Molecular Authentication of the Eospalax of Myospalax by Analyzing Cytochrome B Sequences

Hongshan Yang
Chinese Academy of Agricultural Sciences, China
Genzhu Chang
Chinese Academy of Agricultural Sciences, China
Xiaoqin He
Gansu Forestry Planning \& Designing Academy, China

Follow this and additional works at: https://uknowledge.uky.edu/igc
Part of the Plant Sciences Commons, and the Soil Science Commons
This document is available at https://uknowledge.uky.edu/igc/21/16-1/32
The XXI International Grassland Congress / VIII International Rangeland Congress took place in Hohhot, China from June 29 through July 5, 2008.
Proceedings edited by Organizing Committee of 2008 IGC/IRC Conference
Published by Guangdong People's Publishing House

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Molecular authentication of the Eospalax of Myospalax by analyzing cytochrome b sequences

Hong-shan Yang ${ }^{1}$, Gen-zhu Chang ${ }^{1}$,Xiao-qin He^{2}
1.Lanzhou Institute of Animal \& Veterinary Pharmaceutics Sciences ,CA AS,Lanzhou 730050
2.Gansu Forestry Planning \& Desigtning Academy ,Lanzhou 730020 E-mail :yanghsh123@126.com

Key words : subgenus Eospalax ,cytochrome b gene genetic diversity ,conversion and transversion, phylogenetic
Introduction Nucleotide Complete sequences of mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) were used to determine the phylogenetic relationships among 21 samples of subgenus Eospalax of Myospalax genus from 11 different places of Gansu province, other sequences were acquired from GenBank. Four species from Gan su included Qin ling zokor (Eospalax rufescens) ,Gansu zokor (M. cansu) ,Bailey's zokor (M.baileyi) , and Smith's zokor (M. smithi) . The phylogenetic tree was constructed from the 43 near complete cyt b sequences. The sequences and UPGMA tree are integrity and credibility in our study, then he origin and evolution of subgenus Eospalax from molecular level were illustrated firstly in Gansu province .

Materials and methods 21 liver samples of five subgenus Eospalax were collected in our ex periment from eleven places in Gansu province .(1) Total genomic DNA was extracted from the liver samples, treated using a procedure modified from Hagelberg and Cle gg (1991). (2) PCR and Sequence Analysis : primer L7: 5-ACCAATGACATGAA-AAATCATCGTT-3’, H6:5TCTCCATTTCTGGTTTACA AGAC-3' for complete mitochondrial cyt b gene .

Results (1) Sequence Analysis :Twenty one complete sequences of cytb for 5 species of zokors were obtained, the alignment of cytb sequences is 1143 nucleotides long, nucleotide insertion and deletion was not found. Nine groups of the 43 sequences were found more than 386 polymorphic sites. The content of A ,G ,C ,T is this the highest concentration of T base pairs (31.2\%), followed by A (30 8%), C third (25.8%), the lowest content of G (12.4\%).There are different content of A, G, C, T in the third codon position, contents in the third position changes at the rate of T (19.2\% to 30.7%), C (24.3\% to 44.2%), A (41.4% to 44 . $5 \%)$ and G (0.8\% $\sim 3.6 \%)$, significantly higher than that position 1 and 2.80% Conversion and transversion occurred in the third codon position. The levels of homoplasy measured for C-T , T-C substitutions are the highest in the third position, but the lowest in the first position. (2) Phylogenetic Reconstruction : A phylogenetic tree constructed from the 43 near-complete cytb sequences of 5 five species in the subgenus Eospalax is shown in Figure 1 . Different zokors and areas, based to the three indices of geographical position, heredity and evolution, difference of species, form different short branches, and each of branches may include different species .

Conclusions The results indicated that (1) the Grassland zokor and Northeast zokor are the old ancient species in the Myospalax genus, the Chinese zokor is the secondly and the others are in one evolution branch.(2) There are two big evolution branch in the Subgenus Eospalax from Gansu, one is Bailey's zokor branch and the other is the big branch that composed with Smith's zokor, Gansu zokor and Qin ling zokor, in other words three species are the similar ancestors .(3) In the Bailey's zokor branch, the Bailey's zokor distributed in the deserted zone of Hexi Corridor irst diverged from the others, and distributed in the southeastern of Gansu aggregated in one branche.

