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RESEARCH Open Access

CD151 drives cancer progression
depending on integrin α3β1 through EGFR
signaling in non-small cell lung cancer
Jianjie Zhu1,2,3†, Tingting Cai1,2†, Jieqi Zhou1,2†, Wenwen Du1,2, Yuanyuan Zeng1,2,3, Ting Liu1,2, Yulong Fu1,2,
Yue Li1,2, Qian Qian4, Xiuwei H. Yang5, Qinglin Li6*, Jian-an Huang1,2,3* and Zeyi Liu1,2,3*

Abstract

Background: Tetraspanins CD151, a transmembrane 4 superfamily protein, has been identified participating in the
initiation of a variety of cancers. However, the precise function of CD151 in non-small cell lung cancer (NSCLC)
remains unclear. Here, we addressed the pro-tumoral role of CD151 in NSCLC by targeting EGFR/ErbB2 which favors
tumor proliferation, migration and invasion.

Methods: First, the mRNA expression levels of CD151 in NSCLC tissues and cell lines were measured by RT-PCR.
Meanwhile, CD151 and its associated proteins were analyzed by western blotting. The expression levels of CD151 in
NSCLC samples and its paired adjacent lung tissues were then verified by Immunohistochemistry. The protein
interactions are evaluated by co-immunoprecipitation. Flow cytometry was applied to cell cycle analysis. CCK-8, EdU
Incorporation, and clonogenic assays were used to analyze cell viability. Wound healing, transwell migration, and
matrigel invasion assays were utilized to assess the motility of tumor cells. To investigate the role of CD151 in vivo,
lung carcinoma xenograft mouse model was applied.

Results: High CD151 expression was identified in NSCLC tissues and cell lines, and its high expression was
significantly associated with poor prognosis of NSCLC patients. Further, knockdown of CD151 in vitro inhibited
tumor proliferation, migration, and invasion. Besides, inoculation of nude mice with CD151-overexpressing tumor
cells exhibited substantial tumor proliferation compared to that in control mice which inoculated with vector-
transfected tumor cells. Noteworthy, we found that overexpression of CD151 conferred cell migration and invasion
by interacting with integrins. We next sought to demonstrate that CD151 regulated downstream signaling
pathways via activation of EGFR/ErbB2 in NSCLC cells. Therefore, we infer that CD151 probably affects the sensitivity
of NSCLC in response to anti-cancer drugs.
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Conclusions: Based on these results, we demonstrated a new mechanism of CD151-mediated tumor progression
by targeting EGFR/ErbB2 signaling pathway, by which CD151 promotes NSCLC proliferation, migration, and
invasion, which may considered as a potential target of NSCLC treatment.

Keywords: CD151, Integrins, EGFR/ErbB2, Proliferation, NSCLC

Background
Lung cancer is the most frequent cause of cancer-related
deaths worldwide [1, 2]. Non-small cell lung cancer
(NSCLC) accounts for approximately 85 % of all lung
cancers [3]. Although the advancement has been made
in surgical procedure and chemical therapies, prognosis
of NSCLC remains dismal [4]. Hence, exploring a better
understanding of the mechanism underlying NSCLC
progression and metastasis is extremely crucial.
Tetraspanins are four-transmembrane-spanning pro-

teins containing short cytoplasmic N- and C-termini and
one small and one large extracellular domain, which are
highly expressed on cell surface or intracellular vesicle
[5]. The most important character of tetraspanins is that
they form complexes by interacting with each other and/
or other transmembrane proteins, including integrins,
RTK (EGFR and c-Met), cytoskeleton and cytosolic sig-
nal transduction molecule [6]. Therefore, tetraspanins
are considered as regulators of cellular signaling and are
often depicted as molecular facilitators [7].
Tetraspanins CD151, a transmembrane 4 superfamily

protein, was identified as a positive effector associated with
tumor development [8]. Recent studies have shown that
CD151 expression was increased in breast, prostate, lung,
colon, skin, and other cancers, and elevated CD151 expres-
sion was correlated with advanced stage and poor prognosis
[9–11]. CD151 regulated laminin-binding integrins and
control tumor cell migration and invasion through its effect
on their adhesive and signaling functions [12]. While it has
been recognized that high expression of CD151 was corre-
lated with high grade and stage of NSCLC [13], the precise
mechanism of CD151 in NSCLC is still unknown.
The purpose of this study was to investigate the role

of CD151 in the progression and metastasis of NSCLC.
To this end, we detected the expression of CD151 in
tumor tissues and its paired adjacent tissues, and then
analyzed its correlation with prognosis and pathological
parameters. Further, the pro-tumoral effect of CD151 in
NSCLC progression and metastasis was validated in vivo
and in vitro. All together, our results indicated that
CD151 plays an important role in tumor progression
and metastasis of NSCLC.

Materials and methods
Cell culture
Human bronchial epithelial (16HBE) cell, human NSCL
C cells A549, H1299, SPC-A1, H1650, Calu-3, 95 C, 95D

(lung adenocarcinoma cell line) and H460 (giant-cell
lung carcinoma cell line) were purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai,
China). The cells were seeded and grown in RPMI 1640
medium (HyClone, South Logan, UT, USA), with 10 %
fetal bovine serum (Gibco, Carlsbad, CA) and l-
glutamine and antibiotics (Invitrogen, Carlsbad, CA,
USA) at 37 °C in a humidified atmosphere containing
5 % CO2.

NSCLC tissue samples
One hundred and seven paired NSCLC tissues and adja-
cent noncancerous lung tissues were collected after in-
formed consent from patients in the First Affiliated
Hospital of Soochow University between 2009 and 2015
(approval number/ID of the permission was 2009-157-
1). Histological and pathological diagnostics for patients
with NSCLC were evaluated according to the Revised
International System for Staging Lung Cancer. The pa-
tients with NSCLC had received neither chemotherapy
nor radiotherapy before tissue sampling. The demo-
graphic and clinical characteristics of NSCLC patients
were summarized in Additional file 1: Table 1. Tissue
samples were frozen rapidly and stored at − 80 °C in an
ultra-deep freezer. This study was approved by the Aca-
demic Advisory Board of Soochow University (number/
ID of the permission was 2009-157-1).

Immunohistochemical assay
Tissue Microarray Matched pairs of NSCLC samples
and adjacent lung tissues were used for the construction
of tissue microarray (Outdo Biotech, Shanghai, China) as
previously described [14]. In brief, the sections were in-
cubated with CD151 antibody (diluted to 1:50; Santa-
cruz, sc-271,216) overnight at 4 °C, and then incubated
with the corresponding biotinylated secondary anti-
bodies. The reactions were developed using the DAB Kit
(BD Bioscience, San Jose, CA, USA), and the sections
were counterstained with hematoxylin.
The CD151 expression levels were determined as bel-

low: the expression levels for each sample which repre-
sented by score (intensity × positive rate), as reported
previously [15]. The scoring of immunostaining was
evaluated on the basis of staining intensity and percent-
ages of three positively stained areas at random by two
pathologists in a double blinded manner. Briefly, the
proportion of positive cells in each specimen was
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quantitatively evaluated and scored as follows: 0, Stain-
ing in 0 % of the cells examined; 1, staining in 0.01-10 %
of the cells examined; 2, staining in 10.01-50 % of the
cells examined; 3, staining in 50.01-75 % of the cells ex-
amined; and 4, staining in > 75 % of the cells examined.
The staining intensity was graded as follows: 0, No sig-
nal; 1, weak; 2, moderate; and 3, strong. The histological
score for each section was computed using the following
formula: Histological score = proportion score x intensity
score. A total score with a possible range of 0–12 was
calculated and graded as follows: Negative (-; score, 0),
weak (+; score, 1–4), moderate (++; score, 5–8) or
strong (+++; score, 9–12). Scores of - and + were consid-
ered to indicate low expression levels, whereas scores of
+ + and +++ were considered to indicate high expression
levels.

RNA extraction and quantitative real-time PCR analysis
Total RNA was extracted from cells and tissues using
RNAiso Plus (TaKaRa, Osaka, Japan) according to the
manufacturer’s protocol. Synthesis of cDNA with reverse
transcriptase (RT) was performed with Reverse Tran-
scriptase M-MLV (TaKaRa, Osaka, Japan). Primer se-
quences for mRNA detection are as follows: CD151: 5′-
GGGCCACTTGCATGTTCGT-3′ (forward), 5′-CAGG
TTCCACTTGAGCTTGTTCAC-3′(reverse); β-actin: 5′-
CACAGAGCCTCGCCTTTGCC-3′ (forward), 5′-ACCC
ATGCCCACCATCACG-3′ (reverse). Real-time PCR
analysis was performed using SYBR Premix Ex TaqTM
(TaKaRa, Osaka, Japan) and ABI Step One Plus Real-
Time PCR system (Applied Biosystems, Foster City, CA,
USA). Ct values of CD151 mRNA were equilibrated to
β-actin, which were used as internal controls. The
ΔΔCtmethod was applied to calculated the relative
expression.

Generation of stable cell lines overexpressing CD151 and
establishment of CD151-silenced stable cell lines
To generate A549 and H1299 cells in which CD151 can
stably overexpress, we subcloned a ~ 800 bp coding se-
quence (GenBank Accession number NM_004357.5) of
CD151 into a pGMLV-CMV-MCS-EF1 vector using en-
donucleases EcoRI and XhoI for expression via Lenti-X
lentiviral expression system (Clontech, Mountain View,
CA, USA). Then the CD151 expression construct was
co-transfected with packaging plasmids into human em-
bryonic kidney 293 T cells using Lipofectamine 2000
(Invitrogen). The empty vector was served as a negative
control. Human embryonic kidney 293 T cells were cul-
tured in Dulbecco’s modified Eagle’s medium with 10 %
fetal bovine serum at 37 °C in a humidified 5 % CO2 in-
cubator for 48 h. After the incubation, the packaged len-
tiviruses were collected and used to infect A549 and
H1299 cells. After 2 days, stable cells were selected with

2 µg/ml of puromycin (Sigma-Aldrich, St Louis, MO,
USA). The coding sequence region of CD151 was ampli-
fied using the following primers: forward, 5′-CCGGAA
TTCCCAGGATGGGTGAGTTCAAC-3′(EcoRI); re-
verse, 5′-CCGCTCGAGGGCAG GGTCAGTAGT
GCTCC-3′ (XhoI). To establish stable A549 and H1299
cell lines in which CD151 is silenced, two DNA frag-
ments (CD151 shRNA-1, 5′-GCCCTCAAGAGTGACT
ACATT TCAAGAGAATGTAGTCACTCTTGAGG
GTTTTTT-3′; and CD151 shRNA-2, 5′-AGCTCAAG
GAGAACCTGAATTCAAGAGATCAGGTTCCT
TGAGCTTTTTTT-3′) were subcloned a lentiviral vec-
tor pGMLV-SC5 (Genomeditech, Shanghai, China) with
endonucleases BamHI and EcoRI. A scrambled sequence
(underscored) of CD151 shRNA, which was served as
negative control, was as follows: 5′-ATCGACTAGC
CACTTAGACTTCAAGAGGTCTAAGTGGCTAGT
CGATTTTTTTT-3′. Then, the CD151-silenced con-
struct or negative control was co-transfected with pack-
aging plasmids into human embryonic kidney 293 T
cells using Lipofectamine 2000 (Invitrogen). Forty-eight
hours later, A549 and H1299 cells were infected with
the packaged lentiviruses and cultured for 2 days, and
stable cell lines were selected with 2 µg/ml of
puromycin.

Antibody and proteome arrays
For the RTK activation study, antibody arrays by Raybio
(Catalog: AAH-PRTK-G1) were used according to the
manufacturer’s protocol, it is specifically designed for
simultaneously identifying the relative levels of phos-
phorylation of 71 different Human Receptor Tyrosine
Kinases (RTKs) in cell lysate. In brief, cell lysates from
A549 stable cells and control cells were collected and in-
cubated with the blocked Glass Chip for overnight at 4
℃ with gentle shaking. After development, the laser sig-
nals were captured and analyzed using the GenePix
4000B Microarray Scanner (Molecular Devices, CA,
United States). For the soluble receptors and related pro-
teins analysis, we used the Proteome ProfilerTMArray
(R&D Systems, catalog number ARY012) and processed
according to the manufacturer’s instructions. Protein ly-
sates were incubated with the array membrane and pixel
densities on developed X-ray film can be collected and
analyzed using a transmission mode scanner and image
analysis software.

Western blot assay
The tissues and transfected cells were lysed using
1×RIPA buffer with protease inhibitors and phosphatase
inhibitors(Apexbio), shaken on ice for 30 min, and cen-
trifuged at 4 °C, 12,000 g for 15 min. The extracted pro-
teins were separated using a 10 % sodium dodecyl
sulphate-polyacrylaminde gel electrophoresis(SDS-
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PAGE) and subsequently transferred to NC membranes
(Millipore, Billerica, MA, USA). Antibodies employed in
the analysis were as follows: anti-CD151 (sc-271216) and
anti-EGFR (sc-373746) (Santa Cruz, CA,USA);anti-Integ-
rin α3 (ab242196), anti-Integrin α6 (ab20142), anti-
Integrin β1 (ab52971) (Abcam, Cambridge, UK);p-ErbB2
(Sigma-Aldrich; Merck KGaA, SAB4300061); anti-p-
EGFR (3777), anti-ErbB2 (4290), anti-p-FAK (8556),
anti-FAK (13,009), anti-p-AKT (4060), anti-AKT(4691),
anti-p-ERK (4370), anti-ERK (4695), anti-p-Src (2101),
anti-Src (2109), anti-CyclinD1 (2978), anti-MMP2
(13132), anti-MMP9 (13,667) were all purchased form
Cell Signaling Technology (Danvers, MA, USA).Anti-β-
actin (CW0096M) and anti-mouse (CW0102) or anti-
rabbit (CW0103) secondary antibodies were purchased
from Cowin.

Co-immunoprecipitation (co-ip) assay
NSCLC cells were cultured in a 100mm plate to 95–
100 % confluence. Then, the cells in each dish were
washed twice with cold phosphate-buffered saline (PBS),
collected by scraping, and lysed with 1ml of modified
RIPA buffer (Cell Signaling Technology, Danvers, MA,
USA) containing protease and phosphatase inhibitor
cocktail (Sigma-Aldrich, St. Louis, MO, USA) for
30 min. Cell lysates were collected by centrifugation at
10, 000×g at 4 °C for 30 min. Clear lysates were pre-
cleared by the addition of 50 µl of protein G bead slurry
and incubated at 4 °C overnight with rotation. Superna-
tants were transferred to a new Eppendorf tube and in-
cubated with 1 µg of mouse anti-CD151 (Santacruz,
sc218216) antibody with rotation overnight in a cold
room; this step was followed by an additional incubation
for 3–4 h with protein G beads. The beads were washed
three times with RIPA buffer and then boiled in 2× SDS
protein loading buffer for 5 min. Samples (20 µl) were
loaded on SDS-PAGE gels for western blot analysis.

Immunofluorescence staining
Cultured cells were fixed with 4 % paraformaldehyde for
15 min at room temperature, permeablized with triton
(0.1 % in TBS) for 30 min and blocked with 5 % BSA in
PBS for 1 h at room temperature. Cells were then incu-
bated overnight at 4℃ with anti-CD151 (Santa Cruz,
sc218216), anti-ITGα3 (Abcam, Ab242196), anti-p-
EGFR (Abcam, ab40815). The corresponding secondary
antibodies tagged with Cy3 and FITC were used (1:500,
Beyotime Biotechnology). Finally, the samples were incu-
bated in DAPI for 10 min (Life Technologies) for nu-
clear counterstain. Images were acquired using a Leica
SP8 confocal microscope with optimal setting for the
fluorescent markers used.

Transfection
A549 and H1299 stable cells were seeded in 6-well
plates. When cells had reached 40–60 % confluence, we
performed transfection in accordance with the manufac-
turer’s instructions using jetPRIME reagent (Invitrogen).
Cells were collected at 48–72 h after transfection for fur-
ther experiments. The ITGA3, ITGA6 and ITGB1
siRNA and corresponding control were purchased from
GenePharmacompany (Suzhou, China). The target
siRNA sequences were as follows: ITGA3 siRNA: 5′-
UUACAGAGACUUUGACCGATT-3′; ITGA6 siRNA:
5′-CAAACAGCUCAUAU UGAUTT-3′; ITGB1 siRNA:
5′-CAGCCCAUUUAGCUAAAAT-3′.

Cell proliferation analysis
Cell proliferation was determined by using the Cell
Counting Kit-8 assay kit (Dojindo, Shanghai, China).
The A549 and H1299 stable cells were seeded in 96-well
plates at 2 × 103 cells per well and further grown in nor-
mal culture condition for 24, 48 and 72 h. Cell viability
was measured according to manufacturer’s instructions.
The experiment was performed in triplicate.

EdU incorporation assay
Cell proliferation also was determined using EdU (5-
ethynyl-2-deoxyuridine) assay (Ribobio). Briefly, 3 × 104/
mL of A549 and H1299 stable cells were plated in 96-
well plates, then after 48 h were exposed to EdU for 2 h.
Subsequently, cells were fixed with 4 % formaldehyde
30 min at room temperature. After neutralization with
glycine and washing, cells were treated with 0.5 %
TritonX-100 for 30 min and reacted with Apollo® reac-
tion cocktail for 30 min. Nuclei were stained with
Hoechst 33,342. The EdU-positive cells were visualized
under a fluorescent microscope (Olympus) and counted
with Image J software.

Cell cycle analysis
According to the instructions of the Cell Cycle Analysis
Kit (Beyotime, Shanghai, China), cells were cultured in
6-well plates for 72 h. The cells were then collected,
washed with cold phosphate-buffered saline (PBS), fixed
in 70 % ethanol at 4 °C for 24 h, washed with cold PBS
again and stained in a propidium iodide (PI) / RNaseA
mixture. Next, the cells were kept in the dark at 37 °C
for 30 min and 10,000 + cells were analyzed per sample
using a fluorescence-activated cell sorting (FACS) Cali-
ber system (Beckman Coulter, Brea, CA, USA).

Migration and invasion assays
Transwell inserts in size of 8.0 μm pore (Corning, New-
York, NY, USA) were used for performing cell migration
and invasion assays. For migration assay, 800 µl RPMI-
1640 medium with 10 %FBS was added into each lower
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chamber of a transwell insert. Briefly, the stable cells
were trypsinized, and then 5 × 104 cells with medium
containing 1 % FBS were seeded into the upper chamber
and incubated at 37℃ for 24 h in a humidified incuba-
tor. Furtherly, the cells migrated onto the lower surface
of the insert were fixed with 100 % methanol for 20 min,
air-dried for 10 min, stained with 0.1 % crystal violet
overnight and washed with 1×PBS for two times. Lastly,
the cells were photographed and counted. For invasion
assay, the inserts were coated with Matrigel matrix (BD
Science, Sparks, MD, USA) diluted in serum-free
medium, then incubated at 37℃ for 2 h, remaining pro-
cedures were conducted similar to migration assay. Each
experiment was performed in triplicate.

Wound healing assay
Seed A549 and H1299 stable cells into 6-well tissue cul-
ture plate at a density, then they should reach ~ 70–80 %
confluence as a monolayer. The monolayer was gently
and slowly scratched using a fresh 10-µl pipette tip
across the centre of the well, aiming for a resulting gap
distance equal to the outer diameter of the end of the
tip. Another scratch was made perpendicular to the first
to create a cross in each well. Detached cells were then
removed by two gentle washes with 1 × PBS. The well
was replenished with fresh medium, and cells were cul-
tured for an additional 24 h. Cells were observed and
imaged under a microscope (CKX41, Olympus) at the
same magnification and settings. The width of the gap
was evaluated quantitatively using Photoshop.

Animal experiments
Female BALB/c athymic nude mice (4–6 weeks old and
weighing 16–20 g) were purchased from the Experimen-
tal Animal Center of Soochow University and bred
under pathogen-free conditions. All the animal experi-
ments were carried out in accordance with the Guide for
the Care and Use of Experimental Animals Center of
Soochow University. To establish the lung carcinoma
xenograft model, 1 × 106 A549/sh-NC, A549/sh-CD151,
A549/vector or A549/CD151 cells were suspended in 0.1
ml of RPMI 1640 medium without fetal bovine serum
and inoculated subcutaneously into the flanks of nude
mice, which were randomly divided into two groups (4
mice in each group). Tumor volume (V) was determined
by measuring the length (L) and width (W) with a ver-
nier caliper and applying the following formula: V = (L
×W2) × 0.5.

Statistical analysis
All statistical analyses were performed using Graphpad
Prism 7.0 (Graphpad, San Diego, CA, USA) and the
SPSS 17.0 software. Data were presented as the mean ±
standard error of the mean (SEM). The quantitative data

were analyzed using an independent-samples t-test for
comparison between two groups. Comparisons among
three or more than three groups were performed using
one-way ANOVA test followed by Bonferroni’s post hoc
test. The expression level of CD151 between NSCLC tis-
sues (T) and adjacent noncancerous lung tissues (N)
were analyzed using the paired-samples t-test. The sur-
vival differences among groups were calculated using the
Kaplan-Meier method with a log-rank test. Statistical
significance was identified with P < 0.05.

Results
CD151 is highly expressed in NSCLC tissues and cell lines
and its elevated expression is correlated with poor
prognosis
Immunohistochemistry (IHC) analysis was carried out to
evaluate CD151 protein level in 150 paired NSCLC tis-
sues. Data showed that increased CD151 expression was
detected in 39.3 % NSCLCs (59/150), including 36 %
SCCs (27/75) and 46.4 % ADCs (26/56) (Fig. 1a). The
summary of patient characteristics and correlation coef-
ficients with CD151 expression are listed in Additional
file 1: Table S1. Our data showed that enlarged CD151
expression was significantly associated with T status
(P = 0.014), N status (P < 0.001), Clinical stage (P < 0.001)
and pathological grade (P = 0.002). Of note, there was no
significant correlation between CD151 expression and
gender, age or histological characteristics. We further
analyzed the prognostic relevance of CD151 expression
and overall survival among NSCLC patients. Our data
showed that patients with high CD151 expression level
was associated with poorer overall survival among 150
NSCLC patients (Fig. 1b), which was consistent with the
results in NSCLC subsets, including adenocarcinoma
and squamous carcinoma (Fig. 1c, d). RT-PCR analysis
also showed up-regulation of CD151 mRNA expression
in 107 paired NSCLC tissues compared to adjacent tis-
sues (Fig. 1f). Of note, there was no significant differ-
ences found in CD151 mRNA level in terms of patients’
age, gender, smoking habits, degree of differentiation,
TNM stage and lymph node infiltration; however, sig-
nificant differences were observed in terms of histo-
logical characteristics and distant metastasis (Additional
file 2: Table S2). Consistently, we also found that CD151
was up-regulated in NSCLC cell lines in both mRNA
and protein level (Fig. 1e). Collectively, our data indi-
cated the clinical significance of CD151 which may play
an important role in NSCLC carcinogenesis.

Knockdown of CD151 inhibits NSCLC cells proliferation,
migration and invasion in vitro
To determine the role of CD151 in NSCLC, two NSCLC
cell lines A549 and H1299 were chosen to construct
stable CD151 knockdown cell lines. CD151 expression
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was significantly down-regulated in both mRNA and
protein level after the stable transfection with two dis-
tinct short hairpin RNAs (shRNAs) individually (Fig. 2a).
Next, CCK-8 and clonogenic assays were applied to
show that CD151 knockdown can inhibit cell prolifera-
tion (Fig. 2b, c). We also confirmed the findings via EdU
assay (Fig. 2d). Additionally, cell numbers in S phase
were reduced accompanied by increased cell numbers in
G0/G1 phase in CD151 knockdown cell lines, implying

that CD151 may affect cell proliferation via regulating
cell cycle (Additional file3: Fig. S1). We further assessed
the role of CD151 in regulating cell migration and inva-
sion. Wound healing assay confirmed that the migratory
ability was suppressed in both A549 and H1299 cells
after silencing CD151 expression (Fig. 2e). Transwell
assay showed less cells were migrated through the in-
serts in the presence of intrinsic CD151 knockdown
(Fig. 2f).

Fig. 1 CD151 expression is up-regulated in NSCLC tissues and cell lines. a NSCLC samples were immunostained with anti-CD151antibody.
Representative adenocarcinomas sample (a–c) and squamous cell carcinomas sample (d–f) are shown. b Effect of the CD151 expression level on
overall survival in 150 lung cancer patients was analyzed. c-d Kaplan-Meier analysis of overall survival for CD151 expression in adenocarcinomas
or squamous cell carcinomas samples. e CD151 mRNA and protein expression in human NSCLC cell lines were analyzed by RT-PCR and Western
blot, respectively. f CD151 mRNA levels in 107 NSCLC tissues and paired noncancerous lung tissues. Bars represent mean ± SEM from three
independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001
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CD151 overexpression promotes NSCLC cells
proliferation, migration and invasion
Besides loss-of-function experiments, we also assessed
CD151 overexpression in regulating NSCLC cell prolif-
eration, migration and invasion. CD151 expression was

confirmed to be significantly up-regulated via RT-PCR
and western blot assay (Fig. 3a). We demonstrated that
CD151 overexpression promotes cell proliferation via
CCK-8 and clonogenic assays (Fig. 3b, c). EdU assay
showed that the percentage of EdU positive cells is

Fig. 2 Silencing of CD151 inhibits NSCLC cell proliferation, migration and invasion. a CD151 mRNA and protein levels in NSCLC cell lines which
transfected with either CD151 shRNAs (sh-CD151-1 and sh-CD151-2) or negative control (sh-NC). b CCK-8 assay of cell viability in NSCLC cell lines.
c Representative images of clonogenic analysis of cell proliferation in NSCLC cells. Bar charts showed clonogenic growth of NSCLC cells. d EdU
incorporation assay for cell proliferation (n = 3). EdU (red), DAPI (blue). Scale bar = 200 μm. e Wound healing assay was performed to observe the
role of CD151 in A549 and H1299 cells. f Representative images of the transwell assay results for cell migration and invasion in A549 and H1299
cells (sh-CD151 compared with sh-NC). β-actin was used as the internal control. Bars represent mean ± SD from three independent experiments.
Significant differences compared with the control: * P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 3 Overexpression of CD151 promotes NSCLC cell proliferation, migration and invasion. a CD151 mRNA and protein levels in CD151-
overexpressed NSCLC cell lines. b CCK-8 assay of cell viability in NSCLC cell lines. c Representative images of clonogenic analysis of cell
proliferation in NSCLC cells. Bar charts showed clonogenic growth of NSCLC cells. d Flow cytometry analysis of cell cycle of NSCLC cell lines
(CD151-overexpressed cells vs. Vector cells). Cells were harvested at 72 h after stained with propidium iodide. e EdU incorporation assay for cell
proliferation(n = 3). EdU (red), DAPI (blue). Scale bar = 200 μm. f Wound healing assay was performed to observe the role of CD151 in A549 and
H1299 cells. g Representative images of the transwell assay results for cell migration and invasion in A549 and H1299 cells (CD151-overexpressed
compared with vector). β-actin was used as the internal control. Bars represent mean ± SD from three independent experiments. Significant
differences compared with the control: * P < 0.05; **P < 0.01; ***P < 0.001
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higher in CD151 overexpressed group compared to con-
trol group (Fig. 3e). The cell cycle assay confirmed that
increased cell number was observed in S phase along
with decreased cell number in G0/G1 phase in CD151
overexpressed cell lines (Fig. 3d). In addition, data from
wound healing assay and transwell assay showed that
CD151 overexpression enhanced the ability of cell mi-
gration and invasion (Fig. 3f, g). All above findings
showed that CD151 promotes NSCLC cell proliferation,
partially through regulating cell cycle, as well as migra-
tion and invasion.

CD151 and Integrin α3β1 were highly correlated
CD151 has been suggested to regulate cell adhesion
through its association with laminin-binding integrins;
however, its precise function in NSCLC remains unclari-
fied. To further investigate mechanisms, we analyzed cell
adhension-associated proteomes and secretomes in both
CD151 knockdown and overexpression cell lines using
Proteome Profiler Array. The immunoblot membranes
and quantified expression levels of proteomes and secre-
tomes are showed in Fig. 4a and b, antibody map and re-
lated data were provided in Additional file 4: Fig. S2,
Additional file 5: Fig. S3a, 3b, Additional file 6: Table
S3(Part N and Part C). Data obtained from TCGA data-
base (https://portal.gdc.cancer.gov/) were analyzed to ex-
plore the correlation between CD151 and integrin α3/
α6/β1 mRNA levels in 103 normal tissues and 999
NSCLC tissues (Additional file 7: Fig. S4a-c) and 188
lung cancer cell lines (Additional file 7: Fig. S4d-f). Ex-
tracted data showed that integrin α family members
were significantly changed through either CD151 knock-
down or overexpression. On the contrary, the integrin β
members were not changed. Consistently, western blot
analysis confirmed these findings (Fig. 4c). We further
investigated complexes of CD151 and integrins or p-
EGFR using co-immunoprecipitation, the results showed
that CD151 directly bound to integrin α3 in NSCLC
(Fig. 4d), however, the combination of CD151 and integ-
rin α6/β1 were likely to be indirected (Fig. 4d and Add-
itional file 7: Fig. S4h). Indeed, there was a study
reported integrin α3/β1–CD151 complex can regulate
dimerization of ErbB2, but not integrin α6/β1–CD151
complex [16]. Data from CPTA database (https://cptac-
data-portal.georgetown.edu/cptacPublic/) also confirmed
the correlation of CD151 and integrin (Fig. 4e). Based on
the above, we proved that interfering CD151 reduced
the expression of integrin α3 (Fig. 4f). All above findings
showed that CD151 and integrin α3/β1 are related.

CD151 promotes NSCLC proliferation and metastasis via
activating EGFR and ErbB2 signaling pathways
To clarify the mechanism underlying CD151-mediated
cell proliferation and metastasis, GO analysis, first of all,

indicated that the PI3K-Akt and EGFR signaling path-
ways are important in CD151-mediated NSCLC cell pro-
liferation, metastasis which is consistent with our results
(Fig. 5a). Then, we exported non-small cell lung cancer
mRNA expression data from TCGA database, and per-
formed co-expression analysis with CD151 and ITGA3
co-expression coefficient of 0.3, P < 0.05, and input the
selected genes into FunRich software (version 3.1.3) for
functional analysis, it can be seen that most of the genes
are clustered in EGFR related pathways (Fig. 5b, c). The
Human RTK Phosphorylation Antibody Array G-series1
was also performed (Fig. 5d and e, antibody map pro-
vided in Additional file 8: Fig. S5 and Additional file 9:
Table S4). The results showed that phosphorylation of
EGFR and ErbB2 exhibited the largest fold changes
among selected proteins due to CD151 expression ma-
nipulation (Fig. 5d, e). We therefore examined the
EGFR/ErbB2 pathways as a candidate critical signaling
pathway in our study. Western blot assay confirmed that
the phosphorylation levels of EGFR and ErbB2 were
down-regulated when knocking down CD151 and up-
regulated when overexpressing CD151 in NSCLC cells.
Sequentially, we showed that the downstream p-FAK, p-
Src, p-AKT, p-Erk and the cell cycle associated cyclin
D1 were down-regulated, while the total FAK, SRC,
AKT and ERK unchanged. Moreover, the expression of
MMP2 and MMP9, tumor metastasis-associated mole-
cules, were reduced after silencing CD151 expression
(Fig. 6a). By contrast, ectopic expression of CD151 en-
hanced p-EGFR, p-ErbB2, p-FAK, p-Src, p-AKT, p-Erk,
Cyclin D1, MMP2 and MMP9 expression level as indi-
cated above (Fig. 6a). Furthermore, immunofluorescence
assays showed that CD151 and p-EGFR were co-
expressed, when CD151 were interfered, the expression
of p-EGFR were also decreased (Fig. 6b). In order to fur-
ther illustrate the combination between CD151 and p-
EGFR, we used the exogenous EGF in both control and
CD151 knockdown cell lines, we found that the protein
level of p-EGFR and p-AKT induced by EGF were sig-
nificantly inhibited by CD151 knockdown (Fig. 6c). Col-
lectively, these results demonstrated a crucial role of
EGFR/ErbB2 signaling in CD151-mediated NSCLC cell
proliferation and metastasis in vitro.

Integrin signaling is involved in CD151-induced EGFR and
ErbB2 pathways activation
Based on the above, we first detected EGFR/ErbB2 and
integrins expression levels in various NSCLC cell lines,
which were showed in Additional file 7: Fig. S4g. Since it
has been reported that integrin β1 was expressed in all
histological types of lung cancer cells and increased
α3β1 integrin expression in tumor cells mediates tumor
proliferation and invasion [17–19]. Then we interfered
integrin β1 expression using specific siRNA in CD151-
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overexpressed cells. As shown in Fig. 7a and b, knock-
down of integrin β1 inhibited the capability of cell prolif-
eration. However, CD151 overexpression rescued the
decreased capability of cell proliferation. We next interfered
integrin α3 or β1 expression in CD151 overexpressed cell
lines individually, and we found that overexpression of
CD151 can increase the expression of integrins, but inter-
fering integrins rescued the increase of downstream phos-
phorylation protein caused by overexpression of CD151

(Fig. 7c, d). Indeed, integrins have been reported to control
the EGFR signaling pathway and induce EGFR clustering,
so we believe that CD151 regulates EGFR signaling path-
way by controlling integrins in lung cancer [20, 21].

CD151-EGFR signaling induced tumor growth in murine
xenograft model
We then extended our study to murine subcutaneous
xenograft models in vivo. We first used the sh-

Fig. 4 CD151 and integrin α3β1 were highcorrelated. a-b Human Soluble Receptor Antibody Array analysis of stable A549 cells in which CD151
either silenced or overexpressed. The list of up-regulated proteins in CD151-overexpressed A549 cells and the down-regulated proteins in CD151-
silenced A549 cells are also shown. c The integrins were verified in A549 and H1299 stable cells using western blot. d Co-immunoprecipitation of
CD151 and integrin and p-EGFR are shown. Protein were immunoprecipitated and detected from lysates of A549 and H1299 cells using a specific
monoclonal antibody. e Data from CPTA database showed the correlation of CD151 and integrin. f Immunofluorescence staining of CD151 and
integrin α3 co-expression in CD151-knockdown cells compared to control cells (Scale bar: 5 μm). *P < 0.05; **P < 0.01; ***P < 0.001
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CD151-2 shRNA in vivo which exhibited robust
knockdown efficiency in CD151 expression. Lung car-
cinoma xenograft mice were sacrificed after 6 weeks
since inoculated with cancer cell line. As shown in
Fig. 8a and b, the tumor weight and tumor volume
were both decreased in CD151 knockdown group.
Tissues resected from the xenograft tumors were ana-
lyzed for CD151 mRNA expression measurement
(Fig. 8c). Consistently, p-EGFR and p-AKT levels
were both decreased in CD151 knockdown tumors

(Fig. 8d). On the other hand, overexpression of
CD151 promoted tumor growth as evidenced by in-
creased tumor volume and tumor weight (Fig. 8e, f).
Both the mRNA and protein level of CD151 were in-
creased in xenograft tumors (Fig. 8 g, h). Further-
more, we found that phosphorylation levels of EGFR
and AKT were increased in CD151 overexpressed
group (Fig. 8i). Collectively, these results demon-
strated a crucial role of EGFR/ErbB2 signaling in
CD151-mediated NSCLC cell proliferation in vivo.

Fig. 5 CD151 accosiated with ErbB signaling pathway. a Pathway analysis was used to identify the significant pathway of the differential genes
according to the KEGG database. We used the Fisher’s exact test to select the significant pathways, and the threshold of significance was defined
by p-value and FDR. b-c Data from TCGA database. d-e Total protein lysates from A549 stable cells were analyzed using an antibody array against
71 unique RTKs (array map provided in Figure S5). *P < 0.05; **P < 0.01; ***P < 0.001
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NSCLC cell growth inhibition induced by Gefitinib,
Lapatinib, and VS6063 treatment is reversed by
overexpression of CD151
Given the role of EGFR, ErbB2 and FAK signaling path-
ways in CD151-mediated NSCLC carcinogenesis, vector
or CD151 transfected A549 and H1299 cells were
treated with Gefitinib (EGFR-TKI inhibitor), Lapatinib
(ErbB2 inhibitor) and VS6063 (FAK inhibitor) separately.
These three inhibitors have been reported to inhibit pro-
liferation of NSCLC separately [22–24]. Cell viability
was assessed at 48 h after drug treatment. The results
showed that overexpression of CD151 significantly re-
duced the sensitivity of cell lines to inhibitors (Add-
itional file 10: Fig S6). Further, we assessed if cells are
more sensitive to these inhibitors after CD151 knock-
down (Additional file 11: Fig S7). Western blot assay
showed that the phosphorylation levels of EGFR and
downstream FAK, AKT and Erk expression level were
markedly reduced compared with that in CD151 overex-
pressed cells in Gefitinib treatment group. In line with

Gefitinib treatment, Lapatinib resulted in a large de-
crease of p-ErbB2, p-FAK, p-AKT and p-Erk levels in
the control group over that in CD151 overexpressed
cells (Fig. 9a, b). Similar phosphorylation levels of p-FAK
and p-AKT were also observed when cells exposed to
VS6063 (Fig. 9c). Taken together, the above findings
suggested the potential of combinational CD151 knock-
down therapy in improving the clinical outcome in
NSCLC patients (Fig. 9d).

Discussion
In this study, we demonstrated that CD151 plays an im-
portant role in NSCLC progression, and elevated CD151
expression indicates poor prognosis of NSCLC patients.
Then we found that CD151, through binding to integrin
α3β1, promotes proliferation, migration and invasion of
NSCLC by activating the EGF signaling.
CD151 is involved in cell-to-cell communication,

wound healing, platelet aggregation, cell trafficking and
tumor progression [9]. In addition, it has been reported

Fig. 6 Abnormal expression of CD151 disrupts EGF signalling. a Western blot assay of CD151, p-EGFR, p-ErbB2, p-FAK, p-Src, p-AKT, p-Erk, Cyclin
D1, MMP2 and MMP9 expression in stable CD151 knockdown or overexpressed cells when compared to control cells. β-actin was used as a
loading control. b Immunofluorescence staining of CD151 and integrin p-EGFR co-expression in CD151-knockdown cells compared to control
cells (Scale bar: 5 μm). c Control and CD151-knockdown cells were treated with EGF (50ng/ml) for 1 h, and the expression levels of various
proteins were then measured by western blot analysis. β-actin was used as the internal control. Bars represent mean ± SD from three
independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001

Zhu et al. Journal of Experimental & Clinical Cancer Research          (2021) 40:192 Page 12 of 18



that CD151 is highly expressed in many solid tumors,
such as breast cancer, gastric cancer and hepatocellular
carcinoma [14, 25, 26]. Here, we confirmed the clinical
significance of CD151 as an independent prognostic in-
dicator of overall survival (OS) in NSCLC patients.
Moreover, high CD151 protein expression retained sig-
nificant prognostic prediction value both in ADC and
SCC. Previous studies had demonstrated that high
CD151 gene expression was significantly associated with
decreased OS in Japanese and Korean cancer patients
[13, 27]. However, the detailed clinical and prognostic
significance of CD151 expression in Chinese NSCLC

patients has not been reported yet. Here, we found that
elevated CD151 level was substantially associated with
increased tumor size, lymph node metastasis and high-
grade tumor.
Tetraspanin CD151 plays a vital role in regulating cell

adhesion through its association with laminin-binding
integrins[28], the CD151-integrin association was critical
for signals transduction and was the precondition for
some biological effects of CD151[29–31]. Recently sev-
eral findings suggested that CD151 may act as a core ef-
fector in many tumor cell types. CD151 could promotes
the proliferation and migration of PC3 cells through the

Fig. 7 Impact of CD151 on integrin-mediated tyrosine phosphorylation cascade. a-b CD151-overexpressed stable A549 and H1299 cells were
seeded into 6 well plates and then treated with indicated siRNA followed by CCK-8 and clone formation assays. c-d Effect of CD151 ablation on
EGFR/ErbB2 and the downstream signaling pathways in A549 and H1299 stable cells. *P < 0.05; **P < 0.01
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Fig. 8 Effects of CD151 on NSCLC cell growth in vivo. a Slower growth and smaller volume of tumors were observed in nude mice
subcutaneously injected with CD151-silenced A549 cells when compared with that in nude mice injected with control A549 cells (n = 4). b&f
Each tumor collected from indicated mice was weighed. c&g CD151 mRNA expression in tumors was detected by qRT-PCR analysis. d&i Tumor
lysates were analyzed by western blot. CD151 and EGF signaling pathways was evaluated in western blot with indicated antibodies. eCD151
overexpression in xenograft nude mice (n = 4) at the experimental endpoint; tumors were dissected and photographed as shown. h
Immunohistochemical staining for CD151 was quantified based on staining intensity. *P < 0.05; **P < 0.01, ***P < 0.001
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formation of CD151-integrin complex [32]. More-
over, CD151 has been shown to activate RhoA by fa-
cilitating integrin α3β1 and Rho controls
dimerization of ErbB2, thus promoting motility and
metastasis of breast cancer [16]. The involvement of
CD151 due to impaired tumor-endothelial interac-
tions was also demonstrated in CD151-knockout
mice [33]. It was also reported CD151 can form
complexes by interacting with integrins α3β1 and

α6β1, which thus affect the biological functions of
the liver cancer cells [34]. In the present study, we
determined possible associations between various
integrins and CD151 in the context of NSCLC, the
results showed that CD151 could regulate EGFR/
ErbB2 and downstream signaling proteins by inter-
acting with integrin α3β1 complexes. However, the
detailed mechanism of CD151-intergrins complex re-
mains to be further explored.

Fig. 9 The impact of EGFR or FAK inhibition on tyrosine phosphorylation cascade. a-c The impact of EGFR or FAK inhibition on EGF-mediated
tumor cell motility in CD151-overexpressed A549 and H1299 cells. Inhibition of EGFR or FAK was carried out by using Gefitinib or Lapatinib or
TAE226 at 10 µM or 20 µM or 4 µM. d Schematic illustration of functional roles of CD151-α3β1 integrin complexes in NSCLC
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Tetraspanin CD151 has been demonstrated to inter-
act with EGFR/ErbB2, either directly or in conjunc-
tion with other integrin adhesion receptors [35–37].
It was reported that CD151-α3β1 integrin complex
can interact with EGFR to promote tumor invasion of
glioblastoma [38], and integrin-associated CD151 can
promote progression and metastasis of tumor medi-
ated by ErbB2 [36]. Focal adhesion kinase (FAK) is an
important regulator of cell movement, FAK signaling
can be activated via phosphorylation upon stimulation
by transmembrane integrins and various growth fac-
tors, linking to the formation and turnover of focal
adhesions, which then phosphorylated and induces
downstream pathway signaling [39–41]. Consistently,
in this report, we confirmed that CD151 could affect
progression of NSCLC by regulating EGFR/ErbB2-
FAK/SRC-AKT/ERK signaling pathways. Matrix me-
talloproteinase (MMPs) are a family of zinc endopep-
tidases that degrade extracellular matrix components
[42], such as matrix metalloprotienases-9 (MMP9)
and metalloproteinases-2 (MMP-2) can degrade vari-
ous types of collagen and gelatin [43] which are
closely related to the migration and invasion of tu-
mors. In our study, we confirmed that CD151 can
affect the expression of MMP2 and MMP9 by regu-
lating EGFR/ErbB2 axis through either knockdown or
overexpression of CD151, which further affect the mi-
gration and invasion of NSCLC. However, whether
CD151-mediated NSCLC migration and invasion is
through other independent signaling pathways rather
than EGFR/ErbB2 still worth exploring.
EGFR/ErbB2 are members of the epithelial growth fac-

tor receptor family, gefitinib and lapatinib are clinically
proven effective in targeting NSCLC with EGFR muta-
tion and ErbB2 + breast cancers respectively [44–46]. In
this study, A549 and H1299-CD151 overexpressed cells
and control cells were treated with either gefitinib or
lapatinib, results shown that there were obvious de-
creases in p-EGFR, p-HerB2, p-FAK, p-AKT and p-Erk
levels in the control group over that in CD151 overex-
pressed cells, so we speculated CD151 knockdown may
affect the sensitivity of NSCLC in response to anti-
cancer drugs. Consistently, previous studies had showed
that CD151 ablation can sensitize multiple tumor cell
types to gefitinib by increasing cells apoptosis [47] and
disruption of CD151 can sensitize breast cancer cells to
ErbB2 inhibitors [46], this findings also confirmed our
hypothesis. In addition, we used FAK inhibitor VS6063
and obtained the same results as the experiments above.
Given the role of CD151 in the development of NSCL

C, CD151 may considered as a potential target for the
clinical treatment of NSCLC. In view of the practical
limitations of CD151 gene deletion, the most common
method of targeting CD151 is through the application of

CD151 monoclonal antibody (clone 9B) which can dis-
rupt the cooperation between CD151 with integrin α6β1
[14]. Taken together, these results are worthwhile for us
to further study the role of CD151 in the clinical treat-
ment of NSCLC.
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