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Abstract: Mobility is central to urbanity, and urbanity is central to our common future as
the world’s population crowds into urban areas. This is creating a global urban mobility
crisis due to the unsustainability of our 20th century transportation systems for an urban
world. Fortunately, the science and planning of urban mobility is transforming away from
infrastructure as the solution towards a sustainable mobility paradigm that manages rather
than encourages travel, diminishes mobility and accessibility inequities, and reduces the
harms of mobility to people and environments. In this essay, I discuss the contributions
over the past decade of movement analytics to sustainable mobility science and planning. I
also highlight two major challenges to sustainable mobility that should be addressed over
the next decade.
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1 Introduction

An epochal event in human history occurred in 2008, the world became majority urban for
the first time. Urbanization is accelerating: two-thirds of the global population will live
in cities by 2030 [44], with some predicting an essentially urban world by the end of the
century [5]. A world of 10 billion people living predominantly in cities—of which 60%
globally have yet to be built [45]—underscores the critical need and immense opportunity
for new scientific and policy approaches that can achieve sustainable urban systems.

Mobility is central to urbanity. Transportation is how we organize our cities [1]. While
the automobile has generated stunning levels of mobility over the past century, it has also
led to urban mobility systems that are utterly unsustainable; they are inefficient, costly,
inequitable, unsafe, unhealthy, and environmentally damaging at local to global scales.
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This is driving a mobility crisis that will worsen as the world continues to urbanize [23,37].
The COVID-19 pandemic vividly demonstrates the lack of resilience in our urban mobility
systems, and tensions between sustainable practices, such as living at density and using
mass transit. However, there is danger in moving away from the compact urban forms
we have been nurturing for the past three decades [6]. If civilization is to survive the 21st

century, we must figure out how to design, build, and manage sustainable and resilient
urban mobility systems.

Thankfully, the science and planning of mobility and cities is changing. One indicator is
a change in semantics from the 20th century term “transportation” to “mobility” in science
and planning, shifting the focus from vehicles to humans. Another indicator is the slow but
persistent death of the 20th century “predict and provide” paradigm that forecasts future
travel demand and builds to meet it, not recognizing that the new infrastructure induces
new demand. Replacing this Sisyphean quest is a sustainable mobility paradigm that man-
ages rather than encourages travel and seeks to reduce inequities and harms to people and
the environment [3].

There is long-standing scientific interest in the purposeful movement of humans and
animals that is beginning to converge into an integrated science of movement [30]. In this
essay, I discuss some major contributions of movement analytics to sustainable mobility
science and planning over the past decade. I also highlight two major scientific challenges
to using these advances to foster sustainable mobility and cities.

2 Progress in movement analytics

2.1 Individual movement

In the past, we relied on simple data that was easy to collect, in particular, traffic counts.
But when we measure cars, we get more cars. The biggest impact movement analytics can
have on planning and policy is the development of people-based measures and analytics.
This allows sustainable modes such as walking, biking, and public transit to have a fair
fight with automobiles in evidence-based policy and planning. It is therefore comforting
that venerable mobility concepts such as the space-time path representing movement and
activities in space and time as the underlying cause are now core to how we approach
transportation and mobility [16].

Over the past decade, a key contribution from movement analytics are improved meth-
ods for map matching and trajectory annotation [49]. They facilitate better description of
movement patterns within infrastructure, linking moving objects to other physical and so-
cial data, and inferring the activities underlying observed mobility [9, 12, 25, 42]—a far cry
from the abstract networks and flows of 20th century transportation science. Map matching
also supports insights into active transportation such as walking and biking since these be-
haviors are sensitive to contextual factors such as streets and buildings, design, greenery,
and infrastructure condition (e.g., [22]). Embedding paths into geographic contexts also
supports efficient indexing and compression of massive trajectory data [35].

Another advance is the development of measures for quantifying geometric and se-
mantic similarity between space-time paths [8, 14, 50]. This allows sorting, clustering, and
aggregation of massive mobility data, supporting mobility data mining and exploratory
visualization for insights into heterogeneous mobility patterns. When linked with individ-
ual or georeferenced data, these measures reveal different mobility and activity constraints
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facing individuals along socioeconomic, demographic, gender, ethnicity, and ability di-
mensions, and the capacity of communities to serve these diverse mobility needs [38].

A revolutionary change is the deployment of low-cost sensors embedded in infrastruc-
ture, attached to vehicles and carried by people, including environmental sensors (air qual-
ity, temperature, humidity, noise, proximity), activity logs, accelerometers, cameras, micro-
phones, and, with wearable technology, heart rate, body temperature, stress, and other
physiographic measures. Fusing sensors and mobility data can support a wide range of
analyses for sustainable mobility, such as inferring travel modes [31], measuring differen-
tial exposure to air pollution, heat and stress during walking and biking [20], understand-
ing the relationships between mobility, the built environment and physical activity [43],
and capturing individual, qualitative experiences and barriers to mobility [7].

2.2 Accessibility

Accessibility is a multifaceted concept, painstakingly developed in the scientific literature
for a half century. While the use of accessibility as a planning objective and performance
measure has lagged, it now appears poised to transform mobility policy and planning [21].
The space-time prism (STP) is a core measure of accessibility in movement analytics. Major
advances in the STP over the past decade include a stronger analytical foundation in planar
and network space, enabling further enrichment of prism analytics and linkage with new
data sources, analytics, and models (see, e.g. [10]). The STP and related concepts of activity
space (human mobility) and home range (animal movement ecology) are being applied in a
broad range of applications [32].

Network time prisms (NTPs) have moved beyond street networks and cars to high fi-
delity representations of multimodal travel, including sidewalks, bike networks, public
transit networks and schedules, and real-time vehicle locations. Prisms can capture risk
due to congestion and delays [11], a burden that falls differentially on the poor. Prisms
also incorporate energy and emissions budgets in addition to time constraints, allowing
(for example) modeling impacts of electric vehicle charging station placement on accessi-
bility [27].

An alternative representation is movement as a space-time probability distribution,
modeled as a discrete random walk or continuous Brownian Bridge. Over the past decade,
researchers have integrated stochastic movement models with prisms to model random
movement bounded by space-time constraints [15,26,41,46,47]. This allows more nuanced
measures of space-time accessibility. It also allows linking prisms to models of energy
consumption and carbon emissions for estimating the expected environmental impact of
accessibility [40]

2.3 Collective movement

One of the sharper divides between human mobility science and animal movement ecology
is the treatment of collective movement. Animal movement ecologists have a tradition of
analyzing collective behaviors such as flocking, schooling, and social interaction [30]. In
mobility science, collective movement at this level has traditionally been the purview of
traffic engineers, with the objective of making cars move faster. However, sustainable mo-
bility science planning cares less about minimizing travel time than making it reasonable
and reliable. Indeed, it is often a good idea to slow movement down since this is safer and
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allows other types of mobility to flourish [3]. We are seeing cross fertilization between the
animal movement and human mobility communities to develop generic models for collec-
tive movement to support modeling of pedestrian and crowd behavior (see, e.g., [24, 33]).

Transportation science and planning has traditionally focused on macro-scale collective
movement, represented as flows through networks and between origin-destination pairs,
splits among different modes, and overall travel demands. A vital scientific challenge ques-
tion for movement analytics are methods for understanding the intricate and complex in-
teractions among individual and collective mobility at multiple spatial and temporal scales,
and how these dynamics link with other physical and human dynamics within urban sys-
tems.

In the next, and concluding, section of this essay, I will explain why we need to un-
derstand mobility and cities as complex collective systems. I will also describe a major
challenge in communicating scientific evidence to leaders, decision-makers, stakeholders,
and the public at large.

3 Scientific challenges for sustainable mobility

3.1 Mobility is complex

A need for new mobility solutions with enabling technologies such as the Internet, wireless
communication, and geopositioning has led to the development and rapid deployment of
new technology-enabled mobility services such as vehicle sharing, ride-sharing, bikeshar-
ing, micromobility, and microtransit. These innovations are disrupting the mobility land-
scape of cities, with even bigger transformations inevitable with the coming of connected
autonomous vehicles [17]. This is a grand, real-world experiment with profound impacts
on cities that will be difficult to unwind.

Whether new mobility services will make cities more sustainable is an open question,
one that will be difficult to answer using 20th century science. The metaphor of human
systems as machines has traditionally dominated transportation and urban science: we
thought we could understand these systems at disaggregate and aggregate levels only,
missing the sensitivity to context, intricate feedback loops, path dependency, and emer-
gent behavior that make collective space-time systems like cities more akin to ecosystems
than machines. This is why interventions often lead to unintended outcomes [34]. While
complexity science tells us that we cannot predict the future of cities, we can invent these
futures through more nuanced planning and policy [5].

As complex systems, mobility and cities must be understood one event or intervention
at a time. Improving capabilities to collect, integrate and share geospatial and moving ob-
jects data in an open-ended, ongoing basis are creating new opportunities for opportunistic
science that leverage anticipated and unanticipated events in the real world to gain deeper
understanding of how complex urban systems respond to interventions and shocks [29].
This can support the growing use of tactical urbanism: making local, provisional changes
to test impacts before wider deployment; examples include pop-up bus lanes, opening
streets for walking and biking on weekends, and parklets [39]. A grand challenge for
movement analytics are tools for extracting multiscale patterns from movement and other
spatio-temporal data in this new world of tactical experimentation and opportunistic sci-
ence.
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Another domain for experimenting with complex mobility and urban systems are sim-
ulated worlds. This allows mobility experiments that are difficult, infeasible, or unethical
in the real world. Also, despite limits on predicting the future of complex systems, there
are needs for visioning and scenario modeling. An emerging trend in mobility and urban
science is the use of digital twins, high-fidelity simulations of complex real world systems
to support operational, tactical, and strategic decision making [13].

3.2 Mobility is wicked

Sustainability means meeting the needs of current generations without compromising the
needs and aspirations of future generations, inclusive across environmental, social and
economic dimensions [4, 48]. However, sustainability is a wicked problem [36] in the sense
that it is multifaceted, has contested definitions, and difficult tradeoffs among dimensions,
such as balancing economic growth and environmental protection. This has led to scientific
methods that explicitly represent heterogeneous perspectives for problems that are urgent
but involve uncertain futures and values [18, 19]

Over the past decade, there have been ground-breaking advances in visual analytics
for movement data, going beyond scientific exploration to support operations, decision-
making, situational awareness, and planning [2]. A challenge for the next decade is to
broaden this engagement to include entire communities in shared decision making, coop-
eration, and collaboration to help invent future mobility systems that are sustainable and
resilient. The tensions between individual and collective outcomes is perhaps the crux of
the human mobility problem [28]. Helping communities navigate and resolve these ten-
sions can move us forward to a sustainable and resilient future.
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