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ABSTRACT 

 

Ixodes scapularis, the blacklegged tick, is the primary vector for the Lyme 

disease-causing bacteria Borrelia burgdorferi in the United States. Lyme disease poses a 

significant concern to the state of Maine, as both the number and geographic distribution 

of cases across the state have been steadily increasing over the past two decades. In 2001, 

there were 108 confirmed or probable cases of Lyme disease in Maine compared to 1404 

cases in 2018. Using tick-borne disease human case data from the Maine CDC and 

ArcGIS software, I created three Lyme disease maps for the years 2001, 2009, and 2017. 

These maps show the number of confirmed and probable cases of Lyme disease in Maine 

for each town, where case coordinates were randomly assigned within the town boundary 

that the patient resides in. I used Maxent modeling to locate areas of high-risk for Lyme 

disease cases in Maine. The land cover variables were taken from the National Land 

Cover Database and the climate variables were based on Bioclimatic variables from 

WorldClim. The final variable in this model was the distance from hospital. The findings 

of this study show that the distribution of Lyme disease cases across the state of Maine 

increased from 2001 to 2017. The coldest temperature of the coldest month was the best 

predictor for Lyme disease case prevalence, and land cover was not an important 

predictor for Lyme disease cases.  These findings pose research questions on the causality 

behind these trends. 
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INTRODUCTION 
 
 

 Lyme disease, also known as Lyme borreliosis, is the most common vector borne 

disease in the United States and poses a significant concern to the state of Maine (Eddens 

et al., 2019). Lyme disease, transmitted by Ixodes scapularis (commonly known as the 

blacklegged tick)(Feldman et al., 2015), is now the third most reported infectious disease 

in Maine and is endemic in all sixteen Maine counties (Robinson, 2014). This concern for 

public health in Maine has led to the development of better insect repellents, education 

programs, coordinated research efforts through TickNET, and the funding of state health 

departments to improve surveillance and prevention (Centers for Disease Control and 

Prevention, 2021). Since currently no Lyme disease vaccine is available to the public 

(O’Bier, 2021), preventative measures involving determining areas of high risk and 

educating the public on Lyme disease are highly important.  

Ixodes scapularis transmits the Lyme-disease causing bacterial spirochete 

Borrelia burgdorferi, responsible for causing a range of symptoms in North America 

(Feldman, 2015). After an initial tick bite, a minimum of 24 to 48 hours of tick 

attachment is typically required to cause infection leading to Lyme disease (Lo Re, 

2004). This long window of attachment is necessary for B. burgdorferi to migrate from 

the midgut of the tick to its salivary glands. Symptoms of Lyme disease typically 

manifest themselves within three to 30 days, with up to 80 percent of cases being 

characterized by the erythema migrans rash. This rash appears as an oval or circular rash 

with approximately 19 percent of cases having the characteristic bulls-eye appearance 

(Wright, 2012). Other non-specific symptoms that can accompany the rash include fever, 

headache, fatigue, and muscle and joint aches. These are considered early localized Lyme 
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disease symptoms and are primarily brought on by both the innate and adaptive 

inflammatory immune responses (Glickstein, 2003). Occasionally if Lyme disease is 

inadequately treated or persists, more severe symptoms including arthritis with severe 

joint pain and swelling, facial palsy, heart palpitations, and nerve damage can occur 

(CDC, 2021). 

Understanding the life cycle of I. scapularis is useful for predicting the risk of 

tick-human encounters (Nieto, 2018). The life cycle of I. scapularis is such that only 

female nymphs and adults can transmit the Lyme disease causing agent to humans. So, it 

is important to consider what climate and land cover variables could affect the ability of 

these life stages to find a host. Warm temperatures could increase desiccation stress, 

which could lead to low I. scapularis population numbers in years with dry, hot 

temperatures (Ginsberg, 2017). Adult female ticks lay their eggs in the spring, which then 

hatch as larvae by the following summer and encounter their first blood meal typically in 

the form of small mammals or birds during the summer or early fall. At this stage, and 

through additional blood meals, the tick might acquire the bacteria B. burgdorferi and 

becomes able to transmit it to other blood meal hosts for the rest of its life cycle. The tick 

transitions into its nymphal stage by the following spring at which point it seeks its 

second blood meal often in the form of another small rodent or in some cases a human. 

The host of its second blood meal is the first one in the black-legged tick life cycle that 

could potentially contract B. burgdorferi from an infected tick bite. The third and final 

blood meal occurs when the tick is in its adult life stage during the fall. Adult ticks feed 

on larger hosts such as deer and humans before laying eggs the following spring when the 
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life cycle repeats (CDC 2020). Tick-host encounter frequencies, and thus cases of tick-

borne disease, are influenced by a variety of factors such as climate and land use. 

Ixodes scapularis questing behavior is correlated with ambient temperature and 

humidity, and may have a strong positive relationship with Lyme disease incidence 

(Schulze, 2003). Ixodes scapularis seeks a host through a behavior known as questing. 

This is where a host-seeking tick climbs up to rest on the tips of grasses and shrubs and 

holds on to the leaves and grass with their lower legs and keep their upper legs 

outstretched (Vail, 2002). Since ticks are unable to jump or fly, they wait to climb onto a 

passing host where they will take a blood meal before dropping off (CDC, 2011). 

Questing behavior, and thus Lyme disease risk, is largely driven by the time of year and 

temperature. Ixodes scapularis is most active above 4.4 degrees Celsius (Maine CDC, 

2021) and has been shown to die in laboratory settings when exposed to temperatures 

between -18.9 degrees Celsius and -10 degrees Celsius (Department of Conservation and 

Natural Resources, 2018). This temperature barrier limits tick activity during the harsh 

winter months in Maine where most ticks are either attached to a host or insulated under 

leaf litter and snow. High temperatures above 30 °C, and low humidity, can cause 

decreased questing activity, potentially in part due to dehydration, which could increase 

tick mortality rates as chances of finding a host go down (Eisen, 2016). Therefore, 

temperature constraints on questing behavior and probability of obtaining a bloodmeal 

could be good indicators of tick-human encounter frequencies and thus Lyme disease 

cases. 

The risk of Lyme disease infection is greatest in late spring and summer (Roome, 

2018) when I. scapularis and human activity are at their  peak in Maine. Increased human 
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outdoor activity raises the risk of encountering ticks and thus the risk of Lyme disease 

transmission (Xu, 2016). In 2018, Mount Desert Island, a popular outdoor Maine tourist 

destination, received 614,231 recreational visitors in the month of July when nymphal 

ticks are active. This is compared to the 9,274 recreational visitors in January when cold 

Maine temperatures limit I. scapularis activity (National Park Services U.S. Department 

of the Interior, 2018). I. scapularis has been positively associated with deciduous, dry to 

mesic forests which can be encountered by tourists doing recreational activities such as 

hiking in the parks (Guerra, 2002). Along with the increased number of people entering 

potential tick habitats, the nymph ticks are small, making them hard to spot within the 

time necessary for transmitting B. burgdorferi (Eisen, 2016). 

 The type of land cover is an important factor when considering I. scapularis 

encounters and Lyme disease. In a habitat suitability model for the distribution of I. 

scapularis in Minnesota, the most influential variable was land cover. Forested habitat, 

temperate grassland, meadow, and shrubland were all suitable habitats for the 

establishment of I. scapularis, with cool, forested habitat accounting for 67 percent of the 

predicted habitat in Minnesota (Johnson, 2016). Ixodes scapularis abundance has also 

been shown to be increased in areas with high canopy cover with little shrubland (Talbot, 

2019). The type of forest can also have an impact on I. scapularis abundance with 

nymphal tick densities being greater in deciduous forests than in coniferous forests 

(Ginsberg, 2004).  

There may be a strong linkage between the abundance of host-seeking nymphs 

infected with B. burgdorferi and Lyme disease occurrence, and therefore spatial patterns 

of both the vector and disease occurrence should be studied (Eisen, 2016). One 
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surveillance mechanism open to the public is the Lyme disease incidence data found on 

the Maine Tracking Network made available by the Maine CDC (Maine Tracking 

Network, 2021).  The University of Maine Cooperative Extension Tick Lab conducts 

surveillance of ticks and tick-borne pathogens and, for a small fee, accepts tick samples 

from the public for tick-borne pathogen testing (Rounsville, 2021). This lab conducts a 

free tick-identification program as well (Rounsville, 2019). While these programs are 

highly useful and valuable to the current understanding of I. scapularis and Lyme 

disease, a few limitations could be mitigated and explored using a different approach.  

 The Maine CDC human Lyme disease case dataset that will be used in this model 

mitigates several biases and limitations of previous passive surveillance tick data . A 

major limitation of the UMaine Tick Surveillance Program is its reliance on the public’s 

willingness or ability to submit tick samples to be tested and included in the data. This 

means that for a tick to be reported and tested for tickborne diseases, a member of the 

public needs to go out of their way to send in the tick sample. This could create bias as 

individuals who are educated on tickborne diseases and who are knowledgeable about 

this surveillance program would be more likely to submit a sample (Aenishaenslin, 

2016). The method of announcing tick identification services such as through lectures, 

public health and veterinary newsletters, game biologists, and in the media, has played a 

significant role in getting submissions from the public in previous surveillance. This 

mechanism of reporting might also create an inaccurate distribution of ticks and tickborne 

diseases across the state of Maine as specific outdoor-related groups such as summer 

camp and hunting camp operators were targeted specifically and given vials and prepaid 

mailing labels (Rand, 2007). The Maine CDC human Lyme disease case dataset relies on 
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healthcare providers and laboratories to report cases to the state and local health 

departments. This removes some of the bias since this dataset deals with cases where 

people have personal interest in seeking medical attention. This dataset shows cases of a 

patient who meets the clinical definition or has laboratory confirmation of Lyme disease, 

making this dataset a better candidate for assessing Lyme disease risk across the state of 

Maine (CDC, 2021). This dataset does has a limitation in that the location associated with 

each case is the home address of the patient and not necessarily the location where Lyme 

disease was contracted. It would be impossible to accurately guess where each patient 

contracted Lyme disease as some do not ever realize that they had been bitten by a tick. 

This can create some bias as many people can travel to potentially high-risk areas for 

contracting Lyme disease (Casares, 2020) and then have the case associated with their 

home address (Bacon, 2008). 

 The main objective of my research is to create an ecological niche model of Lyme 

disease risk which can be broken down into three smaller objectives: 

1. Create three Lyme disease case maps for the years 2001, 2009, and 2017 that 

show the number of cases of Lyme disease by town in Maine. It is important to 

understand how the distribution of cases is changing over time, to help predict 

emerging areas of high risk and help best prepare for them. To do this, the Maine 

CDC tick-borne disease human case data on Lyme disease for 2001 to 2020 was 

chosen because it lacks the bias of relying on the public to report tick encounters. 

2. Create an ecological niche model for Lyme disease risk. An ecological niche 

model, or ENS, is a correlative model that predicts relative habitat suitability 

using occurrence data along with environmental data (Warren, 2011). My ENS 
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uses the Maine CDC tick-borne disease human case data on Lyme disease as the 

occurrence data along with a series of land cover and climate variables for the 

environmental data.  

3. Analyze temporal trends for Lyme disease risk between 2001, 2009, and 2017. I 

used three different time points to analyze Lyme disease risk to see if the increase 

in Lyme disease cases, as well as the number of towns affected by Lyme disease, 

had any influence on my model. I hypothesized that the differences in climate 

from year to year could have an impact on my model which could be a good 

launching point for future research.  
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METHODS 
 

 
Human Case Data Sources and Visualization 

 

The Maine CDC tickborne disease human case data on Lyme disease was used 

because it lacks the bias of relying on the public to report tick encounters. The data 

consists of human case data on tick-borne disease numbers, case status, the report date, 

and onset date, in Maine between the years of 2001 and 2020. All research involving 

confidential human case data was conducted in compliance with University of Maine IRB 

protocol #2017_09_09 and included information such as the type of tick-borne disease, as 

well as the year of the case and home address of each patient. The four types of tickborne 

diseases reported in this dataset were Lyme disease, babesiosis, human granulocytic 

anaplasmosis, and human granulocytic ehrlichiosis. While all these tick-borne diseases 

can be transmitted by I. scapularis, Lyme disease has caused the most concern to public 

health, so, to create a model that is both relevant and as accurate as possible, I chose to 

focus on Lyme disease.   

The cases of Lyme disease from this Maine CDC human case dataset were 

reported to the state and local health departments by healthcare providers and laboratories 

(CDC, 2021). To report a Lyme disease case, a Lyme disease surveillance case report is 

filled out by a public health official. A patient can be diagnosed with Lyme disease just 

by having erythema migrans (EM), the characteristic bulls-eye-shaped expanding rash. If 

the rash is not present, a patient can still be diagnosed with Lyme disease, given at least 

one late manifestation and a laboratory confirmation of the disease. A variety of late 

manifestations of Lyme disease affect the musculoskeletal system, the nervous system, 
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and the cardiovascular system. The second part of the diagnosis, the laboratory 

confirmation, is the isolation of the spirochete B. burgdorferi from tissue or body fluid of 

the patient (CDC 2009).  

For this research, Lyme disease cases from the years 2001, 2009, and 2017, were 

selected. Including a temporal aspect in my model should reveal how potential 

differences in climate over the span of approximately two decades might affect the 

change in case numbers and geographic expansion of cases. A temporal variable could 

also impact the spatial predictors of the occurrence of cases in the model. I also 

considered compiling a range of years instead of analyzing individual years, however this 

would compromise the annual climate values in this model. By taking a range of years, I 

would have needed to average the climate values and ranges for those years. So, if there 

were two years of mild winter temperatures followed by one year of extremely low 

temperatures that proved to be an important predictor for Lyme disease risk, that 

predictor would be lost when the temperatures were averaged together. Key variables 

such as temperature are vital factors for I. scapularis population numbers, and thus Lyme 

disease numbers, from year to year, so taking the average of these values for a range of 

years would be detrimental to this model. 

To visualize changes in the density of case numbers and their geographic 

distribution over time, Lyme disease incidence maps were created. Maine’s town 

boundary files from the US census (United States Census Bureau, 2019) were 

downloaded into ArcMap, a geospatial processing program (ESRI, Inc., Redlands, CA). 

The Lyme disease case data for each of the three specified years were uploaded into 

separate maps as CSV files with the town boundary information. The two files were 
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joined in ArcMap, and the map was given a color gradient to symbolize the density of 

cases in each town. Next, a random points raster was made in ArcMap and set as the list 

of cases for each year that randomly assigned each case an X and Y coordinate within the 

town’s boundary. This was done to not only protect the identity of the patients in small 

towns where there might have only been one case, but also because some of the cases did 

not have an address other than the town listed. To make sure that all cases were being 

displayed in a uniform manner, they were all randomized within the town boundary they 

were reported in. Afterwards, the shapefiles for the variables for each year were added to 

each map. This was done so that the variables could be aligned to the Maine town 

boundary raster in future steps when exporting into the Maxent model. Some of the 

shapefiles included data for the entire earth or were at different spatial resolutions which 

can cause problems in Maxent, so I exported the shapefiles as TIFF files where I could 

later align them and clip any extraneous data outside of Maine. 

 

Ecological Niche Model Data Sources 

To test the hypothesis that different land cover types such as deciduous forests 

had a higher Lyme disease risk, I included some geographic land cover variables in my 

model. The land cover data were downloaded from the National Land Cover Database 

(Multi-Resolution Land Characteristics Consortium, 2011). Land cover may serve as a 

good indicator for Lyme disease risk because Lyme disease cases are typically associated 

with the habitat where the infected tick was encountered, unless it is a travel-associated 

case (Guerra, 2002). The National Land Cover Database is only generated every five 

years, so no data was available for each year studied in my model. While there are 
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changes in land cover, such as increasing urbanization, the differences between 2001 and 

2017 were not drastic enough to pose much significance to my model. For this reason, 

and because it was the closest to the middle of the years being studied, I chose the land 

cover data for 2011 to be used in my model for all three years.  

This dataset included sixteen separate land cover types for the year 2011. For the 

purposes of this research, these land cover types (e.g., herbaceous, hay/pasture, cultivated 

crops …) were grouped together and reclassified as nine different land cover types (Table 

1). Many of the land cover types were too narrow and specific for the scope of this study 

when considering different habitats that might be relevant for contracting Lyme disease. I 

reclassified the land cover types by considering how both ticks and humans might 

interact with that land cover; I grouped land cover types together if differences in 

interaction were minimal, such as with high intensity versus low intensity for developed 

land cover. For example, the difference between the land cover types Hay/Pasture and 

Cultivated Crops when considering how humans and ticks might interact or cross paths is 

too minimal to require separate land cover types. The resolution of this dataset was very 

fine and created a mosaic effect where every 30 meters there could be a different land 

type classification. ArcGIS was used to take the dominant land cover type in each town to 

be used later in the Maxent model. The dominant land cover in each town was used 

because the Lyme disease cases were all randomized within the town boundary of the 

patient’s home address. Instead of randomizing only a few cases, they were all 

randomized which made potential land cover changes every 30 meters within a town 

irrelevant. By far, across Maine the major land type was deciduous and mixed forest 

followed by evergreen forest.   
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Table 1. Reclassified Land Cover Numbers 

Reclassified Land 
Cover Number 

Reclassified Land 
Cover Name 

NLDC Land Cover Types 

0 Unclassified  Unclassified 

1 Open Water  Open Water  

2 Developed Developed, Open Space  
Developed, Low Intensity 
Developed, Medium Intensity 
Developed, High Intensity 

3 Barren Barren Land  

4 Deciduous and 
Mixed Forest  

Deciduous Forest 
Mixed Forest 

5 Evergreen Forest Evergreen Forest 

6 Shrub Shrub/Scrub 

7 Agriculture  Herbaceous 
Hay/Pasture 
Cultivated Crops 

8 Wetlands  Woody Wetlands 
Emergent Herbaceous 
Wetlands  

 

 

Climate variables such as temperature and precipitation are important to consider 

when thinking about the climate constraints of I. scapularis, as well as the impact 

weather has on human activity. The climate variables, monthly minimum temperature, 

monthly maximum temperature, and monthly precipitation were downloaded from 

WorldClim 2.1 (Harris, 2014). The annual average temperature, or tmean, was 

downloaded from PRISM Climate Group (PRISM, 2021). With these shapefiles, the 

bioclimatic variables, BIO1-Bio19, could be calculated using cell statistics in ArcMap 
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(Environment Systems Research Institute, 2020). These variables were based on 

Worldclim’s Bioclimate variables that are derived from the monthly temperature and 

rainfall values to generate variables that are more biologically meaningful when 

considering Lyme disease. These bioclimatic variables represent annual trends, 

seasonality, and extreme or limiting factors (Table 2). To formulate these variables for 

Maine, I used the equations given on the Worldclim data website by using the monthly 

maximum and minimum temperatures, monthly precipitation, and the annual mean 

temperature. Some of these variables, such as annual mean temperature (BIO1), were 

highly correlated with other variables. If the correlation value between two variables was 

above 0.80, the variable with the smaller percent contribution was omitted from the 

model.  

 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Bioclim Variable Definitions and Model Inclusion  
Variables  Definitions  Included in Model? 
BIO1 Annual Mean Temperature No 
BIO2 Mean Diurnal Range  Yes 
BIO3 Isothermality Yes 
BIO4 Temperature Seasonality No 
BIO5 Max Temperature of Warmest Month Yes 
BIO6 Min Temperature of Coldest Month Yes 
BIO7 Temperature Annual Range No 
BIO8 Mean Temperature of Wettest Quarter No 
BIO9 Mean Temperature of Driest Quarter No 
BIO10 Mean Temperature of Warmest Quarter No 
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BIO11 Mean Temperature of Coldest Quarter No 
BIO12 Annual Precipitation Yes 
BIO13 Precipitation of Wettest Month Yes 
BIO14 Precipitation of Driest Month Yes 
BIO15 Precipitation Seasonality  Yes 
BIO16 Precipitation of Wettest Quarter Yes 
BIO17 Precipitation of Driest Quarter Yes 
BIO18 Precipitation of Warmest Quarter Yes 
BIO19 Precipitation of Coldest Quarter Yes 

 

The last variable considered in this model was the Maine Hospitals (ESRI 202!) 

which showed the distance to the nearest hospital. I wanted to include a variable that was 

related to healthcare infrastructure in my model. Having access to healthcare to get 

accurately diagnosed and treated for Lyme disease may impact the reporting of Lyme 

disease cases. The level of knowledge of the signs and symptoms of Lyme disease within 

a community could influence whether a person sought medical care (as well as knowing 

how to prevent disease transmission) as most of the early symptoms of Lyme disease 

such as fatigue, fever, joint and muscle pain, are very similar to the flu and not all 

patients exhibit the erythema migrans skin lesion (Biesiada, 2012). The level of 

knowledge of the signs and symptoms of Lyme disease within a community could 

influence whether a person sought medical care as well as knowing how to prevent 

disease transmission in the first place. To relate Maine hospitals to the human case 

dataset, this variable was converted to distance to the nearest hospital in RStudio 

(RStudio Team, 2020), and saved as a grid file. 

The bioclimatic variables and reclassified land cover variables were exported 

from ArcMap as TIFF files. These files were then converted to grid files using a format 

raster in RStudio to clip them all to the same size and resolution by using the Maine 

boundaries file as the template raster.  
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Ecological Niche Modeling 

The Maxent R package (Hijmans, 2020) for maximum entropy modeling was 

downloaded as well as the following RStudio libraries: biomod2, readr (Wickham, 2020), 

dplyr (Wickham, 2021), raster (Hijmans, 2020), dismo (Hijmans , 2020), and rgdal 

(Bivand, 2021). Maxent is a program for modeling species distribution from presence-

only species records and is a common tool in ecological niche modeling (Warren, 2011). 

Maxent takes the geographic point locations of members of a population, or Lyme 

disease cases for this model, and compares it to all the environments given in that region. 

Maxent finds the distribution that is most spread out, or closest in uniform within the 

constraints of the environmental variables in the model. To find this distribution, Maxent 

calculates two probability densities, one for presence points which characterizes the 

environment where the species has been found, and one for background points which 

characterizes the available environment within the study region. What results from the 

ratio between the two probability densities is the relative environmental suitability for 

presence of a species for each point in the study area (Elith, 2011). The Maxent model 

does have some limitations in that it only gives environmental suitability instead of 

predicted probability of occurrence.  

The working directory was set to the location of all the grid files that were just 

created with the format raster, plus the distance from hospital raster that was created 

earlier. The relevant raster files were then stacked, and a Pearson correlation matrix was 

formed to eliminate highly correlated variables that might interfere with the Maxent 

model. In the case of two variables being highly correlated above 0.8, the variable with 
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the smaller percent contribution to the model was eliminated from the code. This process 

was done for all three years until three different codes were created.  

For each of the three years, a Maxent model report as well as response curve and 

habitat suitability maps were plotted. The Maxent model included a receiver operating 

characteristic (ROC) curve with specificity, or true positive rate, on the x-axis and 

sensitivity, or false positive rate, on the y-axis. The closer the curve reached towards the 

top-left corner, the better the performance. The area under the ROC curve, or AUC, 

measures the ability of the model to accurately classify the group being tested where an 

area of 1 represents a perfect test.  Another useful feature of the Maxent model report is 

the analysis of variable contributions which estimates the relative contributions of the 

environmental variables in the Maxent model. High percent contributions are associated 

with better predictors for where Lyme disease cases may be located. The response curves 

generated by the Maxent model show how each environmental variable affects the 

Maxent prediction. The response curve shows how the variable changes, such as 

temperature, on the x-axis and how the probability of a Lyme disease case being present 

changes in response (Tape 2021). The habitat suitability maps color-code locations of 

Maine based on the probability of any specific location having a Lyme disease case 

present with 1 being the highest probability and 0 being the lowest probability.  
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RESULTS 
 

 
Figure 1: Lyme Disease Cases Per Town In Maine For 2001, 2009, 2017 
 

The three maps (Figure 1) generated in ArcMap show a gradual increase in the 

number of Lyme disease cases per town, as well as the number of towns with Lyme 

disease cases, over the three separate years studied. Very few Lyme disease cases are 

shown in 2001 with the highest number in any town being 23 cases in York, Maine. In 

2009, the highest number of Lyme disease cases was also recorded in York, Maine, with 

a total of 38. In 2017, the highest number of Lyme disease cases was reported in 

Windham, Maine with a total of 45. For all three years, the most cases were located in the 

southern region of Maine. 
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Figure 2: Receiver Operator Characteristic (ROC) Curve 
 
 The Receiver Operator Characteristic (ROC) Curve generated for all three years 

(Figure 2) showed high areas under the curve (AUC). The AUC showed that the model 

demonstrated good discrimination of positive and negative locations for the presence of a 

Lyme disease case. The AUC was 0.877 for 2001, 0.912 for 2009, and 0.854 for 2017, 

indicating a strong model fit.  
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Table 3: Variable Percent Contributions for Model prediction for 2001, 2009, and 
2017. Cells with omitted values indicate the variable was not used for that year due 
to high correlation with another variable.  

Variable 2001 Percent 
Contribution  

2009 Percent 
Contribution  

2017 Percent 
Contribution  

bio2 (Mean Diurnal 
Range) 

2.6 
  

bio3 (Isothermality)  3.2 1.4 6 

bio5 (Max Temperature of 
Warmest Month) 

4 1.5 1.1 

bio6 (Min Temperature of 
Coldest Month) 

79.7 85.6 84.6 

bio12 (Annual 
Precipitation)  

 
1.2 

 

bio13 (Precipitation of 
Wettest Month) 

1.1 0.7 0.3 

bio14 (Precipitation of 
Driest Month) 

1.2 1.2 0.5 

bio15 (Precipitation 
Seasonality) 

2.4 3.2 0.4 

bio16 (Precipitation of 
Wettest Quarter) 

 
2.4 3 

bio17 (Precipitation of 
Driest Quarter) 

2.1 
 

0.3 

bio18 (Precipitation of 
Warmest Quarter) 

 
0 0.1 

bio19 (Precipitation of 
Coldest Quarter) 

1.1 
 

0.8 

Land Cover 0.7 0.5 0.4 

Distance From Hospital 1.9 2.3 2.6 
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 The percent contributions of the variables for 2001, 2009, and 2017 (Table 3) 

indicate that bio6, the minimum temperature of the coldest month, has the highest 

contribution in the Maxent model for all three years at 79.7, 85.6, and 84.6 percent for 

2001, 2009, and 2017, respectively. The percent contributions table also shows that land 

cover was not an important predictor with percent contributions of 0.7, 0.5, and 0.4 

percent for 2001, 2009, and 2017, respectively. For some years, certain variables have 

been left out that are included in other years due to a high correlation, 0.80 or higher, 

with other variables.  

 
Figure 3: 2001 Model Prediction of Lyme Disease Risk 
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Figure 4: 2009 Model Prediction of Lyme Disease Risk  
 

 
Figure 5: 2017 Model Prediction of Lyme Disease Risk  
 
 The color legend on the right of each figure (Figures 3 - 5) represents the 

probability of a Lyme disease case being in that given area. For all three years, the Lyme 

disease risk was highest in the southern, coastal region of Maine and gradually decreased 

traveling north.  
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Figure 6: 2001 Response Curve  

 
Figure 7: 2009 Response Curve  
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Figure 8: 2017 Response Curve  
 
 The response curves (Figure 6 – 8) show the predicted value on the y-axis which 

is the probability of a Lyme disease case being found in the condition, such as 

temperature, of the variable on the x-axis. Bio6 (Figure 6 – 8), the minimum temperature 

of the coldest month, is the main predictor for all three years and shows an S-shaped 

curve. The first part of the curve between -35 °C and -20 °C show a prediction value of 

about 0 which indicates that the probability of a Lyme disease case being present at these 

temperatures is close to zero. This probability increases dramatically between 

approximately -15 °C and -10 °C before leveling off with a probability of 0.8 to 1.0 at 

minimum temperatures greater than approximately -10 °C. The land cover, represented as 

Polygon_LC (Figure 6 – 8), shows the land cover identification number (Table 1) on the 

x-axis and the probability of a Lyme disease case being present in that land type on the y-
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axis. All three years show a near-zero probabilities for all land cover types with no value 

shown for land cover type 3, barren land. 
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DISCUSSION 

 

 The Lyme disease case maps and Maxent model helped form a prediction of 

Lyme disease risk. The Lyme disease case maps (Figure 1) showed an increase in 

geographic distribution that expanded north, and an increase in case numbers per town 

from 2001 to 2017. The percent contributions (Table 3) showed that Bio6, the minimum 

temperature of the coldest month, was the most important predictor in the model for 

predicting where Lyme disease cases would be located. Bio6 had percent contributions of 

79.7, 85.6, and 84.6 percent for 2001, 2009, and 2017, respectively. The response curves 

for Bio6 (Figure 6 – 8) indicated a positive association with the probability of a Lyme 

disease case. As the minimum temperature of the coldest month increased, the probability 

of a Lyme disease case increased. The percent contribution (Table 3) also showed that 

land cover was not an important predictor in this model for predicting where Lyme 

disease cases would be located. Land cover had percent contributions of 0.7, 0.5, and 0.4 

percent for 2001, 2009, and 2017, respectively. 

 The Lyme disease case maps that show the number of Lyme disease cases per 

town for 2001, 2009, and 2017, are consistent with current data on the increase of Lyme 

disease cases in Maine over time. Between 2001 and 2017, there is a noticeable increase 

in geographic distribution and number of cases per town. There is a rising incidence of 

Lyme disease associated with increasing I. scapularis abundance and northward range 

expansion (Elias, 2020). Lyme disease was first detected in Maine in the late 1980s and 

has recently risen to more than a thousand cases per year. This rise in cases and 

geographic range expansion may be caused by a range of factors such as the resurgence 
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of white-tailed deer, attending reforestation, suburbanization of the landscape, and 

climate change (Smith, 2019). Understanding how the distribution of human cases of 

Lyme disease is changing over time is important in helping to predict emerging areas of 

high risk and prepare for them. 

 The minimum temperature of the coldest month, Bio6, is the most important 

predictor in this model most likely due to the biological limitations of I. scapularis. 

Figures eight through ten show S-shaped response curves where there are no Lyme 

disease cases predicted until about -20 °C. A 0.0 to 0.2 predicted value of a Lyme disease 

case is present at -15 °C and the predicted value continues to rise as the temperature 

elevates. Between -10 °C and -5 °C, the response curve flattens out with a predictive 

value between 0.8 and 1. Ixodes scapularis populations may be limited by the 

overwintering conditions that might impact nymphal tick densities and the entomological 

risk associated with Lyme disease (Hayes, 2015). In one study, the increase of winter 

temperatures and vegetation vitality, using a Normalized Derived Vegetation Index to 

measure vegetation stress, switched a habitat from unsuitable to suitable for I. scapularis 

(Estrada-Peña, 2002). In a laboratory setting, engorged female adult ticks died within 

four hours at -10 °C, and those alternatively exposed to 0 °C survived but did not lay 

eggs (Ogden, 2004). While these laboratory settings do not mirror the climate and 

environment variables that I. scapularis encounters in its natural habitat, they do give a 

good indicator of low Maine winter temperatures impacting tick numbers and thus the 

risk of their transmitting Lyme disease. The presence of leaf litter and snow accumulation 

is thought to provide some insulation and protection from the harsh winter conditions. In 

a study on environmental factors for overwintering success of nymphal blacklegged ticks, 
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the ticks where the leaf litter and snow accumulation were undisturbed had significantly 

greater survival compared to those where the leaf litter was removed or where both leaf 

litter and snow were removed (Linske, 2019).  

 Land cover was not an important predictor in this model because Maine is 

predominantly forested, and the addresses associated with each Lyme disease case 

weren’t linked to the site of human-tick encounter. Forests account for 83% of Maine’s 

surface area, and in the Maxent model, deciduous and mixed forest made up the bulk of 

land cover (United States Department of Agriculture, 2013). This nearly homogenous 

landscape, partially a result of only looking at the major land cover type of each town, 

made land cover a poor predictor for Lyme disease presence. The Maine CDC human 

Lyme disease case dataset used in this model connects patient home addresses with Lyme 

disease case locations. A patient might have traveled to Acadia National Park for some 

outdoor recreational activities and been unknowingly bitten by an infected tick. If the 

patient is eventually diagnosed with Lyme disease, the home address information will be 

used instead of Acadia National Park or wherever else Lyme disease might have been 

contracted. This is partially because it would be impossible for everyone to accurately 

remember where they were bitten. The model is basing its predictions on home addresses 

of patients where the land cover type in their town might be completely different from the 

land cover type that they encountered the infected tick. Even if a patient contracted Lyme 

disease on their residential property, the land cover majority in a town was used to 

represent the land cover for the entire town. All the Lyme disease cases were also 

randomized within town boundaries to prevent patient identification and bias as some 

patients in the data were not associated with a street-level address.  
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 Other studies have found that a link between tick presence and Lyme disease may 

explain why the climate variables that influence ticks are good predictors for Lyme 

disease in my Maxent model. A study in California on the spatial patterns of Lyme 

disease risk based on disease incidence data found that there was a strong association 

between areas with high projected acarological risk of exposure to host-seeking I. 

pacificus and Lyme disease incidence at a zip-code scale (Eisen, 2006). This study 

indicates that high concentrations of nymphal ticks in places where people encounter 

them, also have a high incidence of Lyme disease. This association between the 

biological drivers of tick occurrence and human cases of Lyme disease could help explain 

why the coldest temperature of the coldest month was such a high predictor for Lyme 

disease. Another model on I. pacificus looked at climate suitability and found that cold-

season average temperatures below 0 °C created unsuitable habitats for I. pacificus 

(Eisen, 2018). While my model relied on the single coldest temperature of the coldest 

month of the year instead of the average cold-season temperature, this model further 

supports that cold temperatures make a habitat unsuitable.  A population model for I. 

scapularis that investigated how climate change could affect northward range expansion 

found that the colder the environment, the greater proportion of ticks die before 

reproducing (Ogden, 2006). 

 The Maxent model has a few limitations, one being that it calculates 

environmental suitability rather than predicted probability of occurrence. This model uses 

the presence-only Maine CDC human Lyme disease case data and analyzes the climate 

and land cover types associated with these cases to make predictions on what types of 

environments are suitable for Lyme disease in Maine. This is in contrast with being able 
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to predict the probability, or chance, of a Lyme disease case occurring in each location. 

While being able to determine if an environment is suitable for Lyme disease contributes 

to the understanding of Lyme disease, being able to give percent likelihoods of a Lyme 

disease case occurring in a location could prove additionally useful in targeting high-risk 

areas for Lyme disease prevention. Maxent models cannot conclude any causation, rather 

they are good tools for correlative studies (Elith, 2011). This means that no conclusion 

can be made if a very low minimum temperature of the coldest month causes a decrease 

in Lyme disease cases, only that a negative association exists between the minimum 

temperature of the coldest month and Lyme disease presence. This limits the ability to 

predict Lyme disease case presence based on the minimum temperature of the coldest 

month. Further research would need to be done to determine causation between the two 

which may be useful in further models based on Lyme disease. 

 Ultimately, this model is a great start at understanding the complex factors 

involved with Lyme disease risk. Due to its unique land cover and climate, Maine could 

benefit from its own ecological niche model that is similar to models on Lyme disease in 

other states. The findings of this model show that cold winter temperatures in Maine may 

be influencing Lyme disease risk, important when considering the projected climate 

change in Maine over the next decades (Dumic, 2018). Future research could include 

using drag cloths at different test locations and testing for B. burgdorferi as an indicator 

for Lyme disease risk to be used in the model instead of the human case data. This could 

help make land cover more relevant as it would be linked to the tick location. More 

research on how cold temperatures impact I. scapularis would also be beneficial in 

understanding Lyme disease risk related to tick survival. Some research has been done on 
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how cold temperatures impact ticks in the lab setting as well as outdoors in naturally 

simulated enclosures with soil, leaves, and snow. However, so many factors impact tick 

survival in winter conditions such as life stage, if the tick is engorged, amount of snow 

and detritus covering the tick, and exposure to precipitation and wind, that more research 

to determine the mechanism of survival in low temperatures should be conducted 

(Brunner, 2012).  
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