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Abstract 

The Augmented Reality (AR) Sandbox application and software frameworks provide an 

interactive tool for freshwater and watershed education. This is done by projecting the 

real-time topography of the sandbox surface and simulating waterflow. This tool has the 

potential to assist in analyzing excavation tools that will be used on lunar or Martian 

surfaces. This project extended the software to include a volume tool capable of 

calculating the change in volume of the sandbox after manipulation.  

This report details the setup and calibration of the sandbox as well as the development of 

the volume calculation tool. It outlines the methods used to calculate the volume changed 

based on two depth image collections. This is followed by exploring the results of 

multiple volume calculations against their expected values and investigating the amount 

of error that occurs. 
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1 Project Introduction and Goals 

The Augmented Reality (AR) Sandbox is part of an NSF-funded project for the education 

of freshwater and watershed science. It is developed by the UC Davis’ W.M. Keck 

Center for Active Visualization in the Earth Sciences (KeckCAVES), together with the 

UC Davis Tahoe Environmental Research Center, Lawrence Hall of Science, and ECHO 

Lake Aquarium and Science Center. The AR Sandbox software consists of the Vrui 

Virtual Reality (VR) development toolkit, Kinect 3D video processing framework, and 

the SARndbox software package, all of which were developed at UC Davis. The three 

software packages are available for use under the GNU General Public License. The AR 

Sandbox provides a real-time topographical model of a sand surface using a Microsoft 

Kinect sensor and a projector. The projection shows the topography of the sandbox 

surface with contour lines and colors representing change in elevation as well as 

simulated water to depict how it flows over the surface, seen in Figure 1. 

Figure 1. AR sandbox with water simulation running 

The purpose of the AR Sandbox is to provide a hands-on experience for learning about 

freshwater and watershed environments, but it has the potential to provide many other 

scientific applications. It can also assist in analyzing the performance of various 

excavation tools on a small-scale level. This aligns with the goals of the Planetary 

Surface Technology Development Laboratory (PSTDL) at Michigan Technological 

University, to build and test technology for lunar and Mars missions. The features of the 

AR sandbox can help to analyze excavation tools that could be used on the lunar or 

Martian surface. The real-time visualizations of the AR sandbox give the user a general 

idea of how the surface of the sandbox has changed after an excavation test. However, 

actual metrics need to be collected to gain a better understanding of the excavation’s 
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performance. The focus of this project is to use the frameworks provided with the AR 

sandbox application to calculate the change in volume of the sandbox surface. 

The Kinect sensor used to determine the position and depth of the sandbox surface can 

also be used to calculate the change in volume. Other researchers have developed 

software to detect the volume in 3D space, but they rely on having an object in the 3D 

space and calculating its volume, while it is present, from various angles. For example, 

taking depth images from 4 different angles of household objects with a Kinect, creating 

a point cloud and utilizing that to compute volume (Dellen, Rojas, & Andres, 2013). 

Another technique outlined in the paper VOLUMNECT – Measuring Volumes with Kinect 

is using the point cloud from a depth image to create planes in which the x, y, and z 

dimensions are determined for the volume calculation (Ferreira, Grine, Gameiro, 

Costeira, & Santos, 2014). However, these techniques differ from the goals of this 

project. 

The main goal of this project is to develop a software tool within the AR sandbox 

frameworks that can calculate the volume change that takes place within the sandbox. 

This will provide a valuable tool to be used with current and future projects of the 

PSTDL. Other project teams can utilize the sandbox and volume tool to collect data on 

the performance of excavation tools or other hardware.  

Another goal of the project is to allow the user to select the area of the sandbox over 

which the change in volume is calculated. If the volume is always calculated over the 

entire sandbox and no sand is removed, the overall change in volume would be zero. 

Having the capability to select an area of the sandbox allows the user to select a section 

based on where their excavation will take place and where the removed sand will end up. 

Additionally, the volume reported should outline the volume added, removed and overall 

net volume. 

In order to accomplish the above goals, a sandbox needed to be built and the AR sandbox 

application needed to be set up and calibrated with in the PSTDL. 
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2 Preliminary Work 

Before the volume tool could be developed and tested, the AR sandbox was built and 

calibrated. Detailed instructions for setting up an AR Sandbox, installing the software 

packages and calibrating the Kinect with the projector can be found on the UC Davis 

team’s website (Build your own AR Sandbox, 2016). 

2.1 Building the AR Sandbox and Selecting Hardware 

Through cooperation with the Senior Capstone Trencher team, the size of the sandbox 

was decided to be 60 inches by 45 inches. The AR sandbox software requires it to be in a 

4:3 aspect ratio to match the intrinsic aspect ratio of the Kinect depth image. The final 

size was determined to ensure it was large and deep enough to benefit the Trencher 

team’s project. The sandbox was then filled to 12 inches deep with play sand. 

Due to the graphically intensive real-time visualization of the AR sandbox application, a 

new computer was purchased with the recommended NVIDIA GeForce graphics card. 

Additionally, the AR sandbox frameworks were built and tested using Linux Mint 19 

which was installed on the new computer to ensure a smooth setup. 

A new projector was also purchased with a 4:3 aspect ratio to match the surface size of 

the sandbox and Kinect depth image. The projector also required a short enough throw 

distance, or the distance between the projector lens and screen it is projecting on, to fit 

within the designated area in the lab. Both the Kinect-for-Xbox-360 (first generation 

Kinect camera) and the Kinect V2 for Xbox One are compatible with the AR sandbox 

and were available from members of PSTDL. The Kinect V2 was originally chosen 

because it was the newer hardware option. Next, a mount for the projector and Kinect 

needed to be designed and built. Per the recommendations in the UC Davis instructions, 

the Kinect needed to be mounted in the center of the sandbox so that the distance between 

the Kinect and the sand surface was approximately equal to the width of the sandbox. 

Figure 2 depicts the built sandbox and assembled projector/camera mount before the 

Kinect was attached.  
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Figure 2. Projector and Kinect mounted above the sandbox 

2.2 Calibration of the AR Sandbox 

After the projector and Kinect were mounted, the calibration between the projector 

display and the camera was performed. This allows for the AR Sandbox application 

(SARndbox) to scale the Kinect’s depth image to fill the projection on the sandbox 

surface and accurately display the topography. Per the UC Davis instructions, a 

calibration disk was made by cutting out and attaching a sheet of paper to a compact disc 

(CD) then drawing a cross that intersects at the center of the CD. The calibration disk was 

then attached to the end of an allen wrench to avoid interference by holding it be hand. 

Calibration was performed by running the command “./bin/CalibrateProjector -s 1024 

728” where 1024 and 728 represent the respective width and height of the projector’s 

image in pixels. As Figure 3 shows, this projects a white cross onto the sandbox surface 

in which the cross on the calibration disk is aligned and a tie point is captured. A tie point 

is a point that the calibration file uses as a point of reference to align the projection to the 

depth image of the Kinect. Starting with a flat sandbox surface, tie points are collected at 

different heights. After approximately half a dozen captures, a hole was dug to the bottom 

of the sandbox to capture more tie points at a lower level. After about a dozen captures 

are taken, the projector displays a red cross which tracks the calibration disk while it is 
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moved around the sandbox. This is used to verify the calibration was performed 

correctly. If the red cross does not accurately track the calibration disk’s movement 

around the sandbox, more tie points at varying heights can be collected. The collected 

calibration data was stored into a projector transformation file to be used by the AR 

sandbox application. 

 
Figure 3. Calibration disk aligned with the projected cross for tie point collection 

2.3 Running the AR Sandbox 

Upon successful calibration, the sandbox framework can be run in the terminal with the 

following command: “./bin/SARndbox -uhm -fpv”. The -uhm flag enables the elevation 

color mapping and loads the elevation color map. The -fpv enables the use of the 

projector transformation file which was created during calibration so that the Kinect 

camera and projector are aligned. However, the application displayed a mostly black 

screen with a few colored pixels (Figure 4), instead of the expected colored topographical 

map of the sand surface. To test if this resulted from an error in the calibration, the 

command was run without either of the flags, which allows the display image to be 

manipulated within the application window. Rotating the display image revealed that the 

Kinect was successfully calibrated. Next the -uhm flag was reenabled, verifying that the 

depth was also interpreted correctly. However, the image appeared to be inverted along 

the horizontal axis.  
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Figure 4. Initial output of the SARndbox application 

One of the calibration files, BoxLayout.txt, stores the recorded base plane of the sandbox, 

which is the depth of the flat sandbox surface, as well as the x, y and z positions of the 

sandbox corners. It is noted within the UC Davis instructions that the second-generation 

Kinect may report the depth plane with inverted values for an unknown reason. This was 

taken into account during the calibration by initially flipping the received values, but in 

an attempt to fix the inverted depth image, these values were changed back to the 

camera’s default values within BoxLayout.txt. This flipped the depth image shown in the 

AR sandbox application but caused it to be mirrored. After further discussions on the AR 

Sandbox forums run by the UC Davis team, it was determined to be an issue solely with 

the Kinect V2. Since a Kinect-for-Xbox-360 was already available to the lab, a new 

adapter was purchased, and the cameras were swapped out. After repeating the 

calibration with the first-generation Kinect, the AR sandbox application was run 

successfully. Figure 5 shows a screenshot of the application running correctly and Figure 

6 shows the working AR sandbox with the topographical lines and coloring being 

correctly projected onto the surface of the sandbox. 

Note: As of March 9th, 2021, the original developer of the AR sandbox software 

packages updated the software packages to fix the issue experienced above. The 

Kinect V2 should function properly now, if used with the updated packages, and 

is available as an option for the PSTDL in the future.  
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Figure 5. Screenshot of running AR sandbox application 

 
Figure 6. Projection of the AR sandbox application onto the sandbox surface 
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3 Methods 

Once the Kinect was mounted above the sandbox, the development of the volume 

calculation tool was started. This required an understanding of how the Vrui VR 

development toolkit, Kinect 3D video processing framework, and the SARndbox 

software package worked together to create the existing tools and corresponding 

applications. The Vrui VR development toolkit provides the base visualization 

functionalities as well as all the tools used in each application the package provides. The 

Kinect 3D video processing framework provides access to the Kinect depth image and 

camera feed and functions for utilizing them. The SARndbox software package is where 

the AR sandbox application is built using the other two packages. 

3.1 Development of the Volume Tool 

Initially, the volume tool was created as a tool within the SARndbox application. All 

tools within the packages are built using the Vrui VR development toolkit. The design 

was modeled off the plane tool (PlaneTool.h and PlaneTool.cpp), which is built into the 

RawKinectViewer application that is used for calibration. The plane tool maps to two 

buttons (or keys on a keyboard). By pressing and holding the first key, the user can drag 

their mouse and draw a box, releasing when the area they wish to select is encompassed. 

The second key can then be pressed to run the base plane calibration step over that area. 

This is the basis for the desired functionality of the volume tool since the goal is to select 

an area of the sandbox and then choose when to calculate volume change over that area 

after the sandbox surface is manipulated. 

Therefore, the volume tool maps to two buttons. The first allows the user to drag and 

draw a box around the area of the sandbox over which they wish to calculate volume 

change. The sandbox surface can then be manipulated by an excavation tool. Once 

complete, the user presses the second button that was mapped, and the volume change is 

calculated over the same area that was originally selected. 

The user-selected box is measured by collecting the initial (x, y) point that the box is 

drawn from and the final (x, y) point at the corner where it is released. The dimensions of 

the box are then calculated by subtracting the floored values of the two points’ respective 

x and y coordinates and taking their absolute value. The floor function is used get the 

sizes as integers and the absolute value ensures the values are positive since they are used 

later to create an array of that size. 

After building and compiling the volume tool within the SARndbox application, it was 

discovered that functions needed within the RawKinectViewer application were not 

easily available outside of it. Therefore, in order to gather the depth image data from the 

camera over the selected area and convert them to x, y, and z values in centimeters, the 

tool was moved to run within the RawKinectViewer application (Figure 7) instead of the 

SARndbox application. 
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Figure 7. Raw Kinect Viewer application 

3.2 Depth Image Collection 

Once the size of the user selected box is calculated, a 3D array is initialized to hold the x, 

y, and z values at each point within the box. Each corresponding x and y position of the 

3D array is set to its respective x, y and z values in centimeter form. This is done by 

collecting the point and feeding it into a function to convert the point to its equivalent (x, 

y) depth image pixel and z depth image value. The depth image point is then put through 

another transform function to convert it to its position in the real world with respect to the 

camera. These final values are reported in centimeters with the center of the sandbox 

being (x, y) = (0, 0) and the depth values as negative distance away from the lens. Both of 

the conversion functions already existed within the Kinect 3D video processing 

framework. The depth conversion was verified by ensuring the depth value provided for 

the surface of the flat sandbox matched its actual distance of ~165 centimeters. 

When the user clicks the second button to indicate they are ready for volume to be 

calculated over the previously selected area, the same process is performed. A new array 

is created with the updated depth image values based on how the surface of the sandbox 

changed. From there, these two depth value arrays are used to calculate the change in 

volume. Figure 8 provides a flow diagram of the depth image collection. 
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Figure 8. Flow diagram of depth image collection 

3.3 Volume Calculation Design 

The change depth can be observed by checking if the z dimension of a given point has a 

different value, either higher or lower, between the two depth arrays. In order to 

determine the volume change from this, the change in z must be observed over a change 

in the x and y dimension as well since volume at its most basic form is x times y times z. 

To do this with the two depth arrays, four initial/before points from the first array and 

their respective final/after points from the second array are observed together as a prism. 

The volume of the prism is calculated for every set of 4 points in the arrays. The volume 

is summed together and the amount of volume gained, volume remove, and net volume 

are reported. However, due to intrinsic error and inconsistencies in the Kinect sensor, 

discussed further in Section 5, and the potential for a very uneven surface in the sandbox, 

the 8 points form an uneven quadrilateral prism (Figure 9-A).  

To account for this, the volume of an approximated rectangular prism is calculated 

instead. The x and y dimensions are calculated by taking the average of the two before 

x/y dimensions and the two after x/y dimensions (Equations 1 and 2). The before values 

represent the x and y values from the first 3D array and the after values represent them in 

the second 3D array that is collected after the sandbox is changed.  

𝑥𝐷𝑖𝑚 = (
|𝑥1𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑥2𝐵𝑒𝑓𝑜𝑟𝑒| + |𝑥3𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑥4𝐵𝑒𝑓𝑜𝑟𝑒|

+|𝑥1𝐴𝑓𝑡𝑒𝑟 − 𝑥2𝐴𝑓𝑡𝑒𝑟| + |𝑥3𝐴𝑓𝑡𝑒𝑟 − 𝑥4𝐴𝑓𝑡𝑒𝑟|
) /4  (1) 

𝑦𝐷𝑖𝑚 = (
|𝑦3𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑦1𝐵𝑒𝑓𝑜𝑟𝑒| + |𝑦4𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑦2𝐵𝑒𝑓𝑜𝑟𝑒|

+|𝑦3𝐴𝑓𝑡𝑒𝑟 − 𝑦1𝐴𝑓𝑡𝑒𝑟| + |𝑦4𝐴𝑓𝑡𝑒𝑟 − 𝑦2𝐴𝑓𝑡𝑒𝑟|
) /4  (2) 

The z dimension is calculated by subtracting the maximum depth from the minimum 

depth. If these dimensions are used, it would produce an overestimate of the volume, 

depicted by the red dotted lines in Figure 9-B. To reduce this overestimate to a more 
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accurate volume calculation, the z dimension is reduced. The depth between the 

maximum and minimum z values is calculated for the before and after sets of points 

(Equation 3 and 4). After adding these two values and dividing the result by two, this can 

be subtracted from the z dimension to reduce the rectangular prism from the red dotted 

box to the green in Figure 9-C. Therefore, the volume calculated for the irregular prism is 

the green rectangular prism (Figure 9-D) that cuts off part of the original prism but covers 

a portion outside of it, resulting in an estimated volume calculation. Equation 5 represents 

the final volume calculation computed for each set of points. 

Δ𝑍𝐵𝑒𝑓𝑜𝑟𝑒 = 𝑚𝑎𝑥𝑍𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑚𝑖𝑛𝑍𝐵𝑒𝑓𝑜𝑟𝑒  (3) 

Δ𝑍𝐴𝑓𝑡𝑒𝑟 = 𝑚𝑎𝑥𝑍𝐴𝑓𝑡𝑒𝑟 − 𝑚𝑖𝑛𝑍𝐴𝑓𝑡𝑒𝑟 (4) 

𝑉 = 𝑥𝐷𝑖𝑚 ∗ 𝑦𝐷𝑖𝑚 ∗ ((𝑚𝑎𝑥𝑍 − 𝑚𝑖𝑛𝑍) − (
1

2
) ∗ (Δ𝑍𝐵𝑒𝑓𝑜𝑟𝑒 + Δ𝑍𝐴𝑓𝑡𝑒𝑟))  (5) 

 

        

Figure 9. A: The irregular prism formed by the four points of the before array (1B-4B) 

and the four points of the after array (1A-4A). B: The x and y dimensions of the prism 

with the z values of interest and the overestimated rectangular prism formed by the dotted 

red lines. C: The overestimated rectangular prism compared to the one used for volume 

calculation formed by the green dotted lines. D: The green dotted line rectangular prism 

used to calculate the volume of the irregular prism. 

A B C D 

x 

z y 
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4 Initial Results 

Once the volume tool was completed, it was tested with multiple shapes whose expected 

volumes were calculated by hand. The four shapes tested were two different sized 

cardboard boxes or rectangular prisms, a triangular prism made of cardboard and a glass 

bowl to represent a hemisphere. Each objects expected volume was calculated by hand. 

Each object was placed within the sandbox and the selection box was drawn around it. 

The object was then removed and the volume tool was triggered to calculate the change 

in volume. This was performed five times for each object. Five more tests were 

completed where the selection was made and the object was placed into the sandbox. By 

doing this, both the volume added and volume removed could be tested, with the 

expectation that the absolute value of the result should be the same. In addition to the 

four objects, volume was collected over an unchanged sandbox surface and one that had 

been manipulated by randomly digging by hand. Both of these measurements have an 

expected net volume change of zero since no sand was removed or added to the sandbox.  

Due to the inconsistencies of the Kinect sensor which will be elaborated on in the next 

section, the volumes for all the tests were collected in three ways, a single collection as 

well as the mean and median of five collections of the before and after arrays. All of the 

volume calculations are reported in centimeters cubed. Table 1 displays expected value 

along with the average of the ten collections for each object and collection technique. The 

results from the calculation on the unchanged sandbox and the random digging produced 

the closest to the expected results of a net zero volume change. However, all of the other 

objects reported large overestimates of the expected volume. 

Table 1. Average Volume Calculations of Different Objects Over 10 Calculations  
Unchanged 

sandbox 

(cm3) 

Random 

Dig (cm3) 

Large 

Rectangular 

Prism (cm3) 

Small 

Rectangular 

Prism (cm3) 

Triangular 

Prism (cm3) 

Hemisphere

(cm3) 

Expected 

Value 
0.0 0.0 30223.3 12105.7 11830.0 2999.0 

Single 

Collection 
0.8 121.0 36450.3 13186.5 14012.6 3229.9 

Mean of 5 

Collections 
0.5 49.2 35961.6 13159.5 13812.2 3252.7 

Median of 5 

Collections 
0.3 38.0 35960.8 13099.9 13913.6 3276.6 

 

The percentage of error for each of the measured objects was calculated and is listed in 

Table 2. Taking the mean and median over five collections appears to reduce error 

slightly in almost every category but does not make a dramatic impact overall. 

Furthermore, it can be observed that the taller the object, with the large rectangular prism 

and the triangular prisms having the largest change in the z dimension, the more error 

there is in the calculation. This will also be explored further in the next section. Overall, 

the initial results contained much more error than anticipated. 



13 

 

Table 2. Percent Error of Volume Calculations of Different Objects  
Large 

Rectangular 

Prism (%) 

Small 

Rectangular 

Prism (%) 

Triangular 

Prism (%) 

Hemisphere 

(%) 

Average 

(%) 

Single 

Collection 
17.1 8.2 15.6 7.1 12.0 

Mean of 5 

Collections 
16.0 8.0 14.4 7.8 11.5 

Median of 5 

Collections 
16.0 7.6 15.0 8.5 11.7 
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5 Error in Volume Calculation 

The Kinect v1 sensor suffers from noise in the depth data and inconsistencies at different 

distances. Each dimension of the volume calculation contains error not only from the 

approximation formula but from the data produced by the sensor. To better understand 

the results produced by the volume tool, error propagation was calculated and the sources 

of error were investigated in an attempt to find future mitigation strategies. 

5.1 Reducing Inconsistencies with Multiple Collections 

In an attempt to mitigate some of the inconsistencies in the depth image data, two 

primitive filtering techniques were used. The mean and median were done over five 

collections for each the before and after depth image arrays. While the results show this 

does not provide any significant improvements in the accuracy of the volume 

calculations, it provided a small amount of smoothing for flat surfaces. This provided 

consistent z values for points that were known to be of the same height as opposed to 

having a variation of a few millimeters in either direction. 

5.2 Error Propagation 

Each depth image taken by the Kinect varies slightly due to inherent noise in the system. 

This produces a small range that each x, y and z value can take each time they are 

collected. In order to quantify some of the error in the volume calculation, that range of 

error in each dimension of the Kinect was determined. This was performed by collecting 

the average difference between points in each dimension over an unchanged sandbox 

surface. If the sensor was consistent, the collections would produce the same x, y and z 

values for each point since the area is unchanged. Unfortunately, this is not the case and 

Table 3 shows the potential error for in each dimension for a given collection.  

Table 3. Average Difference Between Before and After Depth Images Over an 

Unchanged Sandbox Surface 

 X Y Z 

Average over entire sandbox  

(~140,000 points)  

0.12 cm 0.10 cm 0.90 cm 

 

The base equations for calculating error propagation differ for addition/subtraction and 

multiplication/division. Given Equation 6 which consists of addition and subtraction, 

Equation 7 represents the error propagation formula which is the square root of the sum 

of squares, where 𝛿 represents the error for a given measurement (Glen, 2016). 

𝑄 = 𝑎 + 𝑏 + ⋯ + 𝑐 − (𝑥 + 𝑦 + ⋯ + 𝑧) (6) 

𝛿𝑄 = √(𝛿𝑎)2 + (𝛿𝑏)2 + ⋯ + (𝛿𝑐)2 + (𝛿𝑥)2 + (𝛿𝑦)2 + ⋯ + (𝛿𝑧)2  (7) 

Similarly, Equations 8 and 9 represent the error propagation formula for multiplication 

and division (Glen, 2016). 
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𝑄 =
𝑎,𝑏,…,𝑐

𝑥,𝑦,…,𝑧
  (8) 

 

𝛿𝑄 = |Q| ∗ √(
𝛿𝑎

𝑎
)

2

+ (
𝛿𝑏

𝑏
)

2

+ ⋯ + (
𝛿𝑐

𝑐
)

2

+ (
𝛿𝑥

𝑥
)

2

+ (
𝛿𝑦

𝑦
)

2

+ ⋯ + (
𝛿𝑧

𝑧
)

2

 (9) 

 

Due to the complexity of the volume formula (Equation 5), the error propagation was 

performed in stages. The values in Table 3 were used as 𝛿𝑥, 𝛿𝑦, and 𝛿𝑧 respectively. 

Each error propagation calculation was performed alongside its corresponding volume 

calculation. Equations 10 and 11 were used to calculate the error in the x and y 

dimensions. 

𝛿𝑥𝐷𝑖𝑚 = (√(𝛿𝑥)2 ∗ 8) ∗ (
1

4
)  (10) 

𝛿𝑦𝐷𝑖𝑚 = (√(𝛿𝑦)2 ∗ 8) ∗ (
1

4
)  (11) 

 

The z dimension error is then propagated through the multiple instances where z values 

are used for volume calculation (Equations 12 and 13).  

𝛿(Δ𝑍𝐵𝑒𝑓𝑜𝑟𝑒 + Δ𝑍𝐴𝑓𝑡𝑒𝑟) = √(𝛿𝑧)2 ∗ 4  (12) 

𝛿(𝑚𝑎𝑥𝑍 − 𝑚𝑖𝑛𝑍) = √(𝛿𝑧)2 ∗ 2  (13) 

The volume formula is then broken down to separate the error propagation of addition 

and subtraction. Equations 14 through 19 outline the remaining error propagation 

formulas used to determine the overall error 𝛿𝑉 that is propagated through the volume 

calculation.  

𝐴 = (
1

2
) ∗ (Δ𝑍𝐵𝑒𝑓𝑜𝑟𝑒 + Δ𝑍𝐴𝑓𝑡𝑒𝑟)  (14) 

𝛿𝐴 = (
1

2
) ∗ 𝛿(Δ𝑍𝐵𝑒𝑓𝑜𝑟𝑒 + Δ𝑍𝐴𝑓𝑡𝑒𝑟) (15) 

𝐵 =  ((𝑚𝑎𝑥𝑍 − 𝑚𝑖𝑛𝑍) − 𝐴)  (16) 

𝛿𝐵 = √(𝛿(𝑚𝑎𝑥𝑍 − 𝑚𝑖𝑛𝑍))
2

+ (𝛿𝐴)2  (17) 

𝑉 = 𝑥𝐷𝑖𝑚 ∗ 𝑦𝐷𝑖𝑚 ∗ 𝐵 Eq. (18) 

𝛿𝑉 = |𝑉| ∗ √(
𝛿𝑥𝐷𝑖𝑚

𝑥𝐷𝑖𝑚
)

2

+ (
𝛿𝑦𝐷𝑖𝑚

𝑦𝐷𝑖𝑚
)

2

+ (
𝛿𝐵

𝐵
)

2

 (19) 

Since the error propagation is done over each volume calculation which are then summed 

together to produce the total volume, the error at each step must also be summed together 

(Equations 20 and 21). 
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𝛿𝑉𝑇𝑜𝑡𝑎𝑙 = 𝛿𝑉𝑇𝑜𝑡𝑎𝑙 + (𝛿𝑉)2  (20) 

𝛿𝑉𝑇𝑜𝑡𝑎𝑙 = √𝛿𝑉𝑇𝑜𝑡𝑎𝑙  (21) 

The average error propagation calculated alongside ten volume calculations is reported in 

Table 4. The amount of error that the error propagation reports is significantly less than 

the error the volume measurement produces. Aligning each result with its corresponding 

volume from Table 1, the error calculated does not account for much of the error 

experienced. For example, the large rectangular prism had over 5000 cm3 of error and 

reports about ± 100 cm3. Since the expected value of the large rectangular prism is 

30223.3 cm3, the error propagation should bring the expected value into range. However, 

there are still a few thousand cubic centimeters of error. This means that there is a lot of 

error coming from other sources and not just sensor inconsistency over unchanged depth 

images. 

Table 4. Error Propagation Calculated for Each Volume Calculation Averaged over 10 

Calculations  
Unchanged 

sandbox 

(cm3) 

Random 

Dig (cm3) 

Large 

Rectangular 

Prism (cm3) 

Small 

Rectangular 

Prism (cm3) 

Triangular 

Prism (cm3) 

Hemisphere 

(cm3) 

Single 

Collection 
± 0.46 ± 10.1 ± 101.1 ± 40.0 ± 50.3 ± 20.2 

Mean of 5 

Collections 
± 0.59 ± 3.9 ± 102.1 ± 42.8 ± 50.5 ± 20.0 

Median of 5 

Collections 
± 0.56 ± 9.5 ± 99.2 ± 42.5 ± 49.8 ± 20.0 

       

5.3 Error in the x and y Dimensions Based on z 

As outlined before, the x and y points used to calculate the x and y dimensions for 

volume calculation were (x, y) pairs of depth image pixels being converted to their 

corresponding centimeter values with respect to the center of the depth image. However, 

the current depth of those pixels directly relates to the value they are converted to. The 

closer to the camera a pixel is, the closer together the pixels are considered. 

Consequently, pixels that are more distant from the camera are interpreted as more spread 

out. This is depicted in Figure 10 where the x and y values match the expected real world 

values at the green depth but are smaller at the yellow and larger at the red. This causes 

inconsistencies in the x and y dimensions calculated when using the before points and the 

after points. 
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Figure 10. Diagram of x and y dimension inconsistencies 

Table 5 shows the average x and y dimension calculated at five different distances away 

from the camera in centimeters. To illustrate this, consider the scenario where the before 

point reports x = 0.23 cm and the after point report x = 0.29cm. After taking the average, 

the resulting x dimension that is used for the volume calculation is 0.26cm. While this 

difference from the actual value is on the scale of less than a millimeter, which the Kinect 

cannot even detect, it affects the end result of each volume calculation by a few 

millimeters. This difference quickly adds up over thousands of calculations being 

summed together, leading to error in the volume calculation outlined in Tables 1 and 2. 

Table 5. Average x and y Dimensions at a Given z 

 z (cm) x (cm) y (cm) 

Depth 1 167.4 0.29 0.29 

Depth 2 158.7 0.27 0.26 

Depth 3 143.7 0.24 0.23 

Depth 4 134.7 0.23 0.23 

Depth 5 125.4 0.22 0.22 

5.3.1 Mitigation of Error in the x and y Dimensions 

In order to mitigate the error in the x and y dimensions, the total x and y lengths of the 

small rectangular prism were collected at 5 different depths. Each value was then 

compared to its expected value and percent error was calculated. By plotting the percent 

error over the depth (z dimension) for both the x and y dimensions, a linear line could be 

fitted to the points. Figures 11 and 12 show the graphs and trendlines for the x and y 

dimensions, respectively. 
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Figure 11. Depth over percentage of error in the x dimension 

 
Figure 12. Depth over percentage of error in the y dimension 

These trendlines help to depict the expected error of the x and y dimensions based on 

their distance away from the camera. To account for this error in the volume formula, the 

expected error is accounted for using the formula of the trendline. The x and y 

calculations were changed by subtracting the expected error based on their z values 

(Equations 22 and 23). 

Δ𝑋1 = |𝑥1𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑥2𝐵𝑒𝑓𝑜𝑟𝑒| − |𝑥1𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑥2𝐵𝑒𝑓𝑜𝑟𝑒| 

∗ (−0.0022 ∗ (
𝑧1𝐵𝑒𝑓𝑜𝑟𝑒+𝑧2𝐵𝑒𝑓𝑜𝑟𝑒

2
) − 0.2976)  (22) 
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Δ𝑌1 = |𝑦3𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑦1𝐵𝑒𝑓𝑜𝑟𝑒| − |𝑦3𝐵𝑒𝑓𝑜𝑟𝑒 − 𝑦1𝐵𝑒𝑓𝑜𝑟𝑒| 

∗ (−0.0028 ∗ (
𝑧3𝐵𝑒𝑓𝑜𝑟𝑒+𝑧1𝐵𝑒𝑓𝑜𝑟𝑒

2
) − 0.3906)  (23) 

For simplicity, only the formulas for the first ΔX and ΔY are provided but adjusted values 

for all four x and y are calculated. The x and y dimension values are once again the 

average of those four respective values (Equations 24 and 25). 

𝑥𝐷𝑖𝑚 = (Δ𝑋1 + Δ𝑋2 + Δ𝑋3 + Δ𝑋4)/4  (24) 

𝑦𝐷𝑖𝑚 = (Δ𝑌1 + Δ𝑌2 + Δ𝑌3 + Δ𝑌4)/4  (25) 

5.3.2 Adjusted Volume Calculations 

Ten volume calculations were performed for each object using the adjusted x and y 

values. The unchanged sandbox and random digging are omitted due to unchanged 

results. The results are displayed in Table 6. By accounting for the error in the x and y 

dimensions caused by varying depths and adjusting them accordingly, the volume 

calculations produce significantly less error. The percentage of error can be seen in Table 

7. The rectangular prism still experiences the largest amount of error due to the Kinect 

having a hard time detecting heights along a 90 degree edge, but it is still a major 

improvement from the original collections. Overall, 1-8% error is more acceptable than 

the 8-17% of error that occurred before this adjustment was made. Due to the change in 

how the x and y dimension are calculated for the volume, the error propagation formulas 

are no longer valid. They will need to be updated in the future to reflect the new 

calculations and to better understand where the remaining error is coming from. 

Table 6. Average Volume Calculation over 10 Calculations  
Large 

Rectangular 

Prism (cm3) 

Small 

Rectangular 

Prism (cm3) 

Triangular 

Prism (cm3) 

Hemisphere 

(cm3) 

Expected 

Value 
30223.3 12105.7 11830.0 2999.0 

Single 

Collection 
31841.4 11496.7 12267.2 3239.6 

Mean of 5 

Calculations 
32487.5 11932 11932.3 3165.9 

Median of 5 

Calculations 
32641.9 11893 12064.6 3175.4 
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Table 7. Percentage of Error of Volume Calculations  
Large 

Rectangular 

Prism (%) 

Small 

Rectangular 

Prism (%) 

Triangular 

Prism (%) 

Hemisphere 

(%) 

Average 

(%) 

Single 

Collection 
5.4 5.0 3.7 8.0 5.5 

Mean of 5 

Collections 
7.5 1.4 0.9 5.6 3.8 

Median of 5 

Collections 
8.0 1.8 2.0 5.9 4.4 
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6 Conclusion 

The AR sandbox application provides a real-time topographical map of the sandbox 

surface which can be used to better visualize how the sand is manipulated. This has the 

potential to be a beneficial tool for the PSTDL. A 60 inch by 45 inch sandbox was built 

within the PSTDL and an AR sandbox was setup and calibrated. Within the software 

frameworks a volume calculation tool was developed to provide a valuable metric to 

project teams using the sandbox for testing their excavation tools.  

The volume tool allows a user to calculate the change in volume over a selected area of 

the sandbox. Due to error and inconsistencies from the Kinect v1 sensor, the initial 

volume calculations experienced a large amount of error, ranging from 8% to 17% error 

based on how the depth image changed in shape. Mean and median filters were applied to 

the depth image collections but did little to reduce the error. It was then discovered that 

the x and y dimensions varied at different depths of the sandbox. This had the potential to 

be a major cause of the experienced error. This was mitigated by adjusting the x and y 

dimensions to be closer to their expected value, depending on their depth. As a result, the 

error in the volume calculations reduced down to 1% to 8% error. 

These initial results and error mitigation strategies show promise that change in volume 

can be properly calculated with a depth camera. With more investigation into the causes 

of error in the calculation as well as exploring other depth camera options, the calculation 

can be made more accurate. 

 



22 

7 Future Work 

There are many improvements and additions that can be made to the volume tool project. 

As mentioned in the preliminary work section, the Kinect V2 can now be used if the 

software packages are updated. Nevertheless, there appear to be advantages and 

disadvantages of using one over the other. In their 2016 paper, Comparison of Kinect v1 

and v2 Depth Images in Terms of Accuracy and Precision, Wasenmuller and Stricker 

found that the Kinect v1 has exponential decrease in accuracy as distance increased . 

However, it was also observed that the Kinect v2 has much lower precision for flat 

surfaces as well as uneven ones and contains a lot more extreme points than the v1 

(Wasenmuller & Stricker, 2016). The reported results are further supported by Zennaro, 

et al. who found that the Kinect v2 was around two times more accurate at short range 

and close to ten times more accurate after distances of 6 meters (Zennaro, et al., 2015). 

These observations could be investigated further, and the volume tool could be tested 

with both cameras to determine which produces better calculations for this project. 

Another improvement that can be made within the volume tool is investigating and 

mitigating error further. This could be done by using a different filtering technique to 

achieve more consistent results in the depth image collections. However, the error 

observed by inconsistent x and y dimensions based on distance away from the sensor 

would remain unaffected by these filters. The error within the x and y dimension could be 

improved by taking more collections at various heights and establishing a stronger 

trendline to be used for the adjustment. Furthermore, the way the error of each dimension 

is propagated through the volume formulas can be updated to account for the changes 

made to the formulas, which in turn could bring insight into how much error is expected 

in each calculation. 

One of the original goals of the project that was not achieved was to have the volume tool 

working within the SARndbox application. This would allow an area of the topographical 

map to be selected as opposed to using the raw depth image in the RawKinectViewer 

application. Moving the tool back to the other application should be possible as long as 

undefined function references are handled. Since many of the functions used to obtain the 

depth image arrays and convert the values to centimeters are not available in the AR 

sandbox application, some of the functionality may need to be rewritten. Regardless, at 

its core, the volume tool will accept two arrays of x, y, and z dimensions and compute the 

volume difference between them. As long as those arrays can be properly formed, the 

volume can be calculated. 

Furthermore, due to the intrinsic error of the Kinect sensors, other depth cameras could 

be explored for future advances of this project. Other popular alternatives to using a 

Kinect sensor for research purposes are Azure Kinect DK camera and the Intel RealSense 

depth camera series. Similar to the comparison of the Kinect v1 and v2 above, each 

camera has its own advantages and disadvantages that would need to be explored further 

before purchasing. Additionally, a different camera would not work within the current 

software packages since they are built for a Kinect, but a new standalone application 

could be developed to simply read in the depth images and report the volume change. 
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