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Abstract: In this paper GeoAI is introduced as an emergent spatial analytical framework
for data-intensive GIScience. As the new fuel of geospatial research, GeoAI leverages recent
breakthroughs in machine learning and advanced computing to achieve scalable process-
ing and intelligent analysis of geospatial big data. The three-pillar view of GeoAI, its two
methodological threads (data-driven and knowledge-driven), as well as their geospatial
applications are highlighted. The paper concludes with discussion of remaining challenges
and future research directions of GeoAI.
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1 Introduction

In the 2020s, the world is experiencing the greatest challenges ever regarding the degra-
dation of environmental quality, the more frequent occurrence of natural disasters, new
and reemerging diseases, and the surge in social unrest, among others. These global issues
are largely due to rapid population and economic growth, the excessive consumption of
natural resources, and growing levels of social inequality. Global climate change, which
yields increasingly extreme heat and droughts, resulted in intensified wildfires across the
world. In 2019, the bushfire in Australia caused 33 deaths, more than 2,000 houses were
damaged, nearly 15 million acres of land burned, and 480 million animals were killed [6].
In addition, the fire generated significant amounts of hazardous smoke, causing severe air
pollution and negative health consequences.

The Arctic, one of the Earth’s remaining frontiers, has also undergone dramatic changes
due to rising global temperatures. The Arctic permafrost is at high risk of thawing, in
which case an immense amount of carbon dioxide and methane will be released, which
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will further exaggerate the greenhouse effect and global warming [15]. In January 2020, a
novel coronavirus, COVID-19, emerged as a highly infectious disease that quickly spread
across the world. As of this writing, in April 2020, it has sickened more than 2 million
people and caused at least 130,000 deaths. Action needs to be taken to mitigate the negative
effects of these devastating events to ensure sustainable development and the well-being
of humankind [1].

It is clear that these global problems are geospatial in nature—they all occur at a certain
location on or near the Earth’s surface and have distinct space-time patterns due to different
geographical processes or interactive mechanisms between humans and nature. GIScience,
which deals with the collection, storage, analysis, and visualization of geospatial data, will
no doubt play a central role in tracking and mapping environmental and social phenomena
at and across different scales, projecting how these phenomena evolve, crafting theories
related to driving factors and processes, and setting policies to prevent and respond to
ongoing and emerging issues.

Three recent technological advances have prepared GIScientists to better tackle these
problems. First, the rapid development in Earth Observation (EO), wireless sensor net-
works, Internet and Communication Technology (ICT), and the prevalence of social media
platforms have fostered the explosive growth of geospatial big data available at very fine
spatial, temporal, and spectral resolutions [8]. These data allow us to study in near-real-
time the Earth, its changing environment, and human behavior at an unprecedented scale
and level of detail. Second, the recent breakthrough in machine learning, or more gener-
ally artificial intelligence (AI) and more specifically deep learning, enables a new research
paradigm—data-driven science—relying on which, massive geospatial data that are diffi-
cult to handle using traditional spatial analysis methods, can now be analyzed, mined, and
visualized. As a result, complex hidden patterns can be revealed, new questions can be
asked and answered, and new knowledge can be discovered. Third, the dramatic increase
in computational resources, such as Graphics Processing Units (GPUs) offers backbone sup-
port for the efficient training of machine learning models with big data. In addition, the
availability of cloud computing platforms to the public allows individual researchers to
build big data applications. All these revolutionary advances are shaping the future of
geospatial research.

2 GeoAI: a new power-up for geospatial research

GeoAI, or geospatial artificial intelligence, sits at the junction of AI, geospatial big data, and
high performance computing (HPC) to provide a promising solution technology for data-
or compute-intensive geospatial problems. Figure 1 illustrates the conceptual, three-pillar
view of GeoAI. As an interdisciplinary expansion of AI, the aim of GeoAI is for the machine
to gain the intelligence to perform spatial reasoning and analysis like humans. GeoAI de-
velops as AI evolves and it has two major method classes: knowledge-driven, known as the
top-down approach, and data-driven, known as the bottom-up approach. Without a doubt,
the data-driven approach, led by machine learning, has become the mainstream AI today
because of its outstanding ability to learn to make predictions from massive amounts of
data without the need to explicitly program the analytical rules. Deep learning, as a recent
breakthrough in machine learning, has transformed data analytics paradigm in two ways.
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Figure 1: A conceptual, three-pillar view of GeoAI.

First, deep learning models, such as convolutional neural networks (CNNs), have the
ability to automatically extract prominent features from the data to help differentiate object
classes so that accurate predictions can be made. This is a great advantage over traditional
spatial analytical approaches because deep learning allows for a more automatic and intelli-
gent method of feature extraction, a strategy which is especially helpful in solving big data
problems in which there is often limited prior knowledge about the underlying patterns
and processes within the data. Second, deep learning models introduce a local operation—
convolution—into the learning process, such that numerous interdependencies residing in
the global computation of traditional neural network models are broken down. This type
of model design makes it much easier to be parallelized and trained on a high-performance
or distributed computing environment. Even when a model structure goes very deep with
thousands to millions of parameters to learn, it is still very likely to converge with strong
predictive power.

Machine learning has also powered up the more traditional, top-down, ontological-
based GeoAI approaches. These approaches tackle spatial cognition problems, such as
semantic similarity measures [10], by leveraging ontology and logical reasoning. Differ-
ent from data-driven approaches, an ontological approach relies on a knowledge base
to provide semantic definitions of real-world entities and their interrelationships in the
format of <subject, predicate, object> triples. The knowledge discovery process follows
pre-defined reasoning rules and constraints and uses deductive reasoning to ensure that
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each newly derived fact can be formally validated with its reasoning path clearly traceable.
Although highly interpretable, this approach suffers from two drawbacks: (1) ontology
engineering—the process of constructing a knowledge base—heavily or even solely relies
on expert knowledge and manual work. Although a very deep structure can be estab-
lished to describe the complex relationships among entities, the human-centered approach
can hardly scale to make the knowledge base comprehensive to ensure its performance;
and (2) although ontology tries to capture the complexity in human logic, it needs to be
implemented in a way that is machine understandable so some simplification and abstrac-
tion are inevitable. This adds another layer of performance challenge in making accurate
predictions and decisions.

The recent notable progress of the knowledge graph and its combined use with machine
learning has elevated the ontological approach back to the forefront of GeoAI research.
Similar to an ontology, a knowledge graph is based on semantics and designed to infer
new knowledge and derive new insights. But the two differ in that an ontology normally
emphasizes depth, whereas a knowledge graph orients more with breadth. In this vein, an
ontology can serve as the schema which defines the semantic structure of domain knowl-
edge; a knowledge graph will follow this schema to “instantiate” the knowledge base with
millions to even trillions of triples for scalable geospatial applications. To achieve a size
like this, it is imperative to rely on machine learning for the automatic construction of a
knowledge graph. Knowledge inference will also build on recent advances in machine
learning, such as graph neural network and embedding techniques to achieve automation
and intelligence.

Both methodological threads of GeoAI have widespread applications in geospatial do-
mains. The remote sensing community has extensively used CNN for scene classification
(natural and urban), change detection, and other image analysis tasks [9,18,19]. Deep learn-
ing has been leveraged to support cartographic tasks such as generalization, smart map-
ping, and map element inspection [16]. Machine learning has been increasingly used for
the semantic and sentiment analysis of social media data and other natural language text
documents [3]. In spatial information retrieval, the knowledge graph has become a key
component and the backbone technology for intelligent question answering, hidden link
prediction, and semantic search, among other things [11]. Multi-dimensional geospatial
data, such as lidar and scientific data from numerical simulation models, can also benefit
from the processing power such as 3D CNN for 3D object detection and event classifica-
tion [13]. Time-series data, streamed from Internet of Things (IoT) sensors, can take ad-
vantage of Recurrent Neural Networks (RNNs) to achieve real-time predictions and analy-
ses [14]. The diversity in geospatial data and the prevalence of location-based service make
GIScience a natural home for these uses and the boom of AI.

3 Concluding remarks

Although exciting progress has been made, GeoAI remains in an early stage. Many tech-
nical challenges, such as the lack of good quality training data, uncertainty modeling, ge-
ographical transferability of a model result, and cross-scale and cross-resolution learning
have yet to be addressed [5]. To further advance GeoAI and establish it as a cornerstone of
GIScience, progress needs to be made in the following areas:

www.josis.org

http://www.josis.org


GEOAI 75

3.1 Integrated GeoAI

As discussed, both data-driven GeoAI and knowledge-driven GeoAI have their strengths
and weaknesses. Data-driven models often tackle problems by following the “trial and
error” strategy without guidance from theory or prior knowledge. They achieve high
predictive power by building complex models while sacrificing model interpretability.
Knowledge-driven approaches have strong expressive power but less satisfying predic-
tive performance due to the many constraints applied on a model. An integrated GeoAI
approach, which uses domain knowledge to guide the design of data-driven models, will
simplify model design, reduce training time, increase model expressiveness, and augment
decision power.

3.2 Fasten two-way knowledge transfer in GeoAI research

Although a large number of research projects have been conducted for applying AI for
geospatial problems, the study of GeoAI should not merely involve a simple import of AI
to geography. A two-way knowledge transfer from both “AI” to “Geo” and “Geo” to “AI”
has to be enabled in order to establish GeoAI as a research field that creates impact within
and beyond the geospatial domain. Some pioneer research along this line (i.e., spatially-
explicit GeoAI models) has been proposed [7]. In future research, it is critically important
to integrate spatial thinking and spatial principles into the GeoAI model development to
make the model smarter at solving geospatial problems and developing artificial geospatial
intelligence.

3.3 GeoAI-enabled convergent GIScience

The newer science landscape is leaning toward the conduct of convergence research which
requires the seamless integration of theories, knowledge, tools, and expertise across tra-
ditional discipline boundaries for tackling complex problems in a collaborative manner.
Space and time could serve as the nexus of the web of knowledge. For the challenging en-
vironmental and public health problems mentioned in the beginning of the paper, GeoAI
will and should play a key role in fusing massive datasets, performing intelligent analysis,
enabling interactive question answering for both researchers and the general public, as well
as providing decision-support capabilities for planners and stakeholders. Hence, besides
fundamental research, it is essential to deepen and broaden applications of GeoAI toward
addressing big and bigger problems, for the benefit of society in realizing convergent GI-
Science.

Without a doubt, the advances in GeoAI will help address societal challenges such as
disease outbreaks, natural disasters, and climate change. With situations related to COVID-
19, for example, GeoAI is being applied to support the rapid collection of data from mul-
tiple sources regarding the global environment, social economy, transportation, human
mobility, and confirmed cases. The advanced analytics and machine learning capabilities
that GeoAI offers facilitate the timely identification of vulnerable populations in this pan-
demic [4]. It is also being leveraged to evaluate social distancing effects [17] and to forecast
impacts on hospital resources [12]. Together, these will improve the understanding of dis-
ease transmission patterns and provide scientific support for governments to enact plans
to protect its citizens and save lives.
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This technology can also be used to detect patterns and discover explanatory spatial
models from big data [2]. In this way, the mechanics of spatial processes, such as the spread
of wildfire and the formation and development of tropical storms can be better understood.
All these disastrous events, whether naturally occurring or caused by humans, are related
to long-term changes throughout the world. GeoAI, through its combined use with big
data and knowledge-driven approaches, will contribute to the discovery and validation of
new theories and science, thereby enriching and helping sustain our global environment
and society.

Acknowledgments

This research was in part supported by National Science Foundation, grant number
1853864, 1455349, 1937908, and 1936677.

References

[1] ELLIOTT, J. An introduction to sustainable development. Routledge, 2012.

[2] GAHEGAN, M. Fourth paradigm giscience? prospects for automated discovery and
explanation from data. International Journal of Geographical Information Science 34, 1
(2020), 1–21.

[3] GAO, H., AND LIU, H. Data analysis on location-based social networks. In Mobile
social networking. Springer, 2014, pp. 165–194.

[4] HEROSIAN, L. Clinical AI Leader Jvion Launches COVID
Community Vulnerability Map. https://jvion.com/news/press/
clinical-ai-leader-jvion-launches-covid-community-vulnerability-map, 2020. Last
Accessed April 15, 2020.

[5] HU, Y., GAO, S., LUNGA, D., LI, W., NEWSAM, S., AND BHADURI, B. Geoai at acm
sigspatial: progress, challenges, and future directions. SIGSPATIAL Special 11, 2 (2019),
5–15.

[6] HUTT, R. Australia bushfires: 5 things to know about the crisis. https://www.
weforum.org/agenda/2020/01/australia-bushfires-size-impact-wildlife-emissions/,
2020. Last Accessed Feb 20, 2020.

[7] JANOWICZ, K., GAO, S., MCKENZIE, G., HU, Y., AND BHADURI, B. Geoai: Spatially
explicit artificial intelligence techniques for geographic knowledge discovery and be-
yond.

[8] LI, W., BATTY, M., AND GOODCHILD, M. F. Real-time gis for smart cities. International
Journal of Geographic Information Science 34, 2 (2020), 311–324.

[9] LI, W., AND HSU, C.-Y. Automated terrain feature identification from remote sensing
imagery: a deep learning approach. International Journal of Geographical Information
Science 34, 4 (2020), 637–660.

www.josis.org

https://jvion.com/news/press/clinical-ai-leader-jvion-launches-covid-community-vulnerability-map
https://jvion.com/news/press/clinical-ai-leader-jvion-launches-covid-community-vulnerability-map
https://www.weforum.org/agenda/2020/01/australia-bushfires-size-impact-wildlife-emissions/
https://www.weforum.org/agenda/2020/01/australia-bushfires-size-impact-wildlife-emissions/
http://www.josis.org


GEOAI 77

[10] LI, W., RASKIN, R., AND GOODCHILD, M. F. Semantic similarity measurement based
on knowledge mining: An artificial neural net approach. International Journal of Geo-
graphical Information Science 26, 8 (2012), 1415–1435.

[11] MAI, G., JANOWICZ, K., YAN, B., AND SCHEIDER, S. Deeply integrating linked data
with geographic information systems. Transactions in GIS 23, 3 (2019), 579–600.

[12] MURRAY, C. Forecasting covid-19 impact on hospital bed-days, icu-days, ventilator-
days and deaths by us state in the next 4 months. medRxiv (2020).

[13] QI, C. R., SU, H., MO, K., AND GUIBAS, L. J. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 652–660.

[14] REICHSTEIN, M., CAMPS-VALLS, G., STEVENS, B., JUNG, M., DENZLER, J., CAR-
VALHAIS, N., ET AL. Deep learning and process understanding for data-driven earth
system science. Nature 566, 7743 (2019), 195–204.

[15] SMITH, J. Climate change: Scientific evidence and the industry of denial. The Missouri
Review 40, 3 (2017), 187–201.

[16] TOUYA, G., ZHANG, X., AND LOKHAT, I. Is deep learning the new agent for map
generalization? International Journal of Cartography 5, 2-3 (2019), 142–157.

[17] XU, P., DREDZE, M., AND BRONIATOWSKI, D. A. The twitter social mobility in-
dex: Measuring social distancing practices from geolocated tweets. arXiv preprint
arXiv:2004.02397 (2020).

[18] ZHANG, L., ZHANG, L., AND DU, B. Deep learning for remote sensing data: A tech-
nical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4, 2
(2016), 22–40.

[19] ZHU, X. X., TUIA, D., MOU, L., XIA, G.-S., ZHANG, L., XU, F., AND FRAUNDORFER,
F. Deep learning in remote sensing: A comprehensive review and list of resources.
IEEE Geoscience and Remote Sensing Magazine 5, 4 (2017), 8–36.

JOSIS, Number 20 (2020), pp. 71–77


	Introduction
	GeoAI: a new power-up for geospatial research
	Concluding remarks
	Integrated GeoAI
	Fasten two-way knowledge transfer in GeoAI research
	GeoAI-enabled convergent GIScience


