Supplementary Information

N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals

Huang et al.

NRP1_WT NRP1_AE4 NRP1_AE5	MERGLPLLCAVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSEKCEWLIQA MERGLPLLCAVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSEKCEWLIQA MERGLPLLCAVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSEKCEWLIQA	60 60 60
NRP1_WT NRP1_AE4 NRP1_AE5	PDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENENGHFRGKFCGKIAPPPVVSSGPFLF PDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENENGHFRGKFCGKIAPPPVVSSGPFLF PDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENENGHFRGKFCGKIAPPPVVSSGPFLF	120 120 120
NRP1_WT NRP1_AE4	150 IKFVSDYETHGAGFSIRYEIFKRGPECSQNYTTPSGVIKSPGFPEKYPNSLECTYIVFAP IKFVSDYETHGAGFSIRYEIFKR	180 143
NRPI_AES	IREVOLUTINGGESIKISIERKGELSQNIIIFSGVIRSEGEFEKIENSLECTIIVERE ********	190
NRP1_WT NRP1_AE4	KMSEIILEFESFDLEPDSNPPGGMFCRYDRLEIWDGFPDVGPHIGRYCGQKTPGRIRSSS	240 164
NRP1_ΔE5	KMSEIILEFESFDLEPDSNPPGGMFCRYDRLEIWDGFPD	219
NRP1_WT NRP1_∆E4 NRP1_∆E5	261 300 GILSMVFYTDSAIAKEGFSANYSVLQSSVSEDFKCMEALGMESGEIHSDQITASSQYSTN GILSMVFYTDSAIAKEGFSANYSVLQSSVSEDFKCMEALGMESGEIHSDQITASSQYSTN DFKCMEALGMESGEIHSDQITASSQYSTN ********************	300 224 248
NRP1 WT	WSAERSRLNYPENGWTPGEDSYREWIOVDLGLLRFVTAVGTOGAISKETKKKYYVKTYKI	360
NRP1_AE4 NRP1_AE5	WSAERSRLNYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKKKYYVKTYKI WSAERSRLNYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKKKYYVKTYKI ************************************	284 308
NRP1_WT	DVSSNGEDWITIKEGNKPVLFQGNTNPTDVVVAVFPKPLITRFVRIKPATWETGISMRFE	420
NRP1_ Δ E5	DVSSNGEDWIIILEGNREVIEGONIETDVVVAVEFRELIIREVRIEATWEIGISMREE DVSSNGEDWIIIREGNREVIEGONIETDVVVAVEFRELITREVRIKPATWEIGISMREE ***********************************	368
NRP1_WT	VYGCKITDYPCSGMLGMVSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY	480
$NRP1_\Delta E4$ $NRP1_\Delta E5$	VYGCKITDYPCSGMLGMVSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY VYGCKITDYPCSGMLGMVSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY ************************************	404 428
NRP1_WT	INEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSN <mark>N</mark> GSDWKMIMDDSKRKAKSF	540
NRP1_ Δ E4 NRP1_ Δ E5	INEWLQIDLGEEKIVRGIIIQGCKHRENKVFMRKFKIGYSNNGSDWKMIMDDSKRKAKSF INEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSNNGSDWKMIMDDSKRKAKSF ************************************	464 488
NRP1_WT	EGNNNYDTPELRTFPALSTRFIRIYPERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLV	600
$NRP1_{\Delta E4}$ $NRP1_{\Delta E5}$	EGNNNYDTPELRTFPALSTRFIRIYPERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLV EGNNNYDTPELRTFPALSTRFIRIYPERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLV ************************************	524 548
NRP1_WT	${\tt DECDDDQ} {\tt ANCHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEFGWGSHKTF}$	660
NRP1_AE4 NRP1_AE5	DECDDDQANCHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEFGWGSHKTF DECDDDQANCHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEFGWGSHKTF ************************************	584 608
NRP1_WT NRP1 AE4	CHWEHDNHVQLKWSVLTSKTGPIQDHTGDGNFIYSQADENQKGKVARLVSPVVYSQNSAH CHWEHDNHVOLKWSVLTSKTGPIODHTGDGNFIYSOADENOKGKVARLVSPVVYSONSAH	720 644
NRP1_AE5	CHWEHDNHVOLKWSVLTSKTGPIODHTGDGNFIYSQADENOKGKVARLVSPVVYSONSAH	668
NRP1_WT	CMTFWYHMSGSHVGTLRVKLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVI	780
$\frac{NRP1_\Delta E4}{NRP1_\Delta E5}$	CMTFWYHMSGSHVGTLRVKLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVI CMTFWYHMSGSHVGTLRVKLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVI ************************************	704 728
NRP1_WT	FEGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKIDETGSTPGYEGEGEGD	840
NRP1_ Δ E4 NRP1_ Δ E5	FEGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKIDETGSTPGYEGEGEGD FEGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKIDETGSTPGYEGEGEGD	764 788
NRP1_WT	542 K <mark>N</mark> ISRKPGNVLKTLDPILITIIAMSALGVLLGAVCGVVLYCACWHNGMSERNLSALENYN	900
NRP1_∆E4 NRP1_∆E5	KNISRKPGNVLKTLDPILITIIAMSALGVLLGAVCGVVLYCACWHNGMSERNLSALENYN KNISRKPGNVLKTLDPILITIIAMSALGVLLGAVCGVVLYCACWHNGMSERNLSALENYN ***********************************	824 848
NRP1_WT NRP1_AE4 NRP1_AE5	FELVDGVKLKKDKLNTQSTYSEA 923 FELVDGVKLKKDKLNTQSTYSEA 847 FELVDGVKLKKDKLNTQSTYSEA 871	

Supplementary Figure 1. Alignment of NRP1-WT, NRP1- Δ E4 and NRP1- Δ E5 amino acid sequences. The character N highlighted with yellow indicates the putative N-linked glycosylation sites of NRP1.

Supplementary Figure 2. NRP1- Δ E4 and NRP1- Δ E5 are expressed in punctate cytoplasmic structures under basal conditions. (a) RT-PCR analysis of *NRP1*-WT mRNA expression in normal colonic mucosa was performed using the two-fold increased RNA amount than those used in Fig. 1e. (b) Western blot analysis of the indicated CRC cell lines. (c, d) Confocal images of NRP1 with DAPI staining in HCT116 (c) and HT29 (d) cells transfected with NRP1-WT, NRP1- Δ E4 or NRP1- Δ E5 for 24 h and 48 h. Scale bars, 10 µm. (e) Cell lysates were prepared from the primary CRC cell lines (Pt93, Pt130, Pt2237 and LM2237) and analyzed by western blot for the indicated proteins. The lysates of HCT116 cells expressing NRP1-WT, NRP1- Δ E5 and NRP1- Δ E4 were used as positive controls for the western blot analysis. (f) Confocal images of NRP1 with DAPI staining in serum-starved (-FBS) HT29 cells and the cells stimulated with HGF antibody- or control IgG-neutralized FBS for 30 min. Scale bars, 10 µm. (h) Quantification of HGF levels in FBS neutralized with HGF antibody or control IgG using sandwich ELISA. Data are presented as mean ± s.e.m. (n=3 independent experiments). **p* < 0.001 using Student's t-test.

Supplementary Figure 3. NRP1- Δ E4 and NRP1- Δ E5 co-localize with endosomal and recycling markers and exhibit a defective degradation. (a, b) Confocal images of NRP1, transferrin, Rab4, Rab11, lysotracker, cathepsin D and DAPI staining in HT29 cells with expression of the indicated NRP1 isoforms. Scale bars, 10 µm. (c) Quantification of co-localization between lysotracker or cathepsin D and the indicated NRP1 isoforms as shown in (b). (d) Confocal images of NRP1, EEA1, Rab7, transferrin and DAPI staining in HCT116 cells with expression of the indicated NRP1 isoforms. Scale bars, 10 µm. (e) Quantification of co-localization between the indicated NRP1 isoforms and the endosomal markers EEA1, Rab7 or transferrin as shown in (d). (f) Confocal images of NRP1, lysotracker, cathepsin D and DAPI staining in HCT116 cells with expression of the indicated NRP1 isoforms. Scale bars, 10 µm. (g) Quantification of co-localization between lysotracker or cathepsin D and the indicated NRP1 isoforms as shown in (f). (h) Confocal images of NRP1, Rab7 and DAPI staining in the indicated primary CRC cells. Scale bars, 10 µm. (i) Serum-starved HCT116 cells with expression of the indicated NRP1 isoforms were pretreated with 50 µg ml⁻¹ cycloheximide and stimulated with HGF (50 ng ml⁻¹) for the indicated times followed by western blot analysis. (j) The western blots of NRP1 shown in (i) were quantified using Image J software. The level of NRP1 remaining was obtained by normalizing to the β -actin level at each time point. All graphic data are presented as mean \pm s.e.m. (n=3 independent experiments). *p < 0.003 using Student's t-test.

Supplementary Figure 4. Defect in N150- or N261-linked glycosylation is critical for NRP1 internalization and accumulation. (a) Confocal images of NRP1 with DAPI staining in HT29 cells with stable expression of NRP1-WT or the indicated mutants. Scale bars, 10 μ m. (b) Confocal images of NRP1 with DAPI staining in HCT116 cells transfected with NRP1-WT or the indicated mutants for 24 h and 48 h. Scale bars, 10 μ m. (c) HCT116 cells with transient expression of NRP1-WT or the indicated mutants were treated with 50 μ g ml⁻¹ cycloheximide (CHX) for the indicated times followed by western blot analysis. (d) Western blots of NRP1 as shown in (c) were quantified using Image J software. The level of NRP1 remaining was obtained by normalizing to the β -actin level at each time point. Data are presented as mean \pm s.e.m. (n=3 independent experiments). **p* < 0.001 using Student's *t*-test. (e) Confocal images of NRP1 with DAPI staining in the serum-satrved HT29 cells with expression of the indicated NRP1 isoforms, stimulated with VEFG₁₆₅ (50 ng ml⁻¹), HGF (50 ng ml⁻¹) or PBS as control for 30 min. Scale bars, 10 μ m.

Supplementary Figure 5. NRP1- Δ E4 and NRP1- Δ E5 promote CRC cell migration and invasion. (a) HCT116 cells with stable expression of NRP1-WT, NRP1- Δ E4, NRP1- Δ E5 or vector control were assessed for cell growth over 3 days. (b) Migration patterns of individual cells as determined by time-lapse imaging. The migration paths of twenty randomly chosen HCT116 cells with stable expression of NRP1-WT, NRP1- Δ E4, NRP1- Δ E5 or vector control were plotted as an x and y axis migration profile. (c) The net path lengths were quantified for the indicated HCT116 cells from (b). (d) Transwell migration analysis of HCT116 cells with stable expression of NRP1-WT, NRP1- Δ E4, NRP1- Δ E5 or vector control were plotted as an x and y axis migration analysis of HCT116 cells with stable expression of NRP1-WT, NRP1- Δ E4, NRP1- Δ E5 or vector control stimulated HCT116 cells from (b). (d) Transwell migration analysis of HCT116 cells with stable expression of NRP1-WT, NRP1- Δ E4, NRP1- Δ E5 or vector control stimulated with VEGF₁₆₅ (50 ng ml⁻¹), HGF (50 ng ml⁻¹) or PBS control over 6 h of incubation. The results are expressed as the fold change of cell migration in the indicated cells relative to the vector control cells stimulated with PBS control. (e) Confocal images of NRP1 with DAPI staining in the primary Pt93 and LM2377 CRC cells transfected with two different sets of NRP1 siRNA or control siRNA for 48 h. Scale bars, 10 µm. (f, g) Pt93 and LM2377 CRC cells were transfected with two different sets of NRP1 siRNA or control siRNA for 36 h, followed by transwell migration (f) and invasion (g) analyses. The results are expressed as a percentage of migrated or invaded cells found in siCtrl cells. All graphic data are presented as mean ± s.e.m. (n=3 independent experiments). *p < 0.01; **p < 0.04; NS, not significant using Student's *t*-test.

Supplementary Figure 6. N-glycosylation-defective NRP1 regulates Met internalization and stabilization. (a) HT29 cells with stable expression of NRP1-WT, NRP1- Δ E4 or NRP1- Δ E5 were surfacebiotinylated and then the biotinylated proteins were pulled down by streptavidin beads. The total sample before pulldown (total), the supernatant corresponding to the intracellular fraction (unbound) and the surface fractions (bound) were analyzed by western blot using a Met antibody. (b) The percentage of intracellular Met was calculated as a ratio of the total. (c) The indicated primary CRC cells were lysed and immunoprecipitated with NRP1 antibody or IgG as control followed by western blot analysis. (d, e) Confocal images of NRP1, Met and DAPI staining in the indicated primary CRC cells (d) and HT29 cells with stable expression of NRP1-WT or the indicated mutants (e). Scale bars, 10 µm. (f) Confocal images of NRP1, Met and DAPI staining in serum-satrved HT29 cells with expression of the indicated NRP1 isoforms or mutants, stimulated with VEFG₁₆₅ (50 ng ml⁻¹), HGF (50 ng ml⁻¹) or PBS as control for 30 min. Scale bars, 10 µm. (g) HCT116 cells with expression of the indicated NRP1 isoforms or mutants were treated with 50 µg ml⁻¹ cycloheximide (CHX) for the indicated times followed by western blot analysis. (h) Western blots of Met as shown in (g) were quantified using Image J software. The level of Met remaining was obtained by normalizing to the β -actin level at each time point. Data are presented as mean ± s.e.m. (n=3) independent experiments). *p < 0.001 using Student's t-test. (i, j) NRP1- Δ E4- or NRP1- Δ E5-expressing HT29 cells were transfected with NRP1 siRNA or control siRNA for 48 h, followed by western blot analysis (i) or by confocal sections of the cells stained for NRP1 or Met with DAPI (j). Scale bars, 10 µm. (k) NRP1-ΔE4- or NRP1-ΔE5-expressing HCT116 cells with stable expression of NRP1 shRNA were lysed and immunoprecipitated with Met antibody or IgG as control followed by western blot analysis. (I) NRP1-WT-, NRP1-ΔE4- or NRP1-ΔE5-expressing HCT116 cells with stable expression of Met shRNA were treated with 50 µg ml⁻¹ cycloheximide (CHX) for the indicated times followed by western blot analysis. (m) Western blots of NRP1 as shown in (I) were quantified using Image J software. The level of NRP1 remaining was obtained by normalizing to the β -actin level at each time point. Data are presented as mean \pm s.e.m. (n=3 independent experiments). p < 0.001 using Student's *t*-test.

Supplementary Fig. 7. β 1-integrin co-internalizes with N-glycosylation-defective NRP1. (a, b) Confocal images of NRP1, β 1-integrin and DAPI staining in the indicated primary CRC cells (a) and HT29 cells with stable expression of NRP1-WT or the indicated mutants (b). Scale bars, 10 µm. (c) HCT116 cells with expression of the indicated NRP1 isoforms or mutants were treated with 50 µg ml⁻¹ cycloheximide

(CHX) for the indicated times followed by western blot analysis. (d) Western blots of Met as shown in (c) were quantified using Image J software. The level of Met remaining was obtained by normalizing to the β -actin level at each time point. (e) NRP1-WT-, NRP1- Δ E4- or NRP1- Δ E5-expressing HCT116 cells with stable expression of β 1-integrin shRNA were treated with 50 µg ml⁻¹ cycloheximide (CHX) for the indicated times followed by western blot analysis. (f) Western blots of NRP1 as shown in (e) were quantified using Image J software. The level of NRP1 remaining was obtained by normalizing to the β -actin level at each time point. (g) NRP1- Δ E4- or NRP1- Δ E5-expressing HCT116 cells with stable expression of β 1-integrin shRNA were lysed and immunoprecipitated with NRP1 antibody or IgG as control followed by western blot analysis. All data are presented as mean ± s.e.m. (n=3 independent experiments). **p* < 0.001 using Student's *t*-test.

Supplementary Fig. 8. NRP1- Δ E4 and NRP1- Δ E5 increase Rac1 activity to promote CRC cell migration. (a, b) HCT116 cells with stable expression of the indicated NRP1 isoforms or vector control were grown in the regular growth medium containing 10% FBS (a), or serum starved overnight followed by stimulation with HGF (50 ng ml⁻¹) for 30 min (b), and subsequently assessed for the levels of Rac1-GTP and total Rac1. (c, d) NRP1-WT-, NRP1- Δ E4- or NRP1- Δ E5-expressing HCT116 cells with stable expression of two different sets of Rac1 shRNA or control shRNA were assessed by western blot analysis (c), or by transwell migration analysis (d). The results are expressed as the fold change over the migrated cell number found in NRP1-WT cells expressed with shCtrl. Data are presented as mean ± s.e.m. (n=3 independent experiments). **p* < 0.005 using Student's t-test.

Supplementary Fig. 9. Dynasore or silencing clathrin heavy chain (CHC) reduces the cointernalization of β 1-integrin with NRP1- Δ E4 or NRP1- Δ E5. (a) Confocal images of NRP1, β 1-integrin and DAPI staining in HT29 cells with expression of the indicated NRP1 isoforms that were treated with dynasore (80 µM) or DMSO as control for 2 h. Scale bars, 10 µm. (b) Confocal images of NRP1, β 1integrin and DAPI staining in HT29 cells with expression of the indicated NRP1 isoforms that were transfected with two different sets of CHC siRNA or control siRNA. Scale bars, 10 µm.

Supplementary Figure 10. The activity of FAK kinase, but not Met tyrosine kinase, is required for NRP1-AE4- or NRP1-AE5-stimulated cell migration and invasion. (a) HCT116 cells with stable expression of NRP1-WT, NRP1-ΔE4 or NRP1-ΔE5 were treated with 1 µM PHA-665752 or DMSO as control for 6 h, followed by western blot analysis. (b) Confocal images of Met with DAPI staining in serumstarved HCT116 cells that were pretreated with 1 µM PHA-665752 or DMSO as control for 1 h, followed by stimulation with HGF (50 ng ml⁻¹) for 30 min. Scale bars, 10 μm. (c) Confocal images of NRP1, Met, β1integrin and DAPI staining in HCT116 cells with expression of the indicated NRP1 isoforms, treated with 1 μM PHA-665752 for 1 h. Scale bars, 10 μm. (d, e) Transwell migration (d) and invasion (e) analyses of HCT116 cells with expression of the indicated NRP1 isoforms in the presence of DMSO or 1 µM PHA-665752 over 6 h and 30 h of incubation, respectively. The results are expressed as the fold change in cell migration or invasion in the indicated cells relative to the NRP1-WT-expressing cells treated with DMSO. (f-h) HCT116 cells with expression of the indicated NRP1 isoforms were treated with VS-6063 (1 μ M) or DMSO for 6 h, followed by western blot analysis (f), or by transwell migration (g) and invasion (h) analyses. The results are expressed as the inhibition of migration or invasion relative to each of DMSO-treated control cells. (i, j) HCT116 cells with expression of the indicated NRP1 isoforms were transfected with two different sets of p130Cas siRNA or control siRNA for 48 h, followed by western blot analysis (i), or by transwell migration analysis (i). The results are expressed as the inhibition of migration relative to each of siCtrl cells. All graphic data are presented as mean \pm s.e.m. (n=3 independent experiments). *p < 0.01; **p < 0.02 using Student's *t*-test.

Supplementary Figure 11. NRP1- Δ E4 and NRP1- Δ E5 co-localize with exosome markers. Confocal images of NRP1, CD63, CD81, Alix and DAPI staining in HCT116 or HT29 cells with expression of the indicated NRP1 isoforms. Scale bars, 10 µm.

Supplementary raple 1. The use of CRC specimens in Figure	Supplementar	ary Table 1. The	use of CRC sp	becimens in Figure	1e
---	--------------	------------------	---------------	--------------------	----

Specimen	TNM Stage	Pathology	Source
Pt93	T4bN2aM1a	Invasive moderate to poorly differentiated colonic adenocarcinoma	Markey Cancer Center, University of Kentucky
Pt130	T4bN1	Metastatic colonic adenocarcinoma	Markey Cancer Center, University of Kentucky
Pt2377	T3N0M1a	Metastatic colonic adenocarcinoma	Markey Cancer Center, University of Kentucky
LM2377	T3N0M1a	Liver Metastases	Markey Cancer Center, University of Kentucky
NF90	T2N0M0	Villous colonic adenocarcinoma	Nanfang Hospital, Southern Medical University
NF99	T3N0M0	Tubule villous colonic adenocarcinoma	Nanfang Hospital, Southern Medical University
NF103	T3N0M0	Well differentiated colonic adenocarcinoma	Nanfang Hospital, Southern Medical University
NF105	T4N1aM1a	Metastatic moderate to poorly differentiated colonic adenocarcinoma	Nanfang Hospital, Southern Medical University
NF106	T3N2M0	Metastatic moderate to poorly differentiated colonic adenocarcinoma	Nanfang Hospital, Southern Medical University
NF110	T3N0M0	Moderate differentiated colonic adenocarcinoma	Nanfang Hospital, Southern Medical University

	Parameter	Number (%)
Age (yr)	<60	64
	>60	62
Sex	Male	73 (57.9%)
	Female	53 (42.1%)
Tumor location	Colon	76 (60.3%)
	Rectum	50 (39.7%)
Differentiation	Well	27 (21.4%)
	Moderate	79 (62.7%)
	Poor	20 (15.9%)
Histologic type	Adenocarcinoma	107 (84.9%)
	Mucinous carcinoma	19 (15.1%)
Stage	Ι	30 (23.8%)
	II	47 (37.3%)
	III	29 (23.0%)
	IV	20 (15.9%)

Supplementary Table 2. Clinical characteristics of patients (n = 126)

Supplementary Table 3. siRNA and shRNA sequences used for targeting the indicated human genes

Constructs	Target sequences (5'-3')
NRP1 siRNA_1	AGATCGACGTTAGCTCCAA
NRP1 siRNA_2	ATCAGAGTTTCCAACATAT
Clathrin siRNA_1	AATCCAATTCGAAGACCAA
Clathrin siRNA_2	GTATGATGCTGCTAAACTA
FAK siRNA_1	CGGTCGAATGATAAGGTGT
FAK siRNA_2	CCCAGGTTTACTGAACTTA
p130Cas siRNA_1	GGTCGACAGTGGTGTGTAT
p130Cas siRNA_2	GGATGGAGGACTATGACTA
NRP1 shRNA	TGTGGATGACATTAGTATTAA
Met shRNA_1	GTGTGTTGTATGGTCAATAAC
Met shRNA_2	CCTTCAGAAGGTTGCTGAGTA
β1-integrin shRNA_1	GCCCTCCAGATGACATAGAAA
β1-integrin shRNA_2	TAGGTAGCTTTAGGGCAATAT
Rac1 shRNA_1	CGCAAACAGATGTGTTCTTAA
Rac1 shRNA_2	CGTGAAGAAGAGGAAGAGAAA
FAK shRNA	CCCAGGAGAGAATGAAGCAAA

Supplementary Table 4. Antibodies used for immunofluorescence (IF), western blot (WB) and immunoprecipitation (IP) analyses

Antibody	Usage/Dilution	Species	Provider	Catalog #
Anti-NRP1	IF: 1:100 IP: 1:50	Goat polyclonal	Santa Cruz Biotechnology	sc-7239
Anti-NRP1	IF: 1:100	Sheep polyclonal	R&D Systems	AF3870
Anti-NRP1	IP: 1:50	Mouse monoclonal	Santa Cruz Biotechnology	sc-5307
Anti-NRP1	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	3725
Anti-Met	IF: 1:200	Mouse monoclonal	Cell Signaling Technology	8741
Anti-Met	IF: 1:200 IP: 1:50	Rabbit monoclonal	Cell Signaling Technology	8198
Anti-p-Met (Tyr1234/1235)	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	3077
Anti-p-Met (Tyr1349)	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	3133
Anti-EGFR	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	4267
Anti-VEGFR2	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	2479
Anti-AKT	WB: 1:1000	Rabbit polyclonal	Cell Signaling Technology	9272
Anti-p-Akt (Ser473)	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	4060
Anti-ERK1/2	WB: 1:1000	Rabbit polyclonal	Cell Signaling Technology	9102
Anti-p-ERK1/2 (Thr202/Tyr204)	WB: 1:1000	Rabbit polyclonal	Cell Signaling Technology	9101
Anti-FAK	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	13009
Anti-p-FAK (Tyr397)	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	8556
Anti-p-FAK (Tyr397)	IF: 1:100	Rabbit polyclonal	ThermoFisher	44-624G
Anti-p130Cas	WB: 1:1000	Mouse monoclonal	Santa Cruz Biotechnology	sc-20029
Anti-p-p130Cas (Tyr249)	WB: 1:1000	Rabbit polyclonal	Cell Signaling Technology	4014
Anti-Clathrin heavy chain	WB: 1:1000	Rabbit monoclonal	Cell Signaling Technology	4796
Anti-Active β1- integrin	IF: 1:100 WB: 1:1000	Mouse monoclonal	Abcam	ab30394
Anti-α6-integrin	IF: 1:100	Rat monoclonal	Santa Cruz Biotechnology	sc-19622
Anti-β-actin	WB: 1:10,000	Mouse monoclonal	Sigma	A5441
Anti-EEA1	IF: 1:100	Rabbit monoclonal	Cell Signaling Technology	3288
Anti-Rab7	IF: 1:100	Rabbit monoclonal	Cell Signaling Technology	9367
Anti-Rab7	IF: 1:100	Mouse monoclonal	Cell Signaling Technology	95746
Anti-Rab4	IF: 1:50	Rabbit polyclonal	Bioss	bs-6157R
Anti-Rab11	IF: 1:100	Rabbit monoclonal	Cell Signaling Technology	5589
Anti-Cathepsin D	IF: 1:100	Mouse monoclonal	Santa Cruz Biotechnology	sc-377124
Anti-GIPC1	WB: 1:1000	Mouse monoclonal	Santa Cruz Biotechnology	sc-271822
Anti-Rac1	WB: 1:1000	Mouse monoclonal	BD Biosciences	610651
Anti-CD63	IF: 1:50	Mouse monoclonal	Santa Cruz Biotechnology	sc-5275
Anti-CD81	IF: 1:50	Mouse monoclonal	Santa Cruz Biotechnology	sc-166029
Anti-Alix	IF: 1:50	Mouse monoclonal	Santa Cruz Biotechnology	sc-53540

Anti-goat IgG with	IE: 1:500	Donkov polyelopol	Jackson	705-545-
Alexa Fluor 488	exa Fluor 488		ImmunoResearch	003
Anti-goat IgG with	15. 1.500	Donkov polyolopol	Jackson	705-025-
TRITC	IF. 1.500	Donkey polycional	ImmunoResearch	147
Anti-sheep IgG with	15. 1.500	Donkov polyolopol	Jackson	713-585-
Alexa Fluor 594	IF. 1.500	Durikey polycional	ImmunoResearch	147
Anti-rat IgG with	15. 1.500	Pabbit palvalanal	Jackson	312-545-
Alexa Fluor 488	IF. 1.500		ImmunoResearch	045
Anti-rabbit IgG with	IE: 1:500	Coat polyclopal	Jackson	111-025-
TRITC	IF. 1.300	Gual polycional	ImmunoResearch	144
Anti-mouse IgG with	IE: 1:500	Goat polyclopal	Jackson	115-025-
TRITC	11.1.300	Gual polycional	ImmunoResearch	166
Anti-rabbit IgG with	IE: 1:500	Goat polyclopal	Jackson	111-175-
Cyanine Cy5	IF. 1.300	Gual polycional	ImmunoResearch	144
Anti-mouse IgG with		Gaat polyclopal	Jackson	115-175-
Cyanine Cy5	IF. 1.300	Guar polycional	ImmunoResearch	166