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Technical Note

Characterizing Soil Stiffness Using Thermal Remote Sensing
and Machine Learning
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Abstract: Soil strength characterization is essential for any problem that deals with geomechanics,
including terramechanics/terrain mobility. Presently, the primary method of collecting soil strength
parameters through in situ measurements but sending a team of people out to a site to collect data
this has significant cost implications and accessing the location with the necessary equipment can be
difficult. Remote sensing provides an alternate approach to in situ measurements. In this lab study,
we compare the use of Apparent Thermal Inertia (ATI) against a GeoGauge for the direct testing of
soil stiffness. ATI correlates with stiffness, so it allows one to predict the soil strength remotely using
machine-learning algorithms. The best performing regression algorithm among the ones tested with
different predictor variable combinations was found to be KNN with an R2 of 0.824 and a RMSE of
0.141. This study demonstrates the potential for using remote sensing to acquire thermal images that
characterize terrain strength for mobility utilizing different machine-learning algorithms.

Keywords: Apparent Thermal Inertia; soil stiffness; remote sensing; thermal imaging

1. Introduction

Mobility maps are a crucial component of military operations. The traditional ap-
proach for mobility (Go/No-Go) map development relies heavily on in situ measurements,
which means that soldiers may have to risk going into hostile zones to collect data on
terrain strength. We look to improve upon it [1–3]. A key variable for developing these
mobility maps is the soil strength parameter. Traditionally, the bevameter has been widely
used to approximate soil strength for mobility [4]. Cone penetrometers are a decent second
choice as they are portable and easier to use [4,5]. Both of these traditional approaches
have limitations because they require in situ strength measurement, and they place soldiers
at risk. Furthermore, as it can be costly to get a bevameter moved to a site of interest or the
zone may not be reachable. An alternative could to use remote sensing.

Remote sensing is the art of observation from a distance by examining different elec-
tromagnetic wavelengths. This can be accomplished by a variety of means ranging from
different sensors for different wavelengths (e.g., visible/color [6] and thermal [7,8]) to the
platform on which the sensor is mounted (ground level [9] up to satellites [10–12]). Digital
soil mapping has been taking place for several years now, and through the convergence of
high-processing power and available sensors, it can be done rapidly and effectively [13].
Remote sensing comes in a variety of forms such as multispectral/multi-band (typically a
few averaged broad wavelength ranges) [14], hyperspectral (multiple very narrow band-
widths), and thermal. Studies have shown that it can be applied to soil studies such as
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using remotely sensed color (red, green, blue) images to build a 3D model to predict the
bearing strength of beach sand [15]. Archeologists have used remote sensing to locate
buried structures using MIVIS (Multispectral Infrared and Visible Imaging Spectrometer)
hyperspectral airborne data [16]; hyperspectral sensors have detected soil gradation [17];
Landsat 8 imagery and Geographic Information Systems [18,19] have been used to model
wildfire; Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG)
hyperspectral data have generated lithological and mineral maps [20,21]; and remote sens-
ing has been used for anomaly/target recognition [22]. Work has also been conducted
on thermal remote sensing for a variety of applications like detecting buried objects [23]
or landmines [24], quantifying moisture content in mine tailings [25], using ENVISAT
AASTR datasets [26] to correlate thermal inertia (TI)/Apparent Thermal Inertia (ATI) to
land use/land cover mapping and to soil moisture [27–30]. Further remote sensing studies
have focused on soil strength estimation to characterize the lunar surface’s stiffness by
using greyscale images to examine the wheel sinkage [31]. While this study helped to
estimate soil strength so that the rovers could choose an ideal path, it was limited by the
need to have the rover already at the location to predict the stiffness via high resolution
images that measured the sinkage from the tire tracks.

Work has also been conducted to demonstrate ATI’s mobility uses [9]. In this study,
Gonzalez and his team used thermal inertia to explore how moisture content and vegetation
correspond to traversability. They used a scale-model car to test mobility across soil bins
they had prepared. Only a few select types of features with vastly different properties
were examined: gravel, wet/dry sand, grass, and bedrock. While these studies compared
remote sensing for mobility, they did not directly correlate thermal remote-sensing data
quantitatively to measuring soil strength.

Our research used machine learning algorithms (linear, ridge, lasso, partial least
squares, k nearest neighbors, and support vector machine regression) to examine five
different mobility-course soil types from the Keweenaw Research Center to correlate the
ATI with a soil stiffness (strength) prediction based solely on remotely sensed data. In
turn, this new means of estimating soil strength allowed for a broad range of geological
applications, including those in off-road mobility. Our goal was to provide a useful tool
to allow for a more rapid, efficient, and larger area estimation of soil stiffness in off-road
scenarios that could be applied directly to fields as different as agriculture, self-driving
cars, civil engineering, and planetary exploration by rovers. This technique can also help
build Go/No-Go mobility maps without putting soldiers in harm’s way. We hope this
work will be immediately useful to practicing engineers working in these fields of research.

2. Materials and Methods

Five soil types were collected from the Keweenaw Research Center (KRC) containing
different amounts of sand, gravel, and fine particles. The location from where the soils
were collected is shown in Figure 1. The KRC site is a research center used for military
testing tracks, research vehicle mobility, and various ground vehicle performance testing.
The soils were analyzed in the lab before testing to quantify their composition by sieve
analysis. The other parameters examined were soil gradation (D10, D30, and D60—the
grain sizes at which 10, 30, and 60% of the sample passes through a specific sieve size—,
the coefficient of uniformity (Cu) and coefficient of curvature (Cc), which are given in
equations 1 and 2 and classified using the Unified Soil Classification for Soils (USCS) [32].
The specifics for the soil parameters are listed in Table 1. A flowchart showing an overview
of the entire experiment is shown in Figure 2.

Cu = D60/D10, (1)

Cc = (D30)2/(D10 ∗ D60), (2)
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Figure 1. The locations of the five soil pits at KRC are highlighted. Boxes show the area of the soil
pits: Fine (red), Coarse (blue), Rink (green), Stability (purple), and 2NS (black).

Table 1. Keweenaw Research Center (KRC) Soil Information. % Gravel, % Sand, % Fine, D10, D30,
D60, Cu, Cc, and Unified Soil Classification for Soil (USCS) Classification.

Fine Coarse Rink Stability 2NS

% Gravel 0.0 16.8 10.7 31.1 0.6
% Sand 40.6 73.7 66.4 58.8 97.3
% Fine 59.4 9.5 22.9 10.1 2.1

D10 0.015 0.085 0.015 0.075 0.175
D30 0.043 0.270 0.120 0.250 0.315
D60 0.076 0.380 0.250 2.650 0.7
Cu 5.03 4.47 16.67 35.33 4.00
Cc 1.6 2.3 3.8 0.3 0.7

USCS
Classification

ML = Sandy
Silt

SP–SM =
Poorly

Graded Sand
with Silt and

Gravel

SM = Silty
Sand

SW–SM =
Well Graded

Sand with
Silt and
Gravel

SP = Poorly
Graded Sand
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Figure 2. Overview flowchart of the laboratory study process from beginning to end.

2.1. Thermal Remote Sensing Background

The electromagnetic spectrum is a way of classifying different wavelengths of electro-
magnetic energy. The visible wavelength, the ones human eyes can distinguish, is between
350–750 nm. There are other wavelengths, both longer and shorter, such as radio waves
(longer, less energy) to gamma rays (shorter, higher energy). Depending on the wavelength,
the energy being projected onto the interest area can be reflected, transmitted, or absorbed.
The short-wave infrared wavelengths are where one starts recording, not the reflected data,
but rather the energy that was absorbed and then re-emitted later. This is called thermal
remote sensing.

Thermal remote sensing is unique because since the energy being recorded by the
camera has been re-emitted, the collected information provides subsurface characteristics.
In contrast, with visible light, we only see the surface reflected color (such as red or blue)
rather than the subsurface properties. The temperature of the material is recorded using
thermal cameras.

2.2. Thermal Inertia/Apparent Thermal Inertia

Thermal inertia (TI) is a way to measure the potential for absorbing and storing heat
in a material. Shown below is the equation for calculating the thermal inertia of a material,
Equation (3) [33,34].

TI =
√

kρc, (3)

The values for thermal conductivity (k), bulk density (ρ), and specific heat (c) cannot
be collected using remote sensing. Instead, we approximate TI by using the ATI, by using
variables that can all be collected remotely (Equation (4)) [33]. This formula uses only the
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temperature change (∆T) of a material and the albedo (α), the overall average reflectance
of a material in the 400–900 nm range. This value changes based on the smoothness or
roughness of a material, as well as its color.

ATI = (1 − α)/∆T, (4)

2.3. Lab Setup and Sensors

The soils were organized in the lab into five separate bins of approximately 2 × 2 × 1 ft.
(length × width × height). Heat sources, two 500 W work lights, were then placed above
each bin. The work lights were mounted on two horizontal metal poles, as shown in Figure
3. These heat sources were approximately 1 m above the soil surface to allow for full and
even coverage of the exposed soil. This was done to provide the means of examining
temperature change over time and allow enough distance above the soil to image the entire
surface area without capturing the work lights in the thermal image.
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Figure 3. Shows the lab setup of the 5 KRC soils. The soils in order from top left to bottom right:
Fine, Coarse, Rink, Stability, and 2NS. Above each bin are two 500 W work lights.

Using a CR1000X data logger and CS615 water content reflectometers, the volumetric
water content of the soils in each bin was collected. The CS615 and CR1000X full technical
details can be located in the Campbell Scientifics manuals for each device [35,36]. The
probes, 12 inches in length, were inserted at an angle to permit full submersion into the
soil, ensuring we ranged from the surface to the bin’s base. The probes were removed after
recording for 15 min, and soil was smoothed out.

The albedo was collected using an ASD Spectral Radiometer Handheld Pro, ranging
from 350–900 nm. The range from 350–399 nm had a lot of noise, which made the data
less reliable, so the 400–900 nm range was used to calculate the albedo of each soil [25]. To
ensure that averaging was reliable, the reflectance values were collected at five different
spots on the soil and tested 10 times. Full technical specifications are in the user manual [37].

The Humboldt GeoGauge was used on each soil to record stiffness [MN/m]. The
GeoGauge does this by inducing small displacements on the soil using 25 steady-state
frequencies, over the range of 100 to 196 Hz, and then averaging them to give the soil’s
stiffness. The depth of this measurement is approximately 9–12 inches. With this range of
frequencies, the measured stiffness is proportional to the shear modulus of the soil if one
knows Poisson’s ratio [38].

Using a FLIR Duo R, the radiometrically calibrated temperatures were collected. This
camera operates in the 7.5–13.5 µm wavelength range, and. the FLIR software automatically
corrects the reflectance temperatures. This camera has a thermal sensor resolution of
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160 × 120 pixels with a spectral band of 7.5–13.5 µm. The camera’s full technical aspects
are in the FLIR Duo R manual [39].

2.4. Laboratory Testing Methodology

Initially, the volumetric water content was recorded by placing water content probes
into each of the soil bins. These were then left to collect the average water content over
15-min. The probes were then removed and the soil smoothed out. A spectral radiometer
was then used to collect samples from five different locations in each bin (each corner and
the middle), and at each location the wavelengths were recorded from 350–900 nm. Each
spot was tested 10 times at the same location. These values were then averaged over all
tests and locations, for a total of 50 recordings per soil bin, which gave the single albedo
value for each of the soils.

Next, the stiffness was recorded for each bin; the soil top was smoothed once again
before thermal images were taken. The first thermal image was taken at hour 0 at a height
of 1 m above the surface before the lights were turned on to get the starting temperature.
Then, after every hour, a thermal image was captured for each bin throughout a four-hour
time frame. The ATI was then calculated from the temperature change over the four hours
and compared to the soil stiffness.

2.5. Machine Learning Background

Machine learning uses specific algorithms to mathematically predict the output (stiff-
ness) by using different inputs (e.g., water content, ATI.). Various algorithms have different
methodologies for predicting this outcome. The ones used in this study were linear,
ridge [40–42], lasso [43,44], partial least squares [45], k nearest neighbors [2], and support
vector machine regression [2,46–49]. Some of these algorithms were not scale-invariant so
Box–Cox transformation, centering, and scaling were performed as an overall initial data
preprocessing. A brief discussion of some of the regression methods used in this study is
given below.

2.5.1. Linear Regression

Linear regression is the process of using a linear relationship between the predictors
and the outcome while minimizing the sum of square error (SSE). Equation (5) shows
the formula for SSE where n is the number of samples; yi is the observed value of the
response variable, and ŷi is the predicted value for the response variable. This regression
method is tuned by using different weight values as coefficients for each of the predictors
to help enhance the prediction ability, in our case for soil stiffness. This is a very quick
computational model that is highly interpretable, but it only performs well on data that
have a linear relationship [40–42]. As linear regression creates coefficients that are unbiased
when providing the lowest variance model, one can add bias to the coefficients to allow for
penalized models such as ridge and lasso regression.

SSE =
n

∑
i=1

(yi − ŷi)
2 (5)

2.5.2. Ridge Regression

Ridge regression works by examining all of the input parameters and determines
weights for each of those predictors’ importance by using the L2 regularization method,
that is, the square of the coefficient weights [40–42]. Equation (6) show the ridge regression
algorithm where λ is the cost parameter and βj is the weight for each individual predictor.
It means that the value of those predictors which are less useful will be shrunk to smaller
values, but not to zero. This algorithm still maintains all of the original predictors and does
not perform feature selection. Tuning is performed by varying the cost (λ).

RidgeSSE = SSE + λ ∑ β2
j (6)
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2.5.3. Lasso Regression

Lasso regression works in a similar manner, but instead of working with the L2
regularization, it works with the L1 regularization, that is, the absolute value of the weight
of the coefficients [43,44]. Similarly, in the Equation (7) for lasso regression, λ is the cost
parameter and βj is the weight for each individual predictor. This method will do feature
reduction in situations where certain parameters may be of no use in the prediction process
by setting their weight value to zero. Like that of ridge regression, tuning is performed
over λ.

LassoSSE = SSE + λ ∑
∣∣β j
∣∣ (7)

2.5.4. Partial Least Squares Regression

Partial least squares regression works by using latent variables and projecting the data
into a new dimensional space. The latent variables are linear combinations of the predictors
with different weights that explain the maximum variance of the data to better predict the
response variable [45]. This methodology is similar to that of the principal component
regression. Finding the optimal number of latent variables to use is the tuning parameter
for this algorithm.

2.5.5. K Nearest Neighbors Regression

This algorithm, known as k nearest neighbors (KNN), works by taking a new data
point and examining the surrounding data points that have the smallest distance from
it. The number of nearest neighbors used is the tuning parameter for this model. One of
the simplest ways to do this is to go over a range of values for k to see which has the best
performance, as was the case for this work. Note, if you were to increase k to the number
of sample points. you would end up simply going with the largest class in your data. More
depth about this model is located in [2].

2.5.6. SVM Regression

SVM regression works by using a series of hyperplanes that act as a means to distin-
guish among the data. In a two-class linearly separable example, parallel hyperplanes were
generated from the samples and the pair of samples that maximized the distance between
the two classes were selected, the support vectors. The middle of the support vector is
where a hyperplane is positioned perpendicular to both samples as a decision boundary
between the two classes. The distance from this middle hyperplane to the nearest sample
is called the margin. If the classes are not linearly separable then the kernel trick can be
applied to map the dataset into a linearly separable space. A radial basis function kernel
was used for this study. More information on this algorithm can be found in the following
papers: [2,46–49].

3. Results

Results from the albedo found that each soil has a unique albedo value, but sometimes
close to one another as shown in Table 2. This makes sense since the albedo is the average
reflectance value in the visible-NIR spectrum, and each soil type is a different shade of
color. This was evident in visual observation as seen previously in Figure 2. Values for
GeoGauge stiffness also had specific ranges but varied based on the water content; see
Table 3. The % moisture content ranges generally go from 2 to 4%, but for “Stability” one
of the tests had a larger moisture content of 8%, increasing its average higher.
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Table 2. Table of albedo mean values and ranges for each soil.

Soil Types Mean Albedo Albedo Range

Fine 0.293 0.179–0.372
Coarse 0.272 0.224–0.326

Ice Rink/Natural 0.260 0.196–0.302
Stability 0.267 0.157–0.319

2NS 0.185 0.116–0.246

Table 3. Table of stiffness (MN/m) and ATI ranges and means for each soil. ATI values are taken
after 3 h of heating.

Soils Stiffness
Range

Mean
Stiffness ATI Range Mean

ATI

Water
Content
Range

Mean
Water

Content

Fine 6.58–9.00 7.87 0.0158–0.0394 0.0233 2.5–3.2% 2.8%
Coarse 7.35–8.89 8.06 0.0151–0.0334 0.0214 2.0–2.5% 2.2%

Ice
Rink/Natural 6.14–7.19 6.71 0.0145–0.0344 0.0206 2.3–4.5% 3.7%

Stability 6.67–8.28 7.40 0.0147–0.0348 0.0201 2.7–8.1% 4.4%
2NS 5.85–6.77 6.22 0.0179–0.0376 0.0237 2.0–2.9% 2.5%

The temperature change of the soil over time had an overall increasing effect but
began to level off after about 2 h. The soils still changed uniquely for the next hour, but
at hour 4, the different soils hit their threshold and began to converge, as seen in Figure 4.
The 3 h mark is approximately where the diurnal cycle temperature change would be;
however, testing was done to 4 h to see where the soils’ temperatures would begin to
converge (or rather become oversaturated). Correspondingly, we noticed the ATI of the
soils decreasing over time and following a similar plateau shape; see Figure 5. To maximize
the performance among the machine learning models, the ATI at the 3 h mark was used as
it provided the best distinction between the five soil types. Recalling Equation (4), the ATI
showed a roughly mirror image to that of the temperature change because the larger the
temperature change, the smaller the ATI value, as seen in Figure 5.
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The data were then organized and loaded into Python for processing. Box plots of the
samples’ stiffness values are shown below in Figure 6. When examining all the samples,
one saw that there was a range of strength values that came in a variety of conditions.
It was also apparent that a simple linear correlation to either ATI (Figure 7) or moisture
content (Figure 8) alone was not possible, further validating the need to build a more
complex model with multiple predictors.
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Initial data preprocessing included Box–Cox transformation, centering, and scaling of
the data. Some of the algorithms are scale-invariant; that is, they are affected by the numer-
ical values, which means a predictor with a value of 10 will have a smaller impact than a
predictor with a value of 100. The total sample size was gathered from 9 laboratory tests
for each of the 5 soil types, leading to 45 observations. Data used an 80/20 (train/test) split
with random sampling (even distribution among the soil types). K-fold cross-validation
was applied when tuning the training data parameters, and then the best models (models
with optimal tuning parameters) were run on the test set.

Different sets of predictors were examined to find the minimum number of variables
needed while maintaining good predictive capability within the model. Trials were run
solely to examine the correlation between soil stiffness (response), the % water content and
the ATI for 3 h for the first group. The second group of predictors was conducted with %
water content, ATI 3 h, and the values for calculating the ATI (temperature at 0 h and 3 h,
and albedo). Thirdly, the addition of soil information, or rather the use of dummy variables
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to identify the soil type, was added to each of the prior-mentioned predictor groups for
testing. Initial results for the different models are shown in the table below. The best fit for
the models is shown in Figure 9 using ATI (3 h), % water content, and soil type information
using the KNN model.
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4. Discussion

Table 4 displays the values for each of the classifiers using different predictor sets and
shows % water content and ATI (3 h) alone did not give enough information to estimate
soil stiffness accurately. Adding in the predictors in group 2 (% water content, ATI (3 h),
temperature at 0 and 3 h, and albedo) gave enough information for the algorithms to predict
soil stiffness values somewhat. We still saw an increase in information when we added
dummy variables to describe the soil type. With the additional soil type information, we
improved the models in such a way that only the % water content and ATI (3 h) provided
the best results for prediction accuracy.

Table 4. Table of Prediction accuracy (R2) and Root Mean Squared Error (RMSE) for each of the
regression models implemented on each predictor set.

R2/RMSE for Each Predictor Set

Regression
Algorithms

ATI (3 h) and %
Water Content

Albedo, temp at
0, 3 h, ATI (3 h)

and % Water
Content

ATI (3 h) and %
Water Content
with Soil Type

Albedo, temp at
0, 3 h, ATI (3 h)

and % Water
Content with

Soil Type

Linear 0.296/0.563 0.572/0.342 0.681/0.255 0.700/0.240
Ridge 0.300/0.560 0.570/0.340 0.750/0.200 0.720/0.220
Lasso 0.300/0.560 0.570/0.340 0.800/0.160 0.740/0.210
SVM 0.226/0.619 0.577/0.339 0.807/0.155 0.755/0.196
KNN 0.381/0.495 0.661/0.271 0.824/0.141 0.630/0.296

If one is using only the thermal imagery process, the best methodology would therefore
be to use group 2’s set of predictors: % water content, ATI (3 h), temperature at 0 and 3 h
and the albedo. If the soil type under examination is known the model dimensions can be
lowered to % water content, ATI (3 h), and soil type.

The success rate of these algorithms shows that using only ATI and soil moisture to
predict the soil stiffness yields an R2 value of 0.381. Adding in the predictors’ additional
information to calculate the ATI enhanced the predictive capability by giving an R2 value of
0.661. Finally, additional information about the soil type being examined adds significant
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enhancement to these algorithms’ predictive ability for the original two predictor sets:
R2 = 0.824 and R2 = 0.755, respectively. The ATI, % water content, and the soil information
yielded the best R2 and lowest RMSE value using KNN, thereby making this the optimal
choice of parameters and model. Using the KNN model, we quantitatively predicted the
soil stiffness reasonably well by using only the ATI after 3 h, % water content, and soil
type information. When looking at similar work, the conclusions are mostly qualitative [9].
Gonzalez and his group stated which remote-controlled car could cross a select few, very
different terrains the fastest without getting stuck.

A significant limitation of this study is the sample size. Its focus was to demonstrate
the applicability of this approach in a controlled lab environment. Another limitation is
that we only examined five soil types. We are in the process of expanding this work to the
field and other soil types and will build the machine-learning model for the field with a
larger database.

It is important to note that this study showed the applicability of the approach in a
controlled laboratory environment. When this approach is performed in the field, multiple
inputs may differ, ranging from the mixing of soils, changes in water content values, and
sensor/scan area resolutions. While one cannot reasonably expect there to be identical
conditions every time a field site is visited, the approach followed in the lab will be applied
in the field.

5. Conclusions

This study showed that the use of ATI with the addition of moisture content and soil
information provided a usable methodology for estimating soil stiffness. A comparison of
different machine-learning algorithms showed that KNN was the best predictive algorithm
for this lab study when using the previously mentioned predictor variables (R2 = 0.824).
This KNN model provided a fairly accurate soil stiffness estimation tool that required
few inputs and allowed for implementation over an image area. Using KNN with albedo,
temperature at 0 and 3 h), ATI (3 h), and % moisture content, but no soil information, gave
only a moderate predictive ability (R2 = 0.66). This should be used only when no soil
information is available as a rough estimation.

Present methodologies of in situ measurements can be both costly and difficult to
obtain to characterize terrain strength. In contrast, the means of predicting soil stiffness
through ATI is a safer, faster means to collect data. The KNN model provided a method
to estimate the stiffness of the five soils provided by the Keweenaw Research Center’s
mobility testing tracks.

By using only remotely sensed data, the thermal images, % water content, and soil
stiffness can be estimated. This means a UAV or satellite could fly over an area and take
three images of interest without someone going there. With relatively inexpensive tools, one
could characterize the terrain strength, and remote sensing is a better means of collection
because one is no longer limited to point location collections; instead, an entire area can be
estimated within the images. Adding additional information about what soil type is being
examined enhances predictions. The limitations would be the resolution of the thermal
camera, the sensor recording the albedo (hyperspectral camera), and the need to wait for a
large enough temperature change to occur. The ability of the proposed approach for other
soil types such as silt, clay, loam, and peat need to be tested.

Landsat 8 and Landsat 9 satellites already have bands available to capture and calcu-
late the ATI of an area. The resolution of these satellites—-30 m for capturing the albedo
(bands 1–5) and 100 m for the thermal bands (bands 10–11)—-would need to be examined
to see if this model would still hold at this resolution. To validate the results, one would
need to know the soil strength for a specified area of 100 m of thermal imagery. If one were
to meet these conditions and establish a working model, a variety of scenarios could be
examined across the world in various conditions and for a variety of soil types using these
satellites. One could even look to using this approach on a smaller scale (higher resolution)
to estimate the strength of an area and then compare the results with the satellite imagery
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to help better validate the results of the lower-resolution sensors. If this is not possible,
ground-control points or specific areas with known soil strength values can be used to train
and build the model with the understanding that some level of uncertainty may be added
because the known soil strength of an area could be smaller than the resolution of sensor.

In future research, we hope to examine soil types beyond the five examined here,
including those that have of organics present. The use of drones and satellites, which have
a larger area coverage and different spatial resolutions is of great interest for seeing how
the model holds up at the various scales and heights. All our current sensors are UAS
mountable and can therefore be taken out into the field for testing at various heights and
resolutions. This also adds more real-world data scenarios and larger sample sizes. The use
of hyperspectral data could add extra information to classify the soil type, instead of using
dummy variables, and improve the prediction accuracy of these models. Lastly, collecting
a much larger sample size could lead to using deep-learning methods that would not only
to check the accuracy of our current models, but also possibly improve our predictive
capabilities, especially when we begin to examine more soil types and conditions.
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