutting at the soil surface. Trees were irrigated 3.8 L nightly in 

2020, and soil moisture (volumetric water content; VWC) was measured twice weekly in each 

container using a soil moisture meter with 20 cm probes (HydroSense II Handheld Soil Moisture 

Sensor, Campbell Scientific, Logan, UT) inserted at the soil surface. 
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Figure 1.1. A) Experimental layout of 6 m × 11 m high tunnel greenhouse. 288 saplings were arranged in 

12 blocks in a randomized complete block design (RCBD), with each species and treatment combination 

appearing once per block, for a total of 12 replicates per species and treatment combination. Stars denote 

the location of data loggers with temperature and humidity sensors. B) One experimental block of 

saplings in May 2020. C) Greenhouse in May 2020 after installing the greenhouse covering.  

 

Air temperature and relative humidity were logged hourly inside and outside of the 

greenhouse using dataloggers (HOBO Onset #MX2302A, Bourne, MA; and iButtons). 

Temperatures inside and outside the greenhouse were monitored through the entirety of the 

experiment with iButtons, while temperature and humidity were logged inside and outside of the 

greenhouse in June using the HOBO dataloggers. In June, the average hourly temperature inside 
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the greenhouse ranged from -1.18° to 4.72°C warmer than ambient (Fig. A1.2A; mean ± SE: 

1.19°C ± 0.055°C). Also, the hourly vapor pressure deficit (VPD, units = kPa) inside the 

greenhouse ranged from -0.2 kPa to 1.3 kPa higher than ambient (Fig. A1.2B; mean ± SE: 0.2 

kPa ± 0.01 kPa). We found that the maximum daily temperature in the greenhouse was higher in 

the spring and summer months compared to the fall (Fig. A1.3A, TukeyHSD, p < 0.001), while 

VPD was higher in the summer than in the spring (Fig. A1.3B, t-test, p < 0.001). The hotter and 

drier conditions in the greenhouse over the summer mimicked future climate conditions saplings 

in the NE US are expected to experience.  

1.3.3 PHYSIOLOGICAL MEASUREMENTS   

 To estimate water stress in saplings, predawn leaf water potential (ΨPD) was measured on 

a subset of trees from each species and treatment during the first day of the drought and each 

week thereafter. Samples were collected at least one hour before the first light (3:30 AM - 5:30 

AM) from two randomly selected blocks by cutting one leaf from the control and droughted tree 

from each species with a fresh razor blade, totaling 24 leaves in each sampling effort. On conifer 

species, a one-year-old fascicle was collected for Pi. strobus, and for J. virginiana and T. 

occidentalis, a two-centimeter sample was collected from the terminal end of a lateral branch. 

Samples were immediately stored in foil-lined bags and kept in a cooler until they were 

transported to the lab. Water potentials were then measured using a pressure chamber (PMS 

Instruments; Model 1000; Albany, Oregon). Predawn relative water content of the leaves 

(RWCleaf) was estimated using the fresh mass of the leaf prior to the ΨPD measurement compared 

to the oven dry mass of the leaf, using the equation RWCleaf = (fresh – dry)/dry. To avoid water 

loss of the leaf before the water potential measurement, leaves were kept in bags during the mass 

measurements, and bag mass was subtracted later. Samples were weighed using an analytical 
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balance (Sartorius Practum 224-1S, 0.0001 g, Goettingen, Germany). Midday leaf water 

potentials (ΨMD) were also measured in the third and sixth weeks of each drought to determine 

the maximum water stress saplings experienced. Samples were collected as above between 12:30 

and 2:30 PM and brought back to the lab as described above for ΨMD and RWCMD 

measurements.  

 To determine how droughts may impact leaf photosynthetic ability, predawn quantum 

yield was measured on leaves in situ immediately before they were excised for ΨPD 

measurements using a Fluorpen (FP 110, Drásov, Czech Republic). Additionally, chlorophyll 

content was estimated during each drought using a chlorophyll meter once per week on the 

broadleaved species (OptiSciences CCM-200, Hudson, NH). Three measurements per sapling 

were taken and later averaged. 

1.3.4 GROWTH ESTIMATES 

 The height and diameter of each sapling were measured weekly throughout the growing 

season. Height was measured vertically from the soil surface to the tallest living bud. Two 

perpendicular diameter measurements were conducted with manual calipers at 10 cm above the 

soil surface and averaged to account for non-circular stems.  

 The week of October 13, 2021, each sapling was harvested for biomass estimates. Roots 

and shoots were separated in the field and roots were rinsed twice in water to remove excess soil. 

All samples were kept in drying rooms for at least one week and then dried at 60°C in a drying 

oven for at least an additional 48 hours before weighing. Broadleaved trees were split into roots 

and shoots (many leaves had fallen before this date), and conifers were split into roots, shoots, 

and leaves. Individual Pi. strobus fascicles were counted as leaves and T. occidentalis and J. 
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virginiana leaves were defined as any part of the shoot that was still green. Therefore, total 

biomass was estimated using the sum of the shoot mass and root mass for each individual. 

Samples were weighed using an analytical balance (Sartorius Practum 3102-1S, 0.01 g).  

1.3.5 STATISTICAL ANALYSIS 

 To test the difference in temperature and VPD inside the greenhouse between the spring 

and summer drought treatments, we used Welch’s t-test. To determine the rate of soil moisture 

decline among species and treatment over the course of each drought, we initially used a linear 

mixed effects model with species, treatment, and day of drought as covariates using the R 

package ‘nlme’ (DebRoy et al. 2021). We then modeled the relationship between soil moisture 

and water potential using negative exponential models to ΨPD or ΨMD as a function of soil 

moisture for each species and estimated the soil moisture at the end of each drought using 

species-level ANOVAs. To capture differences in the initial decline in soil moisture, we also 

tested soil moisture in each species and treatment at approximately two weeks into each drought 

using an ANOVA with Tukey’s post-hoc test. We then evaluated the effect of biomass on final 

soil moisture by plotting the residuals of the above-described ANOVA models to biomass 

measurements to determine if biomass was important in explaining the variation in final soil 

moisture for the study species.  

 To describe the effect of treatment on height and diameter growth, we used species-level 

Welch’s t-tests to test the relative height or diameter for each treatment on each day of 

measurement as a percent of its starting height or diameter compared to that of the control. 

Individual measurements that were clearly errors (major increase in height followed by 

immediate decrease and vice versa) were removed prior to analysis (13.75% diameter 

measurements and 1.9% height measurements were removed). We compared the relative height 
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or diameter growth of the treatment trees to the control on each day for each species. Finally, 

end-of-season biomass and root to shoot ratio differences among species and treatments were 

tested using an ANOVA. All data and figures were analyzed (α = 0.05) and produced using R 

Version 4.0.3 (R Core Team 2021). Other packages used in data organization, visualization, and 

analysis were: ‘dplyr’ (Wickham et al. 2018), ‘lubridate’ (Spinu et al. 2021), ‘pivottabler’ 

(Bailiss 2021), ‘doBy’ (Halekoh 2021), ‘multcomp’ (Hothorn et al. 2021), and ‘emmeans’ (Lenth 

2021). 

1.4 RESULTS 

We found that the initial differences in soil moisture were smaller during the spring 

drought than during the summer and fall droughts in all species except Pi. strobus and J. 

virginiana (on day 13/14 of the drought; Fig. 1.2, p < 0.05). Soil moisture values on the final day 

of each treatment (day 41 or 42) did not differ among drought treatments, but all treatments were 

significantly lower than the control (Fig. 1.2 & Fig. 1.3).  Leaf ΨPD declined for all species when 

the soil moisture reached values below ~5% regardless of the season of drought (Fig. 1.4). We 

found a significant interaction between day of drought, treatment, and species on ΨPD (p < 

0.001). Due to the complexity of interpreting three-way interactions that suggest important 

effects of all three predictors that depend on the values of the others, we focus our results on 

within-species comparisons of treatment effects on minimum soil moisture at the end of each 

drought.  
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Figure 1.2. Patterns of declining soil moisture (mean ± SE) as a function of date of drought initiated 

during spring (red filled squares), summer (yellow filled circles), fall (green filled triangles) relative to 

their respective controls (blue empty matching symbols). Each panel represents the soil moisture 

measurements from containers containing one of the six study species (deciduous broad-leaved trees: 

Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C) and evergreen coniferous trees: Juniperus 

Virginiana (D), Pinus strobus (E), and Thuja occidentalis (F)). Droughts are all standardized to the same 

axis to facilitate comparison in the rate of dry down during each time of year for each species. A light-

gray dashed line at 5% soil moisture is on each panel to facilitate the comparison of rates of dry-down for 

each treatment.  

  

Although we found that the treatments appeared to have different patterns of declining 

soil moisture (Fig. 1.2), within each species the treatments had similar final soil moisture 

estimates that were always lower than the control (Figure 1.3). B. papyrifera dried down the 

fastest (Figure 1.3B) and had low survival (8%) in the spring and summer droughts whereas the 

other five species had high survival (43%-100%) during the droughts (Table A1.1). Because we 

saw variable rates of declining soil moisture within a species that appeared to be driven by tree 
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size, we also tested if total sapling biomass impacted the final soil moisture reading for each 

species by adding it as a covariate. We found that larger trees lead to lower final soil moisture for 

A. rubrum, Pr. serotina, and J. virginiana (Fig. A1.4, p < 0.05) but not the other three species.  

 

Figure 1.3. Soil moisture on the final day of each seasonal drought as a function of treatment for each 

species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C) and 

evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and Thuja occidentalis (F)). 

Significant differences (α = 0.05) are indicated by treatments that do not share a letter.  

 

At high soil moisture (30-45%), average ΨPD was between 0 and -0.7 MPa and average 

ΨMD was between -0.8 and -1.6 MPa for all species (Fig. 1.4 and Table 1.2). Pr. serotina had the 

greatest range between ΨPD and ΨMD, while T. occidentalis had the smallest range overall. In 

addition to these patterns in soil moisture and ΨPD, we saw evidence of declining quantum yield 
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and chlorophyll content in B. papyrifera saplings (Fig. A1.12 & Fig. A1.13). For example, over 

the spring and summer droughts, chlorophyll content declined and was lower than the control by 

the end of the droughts; interestingly, at week three of the fall drought, chlorophyll content was 

lower than the control, but as leaf senescence occurred, the chlorophyll content of the control 

saplings also declined. 

 

Figure 1.4. Mean ± SE ΨPD (predawn water potential; open circles) or ΨMD (midday water potential; filled 

circles) as a function of measured soil moisture within two days of measurement. Negative exponential 

models (solid black line) with 95% confidence intervals (light gray band bounded with dashed gray lines) 

were fit for each study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), 

Prunus serotina (C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and 

Thuja occidentalis (F)) and for each measurement type (ΨPD or ΨMD). Horizontal dashed line represents 

the P50 value, the water potential at which a stem loses 50% of its hydraulic conductivity, indication 

embolization. The P50 values for J. virginiana (-6.6 MPa) and Pi. strobus (-5.25 MPa) go beyond the 

limits of the data represented and are thus not represented here.  
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Table 1.2. Predicted mean (SE) ΨPD (predawn water potential) and ΨMD (midday water potential) at high 

soil moistures (30-45%) for the six study species (deciduous broad-leaved trees: Acer rubrum, Betula 

papyrifera, and Prunus serotina; evergreen coniferous trees: Juniperus virginiana, Pinus strobus, and 

Thuja occidentalis). These values were predicted using negative exponential models fitted to the water 

potential and soil moisture data (see Fig. 4) 

Species Predicted ΨPD 

(MPa) 

Predicted ΨMD 

(MPa) 

 Difference (MPa) 

A. rubrum -0.29 (0.06) -1.1 (0.07)  -0.81 

B. papyrifera -0.38 (0.14) -1.1 (0.11)  -0.72 

Pr. serotina -0.42 (0.10) -1.5 (0.08)  -1.08 

J. virginiana -0.28 (0.05) -1.1 (0.11)  -0.82 

Pi. strobus -0.55 (0.06) -1.4 (0.10)  -0.85 

T. occidentalis -0.29 (0.07) -0.97 (0.9)  -0.68 

 

 The declines in soil moisture and associated declines in water potential had important 

effects on height and diameter growth that differed by both species and season.  Despite some 

control trees at high soil moisture showing lower growth, a lower minimum soil moisture during 

a drought generally resulted in lower height and diameter growth than in the controls for all 

species (Fig. A1.8 and Fig. A1.9). A. rubrum experienced extensive browse before initiating the 

droughts and we found that drought had minimal effects on height and diameter growth of these 

small individuals (Fig 1.5A and 1.6A, respectively). In contrast, B. papyrifera was unaffected by 

browse and the irrigated saplings had the highest height and diameter growth in the spring (Fig 

A1.10B and Fig A1.11B, respectively). We found that both height (Fig. 1.5B) and diameter (Fig. 

1.6B) growth of B. papyrifera was lower in the spring and summer droughts. Low survival of B. 

papyrifera following all droughts limited our ability to assess lagged effects. Finally, Pr. 

serotina, which also experienced extensive browse damage before initiating the experiment, 

reached peak height growth in early spring (Fig A1.10C) and despite reaching low soil moisture 

levels its height was unaffected by drought in any season (Fig. 1.5C). At the end of the spring 

drought, and until approximately seven days after rewatering, diameter growth was lower (Fig. 

1.6C).  
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Conifers did not experience browse or frost damage. Irrigated J. virginiana saplings had 

the highest height growth in the spring and summer (Fig A1.10D). We found a lagged drought 

effect on height growth of J. virginiana with decreased height growth in the last days of a 

summer drought and into the fall after rewatering (Fig. 1.5D). Pi. strobus saplings had the most 

height and diameter growth in the spring (Fig A1.10E and Fig A1.11E); in Pi. strobus saplings, 

we saw more immediate effects of the spring drought leading to lower height growth in the 

spring continuing through the growing season (Fig. 1.5E). We also saw a decrease in diameter 

growth at the end of the spring drought and near the end of the summer drought, with a recovery 

of diameter growth after rewatering (Fig. 1.6E). Finally, T. occidentalis reached peak height 

growth in the spring (Fig A1.10F); saplings experiencing a spring drought had lower height 

growth at the end of a spring drought and for about a week post-rewatering (Fig. 1.5F). 

Despite the clear effects of drought timing on height and diameter growth for some 

species, we found little evidence that these moderate droughts impacted final biomass (except in 

B. papyrifera and Pr. serotina; Table A1.1), likely due to the large variation in initial height (Fig 

A1.5) and ability of some species to compensate with additional growth later in the year. 

However, we did see that total biomass in B. papyrifera was significantly impacted by a spring 

and a summer drought (Table A1.1). These effects are likely a result of mortality of trees during 

drought treatments and reflect the amount of time the trees had to grow before mortality. We also 

found total biomass in Pr. serotina was lower than the control following a summer drought, but 

not from a spring or fall drought (Table A1.1).  
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Figure 1.5. Relative height growth (Percent of initial height; mean ± SE) over the course of the growing 

season for each study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), 

Prunus serotina (C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and 

Thuja occidentalis (F)). Solid lines at the bottom of each panel denote the span of each treatment (red = 

spring, yellow = summer, and green = fall). Treatments are color coded (blue triangle = control, red 

square = spring, yellow circle = summer, green rhombus = fall). If the mean relative height was 

significantly different from the control at α = 0.05, the symbol is filled.  
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Figure 1.6. Relative diameter growth (Percent of initial diameter; mean ± SE) over the course of the 

growing season for each study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera 

(B), Prunus serotina (C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and 

Thuja occidentalis (F)). Solid lines at the bottom of each panel denote the span of each treatment (red = 

spring, yellow = summer, and green = fall). Treatments are color coded (blue triangle = control, red 

square = spring, yellow circle = summer, green rhombus = fall). If the mean relative diameter was 

significantly different from the control at α = 0.05, the symbol is filled.  
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1.5 DISCUSSION 

 In this study we tested how the impacts of seasonal droughts impacted the growth and 

survival of six tree species native to the NE US. We found clear patterns in the phenology of 

growth with height and diameter growth peaking in spring. When drought occurred during these 

seasons, growth was reduced and in some cases could recover after rewatering. Our results 

provide important detailed observations that extend seasonal drought research on temperate tree 

species using dendrochronological data that focuses on long-term series of diameter growth by 

contributing height growth response to seasonal drought, which is critical in competition 

dynamics in forests (D’Orangeville et al. 2018, Kannenberg, Maxwell, et al. 2019).  

1.5.1 SOIL MOISTURE AND ΨPD  

We found a complex interaction between species, treatment, and day of drought driving 

the decline in ΨPD. Although we were unable to measure ΨPD on all individuals at each sample 

interval, we did have high-frequency measurements of patterns in soil moisture decline that we 

were able to use to model the link between soil moisture and water potential. This link suggested 

that some saplings did, in fact, experience extremely low ΨPD and severe drought stress. Saplings 

of A. rubrum and B. papyrifera experiences water potentials at low soil moisture values (less 

than 5%) which reached or surpassed published P50 values for these species (see Fig. 1.4 and 

Table A1.2), suggesting that at low soil moisture values, these two species experienced 

embolism. However, many of the trees in this study experienced only moderate drought stress 

and did not surpass published P50 values. Interestingly, despite only experiencing moderate 

drought stress, we did still see patterns of declining growth that are likely related to stomatal 

closure (Allen et al. 2010, McDowell and Allen 2015) to prevent declines in water potential. We 

found strong effects of sapling size on the soil moisture, and thus ΨPD, that each sapling 
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experienced, especially for the species that experienced herbivory and frost damage. Variability 

in starting height and final biomass (Fig. A1.4 & A1.5) likely also led to the variability in soil 

moisture and ΨPD during each drought treatment. 

1.5.2 SEASONAL GROWTH PATTERNS 

 We hypothesized that spring and summer droughts would impact height and diameter 

growth more than a fall drought. Indeed, we observed important differences in relative height 

growth rate (RHG) across seasons in the controls of our study species. All species had the 

highest RHG during the spring and it decreased over the growing season. We observed decreases 

in RHG in B. papyrifera, Pi. strobus, and T. occidentalis. In B. papyrifera, we were unable to 

assess height growth after rewatering since all but one of these saplings died. T. occidentalis was 

able to recover after rewatering, but Pi. strobus RHG remained lower than the control for the 

entirety of the growing season. While not significantly different from the control, we did see that 

the RHG Pr. serotina and J. virginiana was reduced for the remainder of the growing season 

following a spring drought, which could be due to less sugar accumulation during a critical 

phenological phase.  

 We did not discern differences in relative diameter growth among seasons (RDG) in the 

controls of our study species except in B. papyrifera and Pi. strobus, which both had peak RDG 

in the spring. During a spring drought, both of these species had declines in RDG, and while Pi. 

strobus was able to recover in the summer, B. papyrifera did not due to mortality. These species 

also had decreased RDG during a summer drought. In T. occidentalis, spring and summer 

droughts resulted in slightly lagged effects on RDG in the summer and fall, respectively. 

Similarly, Pr. serotina had a roughly three-week period of reduced RDG following rewatering 

after the spring drought. Pr. serotina and A. rubrum are characterized by continuous, 
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indeterminate growth (Canham et al. 1999), and in Pr. serotina we observed cessation of height 

growth in the spring and summer droughts, with an increase in height growth after rewatering, 

consistent with the literature. One possible reason we did not observe very strong differences in 

RHG and RDG in A. rubrum and Pr. serotina is the herbivory and frost damage these saplings 

experienced, which strongly reduced their initial size relative to the soil water available (Fig. 

S5). It is difficult to determine whether the growth responses we did see in these two species are 

simply recovery post-herbivory or the nature of their indeterminate, continuous growth 

strategies.  

We observed immediate and same-season lagged effects on height and diameter growth. 

Lagged same-season effects have been observed for some species (Kannenberg, Novick, et al. 

2019) and next-season legacy, or “carry-over” effects have been shown to be greater after a late-

season drought (Babst et al. 2012, Kannenberg, Maxwell, et al. 2019), since carbon is usually 

redistributed to the roots and stem during this period (Sperling et al. 2017). We saw limited 

immediate effects of a fall drought in our study, but this fall drought could have had 

consequences for these saplings during the next growing season. Had we continued this 

experiment for at least one additional growing season, we likely would have been able to 

measure the same suite of physiological and growth estimates to identify any lagged effects of 

seasonal droughts in the following year. Detailed response patterns for each species and 

treatment can be found in Tables A1.3 and A1.4. 

The high-frequency height measurements we conducted on these six species provide new 

information in addition to what dendrochronological studies have elucidated on the effects of 

drought timing on tree growth. We observed temporary reductions in RHG during drought for 

most species, with these height growth reductions being prolonged or compensated for later in 
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the growing season. This compensation could be why we did not see large-scale reductions in 

biomass across species and treatments. Additionally, we can now begin to understand the 

physiological mechanisms behind the growth reductions seen in the tree ring record. For 

example, according to Michelot et al. (2012), Pinus sylvestris earlywood growth is sensitive to 

water deficits in the spring, and latewood is the most sensitive component to water deficits and 

warm temperatures in the fall. This could explain why we saw growth in Pi. strobus drastically 

decrease during a spring drought (height) and decrease during a fall drought (diameter). In 

addition, height is very important in forests where there is intense competition for light. 

Therefore, including height in future research may improve our understanding of how climate 

change may impact competitive dynamics beyond inference gained from radial growth alone.  

Interestingly, one B. papyrifera each from the spring and summer droughts flushed a new 

cohort of leaves following rewatering, after having shed at least 95% of their leaves during the 

drought. This is a potential adaptation to extreme drought conditions (Hochberg et al. 2017), as 

part of the cambium tissue and xylem had to have been kept hydrated for leaves to re-flush. 

Although we could not assess this in the other species, in another study on Juglans regia 

saplings, petioles lost 87% of their hydraulic conductivity and leaves were shed after only a 5-

day drought; while stems only lost 14% of their hydraulic conductivity (Tyree et al. 1993, 

Hochberg et al. 2017). Drought-deciduousness has been observed in other broadleaved 

angiosperm species during drought stress (Marchin et al. 2010), despite there being other 

contrasting evidence that hydraulic segmentation does not occur in broadleaved angiosperm 

species (Johnson et al. 2016, Jin et al. 2019, Li et al. 2020). Clearly, more work is needed using 

both in situ and ex vivo methods to determine interspecies differences in the presence of 

hydraulic segmentation. 
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Given the range of drought tolerances, predicted future abundance, wood type, and 

location in its native range within our study species, we expect each of the study species to react 

differently to drought when they are considered as part of a forest. A. rubrum saplings 

experienced extreme browse prior to the beginning of this study; however, it grows well in cool, 

wet springs after a wet fall and cool winter (Hart et al. 2012). Thus, we expected to observe large 

growth reductions in height and diameter growth due to a summer drought and following a dry 

fall. However, the extreme browse A. rubrum saplings experienced may have overwhelmed 

growth responses to drought and there was weak evidence for growth reductions due to drought 

in this species. B. papyrifera is a fast-growing, short-lived pioneer species (Burns and Honkala 

1990) and 10% of its daily water flux has been attributed to nighttime transpiration (Daley and 

Phillips 2006), thus using large amounts of water. Unsurprisingly, this species is water-limited 

during the growing season, and diameter growth is positively correlated with summer water 

availability (Huang et al. 2010). Also, B. papyrifera saplings in this study were larger and had 

greater visual leaf area than other saplings in this study. Spring and summer droughts both 

ceased height and diameter growth in B. papyrifera, with only one sapling from each of these 

two treatments surviving.  

 Diameter growth in J. virginiana is sensitive to low summer precipitation and to the 

previous year’s summer and fall precipitation (Aus Der Au et al. 2018). We did see generally 

lower diameter growth in saplings of this species following a summer drought. If the trees were 

grown for a second-year post-drought, we expect that diameter would also be low in this one-

year experiment. Pi. strobus diameter growth has also been shown to be sensitive to low summer 

precipitation (Chhin et al. 2018), which we did observe in the diameter measurements for this 

species during the summer drought. This species is usually found on the well-drained sandy soils 
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of glacial moraines (Lancaster and Leak 1978, Burns and Honkala 1990) and may have been 

over-watered in this study, since some irrigated individuals experienced needle-browning and 

low quantum yield values. We found that T. occidentalis saplings were quite resilient to a 

moderate drought, with their growth being only temporarily affected by drought and their ability 

to compensate with additional growth after rewatering. T. occidentalis trees growing in cedar 

swamps respond positively to summer precipitation and negatively to excessive precipitation in 

the fall and winter (Housset et al. 2015). However, this species can be found both in swamps 

with frequently wet soil and on exposed cliffs with dry soil (Burns and Honkala 1990), which 

may be why we observed some degree of drought resilience. 

1.5.3 STUDY DESIGN 

This study used fixed-length droughts of six weeks to impose moderate droughts during 

the spring, summer, and fall. Alternative methods of simulated drought include watering a small 

amount each day to avoid the rapid dry-down of high water-use species (Mitchell et al. 2013, 

Hartmann et al. 2013) and drying-down to target water potentials (Hammond et al. 2019). These 

designs are useful in order to target specific measures of water stress; however, they are 

logistically demanding. Another method that has begun to be used more often is the mortality 

threshold study design, which uses rewatering at target increments of drought length or predawn 

water potential to determine mortality thresholds (Brodribb and Cochard 2009, Hammond et al. 

2019). Our study design allowed us to measure individual saplings and quantify what each 

individual was experiencing. The RCBD we used in this study also demonstrated that this 

approach may be challenging, especially if there is mortality that is unrelated to the experimental 

treatments, which necessitates excluding these blocks from the analysis. Our approach did 
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emphasize the importance of tracking physiological markers that indicate water stress, since tree 

size was clearly a factor in determining when and how a sapling will experience drought.  

While we used ΨPD to determine water stress, other proxies of water stress could be used 

to monitor drought progression in a less-invasive manner, such as stem thermocouple 

psychrometers, which have been used to monitor Ψstem continuously in both herbaceous and 

woody plant species (Coffey et al. 1997, Dixon and Tyree 2006). Also, optical vulnerability 

curves have recently been used to estimate important predictors of water stress such as P50, the 

water potential at which a stem loses 50% of its hydraulic conductivity (Choat et al. 2016, 

Brodribb et al. 2017, Gauthey et al. 2020). Both of these methods can estimate the loss of 

conductivity in stems, which is an important indicator of water stress. Additional minimally 

invasive techniques, such as tracking RWC (Jackson et al. 1995) and water storage (Zhang et al. 

2013), can help forest managers determine if their trees are stressed.  

1.5.4 CONCLUSIONS  

 This study provides high-frequency height and diameter measurements for saplings of six 

NE US tree species throughout one growing season in irrigated and drought conditions and 

shows that intra-annual height and diameter growth is impacted by seasonal droughts. Further, 

some of these species showed the capacity to compensate for decreased growth during a drought 

after rewatering that these species were able to recover after a moderate drought. These data also 

provide insights into the patterns of regeneration of these species, especially as the changing 

climate shifts the suitable habitats of these species north. Additionally, these data help explain 

patterns that the dendrochronological record cannot and can lead to better understandings of how 

climate change may impact growth, carbon uptake, and carbon storage at larger scales.  
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CHAPTER 2: WHOLE-SHOOT AND STEM SEGMENT DRY-DOWNS REVEAL 

STRUCTURAL AND PHYSIOLOGICAL DIFFERENCES IN DROUGHT TOLERANCE 

STRATEGIES OF NORTHEASTERN FOREST TREES 

2.1 ABSTRACT  

Climate change is expected to lead to novel climate conditions in the northeastern United 

States. Therefore, experimental studies that mimic these conditions are crucial to understand the 

potential impact on forest trees. The goal of this research was to determine how tree hydraulic 

traits relate to drought resistance and resilience of six northeastern forest tree species. We used 

experimental dry-downs of leafy shoots and xylem segments to assess how structural and 

physiological adaptations of each species relate to water use during drought. A total of seventy-

one leafy shoots from six species (Acer rubrum, Prunus serotina, Betula papyrifera, Pinus 

strobus, Juniperus virginiana, and Thuja occidentalis) were subjected to an experimental bench-

top dry down to simulate extreme drought. Conifer species dried to -2.5 MPa 51× slower than 

broadleaved species and in general, lost water at equal rates between leaves and stems; in 

contrast, deciduous species experienced larger reductions in leaf water content compared to stem 

water content. The clear division between fast-drying broadleaved deciduous angiosperm species 

and slow-drying needle-leaved evergreen conifer species was further supported by 

morphological and physiological traits of leaves and stems. Broadleaves had about 2× the 

standardized leaf area per shoot than conifers. Understanding that conifer and deciduous tree 

species in NE US forests have differing hydraulic strategies that confer varying degrees of 

drought resistance and resilience will be key to managing these species as their suitable habitats 

shift with climate change.  
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2.2 INTRODUCTION  

Mesic forests in the Northeastern United States (NE US) are not historically drought-

prone (Peters et al. 2015). Therefore, many of the tree species in this region may not be well 

adapted to future drought conditions that are more likely with climate change (Liénard et al. 

2016). Despite this risk, it is still unclear how tree species native to the NE US may respond to 

future novel climate conditions and drought (Vose et al. 2019). Therefore, we need a better 

understanding of the structural and physiological adaptations of trees that help them to survive 

extreme drought. 

To prevent excessive water loss during extreme drought and to avoid low water potentials 

that drive embolism formation and spread, many trees close their stomata during moderate 

droughts (Davies and Kozlowski 1977, Meinzer et al. 2009, Liénard et al. 2016, Johnson et al. 

2016, Hochberg et al. 2017). Closing stomata comes with a clear cost of reduced photosynthesis 

in favor of conserving water. Importantly, after stomatal closure, leaves still lose water through 

leaky stomata and the cuticle (minimum epidermal conductance; Duursma et al. 2019). However, 

in addition to leaf characteristics that conserve water during drought, total stem xylem water 

storage and release (stem capacitance) may be key for some species to withstand extreme 

drought conditions. Although high capacitance is commonly associated with low wood density 

(Meinzer et al. 2003, McCulloh et al. 2014, Jupa et al. 2016, Fu et al. 2019, Siddiq et al. 2019) 

and large amounts of flexible xylem parenchyma cells (Borchert and Pockman 2005) that are not 

common in trees in the NE US, the water stored in other xylem cells (such as tracheids, fibers, 

and vessels) can be released and may be critical during extreme drought (McCulloh et al. 2014, 

Fu et al. 2019). However, we know very little about how patterns of water storage and release in 
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stems may be coordinated with rates of water loss from leaves in species of the NE US that 

rarely experience extreme drought.   

Shoot dry-downs can provide a mechanistic understanding of how leaves, stems, and 

entire shoots coordinate hydraulic strategies during extreme drought. Recent studies have 

highlighted the utility of using branch-level traits such as leaf area, shoot conductance, and 

relative water content (RWC) at a critical water potential to estimate whole-plant survival 

following stomatal closure during extreme drought (Gleason et al. 2014, Blackman et al. 2016). 

In general, evergreen conifer species dry more slowly than broadleaved species due to wider 

hydraulic safety margins and lower minimum stomatal conductance values (Blackman, Creek, et 

al. 2019). In addition to differences between functional groups, leaf water is released readily as 

water potential drops in species from both arid and wet climates, while stem water is released 

more readily per drop in water potential in species from only wet climates (Gleason et al. 2014). 

Despite these studies on leaf and stem hydraulics during drought, relatively little is known about 

the coordination of leaf and stem hydraulic traits during extreme droughts in temperate needle-

leaved evergreen conifer species and broadleaved deciduous angiosperm species, especially 

those found in the NE US (Tyree and Yang 1990, Carrasco et al. 2015).  

In this study, we combine detailed measurements of whole-shoot dry-downs with 

estimates of xylem water storage and release to determine how leaf and stem hydraulic traits are 

coordinated to resist drought. We included three needle-leaved evergreen conifer (hereafter 

“conifer”) species (Juniperus virginiana, Pinus strobus, and Thuja occidentalis) and three 

broadleaved deciduous angiosperm (hereafter “deciduous”) species (Acer rubrum, Betula 

papyrifera, and Prunus serotina) native to the NE US that have a range of drought tolerance and 

predicted future abundance (See Table 1.1 in Chapter 1). We hypothesized that 1) conifer species 
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would have a slower rate of desiccation during extreme drought than deciduous species, and 2) 

morphological and anatomical differences would be the driving force behind differences in 

xylem capacitance and leafy-shoot dry-down dynamics. 

2.3 MATERIALS & METHODS 

2.3.1 STUDY DESIGN 

To test how branch and leaf hydraulics are coordinated for six species native to the NE 

US we conducted a series of dry-down experiments on stems and leafy shoots.  Plant material for 

these dry-down experiments was collected from saplings grown in a 6m × 11m high-tunnel 

greenhouse in Orono, Maine (Chapter 1). Trees were planted in May 2019, in individual 19-liter 

containers with seven one-inch drainage holes. Thirty- to sixty-cm-tall saplings (Cold Stream 

Farm, Free Soil, MI) were planted in a nursery mix consisting of fine aged pine bark and 

sphagnum peat (Jolly Gardener, Poland Spring, ME) and fertilizer (5.92 g/L Osmocote 18-6-12). 

Trees were irrigated 15.1 L three times a week in 2019 and 7.6 L per night in 2020 during the 

growing season. For more details about the high-tunnel greenhouse, reference Chapter 1. 

2.3.2 SHOOT DRY-DOWNS 

Prior to leaf senescence in October 2020, we initiated the shoot dry down experiment. 

Between ten and thirteen leafy shoots (Fig 2.1A) 30-46 cm long containing all of the current year 

of growth and approximately 5 cm of the prior year growth were collected from 8:00 h to 9:00 h 

and immediately bagged and transported to the lab. Before beginning the experiment, we 

sampled approximately one cm of stem tissue from the base of the shoot and removed the bark to 

estimate fresh RWCstem; these samples were then vacuum infiltrated with distilled water 

overnight (vacuum pressure 70 kPa) to estimate saturated RWCstem. The cut ends of each shoot 
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were then sealed with petroleum jelly and shoots were kept in open paper bags throughout the 

remainder of the experiment. Every two to six hours, the shoots were weighed to estimate shoot 

water loss over time (Sartorius Practum 3102-1S, 0.01 g, Goettingen, Germany). At the first, last, 

and 3-6 systematically chosen measurements in between, shoots from each species were 

destructively sampled to estimate shoot water potential (Ψshoot), stem relative water content 

(RWCstem), and leaf relative water content (RWCleaf; Fig 1B and 1C).  
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Figure 2.1. Schematic diagram of the shoot dry-down experiment, which was conducted in order to 

measure patterns of shoot, leaf, and stem RWC relative to Ψshoot during a simulated drought. A) Sample 

sizes for each study species, left to right are: A. rubrum (n = 10), B. papyrifera (n = 12), Pr. serotina (n = 

13), J. virginiana (n = 12), Pi. strobus (n = 12), T. occidentalis (n = 12). B) At the end of each shoot’s dry 

down, the shoot was equilibrated for 30 minutes in a plastic bag, shoot mass was collected (1), and the 

shoot’s leaves and stem were separated, and their masses collected (1a and 1b, respectively). RWC was 

calculated as (Massfresh – Massdry)/ Massdry. Two leaves were then collected to estimated Ψshoot. C) Ten to 

thirteen shoots per species started the dry-down at the same time and were systematically sampled 

through the duration of the experiment, represented by the black circle at the end of each line. One to two 

shoots were sampled immediately (0 hrs), while other shoots went through the experiment for variable 

lengths of time and sampled accordingly. The remaining shoots at the end of the dry-down were all 

sampled. The experiment was continued until water loss substantially slowed (2.1-3.3 days for deciduous 

species and 6.25 days for conifer species). 

 

Ψshoot was measured by equilibrating the whole shoot in a sealed plastic bag in a cooler 

for ~30 minutes. Two leaves were then severed using a razor blade and Ψshoot was measured 

using a pressure chamber and later averaged (PMS Instruments; Model 1000; Albany, Oregon). 
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RWCshoot, RWCleaf, and RWCstem were calculated using the fresh mass of the shoot, leaves, or 

stem, and the dry mass after drying in the drying oven at 60°C for 48 hours using the equation 

RWC = (fresh – dry)/dry. Relative humidity and temperature were monitored during the 

experiment (Onset HOBO UX100-003, Bourne, MA) and these data were used to calculate vapor 

pressure deficit (VPD). Average temperature during the experiment was 27.9 ± 1.0 °C (mean ± 

SD) and average VPD was 0.12 ± 0.03 kPa over the course of the dry down. Desiccation time 

was standardized to VPD-hrs (kPA x hours; Blackman, Li, et al. 2019). To quantify leaf area per 

dry mass of each shoot, dry leaf mass per area (LMA; g2 m-2) estimates were calculated using 3-4 

leaves per species. The estimated leaf area per shoot was calculated by dividing the total dry 

mass (g) of leaves from the shoot dry-down experiment by the estimated LMA (g m-2) for each 

species. 

2.3.4 WATER RELEASE CURVES 

 To quantify how xylem structural characteristics relate to patterns in stem water storage 

and release, water release curves (Meinzer et al. 2003) were conducted on current year stem 

samples (Fig. S1A). Xylem segments were collected from irrigated saplings in early October and 

were trimmed to 1 cm and stripped of bark. Samples were stored in a freezer at -20°C for two 

weeks before beginning the water release curves. The fresh volume of each segment was 

calculated using two diameter estimates (one from each end) and length measurements using 

digital calipers (Mitutoyo CD-6” ASX, Kanagawa, Japan). Fresh mass was collected (Sartorius 

Practum 224-1S, 0.0001 g, Goettingen, Germany) to estimate the starting RWCstem of the xylem 

segments, and then xylem segments were vacuum infiltrated with distilled water overnight 

(vacuum pressure 70 kPa). Water potential was estimated using thermocouple psychrometers 

(TCPs; JRD Merrill Specialty Equipment, Logan, UT, USA). The TCP chambers were bagged 
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and kept in a circulating water bath that was kept at room temperature for 6-8 hours until 

readings stabilized. The cycle of drying, weighing, and measuring water potential was repeated 

five to thirteen times for each stem segment until water potentials reached below -7.0 MPa. TCPs 

were calibrated against NaCl solutions of known water potential (Brown and Bartos 1982). 

Water release curves were constructed using mass of water released per volume of tissue relative 

to the decline in water potential (Meinzer et al. 2003, McCulloh et al. 2014). Wood density of the 

stem segments was estimated using the volume estimates explained above and the oven-dry mass 

(g) collected at the end of the experiment. 

2.3.5 STATISTICAL ANALYSIS 

 To relate the decline in water potential to the length of the shoot dry-down we used a 

generalized linear model using the functional group (conifer vs. broadleaf) as a grouping 

variable. We used the R package ‘nlme’ (DebRoy et al. 2021) to compare the pattern of long-

term dry down between conifer and broadleaved species. We used all data points in the 

generalized linear model for deciduous species and excluded the first data point in conifer 

species to avoid the rapid non-linear decline in those samples. To test patterns in water loss from 

leaf and stem tissue during the shoot dry downs, we plotted RWCstem as a function of RWCleaf. A 

slope of one would indicate that the rate of decrease in RWCstem and RWCleaf was equal during 

the dry down. Therefore, for each species, we used linear regression to test if the slopes were 

different from one. In order to explain the differences in dry down rate between conifers and 

deciduous species, we tested which functional group had a higher ratio of leaf area per stem dry 

mass (cm g-1) with a Welch’s t-test. Finally, to determine how species differed in fresh RWCstem 

we used an ANOVA with Tukey’s HSD post-hoc.  
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 To calculate xylem capacitance (water released per decline in water potential) in the 

water release curve experiment, Michaelis-Menten models (see Fig. A2.1B) were fit to each 

sample in the water release curve experiment. Using the inflection point of that model, a linear 

model was fit to a subset of the data from each sample from 0 to the inflection point. The slope 

of this line was used as the capacitance value, following Meinzer (2003). Finally, a standardized 

major axis (SMA) regression was used to determine the relationship between xylem capacitance 

and wood density, using the R package ‘smatr’ (Warton et al. 2012). All data and figures were 

analyzed (α = 0.05) and produced using RStudio Version 4.0.3 (R Core Team 2021). Other 

packages used in data analysis, visualization, and organization are ‘tidyr’ (Wickham and RStudio 

2021), ‘dplyr’ (Wickham et al. 2018), and ‘emmeans’ (Lenth 2021). 

2.4 RESULTS 

2.4.1 WATER LOSS FROM LEAFY SHOOTS 

We found that the rate of decline in water potential for conifer shoots was 51× slower 

than in deciduous shoots (Fig. 2.2; strong interaction between functional group and VPD-hrs, p = 

0.006). Despite a short period with a rapid decline to moderate water potentials, conifer shoots 

then continued to slowly lose water throughout the entire six-day experiment, whereas deciduous 

shoots reached very lower water potential quickly and shoot relative water content stabilized 

after 2-3 days (Fig S2.2). When accounting for the effect of VPD on dry time, conifers took 

approximately 22.3 VPD-hrs to dry to Ψstem = -2.5 MPa, whereas broadleaves reached that same 

water potential approximately 51× faster (0.44 VPD-hrs; Fig. 2.2). The slower decline in water 

potential and RWC of the whole shoot (RWCshoot) for conifers was likely partially driven by an 

almost 2× lower shoot leaf area per stem dry mass, with conifers averaging 0.0025 m2 g-1 and 

broadleaves averaging 0.0047 m2 g-1 (Welch’s t-test, t = 3.584, df = 38.483, p = 0.0009). Further, 
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only A. rubrum and B. papyrifera water potentials declined past published P50 values (see Table 

A1.2) over the course of the experiment, suggesting that only these species experienced 

significant embolism. 

 

Figure 2.2. Mean ± SE Ψstem (MPa) over the course of the leafy shoot dry-down experiment in VPD-hrs 

(kPa x hours) in the six study species (deciduous species have solid symbols and solid lines; conifer 

species have open symbols and dashed lines). The first point was excluded for conifer species. Gray-

shaded 95% confidence intervals surround each functional group, bounded with dark gray dashed lines, 

with the mean model included as a light gray dashed line. We tested for an interaction of functional group 

with VPD-hrs using a generalized linear model. 

 

Next, we tested how leaf and stem water storage pools were depleted during the shoot 

dry-down. We found that at the start of the dry-down, despite similar RWCleaf, conifer species 

appeared to have more stem water storage represented by higher RWCstem (RWCstem = 1.4-1.7) 

than deciduous species (RWCstem = 0.8-1.2; Fig. 2.3). Interestingly, patterns of water loss 

between leaves and stems were not consistent across functional groups. Pi. strobus and J. 

virginiana (conifers) lost water at similar rates between leaf and stem tissues (slope not 
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significantly different from 1), whereas T. occidentalis and the three broadleaved species 

experienced more rapid drops in RWCleaf than RWCstem (Fig. 2.3).  

 

Figure 2.3. Stem relative water content as a function of leaf relative water content from the shoot dry-

down experiment. Linear regressions were calculated, and these are represented using dashed lines for 

conifers and solid lines for broadleaves. The slopes of the regression lines were tested against the light 

gray 1:1 line using a linear regression t-test; if slopes were different from 1, this was denoted using an 

asterisk next to the species name in the upper left-hand corner. 

 

2.4.2 WATER LOSS FROM XYLEM SEGMENTS 

When testing water storage and release in excised xylem segments with xylem water 

release curves, we found that species with lower wood density had higher xylem capacitance 

(Fig. 2.4; R2 = 0.72, p = 0.029). We also found that water release curves revealed a wide range of 

xylem capacitance between 0 MPa and the inflection point of their water release curve (Figure 

2.5 and Figure B2.1). In contrast, although the shoot dry-downs started at slightly lower initial 
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water potentials, they suggested much lower xylem capacitance in part due to shallow regression 

slopes but also because a large amount of stored water was still remaining in the shoot at low 

water potential (Fig. 2.5). For example, in the range of water potentials covered by both methods, 

we found that that shoots typically had ~2× more stored water available compared to the xylem 

segments in the water release curves.  

 

Figure 2.4. Mean ± SE xylem capacitance (g MPa-1 cm-3) as a function of mean ± SE wood density (g cm-

3) for B. papyrifera (n = 4), Pr. serotina (n = 4), A. rubrum (n = 2), J. virginiana (n = 1), Pi. strobus (n = 

5), and T. occidentalis (n = 1). Some species have less replication due to outliers. A standardized major 

axis regression (gray dashed line) was used to account for variation in the x and y axes (R2 = 0.74, p = 

0.029). 
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Figure 2.5. A) RWCstem or RWCxylem as a function of Ψstem or Ψshoot for shoot dry-downs conducted with 

30-46 cm long leafy shoots (black triangles, solid line) and water release curves conducted on 1 cm 

debarked stem segments (gray circles, dashed line), respectively, for each study species (A-F, A. rubrum, 

B. papyrifera, Pr. serotina, J. virigiana, Pi. strobus, and T. occidentalis).  

 

2.5 DISCUSSION 

2.5.1 SHOOT WATER LOSS DURING AN EXTREME DROUGHT 

This study combined whole-shoot dry downs with estimates of xylem water storage and 

release to determine how leaf and stem are coordinated to resist drought. In the shoot dry-down 

experiment, we found that conifers took 51× longer than deciduous species to reach low water 

potentials. Other studies testing differences in dry down patterns find similar differences between 

conifers and deciduous species (Blackman, Li, et al. 2019); however, our study now clarifies that 
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this may be a widespread trait in species in the NE US and provides physiological traits and 

patterns for these study species. 

We also found that in general, deciduous species experienced rapid drops in RWCleaf 

relative to declines in RWCstem, compared to conifer species (except for T. occidentalis), which 

had similar rates of dry down between leaves and stems. One explanation for the difference in 

dry down patterns between deciduous and conifer species is the segmentation hypothesis, which 

suggests that some plants make distal organs, such as leaves, more likely to experience drought-

induced embolism formation to isolate those organs from the perennial main stem during drought 

and limit further desiccation. Temperate conifer species tend to have greater leaf to branch 

segmentation than temperate deciduous species (Johnson et al. 2016, Jin et al. 2019), which have 

been shown to have limited segmentation (Wason et al. 2018). However, the natural gradient in 

midday water potential still often results in embolism formation in the petiole in most species, 

which would still isolate the leaves from the stem (Wason et al. 2018). The rapid desiccation of 

leaves in the broadleaved shoots in this simulated extreme drought, therefore, may be a form of 

segmentation or drought deciduousness that could conserve stem water and keep cambia and 

xylem hydrated for post-drought recovery (Marchin et al. 2010). In contrast, the conifer species 

in this study maintain needles for multiple years are therefore of higher value to maintain during 

drought. This may explain what we observed in this study including the lower overall rates of 

water loss during drought, slower declines in leaf water potential, and the release of stem water 

to maintain needle hydration. Conifers have also been shown to have lower minimum stomatal 

conductance than broadleaved deciduous species, which may play an additional role in the slow 

dry down of the conifer species in this study (Duursma et al. 2019).   
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Further, differences in leaf capacitance, leaf area and minimum stomatal conductance 

likely drove the differences in dry-down between deciduous and coniferous species. Tropical 

angiosperms have been shown to have lower leaf capacitance than conifers, and that conifers 

took much longer to reach low water potentials than angiosperms (Brodribb et al. 2005). We 

found that broadleaved species had approximately 2× more standardized leaf area per stem than 

the conifers. Further, species in the order Pinales (the conifers in this species) tend to have lower 

minimum stomatal conductance values than species in the orders Rosales and Fagales (Pr. 

serotina and B. papyrifera, respectively Duursma et al. 2019), and these two traits combined 

could have led to conifers drying down more slowly than the broadleaves. Within the 

broadleaved species, B. papyrifera dried down the fastest. This species has a nighttime stomatal 

conductance more than 3× higher than that of A. rubrum and Quercus rubra (Daley and Phillips 

2006), which can also help explain why shoots of this species dried down the fastest among 

broadleaves in this study. 

Our results also support previous findings that xylem anatomy plays a role in stem water 

storage and release during drought (Borchert and Pockman 2005, Carrasco et al. 2015). Water 

can be stored in xylem cells such as parenchyma, tracheids, fibers, and vessels. Importantly, 

conifers have a relatively simple xylem anatomy consisting primarily of tracheids. As embolisms 

form in tracheids during drought, that water can be released to the transpiration stream by the 

numerous pit connections between neighboring tracheids. For example, in old-growth 

Pseudotsuga menziesii trees, transpiration can be maintained for up to a week using freely 

available water in the tree (Čermák et al. 2007). Tracheids in conifers are generally more 

connected than the more complex xylem anatomy of the broadleaved species in this study that 

have vessels for water transport interspersed among a matrix of supporting fibers. If those fibers 
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are filled at maturity and connected to vessels with pits they may release stored water during 

drought (Knipfer et al. 2017). However, pit connections between fibers and vessels are not 

always common (Carlquist 1984, Cai et al. 2014) and often non-vessel xylem cells are observed 

to be fully hydrated even after embolism formation and spread in vessels (Morris et al. 2018). 

This anatomy may be related to patterns we observed during the shoot dry-down experiment, 

where stored water pools may not have been completely accessible to the transpiration stream 

either due to limited pit connections allowing water transport or by being blocked by existing or 

new embolisms.  

2.5.2 WATER STORAGE AND RELEASE FROM XYLEM SEGMENTS 

In the xylem water release curve experiment on excised xylem segments, we found that 

xylem capacitance was negatively correlated with wood density, which is consistent with other 

studies (Meinzer et al. 2003, McCulloh et al. 2014, Jupa et al. 2016, Fu et al. 2019). The 

deciduous species had capacitance values between 200 and 850 kg m-3 Mpa-1, while the conifer 

study species had values between 50 and 800 kg m-3. These values are similar and fall within the 

range of other estimates of xylem capacitance; other studies had ranges of 83 to 416 kg m-3 in 

tropical forest trees (Meinzer et al. 2003), ~100 to 900 kg m-3 in four conifer species (McCulloh 

et al. 2014), and ~75 to 450 kg m-3 in six angiosperms (Fu et al. 2019). In stem-succulent species, 

which have flexible parenchyma cells surrounding xylem cells, most water storage is 

intracellular and water is released from tissues such as fibers, parenchyma, and intracellular 

spaces (Borchert and Pockman 2005, Meinzer et al. 2008), In species with lower parenchyma 

fractions such as our study species, most water storage is extracellular (Borchert and Pockman 

2005). Capillary water and stored water released during cavitation events have been shown to be 

important in water-stressed saplings and tissues (Knipfer et al. 2019, Yazaki et al. 2020, 
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respectively), and in cavitation events occurring below -2.5 MPa (Tyree and Yang 1990). This 

trait may be why we saw some survival in two B. papyrifera saplings (Chapter 1), as they had 

enough hydrated cambia to re-flush a second cohort of leaves. Interestingly, we did not see 

average differences in xylem capacitance between broadleaved and conifer species. This is 

similar to the findings of Tyree and Yang (1990) when studying Tsuga, Thuja, and Acer stems 

and may be due to the relatively low parenchyma fraction in the xylem of NE US tree species 

relative to other regions, regardless of the functional group.  

In contrast to leafy shoots that primarily lose water through the transpiration stream, 

excised xylem segments used for water release curves can also lose water from cut ends and 

exposed surfaces after bark removal. These exposed surfaces may induce an experimental 

artifact that explains why shoot dry-downs in this study typically had ~2× more water storage 

than excised xylem segments at similarly low water potentials that are likely approaching critical 

levels. In addition, leaf capacitance is generally higher than xylem capacitance, at least in 

broadleaved species (Fu et al. 2019). Thus, excised xylem segments may overestimate the 

amount of water that can be released during drought by ~2× in our species. Taken together, these 

results suggest that, although excised xylem segments tell us about the structure of the xylem and 

how it relates to its ability to store and release water during drought, shoot dry-downs may more 

accurately represent the total available stored water that can be accessed by the transpiration 

stream during drought and the important role of leaves in regulating the rate of dry-down. 

Finally, these patterns need to be considered in the context of long-term survival during drought. 

Achieving lower RWCstem by drawing down stored water pools may be detrimental if it results in 

excessive drying and mortality of sapwood, cambium, and other sensitive tissues. Therefore, 
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maintaining high RWCstem and limiting capacitive release may be advantageous in some cases 

(Meinzer et al. 2003, McCulloh et al. 2014).  

Water release curves on excised segments may also start at unrealistically high levels of 

saturation relative to the fresh RWC from stems in situ. Indeed, when comparing fresh RWC to 

saturated RWC of current-year stem samples in this study we found that saturated RWC was up 

to 50% higher than fresh RWC despite consistent irrigation of all trees for the past two years. 

Therefore, more water may have been present in the saturated samples at the start of the water 

release curve analysis than they would normally experience in situ and would therefore lead to 

unrealistically high estimates of capacitance as that water is quickly lost during the initial decline 

in water potential. Further, we also saw differences between fresh RWC and saturated RWC 

between the two functional groups. The fresh RWC of conifers was only 1-17% lower than the 

saturated RWC, whereas fresh RWC for deciduous species was 15-50% lower than saturated 

RWC (p < 0.001). This suggests that the impact of over-saturation may be larger in angiosperm 

species with more complex anatomy and more cells that may not be hydrated at maturity 

(Umebayashi et al. 2010).  

2.5.3 CONCLUSIONS 

In this study, we combined shoot dry-downs with water release curves to assess how leaf 

and stem are coordinated during extreme drought. We identified at least two distinct strategies 

employed by tree species in the temperate forests of the NE US to withstand drought. Firstly, 

conifer species appear to take a more conservative strategy of maintaining hydration of all 

perennial tissues, including leaves. This may come partly at the expense of losing more stored 

water released from xylem; however, in most cases, this may not be enough to drastically reduce 

water transport and lead to mortality. In contrast, broadleaved species lost water from leaves very 
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rapidly and had about twice the standardized leaf area per branch of conifers and appeared to 

maintain relatively high levels of water in stems. This may represent a segmentation type 

strategy that sacrifices ephemeral leaves in favor of maintaining hydration of xylem and other 

tissues in the main stem for regrowth post drought. Taken together, these two contrasting 

strategies suggest that in mixed wood forests such as the forest types commonly found in the NE 

US, deciduous and conifer species may have vastly different responses to future drought 

conditions which may push trees beyond physiological thresholds such as their P50 values. 

Further, while this study focused on stem and shoot-level responses to extreme drought, future 

research must seek to focus on the effects of extreme droughts on larger forest trees. While a 

similar study to this one could be done on whole branches of large trees, the dynamics of dry-

down associated with roots and associates would not be captured, necessitating the need to work 

with large trees. Additionally, plant organs, such as the stomata and xylem, may behave 

differently in vivo and ex vivo. Therefore, future research  should continue to connect small 

scale physiological data on subsets of plants to whole organism responses to better inform how 

whole trees and forests will respond to future climate change. 
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EPILOGUE: WHAT CAN STEM, SHOOT, AND SAPLING DRY-DOWNS TELL US 

ABOUT HOW FORESTS WILL RESPOND TO FUTURE DROUGHTS? 

Using leaf, stem, shoot, and whole plant dry-downs to predict how forests will respond to 

droughts is challenging (Kannenberg, Novick, et al. 2019). In this study we measured shoot- and 

stem-segment-level droughts (Chapter 2) and found a disconnect between the shoot dry-down 

and water release curve experiments. It appears that the more realistic shoot dry-downs, which 

primarily only allow water loss by transpiration through the leaves, result in less total water 

release during drought than in the water release curves on individual xylem segments. Cut stems 

can also dry quickly, depending on how they are dried; for example, excised and de-barked 

stems such as the ones used in water release curve experiments (Meinzer et al. 2003, Jupa et al. 

2016) can dry extremely quickly due to the severed vessels and tracheids that are not usually 

exposed to the atmosphere. This method does provide estimates of important physiological traits 

such as xylem capacitance and water storage that are related to easily measured structural traits, 

such as wood density (Meinzer et al. 2003, McCulloh et al. 2014), as well as xylem structural 

traits, such as number and size of xylem conduits. However, our results suggest that water 

release curves overestimate the amount of water that is released during drought by up to 2×. 

Therefore, the xylem connections to the transpiring water stream via leaves are critical and can 

serve as buffers of water loss from the xylem and need to be considered during experimental dry-

downs. Perhaps beginning water release curves with xylem segments at their starting relative 

water content could provide a clearer picture into xylem dry-down dynamics.  

Entire shoot dry-downs can begin to account for the leaf-petiole-stem connection, and 

shoot dry-downs have proven to have some utility in predicting the time to mortality after 

stomatal closure during drought (Gleason et al. 2014, Blackman et al. 2016). The shoots used in 



 

48 

 

this study only contained one full year of growth, which may not account for access to additional 

water in older growth rings that can be access by cross-ring connections in some species (Wason 

et al. 2019). Future studies using shoot-dry downs could use larger branches containing several 

years of growth, which may begin to account for possible connections between growth rings. 

Even in one experiment which disrupted 50% of tree sapwood via chainsaw cutting, mature trees 

were able to maintain high water potentials (Dietrich et al. 2018). Additionally, drought 

deciduousness, such as what we saw in B. papyrifera saplings, can keep xylem hydrated enough 

to keep cambia alive for post-drought recovery. While it is useful for intra-season growth, a 

second flush of leaves can come at a large carbon cost, resulting in drought legacy effects in 

future growing seasons.  

While the above-mentioned dry-down methods can be useful for identifying and 

comparing physiological strategies among different species, they fail to account for tree size. We 

observed extensive variation in the rate of whole-sapling dry-down in the Chapter 1 experiment 

that was due in part to sapling biomass. Whole-sapling dry-down can be useful since each organ 

of the tree is involved in buffering or succumbing to drought, and the complex dynamics of root-

soil interactions can be accounted for. Additionally, studies using whole saplings and modeled 

after recent studies on survival thresholds would be useful in the context of seasonal droughts 

(Hartmann et al. 2013, Blackman et al. 2016, Hammond et al. 2019, Blackman, Creek, et al. 

2019). While this method is useful and relatively logistically simple, it can’t incorporate the 

complex intra-tree interactions in a stand of trees—such as interconnected root systems 

(Schoonmaker et al. 2008), varying life history strategies (Burns and Honkala 1990), and water 

tables (Kannenberg, Maxwell, et al. 2019). 
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 Indeed, more work is needed to elucidate the relationships between each of these methods 

and how they can inform what we know about how entire forests and ecosystems respond to 

drought. While using each of these methods, we need to keep in mind their strengths and their 

limitations, as well as the assumptions made when linking physiological strategies to whole-

ecosystem processes. Entire forests serve as massive carbon storage pools (Pan et al. 2011), and 

droughts threaten their ability to store carbon (McDowell and Allen 2015). While carbon 

starvation has rarely been seen as a cause of tree mortality at the individual level (Hartmann et al. 

2013, Adams et al. 2017), carbon sinks in forests are vital for the health of the ecosystem and the 

planet. In order to better understand how carbon pools and hydraulic functioning interact, 

research must be done that seeks to establish the relationships between the patterns we observe 

during small-scale dry downs, such as xylem segments and shoots, and large-scale dry downs, 

such as whole-sapling and whole-forest drought, while also including carbon dynamics. There is 

no doubt that individual traits can be useful in forest modelling tools (He et al. 2008, Aubin et al. 

2016, Kolus et al. 2019); however, it has been established that measuring stand-level response to 

fluctuations in climate can be more informative to forest management recommendations than 

using only the responses of individuals (Teets et al. 2018). Forest systems are extremely 

complex, and the challenges facing scientists to understand how climate change will affect them 

are myriad. Approaches that seek to explain multi-scale linkages of drought effects on forest 

ecosystems are an important avenue to consider in future research endeavors in order to address 

this challenge.  
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APPENDICES 

APPENDIX 1. 

Table A1.1. Mean ± SE total biomass (root plus shoot), and root:shoot biomass data for each species and 

treatment combination (n = 8-12 each row). Letters denote significance within a species. Survival ratios 

are also included in the last column, which do not include saplings that began the season dead. We saw 

biomass differences among treatments in B. papyrifera and Pr. serotina. 

Species Treatment Total biomass (g) Root:Shoot  Survival 

A. rubrum Control 27.78 ± 9.40 2.39 ± 0.66  3/7 

Spring 43.91 ± 14.06 1.24 ± 0.15  9/9 

Summer 32.22 ± 7.58 1.63 ± 0.13  8/9 

Fall 51.97 ± 15.58 0.98 ± 0.19  12/12 

B. papyrifera Control 514.17 ± 32.11 (A) 0.75 ± 0.05  12/12 

Spring 89.04 ± 11.25 (B) 0.30 ± 0.30  1/12 

Summer 262.44 ± 26.88 (C) 0.43 ± 0.43  1/12 

Fall 490.54 ± 50.49 (A) 1.15 ± 1.15  12/12 

Pr. serotina Control 182.94 ± 42.43 (A) 3.54 ± 1.58  10/10 

Spring 108.54 ±17.03 (A) 2.25 ± 0.13  12/12 

Summer 64.08 ±12.22 (B) 1.58 ± 0.30  12/12 

Fall 76.13 ± 23.22 (A) 1.38 ± 0.23  10/10 

J. virginiana Control 70.18 ± 16.00 1.28 ± 0.17  12/12 

Spring 45.23 ± 11.24 1.39 ± 0.08  12/12 

Summer 42.83 ± 13.01 1.25 ± 0.13  12/12 

Fall 91.86 ± 17.81 1.36 ± 0.15  12/12 

Pi. strobus Control 124.54 ± 33.86 1.65 ± 0.28  11/12 

Spring 152.13 ± 21.30 1.36 ± 0.19  12/12 

Summer 118.59 ± 22.47 1.44 ± 0.48  11/11 

Fall 203.97 ± 33.75 1.15 ± 0.12  11/12 

T. occidentalis Control 70.58 ± 13.80 1.05 ± 0.10  12/12 

Spring 61.93 ± 16.40 1.42 ± 0.28  12/12 

Summer 98.21 ± 26.82 1.84 ± 0.61  12/12 

Fall 93.52 ± 11.60 1.10 ± 0.09  12/12 
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Table A1.2. Published P50 values for the six study species with associated reference. Published values for 

Pr. serotina could not be found, so a related species, Pr. virginiana was used in its place.  

Species P50 (MPa) 

A. rubrum -1.97 (Maherali et al. 2006) 

B. papyrifera -2.34 (Sperry et al. 1994) 

Pr. virginiana -3.8 (Sperry and Hacke 2004) 

J. virginiana -6.6 (Willson et al. 2008) 

Pi. strobus -5.25 (Asbjornsen et al. 2021) 

T. occidentalis -3.57 (Tyree and Dixon 1986) 
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Table A1.3. Height growth responses to drought in spring, summer, or fall. Possible responses denoted 

are “stop” meaning that growth stopped during this period, “increase” meaning that growth was 

increasing during this period, “decrease” meaning that growth decreased during this period, and “NA” 

meaning that no discernable difference in growth compared to the control was occurring.  

Species Season Treatment 

Spring Summer Fall 

A. rubrum Spring Stop NA NA 

Summer Increase Stop NA 

Fall NA NA NA 

B. papyrifera Spring Stop NA NA 

Summer NA Stop NA 

Fall NA NA Decrease 

Pr. serotina Spring Stop NA NA 

Summer Increase Stop NA 

Fall NA Increase NA 

J. virginiana Spring NA NA NA 

Summer NA Stop NA 

Fall NA NA NA 

Pi. strobus Spring Stop NA NA 

Summer NA Stop NA 

Fall NA NA NA 

T. occidentalis Spring Stop NA NA 

Summer Increase Stop NA 

Fall NA NA NA 
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Table A1.4. Diameter growth responses to drought in spring, summer, or fall. Possible responses denoted 

are “stop” meaning that growth stopped during this period, “increase” meaning that growth was 

increasing during this period, “decrease” meaning that growth decreased during this period, and “NA” 

meaning that no discernable difference in growth compared to the control was occurring.  

Species Season Treatment 

Spring Summer Fall 

A. rubrum Spring NA NA NA 

Summer NA NA NA 

Fall NA NA NA 

B. papyrifera Spring Decrease NA NA 

Summer Stop Decrease NA 

Fall Stop Stop NA 

Pr. serotina Spring NA NA NA 

Summer Stop Stop NA 

Fall Increase NA NA 

J. virginiana Spring NA NA NA 

Summer NA NA NA 

Fall NA NA NA 

Pi. strobus Spring Stop NA NA 

Summer Increase NA NA 

Fall NA Stop NA 

T. occidentalis Spring NA NA NA 

Summer NA Decrease NA 

Fall NA Increase NA 

  



 

64 

 

 

Figure A1.1. Mean ± SE soil temperature from November 2019 to late-March 2020from six iButton 

temperature loggers buried at 10 cm in six randomly selected containers. The black line is the mean of six 

measurements of soil temperature logged every six hours with gray SE bars above and below this line. 

These results suggest that plants rarely experienced soil temperatures low enough to induce root morality. 

Fine roots of saplings have been shown to survive winter soil temperatures down to -5°C (Tierney et al. 

2001). The soil temperature in this study declined below -5°C approximately five times over the winter of 

2019-2020. 
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Figure A1.2. Hourly differences in temperature (°C; A) and vapor pressure deficit (kPa, B) in the 

greenhouse versus outside of the greenhouse during June 2020. In June, the average hourly temperature 

inside the greenhouse ranged from -1.18° to 4.72°C warmer than ambient, and hourly vapor pressure 

deficit inside the greenhouse ranged from -0.2 kPa to 1.3 kPa higher than ambient. 
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Figure A1.3. Boxplots of maximum daily temperatures (°C; A, measured with iButtons) and maximum 

daily vapor pressure deficit (kPa, B, measured with HOBO datalogger) inside the greenhouse during the 

spring, summer, and fall of 2020. Differences between the treatments at p < 0.001 (ANOVA with Tukey 

HSD) are denoted with asterisks. There is no VPD data for fall 2020 due to the malfunctioning of the 

HOBO datalogger. The spring and summer drought had similar maximum daily temperatures, while the 

fall was lower; the summer maximum daily VPD was higher in the summer than in the spring. 
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Figure A1.4. Residuals from the soil moisture ~ treatment ANOVA as a function of total biomass for each 

study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C) 

and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and Thuja occidentalis (F)). 

Larger trees lead to lower final soil moisture for A. rubrum, Pr. serotina, and J. virginiana but not the 

other three species. 
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Figure A1.5. Boxplots of initial height in May 2020 (cm) for each of the study species (deciduous broad-

leaved trees: Acer rubrum, Betula papyrifera, and Prunus serotina; and evergreen coniferous trees: 

Juniperus Virginiana, Pinus strobus, and Thuja occidentalis (F)). Differences between species are 

denoted with letters (ANOVA with Tukey HSD, p < 0.05). There was large intra- and extra-species 

variation in initial height in May 2020. 
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Figure A1.6. Relative height growth rate (% initial height) for each species and treatment over the course 

of the growing season. Each panel represents growth for each species and treatment combination, and 

contains light gray dashed lines for each sapling, with open black circles representing the mean ± SE of 

each sapling. The four vertical dashed lines represent the beginnings and ends of each of the three drought 

treatments, spring, summer, and fall. First column contains growth rates for controls, second column the 

spring, third column the summer, and fourth column the fall. Each row has one species (row 1: Acer 

rubrum, row 2: Betula papyrifera, row 3: Prunus serotina, row 4: Juniperus virginiana, row 5: Pinus 

strobus, row 6: Thuja occidentalis). 
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Figure A1.7. Relative diameter growth rate (% initial diameter) for each species and treatment over the 

course of the growing season. Each panel represents growth for each species and treatment combination, 

and contains light gray dashed lines for each sapling, with open black circles representing the mean ± SE 

of each sapling. The four vertical dashed lines represent the beginnings and ends of each of the three 

drought treatments, spring, summer, and fall. First column contains growth rates for controls, second 

column the spring, third column the summer, and fourth column the fall. Each row has one species (row 

1: Acer rubrum, row 2: Betula papyrifera, row 3: Prunus serotina, row 4: Juniperus virginiana, row 5: 

Pinus strobus, row 6: Thuja occidentalis). 
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Figure A1.8. Relative height growth rate (% of initial height per day) as a function of minimum soil 

moisture experienced (%) during the drought. Each panel represents one of the study species (deciduous 

broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C) and evergreen 

coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and Thuja occidentalis (F)). Treatments are 

represented with colored symbols (blue empty symbols = control, red squares = spring, yellow circles = 

summer, and green rhombi = fall). Each filled treatment symbol has an empty blue symbol corresponding 

to the control measurement during that treatment. A gray dashed line is at zero height growth to facilitate 

comparison. Generally, lower minimum soil moisture values within a treatment led to lower height 

growth rates. 
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Figure A1.9. Relative diameter growth rate (% of initial diameter per day) as a function of minimum soil 

moisture experienced (%) during the drought. Each panel represents one of the study species (deciduous 

broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C) and evergreen 

coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and Thuja occidentalis (F)). Treatments are 

represented with colored symbols (blue empty symbols = control, red squares = spring, yellow circles = 

summer, and green rhombi = fall). Each filled treatment symbol has an empty blue symbol corresponding 

to the control measurement during that treatment. A gray dashed line is at zero height growth to facilitate 

comparison. Generally, lower minimum soil moisture values within a treatment led to lower diameter 

growth rates. 
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Figure A1.10. Boxplots of relative height growth rate (% per day) for the control saplings during each 

season for each of the study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera 

(B), Prunus serotina (C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and 

Thuja occidentalis (F)). Differences between seasons are denoted by letters of significance (Species-level 

ANOVA with Tukey HSD, p < 0.05). Species generally had the most height growth during the spring. 
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Figure A1.11. Boxplots of relative diameter growth rate (% per day) for the control saplings during each 

season for each of the study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera 

(B), Prunus serotina (C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and 

Thuja occidentalis (F)). Differences between seasons are denoted by letters of significance (Species-level 

ANOVA with Tukey HSD, p < 0.05). We did not observe consistent differences in maximum relative 

diameter growth rates among species and seasons. 
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Figure A1.12. Mean ± SE predawn quantum yield (Fv/Fm) over the course of each seasonal drought, 

standardized to day of drought to facilitate comparisons between treatments. Each panel represents one of 

the study species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina 

(C) and evergreen coniferous trees: Juniperus Virginiana (D), Pinus strobus (E), and Thuja occidentalis 

(F)). Treatments are represented with colored symbols (blue empty symbols = control, red squares = 

spring, yellow circles = summer, and green rhombi = fall). Each filled treatment symbol has an empty 

blue symbol corresponding to the control measurement during that treatment. A gray dotted line is at 

0.83, which is a widely accepted Fv/Fm value for healthy leaves. We observed some declines in Fv/Fm 

among species and treatments; with B. papyrifera showing the most consistent declines. Very low control 

values in Pi. strobus may be due to measurement error or variation in the health of individual saplings.  
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Figure A1.13. Mean ± 2SE chlorophyll content over the course of each seasonal drought, standardized to 

day of drought to facilitate comparisons between treatments. Each panel represents one of the study 

species (deciduous broad-leaved trees: Acer rubrum (A), Betula papyrifera (B), Prunus serotina (C)). 

Treatments are represented with colored symbols (blue empty symbols = control, red squares = spring, 

yellow circles = summer, and green rhombi = fall). Each filled treatment symbol has an empty blue 

symbol corresponding to the control measurement during that treatment. A gray dotted line is at 0. 

Chlorophyll content declined over the course of the spring, summer, fall droughts in B. papyrifera.   
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APPENDIX 2.  

 

Figure A2.1. Schematic diagram of water release curve experiment. A) One-year old xylem segments 

were harvested from irrigated saplings and immediately stored and frozen in plastic bags. Within two 

weeks, samples were thawed, trimmed to one cm, debarked, and vacuum infiltrated overnight. Samples 

were then weighed in a TCP cap, equilibrated for 6-12 hours in the TCPs until water potential 

measurements stabilized, and then dried on the bench for 30s-10min. This process was repeated 6-10 

times to obtain a range of water potential measurements. B) Following Meinzer (2003), we estimated the 

maximum water storage of the stem segment, a; and using the inflection point b we calculated the slope m 

of the line from 0 MPa to b MPa, which was the estimate of capacitance.  
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Figure A2.2. Water remaining relative to fresh shoot mass (%) as a function of time elapsed (hrs) from the 

shoot dry down experiment for each of the study species (A-F, A. rubrum, B. papyrifera, Pr. serotina, J. 

virigiana, Pi. strobus, and T. occidentalis). The entire experiment lasted approximately 150 hours; all 

shoots began at the same time and at the first, last, and 3-6 systematically chosen measurements in 

between, shoots from each species were destructively sampled to estimate shoot water potential (Ψshoot), 

stem relative water content (RWCstem), and leaf relative water content (RWCleaf) in order to understand the 

dynamics of shoot, stem, and leaf water storage relative to declines in shoot water potential (Ψshoot). 
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Figure A2.3. Percent difference in vacuum saturated RWCstem and fresh RWCstem for ~1 cm de-barked 

xylem segments for each of the study species. Broadleaved species are gray-filled boxplots and conifers 

are empty; post-hoc significance is denoted by letters. A. rubrum showed the largest difference between 

saturated and fresh RWC, while T. occidentalis showed the smallest difference.  
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Figure A2.4. Boxplots of RWCfresh for ~1 cm de-barked xylem segments for each of the study species 

prior to beginning the water release curve experiment. A. rubrum showed the lowest RWCfresh. 
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