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ABSTRACT 
 
 
 

The significance and nature of basal metabolic rate, a metabolic parameter 

recorded under specific laboratory conditions, are contested among biologists. Although 

it was most likely important in the evolution of endothermy in mammals and is associated 

with many other traits inter- and intra-specifically, the specifics of its heritability and its 

genetic determinants are largely unknown.  Two bioinformatics pipelines are available 

which can associate traits with their genetic correlates given only whole genomes and 

phenotypes for each animal. However, extant pipelines were created with binary traits in 

mind. This leaves a void in our ability to associate continuous traits such as basal 

metabolic rate with genetic regions that influence them. To fill this gap, I developed a 

technique to augment the existing forward genomics pipeline developed by Hiller et al. 

(2012) by repeatedly analyzing a continuous trait converted to a binary trait via 

increasing thresholds. The results of my analysis identified a list of genes that have 

changed more from a reconstructed ancestral state in high BMR than in low BMR 

mammals. However, the list of genes did not appear to be enriched for genes associated 

with any biological process, function, or component clearly related to metabolism. 

Applying these analyses to other continuous traits could provide context for whether this 

result is unique to BMR, which could make a statement on its lack of straightforward 

genetic underpinnings, or is a result of the limitations of the forward genomics pipeline. 
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INTRODUCTION 

BMR and the Evolution of Endothermy 

Basal metabolic rate (BMR) is the rate of metabolism of an endothermic animal 

which is fully grown, post-absorbtive (not digesting food), non-reproducing, resting at a 

normal body temperature, and in an inactive phase of its circadian rhythm (Genoud et al. 

2018). These stringent conditions maximize the comparability of BMR between species 

and lead researchers to use the measurement as a proxy to compare metabolic intensity 

and minimal energy expenditure among birds and mammals (Lovegrove 2000; Genoud et 

al. 2018). In mammals, BMR is an important parameter because of its relationship to the 

production of body heat. The basal metabolic rate of endotherms is five to ten times that 

of the equivalent parameter in ectotherms, standard metabolic rate (Bennett and Ruben 

1979; Garland and Albuquerque 2017) and was likely under selection in early mammals 

as they developed endothermy as far back as the Permian and through to the Cenozoic 

period (Lovegrove 2012, 2017). Multiple competing theories have been proposed 

describing the selective pressures that may have led to the increase of BMR and 

corresponding increase in body temperature in mammals despite the apparent energetic 

cost of those traits (Lovegrove 2012).  
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Figure 1. Comparison of basal and standard metabolic rates of example mammals (endotherms) and lizards 
(ectotherms) of similar masses. Photo credits: Hoary bat, Forest and Kim Starr; pygmy mulga monitor, 
Sergio of Reptile Highway Inc., ring-tailed cat, National Parks Service; black iguana, Parks Service of 
Costa Rica. Data from Genoud et al. (2018) and Garland et al. (2017). 
 

Researchers disagree as to whether BMR developed under selection for higher 

body temperature or if high body temperature was simply a byproduct of increased BMR 

(Seebacher 2020). The Aerobic Capacity Model argues that BMR first increased as a 

consequence of selection for increased maximum metabolic rate to support vigorous, 

sustained activity and locomotion (Bennett and Ruben 1979; Lovegrove 2012). This 

model makes the assumption that basal metabolic rate initially increased as a side effect 

of the selection on maximum metabolic rate. If this were the case, it might be expected 

that the two would also be linked in mammals today. Results of studies evaluating 

correlation between minimum metabolic rate (which BMR is often used as a proxy for) 

and maximum metabolic rate or aerobic capacity have been mixed (Sadowska et al. 2005; 

Auer et al. 2017). For example, studies have shown that basal metabolic rate and peak 

Both weigh 20 
grams 

Both weigh 865 
grams 

Hoary Bat 
Lasiurus cinereus 

Pygmy Mulga Monitor 
Varanus gilleni 

Ring-Tailed Cat 
Bassariscus astutus 

Black Iguana 
Ctenosaura similis 

BMR: 16.6 mL O2/hr SMR: 3.6 mL O2/hr 

BMR: 371 mL O2/hr BMR: 155 mL O2/hr 
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metabolic rate are correlated in wild armadillos (Boily 2002) but also that it is possible 

for selection for mass-independent maximal metabolic rate to happen independently of 

basal metabolic rate in laboratory mice (Wone et al. 2015). Other models describing the 

origin of endothermy include the Parental Care Model, the Assimilation Capacity Model, 

the Correlated Progression Model, and the Plesiomorphic-Apomorphic Endothermy 

Model. The Plesiomorphic-Apomorphic Endothermy Model proposes that endothermy 

developed under pressures described by all of the above models from a plesiomorphic or 

ancestral state where mammals exhibited limited periods of adaptive endothermy to an 

apomorphic homeothermic state exhibited by some modern mammals (Lovegrove 2012).  

Both intra- and inter-specific analyses of the level of BMR are worthwhile in 

investigating the role of BMR in the evolution of endothermy. Intra-specific analyses 

may be able to more accurately inform inference regarding natural selection because 

natural selection occurs on the population and species levels, inter-specific comparisons 

can work with the greater degree of inter-specific genetic and phenotypic variation, 

improving the power of statistical analysis (Konarzewski et al. 2005; Konarzewski and 

Książek 2013).  

 

Traits Associated With BMR 

The trait most strongly associated with basal metabolic rate in mammals is body 

mass, which is responsible for up to 96.8% of the inter-species variation in BMR (McNab 

2008). However, there is also a large amount of variation in BMR even among 

mammalian species of similar mass (Figure 2) (Lovegrove 2003; Genoud et al. 2018). 

Remaining variation in mammalian BMR can be determined in part by use of torpor, 
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habitat, type of reproduction, restricted range (McNab 2008),  environmental 

temperature, environmental productivity, rainfall, likely mitochondrial function, and, 

more controversially, diet and brain size (Lovegrove 2003; White and Kearney 2013). 

Because these factors are not evenly distributed between phylogenetic groups and 

zoogeographic regions, it is difficult to determine which would be associated with BMR 

independent of evolutionary history and which are the result of phylogenetic biases and 

constraints (Lovegrove 2000). One way that researchers interested in comparative studies 

can control for the correlation between BMR and mass is by calculating a mass-

independent BMR residual. They do this by subtracting the prediction of a linear 

regression for a species with a certain mass from the species’ actual mass-independent 

BMR to quantify the difference between a species’ BMR and the BMR which would be 

predicted based on the regression for a species of its mass (Figure 3). The mass-

independent BMR residual allows researchers to make statements about how slow or fast 

an organism’s metabolism is for its size and investigate other factors influencing the 

diversity in BMR (Lovegrove 2003). 
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Figure 2.  Basal metabolic rates of mammalian species plotted over body mass. Mammalian BMR varies 
allometrically with mass but is diverse even among mammals of the same mass. A linear regression of 
BMR over body mass, not corrected for phylogenetic relatedness, is shown as a red line. Plotted with data 
from Genoud et al. (2018). 
 
 

 
 
Figure 3. Mammalian BMR per gram of body mass plotted against body mass. Lighter mammals tend to 
have higher BMRs per gram of body mass. Mass-independent log10 BMR residuals are used to position 
mammals on a slow-fast metabolic continuum (Lovegrove 2003) and investigate correlation of BMR with 
other factors. Plotted with data from Genoud et al. (2018).  
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Complicating analyses of the inter-specific determinants of BMR further is the 

less studied incidence of intra-specific variation in basal metabolic rate (reviewed by 

Konarzewski and Książek 2013). Inter-specific analyses rely on one mean value 

accurately representing BMR in each species, despite variation among individuals and the 

differences between BMRs of species included in studies being large enough to make 

intra-specific variation irrelevant (Konarzewski and Książek 2013). Intra-specifically, 

BMR is correlated with organ masses (Konarzewski and Książek 2013; White and 

Kearney 2013) and degree of proton leak within cells (Konarzewski and Książek 2013), 

as well as varying between wild populations of the same species living in different 

environments (McNab 2008). Artificial selection targeting higher BMR has been found to 

effect food consumption, voluntary activity levels, immune responses, erythrocyte sizes, 

oxidative enzyme capacity, and fat mass (Konarzewski and Książek 2013). Notably, 

artificial selection for higher BMR did not appear to affect oxidative capacity on a 

treadmill and also did not correlate significantly with body temperature (Konarzewski 

and Książek 2013).  

Another factor confounding both inter- and intra-species studies of basal 

metabolic rate is the effect of experimental conditions. Inclusion of species BMR values 

measured under imprecise or inconsistent conditions can have strong effects on 

interspecific comparative studies of small clades and smaller effects even on studies of 

large clades, such as all mammals (Genoud et al. 2018). Limited studies on temperate and 

polar species also indicate that the season when the BMR measurement is collected may 
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have an effect, with winter-acclimatized individuals having higher basal metabolic rates 

than summer-acclimatized ones (Lovegrove 2005).  

BMR in Energetics 

Even when consistent measurements are collected, the utility and significance of 

BMR are unclear. Some researchers now acknowledge that BMR represents a benchmark 

of metabolism under standardized conditions, rather than the lowest metabolic rate that 

an animal can produce. Metabolic rate falls below BMR under some conditions (White 

and Kearney 2013). For example, in a sample of 69 adult human subjects, metabolic rate 

during sleep fluctuated throughout the night and dropped to 90% of BMR for a period 

(Seale and Conway 1999). The fact that metabolic rate may regularly drop below BMR 

even in mammals which are not capable of torpor calls into question the validity of past 

and current research that uses BMR as “a measure of the minimal intensity of the 

metabolic machinery of a normothermic endotherm, or as a proxy for energy expenditure 

or requirements of endotherms” (Genoud et al. 2018). Both basal metabolic rate and 

resting metabolic rate have been accepted at times as measurements of “minimum” 

endotherm metabolism (Auer et al. 2017). Though researchers should use caution in 

discerning which applications of BMR are valid, it remains impressive as a highly 

studied, standardized metabolic parameter that can be compared among at least 817 

species of mammals (Genoud et al. 2018). 

Unravelling the Genetic Determinants of BMR 

Understanding the genetics and genomics of basal metabolic rate has the potential 

to lend insight into the evolution of higher basal metabolic rate in mammals, causal 

relationship with associated phenotypes, and degree of genetic determination and 
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heritability. However, its entanglement with many other phenotypes, some of which have 

their own genetic determinants and some of which may be the result of acclimatization, 

makes identifying genes that influence BMR challenging.  

Different hypotheses about the evolutionary origins of BMR result in different 

predictions for what its genetic signature should look like today. While some believe that 

BMR evolved to support endothermy to allow organisms to sustain stable temperatures 

aiding in the development of offspring, others argue that BMR evolved under pressures 

independent from its impact on endothermy, such as the capacity for higher maximum 

metabolic rate or aerobic capacity, and that endothermy may just be one possible result of 

this adaptation (Seebacher 2020). Whether body temperature was the target of selection 

driving evolution of BMR or a side effect of selection for another trait, the two traits 

eventually became decoupled as mammals were placed under strong pressure to adapt to 

colder climates (Avaria-Llautureo et al. 2019). A model relying heavily on the 

assumption that basal metabolic rate is linked to aerobic capacity predicts that the same 

positive genetic correlation between BMR and maximum metabolic rate present in early 

mammals should still exist in species under selection today, as it is an inherent part of 

how metabolism works (Hayes 2010; Nespolo et al. 2011; Konarzewski and Książek 

2013). A more moderate form of the model predicts that the genes responsible for the 

large heritable variations in BMR and aerobic capacity in early mammals have since 

become fixed in mammal lineages because their adaptive advantages were so great. This 

would mean the genes that cause intraspecific variation in BMR today may not be the 

same as the genes that caused variation in early mammals (Nespolo et al. 2011; 

Konarzewski and Książek 2013).  
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Although studies focusing on the genomic determinants of variability in BMR 

were nonexistent as of  2013 (Konarzewski and Książek 2013), since then, a handful of 

genome-wide association studies on BMR and the adjacent metabolic phenotype RMR in 

humans have suggested genes that could be associated with the trait. Single nucleotide 

polymorphisms in the genes NRG3, OR8U8, BCL2L2-PABN1, PABN1, and SLC22A17 

were associated with both BMR and body mass index while single nucleotide 

polymorphisms in FGGY, PTPRD, NPAS3, PKD1L2, and SETBP1 were associated with 

BMR alone in Korean women (Lee et al. 2016). These genes are thought to regulate 

metabolic pathways related to obesity (Kim et al. 2019). Mutations in the gene GPR158 

have been associated with lower RMR and energy expenditure in  individuals from the 

Pima Nation of American Indians (Piaggi et al. 2017). Another group of genes which 

some expect to be related to BMR are mitochondrial carrier proteins including UCP-1, 

which is essential for non-shivering thermogenesis in brown adipose tissue (Dulloo and 

Samec 2001; Ricquier 2011), although this expectation is tempered by the fact that 

transgenic mice with heightened UCP-1 activity in skeletal muscle did not display 

increased weight-specific BMR (Klaus et al. 2005; Konarzewski and Książek 2013) and 

non-shivering thermogenesis occurs below the thermoneutral zone, at lower temperatures 

than BMR is measured by definition. If high BMR in endotherms is due to different 

regulation of genes also present in ectotherms, a wide range of regulatory proteins may 

also be implicated (Konarzewski and Książek 2013).  
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Forward Genomics Approaches 

Two publications, one by Hiller et al. (2012) and one by Marcovitz et al. (2019),  

outline different inter-species genomic analyses that associate shared phenotypes with 

conserved genomic regions given inputs of phenotypes and annotated genome assemblies 

(Hiller et al. 2012; Marcovitz et al. 2019).  

One of these methods for uncovering genetic correlates of a phenotype is the 

functional enrichment test for convergent evolution published by Marcovitz et al. (2019). 

This approach relies on the assumption that when species from different branches of the 

mammal phylogeny develop a convergent trait, trait-related genes should demonstrate 

amino acid convergence as well (Marcovitz et al. 2019). The Marcovitz et al. (2019) 

analysis reconstructs the likely ancestral states of genes conserved in mammalian 

lineages which share convergent traits and their outgroups. Next, it searches those genes 

to flag those which contain more convergent amino-acid substitutions in target lineages 

with a similar phenotype than in their outgroups. The analysis filters out genes which 

converge due to relaxation of selection rather than convergent selection by removing 

genes with an increase in divergent amino acid substitutions as well as convergent ones 

from the results. Finally, the resulting list of genes is examined for gene ontology terms, 

records of what molecular functions, cellular components, biological processes, and 

anatomical features genes are associated with based on prior lab studies of knockout and 

RNA sequencing studies. Examining which gene ontology terms are more associated 

with the experimental dataset than in a control group allows researchers to determine 

whether a higher proportion of phenotype-associated genes are returned by their analysis 

than would be expected to appear by random chance. The authors primarily framed this 
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method as a way of determining whether a convergent genetic element is present in the 

evolution of a convergent trait rather than as a way of identifying individual trait-

associated genes (Marcovitz et al. 2019).  

The forward genomics pipeline developed by Hiller et al. (2012) relies on the 

opposite assumption: When a phenotype is lost, genomic regions that were associated 

with that phenotype will begin to accumulate random mutations and diverge. Like the 

Marcovitz et al. (2019) approach, the forward genomics approach uses ancestral state 

reconstruction. By searching for regions which deviate from the reconstructed ancestral 

sequence more in species that lack a phenotype than species which retain the phenotype, 

the forward genomics pipeline identifies genes likely to be associated with the phenotype 

(Hiller et al. 2012). Researchers used the forward genomics pipeline to correctly identify 

the inactivated Gulo gene associated with loss of the vitamin C synthesis-capable 

phenotype by inputting only the full genomes of a set of mammals and information about 

which species in the set had lost the phenotype (Hiller et al. 2012).   

The Hiller et al. (2012) forward genomics pipeline requires a multiple genome 

alignment of mammals and some outgroup species as well as a list of regions highly 

conserved in vertebrates. A tool called Prequel is then used to reconstruct ancestral 

sequences for those regions conserved in at least one outgroup species (Siepel et al. 2005; 

Hiller et al. 2012). For each genomic region, the sequence in each in-group species is 

assigned a percent identity from 0 (complete loss) to 100 (complete identity) based on its 

nucleotide identity with the reconstructed ancestral sequence. It outputs regions which 

have at least 1% less identity with the ancestral species in all trait-loss species than in all 

trait-retaining species with a percent identity value for that trait (Figure 4). 
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Figure 4. Visualization of the process of using the Forward Genomics pipeline to uncover genes associated 
with the ability to synthesize vitamin C. A) A small sample of the mammalian tree. Branches where a 
species has lost the ability to synthesize vitamin C are marked with a red X, while black checks represent 
the ability to synthesize it. B) A table recording whether a species retains the phenotype of interest. In this 
example, species which are trait-preserving retain the ability to synthesize vitamin C. C) Bars represent an 
orthologous section of the genome in the four species, with segments representing individual genes. Blue 
segments share a high percent genetic identity with the predicted ancestral gene sequence, while grey 
segments have low identity. The segments marked with red arrows are likely related to the vitamin C 
phenotype because they have deviated more from the ancestral state in all species which have lost that 
phenotype than in all species which have retained the phenotype. Modified from Hiller et al. (2012). 

 

The major obstacle to applying either the Marcovitz et al. molecular convergence 

method or the Hiller et al. (2012) forward genomics method to BMR is the fact that BMR 

is a continuous value, not a binary trait. I chose to focus on adapting the Hiller et al. 

(2012) forward genomics pipeline in my thesis rather than the Marcovitz et al. pipeline 

(2019) for three reasons: First, the forward genomics pipeline analyzes a larger selection 

of conserved genetic regions because it includes non-gene region. The Marcovitz et al. 

A. B. 

C. 

Species Trait 
Preserving

s 

Trait  
Loss 

rabbit 

horse 

monkey 

bat 
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(2019) method includes only coding genes because they can be analyzed for amino acid 

convergence. Second, the forward genomics pipeline is more accessible to me because it 

is available through a public user interface at http://phenotree.stanford.edu/public/html/ 

and the Levesque lab is in contact with the Hiller group as part of existing projects. 

Finally, there is precedent for applying the forward genomics pipeline to continuous 

traits.  

As well as using it to correctly identify L-gulono-lactone oxidase (Gulo), a gene 

necessary for the ability to synthesize vitamin C in mammals, Hiller et al. (2012) used the 

pipeline to associate the ATP binding cassette subfamily B member 4 gene (Abcb4) with 

low levels of biliary phospholipids in guinea pigs and horses. The researchers pointed out 

a large difference between the guinea pig and horse biliary phospholipid levels (0.11 and 

0.38 mM respectively) and the levels of other mammals, which are usually well above 1 

mM. They tested the guinea pig in the trait-loss group alone, which resulted in a list of 

genes too long to analyze. They then grouped the guinea pig and horse, which resulted in 

only 8 potential phenotype-associated genes, one of which was known phospholipid 

transporter Abcb4. The researchers did not attempt to determine which genes might be 

associated with intermediate phospholipid levels, treating the low and high end of biliary 

phospholipid levels essentially as a binary condition and only testing thresholds until they 

found the correct threshold to reveal a likely trait-associated gene (Hiller et al. 2012). 

Commenting on their findings, Hiller et al. suggested that the method may have 

“potential applicability to continuous traits by testing different thresholds” (Hiller et al. 

2012). Using the forward genomics pipeline to analyze BMR offers an opportunity to test 

this possibility more extensively.  
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My thesis project investigates whether the Hiller et al. (2012) forward genomics 

analysis can be applied to BMR through an extension of the simple binning approach 

used in their analysis of Abcb4. By running the analysis multiple times on the same data 

set with low and high groups divided according to increasing thresholds and filtering the 

results according to additional assumptions, it may be possible to reveal genes which 

have been lost independently by mammals that convergently evolved increased metabolic 

rate. If the analysis yields useful results, it could also suggest the usefulness of the 

approach in analyzing other continuous traits.  
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METHODS 

Basal Metabolic Rate Dataset  

BMR data were taken from a subset of the highest quality measurements from the 

most recent mammalian BMR dataset (Genoud et al. 2018). Mass-independent log10 

BMR residuals were then calculated using BMR and body mass (Lovegrove 2003). 

Eleven species were present both in the online forward genomics tool and the high 

quality BMR dataset (Table 1). 

Table 1. Species included both the online Hiller et al. forward genomics tool and the Genoud et al. (2018) 
BMR dataset. BMR residuals are calculated from a regression of mass-independent BMR and body mass 
with data from the Genoud et al. (2018) dataset. 

Common 
Name 

Binomial Name BMR Residual 

Chimp Pan troglodytes 
 

0.375 
 

Marmoset Callithrix jacchus -0.336 
 

Bushbaby Otolemur garnettii 
 

-0.112 
 

Tree Shrew Tupaia belangeri 
 

-0.122 

Mouse Mus musculus 
 

0.108 
 

Kangaroo Rat Dipodomys ordii 0.048 
 

Dolphin 
 

Tursiops truncatus 0.743 

Dog Canis lupus familiaris 
 

0.293 

Megabat Pteropus vampyrus 
 

0.503 

Hedgehog Erinaceus europaeus -0.142 
 

Shrew Sorex araneus 
 

1.142 
 

 

Modifying Forward Genomics for Continuous Traits 

Those affiliated with Hiller et al. released two implementations of the forward 

genomics pipeline. The first, released in 2012, works as described in the introduction and 
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returns genes which show less identity to the reconstructed ancestral sequence in all trait-

loss species than all trait-preserving species (Hiller et al. 2012). The second, published in 

2016, has the additional capability to correct for phylogenetic relatedness and rate of 

evolution, increasing the sensitivity of the results (Prudent et al. 2016). The newer 

implementation allows violations as long as a certain level of certainty can be maintained 

(Prudent et al. 2016).  

It would have been ideal to run the forward genomics pipeline on an entirely new 

alignment, taking advantage of the over 200 mammals now sequenced (Genereux et al. 

2020). However, running the forward genomics pipeline from the beginning would have 

involved converting a multi-genome alignment of these species into the correct format, 

annotating it with highly conserved regions, and implementing the rest of the forward 

genomics pipeline on the University of Maine’s ACG computer cluster. I was not able to 

obtain these resources in time to generate data for my thesis. Instead, I used the online 

interface made available for interacting with the Hiller et al. (2012) forward genomics 

pipeline. This web tool employs the 2012 implementation of the forward genomics 

pipeline and runs analyses against pre-generated percent identity files for genetic regions. 

Because the 2016 revisions function to increase sensitivity, continued use of the old tool 

may miss candidate genes but is unlikely to introduce false positives.   

The web tool uses a 33-way vertebrate alignment including mammalian species 

and outgroups that include the chicken, zebra finch, and lizard. The conserved regions 

were generated with PhastCons (Siepel et al. 2005) and drawn from annotations of known 

genes downloaded from the UCSC genome browser. Elements within 30 base pairs of 

one another were merged, and regions of at least 70 base pairs were retained after 
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merging. Potentially problematically for analysis of the BMR phenotype, regions in the 

mitochondrial chromosome were excluded. The mitochondria are an important site of 

energy production in the cell and their DNA encode proteins with metabolism-related 

functions (Lv et al. 2017).  

I ran the Hiller et al. forward genomics analysis multiple times, dividing species 

into high and low BMR groups based on a threshold that increased with each analysis. 

(Figure 5).  I then filtered the results according to a set of assumptions discussed under 

the subheading “Development of Assumptions.” 

 
Development of Assumptions 

I developed a set of assumptions building on those inherent to the Forward 

Genomics pipeline to filter the results for continuous trait-associated genes. 

Assumption 1. The same low-BMR associated genes should be lost or changed 

independently in more than one organism with high BMR. This assumption builds on 

those that form the foundation of the Forward Genomics pipeline. Importantly, it 

challenges the assumption that genomic regions which differ more from the ancestral 

state in all trait-loss organisms than all trait-preserving organisms differ due to relaxation 

of selection. The assumption may make sense when the lost trait is a binary trait. In the 

case of BMR, however, the trait “loss” group is simply the group which has changed 

from the ancestral condition. If a gene deviates more from the ancestral state in all high-

BMR “trait-loss” species than all low-BMR “trait-preserving” species, it is also possible 

that the gene has changed due to adaptation, either divergent or convergent. This 

assumption also acknowledges that the Forward Genomics pipeline will, by default, 

return a result even when a region is conserved in only one trait loss species out of the 
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trait loss group. Such a result would not provide information about a trait being 

independently lost in more than one species, so for this analysis, I set the Forward 

Genomics pipeline to return a result only if the genetic region was present in at least two 

trait-loss species.  

Assumption 2. Species with higher BMR should show more loss or change in 

low-BMR associated genes than species with lower BMR. The number of BMR-

associated genes in the output table was expected to increase as the BMR threshold 

increased.  

Assumption 3. Genes marked “loss” at a medium BMR should remain “loss” at 

high BMR. I removed genes which appeared in the results and then disappeared again as 

the threshold increased because they were not consistently associated with BMR above a 

given level. This filter for the loss signature of continuous-trait-associated genes narrows 

the search to return only genes that are consistently, and therefore potentially 

intrinsically, associated with independent increases in BMR across mammalian orders.  
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Figure 5: Visualization of augmentation to forward genomics pipeline. A) A continuous phenotype 
converted to a binary phenotype using bins. The “high” bin is shown in red, while the ”low” bin is shown 
in blue. The threshold between “low” and “high” for each bar is written above them. Depending on the 
threshold used to create bins, the same organism could have either “low” or “high” BMR. B) Example 
input data adapting the Forward Genomics pipeline to a continuous trait. The data has been binned using 
progressively higher thresholds. BMR data from Genoud et al. 2018. C)  Example output data from the 
modified Hiller et al. pipeline. Genes are listed along with their Mouse Genome Informatics gene symbols 
and which thresholds resulted in their detection. Genes listed as “loss” had lower percent identity with the 
common ancestor in all species with loss phenotype (high BMR) than all species with preserved phenotype 
(low BMR) when a particular threshold determined the species with the loss phenotype. Photography 
credit: US Fish and Wildlife Service. 
  

A. 

B. 

C. 

Kangaroo Rat 
Dipodomys ordii 

BMR vs. Mass 
Residual: 

Threshold for “high” phenotype: 

Species BMR  
Residual 

Threshold 
-0.1 

Threshold 
0 

Threshold 
0.1 

Threshold 
-0.1 

Threshold 
0 

Threshold 
0.1 

Gene 
Name 

Gene 
Symbol 

mouse 
kangaroo rat 
megabat 
hedgehog 

High High High 

High Low Low 
High High Low 

Low Low Low 

Loss Loss 

Loss Loss 

Loss 

Loss Loss 



 20 

 

List of Analyses 

First, I conducted a preliminary analysis with thresholds -0.1, 0, 0.1, 0.2, and 0.3 

and created five control permutations (created as described under the subheading 

“Testing Significance” below) in addition to the experimental permutation. Lack of 

confidence in my results due to a low number of controls (because I needed to enter the 

phenotype status of each species for each threshold in each permutation by hand) as well 

as difficulty matching species names in the online forward genomics tool and the Genoud 

et al. (2018) dataset motivated me to create R scripts to streamline these tasks. Compared 

to the correct data (Table 1), I erroneously included two extra species in these 

preliminary trials for which there is actually no data in the Genoud et al. (2018) dataset, 

misidentified the species of Megabat referred to by the online tool as Pteropus giganteus, 

and did not include the dolphin (Tursiops truncatus) in my analysis (Table 2). 

I then conducted two analyses with correct data from Table 1. The first analysis, 

analysis 1, used the thresholds -0.3, -0.1, 0.1, 0.3, and 0.5. The second, analysis 2, used 

10 thresholds set at the same values as species’ BMRs so that species were added to the 

ancestral group one by one, except for the final two. The final two species were added 

together because otherwise there would be no results in the last step; the forward 

genomics tool was set to return a genetic region only when two species in the final step 

both shared it. I ran 200 control permutations (instances of the R scripts run with the 

BMRs of the species shuffled randomly) to accompany analysis 1 and 100 alongside 

analysis 2.  
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Table 2. Trait loss and retention values according to each threshold in the preliminary analysis. Species are 
labeled “trait-loss” and “trait-retaining” in the Hiller et al. forward genomics tool, but have been labeled 
“derived” and “ancestral” here for clarity. 
Common 
Name Binomial Name 

BMR 
residual 

Threshold  
-0.1 

Threshold 
0 

Threshold 
.1 

Threshold 
.2 

Threshold 
.3 

Microbat Hipposideros galeritus -0.513 ancestral ancestral ancestral ancestral ancestral 

Marmoset Callithrix jacchus -0.336 ancestral ancestral ancestral ancestral ancestral 

Hedgehog Erinaceus europaeus -0.142 ancestral ancestral ancestral ancestral ancestral 

Tree_Shrew Tupaia belangeri -0.122 ancestral ancestral ancestral ancestral ancestral 

Bushbaby Otolemur garnettii -0.112 ancestral ancestral ancestral ancestral ancestral 

Megabat Pteropus giganteus -0.084 derived ancestral ancestral ancestral ancestral 

Kangaroo_Rat Dipodomys ordii 0.048 derived derived ancestral ancestral ancestral 

Mouse Mus musculus 0.108 derived derived derived ancestral ancestral 

Dog Canis lupus familiaris 0.293 derived derived derived derived ancestral 

Rat Rattus rattus 0.294 derived derived derived derived ancestral 

Chimp Pan troglodytes 0.375 derived derived derived derived derived 

Shrew Sorex araneus 1.142 derived derived derived derived derived 
 
Table 3. Trait loss and retention values according to each threshold in analysis 1. 
Common 
Name Binomial Name 

BMR 
residual 

Threshold  
-0.3 

Threshold  
-0.1 

Threshold 
0.1 

Threshold  
0.3 

Threshold 
0.5 

Marmoset Callithrix jacchus -0.336 ancestral ancestral ancestral ancestral ancestral 

Hedgehog Erinaceus europaeus -0.142 derived ancestral ancestral ancestral ancestral 

Tree Shrew Tupaia belangeri -0.122 derived ancestral ancestral ancestral ancestral 

Bushbaby Otolemur garnettii -0.112 derived ancestral ancestral ancestral ancestral 

Kangaroo Rat Dipodomys ordii 0.048 derived derived ancestral ancestral ancestral 

Mouse Mus musculus 0.108 derived derived derived ancestral ancestral 

Dog Canis lupus familiaris 0.293 derived derived derived ancestral ancestral 

Chimp Pan troglodytes 0.375 derived derived derived derived ancestral 

Megabat Pteropus vampyrus 0.503 derived derived derived derived derived 

Dolphin Tursiops truncatus 0.743 derived derived derived derived derived 

Shrew Sorex araneus 1.142 derived derived derived derived derived 
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Table 4. Trait loss and retention values according to each threshold in analysis 2. D stands for “derived” 
and A stands for “ancestral.” 
Common 
Name 

Binomial 
Name 

BMR 
residual 

Step  
1 

Step 
2 

Step 
3 

Step 
4 

Step 
5 

Step  
6 

Step  
7 

Step  
8 

Step 
9 

Marmoset 
Callithrix 
jacchus -0.336 A A A A A A A A A 

Hedgehog 
Erinaceus 
europaeus -0.142 D A A A A A A A A 

Tree 
Shrew 

Tupaia 
belangeri -0.122 D D A A A A A A A 

Bushbaby 
Otolemur 
garnettii -0.112 D D D A A A A A A 

Kangaroo 
Rat 

Dipodomys 
ordii 0.048 D D D D A A A A A 

Mouse Mus musculus 0.108 D D D D D A A A A 

Dog 
Canis lupus 
familiaris 0.293 D D D D D D A A A 

Chimp 
Pan 
troglodytes 0.375 D D D D D D D A A 

Megabat 
Pteropus 
vampyrus 0.503 D D D D D D D D A 

Dolphin 
Tursiops 
truncatus 0.743 D D D D D D D D D 

Shrew Sorex araneus 1.142 D D D D D D D D D 
 
 
Modified Forward Genomics Pipeline 

 A major obstacle to the execution of the proposed analysis was the user interface 

of the online Phenotree Forward Genomics tool made available by Hiller et al. on the 

Stanford webserver. It was intended to allow a casual user to interact with the with the 

forward genomics approach by analyzing a binary trait of their choice and selecting 

mammals as “trait-loss,” “trait-preserving,” or “ignore” by hand. This design made 

running multiple analyses with changing thresholds slow. To facilitate this project, I 

wrote a set of scripts in the programming language R (R Core Team 2013) to interact 

with the website. The included scripts match species found on the online tool with 

phenotypes, split them into trait-loss and trait-preserving groups depending on user-
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supplied thresholds, generate controls, submit the tests to the webpage, download the 

results, and perform a statistical analysis to generate a p-value from permutation testing 

with the controls. The scripts in their entirety and a more detailed explanation are 

appended (Appendix A).   

Testing Significance 

 I used permutation testing to control for noise in my analysis and ascertain 

whether more genes meeting the assumptions outlined above were found in the 

experimental group than would be expected by random chance. I borrowed my approach 

from the Marcovitz et al. (2019) molecular convergence test. To establish control 

permutations, they recalculated their results with different combinations of species 

labeled as having phenotypes of interest and being in the outgroups (Marcovitz et al. 

2019). This established a baseline for results that should be expected due to random noise 

alone, when the species were not organized according to any trait. For this project, I 

recorded how many species were moved to the low BMR group at each threshold in my 

real input data, which I subsequently call the experimental permutation. I created many 

control permutations of the data by shuffling which species out of those which were 

included in the BMR dataset were added to the ancestral and derived trait groups during 

each increasing threshold step but keeping the number of species added to the low group 

at each step the same as in the experimental permutation. I then plotted a distribution of 

the test statistic calculated from each of these controls (Figure 8). In this kind of 

permutation test, the position of the experimental trial on this distribution corresponds to 

a p-value indicating how likely the same results are to have occurred by chance alone 

(Wilber 2019).  
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To determine whether significantly more genes matched my assumptions in the 

experimental permutation compared to the control permutations, I needed to choose a test 

statistic which would quantify the number of genes matching my assumptions in a 

permutation. I first speculated that the most straightforward statistic would be the number 

of genes returned in the final, most inclusive threshold. Due to the nature of the 

assumptions used to filter genes, the count of genes present in the final group would 

include all of the genes found in lower threshold groups as well. However, genes in the 

final group were not filtered by an additional higher group. This would limit the effect of 

assumption 2 on the quantity of genes present in the group created according to the 

highest threshold and mean they would not be filtered to remove genes not consistently 

associated with increased levels of BMR. Due to this concern, I chose to use the number 

of genes found in the second to last threshold group, the largest group that still benefitted 

from the filtering effect of another group with a higher threshold.  

 

Functional Enrichment of Candidate Genes 

Without intraspecific lab testing with knockouts, it not possible to know for sure 

whether a gene is associated with a certain phenotype. However, I can borrow another 

technique from Marcovitz et al. (2019) and search for enrichment in genes known to be 

associated with metabolism in the results to infer whether other genes found alongside 

them may be worthwhile candidates for further testing. 

After receiving the lists of total genes lost from the forward genomics tool and 

filtering them to keep only genes matching assumptions 1 through 3 above, I generated 

line break separated lists of both target and control genes in each analysis to submit to 
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web tools that detect enrichment in gene ontology terms. Gene ontology terms are tags 

added to genes in databases that label them as being related to specific biological 

processes, anatomical features, or functions. Tools searching for enrichment in gene 

ontology terms compare the terms associated with a target, or experimental, list to those 

associated with a background, or control list. Terms that appear significantly more in the 

target list than the background list are said to be enriched in that list, meaning that they 

appear more than one would expect due to random chance. This can help researchers 

determine what functions are over-represented in a target list of genes compared to the 

background. In this case, I might expect a list of BMR-related genes to be enriched for 

gene ontology terms relating to the mitochondria or metabolism.  

 The target list was generated from all genes present in each threshold of the 

experimental permutation, while the single control list contained all genes from all 

control permutations. I submitted these lists of gene names to the GOrilla gene ontology 

enrichment tool (Eden et al. 2007, 2009) and the DAVID (Huang et al. 2009a; b) gene 

functional classification tool to determine if the gene lists generated by my analyses had 

more genes with any particular function than would be expected by chance. In the 

GOrilla tool, the experimental permutation gene list was used as a target list while the 

control permutation list was used as a background or control list. In the DAVID tool, the 

experimental and control lists were both used as targets against an available Mus 

musculus background list. I subtracted the terms enriched in the control list from those 

found in the experimental list, keeping only the terms which were enriched in the results 

of the experimental but not the control permutations. I selected the Mus musculus (mm7) 

reference assembly when prompted in both tools because the Forward Genomics pipeline 
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used an extended Mus musculus assembly as a starting point to define its conserved 

genetic regions (Hiller et al. 2012).  

I also manually scanned the results for the few genes expected to be associated 

with mammalian BMR: UCP1 (Ricquier 2011), KLF5 (Choi et al. 2013), NRG3, OR8U8, 

BCL2L2-PABN1, PABN1, SLC22A17, FGGY, PTPRD, NPAS3, PKD1L2, SETBP1 

(Lee et al. 2016), and GPR158 (Piaggi et al. 2017).  
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RESULTS 

Quantity of Results Matching Assumptions 

The preliminary analysis with only 5 controls returned 3, 4, 5, 31, and 198 genes 

respectively as each threshold was applied in the experimental permutation. A p-value 

was not calculated due to the low number of controls, however the numbers of genes in 

each step of the experimental trial appeared intermediate among the numbers of genes in 

each step in the controls (Figure 6).  

Analysis 1 indicated two genes lost with threshold -0.3, 4 lost with -0.1, 6 lost 

with 0.1, 30 lost with 0.3, and 64 lost with 0.5 (Figure 6). According to the test statistic 

chosen prior to the analysis, quantity of genes lost when species were divided according 

to the second to highest threshold, this was significantly more candidate genes than were 

found in the control permutations, with a p-value of 0.02 from a distribution of 200 

sample permutations and 1 experimental trial (Figure 8). The mean of the test statistic 

across all trials was 6.74, the median was 5, and the mode was 2. The experimental 

permutation returned roughly 23 more candidate genes than the average control 

permutation in the second to highest threshold. All genes matching assumptions are 

available in the first table of Appendix B.  
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Figure 6. The number of genes returned in each step of the experimental for the preliminary trial. The 
experimental permutation is shown in the larger chart on top as well as repeated in the smaller one outlined 
in blue. The control permutations are the five other smaller charts.  
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Figure 7. Total number of genes returned and number of genes remaining after filtering according to 
Assumptions 1-3 in the experimental permutation of analysis 1.  

 
Figure 8. Total genes matching assumptions per threshold in analysis 1. Each point represents the number 
of candidate genes found in each trial of each threshold group in each control (black) and the experimental 
(red) permutation.  
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Figure 9. Distribution of test statistic for analysis 1 (number of genes found in the second to highest 
threshold step) in control vs experimental permutations. Stacked points represent the test statistic, the 
number of candidate genes found in threshold 0.3, in all control (black) and experimental (red) 
permutations.  
 

 

Analysis 2 returned no genes matching Assumptions 1-3 until the sixth threshold 

(residual>0.293), when the mouse (Mus musculus) was added to the trait loss group 

alongside the marmoset (Callitrhix jacchus), hedgehog (Erinaceus europaeus), tree 

shrew (Tupaia belangeri), bushbaby (Otolemur garnettii), and kangaroo rat (Dipodomys 

ordii) (Figure 9). Only 5 genes matched Assumptions 1-3 when the species were divided 

by threshold 6, 7 in threshold 7, 16 in threshold 8, and 85 in threshold 9.  All genes 

matching Assumptions 1-3 are available in the second table of Appendix B. 
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Figure 10. Total number of genes  and number of genes fitting Assumptions 1-3 in the experimental 
permutation of analysis 2. 

 
Figure 11. Total genes matching expectations per threshold in Analysis 2. Each point represents the number 
of candidate genes found in each trial of each threshold group in each control (black) and the experimental 
(red) permutation. 
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Figure 12. Distribution of test statistic for analysis 2 (number of genes found in the second to highest 
threshold step) in control vs experimental permutations. Stacked points represent the test statistic, the 
number of candidate genes found in threshold 0.3, in all control (black) and experimental (red) 
permutations. 
 

Full tables of genes matching Assumptions 1-3 in analyses 1 and 2 are available 

in Appendix B. “NA” means that the gene was not more different from the ancestral 

sequence in more members of the high group than in the low group at that threshold, 

while “loss” means that it was more different from the ancestral sequence in all members 

of the high group than all members of the low group at that threshold. 

 
Functional Enrichment of Resulting Genetic Regions 

The genes identified as lost in analyses 1 and 2 yielded no statistically significant 

results when submitted to GOrilla. While there was one term in the function category 

associated more with the experimental results of analysis 1 than its controls and three 
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terms in the process category more associated with the results of analysis 2 than its 

controls, none of these results were statistically significant. The FDR q-value in the fifth 

column (Table 5, 6) is the false discovery rate, a measure of how likely the result is to 

appear due to random chance. Smaller values indicate a lower chance that a result is due 

to chance – a value of 0.05 for example would mean there is a 5% chance of getting that 

result due to chance alone. Despite the low uncorrected P-values, in the GOrilla results 

for analysis 1 the FDR q-value was 0.918 and in analysis 2 it was 1 for each term. This 

means it is highly likely that these results would appear as a result of random chance, and 

therefore, they should be discarded. 

 
Table 5. GOrilla enrichment terms for analysis 1 

Category GO term Description P-value FDR q-
value 

Enrichment 
(N, B, n, b) 

Genes 

Function GO:003329
3 

monocarboxyli
c acid binding 

0.00056 0.918 16.27 
(2278,7,60,3) 

Gstm7, Ptgds, 
Akr1c6 

 
Table 6. GOrilla enrichment terms for analysis 2 

Category GO term Description P-value FDR 
q-
value 

Enrichment 
(N, B, n, b) 

Genes 

Process GO:0043303 mast cell 
degranulation 

0.00079 1 35.34 
(2827,2,80,2) 

Cplx2, Ptgds 

Process GO:0002279 mast cell 
activation 
involved in 
immune 
response 

0.00079 1 35.34 
(2827,2,80,2) 

Cplx2, Ptgds 

Process GO:0043299 leukocyte 
degranulation 

0.00079 1 35.34 
(2827,2,80,2) 

Cplx2, Ptgds 

 

The DAVID results for analyses 1 and 2 but were only slightly more significant 

(Table 7, 8). The false discovery rate (FDR) is a statistic showing the likelihood that a hit 

in the database is due to random chance (column 5, Tables 7, 8). A value of 1 is 

equivalent to a 100% chance that the result is due to random chance, and 0.05 is a widely 
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accepted false discovery rate (Huang et al. 2009a). False discovery rates in my results 

ranged from 0.11 to 1 in the results of both analyses. Regardless of the likely 

insignificance of the results, I researched the DAVID results for analysis 1 to understand 

in more detail what each term meant and which genes were associated with them. As 

noted in the methods, the results reported here are the gene ontology terms enriched in 

DAVID for the experimental permutation gene list but not the control permutation gene 

list. The analysis of the experimental permutation of analysis 1 alone was enriched for 33 

terms and the longer control list with all genes found in every control was enriched for 

155 terms. Only 7 terms (Table 7) were present in the experimental but not control 

results. 

 
Table 7. DAVID enrichment terms for analysis 1 

Category Term Count Genes FDR 
INTERPRO IPR018647:Domain of 

unknown function 
DUF2075 

2 SLFN5, SLFN8 0.0945067 

INTERPRO IPR000215:Serpin family 3 SERPINA3B, 
SERPINA3G, 
SERPINA3H 

0.11233917 

INTERPRO IPR023796:Serpin domain 3 SERPINA3B, 
SERPINA3G, 
SERPINA3H 

0.11233917 

UP_SEQ_FEATURE region of interest:RCL 2 SERPINA3B, 
SERPINA3G 

1 

INTERPRO IPR007421:ATPase, 
AAA-4 

2 SLFN5, SLFN8 0.18945803 

UP_SEQ_FEATURE site:Reactive bond 2 SERPINA3B, 
SERPINA3G 

1 

INTERPRO IPR027417:P-loop 
containing nucleoside 
triphosphate hydrolase 

6 SLFN5, SLFN8, 
SULT1D1, IQCF4, 
ABCA14, 
GM12250 

0.58170517 

 
 

The “SM00093:SERPIN," "IPR000215:Serpin family," and  “Serpin domain” 

terms were shared between the same three genes: SERPINA3B, SERPINA3G, and 

SERPINA3H. SERPINA3G and SERPINA3B were also responsible for the 
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“site:Reactive bond” and “region of interest:RCL” terms. "IPR018647:Domain of 

unknown function DUF2075” and “IPR007421:ATPase, AAA-4” were found in genes 

SLFN5 and SLFN8, genes which may have roles in hematopoietic cell differentiation and 

regulation of inflammation respectively (The UniProt Consortium 2021).  “IPR027417:P-

loop containing nucleoside triphosphate hydrolase” was referred to by genes SLFN5, 

SLFN8, SULT1D1, IQCF4, ABCA14, and GM12250. The term is assigned to genes that 

contain the P-loop NTPase fold, a nucleotide-binding protein fold (Leipe et al. 2002; 

Hunter et al. 2009). SULT1D1 is a sulfotransferase with many substrates for regulatory 

activity, IQCF4 is a pseudogene, ABCA14 is an ATP-binding cassette transporter, and 

GM12250 is a GTPase (The UniProt Consortium 2021).  

None of genes expected to be associated with BMR based on prior speculation 

and human genome-wide association studies, were found in the results. It is possible not 

all of them had mouse orthologs to include in the analysis, as most were uncovered in 

humans. The only gene confirmed to be in the dataset was UCP1, which had appeared in 

the results during prior analysis not listed here where the shrew was placed in a category 

alone. Genes searched for were:  UCP1 (Ricquier 2011), KLF5 (Choi et al. 2013), NRG3, 

OR8U8, BCL2L2-PABN1, PABN1, SLC22A17, FGGY, PTPRD, NPAS3, PKD1L2, 

SETBP1 (Lee et al. 2016), and GPR158 (Piaggi et al. 2017).   
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Table 8. DAVID enrichment terms for analysis 2 
Category Term Count Genes FDR 
UP_SEQ_FEATURE compositionally biased 

region:Cys-rich 
4 KRT33A, PLSCR4, 

ADAM1B, 
ADAM21 

1 

INTERPRO IPR023795:Protease 
inhibitor I4, serpin, 
conserved site 

3 SERPINA12, 
SERPINA3G, 
SERPINA3H 

0.48873073 

INTERPRO IPR013733:Protein-
arginine deiminase (PAD), 
central domain 

2 PADI3, PADI4 0.48873073 

INTERPRO IPR013530:Protein-
arginine deiminase, C-
terminal 

2 PADI3, PADI4 0.48873073 

INTERPRO IPR004303:Protein-
arginine deiminase 

2 PADI3, PADI4 0.48873073 

INTERPRO IPR013732:Protein-
arginine deiminase (PAD) 
N-terminal 

2 PADI3, PADI4 0.48873073 

GOTERM_BP_DIRECT GO:0018101~protein 
citrullination 

2 PADI3, PADI4 1 

SMART SM00093:SERPIN 3 SERPINA12, 
SERPINA3G, 
SERPINA3H 

0.55378325 

GOTERM_MF_DIREC
T 

GO:0004668~protein-
arginine deiminase activity 

2 PADI3, PADI4 1 

KEGG_PATHWAY mmu00982:Drug 
metabolism - cytochrome 
P450 

3 ALDH3B2, 
UGT2A1, FMO6 

1 

PIR_SUPERFAMILY PIRSF001247:protein-
arginine deiminase 

2 PADI3, PADI4 0.13468544 

INTERPRO IPR023796:Serpin domain 3 SERPINA12, 
SERPINA3G, 
SERPINA3H 

0.48873073 

INTERPRO IPR000215:Serpin family 3 SERPINA12, 
SERPINA3G, 
SERPINA3H 

0.48873073 

GOTERM_MF_DIREC
T 

GO:0005198~structural 
molecule activity 

4 KRT33A, LAD1, 
KRT20, SPRR1A 

1 

INTERPRO IPR008972:Cupredoxin 2 PADI3, PADI4 1 
UP_KEYWORDS Calmodulin-binding 3 MYH1, RIT2, 

SMTNL1 
1 

UP_KEYWORDS Thiol protease inhibitor 2 CST8, SERPINA3G 1 
INTERPRO IPR027417:P-loop 

containing nucleoside 
triphosphate hydrolase 

7 MYH1, SLFN5, 
PFKFB1, RIT2, 
GNAT3, SULT6B1, 
GM12250 

1 

INTERPRO IPR002957:Keratin, type I 2 KRT33A, KRT20 1 
GOTERM_BP_DIRECT GO:0012501~programme

d cell death 
2 GSDMA, PDCD5 1 
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DISCUSSION 

I adapted the Hiller forward genomics pipeline was to analyze continuous traits 

using progressively higher thresholds to convert them to binary traits and examined the 

results for significance using permutation testing. I found that the number of genes 

matching Assumptions 1-3 from my methods was significantly higher in the experimental 

the control group.  However, when I searched for genes I found no increase in genes 

known to have any particular function compared to controls and found no genes known to 

be associated with BMR in my gene lists. 

Number of Genes Matching Assumptions 1-3 

The preliminary analysis showed that the number of genes lost in high BMR 

species in the experimental permutation was not different from the numbers lost in the 

same thresholds in the control permutations. Despite the low number of control 

permutations, some returned numbers of lost genes higher than the experimental 

permutation and some returned numbers lower (Figure 6). In analysis 1, which was the 

first trial I ran using the correct BMR data and with 200 controls, the number of lost 

genes in high BMR species at thresholds -0.3, -0.1, and 0.1 in the experimental 

permutation were still in the middle of distributions of numbers of genes lost in high 

BMR species at those thresholds in the control permutations. However, the number of 

genes lost in high BMR species at thresholds of 0.3 and 0.5 in the experimental 

permutation was significantly higher than the amount of genes lost in high BMR species 

at those thresholds in all but three out of 200 controls (Figure 8), indicating that more 

genes were lost in the experimental data compared to the controls at high BMR 

thresholds than at low ones. 
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There are two factors which likely explain this discrepancy between results in the 

preliminary test and analysis 1. First, I misidentified some species in the online tool 

during the preliminary test. The online forward genomics tool uses common names to 

refer to the species being analyzed. Some of the common names are ambiguous because 

they could refer to multiple species, such as “dolphin” and “megabat.” While I was 

selecting phenotypes from the Genoud et al. (2018) dataset by hand to correspond with 

the animals present in the tool, I chose the first or only species matching the common 

name which also had phenotype data available. This method resulted in an incorrect 

selection of species (Table 2).   

Later, during development of the pipeline, I identified the genome assemblies that 

actually corresponded to the common names in the tool with the help of the genome 

codes present in the URL of the page. When these correct species names were chosen, 11 

species remained that both had BMR phenotypes in the Genoud et al. (2018) dataset and 

were present in the Forward Genomics tool (Table 1, 3). One species was identified only 

as “megabat” in the online tool. There were multiple different megabats with BMR 

residuals available in the Genoud et al. (2018) dataset with widely ranging values. 

Pteropus giganteus, the bat I initially assumed was the megabat in the tool, had a BMR 

residual of -0.084. The bat actually corresponding to the alignment in the tool, Pteropus 

vampyrus, had a BMR residual of 0.503. Incorrectly identifying one of the high BMR 

species as a low BMR species, along with including three species which did not end up 

having BMR data available at all, likely impacted the results. This is especially likely 

because the Forward Genomics pipeline requires strictly that a gene diverge from the 

ancestral state more in all of the trait loss species than all of the trait retaining species. 
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The second factor was that when I conducted the preliminary test, I set the thresholds 

slightly differently, at -0.1, 0, 0.1, 0.2, and 0.3. I changed the thresholds to -0.3, -0.1, 0.1, 

0.3, and 0.5 in the experimental trial to prevent the final two thresholds splitting the 

species into the same two groups, as they would otherwise have done with the phenotype 

data (Table 1). 

At a standard alpha level of .05, I can reject the null hypothesis that the number of 

genes meeting Assumptions 1-3 at the fourth threshold level in the experimental 

permutation of analysis 1 is the result of random chance. If Assumptions 1-3 set out in 

the methods for what a continuous trait should look like are correct, and if the test 

statistic correctly represents those assumptions, then this result indicates significantly 

more genes in the experimental trial met the assumptions expected of a gene associated 

with a continuous trait than in any control trial, and therefore, some of the genes found 

are most likely related to BMR.  

When I selected the number of genes matching Assumptions 1-3 in the second to 

last threshold step as the test statistic, I hoped that it would be sufficient to quantify the 

number of genes matching Assumptions across the thresholds in the analysis. This hope 

relied on my unfounded preconception that the relationship between the numbers of 

genes in the different thresholds would be about the same across the experimental and 

control trials. This did not turn out to be the case. Instead, it is visually clear that the 

number of genes returned for each threshold in the experimental permutation starts out 

below the distribution of control permutation values in the first threshold used and ends 

near the top of the distribution by the final threshold in both analyses 1 and 2 (Figure 7, 

10). This means that the chosen test statistic does not seem to account for the difference 
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between experimental and control permutations. The goal is to view genes associated 

with different levels of BMR, so it is more useful to look separately at where the number 

of results for the test permutation falls on the control distribution for each threshold.  

Before discussing the specific relationships between the number of genes at each 

threshold in the distribution of control permutations and the experimental permutations, I 

would like to reiterate the purpose of the control distributions. In all analyses, I would 

expect that higher numbers of potentially trait-associated genes should appear at higher 

thresholds because assumption 2 outlined in the methods removes more results from 

lower thresholds than higher ones. The control distributions for each threshold (Figure 8, 

11) show the increase in lost genes with increasing threshold that is expected as an 

artifact of Assumptions 1-3. The difference between the pattern of genetic regions 

returned by the experimental data and the pattern established by the control distributions 

is what I consider when analyzing the results.  In analysis 1, it appears that the numbers 

of genetic regions found when species were divided by thresholds -0.3, -0.1, and 0.1 were 

in the middle of control distributions and increased to be near the top of the control 

distributions at thresholds 0.3 and 0.5 (Figure 7). This means that elevated levels of 

independent gene loss compared to the levels in the control permutations became visible 

as chimp, megabat, dolphin, and shrew were the only species remaining in the high BMR 

(derived) group at threshold and continued to occupy a similar position relative to the 

control distribution when only megabat, dolphin, and shrew remained in the high BMR 

group.  

From analysis 1 alone, it would appear that the number of genes matching 

assumptions in the experimental permutation abruptly jumped to significant levels at 
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thresholds 0.3 and 0.5. However, analysis 2 shows a gradual increase of the number of 

genes in the experimental permutation from the bottom of the distribution of control 

values at threshold 0.108, intermediate at 0.293 and 0.375, and to near the top of the 

distribution of control values at thresholds 0.503 and  0.742 (Figure 11). This means the 

number of genes fitting assumptions in the experimental permutation increased in relation 

to the control distribution as the mouse, dog, chimp, and megabat, were moved from the 

high BMR to the low BMR group, leaving only dolphin and shrew together in the high 

BMR group at threshold 0.742.  

In both analyses, as the threshold to be considered high BMR got higher and more 

species were moved to the low BMR (ancestral), the remaining high BMR species had an 

increasingly significant amount of independently lost genes. In both analyses, this 

occurred around the 0.3 BMR residual cutoff when chimp, megabat, dolphin and shrew 

were considered high BMR. Analysis 2, in which species were moved from the high to 

the low BMR group one by one, showed that the increase in the amount of lost genes in 

experimental and control permutations was gradual rather than abrupt. Together, this 

appears to indicate my analysis returned genes associated with BMR that were lost or 

changed from the ancestral state more in all in high BMR species than all low BMR 

species when high thresholds (>0.3) were used, but not when low thresholds were used. I 

am cautious in speculating about the fact that no pattern was present at low thresholds 

because the sample consisted of only 11 mammalian species and there was no 

comparison to ectothermic outgroups with much lower BMR than all mammals. Very 

low levels of mammalian BMR could be considered a derived trait if they are lower than 
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those in the last common ancestor they share with other mammals even though high 

BMR is a derived trait for mammals as a whole (Avaria-Llautureo et al. 2019). 

A high level of BMR appears to be associated with changes to a consistent set of 

genes across taxa that have developed high BMR independently. If the genetic causes and 

effects of BMR were not shared between high BMR species, the associated genetic 

regions would not show up as results of the forward genomics analysis, as they would not 

be more different from the ancestral state in all high BMR species than all low BMR 

species. Furthermore, the results of analysis 2 seem to imply that high BMR was 

associated with changes to additional genetic regions as BMR increased instead of only 

more changes to the same genetic regions.  

Regions which did show up in results could either be independently lost due to 

relaxation of selective pressures or independently changed convergently or divergently 

due to selective pressures. While the original paper publishing the forward genomics 

pipeline assumed that loss of percent identity with the ancestral state would be due to 

relaxed selection, it does not compare sequences among species in the derived group or 

filter convergent changes from appearing in the results (Hiller et al. 2012).  In the case of 

BMR, it seems unlikely that genes used at low BMR became unused and experienced a 

relaxation of selection at high levels of BMR rather than simply changing as a cause or 

effect of high BMR. This is important, because it means the genes found are not 

necessarily limited to “low BMR” genes which have no function in high BMR organisms. 

Instead, they could be genes related to the trait of BMR in general. 

In analysis 2, the same genetic regions changed independently as mammals 

developed high levels of BMR and an increasingly high amount of regions was 
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associated with high BMR levels as the threshold was raised. The results of analysis 2 

appear to support the idea that variation on BMR in extant species acts on new genetic 

targets that were not associated with the initial development of high BMR in early 

mammals (Nespolo et al. 2011; Konarzewski and Książek 2013).  The results do not, 

however, preclude the idea suggested by some researchers that some genetic regions 

related to BMR in early mammals still influence it in extant mammals (Hayes 2010; 

Nespolo et al. 2011; Konarzewski and Książek 2013). If those genetic regions are 

responsible for BMR variation, they did not behave in a way consistent with the 

assumptions of the forward genomics pipeline and my filtering assumptions. No genes at 

all were associated with differences between the high and low BMR groups when 

relatively low BMR mammals were considered part of the derived group in the early 

thresholds of analysis 2.  

It is unclear whether genes first associated with BMR in early mammals should 

have shown up if present and meeting the assumptions of my methods. The genomic 

regions used in the forward genomics pipeline were conserved in vertebrates, not just 

mammals. The list of outgroup species the forward genomics pipeline used to produce its 

ancestral sequence reconstructions included mammal species which were outgroups to 

the species in the tool but also the chicken, zebra finch, and a species of lizard. I quickly 

checked for orthologs for genetic regions Slfn8 through Serpina3g using OrthoDB, and 

found that all of them have orthologs in the chicken genome. I do not know, however, 

whether they were considered conserved in non-mammalian species in the multi-

alignment used by the forward genomics pipeline. It is possible that some were, but more 
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control over the parameters of the analysis would be necessary to constrain the analysis to 

genetic regions that were conserved in both mammalian and non-mammalian species. 

 

Functional Enrichment 

To determine if an particular functions were overrepresented in the lists of genes 

matching Assumptions 1-3 in analyses 1 and 2, I submitted the gene lists to GOrilla and 

DAVID gene ontology search tools. Neither GOrilla (Eden et al. 2007, 2009) nor DAVID 

(Huang et al. 2009a; b)  gene ontology enrichment search tools returned statistically 

significant results. When I investigated the results of the GOrilla search on analysis 1 

despite their lack of statistical significance, no obvious relationship to metabolism was 

shared among the ontology terms that were investigated or the genes that were assigned 

the terms. I cannot take this to mean that no genes are related to BMR. That would be 

very unlikely, because BMR has been found to be heritable and correlated with other 

traits in artificial selection studies on wild and laboratory organisms (Konarzewski et al. 

2005; Gębczyński and Konarzewski 2009; Konarzewski and Książek 2013; Sadowska et 

al. 2015; Wone et al. 2015). In fact, this result does not necessarily contradict my other 

findings that BMR-related genes were likely present in the results of the analysis, 

elevating the number of genes found in the higher thresholds in the experimental 

permutations over the numbers found in those thresholds in the control permutations. All 

that it means is that the list of genes which changed in high BMR mammals were not 

significantly more related to any tissue expressions, functions, cellular components, or 

processes compared to the list of genes from the control permutations.  
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The lack of statistically significant results from DAVID and GOrilla could be due 

to the size of the gene lists that resulted from the analyses. Due to the low number of 

species present and low sensitivity required to get relevant results with the original 2012 

forward genomics pipeline, the gene lists I got from analyses 1 and 2 were small. The 

target lists for analysis 1 and analysis 2 contained only 64 and 86 genes respectively. The 

documentation on DAVID suggests that gene lists between 100 and 2,000 are a good size 

for analysis with the tool, and analysis of smaller lists will be limited in its statistical 

power (Huang et al. 2009a). In the publication announcing GOrilla, it was tested on a set 

of 14,565 genes, giving an indication of its intended use case (Eden et al. 2009).  

Repeating this analysis using the more sensitive 2016 forward genomics pipeline 

(Prudent et al. 2016) on a larger set of species with more recent lists of conserved regions 

might yield a gene list with a length more suitable for DAVID or GOrilla gene ontology 

enrichment analysis.  

The lack of enrichment in gene ontology terms could also accurately represent a  

lack of enrichment in ontology terms in BMR-associated genes. This could be because 

BMR-associated genes are likely to have many biological roles (Konarzewski and 

Książek 2013) and studies have not been conducted to identify and label many genes with 

ontology terms relating to BMR yet. In the molecular convergence pipeline created by 

Marcovitz et al. (2019), gene lists generated by the pipeline were examined for 

enrichment in tissue expression in certain tissues. In species which echolocated, genes 

which were associated with the cochlear ganglion in the brain, a region associated with 

sound processing, had more conserved amino acids than would be expected by chance. 

The authors used this as proof that the pipeline was working. However, it was only 
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possible to connect the tissue expression in the cochlear ganglion with hearing because 

prior laboratory research had shown that the region was related to echolocation. In the 

case of BMR, there is limited research to show which regions and processes are 

connected to it, so there may not be extensive data that could appear in a gene ontology 

search to confirm my methods. Results could also show no enrichment if the results 

returned by my method are the other traits which also covary with BMR rather than genes 

related to BMR itself (White and Kearney 2013). 

I did not find any of the specific genes thought to be related to BMR based on 

previous studies in the results of analyses 1 or 2. Other than UCP-1, I was not sure 

whether any of these genes were present in the dataset at all, and therefore cannot 

comment on their lack of presence in the results of my analyses. In my initial trials that 

placed the shrew, the mammal with the highest mass-independent BMR residual, in the 

high BMR category alone, results showed that UCP-1 had changed more in the shrew 

compared to the reconstructed ancestral sequence than in all other mammals. The fact 

that UCP-1 showed up as a gene loss in the shrew confirmed that the gene was present in 

the dataset. It does not appear in the analyses included in this thesis because prior to the 

analyses included here, the settings on the forward genomics pipeline were changed to 

require two high-BMR organisms to have a gene in order to include it in the results. In 

analysis 2, the dolphin, which was the sole mammal alongside the shrew in the high 

BMR group when the highest threshold was used, either did not have UCP-1 included in 

its alignment or caused the sequence for the gene in the high BMR group not to vary 

more from the ancestral sequence in all high organisms than it did for all low organisms. 

The absence of UCP-1 in these results despite its presence in the dataset indicates that 
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changes in UCP-1 are not consistently associated with BMR over a certain level in 

mammals. This is consistent with findings that show UCP-1 is not related to BMR 

despite its role facilitating the conversion of energy into heat. For example, while 

transgenic mice that expressed UCP-1 in skeletal muscle displayed increased activity and 

heat loss, their BMR was not significantly different from wild type mice (Klaus et al. 

2005).  
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CONCLUSIONS 

 My extension of the forward genomics pipeline uncovered a significantly higher 

number of independently changed genes using BMR data than in randomly generated 

control data but no enrichment for any known functions in the genes found. This is the 

opposite of results Marcovitz et al. (2019) found using their molecular convergence 

pipeline to investigate echolocation, aquatic lifestyle, and high-altitude habitat 

phenotypes. In their analysis, they confirmed prior research stating that there was not an 

overall higher amount of amino acid convergence in organisms sharing those phenotypes 

(Thomas and Hahn 2015; Zou and Zhang 2015) but found functional enrichment in 

convergent phenotype-related genes (Marcovitz et al. 2019). The differences between the 

results of the two methods could indicate that BMR is a trait more central to the biology 

of organisms and correlates with more molecular changes throughout the genome than 

echolocation, aquatic lifestyle, and high-altitude habitats. But given that a small number 

of genes returned by my analysis, it seems more likely that functional enrichment results 

were limited by the low sensitivity of the Hiller et al. (2012) pipeline or by the lack of 

genes labeled with BMR-related functions in prior studies.  

 My project provides two short lists of genes which may be lost or independently 

in association with a high position on the slow-fast BMR continuum in mammals 

(Appendix B) as well as an R script that can be readily applied to analyze data from any 

phenotype with my augmented version of the Hiller (2012) forward genomics pipeline. 

Applying this pipeline to additional phenotypes would provide additional context for the 

BMR results. If the augmented pipeline were to return a statistically significant amount of 

genes for other continuous traits,  it could be worthwhile to build a new set of percent 
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identity values the many mammalian species recently sequenced (Genereux et al. 2020) 

and apply a similar binning approach with data from the more sensitive 2016 forward 

genomics pipeline (Prudent et al. 2016). If applying this pipeline to BMR, it would also 

be worthwhile to include a more robust comparison of mammalian conserved regions 

with those of their closely related outgroups. My results suggest that developing this 

approach further could help us understand the genetic underpinnings of BMR and its 

related traits.  
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APPENDIX A: R SCRIPTS 

These R scripts were written to allow the user to make changes to the dataset 

being used (with the user specifying the file path and names of the columns containing 

species names and synonyms and the phenotype to be investigated), number and value of 

thresholds, number of controls, and whether a “high” phenotype or a “low” phenotype is 

considered trait-loss by defining variables. It uses the packages Tidyverse (Wickham et 

al. 2019) for data manipulation and XML (CRAN Team et al. 2013) for HTML parsing. 

It can easily be applied to any dataset with species names and phenotypes exported as a 

tab-separated-values file from a spreadsheet program. Running the 

“00_phenotree_pipeline.R” script (Appendix 1) after assigning variables performs all of 

the following tasks in sequence:  

Loading Phenotype. The first script in the R pipeline reads a tab-separated-values 

file containing a phenotype dataset and uses a user-supplied vector of column names 

containing the binomial species names and synonyms and a separate variable storing the 

name of the column of desired phenotypes to extract the named phenotype for each 

species present in both the online tool and the provided dataset. If a species is not present 

in the first column of column names provided, the script continues to try additional 

columns until they are exhausted.  

Creating URLs. When the user inputs which mammals are trait-loss, trait-

preserving, and “ignore,” as well as selecting the number of allowed violations, the 

Forward Genomics tool appears to generate a URL that, when entered, instructs the script 

on the website to calculate the results. The URLs look like this:  
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http://phenotree.stanford.edu/public/html/main.py?numspecies=27&species_select_hg18=ignore&

species_select_panTro2=loss&species_select_gorGor1=ignore&species_select_ponAbe2=ignore

&species_select_rheMac2=ignore&species_select_calJac1=preserving&species_select_tarSyr1=ig

nore&species_select_micMur1=ignore&species_select_otoGar1=loss&species_select_tupBel1=ig

nore&species_select_mm9=loss&species_select_rn5=ignore&species_select_dipOrd1=loss&speci

es_select_cavPor3=ignore&species_select_speTri1=ignore&species_select_oryCun1=ignore&spe

cies_select_ochPri2=ignore&species_select_vicPac1=ignore&species_select_turTru1=loss&speci

es_select_bosTau4=ignore&species_select_equCab2=ignore&species_select_felCat3=ignore&spe

cies_select_canFam2=ignore&species_select_myoLuc1=ignore&species_select_pteVam1=loss&s

pecies_select_eriEur1=loss&species_select_sorAra1=loss&min_loss=1&min_preserving=1&num

_violations=0 

It is possible to generate a URL matching a desired set of loss, preserving, and 

ignore values for species without using the user interface on the website, saving 

considerable time. Instead, the script uses the sprintf function to insert “loss,” 

“preserving,” and “ignore” into the URL as a string according to values in a table 

generated from thresholds. These tables have species names in the first column and then 

additional columns for each user-supplied threshold and calculated values for whether a 

species is “loss” or “preserving” according to that threshold and whether a high or low 

phenotype should be loss. The URLs generated from these tables are then added to a new 

data frame, with one URL per threshold.  

Downloading Results. The next script iterates over each data frame containing 

URLs in turn, downloading the source code of the pages the URLs point to. The source 

code for these pages does not contain the results, which are hosted separately in a link 

which changes with each submission. The link is present in the source code downloaded 

using the URL. The script obtains all links in the document using the getHTMLLinks 
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function from the XML package and the correct link can be searched for using grep 

because it is the only link to contain “tmp.” The “export.tsv” file corresponding to the 

request is downloaded from this link.  

To avoid being mistaken for a DDoS attack or other malicious activity, the script 

waits 5 seconds between requests to the Stanford webpage hosting the Forward Genomics 

tool. Along with the time it takes the website to calculate results, this wait time means 

that it may take hours to take a sample of 100 controls with 5 thresholds each, which 

totals to 500 requests. Despite the time required, running this script is much faster and 

less tedious than interacting with the site manually.  

Matching Assumptions. After saving the results from the web tool to the correct 

output folders for the experimental file and each control, the script loads the results and 

filters them to find the genes present in each trial that meet the assumptions described 

under the earlier “Development of Assumptions” heading. It proved difficult to solve the 

problem of keeping only genes which had the desired pattern of loss, remaining lost at all 

higher thresholds once they became lost at a lower one. An initial solution worked for the 

specific case that there were five thresholds but was not easy to generalize for a user-

supplied number of thresholds.  

Ultimately, the solution chosen was to iterate over the columns from right to left 

and test whether the contents of the row in that column were equal to “loss” or “NA.” If 

they were equal to loss, the statement dataframe[row, column]==”loss” would evaluate to 

the Boolean TRUE. If not, it would evaluate to FALSE. TRUE is equivalent to 1 in R 

while FALSE is equivalent to 0, so summing the row would return the number of lost 

genes present in that row up to the column being currently tested. If all cells to the right 
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of the column currently being tested have “loss,” the sum of the logical statement on the 

cells in that row for those columns should be equal to the distance from the right of the 

column being tested. If the sum is any less, it means there is a gap, and that gene should 

only be included if the value of the cell in the column currently being tested is the one 

that is NA. (Because that means the program can’t prove that the gene hasn’t stopped 

being a loss, and the iteration for the next column over will remove it if not.) 

Once filtered from the whole set of genes returned by the Forward Genomics tool, 

the potential candidate genes were assigned to their own dataframe, one dataframe per 

experimental or control trial. This script also calculated the value of the test statistic for 

each dataframe as it was created and added that to another frame. 

Statistics. The final R script generates a p value based on the table of test statistics 

generated in the previous step as well as creating a visualization of the test statistic 

distribution.  

 
 
 
00_phenotree_pipeline.R 
 
# Setup 
 
  # set project folder working directory 
  setwd("/Users/levesquelab/Desktop/CWC_Phenotree_Pipeline") 
  # load packages 
  require(tidyverse) 
   
  # set subdirectory for data and graphics 
    # when making a new subdirectory, copy and rename the existing 
directory before running script 
    # instead of creating a directory from scratch 
  subdirectory_name <- "BMR_fix_thresholds" 
  setwd(subdirectory_name) 
 
#### INPUT #### 
# Load phenotype data for species represented in Phenotool 
 
  # file path to phenotype dataset relative to project folder 
  pheno_dataset_fp <- "data/phenotypes_to_investigate.tsv" 
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  # vector of column titles of columns containing species bionomials 
and synonyms 
  species_col_name <- c("species binomial", "species_synonyms") 
  # column title of continuous phenotype of interest in the phenotype 
dataset table 
  phenotype_name <- "BMR.resids" 
 
  source("../scripts/load_pheno_data.R") 
 
   
# Create URLs to run Phenotree website with chosen thresholds 
  # URL CSV saves at "data/url_table.csv" 
 
  # desired thresholds as double vector  
    # if pheno equal to threshold, species will be considered "high" 
    # Thresholds should go from lower to higher number for the analysis 
part to work 
    # Don't pick a threshold with no species on one side of it for your 
phenotype...  
    # It won't return any results. 
  bin_thresholds <- c(-0.3, -0.1, 0.1, 0.3, 0.5) 
   
  # Is a high value a loss? (TRUE or FALSE?) 
  highloss <- TRUE 
   
  # Pick minimum preserving and loss species to have data for gene in 
the Phenotree queries 
    # (Currently same number for all steps, so keep in mind # species 
in groups in the  
    # first and final steps.) 
  min_loss <- 2 
  min_pres <- 1 
 
  source("../scripts/create_bins.R") 
   
   
# Create a user-defined number of controls, records of what was in 
them, and also URLS for them 
  # Running this will delete output data present in the folders so 
remember that 
   
  # Desired number of controls 
  num_controls <- 200 
   
  source("../scripts/create_controls.R") 
   
#### OUTPUT #### 
   
# Script to automatically input URLs and download results  
   
# If not using this script: 
  # As you run the thresholds with the URLs, click "export as tsv" and 
save the tsv in  
  # the matching folder that was created in phenotree_output. 
  # Leave the files with the name "export.tsv" 
   
  source("../scripts/scrape.R") 
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# Script to extract results which match assumptions and create test 
statistic table 
 
  source("../scripts/match_assumptions.R") 
   
# Statistical analysis 
  # Calculate P value 
   
  source("../scripts/statistics.R") 
 
 
load_pheno_data.R 
# Purpose: Convert generic data TSV to format with names used in the 
Phenotree tool 
# and column with desired trait for each species that is present in 
both the dataset  
# and the tool. 
 
# file reading 
  # load file that has the list of species from the tool  
species_in_tool_df <- read_csv("data/species_in_tool.csv") 
  # load file with continuous traits and species name and pick relevant 
columns 
pheno_dataset_df <- read_tsv(pheno_dataset_fp) 
pheno_dataset_df <- pheno_dataset_df[, c(species_col_name, 
phenotype_name)] 
 
# rename phenotype_name column so it works better in dplyr 
pheno_dataset_df <- rename(pheno_dataset_df, pheno_col = 
colnames(pheno_dataset_df[,phenotype_name])) 
 
# pull out rows from data table that match species names from the tool 
  # good place to practice pipe syntax in the future? 
  # ahhh, I was trying to do it as a recursive function at first but 
the for statement 
  # works much better. 
 
i <- 1 
 
species_in_tool_df <- species_in_tool_df 
 
species_in_tool_df$pheno_col <- NA 
 
for (i in species_col_name) { 
 
species_in_tool_df <- left_join(species_in_tool_df,  
                           pheno_dataset_df[,c(i,"pheno_col")],  
                           by= c("species"=i)) 
 
species_in_tool_df <- mutate(species_in_tool_df, 
                                  pheno_col = 
ifelse(is.na(pheno_col.x), pheno_col.y, pheno_col.x)) 
 
species_in_tool_df <- species_in_tool_df[,c(1,2,3,6)] 
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} 
 
rm(i, pheno_dataset_df, pheno_dataset_fp, species_col_name) 
 
 
create_bins.R 
# Purpose: Take table from load_pheno_data.R and calculuate 
preservation or loss according to 
  # any amount of user-specified thresholds 
  # output a URL for the phenotree tool for each threshold 
 
# Making new column to tell whether species is a loss, retention, or 
ignore for that threshold 
# This is different depending on whether a high value or low value is 
the loss condition 
 
threshold_df <- species_in_tool_df 
thresh_col_rec <- c() 
 
  # Section for if high = loss 
if (highloss==TRUE) { 
  for(i in bin_thresholds) { 
    thresh_col <- paste("threshold", i , sep="_") 
    threshold_df <- mutate(threshold_df, 
                           "threshold_{i}" := ifelse(is.na(pheno_col),  
                                                     "ignore",  
                                                     ifelse(pheno_col 
>= i, 
                                                            "loss",  
                                                            
"preserving"))) 
    # This is to make the URL creation step later easier  
    thresh_col_rec <- append(thresh_col_rec, thresh_col) 
  } 
}  
  # Nearly identical section for if low = loss (highloss=FALSE) 
if (highloss==FALSE) { 
  for(i in bin_thresholds) { 
    thresh_col <- paste("threshold", i , sep="_") 
    threshold_df <- mutate(threshold_df, 
                           "threshold_{i}" := ifelse(is.na(pheno_col),  
                                                     "ignore",  
                                                     ifelse(pheno_col < 
i, 
                                                            "loss",  
                                                            
"preserving"))) 
    # This is to make the URL creation step later easier  
    thresh_col_rec <- append(thresh_col_rec, thresh_col) 
  } 
} 
 
rm(i, thresh_col) 
 
write_csv(threshold_df, 
"data/phenotree_input/experimental/input_table.csv") 
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# That part was fun! 
# Now create the string to put into the webpage for each threshold..? 
# I can do it in the form of a table for human use for now 
 
url_prefix <- 
"http://phenotree.stanford.edu/public/html/main.py?numspecies=27" 
url_suffix <- 
sprintf("&min_loss=%s&min_preserving=%s&num_violations=0", 
                      min_loss, min_pres) 
 
url_vec <- c() 
 
for(i in thresh_col_rec) { 
# You could also build the string using the repeating parts and codes 
which would be fun to try 
  url_middle <- do.call(sprintf, c(fmt = 
"&species_select_hg18=%s&species_select_panTro2=%s&species_select_gorGo
r1=%s&species_select_ponAbe2=%s&species_select_rheMac2=%s&species_selec
t_calJac1=%s&species_select_tarSyr1=%s&species_select_micMur1=%s&specie
s_select_otoGar1=%s&species_select_tupBel1=%s&species_select_mm9=%s&spe
cies_select_rn5=%s&species_select_dipOrd1=%s&species_select_cavPor3=%s&
species_select_speTri1=%s&species_select_oryCun1=%s&species_select_ochP
ri2=%s&species_select_vicPac1=%s&species_select_turTru1=%s&species_sele
ct_bosTau4=%s&species_select_equCab2=%s&species_select_felCat3=%s&speci
es_select_canFam2=%s&species_select_myoLuc1=%s&species_select_pteVam1=%
s&species_select_eriEur1=%s&species_select_sorAra1=%s",  
                                 as.list(threshold_df[[i]]))) 
   
  url_full <- paste(url_prefix, url_middle, url_suffix, sep="", 
collapse=NULL) 
  url_vec <- append(url_vec, url_full) 
} 
url_df <- as_tibble_col(thresh_col_rec, column_name = "threshold") 
url_df$url <- url_vec 
 
rm(i, url_middle, url_prefix, url_suffix, url_vec, url_full, 
species_in_tool_df) 
 
write_csv(url_df, "data/phenotree_input/experimental/url_table.csv") 
 
rm(url_df) 
 
create_controls.R 
# Purpose: Create random controls that match the signature of 
additional loss/gains 
  # found in each threshold stage of the experimental data 
 
# Get rid of ignored species because we want only the species used in 
the experimental group 
control_gen_df <- filter(threshold_df, 
threshold_df[,thresh_col_rec[1]]!="ignore") 
 
# Establish signature of experimental dataset 
 
loss_signature <- c() 
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for(i in thresh_col_rec) { 
  loss_signature <- append(loss_signature, 
sum(control_gen_df[,i]=="loss")) 
} 
 
rm(i) 
 
# Remove old threshold values from control_gen_df 
control_gen_df <- control_gen_df[,c(1,2,3)] 
 
# Generate data with same signature 
 
num_controls <- 1:num_controls 
 
# Delete old files in the phenotree_input folder with "control" in the 
title 
unlink (list.files("data/phenotree_input",  
                   full.names = TRUE)[grep("control", 
                                           
list.files("data/phenotree_input", 
                                                      full.names = 
TRUE))], 
        recursive=TRUE) 
 
for(j in num_controls) { 
 
  control_gen_df$pheno_col <- sample(nrow(control_gen_df)) 
 
  lsindex <- 1 
 
  for(i in thresh_col_rec) { 
   
    control_gen_df <- mutate(control_gen_df, 
                         "{i}" := ifelse(pheno_col <= 
loss_signature[lsindex] , "loss", "preserving")) 
    lsindex <- lsindex + 1 
  } 
 
  # Add back in the "ignore" data 
   
  control_gen_df <- left_join(threshold_df[,c(1,2,3)], 
                              control_gen_df) 
   
  control_gen_df_temp <- control_gen_df[,c(1,2,3,4)] 
  control_gen_df <- control_gen_df[,5:length(colnames(control_gen_df))] 
   
  control_gen_df[is.na(control_gen_df)] <- "ignore" 
   
  control_gen_df <- bind_cols(control_gen_df_temp,  
                              control_gen_df) 
  rm(control_gen_df_temp) 
   
  # Create a folder and record of loss / preservation in the control to 
go in folder with its URL 
   
  dir.create(sprintf("data/phenotree_input/control_%s", j)) 
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  write_csv(control_gen_df, 
sprintf("data/phenotree_input/control_%s/input_table.csv", 
                                    j)) 
   
  rm(i, lsindex) 
   
  # Create the URLs themselves and put in the same folder 
    # Copy of URL creation in create_bins.R, would be good to make a 
function 
   
  url_prefix <- 
"http://phenotree.stanford.edu/public/html/main.py?numspecies=27" 
  url_suffix <- 
sprintf("&min_loss=%s&min_preserving=%s&num_violations=0", 
                        min_loss, min_pres) 
 
  url_vec <- c() 
   
  for(i in thresh_col_rec) { 
    url_middle <- do.call(sprintf, c(fmt = 
"&species_select_hg18=%s&species_select_panTro2=%s&species_select_gorGo
r1=%s&species_select_ponAbe2=%s&species_select_rheMac2=%s&species_selec
t_calJac1=%s&species_select_tarSyr1=%s&species_select_micMur1=%s&specie
s_select_otoGar1=%s&species_select_tupBel1=%s&species_select_mm9=%s&spe
cies_select_rn5=%s&species_select_dipOrd1=%s&species_select_cavPor3=%s&
species_select_speTri1=%s&species_select_oryCun1=%s&species_select_ochP
ri2=%s&species_select_vicPac1=%s&species_select_turTru1=%s&species_sele
ct_bosTau4=%s&species_select_equCab2=%s&species_select_felCat3=%s&speci
es_select_canFam2=%s&species_select_myoLuc1=%s&species_select_pteVam1=%
s&species_select_eriEur1=%s&species_select_sorAra1=%s",  
                                   as.list(control_gen_df[[i]]))) 
    url_full <- paste(url_prefix, url_middle, url_suffix, sep="", 
collapse=NULL) 
    url_vec <- append(url_vec, url_full) 
  } 
  url_df <- as_tibble_col(thresh_col_rec, column_name = "threshold") 
  url_df$url <- url_vec 
 
  write_csv(url_df, 
sprintf("data/phenotree_input/control_%s/url_table.csv", j)) 
   
  rm(i, url_middle, url_prefix, url_suffix, url_vec, url_full, url_df) 
 
} 
 
rm(j, loss_signature, control_gen_df) 
 
# Also create matching output directories for use later: 
 
  # Delete old 
  unlink (list.files("data/phenotree_output",  
                     full.names = TRUE)[grep("control", 
                                            
list.files("data/phenotree_output", 
                                                        full.names = 
TRUE))], 
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          recursive=TRUE) 
   
  # Make new folders for each control and each threshold 
  for (i in num_controls) { 
    dir.create(sprintf("data/phenotree_output/control_%s", i)) 
    for (j in thresh_col_rec) { 
    dir.create(sprintf("data/phenotree_output/control_%s/%s", i, j)) 
    } 
  } 
   
  rm(i, j) 
 
  # Make output directory for experimental group since number of 
thresholds could change: 
  unlink (list.files("data/phenotree_output/experimental", full.names = 
TRUE), 
          recursive=TRUE) 
  for (i in thresh_col_rec) { 
    dir.create(sprintf("data/phenotree_output/experimental/%s", i)) 
  } 
 
 
scrape.R 
require(XML) 
 
# Function to download outputs from the phenotree site given a certain 
input URL 
phenotree_downloader <- function (input_url, output_path){ 
  links <- getHTMLLinks(input_url, 
                        externalOnly=TRUE, 
                        xpQuery = "//a/@href", 
                        relative = TRUE) 
  if (sum(grepl("tmp", links))==1) { 
    result_link <- grep("tmp", links) 
     
    result_link <- links[result_link] 
     
    download.file(result_link, output_path) 
 
  } 
  # Handle if there is no data for that combination on the website 
  else { 
    write_file(c("no_data"), output_path) 
  } 
} 
 
# Use function on experimental data URL table 
 
url_df <- read_csv("data/phenotree_input/experimental/url_table.csv") 
 
for (i in seq_along(url_df$url)) { 
   
  input_url <- url_df$url[i] 
  output_path <- 
sprintf("data/phenotree_output/experimental/%s/export.tsv", 
url_df$threshold[i]) 
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  phenotree_downloader(input_url=input_url, output_path = output_path) 
   
  # Sleep for 10 seconds after each input/download to be nice to the 
website 
  Sys.sleep(10) 
} 
 
# Use function on each URL from each control's URL table 
for (j in num_controls) { 
 
  url_df <- 
read_csv(sprintf("data/phenotree_input/control_%s/url_table.csv",j)) 
   
  for (i in seq_along(url_df$url)) { 
   
    input_url <- url_df$url[i] 
    output_path <- 
sprintf("data/phenotree_output/control_%s/%s/export.tsv", j, 
url_df$threshold[i]) 
 
    phenotree_downloader(input_url=input_url, output_path = 
output_path) 
 
    # Sleep for a number of seconds after each input/download to be 
nice to the website 
    Sys.sleep(5) 
} 
 
} 
 
rm(i, j, input_url, output_path, phenotree_downloader) 
 
 
match_assumptions.R 
# read and trim tsv files to important info, also combining them into 
one file 
  # which marks lost genes present in each threshold step  
  # "NA" means they weren't present in that step 
 
# Decide which threshold will be the test statistic  
  # second to last is length(thresh_col_rec)-1 
test_stat_row <- length(thresh_col_rec)-1 
 
#### EXPERIMENTAL #### 
 
# If no data, make table for threshold with no genes  
output_txt <- 
read_file(sprintf("data/phenotree_output/experimental/%s/export.tsv",  
                  thresh_col_rec[1])) 
 
if (output_txt == "no_data") { 
  tbl_colnames <- c("#gene symbol", "gene name", thresh_col_rec[1]) 
  output_df <- read_csv("\n", col_names = tbl_colnames) # all character 
type 
  rm(tbl_colnames) 
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} else { 
   
  # If there is data, read it and prepare to match assumptions           
  output_df <- 
read_tsv(sprintf("data/phenotree_output/experimental/%s/export.tsv",  
                                thresh_col_rec[1]), 
                        skip=2) 
  output_df[,thresh_col_rec[1]] <- "loss" 
  output_df <- output_df[,c(1,2,9)] 
} 
 
for(i in c(2:length(thresh_col_rec))) { 
  
  # Check output as plain text to see if data is present 
  output_txt <- 
read_file(sprintf("data/phenotree_output/experimental/%s/export.tsv",  
                                  thresh_col_rec[i])) 
   
  # If no data, make blank output_df_temp 
  if (output_txt == "no_data") { 
     
    tbl_colnames <- c("#gene symbol", 
                      "gene name", 
                      thresh_col_rec[i]) 
    output_df_temp <- read_csv("\n", 
                               col_names = tbl_colnames) # all 
character type 
    rm(tbl_colnames) 
     
  } else { 
   
    # If there is data, put it in output_df_temp 
    output_df_temp <- 
read_tsv(sprintf("data/phenotree_output/experimental/%s/export.tsv",  
                                      thresh_col_rec[i]), 
                              skip=2) 
    output_df_temp[,thresh_col_rec[i]] <- "loss" 
    output_df_temp <- output_df_temp[,c(1,2,9)] 
  } 
   
  # Join output_df_temp to the previously made output_df 
    output_df <- full_join(output_df,  
                          output_df_temp,  
                          by=c("#gene symbol", "gene name")) 
} 
 
rm(output_df_temp) 
 
colnames(output_df)[1:2] <- c("gene_symbol", "gene_name") 
 
write_csv(output_df, 
"data/phenotree_output/experimental/total_genes.csv") 
 
# make dataframe setup for observations about tests at each threshold 
 
gene_counts <- tibble(colnames(output_df)[3:length(output_df)]) 
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colnames(gene_counts) <- "threshold" 
 
# count total amount of genes lost in each column of the gene list and 
add them to a vector 
 
temp_count <- c(sum(output_df[thresh_col_rec[1]]=="loss", na.rm=TRUE)) 
 
for (i in c(2:length(thresh_col_rec))) { 
  temp_count <- append(temp_count, 
sum(output_df[thresh_col_rec[i]]=="loss", na.rm=TRUE)) 
} 
 
# Make that vector part of the gene_counts dataframe 
gene_counts$"total_genes" <- c(temp_count) 
rm(temp_count) 
 
# Now add the number of genes that match assumptions to that in a new 
column!  
  # First separating out the genes so they can be recorded and counted 
  # Oh my god this is such a better way of doing this than I had 
before... 
  # Starts at the last column  
 
if (highloss==TRUE) { 
  rev_output_df_length <- rev(c(3:length(output_df[1,]))) 
  # Make sure you're only working with things present in final 
threshold to begin with 
  output_df <- filter(output_df, 
output_df[rev_output_df_length[1]]=="loss") 
  # Keep rows where the last n columns are equal to  
  for(i in seq_along(rev_output_df_length)) { 
    output_df <- filter(output_df,  
                          
is.na(output_df[,rev_output_df_length[i]])==TRUE | 
rowSums(output_df[,length(output_df):rev_output_df_length[i]]=="loss", 
                                  na.rm=TRUE)==i) 
} 
} 
 
#Same counting as earlier 
 
# count total amount of genes lost in each column of the gene list and 
add them to a vector 
 
temp_count <- c(sum(output_df[thresh_col_rec[1]]=="loss", na.rm=TRUE)) 
 
for (i in c(2:length(thresh_col_rec))) { 
  temp_count <- append(temp_count, 
sum(output_df[thresh_col_rec[i]]=="loss", na.rm=TRUE)) 
} 
 
write_csv(output_df, 
"data/phenotree_output/experimental/candidate_genes.csv") 
 
experimental_output_df <- output_df 
 
# Make that vector part of the gene_counts dataframe 
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gene_counts$"candidate_genes" <- c(temp_count) 
rm(temp_count) 
 
write_csv(gene_counts, 
"data/phenotree_output/experimental/gene_counts.csv") 
 
# Calculate test statistic and create test statistic table 
test_statistic <- gene_counts[[test_stat_row,3]] 
test_statistic_df <- tribble( 
  ~type, ~trial, ~test_statistic, 
  "experimental", "experimental", test_statistic 
) 
 
 
#So now I have my gene list, potential candidate list, and list of the 
counts of genes in each... Nice. 
#Bar chart time!  
 
# Barplot 
 
# Why is this putting the steps out of order? 
ggplot(gene_counts, aes(threshold)) + 
  geom_col(aes(y=total_genes, fill="Total"))+ 
  geom_col(aes(y=candidate_genes, fill="Fits assumptions")) + 
  geom_text(aes(y=total_genes, label = total_genes), vjust = -0.5) + 
  geom_text(aes(y=candidate_genes, label = candidate_genes), vjust = -
0.5) + 
  ggtitle("BMR Dataset") + 
  xlab("Threshold") + 
  ylim(0,400) + 
  ylab("Number of Genes") + 
  labs(fill="") 
 
ggsave( 
  "data/phenotree_output/experimental/summary_plot.png", 
  plot=last_plot() 
) 
 
#### CONTROLS #### 
 
for(j in num_controls) { 
 
    # Check output as plain text to see if data is present 
  output_txt <- 
read_file(sprintf("data/phenotree_output/control_%s/%s/export.tsv", 
                                  j, 
                                  thresh_col_rec[1])) 
   
  # If no data, make blank output_df with column names 
  if (output_txt == "no_data") { 
     
    tbl_colnames <- c("#gene symbol", 
                      "gene name", 
                      thresh_col_rec[1]) 
    output_df <- read_csv("\n", 
                               col_names = tbl_colnames) # all 
character type 
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    rm(tbl_colnames) 
   
  # If data present, make output_df with data   
  } else { 
output_df <- 
read_tsv(sprintf("data/phenotree_output/control_%s/%s/export.tsv",  
                              j, 
                              thresh_col_rec[1]), 
                      skip=2) 
output_df[,thresh_col_rec[1]] <- "loss" 
output_df <- output_df[,c(1,2,9)] 
} 
 
for(i in c(2:length(thresh_col_rec))) { 
 
  output_txt <- 
read_file(sprintf("data/phenotree_output/control_%s/%s/export.tsv",  
                                  j, 
                                  thresh_col_rec[i])) 
   
  # If no data, make blank output_df_temp 
  if (output_txt == "no_data") { 
     
    tbl_colnames <- c("#gene symbol", 
                      "gene name", 
                      thresh_col_rec[i]) 
    output_df_temp <- read_csv("\n", 
                               col_names = tbl_colnames) # all 
character type 
    rm(tbl_colnames) 
   
    # Or make output_df_temp with data   
  } else { 
     
  output_df_temp <- 
read_tsv(sprintf("data/phenotree_output/control_%s/%s/export.tsv",  
                                     j, 
                                     thresh_col_rec[i]), 
                             skip=2) 
  output_df_temp[,thresh_col_rec[i]] <- "loss" 
  output_df_temp <- output_df_temp[,c(1,2,9)] 
  } 
   
  output_df <- full_join(output_df,  
                         output_df_temp,  
                         by=c("#gene symbol", "gene name")) 
} 
 
rm(output_df_temp) 
 
colnames(output_df)[1:2] <- c("gene_symbol", "gene_name") 
 
write_csv(output_df, 
sprintf("data/phenotree_output/control_%s/total_genes.csv", j)) 
 
# make dataframe setup for observations about tests at each threshold 
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gene_counts <- tibble(colnames(output_df)[3:length(output_df)]) 
colnames(gene_counts) <- "threshold" 
 
# count total amount of genes lost in each column of the gene list and 
add them to a vector 
 
temp_count <- c(sum(output_df[thresh_col_rec[1]]=="loss", na.rm=TRUE)) 
 
for (i in c(2:length(thresh_col_rec))) { 
  temp_count <- append(temp_count, 
sum(output_df[thresh_col_rec[i]]=="loss", na.rm=TRUE)) 
} 
 
# Make that vector part of the gene_counts dataframe 
gene_counts$"total_genes" <- c(temp_count) 
rm(temp_count) 
 
# Now add the number of genes that match assumptions to that in a new 
column!  
# First separating out the genes so they can be recorded and counted 
# Oh my god this is such a better way of doing this than I had 
before... 
# Starts at the last column  
 
if (highloss==TRUE) { 
  rev_output_df_length <- rev(c(3:length(output_df[1,]))) 
  # Make sure you're only working with things present in final 
threshold to begin with 
  output_df <- filter(output_df, 
output_df[rev_output_df_length[1]]=="loss") 
  # Keep rows where the last n columns are equal to  
  for(i in seq_along(rev_output_df_length)) { 
    output_df <- filter(output_df,  
                        
is.na(output_df[,rev_output_df_length[i]])==TRUE | 
rowSums(output_df[,length(output_df):rev_output_df_length[i]]=="loss", 
                                                                                   
na.rm=TRUE)==i) 
  } 
} 
 
#Same counting as earlier 
 
# count total amount of genes lost in each column of the gene list and 
add them to a vector 
 
temp_count <- c(sum(output_df[thresh_col_rec[1]]=="loss", na.rm=TRUE)) 
 
for (i in c(2:length(thresh_col_rec))) { 
  temp_count <- append(temp_count, 
sum(output_df[thresh_col_rec[i]]=="loss", na.rm=TRUE)) 
} 
 
write_csv(output_df, 
sprintf("data/phenotree_output/control_%s/candidate_genes.csv", j)) 
 
# Make that vector part of the gene_counts dataframe 
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gene_counts$"candidate_genes" <- c(temp_count) 
rm(temp_count) 
 
write_csv(gene_counts, 
sprintf("data/phenotree_output/control_%s/gene_counts.csv", j)) 
 
# Calculate test statistic and add to test statistic table 
test_statistic <- gene_counts[[test_stat_row,3]] 
 
test_statistic_df <-  
  add_row(test_statistic_df,  
          type = "control", 
          trial = sprintf("control_%s", j), 
          test_statistic = test_statistic) 
 
} 
 
rm(gene_counts, 
   output_df,  
   i,  
   j, 
   rev_output_df_length, 
   test_stat_row 
   ) 
 
 
statistics.R 
# Count number of control test statistics higher than the experimental 
one 
test_stat_above_ct <- test_statistic_df$test_statistic 
exp_test_stat <- test_stat_above_ct[1] 
test_stat_above_ct <- test_stat_above_ct[2:length(test_stat_above_ct)] 
test_stat_above_ct <- test_stat_above_ct[test_stat_above_ct > 
exp_test_stat] 
test_stat_above_ct <- length(test_stat_above_ct) 
 
# Calculate P value with that! 
P_value <- (test_stat_above_ct+1) / (length(num_controls) + 1) 
 
p <- test_statistic_df %>% 
  ggplot( aes(x=test_statistic, fill=type)) + 
  geom_dotplot(binwidth=1) + 
  ggtitle("Distribution of Test Statistics") + 
  scale_fill_manual(values=c("black", "red")) + 
  theme( 
    plot.title = element_text(size=15), 
    axis.text.y = element_blank(), 
    axis.ticks.y = element_blank(), 
    panel.grid.major.y = element_blank(), 
    panel.grid.minor.y = element_blank() 
  )  
 
p 
ggsave( 
  "graphics/test_statistic_distribution.png", 
  plot=p 
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) 
 
# Create summary table and plot of entire trial 
 
# Create initial count data from control group 
gene_counts <- 
read_csv("data/phenotree_output/experimental/gene_counts.csv") 
gene_counts$threshold <- substring(gene_counts$threshold, 11) 
#gene_counts$threshold <- as.double(gene_counts$threshold) 
 
gene_counts <- add_column(gene_counts, "type" = c("experimental"), 
.before="threshold") 
 
# Add data from experimental groups 
for (i in num_controls) { 
  gene_counts_temp <- 
read_csv(sprintf("data/phenotree_output/control_%s/gene_counts.csv", 
i)) 
  gene_counts_temp$threshold <- substring(gene_counts_temp$threshold, 
11) 
  #gene_counts_temp$threshold <- as.double(gene_counts_temp$threshold) 
  gene_counts_temp <- add_column(gene_counts_temp, "type" = 
c("control"), .before="threshold") 
  gene_counts <- rbind(gene_counts, gene_counts_temp) 
} 
rm(gene_counts_temp) 
gene_counts$threshold <- factor(gene_counts$threshold, 
levels=bin_thresholds) 
 
# Generate plot 
gene_counts %>%  
  arrange(type) %>% 
ggplot(aes(x=threshold, y=candidate_genes)) +  
  geom_point(aes(col=type, shape=type, alpha=type)) +  
  scale_shape_manual(values=c(20, 19)) + 
  scale_alpha_manual(values=c(.3, 1)) + 
  scale_color_manual(values=c("black", "red")) + 
  ggtitle("Total Candidate Genes Per Threshold") 
 
ggsave( 
  "graphics/candidate_gene_summary.png", 
  plot = last_plot() 
) 
 
 
gene_ontology.R 
# Create enter delimited file of gene symbols for the target 
(experimental) group 
  GO_target <- 
read_csv("data/phenotree_output/experimental/candidate_genes.csv") 
  GO_target <- GO_target$gene_symbol 
  write_lines(GO_target, "data/GO_target.txt") 
  rm(GO_target) 
 
# Create enter delimited file of gene symbols for background (control) 
group   
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  GO_background <- 
read_csv("data/phenotree_output/control_1/candidate_genes.csv") 
  GO_background <- GO_background$gene_symbol 
   
  for (i in 2:length(num_controls)) { 
    GO_background_temp <- 
read_csv(sprintf("data/phenotree_output/control_%s/candidate_genes.csv"
, i)) 
    GO_background_temp <- GO_background_temp$gene_symbol 
    GO_background <- append(GO_background, GO_background_temp) 
  } 
  GO_background <- unique(GO_background) 
  write_lines(GO_background, "data/GO_background.txt") 
  rm(GO_background_temp)	  
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APPENDIX B: FULL CANDIDATE GENE TABLES 

Analysis 1 
 
Table 9. Candidate genetic regions from analysis 1 

MGI Gene 
Symbol 

Gene Name Threshold 
-0.3 

Threshold  
-0.1 

Threshold 
0.1 

Threshold 
0.3 

Threshold 
0.5 

Slfn8 schlafen 8 isoform 1 loss loss loss loss loss 

Tmem181c-ps Mus musculus adult 
male corpora 
quadrigemina cDNA, 
RIKEN full-length 
enriched library, 
clone:B230309D09 
product:unclassifiable, 
full insert sequence. 

loss loss loss loss loss 

4932414N04Rik hypothetical protein 
LOC75721 

NA loss loss loss loss 

A430033K04Rik hypothetical protein 
LOC243308 

NA loss loss loss loss 

Gm13154 SubName: Full=Novel 
protein similar to Rex2; 
Flags: Fragment; 

NA NA loss loss loss 

Gm5631 hypothetical protein 
LOC434674 

NA NA loss loss loss 

Dcpp2 demilune cell and 
parotid protein 2 

NA NA NA loss loss 

Cts6 cathepsin 6 NA NA NA loss loss 

Serpina3g serine protease inhibitor 
A3G 

NA NA NA loss loss 

Vmn2r85 vomeronasal 2, receptor 
85 

NA NA NA loss loss 

Vmn2r102 vomeronasal receptor 
Vmn2r102 

NA NA NA loss loss 

Zfp36l3 zinc finger protein 36-
like 3 

NA NA NA loss loss 

Vmn2r88 vomeronasal 2, receptor 
88 

NA NA NA loss loss 

Gm12250 predicted gene 12250 NA NA NA loss loss 

Vmn2r18 vomeronasal 2, receptor 
18 

NA NA NA loss loss 

Serpina3h SubName: 
Full=Putative 
uncharacterized protein 
Serpina3h; 

NA NA NA loss loss 

Zfp607 zinc finger proten 607 NA NA NA loss loss 

Olfr136 olfactory receptor 136 NA NA NA loss loss 

Gm4846 flavin-containing 
monooxygenase 13 

NA NA NA loss loss 

Zfp780b SubName: Full=Zinc 
finger protein 780B; 

NA NA NA loss loss 

Serpina3b serine protease inhibitor 
A3B precursor 

NA NA NA loss loss 
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Skint7 selection and upkeep of 
intraepithelial T-cells 

NA NA NA loss loss 

5430413K10Rik hypothetical protein 
LOC433492 

NA NA NA loss loss 

AK050745 Mus musculus 9 days 
embryo whole body 
cDNA, RIKEN full-
length enriched library, 
clone:D030014K19 
product:SET domain, 
bifurcated 1, full insert 
sequence. 

NA NA NA loss loss 

Akr1c6 estradiol 17 beta-
dehydrogenase 5 

NA NA NA loss loss 

Olfr622 olfactory receptor 622 NA NA NA loss loss 

Olfr535 olfactory receptor 535 NA NA NA loss loss 

Olfr1494 olfactory receptor 1494 NA NA NA loss loss 

Olfr652 olfactory receptor 652 NA NA NA loss loss 

Cyp2j7 cytochrome P450, 
family 2, subfamily j, 

NA NA NA loss loss 

B3gnt6 UDP-GlcNAc:betaGal NA NA NA NA loss 

Olfr1415 olfactory receptor 1415 NA NA NA NA loss 

Iqcf4 IQ motif containing F4 NA NA NA NA loss 

A630073D07Rik hypothetical protein 
LOC381819 

NA NA NA NA loss 

Olfr415 olfactory receptor 415 NA NA NA NA loss 

Zdhhc11 probable 
palmitoyltransferase 
ZDHHC11 

NA NA NA NA loss 

Slfn5 schlafen family member 
5 

NA NA NA NA loss 

Clca6 calcium-activated 
chloride channel 
regulator 4 

NA NA NA NA loss 

Gstm7 glutathione S-
transferase Mu 7 

NA NA NA NA loss 

Gas1 growth arrest-specific 
protein 1 

NA NA NA NA loss 

Gm12597 alpha-interferon 
precursor 

NA NA NA NA loss 

Sult1d1 sulfotransferase family 
1D, member 1 

NA NA NA NA loss 

Rnaset2b ribonuclease T2B NA NA NA NA loss 

BC089491 selenoprotein V NA NA NA NA loss 

Smtnl1 smoothelin-like protein 
1 

NA NA NA NA loss 

2310033P09Rik multiple myeloma 
tumor-associated 
protein 2 

NA NA NA NA loss 

Olfr1505 olfactory receptor 1505 NA NA NA NA loss 

Gm5105 hypothetical protein 
LOC329763 

NA NA NA NA loss 

Abca14 ATP-binding cassette, 
sub-family A (ABC1), 

NA NA NA NA loss 
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Olfr920 olfactory receptor 920 NA NA NA NA loss 

Trim31 E3 ubiquitin-protein 
ligase TRIM31 

NA NA NA NA loss 

Adam1b disintegrin and 
metalloproteinase 

NA NA NA NA loss 

Catsper1 cation channel sperm-
associated protein 1 

NA NA NA NA loss 

Gpr25 probable G-protein 
coupled receptor 25 

NA NA NA NA loss 

Krt9 keratin, type I 
cytoskeletal 9 

NA NA NA NA loss 

Olfr871 olfactory receptor 871 NA NA NA NA loss 

Taf3 transcription initiation 
factor TFIID subunit 3 

NA NA NA NA loss 

Gm561 hypothetical protein 
LOC228715 

NA NA NA NA loss 

Ptgds prostaglandin-H2 D-
isomerase 

NA NA NA NA loss 

2200002J24Rik hypothetical protein 
LOC69147 

NA NA NA NA loss 

Olfr412 olfactory receptor 412 NA NA NA NA loss 

Man2b2 epididymis-specific 
alpha-mannosidase 
precursor 

NA NA NA NA loss 

Lor loricrin NA NA NA NA loss 

Naca nascent polypeptide-
associated complex 
subunit 

NA NA NA NA loss 

 
Analysis 2 

 
Table 10. Candidate genetic regions from analysis 2 

MGI 
Gene 
symbol 

Gene 
name 

Threshold 

-0.142 
Threshold 

-0.122 
Threshold 

-0.112 
Threshold 

0.048 
Threshold 

0.108 
Threshold 

0.293 
Threshold 

0.375 
Threshold 

0.503 
Threshold 

0.743 

Serpina3g serine 
protease 
inhibitor 
A3G 

NA NA NA NA NA loss loss loss loss 

Serpina3h SubName: 
Full=Putativ
e 
uncharacteri
zed protein 
Serpina3h; 

NA NA NA NA NA loss loss loss loss 

Olfr136 olfactory 
receptor 136 

NA NA NA NA NA loss loss loss loss 

Zfp780b SubName: 
Full=Zinc 
finger 
protein 
780B; 

NA NA NA NA NA loss loss loss loss 

AK05074
5 

Mus 
musculus 9 
days embryo 
whole body 
cDNA, 
RIKEN full-

NA NA NA NA NA loss loss loss loss 



 78 

length 
enriched 
library, 
clone:D0300
14K19 
product:SET 
domain, 
bifurcated 1, 
full insert 
sequence. 

Gm12250 predicted 
gene 12250 

NA NA NA NA NA NA loss loss loss 

Olfr652 olfactory 
receptor 652 

NA NA NA NA NA NA loss loss loss 

Olfr415 olfactory 
receptor 415 

NA NA NA NA NA NA NA loss loss 

Slfn5 schlafen 
family 
member 5 

NA NA NA NA NA NA NA loss loss 

Gm12597 alpha-
interferon 
precursor 

NA NA NA NA NA NA NA loss loss 

Smtnl1 smoothelin-
like protein 
1 

NA NA NA NA NA NA NA loss loss 

Adam1b disintegrin 
and 
metalloprote
inase 

NA NA NA NA NA NA NA loss loss 

Taf3 transcription 
initiation 
factor TFIID 
subunit 3 

NA NA NA NA NA NA NA loss loss 

Ptgds prostaglandi
n-H2 D-
isomerase 

NA NA NA NA NA NA NA loss loss 

2200002J
24Rik 

hypothetical 
protein 
LOC69147 

NA NA NA NA NA NA NA loss loss 

Man2b2 epididymis-
specific 
alpha-
mannosidase 
precursor 

NA NA NA NA NA NA NA loss loss 

2310057J
18Rik 

hypothetical 
protein 
LOC67719 
precursor 

NA NA NA NA NA NA NA NA loss 

Padi3 protein-
arginine 
deiminase 
type-3 

NA NA NA NA NA NA NA NA loss 

Krt33a keratin, type 
I cuticular 
Ha3-I 

NA NA NA NA NA NA NA NA loss 

Aldh3b2 aldehyde 
dehydrogena
se 3 family, 
member B2 

NA NA NA NA NA NA NA NA loss 

Padi4 protein-
arginine 

NA NA NA NA NA NA NA NA loss 
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deiminase 
type-4 

E430018J
23Rik 

hypothetical 
protein 
LOC101604 

NA NA NA NA NA NA NA NA loss 

Bet3l trafficking 
protein 
particle 
complex 
subunit 

NA NA NA NA NA NA NA NA loss 

Gsdma gasdermin-A NA NA NA NA NA NA NA NA loss 

Klrg1 killer cell 
lectin-like 
receptor 
subfamily G 

NA NA NA NA NA NA NA NA loss 

Plscr4 phospholipid 
scramblase 4 

NA NA NA NA NA NA NA NA loss 

Pfkfb1 6-
phosphofruct
o-2-
kinase/fructo
se-2, 

NA NA NA NA NA NA NA NA loss 

Cplx2 complexin-2 NA NA NA NA NA NA NA NA loss 

Serpina12 serpin A12 
precursor 

NA NA NA NA NA NA NA NA loss 

Rit2 GTP-binding 
protein Rit2 

NA NA NA NA NA NA NA NA loss 

Trmt2b tRNA 
(uracil-5-)-
methyltransf
erase 
homolog 

NA NA NA NA NA NA NA NA loss 

Pdia4 protein 
disulfide-
isomerase 
A4 

NA NA NA NA NA NA NA NA loss 

Hisppd1 histidine 
acid 
phosphatase 
domain 
containing 1 

NA NA NA NA NA NA NA NA loss 

Olfr654 olfactory 
receptor 654 

NA NA NA NA NA NA NA NA loss 

9230105E
10Rik 

tripartite 
motif protein 
TRIM5 

NA NA NA NA NA NA NA NA loss 

Anxa9 annexin A9 NA NA NA NA NA NA NA NA loss 

Opn3 opsin-3 NA NA NA NA NA NA NA NA loss 

2010109K
11Rik 

hypothetical 
protein 
LOC72123 

NA NA NA NA NA NA NA NA loss 

Zc3h12d probable 
ribonuclease 
ZC3H12D 

NA NA NA NA NA NA NA NA loss 

Myh1 myosin-1 NA NA NA NA NA NA NA NA loss 

Mfsd9 major 
facilitator 
superfamily 

NA NA NA NA NA NA NA NA loss 
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domain-
containing 

Adam21 disintegrin 
and 
metalloprote
inase 

NA NA NA NA NA NA NA NA loss 

Fmo6 flavin 
containing 
monooxygen
ase 6 

NA NA NA NA NA NA NA NA loss 

Sult6b1 sulfotransfer
ase 6B1 

NA NA NA NA NA NA NA NA loss 

Arrb2 beta-
arrestin-2 

NA NA NA NA NA NA NA NA loss 

BC04859
9 

putative 
trypsin-X3 
precursor 

NA NA NA NA NA NA NA NA loss 

Fbrsl1 fibrosin-like 
1 isoform 1 

NA NA NA NA NA NA NA NA loss 

Prdx2 peroxiredoxi
n-2 

NA NA NA NA NA NA NA NA loss 

Ddi1 protein 
DDI1 
homolog 1 

NA NA NA NA NA NA NA NA loss 

Gnat3 guanine 
nucleotide-
binding 
protein G(t) 
subunit 

NA NA NA NA NA NA NA NA loss 

Pdcd5 programmed 
cell death 
protein 5 

NA NA NA NA NA NA NA NA loss 

Ttll13 tubulin 
polyglutamy
lase TTLL13 

NA NA NA NA NA NA NA NA loss 

Prrt4 proline-rich 
transmembra
ne protein 4 

NA NA NA NA NA NA NA NA loss 

Krt20 keratin, type 
I 
cytoskeletal 
20 

NA NA NA NA NA NA NA NA loss 

BC10918
0 

Mus 
musculus 
activated 
spleen 
cDNA, 
RIKEN full-
length 
enriched 
library, 
clone:F8300
03B07 
product:hyp
othetical 
protein, full 
insert 
sequence. 

NA NA NA NA NA NA NA NA loss 

M13677 Mouse T-
cell receptor 
active beta-

NA NA NA NA NA NA NA NA loss 
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chain V-
region V2DJ 
mRNA. 

Il17rb interleukin-
17 receptor 
B precursor 

NA NA NA NA NA NA NA NA loss 

Olfr437 olfactory 
receptor 437 

NA NA NA NA NA NA NA NA loss 

Trpa1 transient 
receptor 
potential 
cation 
channel 

NA NA NA NA NA NA NA NA loss 

1700012B
07Rik 

hypothetical 
protein 
LOC69324 
isoform 1 

NA NA NA NA NA NA NA NA loss 

Odf1 outer dense 
fiber protein 
1 

NA NA NA NA NA NA NA NA loss 

Plag1 zinc finger 
protein 
PLAG1 

NA NA NA NA NA NA NA NA loss 

Cyp11b2 cytochrome 
P450 11B2, 
mitochondri
al 

NA NA NA NA NA NA NA NA loss 

Sgk3 serine/threon
ine-protein 
kinase Sgk3 

NA NA NA NA NA NA NA NA loss 

1700020C
07Rik 

Tsg23 NA NA NA NA NA NA NA NA loss 

Hsd17b11 estradiol 17-
beta-
dehydrogena
se 11 

NA NA NA NA NA NA NA NA loss 

Ugt2a1 UDP-
glucuronosyl
transferase 
2A1 
precursor 

NA NA NA NA NA NA NA NA loss 

Cst8 cystatin-8 
precursor 

NA NA NA NA NA NA NA NA loss 

Fgf23 fibroblast 
growth 
factor 23 
precursor 

NA NA NA NA NA NA NA NA loss 

Zfp174 zinc finger 
protein 174 

NA NA NA NA NA NA NA NA loss 

Ttc1 tetratricopep
tide repeat 
protein 1 

NA NA NA NA NA NA NA NA loss 

4921507P
07Rik 

hypothetical 
protein 
LOC70821 

NA NA NA NA NA NA NA NA loss 

Fam53a dorsal 
neural-tube 
nuclear 
protein 

NA NA NA NA NA NA NA NA loss 

Lad1 ladinin-1 NA NA NA NA NA NA NA NA loss 
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AK04020
2 

Mus 
musculus 0 
day neonate 
thymus 
cDNA, 
RIKEN full-
length 
enriched 
library, 
clone:A4300
77D02 
product:uncl
assifiable, 
full insert 
sequence. 

NA NA NA NA NA NA NA NA loss 

Elk4 ETS 
domain-
containing 
protein Elk-
4 

NA NA NA NA NA NA NA NA loss 

Rell1 RELT-like 
protein 1 
precursor 

NA NA NA NA NA NA NA NA loss 

4930588N
13Rik 

hypothetical 
protein 
LOC75860 

NA NA NA NA NA NA NA NA loss 

Pram1 PML-
RARA-
regulated 
adapter 
molecule 1 

NA NA NA NA NA NA NA NA loss 

Cdkl4 cyclin-
dependent 
kinase-like 4 

NA NA NA NA NA NA NA NA loss 

Pde7a high affinity 
cAMP-
specific 
3',5'-cyclic 

NA NA NA NA NA NA NA NA loss 

Arhgef6 rho guanine 
nucleotide 
exchange 
factor 6 

NA NA NA NA NA NA NA NA loss 

Adcy6 adenylate 
cyclase type 
6 

NA NA NA NA NA NA NA NA loss 

Sprr1a cornifin-A NA NA NA NA NA NA NA NA loss 

Xpnpep3 probable 
Xaa-Pro 
aminopeptid
ase 3 

NA NA NA NA NA NA NA NA loss 
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