View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Maine

The University of Maine

Digital Commons@UMaine

School of Economics Faculty Scholarship School of Economics

Spring 6-2-2021

Long-term gene—culture coevolution and the human evolutionary
transition

Timothy M. Waring

Zachary T. Wood

Follow this and additional works at: https://digitalcommons.library.umaine.edu/eco_facpub

b Part of the Behavioral Economics Commons, Biological Psychology Commons, Evolution Commons,
Genetics Commons, Human Ecology Commons, and the Social and Cultural Anthropology Commons

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for
inclusion in School of Economics Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine.
For more information, please contact um.library.technical.services@maine.edu.


https://core.ac.uk/display/475634073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/eco_facpub
https://digitalcommons.library.umaine.edu/eco
https://digitalcommons.library.umaine.edu/eco_facpub?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/341?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/405?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/18?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1335?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/323?utm_source=digitalcommons.library.umaine.edu%2Feco_facpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

Downloaded from https://royal societypublishing.org/ on 02 June 2021

PROCEEDINGS B

royalsocietypublishing.org/journal/rspb

()

ReViEW Check for

updates

Cite this article: Waring TM, Wood ZT. 2021
Long-term gene—culture coevolution and the
human evolutionary transition. Proc. R. Soc. B
288: 20210538.
https://doi.org/10.1098/rsph.2021.0538

Received: 4 March 2021
Accepted: 10 May 2021

Subject Category:
Evolution

Subject Areas:
evolution, genetics, behaviour

Keywords:
culture, gene—culture coevolution, evolutionary
transition, inheritance, human evolution

Author for correspondence:
Timothy M. Waring
e-mail: timothy.waring@maine.edu

THE ROYAL SOCIETY

PUBLISHING

Long-term gene—culture coevolution and
the human evolutionary transition

Timothy M. Waring' and Zachary T. Wood®

1School of Economics, Mitchell Center for Sustainability Solutions, and 2School of Biology and Ecology,
University of Maine, Orono, ME, USA

TMW, 0000-0001-7364-1130; ZTW, 0000-0001-7369-9199

It has been suggested that the human species may be undergoing an evol-
utionary transition in individuality (ETI). But there is disagreement about
how to apply the ETI framework to our species, and whether culture is
implicated as either cause or consequence. Long-term gene—culture coevolu-
tion (GCC) is also poorly understood. Some have argued that culture steers
human evolution, while others proposed that genes hold culture on a leash.
We review the literature and evidence on long-term GCC in humans and
find a set of common themes. First, culture appears to hold greater adaptive
potential than genetic inheritance and is probably driving human evolution.
The evolutionary impact of culture occurs mainly through culturally orga-
nized groups, which have come to dominate human affairs in recent
millennia. Second, the role of culture appears to be growing, increasingly
bypassing genetic evolution and weakening genetic adaptive potential.
Taken together, these findings suggest that human long-term GCC is charac-
terized by an evolutionary transition in inheritance (from genes to culture)
which entails a transition in individuality (from genetic individual to cul-
tural group). Thus, research on GCC should focus on the possibility of an
ongoing transition in the human inheritance system.

1. Introduction

The human species may be undergoing an evolutionary transition in indivi-
duality (ETI) [1-6]. The evolutionary transitions framework explains how
new levels of biological organization (such as multicellularity, or eusociality)
emerge from subsidiary units (such as cells or individuals) through the for-
mation of cooperative groups [6-10]. First proposed by Maynard Smith &
Szathmary [3], evolutionary transitions are thought to unfold via a shift in
the dominant level of selection from competitive individuals to well-integrated
functional groups [8,11]. These transitions exhibit a common set of patterns,
including new divisions of labour, the loss of full individual autonomy and
reproductive control, and the rise of new routes of information transmission
[6,7,10]. Humans exhibit many patterns thought to be characteristic of an ETI,
including the scale of our cooperation with non-kin, the prominence of
human language and our complex, full-time division of labour. Consequently,
it has been repeatedly hypothesized that human evolution is in some way
characterized by an evolutionary transition [1-6]. However, there is little con-
sensus on how to apply an evolutionary transition framework to humans.
Here, we review research and evidence on the human ETI to clarify the roles
of culture and genes in a human evolutionary transition.

One line of research applies the ETI framework to humans by focusing
solely on biological and genetic evidence. We might call such a transition a
‘genetic ETI". Research in this theme commonly concludes that humans have
begun, but not completed, such an evolutionary transition [2,5,6], having
evolved some characteristics of superorganisms but not others. For example,
while humans are highly interdependent, sharing resources in large cooperative
groups, we also remain highly autonomous and capable of individual repro-
duction. Stearns [5] reasons that factors such as migration (which reduces

© 2021 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.0538&domain=pdf&date_stamp=2021-06-02
mailto:timothy.waring@maine.edu
http://orcid.org/
http://orcid.org/0000-0001-7364-1130
http://orcid.org/0000-0001-7369-9199

Downloaded from https://royal societypublishing.org/ on 02 June 2021

genetic differentiation between groups) and trade (which
increases interdependence between groups) are likely to
undermine the force of genetic group selection necessary to
complete a transition. Szathmary [6] concludes that human
‘group structure is too transitory to allow for a major tran-
sition in evolution in a purely biological sense’. Kesebir [12]
also argues that, given the fluidity of human groups and
our capacity to hold multiple group identities, the superorg-
anism concept is an inappropriate description of human
evolutionary status. Viewed from this perspective, aspects
of human society, social organization and social cognition
may impede a human genetic ETL

A different strain of research suggests that human society
may also undergo evolutionary transitions through cultural
processes. We might therefore consider a ‘cultural ETI’, in
which changes in cultural and social organization are facili-
tated by cultural evolution, as distinct from a ‘genetic ETT’
in which changes in biological organization are facilitated
solely by genetic evolution. In a cultural ETI, the scale of cul-
tural and social organization shifts from single humans, or
smaller social units to larger groups composed of many
such units via cultural evolution operating without necess-
arily changing genes. Thus, before a cultural ETI, the
predominant levels of control, adaptation and inheritance of
cultural traits would be at the subsidiary level (e.g. single
humans, families, regional polities), while after a cultural
ETI, these would be at the level of the cultural group (e.g.
groups, clans, nations). This strain of research focuses on cul-
tural patterns as evidence [1,2,4,6,12]. For more than a
century, anthropologists and sociologists have debated
whether society represents a novel level of organization (i.e.
a ‘superorganic’ entity). Spencer [13,14] saw society as a
superorganic, emergent property of interacting individuals,
as did Kroeber [15], who drew on Darwinian principles to
explain social change. Recently, cultural evolutionists have
argued that human society constitutes a ‘crude superorgan-
ism’ [16], with effective but imperfect mechanisms to
achieve unity of action and resolve conflict within a group
[12]. Within evolutionary anthropology, a long-term process
of cultural selection acting on social groups is considered a
primary hypothesis for the emergence of societal features
with group-level functionality [17]. Cultural group selection
has been proposed as an explanation for large, hierarchical
societies [18,19]. Gowdy & Krall [2,20] suggest that the emer-
gence of hierarchical agricultural societies represents a major
transition to an ‘ultrasocial’, rather than fully eusocial, state.
Powers et al. [4] argue that society has experienced multiple
evolutionary transitions in the emergence of large, complex,
cooperative societies facilitated by the human ability to
create institutions, which make cooperation individually ben-
eficial and facilitate division of labour. From this perspective,
cultural ETIs may occur quite readily, but the implications
for genetic and biological organization are unclear and
under-developed.

In summary, there is a general consensus that humans
exhibit signs of being involved in an evolutionary transition
in individuality. But there is significant disagreement about
the status and details of a human ETI. Research in biology
suggests that culture and social organization may be imped-
ing a genetic ETI, while research in anthropology suggests
that multiple cultural ETIs may have occurred, yet they
remain somehow disjunct from a genetic ETI. These two
approaches to the question of human ETI differ in their

evaluation of its status, because they differ in their relevant
definitions and nature of evidence. We believe these differ-
ences have obscured a deeper understanding of human
evolution and highlight our lack of knowledge about how
genes and culture are likely to interact in the long term. We
therefore organize this review around three emergent
themes in human sociobiological research. First, cultural
inheritance exhibits greater adaptive capacity and generates
more group-level adaptations than genetic inheritance.
Second, cultural evolution determines the outcomes of
gene—culture coevolution (GCC) more frequently than
genetic evolution. Finally, patterns in long-term GCC point
to an evolutionary transition in both inheritance and indivi-
duality (ETII) from genetic individuals to cultural groups.
We argue that this synthesis resolves much of the apparent
disagreement and confusion around a possible human ETL

Human culture constitutes a second system of adaptive
inheritance in humans. Composed of socially transmitted
information including language, beliefs, norms, institutions
and technology, culture has a great impact on how people
survive and adapt in a given environment [21]. Cultural evol-
ution is also mechanistically distinct from genetic evolution
in multiple ways [22-24]. For example, while genetic inheri-
tance is primarily vertical and non-strategic for the
recipient, cultural inheritance often occurs through strategic
social learning, includes many cultural models and can
occur in vertical, horizontal or oblique directions relative to
genetic lineages [23,24]. Furthermore, while genetic variation
is largely random, cultural variation can be ‘guided’ by inten-
tional innovation [22], and the accumulation of cultural
variation may be more rapid (see [25] versus [26]). Thus, cul-
ture provides a non-genetic system of adaptive inheritance
[27] that is fundamentally distinct from genetic inheritance
at a structural level (figure 1). These structural differences
have two major implications for our inquiry: adaptive
capacity and group structure.

Cultural inheritance may hold greater adaptive potential than
genetic inheritance due to its mechanistic differences. Indeed,
the primary explanation for the emergence of the human cul-
tural inheritance system itself is that it provides a more
flexible and rapid system of behavioural evolution than gen-
etics alone allow. Evidence [28] and theory [29] support the
assertion that cultural evolution is more rapid than genetic
evolution [27,28,30,31], even when measured on comparable
scales [30,31]. One simple reason for this difference is that the
‘generation time’, G, of cultural transmission can be orders of
magnitude shorter than that of genetic transmission [30]. In
humans, the average time between the birth of parents and
the birth of their offspring, genetic G, ranges from roughly
2 to 3 decades, while cultural G, the average time between
learning a piece of information and transmitting it, ranges
from seconds to decades. Thus, it is reasonable to presume
that cultural inheritance may provide greater adaptive
capacity than genetic inheritance.

Indeed, there is strong evidence that culture is a major
adaptive force in the evolution of many animal species,
among which humans show both the strongest evidence
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Figure 1. Cultural inheritance is not parallel to genetic inheritance. Genetic material is physically replicated, directly transmitted and passively inherited by offspring.
Cultural traits, on the other hand, are transmitted via an active process of reconstructive phenotypic inference and selective imitation by the learner. (Online version

in colour.)

and the greatest impacts of GCC [32]. Human culture is by far
the most complex and extensive form of culture, and its
impact on human genetics is correspondingly profound
[33,34]. Humans are thought to have acquired significant gen-
etic changes as a result of long-term GCC, including dramatic
digestive changes, the emergence of docility and reduced
aggression [35], modified vocal tracts [36], the cognitive
apparatus for social learning [22,37] and norm internalization
[38]. Apparent genetic accommodation of cultural evolution
in humans supports the proposal that cultural evolution
may be more adaptive than genetic evolution. It is still further
supported by the correspondence between the growth in the
scale and complexity of our social systems, and emergence of
our species as the dominant ecological force on Earth [39]. Far
beyond simply altering human evolution, this evidence
suggests that human cultural inheritance is of global
evolutionary significance.

Human culture is also more group structured than are human
genes [40]. First, culturally organized groups are typically
more powerful than individuals. This simple fact has evol-
utionary significance because it means that culturally
organized groups may proliferate, even at the expense of
average individual fitness. Importantly, group selection on
cultural variation is facilitated by mechanisms that have no
genetic parallel, including conformity [41-44] and social
marking [45-47], as well as emergent processes within
groups such as equilibrium selection on institutions [48].
Second, competition between culturally organized groups
facilitates the evolution of cooperation within groups [49,50]
leading to the expansion of human cooperation and prosocial
tendencies, often with a genetic basis [51]. This pattern is sup-
ported by cross-cultural evidence through human history [17]
across geographical regions [50], and by quantitative evi-
dence from violent group conflict [52,53]. Third, culturally
organized groups appear to solve adaptive problems more
readily than individuals through the compounding value of
social learning and cultural transmission in groups [54,55].
Societies may operate to make each of their members more
innovative than they would otherwise be individually [56].

Indeed, larger groups with shared culture may achieve
group-level cultural adaptations more rapidly than smaller
groups. In Oceania, for example, population size predicts tech-
nological complexity in the absence of environmental
variability [57]. Similarly, languages with more speakers tend
to be more efficient from an information theoretic perspective
[56], likely because the rate of language evolution increases
with population size [58]. In summary, group-level cultural
adaptation appears to be a major force in human evolution
generally [17,50,52,59], even while group selection is rare in
genetic systems.

Thus, cultural evolution is generally believed to exhibit
three pertinent characteristics relative to genetic evolution:
it tends to be more rapid, it holds greater general adaptive
capacity and it generates group-level adaptation. These
effects also appear to shape the long-term patterns of GCC.

As indicated earlier, differing genetic and cultural interpret-
ations of a human ETI remain unresolved, in part because
our understanding of the links between genes and culture
remains limited. The various patterns of long-term GCC
have never been systematically compared, and the relevant
evidence remains largely unevaluated. How often are genes
and culture mutually reinforcing or in conflict? When they
conflict, what are the most common outcomes? We review
the existing GCC literature and evidence to address these
questions. Theory and evidence can be categorized according
to the nature of the reciprocal effects between inheritance sys-
tems (figure 2), from specific interactions between a pair of
genetic and cultural traits (trait-pair GCC) to long-term inter-
actions between a trait on the one hand and an entire
inheritance system on the other (trait-system GCC), to the
longest-term interactions between the systems of inheritance
themselves (system—-system GCC).

Most narrowly, GCC refers to a process of reciprocal adap-
tation between genetic and cultural traits within a single
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Figure 2. Patterns of GCC may be categorized based on the scale of cause and effect, which varies from specific traits to inheritance systems. Arrow thickness
indicates the weight of evidence for total strength or frequency of each causal pathway. Example traits marked with asterisks. (Online version in colour.)

species. This occurs, for example, when a genetic trait carries
a fitness advantage (e.g. adult expression of the lactase
enzyme) which is enhanced by a cultural trait (e.g. dairy
farming and consumption), enabling the two to spread in
tandem [60,61]. Trait—pair GCC is a special case of genetic
assimilation, the process by which plastic responses or behav-
ioural innovations are solidified later by genetic evolution
[62,63]. Trait-pair GCC relies on a functioning system of cul-
tural inheritance. As a result, trait-pair GCC may be more
prevalent in recent human evolution than in early humans
with limited culture. Trait—pair GCC may also connect mul-
tiple trait pairs. For example, the evolution of cultural traits
to improve subsistence through hunting, cooking and agricul-
ture have dramatically altered the human diet (trait-pair 1).
These changes to human diet appear to have modified the
human bite configuration (trait-pair 2) which, in turn, influ-
enced the variety of sound types humans could produce
[36]. This final step, from genetic morphological traits to
increased sound variety (and thus evolutionary potential), in
human language is also an example of trait-system GCC.

Trait-system GCC refers to the evolutionary interaction
between a specific set of traits and an entire inheritance
system. Much of the GCC research has focused on how
specific genetic factors might coevolve with the human cul-
tural inheritance system as a whole. However, there is
disagreement between theorists about the nature of the
long-term constraints on GCC. On the one hand, in their
theory of GCC, Lumsden & Wilson [64] conclude that in
the long term, culture could not subvert the genetic traits
responsible for the cultural learning apparatus itself, and
that ‘genetic natural selection operates in such a way as to
keep culture on a leash’. Durham [65] argued a similar
point. Thus, gene-limited GCC is the process in which
specific genetic factors constrain the evolution of the entire
system of cultural inheritance. On the other hand, Boyd &
Richerson’s [22] models of GCC do not assume a backstop
genetic constraint on culture, but allow beneficial cultural

traits to facilitate the evolution of increasingly flexible cultural
learning systems without end. Boyd and Richerson argue that
cultural evolution creates novel social and physical environ-
ments, which change selective pressures for genetic
variation [66], a process they term culture-driven GCC.
We gather the empirical evidence for both patterns of
trait-system GCC below.

In gene-limited GCC, specific genetic factors constrain
cultural inheritance generally. For example, cultural variation
may be limited by genetically determined cognitive and
psychological abilities.

Genes and languages coevolve [67], and genes may limit
language evolution. For example, early human populations
may not have been able to pronounce fricatives such as ‘f’
and ‘v’ [36] because of genetic limitations on bite configur-
ation. Similarly, human languages tend to develop colour
terms in a particular order (typically: black and white, then
red, then yellow or green) [68,69]. This homology is believed
to derive from universal aspects of the human perception
system and may therefore be an example of gene-limited
GCC. This limitation is weak, however, as genes appear not
to influence the extent, complexity or sophistication of
colour terms, but merely their order of emergence.

Perhaps, the best evidence for gene-limited GCC in the
human lineage comes from a period in early human evol-
ution during which stone tools remained unchanged for
nearly 2 Myr [70,71]. The earliest current evidence for stone
tool use dates to 3.3 Ma [72], marking the beginning of the
lower palaeolithic, during which the accumulation of novel
stone tool variation was extremely slow. This leads archaeol-
ogists to suspect that human cultural evolution as a whole
was limited by the genetic factors determining human
capacity for the culture [70]. This is strong evidence of genetic
limitation for a significant period of human evolution. How-
ever, this limitation eventually gave way to accelerating
increases in stone tool complexity, signalling an increase in
the genetic capacity for cultural transmission, probably as a
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result of the benefits of cultural traits for enhanced stone tool
production and use. Overall, we do not find much evidence
of significant gene-limited GCC, and the evidence we do
find suggests that gene-limitation is decreasing over the
long term. Most of the evidence for trait-system GCC
comes instead from culture-driven GCC.

(ii) Evidence for culture-driven gene—culture coevolution

In culture-driven GCC, the adaptive advantages of cultural
inheritance drive the evolution of specific genetic traits. For
example, theoretical models [73,74] suggest that the tripling
of human brain size (a specific set of genetic traits) resulted
from the fitness benefits of the increased ability to store and
process adaptive cultural information (cultural inheritance,
generally). Cross-species evidence supports this assertion
[75]. Culture-driven GCC also probably honed psychological
and cognitive capacities to elaborate, transmit and accumulate
cultural traits [21,76,77]. Further examples of culture-driven
GCC may extend throughout human evolution and across
the human lifespan [78]. For example, human longevity may
have evolved as a result of the expanding ability to accumulate
and transmit beneficial cultural adaptations, knowledge and
capital [79]. It is therefore probably not a coincidence that
increases in the human lifespan in the Upper Palaeolithic
(approx. 30 ka) correspond with the emergence of behaviour-
ally modern humans [80]. And like longevity, menopause [81]
may have emerged because it favoured the transmission of
adaptive cultural knowledge from older women to the
young over the cost of ceased genetic reproduction [82].
Going further still, cultural evolution may sometimes cause out-
comes that are maladaptive at the individual genetic level [83-
85], such as reduced fertility [86,87], so long as they increase
adaptive outcomes via cultural learning. Thus, there is
significant evidence for culture-driven GCC.

Thus far, we have only explored trait-system GCC in
which genetic traits influence cultural inheritance as a
whole; however, the reverse is also possible: specific cultural
traits may influence the entire system of genetic inheritance,
in a more extreme form of culture-driven GCC. The
most salient examples of this pattern are medical
and reproductive. Scientific medical practice is generally
considered a cultural adaptation with clear advantages. How-
ever, scientific medicine can also act to obviate natural
selection by promoting the health and reproduction of
individuals with otherwise harmful genetic conditions. In
doing so, scientific medicine may tend to weaken the genetic
determination of phenotype and fitness. One example is the
evolution of the Caesarean section procedure, a cultural
adaptation to treat dangerous and deadly birth compli-
cations. The success and spread of the Caesarean procedure
has marginally relaxed genetic selection in humans, slightly
increasing the likelihood that a daughter born by Caesarean
will herself require one [88]. Another example is that of gesta-
tional surrogacy, in which couples who cannot bear children
themselves elect to have another woman gestate and birth
their genetic offspring through the implantation of an egg fer-
tilized in vitro [89]. Gestational surrogacy is a cultural
adaptation to make genetic reproduction possible where it
would otherwise be impossible. Importantly, both of these
cultural solutions require deep and complex group-level cul-
tural adaptations in the form of medical science and practice.
Consequently, this type of trait-system GCC between specific

cultural traits and genetic inheritance is a relatively new [ 5 |

phenomenon. As Mitteroecker [90] argues, GCC operates dif-
ferently now that humans are evolving almost exclusively
within modern societies.

Taking stock, the evidence from the types of GCC we have
considered suggests that the greater adaptive capacity of
culture typically determines the outcome of GCC, whether
the trait is cultural and the system genetic (e.g. with Caesarean
section) or whether the trait is genetic and the system cultural
(e.g. with brain size). We believe this is a central clue in under-
standing the hypothetical human evolutionary transition, for
which we must address the long-term coevolution of the
inheritance systems themselves.

(c) System—system gene—culture coevolution

In system-system GCC, the basic differences between mech-
anisms of inheritance themselves determine coevolutionary
outcomes. Rindos [91] developed a model showing how plas-
tically adaptive culture could relax and remove selection on
genes, eroding the amount of adaptive information stored
genetically. Laland [29] has also shown theoretically that if
cultural evolution is sufficiently rapid, it may act to pre-
empt and slow genetic evolution. That is, in solving adaptive
challenges before genetic evolution takes place, cultural
inheritance may reduce the opportunity for natural selection
on genes and weaken the adaptive value of information
stored in genetic inheritance in the long term. This process
is the opposite of genetic assimilation, in which a plastic
trait becomes genetically encoded. We call this mode of
GCC cultural pre-emption.

The temporal and population scale of cultural pre-
emption make data hard to collect, but direct evidence is
nonetheless ubiquitous, and theory supports its plausibility.
Rendell et al. [74] modelled a process of runaway cultural
niche construction in which cultural changes to the environ-
ment forestalled both genetic evolution and mutualistic
GCC. The overall effect of cultural pre-emption is to reduce
the fraction of adaptive information stored in genes and
inherited genetically and to increase that fraction in culture.

In summary, the literature and evidence strongly suggest
that culture tends to drive GCC, no matter which type or
scale is examined. This comes as a natural consequence
of the relative speed, group structure and adaptive capacity
of cultural evolution. We can therefore posit a crucial
hypothesis about system—system GCC: culture is gradually
replacing genetics as the primary human system of inheritance.
This hypothesis helps clarify the human ETL

4. Rethinking the human evolutionary transition

The role of culture as the predominant driver of GCC
suggests that culture is coming to replace genetics as the pri-
mary system of human inheritance. Thus, culture may be the
ultimate cause of a human ETI. We can therefore present a
reformulated theory of the human evolutionary transition.

(a) An evolutionary transition in inheritance and
individuality
Evolutionary transitions typically involve changes in both

individuality and inheritance. Originally, Maynard Smith
and Szathmary [3] suggested that new modes of information
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transmission (i.e. inheritance) tend to arise during the tran-
sitions we now label ETIs. Jablonka [92] was the first to
detail how evolutionary transitions in individuality may
often require a corresponding transition in inheritance
system. Jablonka argued that most transitions entail the emer-
gence of new inheritance mechanisms in which information
about cooperation, differentiation and integration of subsidi-
ary units may accumulate and guide development. For
example, epigenetic inheritance systems were a necessary
and critical part of the transition to multicellularity, as they
allowed for regulation, cooperation and differentiation
between cells. Jablonka [92] argued that similar inheritance
transitions occurred with the evolution of each new level of
biological organization, including the emergence of protocells
(from fragmentation to replication of genetic material), pro-
karyotic cells (inheritance of epigenetic information in the
cytosol), eukaryotic cells (inheritance of organelles, chromo-
somes), multicellularity (further mechanisms of epigenetic
inheritance and differentiation, gametes) and finally cultural
groups (imitation, teaching and the transmission of artefacts).

It follows, then, that humans are experiencing an evol-
utionary transition in individuality from single human to
cultural group because culture is replacing genes as the pri-
mary human inheritance system, and cultural adaptations
are heavily group structured. The mechanistic argument for
an evolutionary transition in inheritance and individuality
(ETII) is as follows:

— Culture tends to be a faster and stronger adaptive
medium than genetics, and, therefore, tends to determine
the outcomes of GCC. In humans, genetic limitations on
GCC appear to be declining, while cultural adaptation
is pre-empting genetic evolution to resolve adaptive chal-
lenges with increasing strength and frequency.
Consequently, culture is replacing genetics as a primary
system of inheritance, which means that an increasing
share of adaptive information is stored in culture compared
with genes.

— As a result, the characteristic adaptive scale of culture is
becoming increasingly important in human evolution.
Human culture is more group structured than human
genes. Cultural group selection has driven the genetic

evolution of cognitive and psychological traits for
cooperation and social learning, which make group-
level cultural adaptations possible. Group-level cultural
adaptations have emerged for defence, shelter, food
provision, health and education. Consequently, an
increasing share of adaptive human traits is stored in cul-
tural groups when compared with genetic individuals.

Mechanistically, there may be no specific group size
necessary for an ETII. The size and complexity of cultural
groups are highly labile traits themselves, have varied over
human evolution and may be under intense selection. Thus,
we expect these quantities to change. For example, corpor-
ations and nations both vary in size across five orders of
magnitude, and the two categories of group fully interpene-
trate. Currently, cultural groups may be fluid, nested or
overlapping. But the important evolutionary features are
those traits and forces that determine survival and reproduc-
tion. Thus, membership in cultural groups need not be
mutually exclusive or permanent, so long as group survival
and reproduction are facilitated. However, if cultural group
competition increases, groups may gain a fitness advantage
by increasing size or monopolizing human membership,
which might cause group boundaries to align and solidify.

This conceptual model (figure 3) resolves multiple incon-
sistencies in current literature on the human ETI. First, recall
that the literature on the human ETI is somewhat divided:
some find evidence for one or more cultural ETIs, suggesting
that the dominant organizational level of cultural adaptation
has expanded over human evolution; others find insufficient
evidence for a genetic ETI because humans are not suffi-
ciently isolated in groups to enable genetic group selection
[5]. The ETII model resolves this apparent conflict as it is
compatible with both sets of evidence; if culture is replacing
genes as an inheritance system then the shift in the level of
selection is not from genetic individual to genetic group,
but from genetic individual to cultural group.

Second, the ETII bears on the suggestion that the human
transition is stalled because human populations are not suffi-
ciently group structured [5], halting the process of genetic
group selection. However, if the weight of adaptive infor-
mation is shifting from genetic individuals to cultural
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groups, genetic group structure is not important: cultural
group structure is. One consequence of this is that cultural
groups can compete even as genetic groups homogenize
[93]. For example, distinct genetic groups can dissolve
through population mixing even while members continue
to belong to distinct and competing cultural groups [94].
Thus, a culture-driven human ETII is possible despite
increasing genetic mixture.

This touches on another often-confused issue in the
human evolution literature, that cultural group selection
relies on the extinction of human groups (i.e. ‘hard’ group
selection). It does not. Group-level cultural evolution may
continue without the loss of individual life (i.e. with ‘soft’
group selection), so long as cultural groups determine
social outcomes. Moreover, if cultural groups influence repro-
ductive outcomes, such as with the advancement of scientific
medicine, then group-level culture increases its role in human
evolution while weakening that of individuals” genes.

The ETII hypothesis enables a straightforward evaluation
of the status of a human evolutionary transition. The majority
of evidence and research suggest that humans are experien-
cing an ongoing ETII, driven by a shift to culture as a
primary mechanism of inheritance, and characterized by an
evolutionary transition from genetically organized individuals
to culturally organized groups. The evidence suggests that the
transition has not stopped but is instead accelerating as group-
level cultural adaptations accumulate and individual genetic
inheritance is rendered increasingly irrelevant.

Today, a growing fraction of human adaptation comes
from those group-level cultural traits such as food pro-
duction, defence, education and healthcare, all of which
have become increasingly integrated and coordinated. Thus,
while there is still major variation in human fitness due to
genetic factors within societies, societal factors play an impor-
tant role in determining individual health and fitness [95].

Although far from any hypothetical endpoint, the human
ETII is ongoing and accelerating.

Our review has uncovered a pattern of hypothetical causal
connections that resolves what appears to be contradictory
evidence within the literature on a human evolutionary tran-
sition. The literature suggests that group-level cultural
evolution is more adaptive and more rapid than genetic evol-
ution in humans. This difference has caused an increasing
fraction of human life to be mediated by culturally evolved
group-level practices and technology, and a decreasing frac-
tion by genetic traits. Available evidence suggests that this
trend is ongoing and accelerating. We note that both cultural
and environmental change are far from equilibrium, perhaps
partly as a result of the human ETIL. We speculate that, in the
long term, culture will continue to grow in influence over
human evolution, until genes become secondary structures
that hold human biological design blueprints but are ulti-
mately governed by culture. If genes hold culture on a
leash, culture is dragging them straight off the trail.
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