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Abstract
Computational methods have provided pharmaceutical scientists and engineers a means to go
beyond what's possible with experimental testing alone. Providing a means to study active
pharmaceutical ingredients (API), excipients, and drug interactions at or near-atomic levels. This
paper provides a review of this and other innovative computational methods used for solving
pharmaceutical problems throughout the drug development process. Part one of two this paper
will emphasize the role of computational methods and game theory in solving pharmaceutical
challenges.

Keyword: computational pharmaceuticals, game theory, artificial intelligence, drug development

I. Introduction
The drug development process (DDP) is both lengthy and expensive, consisting of five

key stages: drug discovery and development, preclinical, clinical, Federal Food and Drug
Administration (FDA) review, and, lastly, post-marketing surveillance (see Figure 1). Stage
1-drug discovery and development consists of efforts in identifying a key disease target such that
the design of, or repurposing of, a compound can be developed to stop or reverse the effects of a
disease. Once a lead compound is identified, development occurs such that preclinical trials may
be conducted. During the development stage, information on the lead compound is gathered,
such as absorption, distribution, metabolizing, excreting, and toxicity data, among other
information. The preclinical stage moves the compound into in-vivo and in-vitro testing. The
studies conducted within this stage, though not very large, provide critical information that
details the compounds dosing and toxicity levels before moving to the next stage. Preclinical
studies aim to answer basic drug safety questions but neglect gathering information on how the
drug interacts with the human body. This information is gathered in clinical trials.

Clinical trials are the third and arguably most critical stage of the DDP. The clinical stage
consists of 3 key phases starting with phase 1. Phase 1 consists of approximately 20-100 human
subjects with the disease or conditions the active pharmaceutical ingredient (API) is designed to
address. The purpose of this stage is to screen for safety and dosage. Phase 1 requires several
months and functions as a gateway to phase 2 with a passage rate of approximately 70% of drugs
in phase 1 entering phase 2. (FDA, 2018a).  Once a drug candidate reaches phase 2, the number
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Figure 1. Graphical summary of the drug development process. Diagram has been modified and expanded from
(Marsac, 2019). Where API stands for active pharmaceutical ingredient and FFP is fit-for-purpose. More on the FFP
approach to early drug formulations can be found in (Qiu et al., 2017).

of human subjects participating in the study goes up to several hundred, all of whom are
diagnosed with the disease or condition the API is designed to treat. Within this phase, efficacy
and side effects are screened. This process can last for several months up to two years. About
33% of drug candidates that enter this stage move into to phase 3. Phase 3 extends the study to at
least 300 human subjects but can reach 3,000 (FDA, 2018a). All subjects studied in this phase
also have the disease or condition the API is designed to address. This phase is one of the
longest-lasting, between 1-4 years. The purpose of this phase is to further screen efficacy and
adverse events. Approximately 25% of drug candidates move on to phase 4, in which several
thousand human subjects are screened (FDA, 2018b). This phase provides a final gateway to
approval through screening safety and efficacy. Lastly, the drug candidate must be approved
through regulatory agencies.

Once a drug candidate has sufficient evidence of safety and effectiveness for its intended
use (provided by the preclinical and clinical phase results), the drug developers may file a new
drug application (NDA). Filing the NDA signals the intent to market a drug and should be
submitted to the FDA for approval in the United States.

The application should include all preclinical data, clinical data, and information
concerning product labeling, directions for use, patent information, drug abuse data, and more.
After review, if the drug candidate is considered safe, this stage of the DDP will refine drug
labeling before the product launch (FDA, 2018b). Once a drug product is launched, stage 5
provides product safety surveillance for the drug’s life cycle. This stage includes inspections of
manufacturing sites, oversight of drug advertisements, adverse event recording, and more
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(Campbell et al., 2020b; FDA, 2018c). Indeed, the DDP is a streamlined approach to drug
development. However, the process has faced criticism.

Despite having general improvement and success over time, the DDP has often been
criticized as a risky, slow, and expensive process (Djulbegovic et al., 2014; Kaitin, 2010; Kaitin
and Dimasi, 2000; Mattina et al., 2017). Risky because the DDP involves exposing hundreds to
thousands of human subjects to a drug candidate estimated to have about a 1 in 5 to 1 in 10
chance of being deemed safe to market (MIT, 2018; Seaton, 2011). In addition, the process is
financially risky for the drug developer with estimates of the clinical-stage alone, costing
upwards of $19 million (April, 2018), and the entire DDP estimated between $2-3 billion
(DiMasi et al., 2016, 2003). Clearly, there is a need to cut costs. However, cutting costs within
the DDP is challenging due to rigorous guidelines and standards that must be met. Despite the
difficulty of changing the process, computational advances have streamlined decision-making
(Sale, 2001).

Computational methods are now widely used throughout the DDP to yield
better-informed decisions. Indeed, such methods have the potential of saving millions within the
DDP (Kumar et al., 2006). For example, pharmacokinetic (PK) modeling can save resources and
expedite the DDP by reliably predicting in-vivo Absorption, Distribution, Metabolism, and
Excretion (ADME) properties of a drug (Gallo, 2010). PK and pharmacodynamic (PD) modeling
are well established in the realm of pharmaceutical development and, for this reason, will not be
mentioned further in this paper. For interested readers, the authors suggest (Andes and Craig,
2002; Barber and Bourne, 1971; De La Torre et al., 2000; Javaid et al., 1983; Meredith, 2003;
Urso et al., 2002). Instead, this paper will focus on emerging computational strategies for
problem-solving in the pharmaceutical industry.

This paper will first review simulations, and emulations as they are used in the DDP.
Topics such as molecular modeling will be discussed including methods such as the Grand
Canonical Monte Carlo and Grand Canonical Alchemical Perturbation. Artificial intelligence
(AI) techniques will also be discussed.

II. Simulations, Emulations and Predictive Modeling throughout the Drug
Development Process

MM and similar computational chemistry models have become deeply woven into the
drug discovery process. Applications in drug discovery range from predicting the effect of
ligand-mediated water displacement using the Grand Canonical Monte Carlo (Bodnarchuk et al.,
2020) to modeling molecular mechanics with Poisson– Boltzmann Surface Area (MM/PBSA).
Further MM is often used for identifying both potential ligands and their binding site(s) on drug
targets (Borhani and Shaw, 2012). Promising examples of this type of work can be found in
(Borhani and Shaw, 2012; Wang et al., 2001; Wlodawer, 2002). However, MM still needs further
development. For example, despite high throughput and industrial attention, MM/PBSA,
accuracies are still low. Typical correlations between predicted and experimental binding free
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energy values fall between R squared values of 0.52 to 0.69. (Borhani and Shaw, 2012; Brown
and Muchmore, 2009). Though it should be noted variants of MM/PBSA have been shown to
improve these correlations slightly they are still low (Brown and Muchmore, 2009). Expanding
on this -free energy calculations (like those used in MM/PBSA) can be categorized as alchemical
free energy and conformational free energy calculations (Meng et al., 2011). Alchemical free
energy methods such as free energy perturbation, and thermodynamic integration are considered
some of the most promising methods for improving overall model accuracy (Brown and
Muchmore, 2009; Michel and Essex, 2010; Woo and Roux, 2005). One advantage with
alchemical free energy methods is their ability to account for solute-solvent interactions while
allowing for changes in environmental conditions such as pH and temperature (Gapsys et al.,
2016; Kilburg and Gallicchio, 2018). Indeed, the Grand Canonical Alchemical Perturbation is
now used alongside the Grand Canonical Monte Carlo as it is well suited for modeling occluded
binding sites where solvent exchange with bulk is important (Bodnarchuk et al., 2020; Bruce
Macdonald et al., 2018). Additionally, alchemical free energy methods have even outperformed
Rosetta protocols in capturing trends in the ionizing mutations of the bacterial protein, Barnase
(Gapsys et al., 2016). Suggesting that despite some drawbacks, MM will be a key tool for
studying, designing, and developing new drug candidates moving forward.

Over the last several decades, biologics have emerged as the next generation of therapies
providing blockbuster treatments such as Humira and Insulin (Eichman, 2018; Valeur et al.,
2019). Biologics, sometimes referred to as biopharmaceuticals, consist of bioengineered
macromolecular products such as proteins- and nucleic acid-based drugs (Ronald, 2008). This
trend is followed alongside significant efforts in computational modeling of macromolecules for
drug design, such as the effort in developing anti-HIV drugs conducted by Jorgensen's group
(Jorgensen, 2016; Smith et al., 2006). The progress made within the past few years has enabled
the prediction and design of macromolecular structures at near-atomic accuracy (Das and Baker,
2008; Kuhlman et al., 2003). Indeed, such efforts have allowed for both computational chemistry
and biology software programs to emerge. One of the most notable of these programs being the
Rosetta software suite first developed by Baker's group (Das and Baker, 2008; Editors, 2020).
The Rosetta software aids researchers in understanding macromolecular interactions such as
protein interaction with drug compounds (Baynham et al., 2018). Further, Rosetta's de novo
method has been used to inform the development of vaccines (Correia et al., 2014; He and Zhu,
2015). Rosetta also provides other ways to aid drug discovery by allowing calculations of energy
functions and searching conformations. For more on Rosetta see (Alford et al., 2017; Das and
Baker, 2008; Editors, 2020; Park et al., 2016). Another notable computational method applied to
drug discovery and design is AI.

The late Dr. Patrick Winston defined AI as the study of the computations that make it
possible to perceive, reason, and act  (Winston, 1992). In essence, AI is attempting to make
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Figure 2: Graphical summary of the historical progress of artificial intelligence in drug discovery as a function of
increasing data size and processor improvement. Consists of information from (Zhu, 2020).

machines mimic cognitive functions, including decision-making. The subset of AI most relevant
to drug discovery, and arguably the DDP as a whole, is machine learning (ML). ML is a
technique that utilizes statistical methods with the ability to learn from past data sets to detect
patterns or regularities (El Naqa and Murphy, 2015). When the assumption that the near future
will not be too different from the close past, holds, then this technique can make accurate
predictions about the future. Making it a good fit for modeling drug compounds' physical and
biological properties (Brown et al., 2020; Cherkasov et al., 2014). A further subfield of ML is
deep learning (DL), which has seen a resurgence recently due to advances in big data and
computing capabilities to support the method (see Figure 2 adapted from (Zhu, 2020)).

DL utilizes artificial neural networks with representation learning that adapts and learns
from a large training set of data to fuel its predictive power (Lecun et al., 2015) . Since DL’s
resurgence, it has been used in multiple drug discovery works, with one of the most notable
being Méndez-Lucio’s de novo generative model that can automatically design molecules so
long as the gene expression signature is provided (Méndez-lucio et al., 2020) . On the other hand,
AI techniques are also helping repurpose drugs.
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Figure 3. Graphical summary of artificial intelligence (AI) and its subfields: machine learning and deep learning, in
drug development. Consists of information from (Lodder and Tiitto, 2017; Mak and Pichika, 2019).

Zidovudine, Atomoxetine, Rituximab, and Rituximab are just a few of many drug compounds
that have been successfully repurposed (Pushpakom et al., 2018). In essence, drug repurposing is
an industry movement to develop marketed drugs for other diseases; they were not originally
marketed to treat. It is an approach that aims to lower risks (e.g., unexpected adverse events) and
development costs associated with the DDP (Brinkman et al., 2020; Pushpakom et al., 2018). AI
has proved helpful in drug repurposing, allowing for the screening of thousands of drugs to treat
a target disease in a short amount of time. For this reason, it was employed to identify existing
drugs for the treatment of COVID-19 (Gordon et al., 2020; Ke et al., 2020; Olena, 2020). For
more on AI’s role in drug discovery, repurposing, and design, the authors suggest the following
articles (Aliper et al., 2016; Brown et al., 2020; Hessler and Baringhaus, 2018; Mak and Pichika,
2019; Michie, 1968; Pushpakom et al., 2018; Yang et al., 2019; Zhavoronkov et al., 2020; Zhu,
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2020). Further, AI’s utility in the DDP extends beyond the drug discovery stage (J. Chen et al.,
2018) and this will be discussed in the next section.

Pre-clinical
A lead compound is moved into in-vivo and in-vitro testing during the preclinical stage to

begin investigating the compound's safety. Further characterizing of the compound’s
physicochemical properties, which is often referred to as pre-formulation, takes place. The
pre-formulation stage is used to inform the formulation process throughout development.
Formulation is critical as functional excipients have been shown to stabilize otherwise non-stable
compounds and provide adequate bioavailability to otherwise non-orally bioavailable
compounds (Arce et al., 2020; Liechty, 2010; Williams et al., 2013). Making pre-formulation
vital to the drug candidate’s potential success. Like other stages, AI techniques have begun
informing the pre-formulation process. For example, Ebube's artificial neural network (ANN) for
the characterization of physicochemical properties of amorphous polymers. In this study the
ANN was trained on experimental data of polymer properties, including water-uptake profiles,
glass transition temperatures, and viscosity values. The software was then tested and found to
have a low percent error when making property value predictions on different amorphous
polymers and their physical blends (Ebube et al., 2000). Other techniques, such as population
data-driven models, have been developed to inform early-stage excipient choice. Campbell and
Lodder's population data-driven model mines databases for intake and shipping amounts on
cyclodextrin (BCD) as a food additive. By utilizing this data, predictions of daily exposure to the
population are made such that formulation amounts may be kept below that level. Allowing
formulators to avoid adding significantly to BCD exposure of human subjects. Thereby,
obviating the need for extensive preclinical formulation and toxicology studies- speeding a lead
compound to the clinic and cutting development costs (Campbell et al., 2020b; Lodder, 2017).

Clinical

The Clinic

The clinical stage of the DDP consists of multiple phases and subphases. Starting with
phase 1, a small subsample of the population is exposed to the candidate compound. Involving
potential health risks and misconceptions for the patients while providing high financial risk for
the sponsoring company (April, 2018; Kaitin, 2010; Pentz et al., 2012). For these reasons, care
must be taken in the planning and development of phase 1 studies. The studies must provide
accurate and rapid information, such as maximum tolerated dose (MTD). Phase 1 designs can be
categorized into two main groups based on the algorithms used: rule-based designs (such as the
commonly used 3 + 3 design) and model-based designs (e.g., the continual reassessment method
(CRM)). These algorithms, at their core, use statistics to design trails that minimize the number
of patients receiving sub-therapeutic or toxic doses and maximize the number of patients treated
at therapeutic dosing range (Lin and Shih, 2001; Wong et al., 2016). Although model-based
designs such as CRM have proven to be more accurate and efficient when optimizing for MTD,
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they cannot compare to the practicality and simplicity of rule-based algorithms. For this reason,
the rule-based 3+3 design has been used in at least 80% of phase 1 trials (Z. Chen et al., 2018).
With extensive use of the 3+3 design, researchers have developed tools to facilitate its use, such
as Chen’s interactive calculator for operating characteristics of phase 1. Here Chen and
colleagues developed a stand-alone interactive software for convenient calculations of these
critical operating characteristics. Using this software allows users to avoid the complex formulas
and need for extensive statistical knowledge- making the 3+3 design even easier to use (Z. Chen
et al., 2018). Variants of the 3+3 design have been developed for more complex investigations,
such as the 3+3+3 design proposed by Braun and Alonzo to extend the concepts of 3+3 to
two-drug combination therapies (Braun and Alonzo, 2011). Similar design models have been
developed for phases 2 and 3. Typically these models aim to reduce sample size while still
gathering the necessary information (Khan et al., 2012). AI is also beginning to emerge as a
technique to make clinical trial designs more efficient (Harrer et al., 2019). MIT researchers have
described novel and non-trivial reward functions for self-learning reinforcement learning (RL)
algorithms for dose de-escalation studies during clinical trials to alleviate chemotherapy toxicity
(Shah, 2020; Yauney and Shah, 2018). For more on this, the authors recommend the following
articles (Ho, 2020; Peck et al., 2020; Shah, 2020).

Drug Processing, Manufacturing, and Storage

During the DDP's clinical stage, the drug will undergo stringent development "behind the
scenes" to ensure the drug will be practical and safe to market. This consists of developments
regarding drug processability, scale-up, formulation, and storage stability. Information relating to
the drug's stability over time, how the drug will be stored, and how it will be formulated are
critical. Without optimizing each of these elements, the compound can be rendered useless and
fail to gain FDA approval. Computational techniques based on fundamental engineering
principles such as thermodynamics and fluid mechanics are often used throughout these
developments. The knowledge gained through these techniques directly feeds information that
influences decision-making on scale-up and machine parameters. One commonly employed
technique is computational fluid dynamic (CFD) modeling, which is often used for the
optimization and scale-up of unit operations such as fluidized beds, pan coaters, hot melt
extruders, and spray-dryers (Hyvärinen et al., 2020; Ketterhagen et al., 2019; Poozesh and
Bilgili, 2019; Sarkar et al., 2019). Combining CFD with other numerical modeling has allowed
for a more holistic investigation of processing and manufacturing than could be done with
experimental methods alone (Pandey et al., 2017). For instance, spray-drying is complex in terms
of machine parameter interactions, making it difficult to experimentally isolate any one variable.
However, utilizing CFD and numerical methods has given insight into droplet atomization,
droplet drying kinetics, and the droplet formation process(Mezhericher et al., 2009; Poozesh et
al., 2020, 2018). Such information aids in developing a successful manufacturing process and the
scale-up of said process. These aspects are critical to the DDP as it would be devastating to a
candidate compound that is deemed safe and efficacious, but unable to be produced on a mass
scale such that patients may benefit. Furthermore, advances in CFD occur at a rapid pace, and a
notable method that is beginning to emerge is the use of CFD emulators.
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Emulators are a statistical model of a simulated model estimated from the simulation's
observed input-output (Grow and Hilton, 2018). In essence, once established, emulators can
replace the simulation, which can dramatically cut down the computational cost with the
potential of simplifying the modeling. Aspects that would be useful in CFD simulations of
pharmaceutical unit operations as these models can become extremely complex, computationally
costly, and time-consuming to run (Moonen and Allegrini, 2015). Although not prevalent in
pharmaceutical literature when writing this paper, the authors suspect a growing interest to occur
over the next several decades as other industries such as environmental engineering further
utilize and advance the technique (Albert, 2020).

Computational methods useful for informing decisions in formulation and stability will
generally be models of solid-state materials or solid-liquid interactions. The modeling of
polymer-solvent diffusion with Monte-Carlo simulations is one example (Gartner and
Jayaraman, 2019). Such a simulation is critical to formulation and stability as even a 1% water
content has shown to induce phase separation in amorphous solid dispersions, thereby decreasing
the stability of the drug formulation as a whole (Mugheirbi et al., 2017). Nevertheless, Gartner
and Jayarman's simulation, alongside similar simulations, could decrease the time and costs
currently being used on studying environmental effects on drug formulations. Another example
is Schwartz's optimization of formulation via computer analysis (Schwartz et al., 1973). Other
methods of solid-state modeling include ML techniques and for a review of these topics see
(Schmidt et al., 2019).

FDA Review and Post-marketing Surveillance

FDA's new drug application (NDA) review process consists of 6 steps. I) First, the drug
sponsor and FDA will host a review meeting before the NDA is filed. Assuming all goes well
within this meeting II), the drug sponsor will then be responsible for formally asking the FDA to
approve their drug by electronically submitting a completed NDA. The NDA will include all
animal and human data, the analyses of the data, data regarding the drug's behavior in the body,
and how it is manufactured, which includes formulation. III) Upon submitting the NDA, the
FDA has a 60-day window to decide whether the application should be filed for review. IV)
Assuming the NDA is filed, the review process will then take place. Evaluation of the drug's
safety and effectiveness will be of top concern. If declared safe and effective, the FDA will then
move into V) developing the drug labeling with the drug sponsor before VI) inspecting the
manufacturing site where the drug product will be produced. Although humans stay at the heart
of decision-making within this stage, computers are still utilized throughout the process for data
transfer and communication. Computers play a more central role in post-market surveillance. For
example, FDA's computerized MedWatch system allows for easy reporting and storing of
adverse event data. Internal utilization of computer power has emerged within the FDA, such as
the FDA's site selection model used to prioritize on-site inspections. An outcome of the
Pharmaceutical Quality for the 21st Century — A Risk-Based Approach initiative, the model
ranks manufacturing sites by a numerical score (Campbell and Lodder, 2021; CDER, 2018). The
score reflects the manufacturing site's probability of failing cGMP. The model works through
analyzing top-level components while considering the possible risk factors to produce the
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Figure 4: Representative of FDA’s site-selection model hierarchy. Conceptually the tool works by deconstructing
the manufacturing site into three components: process, products and facility. These components can be thought to
summarize the various risk factors of the site. These risk factors are then weighted and mathematically combined to
output a site risk-score in which the manufacturing site is ranked for inspection.

manufacturer's score (see Figure 4). For more details on the FDA's site selection tool, see
(Campbell and Lodder, 2021; FDA, 2004).

Next, we will begin our discussion of gaming as a novel tool to solve pharmaceutical
problems. The following several sections are intended to provide the reader with fundamental
knowledge of game theory and gaming in a scientific context. For those already familiar with
these concepts, these sections may be skipped over. The sections following these introductions
will discuss gaming as a tool in which it relates to the field of pharmaceuticals and the DDP, such
as its role in molecular problem-solving.

III. Basic Game Theory

This section begins by describing game theory and its methodologies in a traditional,
behavioral, and algorithmic light before moving into essential elements of games and standard
games.
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Game Theory: Traditional, Behavioral and Algorithmic
The collective action problem, or sometimes referred to as the social dilemma, is

described as a situation in which individuals would gain more by cooperating; however, they
often fail to cooperate due to conflicting interests (Liebrand, 1983). The social dilemma concept
is fundamental to game theory as it can be used as a model for many game interactions; such is
the case for the famous Prisoner's dilemma game (Liebrand, 1983). Game theory is especially
equipped to find optimal strategies for such dilemmas (Anderson et al., 2016). As known today,
game theory was established by John Von Neumann and Oskar Morgenstern in their publication
Theory of Games and Economic Behavior. In this text, Neumann and Morgenstern showed that
economic and social questions could be described in games of strategy (Anderson et al., 2016).
Since then, games of strategy have been used to bring quantitative insights into war and
economic decision-making. Neumann and Morgenstern's methods also became the standard in
applying game theory.

Game theory methodology begins by establishing a game description. Then the goal is to
identify stability in the game, with the standard approach being to assume the agents playing will
adapt their decision-making to conform to a Nash equilibrium. Nash equilibria is a proposed
solution to non-cooperative games in which, given one player's strategies, the other player has
nothing to gain by changing their own. Nash equilibria and other refined solutions to games have
been extensively studied and, therefore, will not be further defined in this paper; however, the
interested readers are pointed to the following sources for further information (Daskalakis et al.,
2009; Munro, 1992; Nash, 1950; Sethi, 2008). The last step involved in game theory
methodology is to translate the game's solution into practical terms.

Today, game theory is used in a wide range of industries outside of warfare and
economics, including law and philosophy (Anderson et al., 2016). Mass amounts of work have
shown that game theory can accurately predict behavior in many situations. Despite this, there
are still situations in which traditional game theory fails to accurately capture human behavior
(Goeree and Holt, 2001). For example, the Traveler's Dilemma is a game that experimentally
converges or diverges Nash equilibrium depending on the bonus/malus parameters used (Capra
et al., 1999). For this reason, subfields of game theory have emerged, such as behavioral game
theory (BGT), which has used in neuroscience problem-solving (Camerer, 2009; Wright and
Leyton-Brown, 2012). BGT is distinct compared to traditional game theory as it does not seek to
pinpoint a correct strategy or action by mathematical models beforehand. Instead, BGT is driven
by empirical data (e.g., experiments and observations) to develop a model. That is, BGT is
fundamentally based on the concepts of traditional game theory (TGT), but methodology differs.
In BGT, the methodology starts with a game or naturally occurring situation. Once a game is
identified, it should be classified into a standard game such that TGT can provide predictions
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based on one or two fundamental game theory principles. Experimentation is then conducted,
and if behavior differs from the predictions, formal game theory is extended to incorporate the
proposed explanation for the inconsistency (Camerer, 1997). There are four prominent models
used in BGT; Quantal Response Equilibrium, Level- k, Poisson–Cognitive Hierarchy, and
Quantal Level-k (Wright and Leyton-Brown, 2010). Although out of the scope of this paper,
formal definitions of each model can be found elsewhere (McKelvey and Palfrey, 1995; Wright
and Leyton-Brown, 2012). Another important subfield of game theory is algorithmic game
theory or AGT.

AGT utilizes mechanism designs that ask how one can design systems such that agents'
selfish behavior results in desired community goals (Mavronicolas et al., 2007). Mechanism
designs are extended to algorithms in AGT and termed algorithmic mechanism designs (AMD).
AMD considers computational tractability to concepts of mechanism design and focuses on
optimization problems of complex networks such as the Internet (Mavronicolas et al., 2007). The
Internet and similar complex networks are often made up of intelligent agents or software entities
that carry out some set of operations on behalf of a user or another program with some autonomy
level. These agents must collaborate in actions in which they are involved; however, complex
networks breed selfish natures, so the need for game-theoretical strategies emerges. Typically,
non-cooperative games (see section Basic Elements and Types of Games) are used to provide
solutions and insights into problems such as congestion, security, and routing. AGT has also
been extended into scientific fields such as computational biology. For instance, Lamiable
compared a novel game theory-based algorithm to a more traditional global optimization
approach to predict conformations of large RNA molecules (Lamiable et al., 2013). By taking
advantage of RNA’s hierarchical structuring, with a secondary structure-forming first and a
tertiary structure following the researchers were able to decompose molecules into helices and
junctions- located between said helices. From here, an initial secondary structure is formed that
lacks any tertiary structuring. This initial confirmation represents a shaping in which nodes are
locally stabilized but neglects the possibility of more long-distance interactions. To implement
tertiary structuring and hence the possibility for long-range interactions the researchers used a
game theory-based algorithm that took a local egoistical approach. The algorithm allowed each
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Figure 5: Generic two-player simultaneous, game matrix with payoffs R, T, P, and S. Where the subscripts indicate
players 1 or 2, respectively. The payoff is an ordinal utility number assigned to a player at the outcome.

node to maximize its own payoff function while considering the forces applied to each node. The
results of this study showed that the game-based algorithm provided a more authentic prediction
of tertiary links between architectural elements of the RNA molecules. For more on AGT, see
(Elkind and Leyton-Brown, 2010; Roughgarden, 2008).

Basic Game Elements and Types of Games

As the field of game theory has developed, distinct terminology and classification
systems have emerged. This section will provide a brief overview of common terminology used
and how games are classified.

Classifying games:
Zero-sum and non-zero-sum games: In zero-sum games, the payoff of all players add to
equal zero. That is, points earned by one player come at the loss of points from another
player. Non-zero-sum games, the payoff of players does not equal zero. Therefore, in
non-zero-sum games, one player's benefit does not necessarily come at the loss of
another.
Cooperative and Non-Cooperative games: In Cooperative games, players are allowed to
communicate between themselves. This opens the door for players to corporate, and for
actions to emerge that are beneficial for the whole. In non-cooperative games, players are
not given the privilege of communication.
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Figure 6: Generic game tree where 1) Node is a point at which a player chooses an action.  2) Initial node is the
point at which the first action in the game occurs. 3) Terminal node: any node which, if reached, ends the game.
Each terminal node corresponds to an 4) outcome. 5) Subgame: any connected set of nodes and branches descending
uniquely from one node. Arbitrary payoff values are presented in parenthesis with the first coordinate corresponding
to player 1's reward and the second coordinate corresponding to player 2's reward for any given outcome. Note that
extensive-form games reach equilibrium differently than normal-form games (Munro, 1992).

Perfect and imperfectly informed games: In perfectly informed games, players are aware
of the other players' past actions. This is the opposite of imperfectly informed games
where at least one player is unaware of other players' previous actions.
Static and Dynamic games: Dynamic games require players to take turns to act. Static or
simultaneous games, each player must act without knowing the action taken by the other
players. That is dynamic games; players act one after another while static game players,
in essence, act simultaneously.
One-shot and Repeated games: One-shot games are games in which the players play the
game once and for all. Repeated games are played in iteration. Repeated games allow for
modeling the psychological side of a continuous relationship, including the concepts of
reputation, threats, and promises.
Normal-form and Extensive-form games: Normal- or strategic-form games can be
described by matrices (see Figure 5), whereas extensive form games are described by
game trees (See Figure 6) (Ilhan and Anderson, 2016). For a further description of the
difference between normal- and extensive-form games, see Figure 7 in the Standard
Games section.
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Beyond terminology, understanding the general structure and basic elements of a game,
allows players to decide how to play the game. Game strategies are defined as a program
instructing a player which action to take at every node (where player decision-making must
occur- see Figure 6). Strategies can be pure, mixed, or hybrid approaches. Pure strategies players
take the same action repeatedly. On the other hand, players can play a mixed strategy in which
the action chosen is done according to a probability distribution over all possible actions. Next,
standard games will be presented.

Standard Games
As mentioned, the concept of social dilemma is fundamental to many game models such

as stag hunt, the prisoner's dilemma, the bargaining problem, the snowdrift game, the
unscrupulous diner's dilemma, and the centipede game (Mckelvey et al., 1992; Nash Jr., 1950;
Sui et al., 2015; Teng et al., 2013). Additionally, the volunteer's dilemma and tragedy of the
commons are used to study varying conditions of social dilemmas (Diekmann, 1985; Hardin,
1968). One of the most fundamental of these games is the stag hunt (SH). This game differs from
its more famous counterpart, the Prisoner's dilemma, as it holds two pure-strategy Nash
equilibria compared to one. This added degree of complexity allows SH to have a substantial
relationship to the Prisoner's dilemma allowing circumstances that have been described as
Prisoner's dilemmas to also be interpreted as a SH (Fang et al., 2002) . For example, climate
change contracts are often debated as to whether they are a prisoner's dilemma or SH, given
varying assumptions (II, 2016; Szathmáry and Smith, 1995). SH began as a story by philosopher
Jean Jacques Rousseau in his Discourse on Inequality (Skyrms and Irvine, 2001). Rousseau
describes a situation in which hunters can remain faithful to their post such that the hunters may
receive a stag. With the hunters having the inability to take down a stag alone, it is vital to
remain faithful. However, given the opportunity to take down a hare on one's own, Rousseau
sees that one cannot doubt a hunter would go off in pursuit of the hare in spite of it being less
desirable (Rousseau, 1761). The discourse left many questions concerning the social contract and
was eventually turned into the SH game (see Figure 7a). The traditional SH game (see Figure 7a)
is described similarly to Rousseau's story by imagining two hunters that must choose
independently (simultaneously played) to hunt a stag or hare. If both players cooperate and
choose to hunt a stag, both do well and get the cooperating reward R. If one player cooperates,
that is deciding to hunt a stag- but the other defects-that is deciding to hunt a hare-, the
non-cooperative player gets the temptation reward T (the hare). In contrast, the cooperating
player goes home hungry with nothing receiving the sucker's payoff S.
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Figure 7: Stag hunt game descriptions A) normal-form simultaneously played B) extensive-form
sequentially played with payoffs of . Where and𝑅 > 𝑇 ≥ 𝑃 > 𝑆 𝑅 = 4, 𝑇 = 3, 𝑃 = 2, 𝑆 = 1.

Traditionally, the game is played simultaneously with payoffs . Alternatives of𝑅 > 𝑇 ≥ 𝑃 > 𝑆
SH may be played sequentially, as depicted in Figure 7b. SH can also be generalized into
N-player form as described by (Pacheco et al., 2009). Where it is generally agreed that
cooperation becomes more difficult as N (number of players) becomes larger due to the problem
of trust multiplying.

IV. Game Theory in Pharmaceutical Development
Nash equilibrium assumes that beliefs are consistent with actual decisions. However,

beliefs are not likely to be confirmed out of equilibrium, and in such cases, learning will occur.
Since this discovery, a large body of work has incorporated learning into models of adjustment in
games. For example, RL is often deployed for these tasks (Erev and Roth, 1998). On the other
hand, game theory is often utilized in AI when multiple agents are solving logical problems.
Indeed, game theory is often used in multi-agent AI systems, Imitation and Reinforcement
Learning, and Adversary training in Generative Adversarial Networks (GANs). In addition, one
of the oldest AI algorithms -MiniMax algorithm originates from game theory. Beyond
supplementing network AI systems game theory has found utility in other areas of science and
technology.

Game theory has influenced areas of science, including pharmaceuticals. Indeed, many
AI-based examples described in the section Simulations, Emulations, and Predictive Modeling
throughout the DDP were possible due to game theory. Yet, there are more examples such as,
game theory-driven dosing regimens (Chmielecki et al., 2011; Enriquez-Navas et al., 2016).
Yauney and Shah game theory-driven dosing regimens explored reward incentives for their
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chemotherapy selecting algorithm as a function of reducing mean tumor diameter (MTD)
(Yauney and Shah, 2018). Here the game was between the RL agent and the tumor. The agent
was given a choice to dose Temozolomide (TMZ) or procarbazine, lomustine, and vincristine
(PCV) chemotherapies with different dosing options depending on the therapy chosen. These
choices functioned as the agents' action set within the game. Various penalties and rewards for
the agent's actions were explored, with the base incentive being MTD reduction. This study
found that the learned dosing and expert dosing regimen agreed well (Yauney and Shah, 2018).
Others have used game theory to optimize pharmaceutical product flows by modeling
interactions within the PSC (Nagurney et al., 2013). Using a basis in non-cooperating gaming,
the model investigated interactions between pharmaceutical firms and contractors in outsourcing
activities such as selecting a contractor. Assumptions for these games included that the
pharmaceutical firms are cost-minimizing, and the contractors are profit-maximizing.
Nash-Bertrand equilibrium characterized the game, which fulfills variational inequality for both
the firm and the contractors. Game theory has also been used to provide insights into the
business of the pharmaceutical industry.

Game theory provides insights into pharmaceutical companies as commercial businesses.
For example, the bargaining game has been used to model the interactions between regulators
and pharmaceutical firms (Wright, 2004). In Wright’s, work game theory was implemented to
understand the interactions for price negotiations and regulations in Australia. A country
alongside the Netherlands, New Zealand, and the United Kingdom which regulates
pharmaceutical prices consumers pay. The theoretical game model investigated the implications
of the Australian Pharmaceutical Benefits Scheme design. The results of this study suggested
that although firms agreed on lower prices with regulators the firms receive higher payoffs than
in unregulated systems.

VII. Conclusions
Technological breakthroughs of the 20th and 21st centuries have provided significant

advancements in computer sciences. Much of the computational advancement, especially in the
realm of ML, has a basis in game theory. Allowing innovative computational methods to solve
complex problems. This paper showed that despite challenges set forth by heavy regulation and
strict guidelines innovative computational methods have improved problem-solving capabilities
in the pharmaceutical industry. Complex processes that have otherwise been too time consuming
and costly to study can now readily be modeled. Thereby, catapulting the industry into the 21st
century of problem solving. Game theory especially has allowed for innovative computational
methods to emerge for solving pharmaceutical problems that traditional methods alone could not.
This paper has described the science of game theory and revealed its role in solving
pharmaceutical problems.
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