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Abstract: It is established that socio-economic and demographic dissimilarities between
populations are determinants of spatial segregation. However, the understanding of
how such dissimilarities translate into actual segregation is limited. We propose a novel
network-analysis approach to comprehensively study the determinants of communicative
and mobility-related spatial segregation, using geo-tagged Twitter data. We constructed
weighted spatial networks representing tie strength between geographical areas, then mod-
eled tie formation as a function of socio-economic and demographic dissimilarity between
areas. Physical and virtual tie formation were affected by income, age, and race differ-
ences, although these effects were smaller by an order of magnitude than the geographical
distance effect. Tie formation was more frequent when “destination” area had higher me-
dian income and lower median age. We hypothesise that physical tie formation is more
“costly” than a virtual one, resulting in stronger segregation in the physical world. Eco-
nomic and cultural motives may result in stronger segregation of relatively rich and young
populations from their surroundings. Our methodology can help identify types of states
that lead to spatial segregation, and thus guide planning decisions for reducing its adverse
effects.
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1 Introduction

There is, at present, an explosion of interest in social network analysis, primarily thanks
to the advent of large online data sources on large social groups [5, 10, 47]. In particular,
location-based social networks (LBSN) such as Twitter provide opportunities to study spa-
tial dimensions of human behavior in greater detail than previously possible [32, 54, 77].

One of the notable domains in which network analysis of LBSN can bring substan-
tial contribution is the study of spatial segregation in human society. Segregation can
be thought of as the extent to which individuals of different groups occupy or experi-
ence different social-environments. A measure of segregation consists of a definition of
the social environment of each individual, quantifying the extent to which these social-
environments differ across individuals [73, 88]. Studies of segregation have three main
analytical aims [72]: to investigate the patterns of segregation, to investigate the causes
of segregation, and to investigate the consequences of segregation. The first aim leads
towards the other two aims, as patterns suggest processes.

Spatial segregation is inherently geographical. Groups generally form distinct patterns
of over- and under-representation across residential regions. The resulting urban mosaic
is often described with terms that have figurative associations as well as spatial expres-
sion, such as ghetto, ethnic enclave, gated community, suburb, exurb, inner city, and edge
city [11]. There is no single geographic scale of segregation and thus spatial segregation
can exist at several levels simultaneously, ranging from specific households to neighbor-
hoods to nation-states to the world [37]. Scales can affect how segregation is measured
and represented [72]. For example, some features can be observed with a geographic scale
of 1,000 or more kilometers (the concentration of the black population in the southeastern
United States) and, in contrast, some features of racial residential patterns are observed at
the smaller scales of states, metropolitan areas, municipalities, neighborhoods, city blocks,
and even households.

Many methods of measuring segregation, and particularly spatial segregation, have
been formulated and proposed [25, 31, 88]. The most commonly used measure is the Index
of Dissimilarity (ID) [18]. The ID quantifies the evenness with which two demographic
groups are distributed among areal units comprising a geographical area. It can be inter-
preted as a measure of displacement, quantifying the percentage of one of the two groups
that would have to move in order to produce an even distribution. Massey & Denton [58]
further identified five dimensions of segregation: unevenness, exposure, clustering, con-
centration, and centralization. Among them, unevenness and clustering are regarded as
the most important [66,73]. Unevenness is a measure of spatial heterogeneity, the variation
displayed across the map. Clustering measures the scale of spatial similarity, the extent
to which closely located neighborhoods are alike. For instance, in a “checkerboard”, the
standard pattern of black white alternation, can be compared with a hypothetical board for
which the top half is wholly black and the bottom wholly white.

Studies of spatial segregation are mostly focused on measuring population distribution
patterns in residential space, based on census data [19, 58, 81], ignoring the fact that social
isolation likely extends from residential place to other locations and to other dimensions of
activity. Recently, it has been recognized that segregation studies should go beyond resi-
dential place to daily activity space [2, 22, 50, 70], and shift from location-based to people-
based analysis [46]. A key paper by Krivo et al. [45] argues that studies which consider
residential neighborhoods as the only context of social isolation ignore the fact that social
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isolation likely extends from residential place to other geographical locations (e.g., work-
place) and to other dimensions of activity (e.g., face-to-face encounters during daily travel).
For example, although residential place remains an important hub in individuals’ daily
life, the importance of other places (employment, recreation, etc.) has increased with the
growth of human mobility in urban areas [48, 87]. Thus, a fuller understanding of urban
segregation requires critical analyses of not only the socio-demographic compositions of
residential neighborhoods, but also the types of social-environments that individuals are
exposed to in daily life.

The degree of mobility and communication between areas of contrasting socio-
economic background are important aspects in the formation and maintenance of spatial
segregation [68]. In reference to LBSN, these two complementary components [15, 62, 79]
are thought to be the strength of physical / mobility ties and of friendship / virtual ties, respec-
tively. Virtual ties refer to the social network structure of the LBSN. For example, Twitter
users declare the people they are interested in “following”, in which case they get notified
when that person has posted a new message. A user who is being followed by another
user does not necessarily have to reciprocate by following them back, which makes the
ties on the Twitter social network directed [23]. The structure of these virtual ties shapes
information flow within the network [12,27], whereas lack of information flow can be con-
sidered an expression of segregation. Virtual ties can be contrasted with physical ties, the
latter referring to physical movement of individuals between two regions in geographical
space [9, 26], rather than the flow of information in virtual space. Namely, the occasion
in which a person who lives, or spends most of his day, in one place was present at least
one time in another site is informative regarding segregation and urban interaction [76,82].
When referring to individuals, virtual and physical ties can be either present or not (e.g.,
the user does or does not follow another user). When referring to geographical areas, tie
strength can naturally be defined as the proportion of users maintaining the given relation,
relatively to maximal possible connectivity (e.g., the proportion of follower ties between
users in area A and users in area B, relatively to the maximal number of ties obtained if all
users followed everyone else) [49].

Virtual and physical ties comprise two complementary descriptors of daily activity pat-
terns. For example, the emergence of “rich” enclaves may lead to fragmentation of public
space in terms of physical mobility, where the underprivileged are increasingly cut-off.
Limited communication between contrasting neighborhoods, likewise, may lead to en-
hanced prejudice and reduced solidarity, thus standing in the way of political solutions to
common problems. Understanding the formation of these intangible mobility and commu-
nication barriers [73] between sub-populations of contrasting socio-economic background
is a first step towards reducing their negative outcomes [85].

Most studies on physical or virtual ties on Twitter aimed at inferring spatial community
structure and interactively exploring it [4,20,36,78,90]. This approach is particularly useful
for detecting “natural” geographical boundaries [32] reflecting human interaction patterns,
as opposed to predefined boundaries based on administrative division. It is less useful,
however, for studying the effects of socio-economic factors on the formation of such ties,
as population characteristics contributing to community cohesion are not quantitatively
considered.

Fewer LBSN-based studies attempted to quantify the determinants of tie formation it-
self, whether on the level of individual Twitter users [17], populations, or geographical ar-
eas, and whether concerning mobility [26,30], communication [12,15], or friendship [79,80]
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ties. Most studies, however, only considered elementary predictors of tie formation, such
as geographical distance alone [49, 51, 52, 79] (but see [3, 62]).

Studies of population-level socio-economic and demographic (SD) predictors of tie for-
mation have either leaned towards an exploratory analysis of spatial patterns in specific
case-studies [30, 76], or have over-simplified the representation of physical space [17]. For
example, Shelton et al. [76] used Twitter data to examine spatial segregation in terms of mo-
bility between two contrasting socio-economic regions: West-End and East-End Louisville,
Kentucky. Based on inferred movement patterns between the two regions, the authors ar-
gued against the commonly held view of a rigid bi-directional segregation (the “9th Street
Divide”) between these two areas. Later on, Huang and Wong [30] studied the movement
activity of Twitter users among four distinct socio-economic regions in Washington, D.C.,
rather than a single pair of regions. Yet, the considered variables were group characteris-
tics (e.g., travel distance), rather than ties forming a complete network (e.g., mobility flow
between all region pairs).

Recently, Ma et al. [54] spatially analyzed a large-scale friendship tie network between
users in the Brightkite and Gowalla LBSNs. Aggregating social ties between users in each
network, the authors created both location-location and city-city spatial networks reflecting
tie counts across the entire area of the continental US. The authors put emphasis on spatial
characteristics such as the relative abundance of network ties between large cities, thus
demonstrating that “the number of social connections does not correlate well with geo-
graphic proximity, but depends on the characteristics of a place” [54]. Wang et al. [82] have
analyzed small-scale segregation patterns, evaluating mobility characteristics as function
of racial and socio-economic composition at the neighborhood level, based on Twitter data.
Again, the study revealed otherwise unapparent patterns of racial segregation through mo-
bility: where the different groups travel and whom they are exposed to, extending the work
of Shelton et al. [76] from a sample of two regions in Louisville to a sample of∼36,000 block
groups in the 50 largest cities in the US [82].

The purpose of the present study is to take the next step and evaluate the “character-
istics of place” [54] in terms of their effect on follower and mobility ties—in a systematic,
comprehensive and quantitative way. Accounting for geographical distance and popu-
lation size, we focus on the less obvious effects of SD characteristics, in light of spatial
segregation as reflected through the recorded behavior of Twitter users.

A more comprehensive understanding of network tie formation determinants can shed
new light on patterns of spatial segregation in the various activity dimensions of human
society—which is commonly recognized as the next frontier in studying segregation [87].
Generalizing the above studies [30, 54, 76, 82], we propose a comprehensive hypothesis-
testing oriented methodology, that operates on a large sample of regions (rather than few
individual regions) covering a wide and heterogeneous spatial extent, using two tie metrics
that represent both mobility and friendship (rather than just one), while bearing in mind
SD “characteristics of place” (income, age, and race). Using this methodology, our aim
here is to study how dissimilarity in population characteristics translates into segregation—
in terms of mobility and friendship—between the geographical areas these populations
occupy.

The study aim is achieved using three operational objectives:

1. Constructing four weighted networks that represent physical and virtual tie strength
on two distinct spatial scales, based on geo-referenced Twitter data, and a fifth
survey-based commute network for validation.
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2. Fitting models where tie strength between given areas in the latter five networks is
explained with their distance, SD dissimilarity, and the SD × distance interactions.

3. Using a model selection procedure to determine which factors substantially affect tie
formation, their effect size and effect direction, concerning each tie type (physical and
virtual) on each spatial scale.

Our specific hypotheses are:

1. Spatial segregation exists in both physical and virtual dimensions—although it may
be weaker in the virtual dimension, due to lower tie formation costs.

2. Racial dissimilarity enhances spatial segregation, due to the homophily principle [59].
3. Income and age differences induce asymmetric segregation due to the unbalanced

motivation that dissimilar populations, such as the rich and poor, have for maintain-
ing contact with each other [86].

2 Methods

2.1 Twitter Data

Access to Twitter data is provided through several Application Program Interfaces (APIs).
The Streaming API was used to continuously collect text contents and metadata of all geo-
referenced tweets falling within the study areas. The REST API was subsequently used
to collect the list of users each user follows (otherwise known as their “friends”). The
analyzed dataset was thus comprised of point locations (lon-lat) each unique user posted
from, combined with an indication on whether a social tie exists between each pair of users.

Though geo-tagged tweets comprise only 1-2% of the total volume [53], thanks to the
relatively prolonged collection period we could accumulate a large sample size of over
20M tweets sent by ∼900K unique users (Table 1), that can serve as a good approxima-
tion of human activities for study purposes [54]. It should be noted that Twitter data are
more strongly associated with sampling bias (Twitter users vs. general population) and
location bias (messages sent from particular types of locations vs. continuous monitor-
ing), compared to mobile phone records. On the other hand, geolocated Twitter data are
spatially accurate at GPS precision, while phone record data resolution is dictated by dis-
tances between cellular towers, which are typically in the order of several kilometers [21].
Overall, Twitter data have been shown to be representative of population-level behavioral
patterns [35] and have been successfully used in numerous studies on formation of vir-
tual [36, 79] and physical [30, 76, 82, 90] ties.

GBA US
Period start 2016-03-29 2016-05-26
Period end 2017-02-12 2016-10-05
Period length 320 days 132 days
Bounding box area 49,805 km2 13,094,663 km2

Geo-located tweets 1,855,513 21,896,420
Unique users 73,563 876,764

Table 1: Description of Twitter data for the Greater Boston Area (GBA) and the US.

The data collection process was repeated on two spatial scales:
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1. County scale, the contiguous USA (US) (∼8,000,000 km2)
2. Census tract scale, a rectangular area of ∼50,000 km2 in the Greater Boston Area

(GBA)

The specific study areas (US and GBA) were selected for two reasons. First, Twitter
usage is particularly high in the US [26, 80], and particularly in the GBA which is one of
the major educational and Information Technology hubs in the US. This assures a large
sample size for estimating and modeling follower and mobility ties between geographical
units. Second, the GBA region was extensively used in many of our group’s previous
works [38–42].

Although the GBA is contained within the US, a separate collection process was con-
ducted to achieve a more detailed sampling of tweets, given API rate limit considerations.
The sample size and time frame of Twitter data used in this study are specified in Table 1.

2.2 Socio-economic and demographic (SD) data

The US Census is arguably the most important data set for social science research in the
United States [1]. The census geography maintains a strict hierarchy where states con-
tain counties, counties contain census tracts, census tracts contain block groups, and block
groups contain blocks. We worked on two spatial scales: county and census tract. To
this end, we used the American Community Survey (ACS) 5-Year Estimates (2010-2014)
data for obtaining SD data for the studied areas at each spatial scale. Three key charac-
teristics [65] were extracted: median household income (ACS code: B19013e1), median
age (B01002e1) and total population in each racial/ethnic group (B02001e2, B02001e3,
B02001e4, B02001e5, B02001e6, B02001e7) (see Table S1 and Figures S1–S6 in the Sup-
plemental Materials).

Dissimilarity between each pairs of areas was expressed as Euclidean distance, either
one-dimensional (median income, median age) or multi-dimensional (racial composition).
For example, in case the destination area has median income of $50,000 and the origin area
has median income of $60,000, the one-dimensional dissimilarity was defined as -$10,000.
Note that the one-dimensional dissimilarity measure is directional, thus expressing not just
the absolute difference but also whether the destination has higher or lower value of the
metric. For racial composition, multi-dimensional dissimilarity was calculated using func-
tion dist in R, using method="euclidean", following transformation of racial/ethnic
population from counts to proportions to remove the effect of total population size. Note
that multi-dimensional dissimilarity is not directional, as it only expresses the absolute
degree of compositional difference between the origin and destination areas. Also note
that our dissimilarity measure, simply reflecting multivariate Euclidean distance, is not to
be confused with the more specific Index of Dissimilarity (see Section 1) which refers to
compositional difference between areas and frequently used in segregation studies [18].

2.3 Commute data

To validate the results obtained using Twitter, we reproduced the analysis of socio-
economic effects on mobility realization using an external data source—the 2009-2013 5-
Year ACS Commuting Flows dataset1. This dataset contains counts of workers in com-

1https://www.census.gov/data/tables/time-series/demo/commuting/commuting-flows.html
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muting flow between each pair of counties in the USA [64]. To standardize the number of
commuters by potential commuters count, we also obtained the county-level labor force
estimates (B23025e4) from the ACS dataset (Table S1).

2.4 Network construction

Twitter network data were aggregated from individual-user scale to areal scale, as esti-
mates of SD characteristics are only available on the latter. Aggregation involved the fol-
lowing steps:

1. Assigning each Twitter user to the areal unit where he/she was most active, which we
marked as his/her “center of activity”. The center of activity was defined as the areal
unit with the greatest number of tweets for a given user [54,82]. One of the reasons for
using this broad definition, rather than attempting to detect place of residence [29,30],
is that Twitter accounts for organizations, agencies, services, etc., rather than authen-
tic individuals, are increasingly more common [75]. The term “place of residence” is
naturally irrelevant for such users. Nonetheless, these users are still relevant in terms
of virtual and physical ties within the online community on Twitter, as they reflect
the flow of information and levels of mutual interest between different spatial areas.
For example, an organization account may establish virtual follower relations with
other organizations and individuals, or post tweets from different physical locations,
thus contributing to the segregation or lack thereof between geographical areas in the
same way that authentic users do.

2. Calculating virtual and physical tie strength metrics between all possible pairs of
areal units A and B in the study area, according to the following algorithms for each
tie type:

(a) Follower = The number of follower ties between a user from area A and a user
in area B, divided by the number of potential ties—i.e., the number of unique
users from area A multiplied by the number of unique users from area B (Figure
1).

(b) Mobility = The number of users from area A who have sent at least one tweet
when physically located in area B, divided by the number of potential ties—i.e.,
the number of unique users in area A.

(c) Commute = The commuting flow count from area A to area B, divided by total
labor force in area A.

3. Assigning each pair of areas A and B with the geographical distance between their
centroids, as well as the corresponding set of SD dissimilarity metrics (see Section
2.2).

4. Repeating steps 1-3 for the two spatial scales—namely, for the census tract scale in
the GBA (Figure 2) and for the county scale in the US (Figure S7).

It is important to note that the tie strength indices are directional—i.e., tie strength for
A → B is not necessarily the same as tie strength for B → A. Self-ties, where the origin
and destination are the same (i.e., A→ A), were excluded from the analysis. Also note that
the tie strength indices are inherently standardized by total network activity for removing
group size bias [49]. For example, areas that are more densely populated or characterized
by younger population [60] are expected to have more Twitter users and thus more LBSN
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Figure 1: Calculation of the follower tie ratio between two census tracts in the Greater
Boston Area (GBA) (44007013101 and 44007013001). Grey segments represent all 90 pos-
sible follower ties extending from Twitter users whose estimated “center of activity”
is located in tract 44007013101 towards users in whose “center of activity” is in tract
44007013001. Red segments represent the 7 ties that are actually realized. Follower tie
ratio for the 44007013101→ 44007013001 edge is therefore equal to 7/90.

activity, whether physical or virtual. Standardizing by total activity removes this effect and
allows us to compare areas with varying group sizes.

Descriptive statistics of the five analyzed networks are given in Table 2. An illustration
of calculating a single follower tie strength estimate (A→ B) between two census tracts in
the GBA is given in Figure 1. Illustrations of the complete networks, built once estimates
are available for all area pairs, are given in Figure 2 and Figure S7. Note that to maintain
visual clarity, the latter figures do not display the entire network, but only sub-networks
including adjacent areas—i.e., ties between all areas A and B which share a common border.
The actual analyzed networks (Tables 2–3) consist of all possible ties between any pair of
areas.
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Figure 2: Observed follower and mobility ties between adjacent census tracts in the Greater
Boston Area (GBA). Grey lines represent potential ties count, red lines represent actual
count. Note that for visual clarity, these figures do not display the entire networks, but
only sub-networks of adjacent areas—i.e., ties between all areas A and B which share a
common border. Models (Table 3, Figure 3) were fitted to data on all tie pairs, not just the
adjacent ones. Also note that line width is on a logarithmic scale.

GBA US
Follower Mobility Follower Mobility Commute

Vertices 1,760 3,108
Edges 3,097,600 9,659,664

Non-zero ties 7.84% 2.85% 10.40% 2.40% 1.37%

Table 2: Description of weighted directed networks representing virtual (i.e., follower) and
physical (i.e., mobility) ties between predefined geographical areas (census tracts and coun-
ties, respectively) in the Greater Boston Area (GBA) and the US.

2.5 Statistical analysis

A preliminary visual evaluation of geographical distance effect on network tie strength
was conducted by fitting a Generalized Additive Model (GAM) to each of the four Twitter-
based networks (two spatial scales × two tie types) (Figure 3). The dependent variable
was the tie strength estimate (Figure 1), while the independent variable was geographical
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distance between the respective areas. The observations comprised all network edges—i.e.,
all ties between pairs of areas.

Displaying the relation between tie realization and distance on a log-log scale, followed
by fitting a power law function, has been shown to facilitate comparison of distance decay
intensity among different scales [21]. To fit the power law function, network ties in the
range of 0-200 km and 0-700 km in the GBA and US scales, respectively, were aggregated
into 20 equal breaks. A linear regression model was then fitted to the average tie realization
per distance bin as function of its midpoint distance (Figure 4). The coefficient β of the
linear fit on the log-log scale:

log10 Y = α− β × log10 d

where Y is tie realization and d is geographical distance, thus reflects the power law coef-
ficient β on the original scale:

Y = 10α × d−β

The main statistical approach follows section 9.2 “Modeling Network Flows: Gravity
Models” in Kolaczyk and Csárdi [43], pp. 162-170. The input data for the statistical analy-
sis comprised the five weighed networks: Twitter-derived networks for two spatial scales×
two tie types, and the US commute network. In the main analysis, we considered not only
distance, but also SD dissimilarity, and the interactions of SD dissimilarity with geographi-
cal distance. In each case, we statistically tested whether realization of follower or mobility
ties was associated with the latter variables, and if so—how. For example, tie formation
probability may be higher between more proximate areas (negative geographical distance
effect), between areas characterized by higher racial composition similarity (negative racial
composition dissimilarity effect) and either effect may vary when the other does (distance
× racial composition dissimilarity interaction).

Generalized Linear Models (GLMs) with binomial response (i.e., “logistic regression”)
were used since the dependent variables consisted of proportional data. Thus, the depen-
dent variables were “success” vs. “failure” counts—i.e., the ratio between the number of
actual and potential network ties (Figure 1). The independent variables were: geographical
distance, median income arithmetic difference, median age arithmetic difference, and racial
composition multivariate euclidean distance, as well as the interaction of geographical dis-
tance with these three SD variables.

We found no multicollinearity among the four examined variables on the network
edges—i.e., geographical distance and dissimilarity of income, age, and racial composition.
For example, the strongest Pearson’s correlation in the GBA dataset was 0.37 (between age
and income dissimilarities), which is considered “Low” [63]. Although spatial autocor-
relation between network edges is not clearly defined, and pairwise neighbor weighting
is computationally unfeasible for sample sizes of 3M or 9M edges (Table 2), we ran pre-
liminary evaluations on a sample of randomly chosen 10,000 edges in the GBA. We used
Moran’s I global test for autocorrelation [8], with the 8-nearest-neighbors edge centroid
criterion for defining neighbor weights. There was no significant autocorrelation in the
follower network (p-value = 0.53) or the mobility network (p-value = 0.21).

A model selection procedure—based on the Akaike Information Criterion (AIC)—was
conducted to evaluate the relative support for the full model and all simplified models lack-
ing one or more of the predictors, in each of the five networks (Table 3). In each case, models
were ordered by the AIC score—from lowest AIC (i.e., highest relative support) to highest
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AIC (i.e., lowest relative support). The hypotheses underlying the inclusion of variables
present in the most parsimonious models (i.e., having the lowest AIC) were considered
supported by the data [34]. The five most parsimonious models were eventually used to
generate and visualize predicted tie strength in the studied parameter space (Figures 5–
7), to characterize effect sizes and directions. We also calculated Akaike weights (AICw),
which express relative weight of evidence for each model, summing to 1 across all models
(Table 3). An AICw value for model i can be interpreted as the probability that model i is
the best model for the observed data, given the candidate set of models [34]. Finally, we
calculated explained deviance (pseudo-R2) per model. Explained deviance in a GLM is
analogous to R2 in a Linear Model, expressing the proportion of variation explained by the
model [92].

Model predictions were calculated using non-standardized GLM coefficients, thus al-
lowing for interpretation in the original units for each variables (e.g., kilometers for dis-
tance, or $ for income difference) (Figures 5–7). In addition, Table 3 reports the standard-
ized model coefficients. Standardized regression coefficients basically refer to how many
standard deviations a dependent variable will change per standard deviation increase in
the predictor variable. Standardized coefficients are thus useful when numerically com-
paring effect sizes among variables in the same model, or among different models based
on the same data. For example, we can compare the effects of independent variables (e.g.,
distance) among the three models (mobility, follower, and commute) within each given
study region. The comparison is valid due to identity of the underlying data: an effect of
+1 for the standardized distance coefficient reflects the same effect size for all three models
(in terms of standard deviations of the response variable), since the distributions of edge
distances—and therefore their standard deviations—are the same in the three datasets.

Following [82], we re-fitted all Twitter-based GLM models weighting each observation
(i.e., network tie) based on the ratio of Twitter users to the total population size. The weight-
ing mechanism thus (partially) addresses the fact that Twitter users are not fully represen-
tative of the local population. The weighted model results are given in Table S2. Since the
weighted and unweighted models were highly consistent (Tables 3 and S2), predictions are
only reported for the unweighted models (Figures 5–6).

2.6 Software

Accessing the Twitter APIs for data collection was done using Python [74] package twarc2.
All other analyses were done in R [71]. Spatial processing of the Twitter and census data
were executed using R packages sp [8] and rgeos [7]. Network construction and statistical
calculations were done using package igraph [16]. GAMs were fitted using package mgcv
[89]. Moran’s I test was done using package spdep [8]. Model selection procedure of GLMs
was done using package MuMIn [6]. Figures were produced with package ggplot2 [84].

3 Results

The characteristics of the five networks representing follower, mobility and commute tie
strength between areal units on two spatial scales (see Section 2) are provided in Table 2.

2https://github.com/docnow/twarc
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Network density—i.e., the proportion of non-zero ties—was higher in the follower net-
works (7.84% and 11.0%, in the GBA and the US, respectively) than in the mobility net-
works (2.85% and 3.12%). In other words, a higher proportion of area pairs were character-
ized by at least one follower tie, than by at least one physical observation of a user who is a
resident of one area “visiting” the other area. The commute network density was lower still
(1.37%), indicating that regular work-related commute takes place between a small subset
of (adjacent) county pairs out of all possible county pairs in the US.

In the preliminary analysis, the relations between geographical distance and tie realiza-
tion proportion were visually examined by fitting GAMs to tie (i.e., edge) properties of the
four Twitter-based networks. The most obvious observation (Figure 3) was that follower
ties and mobility ties markedly differ in their form of distance decay. Follower ties (1) ex-
hibited a relatively shallow decline with increasing distance and (2) never reached “zero”
realization. Conversely, mobility ties (1) exhibited a relatively steep decline and (2) quickly
reached “zero” realization when distances get large (i.e., several hundred kilometers).
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Figure 3: Follower and mobility tie proportions as function of geographical distance in the
Greater Boston Area (GBA) and the US. Lines show the average trend based on a General-
ized Additive Model (GAM). The x-axis range covers 99.7% and 21.7% of observed data in
the GBA and US areas, respectively.

Steepness of distance decay was also quantitatively assessed by fitting a linear model on
a log-log scale and extracting the slope β (Section 2.5). Distance decay was by far steepest
when considering commute (β = 2.06), compared to mobility (β = 1.17) and follower rela-
tions (β = 0.90) in the US (Figure 4). Comparing the Twitter-based metrics only, mobility
distance decay (β = 1.00 and β = 1.17 in the GBA and US, respectively) was more steep
than that of follower ties (β = 0.79 and β = 0.90).

In the main analysis, according to the AIC-based model selection procedure, the full
models (i.e., those including all examined factors) had overwhelmingly highest relative
support in 4 out of 5 cases (Table 3). Only in the case of the mobility tie models in the GBA
did the most parsimonious model lack the “income × distance” effect—although in that
case the full model came second, not far behind in terms of relative support (AICw of 0.31
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Figure 4: Follower, mobility and commute tie proportions as function of geographical dis-
tance in the Greater Boston Area (GBA) and the US, on a log-log scale. Linear regression
fitted lines are shown in grey. The values of β refer to the linear slope, reflecting the decay
parameter. The x-axis range covers 99.7% and 21.7% of observed data in the GBA and US
areas, respectively.

vs. 0.69). In other words, the hypothesis that geographical distance, SD dissimilarity, and
their interactions (except for the “income × distance” interaction for mobility ties in the
GBA) affect follower and mobility tie formation was supported by the data.

In agreement with the preliminary visual examination (Figure 3), the effect of geograph-
ical distance on tie formation was (1) consistently negative and (2) larger for mobility ties
than for follower ties. In other words, follower and mobility tie formation probability was
reduced with increasing geographical distance between given areas, more steeply when
considering mobility. In terms of effect size, observing best models’ predicted values in
the relevant parameter space (Figures 5–7) as well as standardized coefficients (Table 3)
revealed that distance effect on mobility tie formation was stronger by an order of mag-
nitude compared with follower tie formation. For example, predicted decline of follower
ties realization between short distance of ∼300 m (5% quantile) and long distances ∼3000
m (95% quantile) in the US was 2-fold, from 0.00455% to 0.00243% (Figure 5). Under the
same scenario, the predicted decline of mobility ties realization was 61-fold, from 0.194%
realized ties on ∼300 m distances to 0.003% realized ties on ∼3000 m (Figure 6). The effect
of distance on commute frequency was higher still—the x-axis for commute predictions
(Figure 7) does not show the full range of distances in the US but only distances up to 200
km, as commute realization above that distance was practically zero.

The effects of median income and median age were also largely consistent among exam-
ined tie types and scales. Income effect was positive in all cases (Table 3, Figures 5–7), with
no substantial “income × distance” interaction effect size in the studied parameter space.
Namely, both follower and mobility tie realization constantly increased when the desti-
nation area had a relatively higher income compared with the origin area. For example,
predicted tie realization at short distances of ∼300 km (5% quantile) in the US increases
from 0.0046% to 0.0049% (1.1-fold) and from 0.194% to 0.366% (1.9-fold) considering fol-
lower and mobility, respectively, when average median income difference increases from
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Area Type Inter. Dist. Inc. Age Race I.×D. A.×D. R.×D. AICw pR2

GBA Follower -8.863 -0.409 0.027 -0.021 -0.076 0.005 0.018 -0.082 0.996 0.09
-8.863 -0.409 0.025 -0.021 -0.076 0.019 -0.082 0.004 0.09
-8.863 -0.410 0.027 -0.023 -0.076 0.013 -0.082 <0.001 0.09
-8.863 -0.409 -0.015 -0.076 0.015 -0.082 <0.001 0.09
-8.863 -0.410 0.019 -0.024 -0.076 -0.082 <0.001 0.09
-8.863 -0.409 -0.019 -0.076 -0.082 <0.001 0.09

Mobility -7.259 -1.183 0.104 -0.257 -0.308 0.056 0.032 0.690 0.17
-7.259 -1.183 0.102 -0.257 -0.309 -0.003 0.057 0.032 0.310 0.17
-7.267 -1.191 0.099 -0.257 -0.339 -0.006 0.058 <0.001 0.17
-7.267 -1.191 0.104 -0.257 -0.339 0.056 <0.001 0.17
-7.269 -1.191 0.111 -0.298 -0.307 0.016 0.036 <0.001 0.17
-7.269 -1.191 0.096 -0.299 -0.309 0.033 <0.001 0.17

US Follower -10.243 -0.188 0.056 -0.049 -0.033 0.010 -0.013 0.100 1 0.07
-10.244 -0.188 0.056 -0.053 -0.033 0.010 0.100 <0.001 0.07
-10.244 -0.187 0.060 -0.049 -0.033 -0.011 0.100 <0.001 0.07
-10.244 -0.187 0.060 -0.053 -0.033 0.100 <0.001 0.07
-10.243 -0.188 0.054 -0.033 0.009 0.099 <0.001 0.07
-10.243 -0.187 0.057 -0.033 0.100 <0.001 0.07

Mobility -7.857 -1.235 0.454 -0.396 0.068 0.072 0.005 0.386 0.998 0.23
-7.857 -1.234 0.454 -0.399 0.068 0.072 0.386 0.002 0.23
-7.861 -1.237 0.407 -0.395 0.059 0.003 0.377 <0.001 0.23
-7.861 -1.237 0.407 -0.397 0.059 0.377 <0.001 0.23
-7.772 -1.165 0.436 -0.391 -0.124 0.057 0.037 <0.001 0.22
-7.770 -1.160 0.435 -0.414 -0.125 0.054 <0.001 0.22

Commute -36.912 -20.083 3.004 0.288 4.053 1.769 0.288 2.513 1 0.74
-36.982 -20.127 3.022 4.066 1.782 2.520 <0.001 0.74
-36.897 -20.081 3.242 0.445 0.058 1.917 0.445 <0.001 0.74
-37.003 -20.147 3.242 0.058 1.919 <0.001 0.74
-36.925 -20.092 3.276 0.461 1.937 0.461 <0.001 0.74
-37.034 -20.16 3.274 1.938 <0.001 0.74

Table 3: Model selection results for Generalized Linear Models (GLMs) of follower, mobil-
ity and commute tie probability in the Greater Boston Area (GBA) and the US, as function
of geographical distance, socio-economic and demographic (SD) dissimilarity, and interac-
tions. The six most highly supported models are shown per model selection procedure.
Models are ordered by decreasing AIC, starting from the most supported model (in bold).
The AICw column shows Akaike weights, which express relative support for each model.
An AICw value for model i can be interpreted as the probability that model i is the best
model for the observed data, given the candidate set of models. The pR2 column, pseudo-
R2, shows the explained deviance, which is analogous to R2 in a GLM. The remaining
columns show standardized coefficients of each independent variable in each model, when
present. (Inter. = Intercept, Dist./D. = Distance, Inc./I. = Income, A. = Age, R. = Race)

0$ (i.e., both areas have similar income) to 30,000$ (i.e., destination area has higher median
income by 30,000$).

The effect of age was consistently negative (Table 3), again with a negligible effect size
for the “age × distance” interaction (Figures 5–7). In other words, both follower and mo-
bility tie realization consistently increased when destination area had lower median age.
The effects of income and age dissimilarity thus maintained their direction (positive and
negative, respectively) irrespective of distance, in both the Boston and US areas (Figures
5–7).

The effect of racial composition dissimilarity on tie formation was consistent among
four out of five models, with the exception of the follower ties in the GBA (Table 3, Figure 5).
In the four models, the highest tie realization rates were associated with low dissimilarity
(i.e., high similarity) in racial composition—as might be expected. Additionally, a strong
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Figure 5: Predicted follower and mobility tie proportions, as function of geographical dis-
tance and socio-economic dissimilarity in the Greater Boston Area (GBA), based on models
described in Table 3. Explained deviance was 8.6% and 17.1% (follower and mobility, re-
spectively).

“race × distance” interaction effect was observed on the US scale—suggesting that race
dissimilarity becomes irrelevant when long-distance ties are concerned, compared with
short-distance ties which were more frequent when racial composition is similar (Figure
6). Predicted follower tie formation in Boston, however, was highest at short distances and
high dissimilarity in racial composition (Figure 5), contrary to our expectation.

Explained deviance—the closest analogous metric to R2 in a GLM—was 0.09 and 0.07
in follower tie models and 0.17 and 0.23 in the mobility tie models, for the GBA and the
US, respectively, and 0.74 in the US commute model (i.e., follower<mobility<commute).
Effect sizes of examined variables were also larger when predicting mobility compared
with follower ties—most notably for the geographical distance effect (Figure 3), but for the
SD variables as well (Table 3). Overall, the range of predicted tie realization within the
5-95% inter-quantile parameter space (in all independent variables) was 0.004-0.031% (7.5-
fold) and 0.002-0.006% (3-fold) for follower models, compared with 0.003-1.071% (357-fold)
and <0.001-0.989% (>989-fold) for mobility models, in the GBA and US areas, respectively.
In other words, spatial variation in mobility ties, at least considering the portion explained
by our examined variables, was much higher than that of follower ties.

4 Discussion

Our analysis bolsters the negative effect of geographical distance on Twitter virtual (i.e.,
follower) [14, 79, 80] and physical (i.e., mobility) [52] tie formation probabilities (hypothesis
1). We suggest that the relative weakness and low-cost of virtual tie formation [83] makes
them less sensitive to distance, compared with physical (mobility) ties. Nevertheless, even
for virtual ties distance is not “dead” [61] and proximity still makes a difference (Figures
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Figure 6: Predicted follower and mobility tie proportions, as function of geographical dis-
tance and socio-economic dissimilarity in the US, based on models described in Table 3.
Explained deviance was 7.5% and 23.5% (follower and mobility, respectively).
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Figure 7: Predicted commute tie proportions, as function of geographical distance and
socio-economic dissimilarity in the US, based on the model described in Table 3. Explained
deviance was 73.8%.

3–4). We hypothesize that at least some of the follower ties are still complementary to face-
to-face interaction, or directed towards similar interests relevant for a particular location,
thus maintaining the association with distance [14, 80].

Conversely, mobility (i.e., physical) ties were strongly governed by distance—shrinking
towards an average zero realization rate above a distance of several hundred kilometers.
The cost of physical travel is higher than the cost of creating a virtual follower tie on Twit-
ter [49]. We hypothesize that the additional cost is responsible for (1) sharper decline (2)
towards a zero average rate, in case of mobility, as opposed to follower, tie formation (Fig-
ure 3). Naturally, commute travel was even more strongly affected by distance. The cost of
maintaining regular commute is higher than that of conducting any given one-time travel
(Figure 4). Indeed, regular commute travel to distances >160 km accounts for just 2.6% of
commuter flows in the USA [64].
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The distance decay weakening observed in Twitter virtual follower ties (β = 0.79 and
β = 0.90, the the GBA and US, respectively) compared to physical mobility (β = 1.00 and
β = 1.17) was in agreement with the difference observed between calls (β = 1.45) and
mobility (β = 1.60) inferred from mobile phone data [21]. Overall, however, the present
Twitter-based distance decay estimates (β between 0.79 and 1.17) were lower than estimates
obtained from mobile-phone interactions (e.g., β = 1.45 [21], β = 1.58 [67], and β = 2 [44]
for calls; β = 1.60 [21] and β = 1.98 [91] for movement). This is in line with previous
studies which found relatively lower distance decay coefficients in online social networks,
such as β = 0.6 in a former major Hungarian online social network [49]. The generally
steeper decay observed in mobile phone call data compared to Twitter-based follower data
may be explained by the fact that virtual interaction through mobile phones is mainly used
for closer relationships that are fostered by other means too [49], thus more costly and
more tightly associated with proximity. The steeper decay observed in mobile phone-based
compared to Twitter-based movement data may be due to the high frequency of phone data
collection, reflecting daily routine and thus emphasizing local activity, while Twitter usage
may reflect more spatially diffuse leisure activity.

In addition to the effect of geographical distance, previous studies demonstrated
that both types of tie formation—physical and virtual—are affected by dissimilarity in
populations-level characteristics, such as spoken language [80], cultural barriers [36], and
political or other interests [27, 28]. For example, residents of more similar socio-economic
background potentially share more common interests and opportunities to socialize [59].
The novel aspects addressed here concern the innovative application of spatial network-
analysis methodology to comprehensively model physical and virtual tie formation prob-
ability in different situations, with respect to SD settings as well as geographical distance.

Evaluating both distance and SD characteristics effects in the same model, our work is
the first to show that the effect of geographical distance was stronger by an order of mag-
nitude compared with the effects of SD characteristics dissimilarity—namely income, age,
and race differences. Furthermore, the “distance × SD” interactions had smaller and less
consistent effect size than the main effects. Finally, much of the variation in tie formation
probability remained unexplained. We hypothesize that other population characteristics
and common interests (such as political views) [24] may explain some of the remaining
variation.

The two study areas—US and GBA—were generally characterized by similar patterns
(Figures 5–7). The only substantial difference in tie formation determinants was observed
in relation to the effect of racial composition. Namely, follower tie formation in the GBA
was most frequent among nearby tracts of low racial composition similarity. We hypothe-
size that this unexpected result is caused by the relatively low variation in racial composi-
tion (84.1% white population) and concentration of other races in a few specific locations
(Figure S3) which may be characterized by relatively high follower tie rates, due to unac-
counted factors (such as economic activity). Conversely, follower, mobility, and commute
tie formation in the US as a whole showed a consistent pattern, whereby ties are formed
more frequently between counties of higher racial composition similarity (hypothesis 2).
This pattern is consistent with individual-based social network studies. For example, in a
national probability sample, only 8% of adults with networks of size two or more mention
having a person of another race with whom they “discuss important matters”, less than
one seventh the heterogeneity that we would observe if people chose randomly from the
population [56].
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The fact that our Twitter-based findings were in agreement across the two analyzed
scales and with the results of applying the same procedure to an independent data source—
the commute dataset—strengthens their validity (Figures 5–7). This suggests that our re-
sults do indeed reflect real-world human behavior, rather than being an artifact of LBSN
data [69]. Nevertheless we acknowledge the fact that assignment of individual-based data
into areal units and subsequently to SD characteristics of those units—which is common to
all three analyses—is associated with ecological fallacy [30]. We also acknowledge that geo-
tagged Twitter data are not a representative sample of the population [33, 55, 60], generally
biased towards younger users of higher income from urban areas. Furthermore, the data
obtained for each given user is not necessarily a random representation of their mobility
and social ties, for instance due to the fact that tweeting habits may be different depending
on where the user travels [82]. The potential bias due to these factors cannot be com-
pletely ruled out, though it is unlikely due to the above-mentioned agreement across scales
and methods, including the comparison to the census-based dataset on commute patterns.
Moreover, weighted model results (Table S2) were highly consistent with the unweighted
model results (Table 3), suggesting that Twitter data adequately represent population be-
havioral patterns with respect to the present study objectives. Similarly, Wang et al. [82]
found highly consistent results when comparing regression models weighted by the ratio
of Twitter users to the true population, in each geographic unit, with unweighted models.

Using a bi-directional network approach and directional predictors (income and age
difference) our results highlight and quantify the asymmetric nature of spatial segrega-
tion in society (hypothesis 3). Follower, mobility, and commute ties were more frequently
formed when directed towards areas of relatively higher median income and lower median
age. The observed directional income effect is in line with previous small-scale studies on
directional segregation in populations of contrasting socio-economic background. For ex-
ample, daily movement from poor areas into rich ones was more frequent than the other
way around in Bangkok’s highly unequal economy [86]. While “the poor work for af-
fluent residents in low-paid jobs as maids, cleaners, gardeners, drivers, or guards” thus
regularly traveling to high-income areas, the affluent citizens do not have similar reasons
to visit enclaves where poor people live [86]. A similar asymmetric mobility pattern was
observed between two contrasting socio-economic regions of Louisville, based on Twitter
data [76]. The present study confirms the generality of the phenomenon over the entire US,
and demonstrates its validity not only in physical but also in virtual space.

We hypothesize that areas characterized by lower (i.e., younger) median age may be
more economically influential and thus attracting more network attention, whether virtual
(more influential persons or companies to “follow”) or physical (more reasons to travel
towards the area, e.g., for work or for recreation). Additionally, it has been shown that
older people are disproportionately more likely to connect with younger ones, especially
their children, compared to the general age homophily in social relations [57], which could
further contribute to the asymmetry. Finally, areas with higher median income and lower
median age may be characterized by a higher proportion of relevant “experts” that provide
specialized knowledge, advice and services, thereby attracting further physical and virtual
attention in the network [13].

It should be noted that segregation patterns are not merely a direct outcome of SD pop-
ulation characteristics and physical distance, but they are also shaped by the pre-existing
spatial structure of cities. For example, Huang and Wong [30] analyzed travel patterns in
Washington, D.C., using Twitter data on census tract resolution, concluding that “the urban
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spatial structure, particularly where jobs are mainly found and the geographical layout of
the region, plays a critical role in affecting the variation in activity patterns between users
from different communities”. Although urban structure, rather than SD differences, may
also partially account for our results, we expect their role in our case to be minor, for sev-
eral reasons. First, we analyzed virtual as well as mobility ties and found similar patterns
in both. Virtual ties are clearly unconstrained by urban structure: any Twitter user can
follow any other user at the same “cost”, regardless of their spatial connectivity in the real
world. Second, our large-scale analysis (US counties)—where urban structure is largely
masked due to the aggregation of whole cities into the same areal unit—revealed similar
results when compared with the local-scale (GBA) analysis. Third, we expect that our large
sample of census tracts and counties covering a wide area (Table 2) to reflect a variety of
different urban structures, thereby avoiding bias towards any specific structure, such as the
one revealed in Washington, D.C. [30].

The present study comprises a first step towards a quantitative understanding of spa-
tial segregation based on virtual and physical activity in a large human population. Un-
derstanding social factors that shape spatial community formation may initiate progress
beyond exploratory community delineation [36, 64], towards modelling and prediction of
spatial segregation. Specifically, identifying the types of situations which result in strong
segregation may lead to better planning decisions for reducing its adverse effects. For ex-
ample, the presented methodology can be used by urban planners to calculate the expected
degree of physical and virtual segregation (Figures 5–7) between any given areal units, and
to evaluate the expected degree of segregation under different scenarios. Conversely, actual
metrics of segregation (Figure 2) can be contrasted with expected ones (Figures 5–7) (e.g.,
by calculating model residuals) to detect areas of unexpectedly high or low segregation
levels, for reasons other than income, age, and race. For example, a follow-up study could
investigate the potential causes of extremely low mobility or communication between ad-
jacent census tracts (Figure 2) which are otherwise similar in SD characteristics.

To conclude, in the present study we examined spatial segregation in physical and vir-
tual activity spaces, by applying a novel network-analysis approach to Twitter data. We
showed that spatial segregation is more enhanced in physical space than in virtual space.
The contribution of social characteristics to segregation was found to be smaller by an order
of magnitude compared with geographical distance. Nonetheless, SD effects were ubiqui-
tous and consistent at both region- and country-scale, and in virtual and physical ties alike.
Specifically, tie formation was more frequent between pairs of areas characterized by more
similar racial composition, and between pairs of areas where the “destination” has higher
median income and lower median age. The presented methodology can help identify and
map the intangible barriers for populations movement in physical space and their commu-
nication in the virtual one. Understanding the formation of such barriers is the first step
towards reducing the negative effects of spatial segregation in human society.
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